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ABSTRACT 
 
This atlas contains Lower St. Johns River Basin submerged aquatic vegetation (SAV) data for 2006. 
Ground-truthing transects and ground-truthing polygons from field-collected data were mapped and 
assessed, and hyperspectral imagery was collected and analyzed. Hyperspectral imagery classification 
was generally successful and appeared to identify a greater proportion of the existing SAV than previous 
attempts using true-color photo interpretation. Based on the imagery classification, 1,273 acres of SAV 
were mapped within the mainstem of the lower basin and Doctors Lake. In some cases, imagery 
classification and transect data gave divergent bed-size estimates. Reasons for those discrepancies are 
briefly discussed. 
 
 

INTRODUCTION 
 
Submerged aquatic vegetation (SAV) plays an 
important role in many aquatic ecosystems, 
particularly in shallow lakes (Sheffer 1998). It is 
important for anchoring sediment, sequestering 
nutrients, serving as a food resource and as 
nursery habitat (Dennison et al., 1993). SAV is 
an important food source and habitat for a 
number of organisms in the Lower St. Johns 
River Basin (LSJRB). Manatees graze the 
deepwater edge of the SAV beds and use the 
shallow areas for cover (reviewed in Burns et al. 
1997). Fish rely on SAV beds for predator 
evasion and increased foraging opportunities 
(Rozas and Odum 1988, Heck and Crowder 
1991, Jordan et al. 1996), as do insects (Batzer 
and Wissinger 1996, Lombardo 1997, Solimini 
et al. 1997). SAV beds in the LSJRB have three-
fold-higher fish abundance and 15-fold-higher 
invertebrate abundance than do adjacent sand 
flats (D. Dobberfuhl, unpublished data). Thus 
SAV-based production rates are 
disproportionately higher than unvegetated areas 
of the river and are critically important to the 
overall health of the system.  
 
SAV mapping efforts began in 1995 to evaluate 
the quality and distribution of estuarine and 

freshwater submerged habitats. This ongoing 
effort is designed to quantify ecosystem change 
in response to restoration efforts and to provide 
information necessary for the development of 
pollutant load reduction goals and total 
maximum daily loads. 
 
True-color aerial imagery was obtained in 1998 
and 2001. Photo interpretation and delineation of 
the grass beds in the 1998 imagery 
underestimated grass bed extent at 
approximately 50% of the ground-truthing 
transects (Dobberfuhl 2002). Photo 
interpretation and delineation of the 2001 
imagery was performed by on-screen digitizing 
SAV identified from scanned orthorectified true-
color aerial photographs. This methodology was 
unsuccessful and failed to identify SAV in many 
areas of the river (Dobberfuhl and Trahan 2003). 
In 2003, the decision was made to obtain 
hyperspectral imagery, focusing on those 
spectral bands thought to be characteristic of 
important vegetative and benthic features. This 
imagery appears to be more sensitive than the 
true-color imagery previously obtained and 
better characterizes grass bed features. Imagery 
was again collected in 2006, with the bands for 
data collection altered somewhat from the 2003 
band selection in order to provide more spectral 
separation between features. In fact, fewer bands 
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were selected in 2006, but the selected bands 
had narrower bandwidths and their placement 
along the electromagnetic spectrum allowed for 
better targeting of desired features. 
 
This edition of the SAV atlas includes ground-
truthing SAV extent for 2005 and ground-
truthing SAV extent and SAV presence and 
absence as identified by hyperspectral imagery 
analysis for 2006. Two independent measures of 
SAV spatial extent were performed in 2006 and 
compared to provide an accuracy estimate for 
hyperspectral imagery classification. These 
maps are presented as a continuing series of 
atlases documenting the distribution and change 
of SAV in the LSJRB. 
 
 

METHODS 
 
Ground-Truthing Transects 
 
In 2005 and 2006, 75 sites were selected to 
ground-truth actual SAV conditions. At each 
site, one transect was run from the shoreline to 
beyond the terminus of the SAV bed. The line-
intercept method (Canfield 1941) was used to 
record species present and percent cover; 
transect length was recorded, and the two end 
points for each transect were recorded by using 
global positioning system (GPS). Transect 
length and the georeference of end points were 
entered into GIS. Transect length was compared 
to the spatial coverage derived from 
hyperspectral image classification to assess the 
relative accuracy of the classified images. Of the 
75 ground-truthing transects, 50 overlapped the 
hyperspectral images spatially and were used to 
assess spatial accuracy of the classified imagery. 
 
Ground-Truthing Polygons 
 
In 2006, 107 polygons along the shoreline were 
delineated and surveyed. Data included species 
present, aggregate percent coverage, plant foliar 
density, water depth, mean plant height, and 
substrate type. These polygons were then 
randomly split into two groups — 54 to be used 
as training data in developing a classification 
scheme to apply towards all images and 47 
polygons were to be used during the accuracy 

assessment. Six polygons were not used at all: 
three polygons were collected outside of the 
imagery extent and three polygons that 
identified emergent vegetation were not 
examined in the study. 
 
Hyperspectral Image Analysis 
 
Imagery — The LSJRB received 87 
hyperspectral swaths that covered the lower St. 
Johns River shoreline (Figure 1). The imagery 
was collected April 13–16, 2006 (HIL, 
Elmsdale, N.S., Canada), using a compact 
airborne spectrographic imager (CASI) sensor 
(ITRES, Calgary, Alberta, Canada). The 
resulting images have 1.2-meter (m) pixels and a 
swath width of 512 pixels (or 614.4 m) and 
swath length generally ranging from 5 to 8 
kilometers (km) (Figure 2). Data collection was 
timed to prevent shadows from riverside trees 
from interfering with the sensor’s view of the 
water and SAV near shore. Twelve of the 87 
images were used to develop the classification 
methodology and 75 images were used in the 
final classification (12 images were excluded 
completely because of image overlap and 
redundancy).  
 
Several processes were run on the images before 
delivery by the vendor, including image data 
processing, attitude data processing, GPS data 
processing, merging attitude and position data, 
atmospheric correction, and geocorrection. 
Image data processing involves a radiometric 
correction of the raw sensor image data that 
compensates for variations in optical 
transmission (“noise”) and sensor sensitivity. 
Attitude data and GPS data processing are 
necessary to standardize the images. These two 
data files are then merged, synchronized, and 
corrected if necessary. The imagery is then 
atmospherically corrected to remove the effects 
of scattering and absorption of sunlight by 
particles in the air. This process permits 
comparisons between images and allows spectral 
signatures collected from one image to be 
applied to other images. The final step is to 
apply the GPS navigation data to the 
radiometrically and atmospherically corrected 
imagery to create a geocorrected version of the 
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Figure 1. Location of 87 raw images 
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Figure 2. Image 61 
 



imagery. The images were geocorrected by 
using data collected from onboard inertial 
measurement unit (IMU) and surface collected 
ground control points (GCPs) bringing the 
geocorrected images within a 2-pixel, or 
approximately 2.4-m, spatial accuracy (HIL 
2006). 
 
Spectral Resolution — Spectral resolution 
describes “the number and width of the portions 
of the electromagnetic spectrum measured by 
the sensor” (Govender 2007). For this study 
hyperspectral data was collected in 17 different 
bands of varying widths across the visible (400 
nanometer [nm] to 750 nm) and near infrared 
(750nm to 2,500 nm) range of the 
electromagnetic spectrum (Table 1). Each band  
 
 
Table 1. Band ranges and bandwidths 
 

Band Range Bandwidth
(nm) 

1 453.6 +/– 5.8 nm 11.6 
2 465.7 +/– 6.7 nm 13.5 
3 480.6 +/– 4.8 nm 9.6 
4 491.7 +/– 4.8 nm 9.6 
5 542.0 +/– 4.8 nm 9.6 
6 572.7 +/– 3.9 nm 7.8 
7 581.1 +/– 3.0 nm 6.0 
8 589.5 +/– 2.0 nm 4.0 
9 681.7 +/– 2.0 nm 4.0 

10 693.0 +/– 2.0 nm 4.0 
11 698.7 +/– 2.1 nm 4.2 
12 710.2 +/– 2.1 nm 4.2 
13 720.6 +/– 3.0 nm 6.0 
14 736.0 +/– 3.0 nm 6.0 
15 750.4 +/– 4.0 nm 8.0 
16 762.9 +/– 5.0 nm 10.0 
17 787.1 +/– 4.0 nm 8.0 

nm = nanometers 
 
 
collects information in a different part of the 
electromagnetic spectrum and, therefore, may be 
able to contribute to identifying unique features 
on the earth’s surface. Most objects reflect 
energy in unique patterns across the 
electromagnetic spectrum, and bands and 
bandwidths should be selected to allow that 
variation to appear without creating 
unmanageable amounts of data. Water absorbs 
most wavelengths in the near infrared, so the 

majority of the most useful information 
regarding SAV will come from the visible range. 
 
Image Processing — ENVI Geospatial 
Software (ITT Visual Information Solutions, 
Boulder, Colo.) was used for image processing. 
ENVI has the ability to process and analyze 
geospatial imagery including spectral signature 
selection and image classification. ArcGIS 
(Environmental Systems Research Institute, 
Redlands, Calif.) was used for Geographic 
Information Systems (GIS) work. 
 
Classification — Classifying an image involves 
giving each pixel in the image a class 
designation based on its value across all bands, 
known as its spectral signature. There are two 
major types of classification schemes: 
unsupervised and supervised. Unsupervised 
classifications allow the computer that processes 
the data to identify classes based purely on the 
digital number (DN) of each pixel in each band. 
Each individual pixel is compared to other 
pixels, and they are then divided into clusters 
based on the similarity of their DN combination 
values. The objective is to group spectral 
response patterns into clusters that are 
statistically separable. Supervised classifications 
are generally more accurate because they 
include analyst-specified spectral information 
developed from specified locations in the image. 
Training sites are identified by the user, and the 
spectral signatures from those areas guide the 
model as it classifies the remaining pixels in the 
image into the designated class types.  
 
For this project, we selected a type of supervised 
classification scheme uniquely developed for use 
with hyperspectral data — the spectral angle 
mapper classification scheme or SAM. SAM is a 
physically based spectral classification scheme 
that uses an n-dimensional angle to match pixels 
to reference spectra. The algorithm used in the 
SAM scheme determines the similarity between 
two spectra by determining the “spectral angle” 
between them. It uses the direction of the spectra 
and not its length or magnitude; therefore, all 
illumination possibilities are treated equally. 
When used with calibrated data this method is 
relatively insensitive to illumination and albedo 
effects. With SAM, smaller angles represent 
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closer matches of pixels to reference spectra; 
however, any pixels that do not fall into the 
angle range of any of the classes will remain 
unclassed. 
 
Training Data — Training data for the SAM 
classification scheme were created with the use 
of ground-truthing polygons that were collected 
along the shoreline over several days in April 
2006 and within 2 weeks of the image 
acquisition. These polygons were overlaid onto 
the imagery and pixels were selected from 
within the polygons that represented areas of 
medium-to-high density SAV or bare bottom 
areas with no SAV. Additional pixels were 
selected from several of the images to capture 
the spectral signatures of other class types 
including urban areas, tree cover, and open 
water. The signatures from the selected pixels 
were then included in the spectral library.  
 
Spectral Signatures — The spectral signatures 
of all pixels across 17 bands for the four class 
types (SAV, bare, urban, terrestrial vegetation) 
can be compared, and distinct differences can be 
seen in the shape of the signature curve between 
class types (Figure 3). Urban areas and areas 
with tree cover are spectrally distinct and are 
easily distinguished. However it is more 
important, and more difficult, to find spectral 
separability between water and SAV.  
 
Spectral Library — A spectral library is a 
collection of reflectance spectra for natural 
and/or man-made materials for use in identifying 
unknown spectra. A unique spectral library for 
the lower basin of the St. Johns River consisting 
of 63 signatures for both aquatic and terrestrial 
features was developed (Figure 4). This spectral 
library was referenced by ENVI to classify the 
each individual image using the SAM model. 
 
 

RESULTS AND DISCUSSION 
 
The accuracy of the hyperspectral imagery 
classification was assessed with the use of the 
two different ground-truthing data sets. First, the 
remaining 47 ground-truthing polygons were 
examined and the classification accuracy for 
each polygon was determined by comparing the 

polygon’s class designation to the image’s 
classification. If an area was classified as SAV 
in the polygon but only 95% of the same area 
was classified as SAV in the imagery, the 
accuracy for that polygon was 95%. Several 
metrics were useful in evaluating the overall 
accuracy of the classification based on these 
polygons. The average of the presence/absence 
accuracy for all 47 polygons is 78%, but the 
median value of the accuracy values is 95%. The 
average of the presence/absence accuracy of the 
50% trimmed mean of the measured values is 
90% (Table 2). 
 
 
Table 2. Accuracy assessment 
 

Accuracy 
Metrics 

Ground- 
Truthing 
Polygons 

Ground-
Truthing

Transects 
Mean 78% 82.1% 
Median 95% 89.9% 
50% trimmed mean 90% 86.0% 

 
 
The second method used to determine accuracy 
involved a comparison between SAV bed length 
as identified by the classified hyperspectral 
imagery to bed lengths measured from ground-
truthing transects in the river. Fifty of the 75 
ground-truthing transects were found to be 
within the extent of collected imagery and were 
used for measuring classification accuracy. A 
comparison of bed length measurements at the 
50 transect sites shows that the hyperspectral 
imagery classified an average of 82.1% of the 
SAV extent measured by the ground-truthing 
transects, a median accuracy value of 89.9%, 
and the average of the 50% trimmed mean of 
measured values is 86%. These results suggest 
that the hyperspectral classification generally 
underestimated bed length. Closer examination 
reveals that the deep end of the SAV bed was 
more often the underestimated area. Deep 
overlying water attenuates the reflected light 
energy available to the sensor, and it is possible 
that there may not be sufficient sensor sensitivity 
under those conditions. These results suggest 
that the hyperspectral sensor had more difficulty 
detecting SAV in deeper water condition, 
especially if those plants were short.  
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The classified hyperspectral imagery identifies 
1,202 acres of SAV in the mainstem of the St. 
Johns River and 71 acres in Doctors Lake for a 
total of 1,273 acres. This estimate is lower than 
the 2,140 acres estimated using the 2003 
imagery and earlier transect data (Dobberfuhl 
2002, Dobberfuhl and Trahan 2003). Several 
factors are likely responsible for the observed 
reduction in coverage.  
 
One factor influencing the reduced estimate is 
the method of grass bed delineation. With 
traditional photo interpretation, small bare areas 
within grass beds are not as likely to be 
identified as in hyperspectral imagery 
classification. Thus the larger number of bare 
patches, or “holes,” will tend to decrease the 
aggregate areal coverage estimate.  
 
A second factor is differences in shoreline 
delineation. A 2003 image analysis used 
shoreline boundaries derived from SJRWMD 
DOQ imagery, since spatial accuracy of the HSI 
imagery was too low to identify the shoreline. In 
contrast, 2006 HSI imagery had much higher 
spatial accuracy and the shoreline boundary was 
generated from the imagery itself. Differences in 
shoreline boundary between 2003 and 2006 may 
account for a small proportion of the overall loss 
in coverage. It should be noted that because of 
these types of issues using different analytical 
methods to compare areal coverage, results 
between years should not be compared in light 
of analytical errors. 
 
The final factor relating to the reduction in 
coverage is not imagery-related but water 
quality-related. Drought conditions persisted 
from fall 2003 through fall 2004, during the 
winter/spring of 2005, and again during 
winter/spring of 2006. The consequence of these 
repeated drought conditions was unusually high 
salinity values that reduced or eliminated SAV 
from many downstream areas in the lower basin. 
Field measurements of SAV coverage 
corroborate these reductions. Therefore, a large 
fraction of the SAV reduction observed in the 
imagery between 2003 and 2006 is a real and 
verifiable change. 
 

Hyperspectral imagery continues to be a useful 
tool in identifying the presence and absence of 
SAV in the St. Johns River. As technology 
improves and analysts gain more experience in 
data collection and analysis, it is expected that 
hyperspectral imagery analysis will become 
more accurate and yield more detailed SAV 
maps in the future. For future hyperspectral 
analyses, additional questions may be addressed 
such as determining the maximum depth at 
which hyperspectral imagery can accurately 
identify SAV or determining whether or not 
hyperspectral imagery can accurately 
differentiate between SAV species. In future 
monitoring efforts, it may be possible to 
accurately map individual species’ distributions 
with only a minimum in-water effort. 
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