Special Publication SJ2000-SP9

FINAL REPORT DECISION MODELING FOR ALTERNATIVE WATER SUPPLY STRATEGIES

by

Carol Demas Kirk Hatfield, Ph.D. Donald Hearn, Ph.D.

Center for Applied Optimization University of Florida Gainesville, Florida

February 1998

EXECUTIVE SUMMARY

Due to the increasing demands placed on Florida's water resources, the state of Florida adopted legislation in 1989 to improve water resource management and to direct future growth through planning programs. This legislation requires each water management district to completely evaluate its water needs and sources through the year 2010 and delineate critical areas identified as water resource problems. Once completed, districts are expected to develop possible alternative water supply strategies which will correct or avoid adverse or otherwise unacceptable impacts associated with the development of water supplies.

The St. Johns River Water Management District (SJRWMD) has determined that projected increases in groundwater withdrawals between 1990 and 2010 could adversely impact native vegetation, ground water quality, and spring discharges. Due to these possible adverse impacts, SJRWMD is investigating the technical, economical, and environmental feasibility of alternative water supply strategies including the development of decision models for determining minimal cost water allocation schemes which incorporate water management constraints, environmental impact constraints, cost constraints, optimization of existing groundwater source withdrawals, and alternative sources including surface water from the St. Johns River, reclaimed water, and new public interconnects. Aquifer mitigation and avoidance of impacts, lower quality sources, and conservation rate structures have not yet been incorporated.

This report outlines the development and demonstration of linear programming optimization models and mixed integer decision models for water resource management. Many different water management objectives may be explored within a single model. Models have been developed for the east-central and Volusia County study areas. Results indicate that use of surface water, public supply utility interconnects, and limited use of reclaimed water (i.e., to satisfy public supply irrigation needs and agricultural demands) may avoid potential impacts to spring discharges, aquifer head loss, and sensitive wetland areas. Existing and alternative source sites, capacities, and cost data incorporated in the model are not intended to reflect final alternatives under consideration, but serve as an example for how the decision model works.

The Water Supply Decision Modeling Project is an extension of the contract with the University of Florida for a study of optimization modeling. The previous project entitled *Water Allocation and Quality*

i

Optimization Modeling sought to develop a systematic modeling method for determining optimum water supply strategies that satisfy various environmental and hydrological requirements based on existing sources. This method applied a combined optimization/simulation technique which incorporates the District's current ground water flow and transport simulation models for the study area. Several site specific water resource allocation optimization models were developed for Volusia County, Florida, and were executed to investigate a variety of management objectives. These optimization models incorporated both water quantity and quality aspects of water resource management to determine optimum ground water allocation strategies which satisfy future water service demands and minimize adverse environmental impacts at specified locations. The decision modeling presented herein extends the above described optimization modeling work by incorporating the identified alternative water supply strategies including the costs for alternative water supply components. These new components are logical additions which transformed the linear programming optimization models into mixed integer programming decision models capable of performing integrated resource management functions. This project demonstrated the use of optimization/decision modeling as a valuable tool for the management of water resources. Results presented in this report are for demonstration purposes only and are not intended to reflect realistic alternative water supply strategies.

OBJECTIVES

The overall objective of the Water Supply Decision Modeling Project is to develop models which will help guide the water resource developer and manager in the process of developing appropriate future water supplies alternatives. These models will provide a means for comparison of alternate water allocation strategies.

The water supply decision models were developed with the General Algebraic Model System (GAMS) software, which has been employed successfully in the prior optimization modeling efforts. An additional objective of this project was to determine the scale of problems which can be solved by GAMS using the computer facilities at the University of Florida and the DISTRICT. The water supply decision models are flexible with respect to management objectives and geographical area. This flexibility will allow managers to investigate many different management objectives in several areas with little or no modification to the models. Two of the more pertinent management objectives for investigation are 1) minimizing the total cost of providing water for a regional area while constraining the environmental impacts at sensitive areas and 2)

ii

minimizing the environmental impacts while calculating the cost of providing water. These two objectives along with other types of management objectives will be achievable with the Decision Modeling tool developed from this project.

LINEAR PROGRAMMING OPTIMIZATION MODELS

Three-dimensional linear programming optimization models were developed and applied to east-central Florida and Volusia County, Florida. The analysis revealed general trends in both regions. Both the east-central and Volusia models identified potential water resource problem areas, or public supply utility or agricultural demand areas having deficits subject to the specified environmental constraints. A deficit is the quantity of water needed to meet a demand which cannot be withdrawn from existing groundwater supplies without violating the specified environmental constraints. Deficits found by each model are strongly dependent upon environmental constraints.

EAST-CENTRAL RESULTS

The east-central model identifies optimum water allocations scenarios to meet 2010 demands by allowing a maximum 15% decrease in Upper Floridan head over areas with low potential for vegetative harm, an upper limit of 15% loss in spring discharge, and a specified 2%, 1%, or 0% loss in Upper Floridan heads over areas with high or moderate potential for vegetative harm.

The hydraulic response of the east-central region Upper Floridan aquifer was found to be very linear. Sanlando Springs and Apopka Springs were the most sensitive springs. The models revealed deficits totaling 140-170 MGD (24% -30% of the total projected year 2010 demand) over the eastcentral region. Most of the deficit occurs at the Orange County East, Orlando Utilities Commission, and Deltona public supply utility demand areas.

VOLUSIA COUNTY RESULTS

The Volusia model also identified water allocation plans for meeting projected year 2010 demands permitting 15% allowable decreases in surficial aquifer head over areas with low potential for vegetative harm, an upper limit of 15% loss in spring discharges, and finally, a specified 2%, 1%, or 0% loss in surficial aquifer head over areas with high or moderate potential for vegetative harm. The Volusia model's surficial aquifer response was not as linear as the Upper Floridan response in the east-central model; however, an additional set of influence coefficients could be generated for each environmental constraint case examined. Finally, the model results were found to be strongly dependent on the proximity to areas with a high potential for vegetative harm and relatively independent of the proximity to springs. This may be due to the coarseness of the simulation model grid in the Blue/Gemini Springs area.

Optimization modeling in the Volusia region revealed total deficits of 15-38 MGD (13%-32% of the total projected year 2010 demand). Public supply utility demand areas which displayed large deficits included Deltona, Port Orange West, Daytona Beach East, and Daytona Beach West. Thus, these areas may be good candidates for alternative water supply strategies to meet part of their projected year 2010 water demands

CONCLUSIONS

The results of linear programming optimization modeling over both regions will change considerably when constraints based on the aquifer thickness of potable water or different vegetative harm constraints are incorporated. However, the results presented in this report provide a general overview of how the models work in their specific areas.

RECOMMENDATIONS

For both the East-central and Volusia regions, additional model runs may be advised with some of the following recommendations:

- Capacities should be eliminated for each demand area in order to determine the fullest extent of water availability at each location based on hydrology and environmental constraints as opposed to existing well/treatment plant conditions
- Constraints should be added which preclude saltwater intrusion
- The GIS vegetative harm analysis should be expanded to cover entire simulation model areas and not just areas within SJRWMD boundaries
- Use of minimum flows for springs and lakes should be incorporated as they are adopted by SJRWMD in lieu of a non-specific percent decrease

SIMULATION MODELS

As part of the contract with the University of Florida it was required to assess the accuracy of the present MODFLOW simulation models and the sensitivity of model results to boundary locations and conditions, cell sizes, and solution techniques.

BOUNDARY LOCATIONS AND CONDITIONS

Current boundaries in the east-central model may be problematic for large-scale optimization modeling efforts. Though many wells withdrawal in the northwest portion of east-central region which includes Leesburg, Mt. Dora, and Tavares, these areas are not included in their entirety in the present grid. Also, the northern boundary cuts through the southern part of Deland, and could give better results if it were expanded northward by several miles. The Deltona area is in the northernmost part of the east-central grid and the southernmost part of the Volusia grid. Additional study of results in these areas may be necessary to ascertain the potential problems due to present boundary placement.

The southern boundary of the Volusia model poses the same potential problems as the northern boundary of the east-central region. Other boundary locations did not present potential or existing problems.

GRID CELL SIZE

Nonlinearities in the aquifer response may be overcome by generating influence coefficients using a strategy that perturbs well flows around the optimal well withdrawal scheme selected by the models. Since the most frequently chosen well withdrawal rate is zero, an optimal strategy for calculating influence coefficients should select to perturb well flows near zero to obtain minimum errors. Experience has shown that errors are largest at locations where a high density of wells exist. Future simulation model grids may offer enhanced accuracy if they are refined to contain no more than one well per cell, particularly in the Daytona Beach West, Port Orange West, and Deltona demand areas. These environmentally sensitive areas are either 1) classified as having a high potential for vegetative harm, or 2) near springs with critical flow constraints. Other locations exhibited an excellent linear aquifer response.

SOLUTION TECHNIQUES

It is recommended to use a conjugate gradient method solver (PCG2) with preconditioning or the newer, more efficient *Orthomin* solver

available for use with MODFLOW96 (McDonald and Harbaugh, 1996) for generating the surficial aquifer layer influence coefficients of the Volusia model. This solver may offer a more computationally efficient matrix solution than the currently used Strongly Implicit Procedure (SIP) solver.

DECISION MODELS

Three-dimensional mixed-integer groundwater management decision models have been developed and applied to east-central and Volusia County, Florida. These models extend the linear programming formulation to include the costs of decisions regarding alternative water supplies. Alternative water supplies and their associated costs were investigated by consultants to SJRWMD. The alternatives included in this study were surface water, reclaimed water, interconnects between public supply utility demand areas, and new well development proposed by public supply utility areas.

The alternative supplies selected by each examined case are strongly dependent upon environmental constraints. The results presented in this report provide a general overview of how the models work in their specific areas. A number of alternative sources remain to be incorporated including lower quality sources, artificial recharge, aquifer mitigation/avoidance of impacts, and lower quality irrigation wells.

COSTS

Fixed and unit costs for existing and alternative water supply strategies were provided by consultants and were evaluated within the models. The cost data were provided on cost per thousand gallons basis in most cases. The models seek minimal cost solutions to water supply problems which meet all specified environmental protection constraints while satisfying public supply utility, agricultural, and industrial water demands.

Fixed transport costs are not large compared to fixed surface water costs. However, the existing model formulation requires a separate physical pipeline for each public demand are supplied by surface water which results in an inefficient use of pipe. Future modeling efforts could include a more efficient surface water transportation network which will consist of a main pipeline with branches to appropriate public supply demand areas. This type of distribution system is likely to incur lower fixed and unit charges, though an equitable distribution of costs may be difficult to define.

vi

EAST-CENTRAL RESULTS

Several general trends were evident. The decision models made extensive use of surface water as an alternative source in all examined cases. Total surface water use was 134, 166, and 187 MGD for cases with environmental loss limits of 2%, 1%, and 0% at areas with high or moderate potential for vegetative harm, respectively. Most surface water use was at the Apopka, Deltona, OUC, and Orange County WRWF public supply demand areas.

Reclaimed water for agricultural use was selected by only those citrus demand areas near Lake Apopka. This reclaimed use is due to the demand areas' proximity to Apopka Spring, which has displayed high variability in its flow measurements, ranging from a low of 28.4 cfs to a high of 70.4 cfs (Rao and Clapp, 1995). Decisions regarding model results in the vicinity of Apopka Spring should not overlook this uncertainty.

The east-central model also made considerable use of interconnects. Generally, the receivers of large quantities of surface water passed much of it on to demand areas in the central and eastern portions of the simulation model area. Existing (11-13 selected) and potential (7-9 selected) interconnects were selected, with flow rates of up to 5 MGD in existing interconnects. Potential interconnects generally supported higher flow rates. The model may not capture sufficient detail with regard to interconnects in all areas. OUC, in particular, deserves additional attention as to potential interconnects, as a decision model with more detail at OUC alone may help to ascertain the lowest cost interconnect options. The precise scheme of existing interconnects within OUC, to OUC, and from OUC was not available for this study.

The alternative sources selected by each case are strongly dependent upon environmental constraints. The east-central model uses a 15% allowable decrease in Upper Floridan head at control points with low potential for vegetative harm, and a 15% allowable reduction in spring discharge. The model required that a 2%,1% or 0% loss limit be specified at Upper Floridan control points having high or moderate potential for vegetative harm. Environmental loss constraints could be revised to reflect potential for vegetative harm throughout the entire active portion of the eastcentral study area. Though the vegetative harm analysis was available for the portion of the east-central region within SJRWMD boundaries, better results would be obtained with a complete analysis throughout the entire active portion of the region. In addition, constraints to preclude saltwater intrusion should be incorporated in future decision model efforts and may significantly alter the resulting optimal solution. Agricultural demands are not projected to increase from 1988. In addition, agricultural use comprises only a small fraction of the total projected water demand in the study areas. For these reasons, agricultural demands do not play a large part in the decision model. Thus, future modeling efforts may benefit from 1)eliminating the optimization of agricultural well withdrawals and 2)eliminating alternative sources for agricultural use such as reclaimed water. This would allow for a corresponding increase in detail and available alternatives at public supply demand areas.

The results presented in this report provide a general overview of how the models work in their specific areas. A number of alternative sources remain to be incorporated including lower quality sources, artificial recharge, and aquifer mitigation/avoidance of impacts.

VOLUSIA COUNTY RESULTS

Preliminary results show that the primary alternative source in Volusia County could be surface water from the St. Johns River near Sanford and DeLand with some use of interconnects and reclaimed water.

Total surface water use was 12, 24, and 46 MGD for the examined cases having 2%, 1%, and 0% surficial head loss limits from 1988 at areas with high or moderate potential for vegetative harm. Very little reclaimed water was used, either for fern growing agricultural areas or public supply demand area irrigation. From 2-3 new interconnects were selected, while 7-8 existing interconnects were selected in the three examined cases. The public supply demand areas making the greatest use of surface water were Daytona Beach West, Port Orange West, Deltona, DeLand, and Orange City. Generally, the large receivers of surface water passed on this water to demand areas in the central portions of the simulation model area which has a high potential for vegetative harm, such as the Port Orange West and Daytona Beach West demand areas. These results would be expected to change considerably when further analysis regarding potential for vegetative harm and saltwater intrusion are considered.

As with the east-central area model, results were highly sensitive to environmental constraints. It is notable that the optimum alternative water supply strategies for Deltona were similar in both the east-central and Volusia applications.

CONCLUSIONS

The decision models provide insight as to the potential tradeoffs associated with the use of alternative sources, though results are strongly dependent on environmental restrictions and may change considerably. Using the mixed-integer models developed herein, a sensitivity analysis may be performed by making slight changes in allowable limits for environmental impact and/or the specification of high, moderate, or low potential for vegetative harm, and comparing the overall solutions. In changing the model to include a new objective function of minimizing both costs and drawdowns, one can develop a chart of minimal cost vs. minimal environmental impact solutions. With the data from several runs of varying environmental restrictions or cost criteria, water resources managers may assess the impacts and tradeoffs associated with competing schemes in order to evaluate which tradeoffs are acceptable.

The University will continue incorporating consultant and SJRWMD data into the decision model as it is made available. Alternative sources including lower quality sources, artificial recharge, and avoidance of impacts/mitigation have yet to be incorporated.

RECOMMENDATIONS

The specification of a particular control point's potential for vegetative harm is critical. Specifying high or low sensitivity at a particular point may result in a different optimal solution, as the decision model seeks alternative sources rather than depressing water levels at a highly sensitive control point. A number of different runs with varying environmental sensitivities should be pursued before making definitive statements about alternative source use in the study areas.

A decision model run without well capacities should be performed to determine the best current and proposed well sites. A number of alternative sources remain to be incorporated including lower quality sources, artificial recharge, and aquifer mitigation/avoidance of impacts. The use of alternative sources would decrease if well capacities were increased at certain locations.

Constraints precluding saltwater intrusion should be incorporated and are certain to yield different results. Additional new well development should also be included in future models as new wells may provide a considerably lower-cost option to the alternatives heretofore considered.

CONTENTS

EXECUTIVE SUMMARY	i
TABLES	xiii
FIGURES	xvii
INTRODUCTION	1
PURPOSE AND SCOPE	2
REVIEW OF CURRENT LITERATURE	4
INTRODUCTION	4
LINEAR AND NONLINEAR PROGRAMMING	5
ADVANCED SOLUTION TECHNIQUES	7
MULTIOBJECTIVE PROGRAMMING	10
SUMMARY	13
BACKGROUND	14
MATHEMATICAL PROGRAMMING	14
WATER RESOURCE ALLOCATION OPTIMIZATION	15
ALTERNATIVE WATER SUPPLIES	
SURFACE WATER	17
RECLAIMED WATER	17
INTERCONNECTS	
PREVIOUS STUDIES	17
HYDROGEOLOGIC FRAMEWORK	

х

EAST-CENTRAL FLORIDA	
VOLUSIA COUNTY	
GROUNDWATER FLOW MODELS	21
EAST-CENTRAL FLORIDA	22
VOLUSIA COUNTY	22
NEEDS, SOURCES, AND SENSITIVE WETLAND AREAS	23
EAST-CENTRAL FLORIDA	23
VOLUSIA COUNTY	
OPTIMIZATION PROCEDURES	30
OBJECTIVE FUNCTIONS	36
CONSTRAINTS	36
INFLUENCE COEFFICIENT GENERATION	
GENERAL ALGEBRAIC MODELING SYSTEM	
PROCEDURE FOR IDENTIFYING STRATEGIES	
COMPUTER RESOURCES	41
LINEAR PROGRAMMING OPTIMIZATION MODELS	42
METHODS	42
DISCUSSION	49
EAST-CENTRAL	49
VOLUSIA	64
CONCLUSIONS	

LP MODELS80
SIMULATION MODELS
MIXED INTEGER PROGRAMMING DECISION MODELS
METHODS
DISCUSSION101
EAST-CENTRAL RESULTS101
EAST-CENTRAL SUMMARY123
VOLUSIA RESULTS125
VOLUSIA SUMMARY143
CONCLUSIONS145
RECOMMENDATIONS
REFERENCES147
APPENDIX A TABLES
APPENDIX B GAMS FILES
EAST-CENTRAL LP OPTIMIZATION MODEL GAMS FILE229
VOLUSIA LP OPTIMIZATION MODEL GAMS FILE
EAST-CENTRAL MIP DECISION MODEL GAMS FILE241
VOLUSIA MIP DECISION MODEL GAMS FILE253
APPENDIX C SUPPORTING FORTRAN AND UNIX SCRIPT CODES
RUNNING THE MODELS

TABLES

1	Total withdrawal for east-central Florida by type23
2	Total withdrawal for Volusia County by type26
3	Linear programmingmodel parameters42
4	Linear programming model variables43
5	East-central deficits
6	East-central spring heads
7	East-central spring discharges
8	East-central shadow prices for public demand areas61
9	East-central public well shadow prices63
10	Volusia deficit as a function of environmental constraints
11	Volusia deficits
12	Volusia spring heads73
13	Volusia simulation model spring discharges73
14	Volusia shadow prices for public demand areas77
15	Decision model parameters86
16	Decision model variables
17	Decision model comparison100
18	East-central model statistics102
19	East-central total reuse112
20) East-central reuse to agricultural areas112
21	East-central new wells

22 East-central total surface water use113
23 East-central use rate of surface water to public areas113
24 East-central fixed costs of surface water sources114
25 East-central fixed costs of surface water transport115
26 East-central interconnects sorted by destination116
27 East-central interconnects sorted by source117
28 East-central total interconnects for public demand areas118
29 East-central interconnect fixed costs
30 Well withdrawal summary for selected areas120
31 East-central alternative water supply strategies for selected demand areas121
32 East-central total alternative water supply strategy use
33 East-central spring discharge as a fraction of simulated 1988 discharge122
34 Volusia decision model statistics125
35 Volusia reuse to public demand areas135
36 Volusia reuse to agricultural demand areas136
37 Volusia new wells
38 Volusia total surface water use136
39 Volusia use rate of surface water to public demand areas
40 Volusia fixed costs of surface water sources137
41 Volusia fixed costs of surface water transport137
42 Volusia interconnects sorted by destination
43 Volusia interconnects sorted by source

44 Volusia interconnect summary for public areas
45 Volusia interconnect fixed costs140
46 Volusia well withdrawal summary for selected public demand areas141
47 Volusia alternative water supply strategies for selected public demand areas
48 Volusia total alternative water strategies142
49 Volusia simulation model spring discharges142
A1 East-central public supply utility demand areas154
A2 Volusia public supply utility demand areas156
A3 East-central public supply utility wells157
A4 Volusia public supply utility wells164
A5 Reclaimed water sites for East-central and Volusia regions168
A6 East-central linear programming results for control points
A7 Volusia linear programming model results for control points174
A8 East-central LP optimization model public supply well withdrawal rates178
A9 Volusia LP optimization model public supply utility well withdrawal rates
A10 East-central LP optimization and MIP decision model agricultural well withdrawal rates
A11 Volusia LP optimization and MIP decision model agricultural well withdrawal rates
A12 Linear approximations for transport costs
A13 East-central MIP decision model public supply well withdrawal rates208
A14 Volusia MIP decision model public supply utility area well withdrawal rates

A15 East-central MIP decision model public supply utility area fixed costs.....219 A16 East-central MIP decision model public supply utility area unit costs......221 A17 East-central decision model public supply utility area total annual costs ...223 A18 Volusia MIP decision model public supply utility area annual fixed costs.225 A19 Volusia MIP decision model public supply utility area annual unit costs...226 A20 Volusia MIP decision model public supply utility area annual total costs...227

Figures

FIGURES

1	Location of East-central and Volusia models within the St. Johns River Water Management District with priority water resource caution areas
2	Hydrogeologic cross-section of the Floridan Aquifer system20
3	East-central grid with wells, springs, reclaimed water sites, and surface water sites
4	East-central vegetative harm25
5	East-central year 1988 head27
5	East-central projected year 2010 nonoptimized head28
6	East-central projected year 2010 nonoptimized drawdown
8	Volusia grid with wells, springs, reclaimed water sites, surface water sites, and constant head cells
9	Volusia vegetative harm32
10	Volusia year 1988 head33
11	Volusia projected year 2010 nonoptimized head
12	Volusia projected year 2010 nonoptimized drawdown35
13	East-central projected year 2010 LP optimization model Upper Floridan drawdown prediction allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm
14	East-central projected year 2010 LP optimization model improvement over nonoptimized case allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm

- 20 Volusia total deficit as a function of environmental constraints....65

- 23 Comparison of optimization model predictions and simulation model results, Volusia model Case 1.....70

- 30 East-central alternative sources, decision model allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm......105

- 37 East-central total cost vs. environmental loss constraint......123

- 46 Volusia alternative sources, decision model allowing 0% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm......134
- 47 Volusia total cost vs. environmental loss constraint......143

INTRODUCTION

The St. Johns River Water Management District has determined that projected increases in groundwater withdrawals between 1990 and 2010 could adversely impact native vegetation, groundwater quality, and spring discharges. SJRWMD is investigating the technical, environmental, and economic feasibility of alternative water supply strategies which will avoid or minimize these adverse impacts. Alternative Water supply studies include the development of decision models for determining minimal cost water allocation strategies which incorporate water management constraints, environmental impact constraints, cost constraints, optimization of existing groundwater source withdrawals, and alternative water supplies.

In east-central Florida and Volusia County, public supply demands are expected to double between 1988 and 2010. Current plans are to meet this demand with additional groundwater withdrawals from the Floridan Aquifer system. This increased demand and additional groundwater withdrawals are expected to result in water resource problems related to native vegetation, spring discharges, and salt water intrusion. Many water allocation schemes could be identified which meet individual user needs but fail to satisfy all of the district's regional water management goals or to consider the cumulative impacts of individual users.

This report outlines the use of mathematical programming to develop a tool to assist water managers in water resource allocation decisions. Both linear and mixed integer formulations are used. The linear programming optimization model uses a linear programming formulation to identify and quantify potential water deficits associated with water supply service areas. The mixed integer decision model presented provides a systematic method for determining water resource allocation strategies while maintaining environmental protection goals at minimal annualized costs. The models were developed with the widely used three-dimensional groundwater simulation model MODFLOW (McDonald and Harbaugh, 1988), the General Algebraic Modeling System (GAMS, Brooke et al., 1996) and solved with the CPLEX (CPLEX, 1996) linear and mixed integer programming solvers. The surficial and Upper Floridan aquifer and spring discharge response to changes in well withdrawal rates were simulated using the unit response matrix approach under the assumption that the principal of superposition is applicable. The coefficients of the unit response matrix describe the relationship between stresses (well withdrawal rates) and drawdown and at specified locations of interests; control points and springs. The models were applied to the regions of

east-central Florida and Volusia County, Florida, to help identify potential water resource problem areas and the appropriate course of action required to avert these problems.

PURPOSE AND SCOPE

Due to the increasing demands placed on Florida's water resources, the state of Florida adopted legislation in 1989 to improve water resource management and to direct future growth through planning programs. This legislation requires each water management district to completely evaluate its water needs and sources through the year 2010 and delineate critical areas identified as water resource problems. Districts are expected to develop possible alternative water supply strategies which will correct or avoid adverse or otherwise unacceptable impacts associated with the development of water supplies. The Water Supply Decision Modeling Project is designed to assist the St. Johns River Water Management District (DISTRICT) in developing acceptable water supply scenarios. The purpose of this project is to demonstrate the use of decision modeling as an efficient tool for water resource management whereas the scope of this project is limited to examining water allocation scenarios given available resources only on a macroscale and subject to computer hardware and software limitations.

The decision models will help guide water resource managers in the process of developing appropriate future water supplies alternatives. These models will provide a means for comparison of alternate water allocation strategies.

The Water Supply Decision Modeling Project is an extension of the contract with the University of Florida for a study of optimization modeling. The previous project entitled Water Allocation and Quality Optimization Modeling (Burger et al., 1996) sought to develop a systematic modeling method for determining optimum water supply strategies that satisfy various environmental and hydrological requirements based on existing sources. This method applied a combined optimization/simulation technique which incorporates SJRWMD current ground water flow simulation models for the study area. Several site specific water resource allocation optimization models were developed for Volusia County, Florida, and were executed to investigate a variety of management objectives. These optimization models incorporated both water quantity and quality aspects of water resource management to determine optimum ground water allocation strategies which satisfy future water service demands and minimize adverse environmental impacts at specified locations. This project demonstrated the use of

optimization modeling as a valuable tool for the management of water resources.

The Water Supply Decision Modeling Project extends the optimization modeling work by incorporating alternative water supply strategies including the costs for the identified alternative components. These new components in the water supply decision model are logical additions to the optimization model and will enhance its ability to perform integrated resource management functions.

The water supply decision models are developed with the General Algebraic Model System (GAMS) software, which has been employed successfully in the prior optimization modeling effort. An additional objective of this project is to determine the scale of problems which can be solved by GAMS using the computer facilities at the University of Florida and the DISTRICT. The water supply decision models are flexible with respect to management objectives and geographical area. This flexibility allows managers to investigate many different management objectives in several areas with little or no modification to the models. The management objective for investigation is to minimizing the total cost of providing water for a regional area while constraining the environmental impacts at sensitive areas.

REVIEW OF CURRENT LITERATURE

INTRODUCTION

Groundwater management models and other decision support systems have been using mathematical programming to simulate and optimize the management of aquifer systems for over thirty years. Loucks (1995) defines a decision support system (DSS) as a computer based model together with active interfaces. Decision support systems can include optimization and simulation models and geographic information systems as well as statistical and graphical packages for data analysis and display. These systems should include the following characteristics: Consistency of data entry transactions, minimal user entry actions, memory load, and learning time, compatibility of data entry with data display, and flexibility for data entry and display for supporting different user requirements and needs.

Some models are used for resource management with the mathematical program designed to minimize cost subject to quality and/or allocation constraints. Other models are useful for evaluating policy while mathematical programs are used to quantify environmental impact. Mathematical programming models consist of a set of decision variables, a set of equations constraining the decision variables, and an objective function which is optimized (maximized or minimized). Linear programming (LP) is a subset of mathematical programming wherein the constraints are linear functions of the decision variables. If the constraints are not linear functions of the decision variables the program is nonlinear (NLP). Integer programming restricts the variables to be binary valued, 0 or 1. A program that contains both integer and non-integer variables is denoted a mixed integer program (MIP). An LP model that has capacity expansion options can easily be extended to an MIP model by adding a binary decision variable for each option. A mathematical program that has uncertain parameters is termed a stochastic program. Chance constraining, a method of stochastic programming for allowing uncertainties in the equations, is commonly used in environmental control problems. Dynamic programming (DP) adds the dimension of time and state variables. Multiobjective programming (MOP) allows for more than one objective function.

LINEAR AND NONLINEAR PROGRAMMING

The first incidence of LP in the field of water resources was in 1962 (Lynn et al. (1962)). They sought to minimize the cost of a sewage treatment system. This work was followed by a rapid succession of similar studies of both LP and NLP models. Most of the early papers were for surface water quality control. Aguado's work (1974) was the first for groundwater systems. Aguado used a finite difference approximation of the equations describing 2-d horizontal steady-state groundwater flow as continuity constraints in an LP. His decision variables were h (groundwater head) and Q (groundwater flux). In addition to the discretized groundwater flow equations, Aguado's LP included a set of constraints on required discharge/recharge rates and an objective function which maximized head values. Aguado's work reflects the first of many efforts by several investigators to 'embed' discretized groundwater flow equations into the constraint sets of LP and NLP models. The embedded approach actually solves the system of equations of a numerical flow or transport model; thus this approach is desirable for those situations in which pumping is a decision variable over most of the discretized study area and when hydraulic head is constrained at multiple locations to investigate sustainable groundwater yield strategies. Alley et al. (1976) extended Aguado's technique in their investigation of aquifer management under steady state and transient conditions using the embedded method and LP for a problem with non-uniform transmissivity.

Willis et al. (1977) presented a Galerkin-type finite element method embedded technique with policy alternatives for well locations and pumping rates and state variables determined simultaneously in the optimization procedure. The model solves a succession of linear programming problems that arise from linearization of the concave objective function using a Taylor series expansion about an initial feasible decision vector. Linear subproblems are solved until there is no longer improvement in the solution.

In another use of the embedded technique, Yazicigil and Rasheeduddin (1987) used the method to determine optimal groundwater management schemes under transient and steady state conditions for a multi-aquifer system using multiobjective analysis. They report that the embedding technique suffers from numerical difficulties when applied to large-scale real world problems, particularly when commercial LP solvers are used to solve the banded matrices.

Greenburg (1995) in his comprehensive survey of mathematical programming for environmental quality control, states that the embedded

approach used by Aguado may not be the best method for solving groundwater resource problems. This is because the method directly solves the discretized groundwater flow equations where hydraulic heads and decision variables at all cells of a numerically discretized management area; thus the scale of the optimization problem increases rapidly as the scale of the study area expands. Further, Greenburg suggests that the embedded technique requires a constant transmissivity, or at least very small variations within an area. The embedded method of Aguado (1974) has the potential for being an efficient way to solve the problem of water resource allocation and decision making, particularly if an advanced solution technique is employed which exploits the matrix structure. Algorithms used to solve large scale optimization problems include decomposition methods, Lagrangean relaxation methods, and interior point methods.

Previous efforts (Burger et al. (1995), Demas and Burger (1995)) in optimization modeling for the SJRWMD focused on the combined simulation/optimization approach, a powerful method in that it is capable of incorporating economic, physical and policy considerations within a single environment. The simulation equations assure that the management model correctly emulates the aquifer response to internal and external fluxes.

The combined simulation-optimization approach does not solve numerical equations from a flow or transport model but requires that a unit response matrix be generated and then embedded in the constraint set of the optimization model. This matrix contains influence coefficients which describe the rate of change of aquifer response (i.e. drawdown) to aquifer stresses such as pumping or recharge at multiple locations.

To generate the influence coefficients of the unit response matrix, a simulation model must be run once for each decision well in the optimization or decision model. Thus, the unit matrix response approach requires greater computational demands to construct the decision model than does the 'embedded' approach, where most of the computational expense is tied to solving the resultant decision model. It is important to note that simulation models alone predict heads and fluxes resulting from specified pumping rates and boundary conditions, whereas decision models constructed with either the unit matrix response or the embedded method are able to determine optimum pumping schemes while simultaneously simulating aquifer responses at multiple locations.

ADVANCED SOLUTION TECHNIQUES

Decomposition strategies described by Taha (1992) have been used to formulate and manage large-scale models. The main advantage to decomposition is efficiency. Via decomposition, it may be possible to solve large-scale problems that would otherwise be computationally infeasible. The structure of a large problem may allow the optimal solution to be determined by decomposing the problem into a group of common constraints and several independent subproblems. Sometimes decomposition separates certain controls from their effects, i.e., water service area or spring constraints can be separated from their effects (the discretized equation of ground water flow). The model can be separated into linear (or almost linear) and nonlinear portions and recoupled.

Studies in environmental economics serve as a complement to the engineering approaches of environmental control. Environmental economics studies may utilize Lagrangean relaxation, a method described by Fisher (1985). Lagrangean relaxation is a tool that is increasingly being used in large-scale mathematical programming applications. The idea is that a difficult integer programming problem may be modeled as an easier problem complicated by a set of side constraints. The problems of formulating a Lagrangean system are the following: which constraints should be relaxed, how multipliers are computed, and how a good feasible solution to the original problem can be deduced from the relaxed problem. The choice of which constraints to relax can be an art, much like the formulation itself. In spite of the effort required to implement Lagrangean relaxation, the concept is growing in popularity because it can exploit certain problem structures and it may be the only option for solving very large problems. Ahlfeld et al. (1988) used the MINOS program of Murtaugh and Sanders (1977) which applied Robinson's projected Lagrangean algorithm for solving the problem of determining optimal contaminant groundwater strategies. They conclude that their method is computationally very expensive and unsuitable for sites with a large number of potential wells.

Another method suitable for solving large-scale problems is the interior point technique which may utilize a conjugate gradient method solver. The earliest and most commonly used solver for LP problems is the simplex method. The simplex method obtains the solution by moving along edges of the solution space that connects the adjacent corners of decision variables and the number of constraints. Though simplex methods have achieved success in solving large problems, it is possible for the solver to encounter all extreme points before the optimal solution is achieved. Attempts to improve the efficiency of solvers that cut across the interior of the solution space rather than along the edges were not successful until Karmarkar (1984) produced a polynomial-time interior point method. His algorithm is primarily of interest in solving extremely large problems. The interior point method requires preconditioning of the matrix. Conjugate gradient methods offer superior efficiency in that they avoid the problem of finding the inverse of the matrix. The problem with the conjugate gradient method is that the matrix must be preconditioned.

Doughtery (1991) applies simulated annealing to optimization of groundwater management problems cast in combinatorial form. This heuristic probabilistic optimization method seeks an optimal solution by analogy with the annealing of solids and is effective for solving some large scale problems. Computational limitations lead to almost optimal solutions in practice though the theory guarantees the existence of an optimal solution. As in most groundwater optimization methods, much of the computational effort lies in the flow and transport simulation portion of the code. The practical algorithmic guidance that yields significant computational savings can make this method competitive with gradient type methods.

Sawyer et al. (1995) investigated the problem of groundwater remediation design using MIP with MODFLOW (Donald and Harbaugh (1988)) and OSL (IBM Corp. (1995).) A branch-and-bound method was implemented because it has displayed success in solving large-scale problems. The branch-and-bound technique does not solve the integer problem directly. Instead, the integer problem is transformed into a continuous problem by relaxing the integer constraints before applying the branch-and-bound principle. Branching enables the elimination of the portion of the continuos space solution that is not feasible for the integer problem. The MIP was difficult to solve because of the large number of variables involved in the remediation problem. This study showed that the ratio of total operating costs to the total fixed charge costs (c/f) played a role in the enumeration and solution time involved in solving the problem. Problems with very high c/f ratios were the easiest to solve in MIP mode. Problems with very low c/f ratios were easy to solve but much harder to solve than problems with very high c/f ratios. A low c/f ratio results when the fixed charges are minimized. The most difficult problems to solve by MIP are those with intermediate c/f ratios. The difficulty increases as the ratio tends to unity. Since these most difficult intermediate c/f ratio problems are likely to be encountered in groundwater remediation or allocation problems, the authors suggest that massively parallel computers should be used to develop the response coefficients for large-scale three-dimensional groundwater problems and that the MIP program should run in a distributed mode over a network of computers.

Ahlfeld (1987) states that the computational resources required to solve a water resources allocation problem increase nonlinearly with the number of decision variables, a few percent with the number of constraints, and about log linearly with the criterion of the clean up method if one is used. Doubling the number of potential well sites more than doubles CPU requirements, but CPU time increases logarithmically as performance critera are tightened.

In a paper describing Hydrogeological Decision Analysis, Freeze et al. (1990) discuss the two usual components in decision analysis--a simulation model for ground water flow and transport, a decision model based on a risk-cost benefit objective function, and include an uncertainty model using Bayesian stochastic process theory that encompasses geological and parameter uncertainties. With uncertainty analysis, proposed site investigation programs may be assessed for worth prior to actually taking measurements. In their application paper (1991) they present two case studies involving 1)selecting a pumping rate for an extraction well to capture an existing contaminant plume, and 2) designing a leachate collection system for a soil remediation facility. Their design approach quantifies benefits, costs, and risks for each design alternative under consideration. They attempt to answer the questions as to how many measurements should be made and where the measurements should be located.

Gorelick (1983), in his survey of groundwater management modeling methods, states that improved hydraulic management models are needed to account for aquifer parameter uncertainty, that nonlinear constraints should be included in research endeavors, that a very broad spectrum of institutional factors and real system features should be included in policy evaluation and allocation models, and that techniques such as dynamic programming, multiobjective programming, multi-time period decomposition, semi-infinite programming, and many nonlinear programming methods be joined with simulation models.

Some NLP approaches have been taken by Gorelick (1990), Gorelick et al. (1994) and Ahlfeld and Mulvey (1987). Typically the NLP approach is pursued when it is desired to improve a model's accuracy. A simulation model may include nonlinear functions to describe recharge/discharge from the surficial layer which in turn would be more accurately represented by a nonlinear programming method.

The quality or correctness of the optimization or decision model depends on the data that it utilizes. Several investigators report disparate results for measured high and low values of transmissivity in both the upper and lower aquifers for the East-Central Florida region (Tibbals (1990). CH2M HILL (1988), Jammal & Associates (1990), GeoTrans (1991)). Aguado, Sitar, and Remson (1977) performed a sensitivity analysis on an embedded aquifer management problem and determined that the optimal solution is more sensitive to changes in hydraulic conductivity than boundary heads. For their problem it was very important to have accurate knowledge of hydraulic conductivity in the model.

MULTIOBJECTIVE PROGRAMMING

Methods for multiobjective decision support require the use of a decision rule which is a set of rules that facilitates the ranking of alternatives. Evaluation methods may generate complete rankings, best alternatives, a set of acceptable alternatives, or an incomplete ranking of alternatives. The multiattribute utility model is the simplest and most widely used decision rule. It consists of a sum of objectives multiplied by weighted parameters. Janssen (1992) provides a survey of multiobjective decision support methods for environmental management.

Bleed et al. (1990) used decision making processes in two case studies to attempt to allocate water on large scale river systems in two countries. Both implementation plans failed as they were blocked by conflicts between those who wanted to use the river for irrigation, municipal purposes, or hydropower, and those who wished to preserve it for fish and wildlife. In the two river systems studied, the Danube and the Platte, the river systems cross important governmental boundaries, and as a consequence, complicated decision making. Many levels of government entities were involved. The decision makers had conflicting goals. Basinwide planning and the development of alternative plans that would give decision makers a range of development options were only marginally used in the decision process, and no compromises were approved for implementation. In both cases public involvement was deemed insufficient in the early stages of planning. Effective decision making requires properly defined objectives, a specification of the social preferences assigned to each objective, a means to evaluate the performances of alternatives with respect to each objective, mechanisms to include the major stake holders in the decision making-process, completely understandable procedures for displaying tradeoffs and identifying compromise solutions, risk assessment for environmental and economic impacts, flexibility, and trust that a good faith effort is being made to arrive at a mutually acceptable solution. The major institutional requirements for effective decision making include extensive and welldefined procedures for securing and responding to public input throughout the planning and development process, and a lead organization that has the authority to address the full range of options, to

engage all affected parties in negotiation, and to implement the politically chosen solution.

In his survey paper, Hipel (1992) discusses the effectiveness of applying multiobjective decision making to many different water resources problems for assisting in making informed decisions in water resources management. In a multiobjective decision method there can be several decision makers and several objectives for each decision maker, probabilistic, deterministic, or fuzzy information. The models may be static or dynamic. Ejaz et al. (1995) presented a combined simulation/optimization method for incorporating surface water quality constraints with simulation/optimization models using MODFLOW, a stream flow routing package, multiobjective programming (MOP), and the unit response matrix technique. Their method provided a means for addressing conflicts between optimizing water use and waste loading.

Roy et al. (1992) developed and demonstrated the use of multicriteria programming of water supply systems for rural areas. The problem can be decomposed into two subproblems: setting up the priority of water users and choosing the best variant of the water supply system. The relevant socio-economic criteria they evaluated included water deficiencies in areas, farm production potentials, functions and activities of the users, structures of the settlements of the areas, water demands, shares of water supply installations in overall investments, and possibilities for new interconnects between water supply systems. They utilized ELECTRE III to evaluate the priority order of users. The ELECTRE multicriterion method (Roy (1985)) uses information expressed in a fuzzy (threshold values are employed rather than one value for a parameter) context so that imprecise measurements may be used. It also employs the concepts of concordance and discordance in its search procedures for isolating the set of preferred alternatives. Because their model maintained a proper balance between the range of the decision problem and the precision of the its mathematical model they were successful in providing a simple method of determining the best water supply system for rural areas.

SUMMARY

The combined simulation/optimization approach has enjoyed use for several decades. There are two types of combined methods: the unit matrix response method and the embedded method.

The embedded method has discretized equations for groundwater flow evaluated at each node or cell of the model. These equations are evaluated as constraints in the model. Many problems of the LP, NLP, and MIP types have been solved using this method. There is a large increased dimensionality associated with embedding. The embedded method accurately simulates the aquifer response to changes in well discharge rates. It also avoids the problems associated with iterating between simulation and optimization models and has none of the nonlinearities inherent in the development of the influence coefficients. Large-scale problems may be solved by the embedded approach, but the most efficient solution techniques require special development. The embedded approach is better suited to smaller, more regular aquifer systems, particularly steady-state management problems.

The unit matrix response approach is easily utilized for large scale water management problems. Equations of the aquifer's response to a change in stimuli (pumping) are needed only at the control points deemed of interest. Thus the dimensionality of the problem is greatly reduced as compared to the embedded method. Significant computational effort is required to evaluate the influence coefficients. It may be difficult to generate a perturbation scheme that allows for a truly linear response.

Mixed integer programming has been successfully applied to the solution of water management problems in both embedded and unit matrix response methods. As the number of binary variables increases, so does the difficulty in obtaining an efficient solution.

The unit matrix response method has displayed success in previous modeling efforts. Because of the reduced dimensionality associated with this method, a larger number of binary variables may be used in the decision model. One of the study objectives is to investigate as many options for alternate water sources as computer resources and time allow. Thus, considering available hardware and software resources, the unit response matrix method is the method of choice for this endeavor.

Multiobjective decision models were investigated. There is an increased level of complexity associated with this type of modeling. The GAMS software does not have built-in multiobjective capabilities though the results of models with alternative objective functions could be compared. True multiobjective modeling is beyond the scope of this project, but it may be of interest to pursue in future decision modeling efforts.

In conclusion, decision models in the literature emphasize the need for cooperation at all levels and an adequate representation of the data, properly defined objectives, a means to evaluate the performances of alternatives with respect to each objective, mechanisms to include the major stake holders in the decision making process, understandable procedures for displaying tradeoffs and identifying compromise solutions, risk assessment for environmental and economic impacts, flexibility, and trust that effort is being made to arrive at a mutually acceptable solution. Effective decision making requires extensive and well-defined procedures for securing and responding to public input throughout the planning and development process, and a lead organization that has the authority to address the full range of options, to engage all affected parties in negotiation, and to implement the chosen solution.
BACKGROUND

MATHEMATICAL PROGRAMMING

An optimization model consists of an *objective function*, or quantity that is to be minimized or maximized, and a number of *constraints* or conditions that must be satisfied. In linear programming (LP) problems, all of the variables or unknowns in the model are continuous. Linear programming solves the problem of allocating resources among competing users in an optimal manner. Among the various possible ways of allocating given resources, the scheme which will minimize or maximize a specified objective function is chosen. The general linear programming problem is as follows: given a linear set of inequalities or equations, find values of the variables while satisfying the linear constraints, i.e. determine the values of the *r* decision variables x_i (i = 1, ..., r) which will maximize (or minimize) the objective function *z*, or

$$z = c_1 x_1 + c_2 x_2 + \dots + c_r x_r$$
 (1)

subject to the *m* constraints

$$a_{ii}x_1 + a_{i2}x_2 + \dots + a_{ir}x_r \ \{\geq, =, \leq\} \ b_{i'} \ i = 1, \dots, m$$
(2)

where for each constraint one of the signs $\{\leq, =, \geq\}$ holds and a_{ij} , b_{ij} and c_{ij} , are known constants. A set of x_j which satisfies the constraints is called a feasible solution. The feasible solution which yields the optimal value of the objective function is called the optimal solution. The objective is to select that particular solution or set of decision variable values which will optimize the objective function subject to the specified constraints. The x_j are the decision variables of the problem and may represent activites. When the c_j are costs associated with the x_j then z represents the total cost from operating the system at the activities x_j . Once a problem has been stated in standard linear programming form (equations 1 - 3) the usual algebraic procedure for solving it is the Simplex method (Dantzig, 1963). Several software programs are available for solving linear programming by modified and advanced Simplex methods.

A problem may be changed from minimizing an objective function to maximizing since Min z = -Max(-z). Each inequality constraint can be written as an equality constraint

$$a_{k1}x_1 + a_{k2}x_2 + \dots + a_{k}x_r + x_{r+1} = b_k$$
(3)

by adding a slack variable x_{r+1} . The dual price or shadow price of the ith constraint is a measure of the rate of increase of the objective function as the *i*th constraint is relaxed. This could mean an increase or decrease in the b_i value depending on the inequality. The reduced cost or marginal value applies to decision variables x_j , with $j \ge r+1$, whose optimal value is zero.

In many LP problems it is desirable to restrict some of the variables to integer values (e.g., a solution recommending 0.137 surface water sites would not be tolerated). The quality of the solution is markedly improved if the number of surface water sites is restricted to integer values. Further, a special type of integer value is a *binary* value which is restricted to take a value of either 1 (yes, build, go) or 0 (no, do not build, do not go). Binary variables can be used to represent decisions regarding alternative sources such as building new water treatment plants, drilling new wells, and laying down new interconnects. A mixed integer (MIP) formulation contains binary variables as well as continuous variables. Generally mixed integer problems are very difficult to solve. For an LP problem, the solution time is predictable with the time required to find a solution proportional to the number of variables and increasing as the square of the number of constraints. But with MIP formulations, as the number of binary variables increases, the solution time may increase dramatically. Even modestly sized MIP problems may make extensive CPU demands. Producing a good MIP formulation requires skill. The difference between a good formulation and a poor formulation may determine if the problem is solvable or not. One of the goals of the decision model is to include as much detail as possible regarding alternative source choices and costs within present computing constraints. Producing an efficient model formulation is critical to the success and quality of the model.

WATER RESOURCE ALLOCATION OPTIMIZATION

Optimization models were developed to investigate optimal allocation of ground water to meet year 2010 demand in the Volusia County and East Central Florida project areas. These models were developed to investigate future water allocation strategies that meet or exceed projected water service area demands and do not exceed available water resource supplies. It was assumed that adverse environmental effects could be minimized at specific locations by constraining pressure head changes (i.e. drawdown) and spring discharges losses to meet specified environmental goals. The models incorporated control points at which ground water levels changes were constrained. These points were in areas where native vegetation could be harmed by declines in the surficial aquifer due to pumping. Optimization models were developed using data generated from numerical simulation models (e.g., information describing aquifer responses to changing stresses such as pumping). The modeling grids from the flow simulation models were incorporated in the formulations of all the optimization models. Information on needs and sources was also included in the formulation of each the optimization model. Elemental discharge rates and pressure heads given by each optimization model correspond to elemental cumulative discharges (from wells located in a grid cell) and elemental average pressure heads in associated cells defined in the flow simulation model. The term "well grid cells" refers to numerical model cells where one or more wells are located, and is used herein to denote that the optimization model identifies the cumulative well flows in each grid cell.

The general decision model formulation includes binary variables for build/do not build decisions as well as continuous variables for flow or use rates, heads, drawdowns, and costs. The decision model allows for a number of alternate water sources to be used in response to the increased public supply water demands projected for year 2010. The use of alternate water sources allows for decreased impact on surficial aquifer heads. The model objective function is now one of minimizing costs of water allocation strategies utilizing both existing and potential sources while constraining surficial aquifer drawdowns in areas of high, moderate, and low potential for vegetative harm. The model incorporates two types of cost constraints: initial *fixed* costs which are incurred when a new source must be constructed, and recurring unit costs, which are similar to operating and maintenance costs but include only those costs which are directly dependent on the flow or use rate of the source. For example, a technician's salary must be considered as part of the initial cost because the salary of a technician does not depend on the flow rate, while power and chemical costs are unit costs because they do depend on the flow rate. Fixed and unit charges are represented in the model on an annualized basis. Cost and other alternative source data were provided by consultants to SJRWMD.

ALTERNATIVE WATER SUPPLIES AND COSTS

Alternative water supplies investigated in the model include new public supply wells, reclaimed water for irrigation at public supply and agricultural areas, surface water, and new public supply interconnects. A brief description of each source is follows with ranges for annual fixed and unit charges.

Surface Water

Currently there are four surface water sites in the east-central region and two sites in the Volusia area. Surface water is considered for public supply use only. CH2M-Hill (1997) reported on surface water use feasibility and costs. The fixed costs of new surface water supplies range from \$0.83-\$1.478/1000 gallons, while the unit costs vary from \$0.126-\$0.194/1000, depending on the quality and quantity of surface water use.

Reclaimed Water

There are approximately 45 reclaimed water sites in the east-central region and 20 in the Volusia County area. Reclaimed water is an alternative water supply for irrigation needs of some public supply utility need areas, fern growing agricultural areas in Volusia County, and citrus growers in the east-central area. PBS&J (1997) reported on reclaimed water use feasibility and costs. The fixed costs of reclaimed water use vary from \$1.41/1000 gallons for agricultural use in the Volusia region to \$2.14 /1000 gallons for landscape irrigation at public demand areas, while the unit costs range from \$0.36/1000 gallons for agricultural use to \$0.47/1000 gallons for landcape irrigation at public demand areas.

Interconnects

Currently potential interconnects between public demand areas having projected year 2010 demands of over 5 MGD are considered in the east-central formulation (1 MGD in the Volusia area). LAW Engineering (1997) reported on interconnect feasibility and costs. Fixed charges for water transport vary from a low of \$22,460L^{1.232}ADF^{0.43} for short systems to \$43,180L^{0.935}ADF^{0.448} for long transport systems requiring more than one pump station, where L is the length in miles and ADF is the average daily flow rate in MGD. Unit charges of water transport are negligible for short transport systems and can reach \$51,420ADF^{0.969} for long systems requiring more than one pump station.

PREVIOUS STUDIES

Several earlier studies using the combined LP optimization/simulation model approach are of note: Burger et al. (1995) investigated the Volusia subregional model and incorporated water quality constraints using a DSTRAM developed by Geraghty & Miller (1991) while Demas and Burger (1995) developed an optimization model for the east-central Florida region. These optimization models served as the basis for present model development.

HYDROGEOLOGIC FRAMEWORK

The location of the two study areas within SJRWMD is displayed in Figure 1 which corresponds to modeling studies performed by Hydrogeologic, Inc. (1992, 1994) and Williams (1996). A hydrogeologic cross-section of the Floridan Aquifer system in Figure 2. The two study areas are described below.

East-central Florida

The east-central Florida model includes all of Orlando and all or part of Lake, Seminole, Brevard, Volusia, and Osceola counties. Detailed descriptions of the area are found in Murray and Halford (1996), Tibbals (1990), and Tibbals and Frazee (1976). The source for water supply within the study area is the Floridan aquifer, one of the world's largest and most productive limestone aquifers, consisting of two distinct producing zones called the Upper Floridan and Lower Floridan aquifer systems. These two aquifers are separated by a layer of dolomitic limestone known as the middle semiconfining unit. At some locations the Upper Floridan aquifer is artesian, giving rise to 17 springs. The water quality of the Upper Floridan aquifer is generally of higher quality than that of the Lower Floridan aquifer and is the primary source of drinking water in the East-central region. Portions of the Lower Floridan aquifer are also tapped as a source of water in central and western Orange county, and in southern and south-western Seminole county. In the western portion of the east-central region, chloride, sulfate, and TDS concentrations in the Upper Floridan are below the secondary drinking water standards of 250, 250, and 500 mg/L respectively. Chloride and TDS concentrations in the Upper Floridan aquifer generally exceed secondary drinking water standards throughout Brevard county and in eastern Volusia county, where salt water exists within the Floridan aquifer system to a depth of 2,000 ft.

Volusia County

The Volusia hydrogeologic framework is discussed in detail in Williams (1996). The pertinent features are lakes, wetlands, and drainage patterns which have a direct impact on the hydrology of an active surficial system. Volusia County has about 120 lakes with areas of greater than 5 acres, mostly in karst ridge areas where high vertical hydraulic gradients and dissolution of carbonate rocks have allowed sinkholes to develop. Lakes are local points of relatively high recharge for the Upper Floridan aquifer which lies below. Wetlands provide surface storage during wet periods and can develop into recharge areas during dry seasons. They also serve as a valuable habitat for a variety of freshwater flora and fauna. Natural surface drainage is the second largest outflow after evapotranspiration

Background

Figure 2. Hydrogeologic cross-section of the Floridan Aquifer system

from the surfical aquifer system. Most streamflow is outflow from the surficial aquifer system. Artificial drainage canals in Daytona Beach and Port Orange are responsible for large long-term declines in the elevation of the water table.

The study area consists of a series of coastal ridges and marine terraces. The main ridges are the Crescent City and De Land ridges in the western region and the Rima ridge and Atlantic Coast ridge on the coast. Almost all precipitation in karst areas drains downward or is lost to evapotranspiration. The soils vary from sandy soils of the coastal ridges which facilitate recharge to organic mucks in the wetlands and swamp lowlands which may inhibit recharge.

The hydrogeologic system consists of the surficial and Floridan aquifer systems. The surficial system is separated from the Floridan aquifer system by a sequence of confining sediments, as in the east-central region. The water quality of the Upper Floridan aquifer is generally of higher quality than the Lower Floridan and is used most often for water supply. The surficial aquifer system is critical to the overall hydrogeology of the Volusia region, serving as a storage reservoir for ground water that may eventually recharge to the Floridan aquifer system. The hydraulic conductivity of the surficial aquifer system is estimated at 4 to 110 ft/day in the northeast region and 25 to 30 ft/day in the rest of the region (Williams, 1996).

GROUNDWATER FLOW MODELS

The groundwater flow simulation model used is MODFLOW (McDonald and Harbaugh 1988), which has been used and verified extensively in groundwater applications. The governing equation describing steadystate movement of an incompressible fluid through a porous media is

$$\frac{\partial}{\partial x}(Kxx\frac{\partial h}{\partial x}) + \frac{\partial}{\partial y}(Kyy\frac{\partial h}{\partial y}) + \frac{\partial}{\partial z}(Kzz\frac{\partial h}{\partial z}) + W = 0$$
(4)

where

Kxx, Kyy, and Kzz = values of hydraulic conductivity along the x, y, and z coordinate axes, which are assumed to be parallel to the primary axes of hydraulic conductivity (Lt⁻¹)

h = potentiometric head (L)

W = volumetric flux per unit volume and represents sources and/or sinks of water including wells and springs (t⁻¹) t = time.

East-central Florida

A three-dimensional, finite-difference groundwater simulation model for east-central Florida was developed by HydroGeologic (1992). Specified head, head-dependent flux, and zero flux boundary conditions are employed. The model simulates spatially variable evapotranspiration, recharge, discharge, head-dependent spring flows, and outflow to agricultural and public supply utility wells. There are two active aquifer layers separated by a semiconfining unit. The finite-difference grid consists of 137 rows by 119 columns and 2 layers for a total of 32 606 cells of which only 27 802 are active due to boundary condition configurations. The smallest cells are 1 050 ft by 900 ft where the density of public supply wells is high, mostly in the Orlando metropolitan area.

Volusia

A three-dimensional finite-difference groundwater simulation model for Volusia County was developed by Williams (1996) of SJRWMD. The model incorporates an active surficial aquifer as well as the Upper and Lower Floridan aquifers. Specified head, head-dependent flux, and zero flux boundary conditions are employed. The model simulates spatially variable evapotranspiration, recharge to , and discharge from the Upper Floridan aquifer. The Floridan aquifer system simulates head-dependent spring flows and outflow to agricultural and public supply utility wells. The model results have been compared to estimated predevelopment conditions, calibrated to year 1988 postdevelopment conditions, and used for predictive simulations of projected year 2010 simulations. There are three aquifer layers separated by two semi-confining layers. The finitedifference grid was developed by Geraghty & Miller (1991). It consists of 91 model rows by 86 model columns with the rows running perpendicular to the coast and the columns running parallel to the coastline. The smallest cell measures 0.25 mile by 0.25 mile. The smallest cells were used where a high density of public supply wells exists, mostly in the coastal region. Specified flux boundaries are used for recharge areas, impermeable boundaries, areas of negligible flow, and wells. Specified head boundaries are useful for surface water areas and regional hydraulic gradients. Head-dependent flux boundaries are used to represent drains, evapotranspiration, springs, and lateral boundaries where the flux is not known. The eastern and western boundaries are of the specified-head type. There are also a number of cells internal to the grid boundaries with specified heads. These cells correspond to the St. Johns River, Lake George, Lake Monroe, and other smaller lakes. There are also a number of agricultural well cells directly adjacent to St. Johns River cells of specified head. The northern and southern boundaries of the grid are mostly zero flux.

NEEDS, SOURCES, AND SENSITIVE WETLAND AREAS

East-central Florida

The east-central model has 332 public supply utility wells serving 71 public demand areas and 362 agricultural wells serving 69 agricultural demand areas. Table 1 displays a well withdrawal summary for the region. Public supply utility area data are summarized in Table A1 for demands, Table A3 for wells, and Table A5 for reclaimed water sites in the Appendix. Table A1 of the appendix lists the public supply utility area name, and the total demands (in MGD) for year 1988 as well as projected demands for year 2010. Table A3 lists the well grid location in simulation model row and column number, whether the well withdrawal from the Upper or Lower Floridan Aquifer, year 1988 and projected year 2010 withdrawal rates in MGD, and the estimated well capacity in MGD. These wells are aggregated and totals for each cell of the simulation model are represented in the optimization model.

	1988 Total (MGD)	Projected 2010 Total	% of Total 2010
		(MGD)	Withdrawal
Public Upper Floridan	183.5	363.7	58.1
Public Lower Floridan	74.6	163.2	26.0
Agricultural	99.4	99.4	15.9
Sum	357.5	626.3	100

Table 1. Total withdrawal for east-central Florida by type

The 17 springs in the east-central region have discharges ranging from 0.6 to 92 cfs. Spring conductance and elevation head are constant in the simulation model so that a reduction in spring discharge is due to a reduction in Upper Floridan potentiometric head. Though minimum discharges have been established for only 8 of the 17 springs, a projected decrease in spring discharge of 15% or more from year 1988 is considered sufficient to pose a reasonable likelihood of natural systems problems (Vergara, 1994). Several springs are near public wells scheduled for large withdrawals, including Starbuck, Palm, Sanlando, and Apopka springs.

The model grid is displayed in Figure 3 along with wells, springs, reclaimed water sites, and surface water sites.

Geographical areas were denoted as having a low, moderate, or high likelihood for vegetative harm based on analysis that included the sensitivity of native plant species to dewatering as well as the nonoptimized drawdown conditions. A detailed study of vegetative harm areas is available in Kinser and Minno (1995) but this study is currently under revision. Figure 4 displays the incomplete east-central area potential for vegetative harm with control points labeled. A large part of

Background

Decision Modeling for Alternative Water Supply Strategies

Decision Modeling for Alternative Water Supply Strategies

the east-central grid lies in other water management districts. The vegetative harm study did not consider those areas.

Figure 5 shows 1988 (initial) head for the east-central region. Figure 6 displays the projected year 2010 nonoptimized Upper Floridan head while drawdowns or head reductions from year 1988 are provided in Figure 7. Significant Upper Floridan aquifer drawdowns are evident in the greater Orlando area with values of up to 26 feet in the vicinity of the OUC Martin wellfield. Other areas with large projected drawdowns include the Orange County East East regional well field, the Sanford area, and the western portion of the Cocoa wellfield.

Volusia

The Volusia region has 177 public supply utility wells serving 41 public demand areas. A total well withdrawal summary is provided in Table 2 below.

14010 2. 100	ai withaiawai ioi	Volubla County by	, ypc
	1988 Total (MGD)	Projected 2010 Total	% of Total 2010 Withdrawal
	·	(MGD)	
Public	45.8	96.2	78.4%
Agricultural	26.6	26.6	21.6%
Sum	72.4	122.8	100%

Table 2. Total withdrawal for Volusia County by type

Table A2 of the appendix lists the public supply utility area name and the total demands (in MGD) for year 1988 as well as projected demands for year 2010. Table A4 of the appendix provides a well withdrawal summary for the region with well grid location in simulation model row and column number, year 1988 and projected year 2010 withdrawal rates in MGD, and the estimated well capacity in MGD. All wells listed in Table A4 withdraw from the Upper Floridan Aquifer. These wells are aggregated and totals for each cell of the simulation model are represented in the optimization model. Table A5 provides reclaimed water site and availability data for the region.

Over 99% of the total public supply utility withdrawal is represented in the optimization model. Overall public supply utility withdrawals were 45.8 MGD in year 1988 and are projected to double to 96.2 MGD for year 2010. The largest public supply utility need area is Deltona with a projected year 2010 demand of 24.9 MGD. Daytona Beach, Port Orange, Deland, and Edgewater also have very large demands. There are 364 aggregated agricultural wells in the optimization model serving 59 agricultural need areas and a total demand of 26.6 MGD. Agricultural users include citrus, fern, livestock, nursery, turf, foliage, and vegetable farms. Fern and livestock areas comprise the largest agricultural water

Background

Background

Decision Modeling for Alternative Water Supply Strategies

demands and account for 61% and 23% of the total agricultural demand respectively. Golf course users are also included in this category though they are not strictly agricultural users.

Figure 8 displays the Volusia simulation model grid with wells, springs, reclaimed water sites, and specified head cells. Geographical areas were denoted as having a low, moderate, or high likelihood for vegetative harm based on analysis that included the sensitivity of native plant species to dewatering as well as the non-optimized drawdown conditions. A detailed study of vegetative harm areas is available in Kinser and Minno (1995) but this study is currently under revision. Figure 9 displays the Volusia area potential for vegetative harm with control points labeled. Areas having a high potential for vegetative harm include the Port Orange West and Daytona Beach Western wellfields in a four mile wide strip running approximately six miles inland and parallel to the coastline.

The surficial aquifer drawdown is defined as the surficial head reduction from simulation model year 1988 conditions. Maximum drawdowns occur at the Deltona region, Port Orange West and Daytona Beach Western wellfields. These wellfields are located in or directly adjacent to sensitive vegetative sites with high or moderate potential for vegetative harm. Deltona is also in the vicinity of Gemini Spring. The maximum drawdown of 6.79 ft is in a low harm area, in the Deltona public supply utility area. The largest fraction of head loss in the nonoptimized case was 14.59%, observed in the Port Orange West public supply area at an existing well, which lies in an area of moderate harm. Figure 10 illustrates the 1988 (initial) surficial aquifer head for the Volusia region. Figure 11 gives the nonoptimized projected year 2010 surficial head while Figure 12 provides the projected year 2010 nonoptimized drawdown or reduction from year 1988 surficial aquifer head.

Control points in the optimization model serve as locations where surficial aquifer drawdown is evaluated and possibly constrained. All 177 public supply utility well points serve as control points. Allowable drawdowns at control points are based on the potential for vegetative harm, though other considerations such as the aquifer thickness of potable water are pertinent and may be incorporated in future decision modeling efforts to preclude saltwater intrusion.

OPTIMIZATION PROCEDURES

Optimization and decision models were developed to investigate water allocation schemes to meet projected year 2010 demands. The models consist of an objective function which is minimized or maximized and a set

Background

of constraints which must be satisfied. The models were built under the assumption that adverse environmental effects could be minimized at specific locations by constraining pressure head changes (drawdowns) and spring discharge losses to meet specified environmental goals.

OBJECTIVE FUNCTIONS

Objective functions appear as statements specifying that the value of the function be minimized or maximized. The linear programs minimize the sum of drawdowns and deficits, while the mixed integer programs minimize total costs of meeting projected year 2010 demands.

CONSTRAINTS

The optimization and decision models share a large common block of constraint equations including aquifer response, management, and nonnegativity constraints. The common block was used in different combinations to formulate different optimization models with unique goals to identify optimal allocation strategies.

The optimization models were developed to allow pressure head and/or drawdown to be constrained or optimized. Drawdown constraints at the specified control points were developed using influence coefficients that describe pressure head changes at each control point due to ground water pumping at each well grid cell. The following general drawdown constraint for a control point includes a linear combination of aquifer responses to the public supply utility and agricultural wells. Management constraints used in these optimization models define the capacity of available resources, the demand for available resources, and the resource to demand links. The first set of constraints deal with the limited capacity associated with the production of water from aquifer systems.

Public supply utility well capacities were estimated for Volusia and eastcentral models from municipal well capacities listed in Wellhead Protection Reports (Huang, 1995). Values for each agricultural well grid cell were set at the service area demand for which the cell supplied. Minimum withdrawal rates on municipal well grid cell were not incorporated into the optimization models to prevent existing wells from shutting off.

Public supply utility and agricultural demands were calculated using projected year 2010 discharge rates. Other parameters relevant to the optimization process include well discharge capacity limits, water demands, initial year 1988 withdrawal rates and pressure heads, and initial spring discharge head data. SJRWMD provided the information for initial well withdrawal and hydrogeologic conditions, aquifer characteristics, and model discretization through various reports and simulation model data.

The public supply well capacity limits were taken from Wellhead Protection Reports of Huang (1995) in the East Central model and from previous studies of Volusia County by Burger et al. (1995).

INFLUENCE COEFFICIENT GENERATION

A large part of the optimization modeling effort involves determining the influence coefficient tables. These influence coefficient matrices represent the change in head at various locations with respect to pumping. The target locations on which the constraints were applied, along with well location and corresponding pumping rate, were determined to develop these matrices. The influence coefficient matrices were calculated by performing multiple executions of the simulation models. One simulation was performed for each well grid cell involved in the optimization process. Computer programs written in UNIX and FORTRAN facilitated the process of determining the response matrices. These programs are provided in the Appendix.

The first step in calculating the influence coefficient matrices involved starting the simulation model with a proper initial condition. It was determined that the closer this initial condition is to the optimized pumping strategy, the better correlation there is between predicted responses of the optimization and simulation models when the optimized pumping strategy is implemented. However, because this optimized strategy is not known, a slightly modified version of the year 2010 projected pumping strategy was used as the initial condition for the flow simulation model.

The individual influence coefficients which comprise the influence coefficient matrices were calculated by individually increasing discharge rates of each well grid cell and determining the response at specified control points and all wells incorporated in the optimization process. Through execution of the simulation models, various types of influence coefficients were calculated to develop the influence coefficient matrices designated as alpha, beta, gamma, and zeta. These matrices are comprised of influence coefficients having units of feet per cubic feet per day (length per volumetric rate).

The unit response matrix method of combined simulation/optimization modeling incorporates influence coefficients and the principle of superposition to compute the system response to a unit stimulus. For groundwater management models the response matrix approach is based on the principle that the influence of discharging or recharging a single well or well cell on aquifer drawdown at a particular location may be expressed as a simple algebraic equation. Individual influence functions are then combined using the principle of superposition to obtain the

aquifer response due to multiple wells. Thus a response matrix can be developed which can be expressed as

$$D_{h} = \sum_{h=1}^{n} \alpha_{i,h} (Q_{i} - qn_{i}) = \alpha_{1,h} (Q_{1} - qn_{1}) + \alpha_{2,h} (Q_{2} - qn_{2}) + \dots + \alpha_{n,h} (Q_{n} - qn_{n})$$
(5)

where

 D_h = drawdown at control point h Q_i = optimized well withdrawal rate at well i qn_i = nonoptimized well withdrawal rate at well i $\alpha_{i,h}$ = unit response function (influence coefficient) from well i acting on control point hn = number of wells

The influence coefficients $\alpha_{i,k}$ of the response matrix are determined from the numerical groundwater simulation models. Since the response equations are developed only at points of interest, it is not necessary to create an equation for each active grid cell in the simulation model which allows for the dimensionality of the problem to be significantly reduced as compared to the embedded technique. Influence coefficients are obtained as follows:

- Run simulation model with nonoptimized well withdrawal scheme qo_i Save heads ho_h
- 2. For each well to be optimized,
 -Perturb the well withdrawal rate a specified amount for a new rate of *qnew*, while leaving all other well withdrawal rates the same as *qo*,
 -Run the simulation model with this new withdrawal scheme. Save heads *hnew*,
- 3. Generate influence coefficients by

$$\alpha_{i,h} = \frac{hnew_h - ho_h}{qnew_i - qo_i} \tag{6}$$

The following perturbations in withdrawal rate *qnew*, with respect to magnitude and direction were used with *wcap* representing the lesser of the capacity of the aggregate well cell or the demand of its demand area :

- 1. If the initial (nonoptimized) withdrawal rate is zero set $qnew_i = wcap$.
- 2. If the initial withdrawal rate is nonzero, set $qnew_i = 0$.

GENERAL ALGEBRAIC MODELING SYSTEM (GAMS)

The GAMS input file used to construct deficit or decision optimization models is easily revised to investigate a variety of water management objectives. All the required sets, tables, parameters, variables, equations, and constraints are built into the model to predict strategies under a wide range of management conditions. Using the optimization input file as a skeleton, only certain values within the GAMS input file need be changed to revise the optimization model and then to determine new optimum allocation strategies under the revised objective functions and constraints. Once the optimization model is created within GAMS, it is executed using a CPLEX linear or mixed integer programming solver. Optimum values of the decision variables are determined when the optimization algorithm identifies an optimum value for the objective function (a maximum or minimum) under a satisfied constraint set. Values for decision variables include discharge rates from wells, pressure heads, and drawdowns at control point.

PROCEDURE FOR IDENTIFYING STRATEGIES

The method used to determine optimum water allocation scenarios is an iterative process and can be divided into the following five steps:

1) Solve the optimization model (LP or MIP decision model) with first estimates of influence coefficients. The optimization model represents a system of linear equations solved during the first step using GAMS. If a feasible solution to the problem exists, GAMS identifies values for decision variables that minimize (or maximize) the value of the objective function and satisfies all specified constraints. Output from the optimization models includes data depicting an optimum water allocation strategy (i.e. well withdrawal rates) and the aquifer system response to the strategy (i.e. pressure heads, drawdowns, concentrations, and concentration increases). The models identify which public supply and agricultural sources should be used, their respective flow or use rates, the pressure heads and drawdown values at the sensitive wetland control points, and deficits (LP) or costs (MIP).

2) Execute the simulation model with prescribed allocation strategy. Because the optimization model is based on linear response theory and is not a true simulation model, the optimum pumping strategy must be incorporated into an updated input file for the simulation model to permit the second step, a simulation to determine the actual response to the strategy. When simulation model responses were compared to the responses predicted by the optimization model, it was shown that the aquifer system response to pumping is generally linear in the aquifer system.

3) Compare optimization model results to simulation model predictions.

4) If hydraulic results are unacceptable calculate revised set of influence coefficients.

5) Solve the deficit or decision model with revised influence coefficients.

Steps 2-5 are repeated until an acceptable level of agreement is reached between the optimization and simulation results. If a revised set of influence coefficients are deemed necessary (step 4), the simulation model is then used to generate a new set of influence coefficients with new perturbations on the well withdrawal scheme. A revised set of response matrices can then be used to obtain a revised optimization model. With these changes, revised optimization models can be executed to determine an improved water allocation strategy.

Sensitivity analysis for influence coefficient generation has determined that the greatest source of error is the closure criterion of the simulation model. Excellent agreement between simulation model and optimization model results is obtained when the MODFLOW closure criterion is 0.0001 or less (Demas et al., 1996). Results using a closure criterion of 0.0005 have significantly more error. The error was not found to be a function of distance from simulation model boundaries.

Maximum errors are incurred where there are several adjacent cells withdrawing near a particular well cell. A nonlinear effect occurs where well withdrawal cells are in close proximity. Nonlinear responses are generally due to both a nonlinear decrease in pressure head as discharge rate increases and a nonadditive effect of drawdown when utilized well grid cells are in close proximity. Nonlinear responses can be corrected by creating a new set of response matrices based on the previously predicted strategy and incorporating these into the optimization model. The correlation between the optimization and simulation models with respect to aquifer system response increases when the response matrix calculation process incorporates an initial allocation strategy which is close to the actual optimum strategy. A revised set of response matrices can be determined using revised initial conditions that essentially match the first estimates of the optimum water allocation strategy. It must be noted that the set of influence coefficients that generate an ideal aquifer response for one set of environmental constraints may not be appropriate for another model with more (or less) restrictive environmental constraints, as the optimal well withdrawal schemes corresponding to such cases may be very different.

A method of reducing the adverse effect associated with nonlinear aquifer responses involves limiting the difference in withdrawal rate from the first to the second execution of the optimization model. By limiting this difference, the withdrawal rate range is reduced and the aquifer system responds more linearly. The perturbation scheme listed above is only one such scheme. In a scheme which does not set a minimum flow rate for existing wells, the most common well withdrawal rate selected by the optimization model will be zero. In this case, perturbations for generating influence coefficients should be close to zero for most wells.

COMPUTER RESOURCES

The computer platforms used are a UNIX based Sun SPARC20 workstation for mathematical programming and the Northeast Regional Data Center (NERDC) NERSP. A research computing initiative account (RCI) was granted by NERDC for project development. The NERSP is an IBM 9076 Scalable POWERParallel SP2 computer which consists of a group of IBM RISC System/6000 nodes. The SP2's nodes are interconnected through a high-speed packet switch to enable speedy parallel processing. The NERSP is designed for use in parallel processing and vector computing applications and was used to generate influence coefficients in a process that took approximately 48 hours for the east-central region and 24 hours for the Volusia area.

LINEAR PROGRAMMING OPTIMIZATION MODELS

METHODS

Linear programming (LP) models were developed to determine minimal environmental impact solutions to water allocation problems subject to meeting projected year 2010 demands and maintaining spring discharges above critical minimums. These models identify potential deficits at public supply utility and agricultural areas. Demand areas having deficits are those areas which may not have sufficient resources to meet projected year 2010 demands while meeting environmental constraints. The general LP model formulation is written using GAMS (1995) and solved using CPLEX (1996). The GAMS formulation consists of model sets (indices), parameters (known data), constraints, and an objective function, the quantity that must be minimized or maximized while satisfying the listed constraints. The model has been applied to the east-central and Volusia regional study areas. Though slight variations in constraints exist between the two regions, the general formulation is similar and is described below.

MODEL INDICES

Model indices (*sets* in the GAMS terminology) include *h*, the set of control points where drawdowns are constrained; *i*, the set of public supply utility wells or well grid cells; *j*, the set of public supply utility demand areas; *k*, the set of agricultural demand areas; *l*, the set of springs; and *m*, the set of agricultural wells.

MODEL PARAMETERS

Model parameters include the individual components of the unit response matrix for control points and springs, capacities or maximum withdrawal rates of wells, initial (simulation year 1988) and nonoptimized projected year 2010 hydrogeologic measurements such as heads, drawdowns, and spring discharges, projected year 2010 demands of public supply and agricultural areas, and service tables specifying which source may serve which demand area. Model parameters are listed below:

	<u> </u>	$\Theta = 1$
parameter	units	definition
influence coefficie	nts of the unit res	ponse matrices
α,,	day/ft ²	influence of public well i on control point h
β	day/ft²	influence of agricultural well m on control point h
Υ.,	day/ft ²	influence of public well i on spring I
Smit	day/ft ²	influence of agricultural well m on spring I

Table 3. Linear programming model parameters

Table 3 <i>Continued</i>		
parameter	units	definition
service maps		·
servm _{ii}		
serva _{km}		
water management		
dm, cfd		demand of public area j
da, cfd		demand of ag area k
qo, cfd		1988 withdrawal rate of public well i
qno, cfd		2010 nonoptimized withdrawal rate of public well i
qao _m cfd		1988 withdrawal rate of agricultural well m
gna cfd		2010 nonoptimized withdrawal rate of agricultural well m
CV MG/cf		0.00000748 MG/cf, converts cf to MG
capacities		
mcap, cfd		public well i
acap, cfd		agricultural well m
loss limits		
dl		minimum fraction of year 1988 head allowed at control
		points having low or no potential for vegetative harm
ml		minimum fraction of year 1988 head allowed at control
hl		minimum fraction of year 1988 head allowed at control
711		points having high potential for vegetative harm
sp,		minimum fraction of year 1988 discharge allowed at spring
hydrogeologic		
ho, ft		1988 head of control point h
hno _b ft		2010 nonoptimized head of control point h
el, ft		elevation head of spring I
cd, ft²/day		spring conductance of spring I
scrit, cfd		critical minimum discharge of spring l
med,		denotes control point h with moderate potential for
		vegetative harm
nıgn _k		denotes control point n with high potential for vegetative harm

MODEL VARIABLES

Linear programming model variables are all continuous and include well withdrawal rates, hydrogeologic variables, cost data, and water management data. Variables are listed by type below:

Table	4.	Linear	programming mode	el varia	ble	es
~~~~			programming moved			

variable	units	definition
use rates		-
$QP_i$	cfd	total pump rate of public well cell i
$Q1_{ij}$	cfd	pump rate of public well cell i supplying demand area j
QA _m deficits	cfd	pump rate of agricultural well m
$QD_i$	cfd	deficit of public demand area j
FDT	cfd	total public deficit
QDA,	cfd	deficit of agricultural area k

Table 4Continu	Jed	
variable	units	definition
hydrogeologic		
$D_h$	ft	drawdown at control point h
SD	cfd	spring discharge at spring l
PS		fraction of simulated year 1988 discharge at spring I
HS	ft	spring head at spring I
accounting		
QD2	MGD	deficit of public demand area j
QAD2	MGD	deficit of agricultural area k
SF	MGD	total public deficit
SFA	MGD	total agricultural deficit
TD	MGD	total deficit
PCT		fraction of public demand in deficit
PCT2		fraction of agricultural demand in deficit
PCT3		fraction of total demand in deficit

The LP model formulation was created with the assumption that optimum groundwater allocation strategies would correspond to those which minimized the sum of public and agricultural deficits and the associated total system drawdown. In this formulation, the objective function appears as a statement specifying that the value of decision variable Z be minimized. Thus,

#### minimize

$$Z = a(\sum_{j} QD_{j} + \sum_{k} QDA_{k}) + \sum_{h} D_{h}$$
⁽⁷⁾

minimizes total drawdowns and deficits, where a value of  $1 \text{ day/ft}^2$  is chosen for parameter *a*.

#### LP MODEL CONSTRAINTS

The model formulation includes hydrogeologic constraints and water management constraints.

#### Hydrogeologic Constraints

Hydrogeologic constraints calculating the drawdown at control points were developed from influence coefficients that describe pressure changes at each control point created by pumping at each well grid cell. The drawdown at a control point is calculated by

$$D_{h} = ho_{h} - hno_{h} + \sum_{i} \alpha_{i,h} [QP_{i} - qno_{i}] + \sum_{m} \beta_{m,h} [QA_{m} - qna_{m}]$$
(8)

The drawdown at a control point is limited to specifications based on the control point's potential for vegetative harm. For the east-central region

and control points in the Volusia region having a low potential for vegetative harm,

$$D_h \le dl_h \tag{9}$$

Currently this limit varies from 80% to 90% of the simulation year 1988 head.

For control points having high or moderate potential for vegetative harm,

$$D_h \le ml \quad if \; med_h = 1 \tag{10}$$

$$D_h \le hl \quad \text{if } high_h = 1 \tag{11}$$

with moderate and high harm areas presently tolerating between 0% and 2% reduction from simulated year 1988 Upper Floridan head (east-central) or 1988 surficial head (Volusia).

Spring head is defined in the model similar to aquifer head above, with

$$Hs_{l} = hsno_{l} - \sum_{i} \gamma_{i,l} [QP_{i} - qno_{i}] - \sum_{m} \varsigma_{m,l} [QA_{m} - qna_{m}]$$
(12)

Spring discharge losses are constrained by

$$Hs_{l} \ge sp_{l}(hso_{l} - el_{l}) + el_{l} \tag{13}$$

The spring's fraction of simulation year 1988 discharge is given by

$$Ps_{l} = \frac{Hs_{l} - el_{l}}{hso_{l} - el_{l}}$$
(14)

The spring discharge (not currently used) may be defined by

$$SD_l = cd_l(HS_l - el_l) \tag{15}$$

with parameters  $cd_l$ , the spring conductance in  $ft^2/day$ , and  $el_l$ , the spring elevation head in feet, and variable Hs_l, the spring head at spring l in feet.

If the critical identified minimum discharge (not currently used) for a spring is available, spring discharge must exceed this critical minimum so that

$$SD_l \ge scrit_l$$
 (16)

(--/

#### **Public Water Management Constraints**

The model uses constraints for public needs and sources to ensure that capacities of wells were not exceeded and to meet demands of public supply needs. The total withdrawal rate of a public well consists of the sum of withdrawal rates serving all public areas

$$QP_i = \sum_j Q1_{i,j} \tag{17}$$

Well withdrawal must not exceed capacities:

$$QP_i \le mcap_i \tag{18}$$

The demand constraint for public supply areas is:

$$\sum_{i} Q_{i,j}^{i} \operatorname{servm}_{j,i}^{i} + Q_{j}^{i} \ge dm_{j}$$
⁽¹⁹⁾

Total of all public deficits:

$$FDT = \sum_{j} QD_{j} \tag{20}$$

#### Agricultural Water Management Constraints

Water Managment constraints for agricultural areas include limiting use or withdrawal rates to specified capacities and satisfying water demands with available sources.

Do not exceed the operating capacity of an agricultural well:

$$QA_m \le acap_m \tag{21}$$

Satisfy demands at agricultural areas with agricultural wells:

$$\sum_{m} QA_{m} serva_{k,m} + QDA_{k} \ge da_{k}$$
⁽²²⁾

The next set of equality constraints are used for accounting purposes.

Deficits are converted from cfd to MGD:

$$QD2_{j} = cvQD_{j} \tag{23}$$

$$QAD2_{k} = cvQAD_{k} \tag{24}$$

Total public, agricultural, and sum deficits are calculated:

$$SF = \sum_{i} QD2_{i}$$
⁽²⁵⁾

$$SFA = \sum_{k} QAD2_{k}$$
(26)

$$TD = SF + SFA \tag{27}$$

The fraction of public, agricultural and total demand in deficit are calculated below:

$$PCT = SF / SM \tag{28}$$

$$PCT2 = SFA / SA \tag{29}$$

$$PCT3 = (SF + SA) / (SM + SA)$$
(30)

The following constraints specify nonnegativity:

 $Q1_{i,j} \ge 0.0 \tag{31}$ 

$$QAD_k \ge 0.0 \tag{32}$$

$$QD_j \ge 0.0 \tag{33}$$

$$QA_m \ge 0.0 \tag{34}$$

In summary,

minimize

$$Z = a\left(\sum_{j} QD_{j} + \sum_{k} QDA_{k}\right) + \sum_{h} D_{h}$$
(35)

subject to

# Hydrogeologic Constraints

$$D_{h} = ho_{h} - hno_{h} + \sum_{i} \alpha_{i,h} [QP_{i} - qno_{i}] + \sum_{m} \beta_{m,h} [QA_{m} - qna_{m}]$$
(36)

$$D_{h} \leq dl_{h}$$

$$D_{h} \leq ml \text{ if } med_{h} = 1 \text{ or } high_{h} = 1$$

$$(37)$$

$$Hs_{l} = hsno_{l} - \sum_{i} \gamma_{i,l} [QP_{i} - qno_{i}] - \sum_{m} \varsigma_{m,l} [QA_{m} - qna_{m}]$$
(38)

$$Hs_l \ge sp_l(hso_l - el_l) + el_l \tag{39}$$

$$Ps_{l} = \frac{Hs_{l} - el_{l}}{hso_{l} - el_{l}}$$

$$\tag{40}$$

$$SD_l = cd_l(Hs_l - el_l)$$
(41)

$$SD_l \ge scrit_l$$
 (42)

# **Public Water Management Constraints**

$$QP_i = \sum_{i} Q1_{i,j} \tag{43}$$

$$QP_i \le mcap_i \tag{44}$$

$$\sum_{i} Q \mathbf{1}_{i,j} servm_{j,i} + Q D_j \ge dm_j \tag{45}$$

$$FDT = \sum_{j} QD_{j} \tag{46}$$

# **Agricultural Water Management Constraints**

$$QA_{m}serva_{k,m} \le acap_{m}$$

$$(47)$$

$$\sum QA_{m}serva_{k,m} \ge da$$

$$(47)$$

$$\sum_{m} QA_{m} serva_{k,m} + QDA_{k} \ge da_{k}$$
⁽⁴⁸⁾

# Accounting Equality Constraints

$$QD2_{j} = cvQD_{j} \tag{49}$$

$$QAD2_{k} = cvQAD_{k} \tag{50}$$

$$SF = \sum_{j} QD2_{j} \tag{51}$$

$$SFA = \sum_{k} QAD2_{k}$$
(52)

$$TD = SF + SFA \tag{53}$$

$$PCT = SF / SM \tag{54}$$
$$PCT2 = SFA / SA \tag{55}$$

$$PCT3 = (SF + SA) / (SM + SA)$$
(56)

# Nonnegativity Constraints

$Q_{i,j} \ge 0.0$	(57)
$QD_j \ge 0.0$	(58)
$QA_m \ge 0.0$	(59)
$QAD_k \ge 0.0$	(60)

# DISCUSSION

# EAST-CENTRAL FLORIDA

Several model runs were made with varying constraints at aquifer heads and springs. Overall east-central LP model statistics are as follows:

- Size: 1,886 rows (constraints), 32,777 columns (variables), 154,614 nonzeroes
- CPLEX LP presolve routine eliminates 1,064 rows and 31,345 columns to yield a *reduced LP*: 664 rows, 1,274 columns and 120,854 nonzeroes
- Run time: 24.9 CPU seconds.

Three cases were examined in detail, which allowed 2% (case 1), 1% (case 2), and 0% (case 3) reduction in Upper Floridan head at control points with high or moderate potential for vegetative harm, 15% losses at control points with low potential for vegetative harm, and 15% spring discharge loss from year 1988.

#### Deficits

Table 5 displays the deficits found in the east-central region when allowable spring discharge losses and Upper Floridan head losses having low potential for vegetative harm were not to exceed 15%, while head losses at Upper Floridan heads at control points having high or moderate potential for vegetative harm were not to exceed 2% (Case 1), 1% (Case 2), or 0% (Case 3) from simulated year 1988 heads. Total deficits were approximately 139 MGD, 153 MGD, and 170 MGD, while the percentages of total projected year 2010 demand in deficit were 24%, 27%, and 30%, for cases 1-3, respectively. No agricultural demand areas displayed deficits.

Public demand areas with high deficits included Orange County East-ERWF, Econ, and Conway well fields, Orlando Utilities Commission Sky Lake, Kuhl, Martin, Kirkman, Pine Hills, Pershing, and Navy wellfields, Seminole County, Oviedo, Ocoee, Lake Mary, and Maitland. These public demand areas are responsible for the majority of the total deficit for each examined case.
	Loss limit at areas with high or moderate potential for vegetative harm							
	Case 3, (	3%	Case2,	1%	Case 1, 2	2%		
Public Area	Deficit (MGD)	% of total deficit	Deficit (MGD)	% of total deficit	Deficit (MGD)	% of total deficit		
Apopka	1.83	1.08%	0.58	0.38%				
Conway	0.10	0.06%	0.101	0.07%	0.101	0.07%		
Deitona	13.67	8.04%	11.59	7.56%	9.67	6.98%		
Eatonville	1.41	0.83%	1.41	0.92%	1.41	1.02%		
Lake Mary	3.45	2.03%	2.21	1.44%	1.98	1.43%		
Maitland	3.53	2.08%	3.53	2.30%				
Oakiand	0.28	0.16%						
OCE Conway	7.66	4.50%	7.66	5.00%	7.66	5.53%		
OCE Econ	8.00	4.71%	8.00	5.22%	8.00	5.77%		
Ocoee	5.47	3.22%	5.47	3.57%	3.97	2.86%		
OCE ERWF	20.25	11.91%	20.25	13.21%	20.25	14.61%		
OCW Magnolia	0.02	0.01%						
OUC Conway	6.05	3.56%	3.77	2.46%	9.20	6.64%		
OUC Dr. Phillips	5.83	3.43%						
OUC Highland	7.98	4.69%	7.98	5.21%	7.98	5.76%		
OUC Kirkman	11.00	6.47%	11.00	7.18%	11.00	7.94%		
OUC Kuhl	11.31	6.65%	11.31	7.38%	11.31	8.16%		
OUC Martin	7.27	4.28%	9.31	6.07%	8.34	6.02%		
OUC Navy	6.40	3.77%	6.40	4.18%				
OUC Pershing	7.00	4.12%	7.00	4.57%	7.00	5.05%		
OUC Pine Hills	19.60	11.53%	19.60	12.79%	19.60	14.14%		
OUC Primrose					0.30	0.22%		
OUC Total	82.43	48.49%	76.37	49.83%	74.73	53.93%		
Oviedo	4.48	2.63%	4.17	2.72%	4.26	3.07%		
Sanford	2.47	1.46%	3.23	2.11%	3.15	2.28%		
Sanlando	0.18	0.11%		, -				
Seminole County	9.54	5.61%	7.59	4.95%	2.64	1.91%		
Southern States U. Shores	0.06	0.03%						
Winter Garden	2.52	1.48%						
Winter Springs	0.74	0.43%	0.553	0.36%	0.742	0.54%		
Zellwood Station	1.89	1.11%	0.53	0.34%				
Total (MGD)	169.98		153.26		138.57			
% of total demand in deficit	30.00%		27.00%		24.40%			

Table 5. East-central deficits

### **Aquifer Response**

The LP model drawdown predictions compared to simulation model results for case 1 are illustrated in Figure 13, while improvement over the nonoptimized case is provided in Figure 14.

General agreement between optimization model and simulation model heads was found to be excellent. A maximum error of 1.46 feet was incurred at Oviedo when the closure criterion of the simulation model was set at 0.0001. This linear behavior is likely to be due to 1) the surficial layer in the simulation model is not active and 2) the closure criterion is very tight. The optimization model tends to select wells with the lowest estimated environmental impact and withdraws from these wells at or near capacity. Also, Lower Floridan wells tend to be selected more frequently than Upper Floridan wells, particularly when springs are nearby.

Maximum errors were found to be 1.46 ft., 1.43 ft., and 1.52 ft., for cases 1-3 respectively, while maximum drawdowns were 8.12 ft., 7.78 ft., and 8.0 ft. at OCPUD S Hunters Creek for the same cases. Average drawdowns were 1.82 ft., 1.49 ft., and 1.19 ft., while average errors were 0.36 ft., 0.42 ft., and 0.45 ft., respectively. Control point responses are provided in Table A6 of the appendix.



9-11

11-13

potential for vegetative harm

General Water Bodies



Figure 15 below displays the comparison between optimization model predictions and simulation model results for case 1. The unit response matrix responds to changes in well withdrawal within the LP model linearly.



Figure 15. East-central comparison between optimization model predictions and simulation model results for case 1: 15% discharge loss at springs and head loss at control points with low potential for vegetative harm and 2% head loss at control points with high or moderate potential for vegetative harm.

Figure 16 illustrates the case 2 projected year 2010 LP model drawdown predictions, while Figure 17 shows the improvement from the nonoptimized projected year 2010 simulation.

Aquifer response to the LP model's third examined case, allowing 0% Upper Floridan head loss from 1988 at control points with high or moderate potential for vegetative harm is illustrated in Figure 18 for drawdowns from year 1988 and improvement over the nonoptimized case in Figure 19.



Decision Modeling for Alternative Water Supply Strategies

11-13

General Water Bodies



East-central projected year 2010 LP optimization model Upper Floridan improvement over nonoptimized case allowing 1% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm

Difference in Feet		County Boundary
-63		SJRWMD Boundary
-31		ECF Active Edge
3-6	۲	Agricultural Wells
9-12	٠	Municipal Wells
15-18	*	Springs
21-24		General Water Bodies

Decision Modeling for Alternative Water Supply Strategies





Spring head responses are provided in Table 6 below while Table 7 gives spring discharges for the three examined cases:

	Spring heads(ft)								
				Ca	ase 3, 0% loss	Ca	<b>ise 2, 1% loss</b>	Ca	ise 1, 2% loss
Spring	Spring	Simulated	Projected year 2010	Simulation	Optimization	Simulation	Optimization	Simulation	Optimization
	elevation	year 1988	nonoptimized	model	model	model	model	model	model
Messant	26.00	34.30	33.98	34.37	34.41	34.32	34.36	34.37	34.30
Seminole	34.00	35.82	35.63	35.77	35.79	35.75	35.76	35.77	35.73
Rock	30.00	30.86	30.73	30.86	30.87	30.84	30.85	30.86	30.82
Wekiva	13.00	29.81	28.25	29.81	29.97	29.60	29.75	29.81	29.57
Miami	15.00	35.75	33.53	35.81	36.08	35.52	35.77	35.81	35.49
Starbuck	25.00	35.30	32.90	35.34	35.69	35.09	35.41	35.34	35.13
Paim	25.00	35.69	33.18	35.70	36.05	35.44	35.76	35.70	35.48
Saniando	26.00	35.98	33.39	35.91	36.31	35.70	36.02	35.95	35.74
Camp La No Che	34.00	37.23	36.83	37.03	37.05	37.01	37.03	37.03	36.98
Blue	1.00	1.76	1.72	1.74	1.74	1.73	1.74	1.74	1.73
Gemini	1.00	17.58	15.49	17.11	17.27	16.96	17.11	17.11	16.88
Isiand	7.00	20.78	21.21	22.21	22.34	22.11	22.24	22.21	22.12
Witherington	25.00	38.08	36.32	38.08	38.23	37.81	37.95	38.08	37.72
Lake Jessup	3.00	35.32	31.94	37.24	38.47	36.96	38.11	37.24	37.70
Clifton	3.00	33.34	29.71	35.82	37.09	35.55	36.75	35.82	36.34
Apopka	67.00	68.16	67.81	68.08	68.09	68.04	68.05	68.08	68.03
Sulphur	27.00	36.30	35.46	36.22	36.29	36.07	36.14	36.22	36.01

Table 6. East-central spring heads

Table /. East-centr	al spring	discharges
---------------------	-----------	------------

						Fraction of simulated year 1988 spring discharge						
	Si	mulation Model	Spring disc	harges (cfs)	1		Case	3, 0%	Case	2, 1%	Case	1, 2%
Spring	Year 1988	Nonoptimzed projected year 2010	Case 3, 0%	Case 2, 1%	Case 1, 2%	Nonoptimized projected year 2010	Simulation model	Optimization model	Simulation model	Optimization model	Simulation model	Optimization model
Messant	12.5	12.0	12.6	12.5	12.6	0.96	1.01	1.01	1.00	1.01	1.01	1.00
Seminole	27.4	24.5	26.6	26.4	26.6	0.90	0.97	0.98	0.96	0.97	0.97	0.95
Rock	53.7	45.6	53.7	52.5	53.7	0.85	1.00	1.01	0.98	0.99	1.00	0.95
Wekiva	70.0	63.5	70.0	69.2	70.0	0.91	1.00	1.01	0.99	1.00	1.00	0.99
Miami	4.5	4.1	4.6	4.5	4.6	0.89	1.00	1.02	0.99	1.00	1.00	0.99
Starbuck	14.4	11.0	14.4	14.0	14.4	0.77	1.00	1.04	0.98	1.01	1.00	0.98
Palm	6.1	4.7	6.2	6.0	6.2	0.77	1.00	1.03	0.98	1.01	1.00	0.98
Sanlando	16.2	11.9	16.1	15.7	16.1	0.74	0.99	1.03	0.97	1.00	1.00	0.98
Camp La No Che	0.3	0.3	0.3	0.3	0.3	0.88	0.94	0.94	0.93	0.94	0.94	0.92
Blue	110.0	104.2	107.1	105.7	107.1	0.95	0.97	0.97	0.96	0.97	0.97	0.96
Gemini	7.6	6.7	7.4	7.4	7.4	0.87	0.97	0.98	0.96	0.97	0.97	0.96
Island	6.8	6.9	7.5	7.4	7.5	1.03	. 1.10	1.11	1.10	1.11	1.10	1.10
Witherington	3.8	3.2	3.8	3.7	3.8	0.87	1.00	1.01	0.98	0.99	1.00	0.97
Lake Jessup	0.71	0.64	0.75	0.75	0.75	0.90	1.06	1.10	1.05	1.09	1.06	1.07
Clifton	1.4	1.3	1.5	1.5	1.5	0.88	1.08	1.12	1.07	1.11	1.08	1.10
Apopka	53.7	37.5	50.0	48.1	50.0	0.70	0.93	0.94	0.90	0.91	0.93	0.89
Sulphur	0.9	0.9	0.9	0.9	0.9	0.91	0.99	1.00	0.98	0.98	0.99	0.97

#### Well Withdrawal Rates

Well withdrawal rates for cases 1-3 are displayed in Tables A8 and A10 of the appendix for public supply utility and agricultural wells, respectively. Model results are strongly dependent on the specified capacity as is evident in comparing withdrawal rates to estimated hydraulic well capacities given in LAW Engineering (1996). It is suggested that additional LP model runs be made without the well capacity constraint. Elimination of the capacity constraint may provide information regarding the extent of possible additional well withdrawal at specific locations subject to the specified environmental constraints.

#### Sensitivity Analysis

Shadow (dual) prices provide a simple and effective means of sensitivity analysis. The shadow price refers to the change in the objective function produced from a unit relaxation in a binding constraint. Binding constraints have a direct effect on the objective function and they have non-zero shadow prices. A modified objective function value obtained from a relaxing of constraints can be calculated by

$$Z_{new} = Z + \Delta RH * SP \tag{45}$$

where  $Z_{new}$  is the new calculated value of the objective function, Z is the value of the objective function from model execution,  $\Delta RH$  is the change in the right-hand side of the specified constraint, and SP is the shadow price associated with that constraint.

Shadow prices allow the water resources manager to see how the objective function changes if there is a relaxation in a binding constraint. Larger shadow prices correspond to greater potential for changing the objective function. For example, one could observe the individual effects on the objective function if each municipal demand is relaxed by 10%. Table 8 exhibits the shadow prices for public supply utility demand areas. It can be seen that the largest demand areas located near springs and areas having high or moderate potential for vegetative harm show the greatest potential for environmental mitigation if their demands are relaxed, while public utility demand areas with small water demands that are located far from springs or areas having high or moderate potential for vegetative harm have very little impact on the objective function. However, some areas with low demand may have high shadow prices due to their proximity to sensitive areas, while some areas which are not in close proximity to sensitive areas may have high shadow prices due to their large 2010 demands alone. The shadow prices in Table 8 are sorted first by descending order and then by the projected increase in water demand from year 1988.

60

				Shadow Prices			
Model Identifier	Public Supply Utility Demand Area	Projected Demand Increase from 1988 to 2010 (MGD)	% of Total Increase from 1988	Loss Limit at area:	s with high or mode vegetative harm	rate potential for	
		(1114-57		Case 3, 0%	Case 2, 1%	Case 1, 2%	
OE5	OCPUD E ERWF	20.25	7.65%	1	1	1	
DEL	Deltona	17.64	6.66%	1	1	1	
APO	Apopka	17	6.42%	1	1	0.79	
SEM	Seminole County	12.05	4.55%	. 1	1	1	
002	OUC Martin	11.01	4.16%	1	· 1	1	
ovi	Oviedo	8.48	3.20%	1	1	1	
005	OUC Pine Hills	8.4	3.17%	1	1	1	
012	OUC Pershing	7	2.64%		1	1	
OE2	OCPUD E Conway	5.16	1.95%	1	1	1	
LMY	Lake Mary	5.12	1.93%	1	· . · 1	1	
010	OUC Navy	5.01	1.89%	1	1	0.99	
007	OUC Kirkman	4.74	1.79%	1	1	1	
OE3	OCPUD E Econ	4.43	1.67%	1	1	1	
000	Ocoee	3.34	1.26%	1	1	1	
WSP	Winter Springs	3.04	1.15%	1	1	1	
006	OUC Kuhi	2.91	1.10%	1	1	1	
SAF	Sanford	2.49	0.94%	1	1	. 1	
SAN	Sanlando Utilities	1.72	.0.65%	1	. 0.99	0.87	
WGA	Winter Garden	1.08	0.41%	1	0.87	0.75	
ZSU	Zellwood Station Utilities	0.93	0.35%	1	1	0.5	
SSS	SSU-Univ. Shores	0.9	0.34%	. 1	0.99	0.98	
001	OUC Dr. Phillips	0.87	0.33%	1	1	0.92	
EAT	Eatonville	0.81	0.31%	1	· 1	1	
MAI	Maitland	0.64	0.24%	• • · · • 1	1	0.99	
OW6	OCPUD W Magnolia/Lake John	0.03	0.01%	. 1	0.6	0.51	
CON	Conway	0.02	0.01%	. 1	1	1	
ОАК	Oaldand	-0.01	-0.01%	, 1	0.59	0.51	
004	OUC Highland	-0.1	-0.04%	, i	1	1	
OU3	OUC Conway	-0.79	-0.30%	. 1	1	1	
О₩З	OCPUD W Oak Meadow	-1.93	-0.73%	, 1	1	1	
OU9	OUC Sky Lake	15.3	5.78%	, 1	1	0.99	
SUO	OUC Primrose	-0.94	-0.36%	0.99	1	1	
CAS	Casselberry	1.5	0.57%	0.98	0.99	0.97	
OW5	OCPUD W WRWF	20	7.55%	.98	0.99	0.91	
OW4	OCPUD W Riverside	-2.9	-1.10%	0.98	0.99	0.92	
ALT	Altamonte Springs	2.24	0.84%	0.97	0.97	0.96	
WEK	Wekiva	0.06	0.02%	0.96	0.97	0.93	
PAM	Park Manor	-0.04	-0.02%	0.96	0.94	0.94	
LON	Longwood	1.12	0.42%	. 0.95	0.95	0.94	
OW2	OCPUD W Hidden	-1.93	-0.73%	<b>0.94</b>	0.88	0.79	
WPK	Springs/Kelso/Windmere Winter Park	2.94	1.11%	0.92	0.92	0.9	
7WU	Zellwood Water Users	0.19	0.07%	0.89	0.77	0.41	
OE1	OCPUD E Bonneville/Corrine Terr.	-0.94	-0.36%	0.88	0.85	0.85	
		v			0.00	0.00	

# Table 8. East-central shadow prices for public demand areas

				Shadow Prices		
Model Identifier	Public Supply Utility Demand Area	Projected Demand Increase from 1988 to 2010 (MGD)	% of Total Increase from 1988	Loss Limit at areas with high or moderate potential vegetative harm		ate potential for
		• •		Case 3, 0%	Case 2, 1%	Case 1, 2%
OW1	OCPUD W Bent Oaks/Plymouth	0.8	0.30%	0.88	0.86	0.74
ssu	Southern St. Util	0.23	0.09%	0.87	0.87	0.82
UCF	Univ. Central Fla	0.29	0.11%	0.87	0.83	0.83
CFR	Cent. Fla. Res. Park	0	0.00%	0.87	0.84	0.84
RAV	Ravenna Park	0.05	0.02%	0.86	0.87	0.87
OS4	OCPUD S Orange Wood	4.12	1.56%	0.85	0.85	0.82
WGC	Winter Garden Citrus Products	0	0.00%	0.83	0.81	0.74
011	OUC Orange	7.2	2.72%	0.8	0.79	0.8
SWF	Sea World of Florida	0	0.00%	0.79	0.79	0.75
OE4	OCPUD E Lake Nona	1.97	0.74%	0.77	0.76	0.75
053	OCPUD S Meadow Woods/SRWF	10.12	3.82%	0.72	0.72	0.72
013	OUC Stanton Energy Ctr	0	0.00%	0.72	0.71	0.71
OS2	OCPUD S Hunter's Creek	0.38	0.14%	0.69	0.68	0.67
RCU	Reedy Creek Utilities	16.54	6.25%	0.68	0.64	0.59
OS1	OCPUD S Cypress Walk/Vistana	4.88	1.84%	0.62	0.61	0.56
ZWF	Zellwood Farms	0.19	0.07%	0.61	0.53	0.29
FDC	Florida Dept. of Corrections	-0.05	-0.02%	0.61	0.6	0.59
FPL	Florida Power and Light	0.33	0.13%	0.58	0.58	0.57
СНО	Chuluota	-0.14	-0.05%	, 0.5	0.49	0.49
IN4	Floribra USA, Inc.	0	0.00%	0.49	0.48	0.45
ORO	Orange/Osceola Management	2.11	0.80%	0.48	0.48	0.48
CFU	Central Florida Utilities	1.76	0.66%	0.48	0.47	0.44
нно	Hyatt House Orlando	0.42	0.16%	0.47	0.45	0.42
KIS	Kissimmee	5.28	1.99%	. 0.47	0.46	0.46
VOL	Volusia County	1.33	0.50%	. 0.47	0.47	0.46
coc	Cocoa	6.98	2.63%	, 0.46	0.47	0.47
MON	Montverde	0.09	0.03%	. 0.45	0.34	0.27
ECU	Econ Utilities	0.02	0.01%	, 0.44	0.44	0.43
JKV	John Knox Village	0.3	0.11%	, 0.4		0.39
IN5	Silver Sand (Clermont Mine)	0	0.00%	, 0.4	0.32	0.28
osc	Osceola Service	1.32	0.50%	, 0.4	0.38	0.35
IN2	Florida Crushed Stone	0	0.00%	, 0.39	0.31	0.27
OCY	Orange City	3.4	1.28%	, 0.35	0.35	0.35
SCL	St. Cloud	2.49	0.94%	, 0.31	0.31	0.31
SWA	Seminole Woods Assn.	0.03	0.01%	, 0.27	0.27	0.27
LHE	Lake Helen	0.36	0.13%	0.23	0.21	0.21
LHY	Lake Harney	0	0.00%	, 0.23	0.23	0.23
1N3	Florida Rock (Lake Sand)	0	0.00%	, 0.22	0.19	0.18
мто	Mt. Dora	2.11	0.80%	, 0.21	0.18	0.12

## Table 8-- Continued

				Shadow Prices			
Model Identifier	Public Supply Utility Demand Area	Projected Demand Increase from 1988 to 2010 (MGD)	% of Total Increase from 1988	Loss Limit at areas with high or moderate poter vegetative harm		rate potential for	
				Case 3, 0%	Case 2, 1%	Case 1, 2%	
CLE	Clermont	1.04	0.39%	0.18	0.14	0.12	
MIN	Minneola	0.26	0.10%	0.18	0.14	0.11	
POI	Poinciana	0.84	0.32%	0.14	0.14	0.14	
EUS	Eustis	2.88	1.09%	0.12	0.1	0.07	
MHN	Minneola Harbor Hills	0.73	0.27%	0.11	0.09	0.07	
TAV	Tavares	2.2	0.83%	0.1	. 0.09	0.06	
нон	Howey in the Hills	0.13	0.05%	0.09	0.08	0.05	
IN6	Silver Springs Citrus	0	0.00%	0.07	0.06	0.04	
DAV	Davenport	0.73	0.28%	0.06	0.06	0.06	
GRO	Groveland Park	0.5	0.19%	0.04	0.03	0.03	
HAI	Haines City	1.63	0.61%	0.03	0.03	0.03	
IN1	B & W Canning	0.14	0.05%	0.03	0.03	0.02	
AF1	USAF BAS Civil Engineer	0	0.00%	0.02	0.02	0.02	

### Table 8-- Continued

There were no non-zero shadow prices for springs in the east-central region. Vegetative harm constraints were found to have more impact on the objective function than springs. However, in prior LP model runs which did not consider an area's potential for vegetative harm, only Rock, Sanlando, Camp La No Che, and Apopka springs were found to have considerable impact on the objective function.

A few public supply utility wells which were not selected for withdrawal had high shadow prices; these wells with their shadow prices are listed in Table 9 below.

		Loss limit at areas with high or moderate potential for vegetative harm					
Public Supply Utility Well	Public Supply Demand Area	Case 3, 0%	Case 2, 1%	Case 1, 2%			
MW76	Deltona	12.684	13.094	13.126			
MW143	OCW Oak Meadows	3.624	4.136	3.664			
MW74	Deltona	2.285	2.936	2.362			
MW79	Deltona	2.086	2.16	2.166			
MW114	OCE Conway	1.787	1.683	1.642			
MW78	Deltona	1.648	1.705	1.71			
MW133	OCW Plymouth	1.494	1.129	0			
MW80	Deltona	1.087	1.127	1.131			
MW115	OCE Conway	1.034	0.97	0.946			

Table 9. East-central public well shadow prices

# VOLUSIA COUNTY

Several model runs were made with varying constraints at aquifer heads and springs. Overall Volusia LP model statistics are as follows:

- Size: 8,384 rows (constraints), 8,257 columns (variables), 401,980 nonzeroes
- CPLEX LP presolve routine eliminates 7,758 rows and 7,096 columns to yield a *reduced LP*: 450 rows, 985 columns and 96,003 nonzeroes
- Run time: 34 CPU seconds.

The LP model for Volusia County was run with a variety of constraints specifying the extent of allowable surficial aquifer head loss and spring discharge loss from year 1988. Control points at areas with high or moderate potential for vegetative harm were constrained to tighter loss limits than spring discharges or control points at areas with low potential for vegetative harm. It was noted that the LP model results were very sensitive to loss limits at control points with moderate to high potential for vegetative harm, displaying much variation in final results if loss limits at those points varied by only 1%, corresponding to an equivalent pressure loss of approximately 4-6 inches from year 1988 at most control points. Table 10 below displays the variation in total deficit as a function of varying loss limits on springs and control points. Total deficits are much more sensitive to loss limits for moderate and high potential areas than at springs and control points with low potential for vegetative harm:

loss limit for springs and	loss limit for control points	total deficit	total deficit	% of projected
control points with low	with moderate or high	(MGD)	(cfd)	2010 demand in
potential for vegetative harm	potential for vegetative harm			deficit
10%	0%	41.97	5,611,580	34.88%
15%	0%	40.44	5,406,923	33.61%
20%	0%	39.14	5,232,670	32.53%
10%	1%	31	4,144,160	25.76%
15%	1%	28.99	3,875,519	24.09%
20%	1%	27.74	3,709,100	23.06%
10%	2%	22.61	3,023,198	18.79%
15%	2%	20.51	2,741,387	17.04%
20%	2%	18.49	2,471,850	15.36%
10%	5%	10.15	1,356,327	8.43%
15%	5%	5.34	714,449	4.44%
20%	5%	4.19	560,172	3.48%
10%	10%	0.94	125,583	0.78%
15%	10%	0.29	38,226	0.24%
15%	15%	0	0	0.00%

Table 10. Volusia deficit as a function of environmental constraints

Model results were highly sensitive to constraints on moderate or high harm areas. Figure 20 below displays the total deficit as a function of environmental constraints.



Figure 20. Volusia total deficit as a function of environmental constraints

The greatest variation in deficits occurred when the moderate and high harm losses were constrained to less than 2% of year 1988 values. For this reason, the following 3 cases were examined in greater detail:

	Loss limit on springs discharge and aquifer head at low harm areas	Loss limit on aquifer head at control points with moderate or high potential for vegetative harm
Case 1	15%	2% (about 1.5 ft maximum)
Case 2	15%	1% (about 0.75 ft maximum)
Case 3	15%	0%

### Deficits

Table 11 outlines deficits obtained for cases 1-3. Deltona displays the largest deficits for all three cases, while Port Orange West, Daytona Beach East, Daytona Beach West, and Orange City also display large deficits. Almost all of the total deficit is due to public supply projected year 2010 demands with minimal deficits at agricultural areas. Total deficits amounted to approximately 13% (15.5 MGD), 20% (24.4 MGD), and 32% (38.3 MGD) of the total projected year 2010 demand for cases 1-3, respectively. Deficit quantities and locations were observed to be highly sensitive to environmental constraints. An additional 1% restriction in head loss going from case 2 to case 3 results in an additional 13.5 MGD of deficit.

	Loss limit at areas with high or moderate potential for vegetative harm							
	case 3, (	)%	case 2,	1%	case 1, 2	2%		
	Deficit	% of total	Deficit	% of total	Deficit	% of total		
Dublic Deficite	(MGD)	deficit	(MGD)	deficit	(MGD)	deficit		
Deitona	8.88	23.23%	5.47	22.40%	4.97	32.04%		
Daytona East	4.32	11.28%	4.34	17.79%	1.81	11.65%		
Daytona west	3.70	9.66%	0.68	2.77%	0.78	5.02%		
Orange City	3.65	9.54%	3.32	13.60%				
Port Orange West	3.21	8.39%	3.19	13.08%	3.11	20.06%		
New Smyrna SR 44	2.64	6.89%	2.33	9.52%	1.59	10.23%		
New Smyrna	2.24	5.86%	1.35	5.53%	1.59	10.23%		
Ormond Beach Hudson	2.15	5.62%	0.41	1.69%				
New Smyrna Samsula	1.06	2.78%	0.39	1.59%	0.20	1.30%		
Volusia Four Townes	0.79	2.07%						
Deland Brandywine	0.65	1.71%						
The Trails, Inc.	0.58	1.51%	0.58	2.37%				
Ormond Beach Rima	0.46	1.21%	0.46	1.89%	0.35	2.24%		
Lake Helen	0.43	1.11%	0.21	0.87%				
Orange City C. Vill.	0.39	1.01%	0.39	1.59%				
Deland Holiday Hills	0.36	0.95%	9 -					
SSU Sugar Mill	0.22	0.56%	2					
Volusia Gov. Center	0.20	0.52%	0.20	0.81%	0.20	1.28%		
John Knox Village	0.14	0.37%	0.14	0.58%				
Sunshine Holiday Park	0.13	0.33%	0.13	0.52%				
Plantation Bay	0.12	0.32%	0.12	0.50%	0.12	0.79%		
FPL Turner Plant	0.10	0.25%	0.10	0.39%	0.10	0.61%		
Ellwood Titcomb	0.07	0. <b>19%</b>	4		0.09	0.59%		
Holly Hill West	0.06	0.16%						
Tymber Creek	0.05	0.13%						
National Gardens			0:17	0.70%	•			
FPL Sanford			0.11	0.46%	0.16	1.02%		
Tomoka Correc. Fac.			0.23	0.93%	0.23	1.47%		
Agricultural Deficits								
F12	0.19	0.50%						
F13	0.36	0.94%						
G4	0.16	0.41%						
P21	0.25	0.64%						
Т2	0.07	0.18%						
тз	0.37	0.96%	- +					
T4	0.28	0.73%						
G5			0.09	0.36%	0.09	0.57%		
P19				н 1	0.12	0.76%		
Total (MGD)	38.25		24.41	<u></u>	15.51			
Total % in deficit	31.60%		20.20%		12.81%			

# Table 11. Volusia deficits

Decision Modeling for Alternative Water Supply Strategies

### **Aquifer Response**

The allocation strategies determined by case 1 were incorporated into the ground water simulation model to determine the hydraulic response of the aquifer system. The case 1 LP model predicted a maximum drawdown of 7.85 ft. at Deltona control point 66 while the simulation model calculated a value of 8.06 feet. The surficial aquifer drawdown is displayed for case 1 in Figure 21. Here it can be seen that maximum drawdowns are in the Deltona area. Most other areas display drawdowns on the order of 1 ft. or less. Figure 22 shows the case 1 improvement over the nonoptimized projected year 2010 well withdrawal strategy.

The largest error between optimization model prediction and simulation model result for case 1 was 1.45 feet and occurred at Port Orange West control point/public well 23. In general, errors were slight, averaging 0.13 ft. Ideally, predicted heads and drawdowns from the simulation model match corresponding optimization model values in such a way as to form a straight line with a slope of unity. Deviations from unity are due to nonlinear effects. The formulation yields nonconservative errors pressure heads are lower in the simulation model than those predicted in the optimization model.

A comparison between optimization model predictions and simulation model results is illustrated in Figure 23 for case 1. Excellent agreement was observed between simulation and optimization models except at the Port Orange West area. Nonlinearities in this region are due to poor prediction of aquifer response and an additive effect of errors from neighboring cells with wells. There is a high concentration of wells in the Port Orange Area. Results for control point drawdowns and errors are provided in Table A7 of the appendix.



model surficial drawdown allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm

## Decision Modeling for Alternative Water Supply Strategies

Volusia Model Edge

General Water Bodies

Agricultural Wells

Municipal Wells

Springs

.

*

7-8 8-9



Volusia projected year 2010 LP optimization model surficial improvement over nonoptimized case, allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm





Decision Modeling for Alternative Water Supply Strategies





It is suggested that a conjugate gradient solver with preconditioning be used with MODFLOW for generating influence coefficients rather than the presently used SIP solver, particularly for the surficial aquifer response.

The allocation strategies determined by case 2 were incorporated into the ground water simulation model to determine the hydraulic response of the aquifer system. The case 2 LP model predicted a maximum drawdown of 9.44 ft. at Deltona control point 66 while the simulation model calculated a value of 9.89 feet. The largest error between optimization model prediction and simulation model result was 1.68 ft. and occurred at Port Orange West control point/well 24. In general, errors were slight (less than 0.5 feet) at all control points except for the Deltona and Port Orange West regions, where control points 23-39 displayed errors on the order of a foot. The surficial aquifer response was linear at all other control points with an average error of 0.16 feet. The surficial aquifer drawdown is displayed for case 2 in Figure 24. Here it can be seen that maximum drawdowns are in the Deltona area with some drawdown at other locations. Figure 25 shows the improvement over the nonoptimized projected year 2010 well withdrawal strategy.



Decision Modeling for Alternative Water Supply Strategies

71



wolusia projected year 2010 LP optimization model surficial improvement over nonoptimized case allowing 1% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm



Decision Modeling for Alternative Water Supply Strategies

The LP model using case 3 constraints predicted a maximum drawdown of 4.87 ft. at Deltona control point 61 while the simulation model calculated a value of 4.35 feet. The largest error between optimization model prediction and simulation model result was 1.97 feet and occurred at Port Orange West control point 24. In general, errors were slight (less than 0.5 feet) at all control points except for the Deltona and Port Orange West regions, where control points 23-39 displayed errors on the order of a foot. The surficial aquifer response was linear at all other control points with an average error of 0.2 feet. The surficial aquifer drawdown is displayed for case 3 in Figure 26. Here it can be seen that maximum drawdowns are in the Deltona area with most drawdowns on the order of 1 ft. or less at other locations. Figure 27 shows the improvement over the nonoptimized projected year 2010 well withdrawal strategy.

The errors between optimization model predictions for springs and simulation model results were essentially zero. Volusia spring head data are provided in Table 12 while spring discharge data are given in Table 13 below.

			Case 3,09	6 loss	Case 2, 1	% loss	Case 1,	2% loss
Spring	1988	Projected year	Optimization	Simulation	Optimization	Simulation	Optimization	Simulation
	(ft)	2010	model	model	model	model	model	model
		nonoptimized (ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
Ponce de Leon	4.89	4.82	4.71	4.71	4.67	4.68	4.66	4.66
Blue	2.42	2.27	2.41	2.41	2.35	2.35	2.3	2.3
Gemini	12.01	10.37	10.36	10.38	10 .36	10.37	10.36	10.37

### Table 12. Volusia spring heads

Table 13.	Volusia	simulation	model	spring	discharges
******		Vara - Ware - Var	TTTO OLOX	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Ponce De leon	Blue	Gemini
6.94	104.17	0.74
1	1	1
C	cfs	
27.01	147.92	8.16
26.53	132.29	7.68
25.42	135.42	7.9
25.49	140.63	7.35
25.76	146.88	7.13
)		
0.98	0.85	0.94
0.94	0.92	0.97
0.94	0.95	0.90
0.95	0.99	0.87
	Ponce De leon 6.94 1 27.01 26.53 25.42 25.49 25.76 9 0.98 0.94 0.94 0.95	Ponce De leon Blue   6.94 104.17   1 1   cfs 27.01   26.53 132.29   25.42 135.42   25.49 140.63   25.76 146.88   9 0.98 0.85   0.94 0.92 0.94 0.95   0.95 0.99 0.99

73



7-8 8-9

Decision Modeling for Alternative Water Supply Strategies



Decision Modeling for Alternative Water Supply Strategies

vegetative harm and 15% discharge loss at

springs and head loss at control points with

low potential for vegetative harm

Springs

General Water Bodies

4-5

5-6

6-7

7-8

### Well Withdrawal Rates

Well withdrawal rates for cases 1-3 are displayed in Tables A9 and A11 of the appendix for public supply utility and agricultural wells, respectively. Model results are strongly dependent on the specified capacity as is evident in comparing withdrawal rates to estimated well capacities. It is suggested that additional LP model runs be made without the well capacity constraint.

### Sensitivity Analysis

Table 14 exhibits shadow prices for public supply utility areas. It can be seen that the largest demand areas located near springs and vegetation having high or moderate potential for vegetative harm show the greatest potential for environmental mitigation if their demands are relaxed, while public utility demand areas with very small water demands have very little impact on the objective function. Spring shadow prices were found to be negligible in the Volusia LP model.

					Sh	adow Pric	es
Model Identifier	Public Supply Utility Demand Area	Projected Year 2010 demand (MGD)	Projected Increase from 1988 (MGD)	% of Total Increase from 1988	Case 3, 0% loss	Case 2, 1% loss	Case 1, 2% loss
DBE	DAYTONA BEACH EASTERN WF	7.17	17.62	35.44%	1.00	1.00	1.00
DBW	DAYTONA BEACH WESTERN WF	13.32	3.06	6.15%	1.00	1.00	1.00
DEB	DELAND - BRANDYWINE	0.90	4.59	9.24%	1.00	0.29	0.24
DEL	DELTONA	24.90	4.24	8.52%	1.00	1.00	1.00
рнн	DELAND - HOLIDAY HILLS	0.36	2.59	5.21%	1.00	0.87	0.68
DWU	DELAND	6.92	3.12	6.27%	0.72	0.49	0.42
DWW	DELAND - WOODLAND MANOR	0.16	3.14	6.32%	0.74	0.22	0.19
EDG	CITY OF EDGEWATER	4.66	1.00	2.01%	0.79	0.69	0.68
ETI	ELLWOOD TITCOMB	0.09	3.01	6.05%	1.00	0.91	1.00
FPS	FPL - SANFORD PWR PLNT	0.32	0.07	0.14%	1.00	1.00	1.00
FPT	FPL - TURNER POWER PLNT	0.10	0.85	1.72%	1.00	1.00	1.00
HDR	HACIENDA DEL RIO	0.10	2.64	5.30%	0.51	0.37	0.35
HHE	HOLLY HILL EASTERN WF	0.14	0.36	0.72%	0.71	0.66	0.45
ннw	HOLLY HILL WESTERN WF	1.38	-0.75	-1.51%	1.00	0.94	0.70
JKV	JOHN KNOX VILL.	0.14	0.40	0.79%	1.00	1.00	0.87
LBW	L BERESFORD WATER ASSN	0.33	0.46	0.92%	0.77	0.58	0.45
LHE	LAKE HELEN	0.58	0.25	0.51%	1.00	1.00	0.92
NGA	NATIONAL GARDENS	0.39	0.26	0.52%	0.90	1.00	0.46
NS4	NEW SMYRNA SR 44	2.64	0.36	0.71%	1.00	1.00	1.00
NSG	NEW SMYRNA GLENCOE WF	3.08	0.43	0.87%	1.00	1.00	1.00
NSS	NEW SMYRNA SAMSULA WF	2.64	0.46	0.93%	1.00	1.00	0.68
OB4	ORMOND BEACH SR 40	1.16	0.08	0.16%	0.94	0.94	0.47
OBD	ORMOND BEACH DIVISION	2.77	0.25	0.51%	0.74	0.74	0.41
овн	ORMOND BEACH HUDSON	3.01	0.17	0.35%	1.00	1.00	0.50
OBR	ORMOND BEACH RIMA PROP	0.46	0.19	0.39%	1.00	1.00	1.00
occ	OR. CITY CTRY VILLAGE	0.39	0,17	0.34%	1.00	1.00	0.99
OCY	ORANGE CITY	3.65	0.00	0.00%	1.00	1.00	0.81
POE	PORT ORANGE EASTERN WF	0.86	· 0.11	0.23%	0.75	0.53	0.48
POW	PORT ORANGE WEST PROP	8.57	0.00	0.00%	1.00	1.00	1.00
PTB	PLANTATION BAY	0.12	0.12	0.24%	1.00	1.00	1.00
SHP	SUNSHINE HOLIDAY PK	0.13	0.00	0.00%	- 1.00	1.00	0.62
SMC	SHERWOOD MEDICAL CO.	0.16	0.09	0.18%	0.52	0.37	0.34
SME	SSU SUGAR MILL 1990	0.22	0.10	0.21%	1.00	0.56	0.52
SPC	SPRUCE CREEK	0.40	0.00	0.00%	0.94	0.60	0.55
TCF	TOMOKA CORR. FACILITY	0.23	0.09	0.19%	1.00	1.00	1.00
тси	TYMBER CREEK UTIL.	0.18	0.04	0.07%	1.00	0.99	0.51
TTI	THE TRAILS INC.	0.58	0.06	0.11%	1.00	1.00	0.53
VFT	V CTY - FOUR TOWNS	0.79	0.07	0.13%	1.00	0.83	0.68
VGC	V CTY GOVT COMPLEX	0.20	0.05	0.09%	1.00	1.00	1.00
VLM	V CTY - LAKE MARIE	0.25	0.00	0.00%	0.77	0.72	0.67
VTA	V CTY - TERRA ALTA	0.53	0.05	0.09%	0.86	0.73	0.64

Table 14. Volusia shadow prices for public demand areas

77

# CONCLUSIONS

Three-dimensional linear programming LP models were developed and applied to east-central Florida and Volusia County, Florida. The analysis revealed general trends in both regions. Both the east-central and Volusia models identified potential water resource problem areas subject to the specified environmental constraints. Deficits found by each model are strongly dependent upon environmental constraints. The east-central model identifies optimum water allocations scenarios to meet 2010 demands by allowing a maximum 15% decrease in Upper Floridan head over areas with low potential for vegetative harm, an upper limit of 15% loss in spring discharge, and a specified 2%, 1%, or 0% loss in Upper Floridan heads over areas with high or moderate potential for vegetative harm. The Volusia model also identified water allocation plans for meeting projected year 2010 demands permitting 15% allowable decreases in surficial aquifer head over areas with low potential for vegetative harm, an upper limit of 15% loss in spring discharges, and finally, a specified 2%, 1%, or 0% loss in surficial aquifer head over areas with high or moderate potential for vegetative harm.

The models revealed deficits totaling 140-170 MGD (24% -30% of the total projected year 2010 demand) over the east-central region. Most of the deficit occurs at the Orange County East, Orlando Utilities Commission, and Deltona public supply utility demand areas. LP modeling of the Volusia region revealed total deficits of 15-38 MGD (13%-32% of the total projected year 2010 demand. Public supply utility demand areas which displayed large deficits included Deltona, Port Orange West, Daytona Beach East, and Daytona Beach West. Thus, these areas may be good candidates for alternative water supply strategies to meet part of their projected year 2010 water demands

The results of LP modeling over both regions will change considerably when constraints for saltwater intrusion, minimum flows and levels, and expanded areas of vegetative harm are incorporated. However, the results presented in this report provide a general overview and demonstration of how the models work in their specific areas.

The hydraulic response of the east-central region Upper Floridan aquifer was found to be very linear. Sanlando Springs and Apopka Springs were the most sensitive springs. The Volusia model's surficial aquifer response was not as linear as the Upper Floridan response in the east-central model. An additional set of influence coefficients could be generated for each environmental constraint case examined. The model results were found to be strongly dependent on the proximity to areas with a high potential for vegetative harm and relatively independent of the proximity to springs.

# RECOMMENDATIONS

# LP MODELS

For both the East-central and Volusia regions, additional LP model runs may be advised with some of the following recommendations:

- Capacities should be eliminated for each demand area in order to determine the fullest extent of water availability at each location based on hydrology and environmental constraints as opposed to existing well/treatment plant conditions
- Constraints should be added which preclude saltwater intrusion
- The GIS vegetative harm analysis should be expanded to cover entire simulation model areas and not just areas within SJRWMD boundaries.
- Use of minimum flows for springs and lakes should be incorporated as they are adopted by SJRWMD in lieu of a non-specific percent decrease

# SIMULATION MODELS

As part of the contract with the University of Florida it was required to assess the accuracy of the present MODFLOW simulation models and the sensitivity of model results to boundary locations and conditions, cell sizes, and solution techniques.

### **Boundary Locations and Conditions**

Current boundaries in the east-central model may be problematic for large-scale optimization modeling efforts. Though much water resource activity takes place in the northwest portion of east-central Florida, the Leesburg/Mt. Dora/Tavares area, not all of these areas are covered in the present grid. Also, the northern boundary cuts through the southern part of Deland, and could give better results if it were expanded southward by several miles. The Deltona area is in the northernmost part of the eastcentral grid and the southernmost part of the Volusia grid. Additional study of results in these areas may be necessary to ascertain the potential problems due to present boundary placement.

The southern boundary of the Volusia model poses the same potential problems as the northern boundary of the east-central region. Other boundary locations did not present potential or existing problems.

### **Grid Cell Size**

Nonlinearities in the aquifer response may be overcome by generating influence coefficients using a strategy that perturbs well flows around the optimal well withdrawal scheme selected by the LP model. Since the most frequently chosen well withdrawal rate is zero, an optimal strategy for calculating influence coefficients should select to perturb well flows near zero to obtain minimum errors. Experience has shown that errors are largest at locations where a high density of wells exist. Future simulation model grids may offer enhanced accuracy if they are refined to contain no more than one well per cell, particularly in the Daytona Beach West and Port Orange West demand areas; these public supply utility demand areas lie in a very sensitive area having a high potential for vegetative harm. Some wells in the Deltona area were also prone to generate a nonlinear response, though cell size is appreciably larger than the Daytona Beach West and Port Orange West well cells. Here, too, particular care must be taken in choosing a proper well perturbation scheme. Other locations exhibited an excellent linear aquifer response.

#### Solution Techniques

It is recommended to use a conjugate gradient method solver (PCG2) with preconditioning or the newer, more efficient *Orthomin* solver available for use with MODFLOW96 (McDonald and Harbaugh, 1996) for generating the surficial aquifer layer influence coefficients of the Volusia model. This solver may offer a more computationally efficient matrix solution than the currently used Strongly Implicit Procedure (SIP) solver.

81

# **DECISION MODELS**

# **METHODS**

The general decision model formulation includes binary variables for build/do not build decisions as well as continuous variables for flow or use rates, heads, drawdowns, and costs. The decision model allows for a number of alternate water sources to be used in response to the increased public supply water demands projected for year 2010. The use of alternate water sources allows for decreased impact on surficial aquifer heads. The model objective function is now one of minimizing costs of water allocation strategies utilizing both existing and potential sources. The model incorporates two types of cost constraints: initial *fixed* costs which are incurred when a new source must be constructed, and recurring *unit* costs, which are similar to operating and maintenance costs but include only those costs which are directly dependent on the flow or use rate of the source. For example, a technician's salary must be considered as part of the initial cost because the salary of a technician does not depend on the flow rate, while power and chemical costs are unit costs because they do depend on the flow rate. Fixed and unit charges are represented in the model on an annualized basis. Actual cost data on per unit bases were provided by consultants.

## ALTERNATIVE WATER SUPPLIES

Alternative water supplies investigated in the model include new public supply wells, reclaimed water for irrigation at public supply need areas, reclaimed water for irrigation of agricultural areas, surface water, and new public supply interconnects. Consultant cost data associated with the use and development of alternative water supplies were provided. A brief description of each source is listed below:

### **Surface Water**

Currently there are four surface water sites in the east-central region and two sites in the Volusia area. These sites are along the St. Johns River (Cocoa, Titusville, and DeLand), at Lake Monroe near Sanford, and at Lake Griffin. All of the St. Johns River sites and Lake Monroe have brackish water requiring some reverse osmosis treatment. The site at Lake Griffin has fresh water requiring less treatment. Exact locations were approximated in the model study areas. Fixed and unit charges for surface water production and transport were given in CH2M-Hill's report on surface water planning level cost estimates (1997) for each site. Fixed and unit charges for surface water were as follows:

#### Fixed costs

	flow range	gallon basis	cf basis
Cocoa	(19.9-108.4 MGD)	1.272-1.431 \$/1000 gal	3.08 \$day/(cf*year)
Titusville	(27-142.5 MGD)	1.369-1.478 \$/1000 gal	3.08 \$day/(cf*year)
Sanford	(48.6-279.1 MGD)	1.241-1.422 \$/1000 gal	3.17 \$day/(cf*year)
DeLand	(62.6-350.8 MGD)	1.223-1.38 \$/1000 gal	3.17 \$day/(cf*year)
Lake Grift	fin (5.4 - 28 MGD)	0.830-0.915 \$/1000 gal	2.19 \$day/(cf*year)

#### Unit costs

flow range	gallon basis	cf basis
(19.9-108.4 MGD)	0.194 \$/1000 gal	0.53 \$day/(cf*year)
(27-142.5 MGD)	0.194 \$/1000 gal	0.53 \$day/(cf*year)
(48.6-279.1 MGD)	0.194 \$/1000 gal	0.53 \$day/(cf*year)
(62.6-350.8 MGD)	0.194 \$/1000 gal	0.53 \$day/(cf*year)
(5.4 - 28 MGD)	0.126 \$/1000 gal	0.34 \$day/(cf*year)
	flow range (19.9-108.4 MGD) (27-142.5 MGD) (48.6-279.1 MGD) (62.6-350.8 MGD) (5.4 - 28 MGD)	flow rangegallon basis(19.9-108.4 MGD)0.194 \$/1000 gal(27-142.5 MGD)0.194 \$/1000 gal(48.6-279.1 MGD)0.194 \$/1000 gal(62.6-350.8 MGD)0.194 \$/1000 gal(5.4 - 28 MGD)0.126 \$/1000 gal

Annual transport costs from the CH2M-Hill Surface Water Planning level cost estimates report (1997) were as follows:

*Short transport systems* (5 miles maximum):

Fixed charge : cost= 22,460L ^{1.232}ADF ^{0.430} Unit charge: negligible

*Long transport systems* (greater than 5 miles):

Fixed charge:

1 pump station:  $cost= 32,040L^{1.044}ADF^{0.44}$  (62)

2 pump stations:  $cost = 43,180L^{0.935}ADF^{0.448}$  (63)

Unit charge:

1 pump station:  $cost= 32,390ADF^{0.945}$  (64)

2 pump stations: 
$$cost = 51,420ADF^{0.969}$$
 (65)

where L is the length in miles and ADF is the average daily flow in MGD.

Since the model formulation allows only linear functions of decision variables such as the flow rate, equations (61)-(63) for fixed charges were approximated by linear equations as provided in Table A12 of the Appendix. Unit charge equations in the decision model formulation

(61)

rounded the power of ADF to unity. All fixed and unit charges were cast in a form having ADF in cfd. The number of pump stations required is a function of total transport distance and average daily flow. In general, only one pump station is required, though flows of over 250 MGD transported over 25 miles required 2 or more pump stations. All public supply demand areas having large projected year 2010 demands (over 5 MGD) located within 20 miles of potential surface water sites were considered as primary destinations for surface water transport. Via public supply interconnects described below, additional water transport can be selected so as to supply other public supply demand areas acting as secondary surface water destinations.

#### **Reclaimed Water**

There are 45 reclaimed water sites in the east-central region and 20 in the Volusia County area. Specific sites, available quantities of water for reuse, and fixed and unit charges for public use of reclaimed water for irrigation and agricultural use of reclaimed water were recently reported by PBS&J (1997) and Jackson et al. (1997). Agricultural users of reclaimed water are limited to fern growing areas in the Volusia region and citrus areas in the east-central model. The decision model formulation restricts reclaimed use in public areas to comprise no more than 25% of a public demand area's total projected year 2010 demand since reclaimed use at public demand is estimated to be used for irrigation only, and 25% of the total public demand is estimated to be used for irrigation purposes. Fixed and unit charges for reclaimed water use were reported for total quantities of water replaced in the PBS&J (1997) and Jackson et al. (1997) reports, and converted to per unit flow bases for use in the decision model as follows:

cf hacie

#### Reclaimed Water for Agricultural Use

Citrus growers in east-central

		cj basis
O & M (Unit) Cost	\$711,316/year	$$1.18 \text{ day}/(cf^*year)$
Fixed Cost	\$2,557,445/year	\$4.25 day/(cf*year)

Fern growers in Volusia

		cj onoro
O & M (Unit) Cost	\$1,850,000/year	$1.175 day/(cf^*year)$
Fixed Cost	\$6,070,000/year	\$3.85 day/(cf*year)

#### Reclaimed Water for Landscape Irrigation at Public Demand Areas

		cf basis
O & M (Unit) Cost	\$173,013/year	\$1.29day/(cf*year)
Fixed Cost	\$782,271/year	\$5.85day/(cf*year)

### Interconnects

Interconnects between public supply utility demand areas may transport groundwater or surface water from a source area to a destination area. Law Engineering (1997) reported on interconnect component costs and provided a spreadsheet for calculating fixed and unit charges for different interconnect lengths and flow rates. Law also provided diagrams displaying current and proposed interconnects in the east-central and Volusia regions.

The present model formulation considers if an interconnect already exists. In the east-central and Volusia region, the existing pipelines, most of which have 6, 10, or 12-inch diameters, do not support high flow rates. However, they do denote that the right-of-way exists, and are included in the range of possibilities for use with flow rates of up to 5 MGD at no incurred fixed cost. A more realistic assessment of fixed charges for existing interconnects would consider the flow rates of existing interconnects. Though some of this data was available during model development, some details in the critical Orlando Utilities Commission and Orange County Public Utilities Division public demand areas were not provided. Additional detail in these areas would be required to consider more realistic uses of existing interconnects. Future modeling efforts may include fixed costs when existing interconnects are utilized, however, the charges would be considerably lower than the charges for potential interconnects, as no purchase of land would be required.

The transport fixed and unit charges used in the model are the linearized transport costs as described in the surface water section above, provided in Table A12 of the appendix.

Currently potential interconnects between public areas having projected year 2010 demands of over 5 MGD and less than 15 miles apart are considered in the east-central formulation. Only demand areas having deficits in the deficit model are permitted as destination areas. This restriction was employed as a result of hardware limitations. These possibilities represent a small subset of all possible public supply utility interconnections. With 91 public supply demand areas in the east-central region and two possible directions of flow for each interconnect, 16,380 binaries would be required in order to investigate the full range of interconnect possibilities in that area. Current RAM resources limit the number of binary variables in the east-central model to less than 400. In the Volusia region, where model size is not problematic, all public areas with demands of over 0.75 MGD have interconnect possibilities.
### DECISION MODEL INDICES

Decision model indices include h, the set of control points where drawdowns are constrained; i, the set of public supply utility wells or well grid cells; j, the set of public supply utility demand areas; k, the set of agricultural demand areas; l, the set of springs; and m, the set of agricultural wells, q, the set of public demand areas which serve as interconnect destinations, p, the set of surface water sources, and n, the set of reclaimed water sources.

### DECISION MODEL PARAMETERS

Decision model parameters include the hydrogeologic parameters of the deficit model, additional service and distance maps for sources serving demand areas, and cost parameters for existing and alternative water supplies. The annual fixed and unit charges are those supplied by consultants converted to a cfd basis.

Parameter	units	definition	
Influence coeffi	cients of the unit response matrices	······································	
α	day/ft ²	influence of public well i on control point h	
$\beta_{m,h}$	day/ft ²	influence of agricultural well m on control point h	
$\gamma_{i1}$	day/ft ²	influence of public well i on spring I	
	day/ft²	influence of agricultural well m on spring l	
distances (strain	aht line approximations)		
dists	miles	public area j to area q	
distsp_,	miles	surface source p to public area j	
service maps			
servm _{ij}		public well i to demand area j	
servs		surface source p to public area j	
serva _{mk}		agricultural well m to agricultural area k	
servra _{nk}		reclaimed site n to agricultural area k	
servrm _{ni}		reclaimed site n to public area j	
exist _{j,q}		existing interconnect from area j to area q	
water managen	ient		
dm _i	cfd	demand of public area j	
da _k	cfd	demand of agricultural area k	
atia		potential area transfer from j to q	
qo,	cfd	1988 withdrawal rate of public well i	
qno,	cfd	2010 nonoptimized withdrawal rate of public well i	
qaom	cfd	1988 withdrawal rate of agricultural well m	
qna _m	cfd	2010 nonoptimized withdrawal rate of anricultural well m	

Table 15. D	Decision	model	parameters
-------------	----------	-------	------------

Table 15	Continued	
capacities or lowe	r limits of use ranges	
scap,	cfd	Surface source p
mcap,	cfd	public well i'
acap,	cfd	agricultural well m
rcap_	cfd	reclaimed water site n
qmx	cfd	Upper limit for existing interconnect (5 MGD)
qmn	cfd	Lower limit for potential interconnect (4 MGD)
hydrogeologic		
ho _h	ft	1988 head of control point h
hno _n	ft	2010 nonoptimized head of control point h
el,	ft	elevation head of spring I
cd,	ft²/day	spring conductance of spring I
scrit,	cfd	critical minimum discharge of spring I
parameter	units	definition
med.		denotes control point h with moderate
n		potential for vegetative harm
high,		denotes control point h with high potential
		for vegetative harm
loss limits		minimum function of the second second
al		minimum fraction of year 1988 head
	Α.	potential for vegetative harm
ml		minimum fraction of year 1988 head
		allowed at control points having moderate
		potential for vegetative harm
hl		minimum fraction of year 1988 head
	· · ·	allowed at control points having high
<b>61</b>		potential for vegetative narm
$sp_i$		allowed at spring I
annual costs		
cno	\$/year	nonoptimized projected year 2010 annual
	•	total costs
ful _i	0.0592/q \$dayft [*] year ¹	fixed cost for new Upper Floridan public
	(Volusia)	supply utility well (24" diameter)*
	Unper Floridan)	
	g=hydraulic capacity in MGD	· ·
fII.	0.2684/q \$dayft ³ year ¹ (ECF	fixed cost for a new Lower Floridan public
Juli	Lower Floridan)	supply utility well (24" diameter) ²
	q=hydraulic capacity in MGD	
	0.0164 \$dayft year'	fixed cost for wellfield equipment (24"
0	1 NOD 0 000000 40 400 001	diameter)*
ftp _i	2 MGD 1 857\$davft ³ vear ¹	treatment plant + aeration + filtration
	5 MGD 1.639\$davft ³ vear ¹	
	10 MGD 1.415\$dayft ³ year ¹	
fsu _n	4.142 \$dayft"year' (Sanford,	fixed cost for surface water source
• •	DeLand)	
	2.344 \$dayft"year" (Lake	
	3 939 \$dauft ^s vear ¹	· · · · · · · · · · · · · · · · · · ·
	(Titusville, Cocoa)	
fia	2.681 \$dayft ³ year' (Volusia	fixed cost for reclaimed water site n to
	fern)	agricultural area k
	4.90 \$dayft 'year'	
	(ECF citrus)	

Table 15Cont	inued	
annual cost		,
fip	5.85/\$dayft ³ year ¹	fixed cost for reclaimed water site n to public area j
icept _{j,q}	see Appendix Table A12 (varies with distance) \$/year	fixed cost linear approximation intercept of interconnect to public area q to be multiplied by binary variable ³
slope _{j,4}	see Appendix Table A12 (varies with distance)\$dayft ³ year ¹	fixed cost linear approximation slope per unit flow of interconnect to public area q ³
icepts _{p,j}	see Appendix Table A12 (varies with distance) \$/year	fixed cost linear approximation intercept of surface water transport to public area j to be multiplied by binary variable ³
slopes _{p,j}	see Appendix Table A12(varies with distance)\$dayft ³ year ¹	fixed cost linear approximation slope per unit flow of surface water transport to public area j ³
ra	1.177 \$dayit ^a year'	unit cost for reclaimed water site n to agricultural area
$rp_{n,j}$	1.28 \$dayft'year'	unit cost for reclaimed water site n to public area j
	0.38 \$dayft³year¹ for distances ≥ 5 miles	unit cost of interconnect supplying public area q or surface water transport supplying public area i (destination area pays)
uw,	0.47 \$dayft ³ year ⁻¹	unit cost of supply well and treatment supplying public area j ⁴
us	0.344 \$dayft ³ year ¹ (Lake Griffin) 0.53 \$dayft ³ year ¹ (Sanford, DeLand, Titusville, Cocoa)	unit cost of surface water source supplying public area j
uwa	0.1229 \$dayft'year'	unit cost of agricultural well
uutu	0.0000748.140.(-6	converte of to NIC

¹ Capacities were hydraulic capacities (where available) reported by LAW Engineering, but some data were estimated

²Costs for new well development require refinement. Individual well depths were unknown, standard depths of 200 ft for Volusia wells, 500 ft for east-central Upper Floridan wells, and 1400 ft for east-central Lower Floridan wells were used. Capacities were hydraulic capacities (where availaible) reported by LAW Engineering, but some data were estimated

³Straight-line distances were used

⁴These costs do not consider macro- and microdistribution and are otherwise in need of refinement to reflect individual public supply utility area costs

### DECISION MODEL VARIABLES

Decision model continuous variables include the hydrogeologic and water management variables of the deficit model as well as the use rates, fixed costs, and unit costs of alternative water supply strategies. Decision model binary variables include those for new public interconnects and surface water transport to public demand areas.

88

Table 16. Decision n	iodel variables	
variable	units	definition
binary variables		
$Y2_{j,q}$		interconnect: public area j supplies area q
$YSP_{p,j}$		surface source p serves public area j
use rates		
$QP_i$	cfd	total pump rate of public well cell i
$Q1_{ij}$	cfd	pump rate of public well cell i supplying demand area
Q2 _{<i>i</i>,<i>q</i>}	cfd	J public interconnect use rate from source area j to destination area q
$QA_m$	cfd	pump rate of agricultural well m
QRA _{n,k}	cfd	reuse rate from reclaimed water site n to agricultural area k
ORP	cfd	reuse rate from reclaimed water site n to public area j
variable	units	definition
OR	cfđ	total reuse rate from reclaimed water site n
$\hat{OS}$	cfd	use rate of surface water source p
non s	cfd	use rate of surface source p to public area i
exercial and the second	•••	
nyarogeologie	ft	drawdown at control point h
	ft	spring head at spring l
SD	cfd	spring discharge at spring l
	0.0	fraction of simulation year 1988 discharge at spring l
		nacion of similation your roos assinings at spring r
ACCOUNTING AP2	MGD	nublic use of reclaimed water from source n
$QR2_n$ $QRA2_{n,k}$	MGD	agricultural use of reclaimed water from source n to
DTD	MGD	area K total use of reclaimed water
	MGD	total use of interconnect
EN1 022	MGD	notential interconnect from public area i to public area
$Q^{2Z_{j,q}}$	WOD	
$Q23_{ig}$	MGD	existing interconnect from public area j to public area q
RTI,	MGD	total use of interconnects from source public area j
RTQ.	MGD	total use of interconnects to public destination area j
RTW,	MGD	total use of wells at public demand area j
$OOS2_{n}$	MGD	use rate of surface source p to public area j
ÕS2,	MGD	use rate of surface source p
annual costs		
FP1,	\$/year	fixed cost of surface water site serving public area j
FP2	\$/year	fixed cost of surface water transport to public area j
FW.	\$/year	fixed cost of new wells and treatment in public area j
FIĆ.	\$/year	fixed cost of interconnect to public area q
FRÅ _k	\$/year	fixed cost of reclaimed water serving agricultural area
FRP.	\$/year	fixed cost of reclaimed water serving public area i
$UP_{j}$	\$/year	unit cost of supplies serving public area j (less
UST.	\$/vear	unit cost of surface water transport to public area i
	\$/vear	unit cost of interconnects serving public area g
IIA.	\$/vear	unit cost of supplies serving agricultural area k
7	\$/vear	total costs
	~· <b>,</b> ··	

Table 16.	Decision	model	variable	es
-----------	----------	-------	----------	----

### DECISION MODEL OBJECTIVE FUNCTION

The optimization model formulation was created with the assumption that groundwater allocation strategies could be found which minimized costs of meeting projected year 2010 water demands. In the model, the objective functions appears as a statement specifying that the value of decision variable Z be minimized. The objective function,

### minimize

$$Z = \sum_{j} [FW_{j} + FRP_{j} + FP1_{j} + FP2_{j} + UP_{j} + UST_{j}] + \sum_{q} [FIC_{q} + UI_{q}] + \sum_{k} [FRA_{k} + UA_{k}]$$
(66)

minimizes total annualized fixed and unit costs where Z is the sum of all fixed and unit costs for meeting public and agricultural demands with existing and potential sources.

### DECISION MODEL CONSTRAINTS

The model formulation includes hydrogeologic constraints, water management constraints, and cost constraints.

#### Hydrogeologic Constraints

Hydrogeologic constraints calculating the drawdown at control points were developed from influence coefficients that describe pressure changes at each control point due to pumping at each well grid cell. These constraints limit the drawdown to specifications based on the control point's potential for vegetative harm,

$$D_{h} = ho_{h} - hno_{h} + \sum_{i} \alpha_{i,h} [QP_{i} - qno_{i}] + \sum_{m} \beta_{m,h} [QA_{m} - qna_{m}]$$
(67)

For the east-central region, a drawdown limit is specified at each point. Currently this limit is from 0.8 to 0.9 of the simulated year 1988 head.

$$D_h \le dl_h \tag{68}$$

Constrains drawdowns based on the area's potential for vegetative harm,

$$D_h \le ml \ if \ med(h) = 1 \tag{69}$$

$$D_h \le hl \quad \text{if high}(h) = 1 \tag{70}$$

with moderate and high harm areas presently tolerating 0%-2% reduction from simulated year 1988 Upper Floridan head in the east-central region and surficial head in the Volusia region.

Spring head is defined in the model similar to aquifer head above.

$$HS_{i} = hsno_{i} - \sum_{i} \gamma_{i,l} [QP_{i} - qno_{i}] - \sum_{m} \varsigma_{m,l} [QA_{m} - qna_{m}]$$
(71)

Spring discharge losses are constrained by

$$HS_{l} \ge sp_{l}(hso_{l} - el_{l}) + el_{l} \tag{72}$$

where  $sp_i$  is currently 0.85.

The spring's fraction of simulation year 1988 discharge is given by

$$Ps_{l} = \frac{Hs_{l} - el_{l}}{hso_{l} - el_{l}}$$
(73)

The spring discharge (not currently used) may be defined by

$$SD_l = cd_l(Hs_l - el_l) \tag{74}$$

If the critical identified minimum discharge (not currently used) for a spring is available, spring discharge must exceed this critical minimum so that

$$SD_i \ge scrit_i$$
 (75)

### Public Water Management Constraints

The model uses constraints for public needs and sources to ensure that capacities of wells are not exceeded and to meet demands of public supply demand areas.

The total withdrawal rate of a public well consists of the sum of withdrawal rates serving all public areas

$$QP_i = \sum_j Q1_{i,j} \tag{76}$$

Well withdrawal must not exceed capacities:

$$QP_i \leq mcap_i$$
 (77)

The next three constraints define area-to-area transfers between public supply utility areas.

The binary for a public interconnect  $Y2_{j,q}$  must go to the '1' position when that interconnect has a nonzero use rate:

$$Q2_{j,q} \le dm_q Y2_{j,q} \qquad if exist_{j,q} = 0 \tag{78}$$

$$Q2_{j,q} \le qmxY2_{j,q} \qquad if exist_{j,q} = 1 \tag{79}$$

where the projected year 2010 demand of the source area is the upper limit of the flow rate for  $Q2_{j,q}$  if the interconnect is potential, and 5 MGD if the interconnect is existing.

A potential public interconnect is not considered unless its use rate greater than some specified minimum flow rate. Lower limits are employed to ensure that the approximating linear equations that govern fixed charges are valid:

$$qmnY2_{i,q} \le Q2_{i,q} \qquad if exist_{i,q} = 0 \tag{80}$$

The flow in each interconnect is limited to one direction:

$$Y2_{i,a} + Y2_{a,i} \le 1 \text{ if } at_{i,a} = 1 \text{ or } at_{a,i} = 1$$
(81)

The sum of flows in to public destination area q may not exceed the projected year 2010 demand of public area j:

$$\sum_{j} Q2_{j,q} at_{j,q} \le dm_q \tag{82}$$

No more than 20 interconnects are currently used:

$$\sum_{j,q} Y2_{j,q} at_{j,q} \le 20$$
(83)

The next two constraints define surface water quantities for public use.

Surface water use may not exceed the recommended maximum:

$$QS_p \le scap_p \tag{84}$$

The binary for surface water use at public area j,  $YSP_{p,j'}$  must go to the '1' position when the decision model selects for its creation and use:

$$QQS_{p,j} \le dm_j YSP_{p,j} \tag{85}$$

where the upper limit of the flow rate of surface water to public demand area j is taken as the projected year 2010 demand of the receiving area, though other values could be used.

The total use rate from a surface water source consists of the sum of its supplies to all public areas

$$QS_p = \sum_j QQS_{p,j} \tag{86}$$

The total use rate of all surface water sources cannot exceed the projected year 2010 of the receiving public area:

$$\sum_{p} QQS_{p,j} servs_{p,j} \le dm_j$$
(87)

Reclaimed use for public supply irrigation cannot exceed the availability from the reclaimed site:

$$QRP_{n,i} \le rcap_n \tag{88}$$

The total quantity of reclaimed water from all reclaimed sites for public irrigation is given by

$$RTP = \sum_{n,j} QRP_{n,j} servrm_{n,j}$$
(89)

The following restricts the amount of reclaimed water for irrigation that can be used to satisfy a public demand. (Here, irrigation use of public supply water is estimated as 25% of the public demand.)

$$\sum_{n} QRP_{n,j} servrm_{n,j} \le 0.25 dm_j \tag{90}$$

The demand constraint for public supply areas is:

$$\sum_{i} Q_{1,j} servm_{i,j} + \sum_{n} QRP_{n,j} servm_{n,j} + \sum_{p} QQS_{p,j} servs_{p,j}$$

$$+ \sum_{q} Q2_{q,j} at_{q,j} \ge dm_{j} + \sum_{q} Q2_{j,q} at_{j,q}$$
(91)

93

Note that Q2 appears on both sides of the equation above. On the left side of the inequality, when summed over its first index it refers to the total quantity of water received from other public areas. On the right side of the inequality, Q2 is summed over its second index referring to total the amount of water serving other public areas.

#### **Agricultural Water Management Constraints**

Water Managment constraints for agricultural areas include limiting use or withdrawal rates to specified capacities, satisfying water demands with available sources, and switching on binary variables when potential sources are used:

The following constraint precludes operating agricultural wells beyond capacities:

$$QA_m serva_{m,k} \le a cap_m \tag{92}$$

Constraint (93) insures agricultural areas are satisfied with agricultural wells and reclaimed water use:

$$\sum_{m} QA_{m} serva_{m,k} + \sum_{n} QRA_{n,k} servra_{n,k} \ge da_{k}$$
(93)

#### **Reclaimed Water Management Constraints**

Water management constraints for reclaimed water use include agricultural and public uses:

The total amount of reuse from a reclaimed water site is the sum of all its supplies to agricultural and public demand areas,

$$\sum_{k} QRA_{n,k} servra_{n,k} + \sum_{j} QRP_{n,j} servrm_{n,j} = QR_{n}$$
(94)

Total reuse must not exceed the available capacity of reclaimed water from the site:

$$QR_n \le rcap_n \tag{95}$$

#### **Fixed charges of new alternatives**

The next group of equations are equality constraints that define the fixed charge components of the objective function. Fixed charges are incurred when alternatives to existing water supplies are selected by the decision

94

model. Alternatives to existing supplies include new wells, new water treatment plants, new interconnects, surface water sources, and reclaimed water sources. Fixed charges are defined as follows:

New wells and treatment plants: For Volusia:

$$FW_{j} = \sum_{i} servm_{i,j} QP_{i}[0.0164 + ful_{i} + ftp_{i}] \quad if \ ul_{i} = 1$$
(96)

For east-central:

$$FW_{j} = \sum_{i} servm_{i,j} QP_{i} [0.0164 + ful_{i} + fll_{i} + ftp_{i}]$$
  
if  $ul_{i} = 1$  or  $ll_{i} = 1$  (97)

New public interconnects

$$FIC_{q} = \sum_{q} (icept_{j,q} Y2_{j,q} + slope_{j,q} Q2_{j,q}) \text{ if } at_{j,q} = 1 \text{ and } exist_{j,q} = 0 \quad (98)$$

New surface water sources:

$$FP1_{j} = \sum_{p} fsu_{p}QQS_{p,j}$$
⁽⁹⁹⁾

Connections from surface water sources to public demand areas:

$$FP2_{j} = \sum_{p} (icepts_{p,j} YSP_{p,j} + slopes_{p,j} QQS_{p,j})$$
(100)

Reclaimed use for agricultural areas:

$$FRA_{k} = \sum_{n} QRA_{k,n} fia$$
(101)

Reclaimed use for public supply utility irrigation demands:

$$FRP_{j} = \sum_{j} QRP_{j,n} fip$$
(102)

### Unit charges of all selections, existing or proposed

The following group of equality constraints calculates unit costs of all sources, both existing and potential, selected by the decision model.

For public supply demand areas (not considering interconnects)

$$UP_{j} = \sum_{i} QP_{i}servm_{i,j}uw_{i} + \sum_{p} QQS_{p,j}servs_{p,j}us_{p} + \sum_{n} QRP_{n,j}servrm_{n,j}rp_{n,j}$$
(103)

For public interconnects, which must be considered separately since the destination area pays,

$$UI_q = \sum_j 0.38Q_{j,q} \quad if \, dists_{j,q} \ge 5 \, miles \tag{104}$$

The unit costs are similar for surface water transport, but indexed by public area j and summed over index p, the set of surface water sites:

$$UST_{j} = \sum_{p} 0.38QQS_{p,j} \quad if \ distsm_{p,j} \ge 5 \ miles \tag{105}$$

For agricultural areas,

$$UA_{k} = \sum_{n} QRA_{k,n} servra_{n,k} ra + \sum_{m} QA_{m} serva_{m,k} uwa$$
(106)

Non-binding constraints for data management include the following equations:

The total of all public interconnects in MGD is given by :

$$FNT = \sum_{j,q} c \nu Q_{j,q} \tag{107}$$

Conversion of reclaimed water use to MGD is given by:

$$QR2_n = cvQR_n \tag{108}$$

$$QRA2_{n,k} = cvQRA_{n,k} \tag{109}$$

Total public use of reclaimed water in MGD is calculated in

$$RTP = \sum_{n,j} cv * servrm_{n,j} QRP_{n,j}$$
(110)

New interconnect use in MGD is defined by

$$Q22_{j,q} = cvQ2_{j,q}$$
 if  $at_{j,q} = 1$  and  $exist_{j,q} = 0$  (111)

Existing interconnect use in MGD is found by

$$Q23_{j,q} = cvQ2_{j,q} \text{ if } at_{j,q} = 1 \text{ and } exist_{j,q} = 1$$
(112)

The total use of interconnects from source public area j in MGD is

$$RTI_{j} = \sum_{q} cv * at_{j,q} Q2_{j,q}$$

$$\tag{113}$$

The total use of interconnect to destination public area q in MGD is

$$RTQ_q = \sum_j cv * at_{j,q} Q2_{j,q}$$
(114)

The total use of wells at public area j in MGD is given by

$$RTW_{j} = \sum_{i} cv * servm_{j,i}Ql_{i,j}$$
(115)

Surface water use at each demand area in MGD is found by

$$QQS2_{p,j} = cvQQS_{p,j} \tag{116}$$

Total surface water use from each source p in MGD is

$$QS2_{p} = cvQS_{p} \tag{117}$$

## Nonnegativity constraints

The following constraints specify nonnegativity:

$$Q1_{i,j} \ge 0.0 \tag{118}$$

$$Q2_{i,j} \ge 0.0$$
 (119)

  $QA_m \ge 0.0$ 
 (120)

  $QRA_{n,k} \ge 0.0$ 
 (121)

  $QRP_{n,j} \ge 0.0$ 
 (122)

  $QQS_{p,j} \ge 0.0$ 
 (123)

In summary,

minimize

$$Z = \sum_{j} [FW_{j} + FRP_{j} + FP1_{j} + FP2_{j} + UP_{j} + UST_{j}] + \sum_{q} [FIC_{q} + UI_{q}] + \sum_{k} [FRA_{k} + UA_{k}]$$
(124)

subject to

Hydrogeologic Constraints:

$$D_{h} = ho_{h} - hno_{h} + \sum_{i} \alpha_{i,h} [QP_{i} - qno_{i}] + \sum_{m} \beta_{m,h} [QA_{m} - qna_{m}]$$
(125)

$$D_h \le dl_h \tag{126}$$

$$D_h \leq ml \ if \ med(h) = 1$$

$$D_h \le hl \quad \text{if } high(h) = 1 \tag{127}$$

$$HS_{l} = hsno_{l} - \sum_{i} \gamma_{i,l} [QP_{i} - qno_{i}] - \sum_{m} \varsigma_{m,l} [QA_{m} - qna_{m}]$$
(128)

$$HS_l \ge sp_l(hso_l - el_l) + el_l \tag{129}$$

$$PS_{l} = \frac{HS_{l} - el_{l}}{hso_{l} - el_{l}}$$
(130)

$$SD_l = cd_l(Hs_l - el_l)$$
(131)

$$SD_l \ge scrit_l$$
 (132)

# **Public Water Management Constraints:**

$$QP_i = \sum_j Q1_{i,j} \tag{133}$$

$$QP_{i} \leq mcap_{i}$$

$$Q2_{i,q} \leq dm_{q}Y2_{i,q} \quad if exist_{i,q} = 0$$
(134)
(135)

$$Q2_{j,q} \le qmxY2_{j,q} \qquad if \ exist_{j,q} = 1 \tag{136}$$

$$qmnY2_{j,q} \le Q2_{j,q} \quad if exist_{j,q} = 0$$

$$Y2_{j,q} + Y2_{q,j} \le 1 \quad if \; at_{j,q} = 1 \text{ or } at_{q,j} = 1$$
(137)
(138)

$$\sum_{j} Q_{2_{j,q}} at_{j,q} \le dm_q \tag{139}$$

$$\sum_{j,q} Y2_{j,q} at_{j,q} \le 20$$
 (140)

$$QS_p \le scap_p \tag{141}$$

$$QQS_{p,j} \le dm_j YSP_{p,j} \tag{142}$$

$$QS_p = \sum_{j} QQS_{p,j} \tag{143}$$

$$\sum_{p} QQS_{p,j} servs_{p,j} \le dm_j \tag{144}$$

$$QRP_{n,j} \le rcap_n \tag{145}$$

$$RTP = \sum_{n,j} QRP_{n,j} servrm_{n,j}$$
(146)

$$\sum_{n} QRP_{n,j} servrm_{n,j} \le 0.25 dm_j \tag{147}$$

$$\sum_{i} Q1_{i,j} servm_{i,j} + \sum_{n} QRP_{n,j} servm_{n,j} + \sum_{p} QQS_{p,j} servs_{p,j}$$
(148)

$$+\sum_{q} Q_{q,j} a t_{q,j} \ge dm_{j} + \sum_{q} Q_{j,q} a t_{j,q}$$
(140)

## Agricultural Water Management Constraints

 $QA_m serva_{m,k} \le acap_m \tag{149}$ 

$$\sum_{m} QA_{m} serva_{m,k} + \sum_{n} QRA_{n,k} servra_{n,k} \ge da_{k}$$
(150)

## **Reclaimed Water Management Constraints**

$$\sum_{k} QRA_{n,k} servra_{n,k} + \sum_{j} QRP_{n,j} servrm_{n,j} = QR_{n}$$
(151)

$$QR_n \le rcap_n \tag{152}$$

# Fixed charges of new alternatives

For Volusia:

$$FW_{j} = \sum_{i} servm_{i,j} QP_{i}[0.0164 + ful_{i} + ftp_{i}] \quad if \ ul_{i} = 1$$
(153)

For east-central:

$$FW_{j} = \sum_{i} servm_{i,j} QP_{i} [0.0164 + ful_{i} + fll_{i} + ftp_{i}] \quad \text{if } ul_{i} = 1 \text{ or } ll_{i} = 1$$
(154)

$$FIC_{q} = \sum_{q} (icept_{j,q} Y2_{j,q} + slope_{j,q} Q2_{j,q}) \text{ if } at_{j,q} = 1 \text{ and } exist_{j,q} = 0 \quad (155)$$

$$FP1_{j} = \sum_{p} fsu_{p}QQS_{p,j}$$
(156)

$$FP2_{j} = \sum_{p} (icepts_{p,j} YSP_{p,j} + slopes_{p,j} QQS_{p,j})$$
(157)

$$FRA_{k} = \sum_{n} QRA_{k,n} fia$$
(158)

$$FRP_{j} = \sum_{j} QRP_{j,n} fip$$
(159)

# Unit charges of all selections, existing or proposed

$$UP_{j} = \sum_{i} QP_{i}servm_{i,j}uw_{i} + \sum_{p} QQS_{p,j}servs_{p,j}us_{p} + \sum_{n} QRP_{n,j}servrm_{n,j}rp_{n,j}$$
(160)

$$UI_q = \sum_{i} 0.38Q2_{j,q} \quad if \ dists_{j,q} \ge 5 \ miles \tag{161}$$

$$UST_{j} = \sum_{p} 0.38 QQS_{p,j} \text{ if } distsm_{p,j} \ge 5 \text{ miles}$$
(162)

$$UA_{k} = \sum_{n} QRA_{k,n} servra_{n,k} ra + \sum_{m} QA_{m} serva_{m,k} uwa$$
(163)

## Data management constraints:

$$FNT = \sum_{j,q} cvQ2_{j,q} \tag{164}$$

$$QR2_n = cvQR_n \tag{165}$$

$$QRA2_{n,k} = cvQRA_{n,k} \tag{166}$$

$$RTP = \sum_{n,i} cv * servrm_{n,j} QRP_{n,j}$$
(167)

$$Q22_{j,q} = cvQ2_{j,q} \text{ if } at_{j,q} = 1 \text{ and } exist_{j,q} = 0$$
 (168)

$$Q23_{j,q} = cvQ2_{j,q} \text{ if } at_{j,q} = 1 \text{ and } exist_{j,q} = 1$$
(169)

$$RTI_{j} = \sum_{q} cv * at_{j,q} Q2_{j,q}$$
(170)

$$RTQ_{q} = \sum_{j} cv * at_{j,q} Q2_{j,q}$$
(171)

$$RTW_{j} = \sum_{i} cv * servm_{j,i}Q1_{i,j}$$
(172)

$$QQS2_{p,j} = cvQQS_{p,j} \tag{173}$$

$$QS2_p = cvQS_p \tag{174}$$

# Nonnegativity constraints

$Q1_{i,j} \ge 0.0$	(175)
$Q2_{i,j} \ge 0.0$	(176)
$QA_m \ge 0.0$	(177)
$QRA_{n,k} \ge 0.0$	(178)
$QRP_{n,j} \ge 0.0$	(179)
$QQS_{p,j} \ge 0.0$	(180)

# EAST-CENTRAL AND VOLUSIA MODEL COMPARISON

The east-central and Volusia GAMS MIP decision model formulations are summarized in Table 17 below:

	Tab	le	17.	Decision	model	comparison
--	-----	----	-----	----------	-------	------------

	east-central	Volusia	
Public			
Well cells	332	177	
Demand Areas	91	41	
Projected 2010 demand	499 MGD	96 MGD	
Agricultural			
Well cells	362	364	
Demand Areas	69	59	
Projected 2010 demand	99 MGD	26 MGD	
Hydrogeologic			
Control points	157	177	
Springs	17	3	
Aquifer constrained	Upper Floridan	Surficial	
Alternatives			
Interconnects	up to 16,380	up to 3280	
Reclaimed Water Sites	up to 45	up to 20	
Surface Water Sites	4	2	

# DECISION MODEL DISCUSSION

# EAST-CENTRAL RESULTS

The decision model formulation was applied to the east-central Florida region for three cases having a 15% loss limit from simulated year 1988 conditions on Upper Floridan aquifer head control points with low potential for vegetative harm. Cases 1,2, and 3 differed with respect to an allowable specified limit of 2%,1%, or 0% loss at Upper Floridan control points with high or moderate potential for vegetative harm. All three examined cases employed 15% loss limit constraints on spring discharges. Vegetative harm data was included, though the data were not available throughout the entire active portion of the simulation model grid.

The results presented here are for illustrative purposes only and derived from estimated annualized costs and environmental constraints; they are not intended to reflect potential or final water supply alternatives. Tables 18-33 summarize east-central results while aquifer drawdowns are provided in Figures 28, 31 and 34 with the improvement from the nonoptimized projected year 2010 condition given in Figures 29, 32, and 35, for the cases of 2%, 1%, and 0% Upper Floridan Head loss at control points with high or moderate potential for vegetative harm, respectively.

Alternative sources selected by each case are provided in Figures 30, 33, and 36 with colored lines representing surface water use and transport, public supply utility interconnects, and reclaimed water use for public and agricultural areas. Red lines denote selections by all three examined cases, violet lines denote selections in two of the three examined cases, and blue lines represent selections in one case only.

The linearity of the aquifer response was demonstrated with the deficit model and is not repeated here. Optimized well withdrawal rates are given in appendix in Table A13 for public supply utility wells and Table A10 for agricultural wells.

Table 18 below provides model statistics. All three cases were given the same relative gap, or error, a measure of the difference between the current solution and the best integer solution possible. The final solution is the current solution at the time when the time (resolution) limit is exceeded. As the relative gap decreases, the quality of the solution increases. Choices of relative gap and resource limits (maximum CPU time) were dictated by hardware considerations, and better solutions could be obtained with more RAM than the currently available 256 MB.

All three models used approximately 1 hour of CPU time on a Sun UltraSparc provided by the Center for Applied Optimization at the Department of Industrial and Systems Engineering of the University of Florida.

The resulting system of equations was 17,877 rows (variables) by 61,923 columns (constraints) with 154,718 nonzeroes. The *CPLEX* presolve routine reduced this system to 1,374 rows by 1,777 columns with 80,459 nonzeroes. There were 21 binary variables for surface water transport and 309 binary variables for potential and existing interconnect use.

The total annual cost in the final solution increases as the allowable Upper Floridan head loss at control points with high or moderate potential for vegetative harm decreases.

Loss limit at control points with high or moderate potential for vegetative harm	Case 3, 0%	Case 2, 1%	Case 1, 2%
CPU time required (hours)	1.42	1.29	0.8
Final solution (\$/year)	159,500,000	143,200,000	132,300,000
Error	0.016	0.015	0.006

Table 18. East-central model	statistics
------------------------------	------------



Decision. Modeling for Alternative Water Supply Strategies



18-21

21-24

24-27

loss and head loss at control points with low potential for vegetative harm



Figure 30. East-central alternative sources, decision model allowing 2% head loss at control points with high or moderate potential for vegetative harm, 15% discharge loss at springs, and 15% head loss at control points with low potential for vegetative harm.



7-9

9-11

11-13

★ Springs

General Water Bodies

Decision Modeling for Alternative Water Supply Strategies

loss at control points with low potential for

vegetative harm



Decision Modeling for Alternative Water Supply Strategies



Figure 33. East-central alternative sources, decision model allowing 1% head loss at control points with high or moderate potential for vegetative harm, 15% discharge loss at springs, and 15% head loss at control points with low potential for vegetative harm.





# Figure 35

East-central projected year 2010 decision model Upper Floridan improvement over nonoptimized case allowing 0% head loss at control points with high or moderate potential for vegetative harm and 15% spring discharge loss and head loss at control points with low potential for vegetative harm

Differenc	e in Feet		County Boundary
	-63 -31		SJRWMD Boundary
	1-3 3-6		ECF Active Edge
	6-9	۲	Agricultural Wells
	12-15	٠	Municipal Wells
	15-18 18-21	*	Springs
	21-24 24-27		General Water Bodies

Decision Modeling for Alternative Water Supply Strategies



Figure 36. East-central alternative sources, decision model allowing 0% head loss at control points with high or moderate potential for vegetative harm, 15% discharge loss at springs, and 15% head loss at control points with low potential for vegetative harm.

Table 19 below provides total reuse selected in East-central Florida. Only Case 3 made agricultural use of reclaimed water No reuse for public areas was selected. The total amount of reuse was 5.12MGD from five wastewater treatment plants: Clermont, Ocoee, Orange County North, and Winter Garden.

Table 19. Ea	st-central	total	reuse
--------------	------------	-------	-------

Reclaimed site	Case 3 only (0% losses at high harm areas)
	MGD
Clermont	0.78
Ocoee	0.39
Orange County North	2.82
Winter Garden1	0.4
Winter Garden2	0.74
Total	5.12

Table 20 provides the quantities of reuse to each citrus agricultural area. Areas C6 -C10 and C26, all near Lake Apopka and Apopka Spring.

from		Citrus area	Case 3, 0% loss limit at high harm areas MGD
Clermont	to	C26	0.78
Осоее	to	C6	0.07
Осоее	to	C7	0.05
Осоее	to	C10	0.27
Orange County North	· to	C6	2.38
Orange County North	to	C26	0.44
Winter Garden1	to	C8	0.40
Winter Garden2	to	C8	0.1
Winter Garden2	to	C9	0.64
Total			5.12

Table 20. East-central reuse to agricultural areas

New wells were selected in the Deltona, OUC Orange, and Orange County SRWF demand areas

Table 21. E	ast-central	new	wells
-------------	-------------	-----	-------

Loss limit at control points with high or moderate potential for vegetative harm	Case 3, 0%	Case 2, 1%	Case 1, 2%
Public Demand Area		MGD	
Deltona (Upper Floridan)	MW 62: 0.1	MW 62: 2.06	MW 62: 2.06
	MW 64: 0.2	MW64: 1.03	MW64: 1.03
	MW 65: 1.0	MW65: 1.03	MW65: 1.03
		MW80: 0.1 5	MW80: 0.15
OUC Orange (Lower Floridan)	MW183: 2.2	MW183: 2.12	MW183: 2.12
OCPUD S SRWF (Lower Floridan)	MW131: 6.9	MW131: 7.17	MW131: 7.62
Total	10.4	13.56	14.01

All three cases made extensive use of surface water as displayed in Table 22. St. Johns River sites near Sanford and Cocoa were chosen in all three cases.

Loss limit at control points with high or moderate potential for vegetative harm	Case 3, 0%	Case 2, 1%	Case 1, 2%
Source		MGD	
From Sanford	164.2	156.8	142.0
From Cocoa	22.75	9.0	6.5
Total	186.95	165.8	148.5

Table 22. East-central total surface water use

Table 23 shows public use of surface water by public supply utility demand area. The public demand areas receiving the largest quantity of surface water were Apopka, Winter Springs, OUC, Seminole County, and Cocoa, in all three cases.

Loss limit			Case 3, 0% (	Case 2, 1%	Case 1, 2%
Source	to	Destination		MGD	
St. Johns River at Sanford		Altamonte Springs	10.19		
		Apopka	20.15	19.49	18.18
		Casselberry			6.33
		Deltona	15.51	14.46	13.39
		Lake Mary	5.62	5.62	5.62
		Orlando U. Highland	7.98	7.98	7.98
		Orlando U. Pine Hills	19.6	19.6	19.6
		Orlando U. Primrose	· 7.09	7.09	7.09
		Orlando U. Navy	6.4	6.4	6.4
		Sanford	7.07	6.62	5.90
		Seminole County	18.6	18.6 [.]	16.71
		Winter Park	15.28	15.28	15.28
		Sanlando	10.75		
		Oviedo		9.63	
		Winter Springs		6.01	
		Orange County W WRWF	20	20	19.56
St. Johns River near Cocoa	to	Cocoa	22.75	9.04	6.48
Total			186.95	165.82	148.53

Table 23. East-central use rate of surface water to public area

Table 24 gives fixed charges for surface water use. Fixed charges for the surface water source were considerable in all three cases, totaling between \$60 million/year and \$80 million/year.

Loss limit			Case 3, 0%	Case 2, 1%	Case 1, 2%
Source	to	Destination		\$ millions/year	
St. Johns River at Sanford		Altamonte Springs	4.239		
		Apopka	8.385	8.110	7.565
		Casselberry			2.634
		Deltona	6.453	6.016	5.518
		Lake Mary	2.339	2.339	2.339
		Orlando U. Highland	3.320	3.320	3.320
		Orlando U. Pine Hills	8.154	8.154	8.154
		Orlando U. Primrose	2.949	2.949	2.949
		Orlando U. Navy	2.663	2.663	2.663
		Sanford	2.943	2.753	2.456
		Seminole County	7.738	7.738	6.953
		Winter Park	6.257	6.357	6.357
		Sanlando	4.472		
		Oviedo		4.009	
		Winter Springs		2.501	6.357
		Orange County W WRWF	8.321		
St. Johns River near	to	Cocoa	11.982	4.762	3.413
Cocoa					
Total			80.215	61.670	· 60.678

Table 24. East-central fixed costs of surface water sources

The following table provides the transport costs for surface water, totaled for each receiving area. Actual costs for surface water transport are likely to be much lower than those reported here. The costs in Table 25 assume a different pipeline for each demand area. However, a more realistic scenario would involve a main pipe with branches to various demand areas. Fixed transport costs are not large compared to surface water fixed costs. However, the model formulation requires a separate physical pipeline for each public demand area supplied by surface water which results in an inefficient use of pipe. Future efforts will include a more efficient surface water transportation network which will consist of a main pipeline with branches to the appropriate public supply demand areas. This type of distribution system is likely incur lower fixed and unit charges, though an equitable distribution of costs may be difficult to define.

Loss iimit			Case 3, 0%	Case 2, 1%	Case 1, 2%
Source	to	Destination	\$	\$millions/year	
St. Johns River at Sanford		Altamonte Springs	1.220		
		Apopka	1.939	1.908	1.847
		Casselberry			1.071
		Deltona	1.128	1.096	1.064
		Lake Mary	0.373	0.373	0.373
		Orlando U. Highland	1.372	1.372	1.372
		Orlando U. Pine Hills	1.913	1.913	1.913
		Orlando U. Primrose	1.331	1.331	1.331
		Orlando U. Navy	1.299	1.299	1.299
		Sanford	0.393	0.387	0.377
		Seminole County	1.095	1.095	1.044
		Winter Park	1.712	1.712	1.712
		Sanlando	0.983		
		Oviedo	,	1.449	
		Winter Springs		0.839	
		Orange County W WRWF	1.932		
St. Johns River	te	o Cocoa	1.703	1.175	1.077
near Cocoa			·		
Total			15.234	15.950	14.480

Table 23. East-Central likeu Costs of sufface water fransbur	Table 25.	East-central	fixed costs	of surface	water t	ransport
--------------------------------------------------------------	-----------	--------------	-------------	------------	---------	----------

Table 26 following displays the interconnects selected by each case sorted by destination area with Table 27 displaying interconnects sorted by source area. Orlando Utilities Commission had the largest number of interconnects, followed by Orange County East. The interconnects used are displayed in Figures 30,33, and 36 for each examined case in three colors: red if the interconnect is used by all three cases, violet, if chosen in two cases, and blue, if chosen by only one case. It must be noted that there were no constraints limiting the total quantity of interconnects to or from a given area, so some areas gave and received water via interconnects. Many of the areas that supply water via interconnects receive a large quantity of water from new surface sources. The minimum flow rate specified in the east-central region for interconnects is 4 MGD for new interconnects (1 MGD minimum in Volusia). Table 28 provides interconnect total fluxes for public demand areas. The sum of all interconnect fluxes should total to zero. Distances between source and destination areas were straight line distances.

Some public supply demand areas have multiple sources or multiple destinations, such as OUC Pine Hills or Navy. Political objections to such interconnect strategies, if any, may easily be taken into consideration to preclude their selection in future decision modeling efforts.

			Loss at areas with high or moderate potential for vegetative harm			
Co	Destination	existing or potential	Case 3, 0%	Case 2, 1%	Case 1, 2%	distance (miles)
Source				MGU		
Santord				5.00	5.00	2.3
Orange Cty. W WRWF	Ocoee	e	5.00	5.00	3.64	4.4
Orlando U. Conway	Orange Cty. E Conway	P	7.66			2.1
Orlando U. Primrose	Orange Cty. E Conway	р		4.73	4.73	5
Altamonte Springs	Orange Cty. E Econ	P	7.59			11.9
Orlando U. Navy	Orange Cty. E Econ	Р		8.00		4.6
Winter Park	Orange Cty. E Econ	р		•	8.00	6.9
Casselberry	Orange Cty. E ERWF	p			15.04	10.8
Сосоа	Orange Cty. E ERWF	р	15.25			10.5
Seminole Cty.	Orange Cty. E ERWF	e	5.00	5.00	5.00	14.6
Winter Park	Orange Cty. E ERWF	p		15.25		14.6
Orange Cty. S Cypress	Orange Cty. S Orangewood	8	4.69	5.00	5.00	4.5
Apopka	Orange Cty. W WRWF	8	5.00	5.00	5.00	3.7
Winter Garden	Orange Cty. West WRWF	e			2.84	7.4
Orlando U. Navy	Orlando U. Conway	8	3.40	4.80	5.00	4.1
Orlando U. Primrose	Orlando U. Conway	e	5.00			2.3
Winter Park	Orlando U. Highland	p	5.00			3.8
Orlando U. Pine Hills	Orlando U. Kirkman	e		5.00		4.7
Reedy Creek	Orlando U. Kirkman	P		6.00	11.00	9
Winter Park	Orlando U. Kirkman	p	11.00			10.4
Orange Cty. W WRWF	Orlando U. Kuhl	P			11.31	10.5
Sanlando	Orlando U. Kuhl	р	11.28			12.2
Seminale Cty.	Orlando U. Kuhl	P		11.31		12.5
Orange Cty. W WRWF	Orlando U. Martin	p		20.19	20.19	13.1
Orlando U. Highland	Orlando U. Martin	e	5.00			9
Reedy Creek	Orlando U. Martin	р	15.19			7.3
Winter Park	Orlando U. Navy	р		6.40	6.40	2.8
Orlando U. Sky Lake	Orlando U. Orange	9	5.00	5.00		3.7
Orange Cty. E Conway	Orlando U. Pershing	p	4.00			1
Orlando U. Conway	Orlando U. Pershing	e			2.00	2
Orlando U. Navy	Orlando U. Pershing	e	3.00		5.00	4.9
Oviedo	Orlando U. Pershing	P		7.00		12.1
Orange Cty. W WRWF	Orlando U. Pine Hills	P		5.00		5.2
Orlando U. Kuhi	Orlando U. Sky Lake	6	5.00	5.00	5.00	4.9
Seminole Cty.	Oviedo	e			3.87	9.4
Winter Springs	Oviedo	8	5.00	2.53		6.3
Lake Mary	Seminole Cty.	e		5.00	5.00	4.8
Sanford	Winter Springs	p	6.01			6.6
Total			133.1	136.2	134.1	
					,	

Table 26. East-central interconnects sorted by destination

.

		Loss at areas with high or moderate potential for vegetative harm				
Source	Destination	existing or potential	Case 3, 0%	Case 2, 1% MGD	Case 1, 2%	distance (miles)
Altamonte Springs	Orange Cty. E Econ	p	7.59			11.9
Apopka	Orange Cty. W WRWF	e	5.00	5.00	5.00	3.7
Casselberry	Orange Cty. E ERWF	р	······································		15.04	10.8
Сосоа	Orange Cty. E ERWF	P	15.25			10.5
Lake Mary	Seminole Cty.	e		5.00	5.00	4.8
Orange Cty. E Conway	Orlando U. Pershing	р	4.00			1
Orange Cty. S Cypress	Orange Cty. S Orangewood	8	4.69	5.00	5.00	4.5
Orange Cty. W WRWF	Ocoee	e	5.00	5.00	3.64	4.4
Orange Cty. W WRWF	Orlando U. Kuhl	p			11.31	10.5
Orange Cty. W WRWF	Orlando U. Martin	P		20.19	20.19	13.1
Orange Cty. W WRWF	Orlando U. Pine Hills	p		5.00		5.2
Orlando U. Conway	Orlando U. Pershing	e .			2.00	2
Orlando U. Conway	Orange Cty. E Conway	р	7.66			2.1
Orlando U. Highland	Orlando U. Martin	e	5.00			9
Orlando U. Kuhl	Orlando U. Sky Lake	е	5.00	5.00	5.00	4.9
Orlando U. Navy	Orlando U. Conway	е	3.40	4.80	5.00	4.1
Orlando U. Navy	Orange Cty. E Econ	р		8.00		4.6
Oriando U. Navy	Orlando U. Pershing	e	3.00		5.00	4.9
Orlando U. Pine Hills	Orlando U. Kirkman	0		5.00		4:7
Orlando U. Primrose	Orlando U. Conway	e	5.00			2.3
Orlando U. Primrose	Orange Cty. E Conway	p		4.73	4.73	5
Oriando U. Sky Lake	Orlando U. Orange	0	5.00	5.00		3.7
Oviedo	Orlando U. Pershing	p		7.00		12.1
Reedy Creek	Orlando U. Kirkman	p		6.00	11.00	9
Reedy Creek	Orlando U. Martin	р	15.19			7.3
Sanford	Lake Mary	e		5.00	5.00	2.3
Sanford	Winter Springs	P	6.01			6.6
Sanlando	Orlando U. Kuhl	р	11.28	<u></u>		12.2
Seminole Cty.	Oviedo	e			3.87	9.4
Seminole Cty.	Orange Cty. E ERWF	e	5.00	5.00	5.00	14.6
Seminole Cty.	Orlando U. Kuhl	P		11.31		12.5
Winter Garden	Orange Cty. West WRWF	θ .	_		2.84	7.4
Winter Park	Orlando U. Navy	P		6.40	6.40	2.8
Winter Park	Orange Cty. E Econ	p			8.00	6.9
Winter Park	Orlando U. Highland	P	5.00			3.8
Winter Park	Orange Cty. E ERWF	P		15.25		14.6
Winter Park	Orlando U. Kirkman	P	11.00			10.4
Winter Springs	Oviedo	0	5.00	2.53		6.3
Total			133.1	136.2	134.1	

Table 27. East-central interconnects sorted by source

	Total of outflow from		Total of inflow to			net flux(inflow- outflow)			
Loss limit	Case 3,	Case 2,	Case 1,	Case 3,	Case 2,	Case 1,	Case 3,	Case 2,	Case 1,
Public demand area	0%	1% MGD	2%	0%	1% MGD	2%	0%	1% MGD	2%
Altamonte Springs	7 50						-7 50		
Anonka	7.59	5	-				-7.58		5
Cascelhern	5	5	15.04				-5	-5	-5
Casselberry	15.05		15.04				15.05	0	-15
laka Mani	15.25	-	-		F	_	-15.25	0	4
		3	5	-	5	0.04	0	0	
				5	5	3.04	5	5	3.04
OCPUD E Conway	4			7.66	4.73	4./3	3.66	4.73	4.73
				7.59	8	8	7.59	8	8
		_	_	20.25	20.25	20.04	20.25	20.25	20.04
OCPUD S Cypress Walk	4.69	5	5				-4.69	-5	-5
OCPUD S Orangewood				4.69	5	5	4.69	5	5
OCPUD W WRWF	5	30.19	35.14	5	5	7.84	0	-25.19	-27.3
OUC Conway	7.66		2	8.4	4.8	5	0.74	4.8	3
OUC Highland	5			5			0	0	0
OUC Kirkman				11	11	11	11	11	11
OUC Kuhl	5	5	5	11.28	11.31	11.31	6.28	6.31	6.31
OUC Martin				20.19	20.19	20.19	20.19	20.19	20.19
OUC Navy	6.4	12.8	10		6.4	6.4	-6.4	-6.4	-3.6
OUC Orange				5	5	5	5	5	5
OUC Pershing				7	7	7	7	7	7
OUC Pine Hills		5			5		0	0	o
OUC Primrose	5	4.73	4.73			0	-5	-4.73	-4.73
OUC Sky Lake	5	5	5	5	5	5	0	0	0
Oviedo		7		3.95	2.5	3.9	3.95	-4.5	3.9
Reedy Creek Utilities	15.19	6	11				-15.19	-6	-11
Sanford	6.01	5	5				-6.01	-5	-5
Sanlando	11.28						-11.28	0	0
Seminole County	5	16.31	8.9		5	5	-5	-11.31	-3.9
Winter Garden			2.84		-	•	0	0	-2.84
Winter Park	16	21.65	14.4				-16	-21.65	-14.4
Winter Springs	3.95	2.53		6.01			2.06	-2.53	0
Total	133.02	136.2	134.05	133	136.18	134.05	0.00	-0.03	0.00
							1		0.00

|--|

Table 29 provides fixed charges for interconnects as calculated by the model for all three cases. The model used linear approximations of the nonlinear equations of CH2M-Hill (1997) as discussed in the Methods section. The linearized estimated cost of the interconnects are provided along with the error in each case, which is generally within 7% of the CH2M-Hill nonlinear cost. Costs are listed by destination area, and contain the sum of all new interconnects supplying that destination area.

	Annual fixed charges, \$millions/year										
Public supply area	Linear approximation			CH2M-Hill			Error				
loss limit model	Case 3,	Case	Case 1,	Case 3,	Case	· Case	Case 3,	Case	Case		
	0%	2, 1%	2%	0%	2,1%	1,2%	0%	2, 1%	1,2%		
OUC Martin	0.771	1.604	1.604	0.845	1.764	1.764	-0.074	-0.160	-0.160		
OUC Highland	0.365			0.232			0.133				
OUC Pine Hills		0.365			0.364			0.001			
OUC Kuhl	1.261	1.263	1.000	1.267	1.247	1.085	-0.006	0.016	-0.085		
OUC Kirkman	0.991	0.751	0.888	1.061	0.699	0.912	-0.070	0.052	-0.024		
OUC Navy		0.124	0.124		0.177	0.177		-0.053	-0.053		
OUC Pershing	0.048	1.097		0.041	1.019		0.007	0.078			
OCPUD E Conway	0.130	0.362	0.362	0.134	0.318	0.318	-0.004	0.044	0.044		
OCPUD E Econ	1.120	0.405	0.620	1.037	0.360	0.601	0.083	0.045	0.019		
OCPUD E ERWF	1.120	1.004	1.114	1.237	1.004	1.266	-0.117	0.000	-0.152		
Winter Springs	0.578			0.506			0.072		i		
Total	6.384	6.974	5.711	6.361	7.693	6.286	0.023	-0.719	-0.575		

Table 29. East-central interconnect fixed costs

Table 30 provides a well withdrawal summary while Table 31 provides the summary of alternative sources used in each case of the decision model for selected public supply utility demand areas. Table 32 gives totals for alternative water supply strategies selected by the decision model. Twenty public supply utility interconnects were selected to transport water, the bulk of which was comprised of surface water from the St. Johns River near Sanford. Relatively little use of reclaimed water was made in any of the examined cases.

	Well withdrawa	al rates (MC	Total of well withdrawal -						
			projected year 2010 demand						
	Cimulatian Vaca	Desision		a that	(MGD)				
	Simulation Year	Decision model loss limit		Decision					
Demand area	2010	Case 3,	Case 2,	Case 1, 2%	Case 3,	Case 2, 1%	Case 1,		
Altamonte Springs	10.2	7.6	10.2	10.2	-2.6	0	0		
Apopka	21.1	6	6.7	8	-15.1	-14.4	-13.1		
Casselberry	6.3	6.3	6.3	15	0	0	8.7		
Cocoa	27.1	19.6	18	20.6	-7.5	-9.1	-6.5		
Ocoee	5.5	0.5	0.5	1.8	-5	-5	-3.7		
OCS Cypress	6.5	11.2	11.5	11.5	4.7	5	5		
OCS Orangewood	6.5	1.8	1.5	1.5	-4.7	-5	-5		
OCE Conway	7.7	4	2.9	2.9	-3.7	-4.8	-4.8		
OCE Econ	8	0.4			-7.6	-8	-8		
OCE ERWF	20.25			0.2	-20.25	-20.25	-20.05		
OCW WRWF	20		25.2	27.7	-20	5.2	7.7		
Oviedo	9.6	5.7	4.5	5.7	-3.9	-5.1	-3.9		
Reedy Creek	29	44.2	35	40	15.2	6	11		
Sanford	7.5	6.5	5.9	6.6	-1	-1.6	-0.9		
Sanlando	10.75	11.3	10.7	10.7	0.55	-0.05	-0.05		
Seminole Cty	18.6	5	11.3	5.8	-13.6	-7.3	-12.8		
Winter Park	15.3	16	21.7	14.4	0.7	6.4	-0.9		
Winter Springs	6	4	2.5	6	-2	-3.5	o		
OUC::					0	0	0		
Martin	20.2				-20.2	-20.2	-20.2		
Orange	7.2	2.2	2.2	2.2	-5	-5	-5		
Pershing	7			1	-7	-7	-7		
Conway	9.2	8.5	4.4	6.2	-0.7	-4.8	-3		
Highland	8				-8	-8	-8		
Kirkman	11				-11	-11	-11		
Kuhl	11.3	5	5	5	-6.3	-6.3	-6.3		
Navy	6.4	6.4	6.4	3.6	0	0	-2.8		
Primrose	7.1	5	4.7	4.7	-2.1	-2.4	-2.4		
Pine Hills	19.6				-19.6	-19.6	-19.6		
Sky Lake	15.3	15.3	15.3	15.3	. 0	0	0		

Table 30.	Well with	drawal sumn	nary for se	lected areas
-----------	-----------	-------------	-------------	--------------

	Sum of well withdrawal - 2010 demand (MGD)		Interconnect flux (MGD)			Surface Water Use (MGD)			Sum of inflow -outflow (MGD)			
Demand area	Case 3, 0%	Case 2, 1%	Case 1, 2%	Case 3, 0%	Case 2, 1%	Case 1, 2%	Case 3, 0%	Case 2, 1%	Case 1, 2%	Case 3, 0%	Case 2, 1%	Case 1, 2%
Altamonte Springs	-2.6			-7.59			10.2			0.01		
Арорка	-15.1	-14.4	-13.1	-5	-5	-5	20.2	19.5	18.2	0.1	0.1	0.1
Casselberry			8.7			-15			6.3			
Cocoa	-7.5	-9.1	-6.5	-15.25			22.75	9	6.5		-0.1	
OCE Conway	-3.7	-4.8	-4.8	3.7	4.7	4.7	<b>a</b>				-0.1	-0.1
OCE Econ	-7.6	-8	-8	7.6	8	8						
OCE ERWF	-20.25	-20.25	-20.05	20.25	20.25	20.05						
Ocoee	-5	-5	-3.7	5	5	3.6				ан. С		-0.1
OCS Cypress	4.7	5	5	-4.7	-5	-5						
OCS Orangewood	-4.7	-5	-5	4.7	5	5						
OCW WRWF	-20	5.2	7.7		-25.2	-27.3	20	20	19.6			
OUC Pine Hills.	-19.6	-19.6	-19.6				19.6	19.6	19.6			
OUC Primrose	-2.1	-2.4	-2.4	-5	-4.7	-4.7	7.1	7.1	7.1			
OUC Conway	-0.7	-4.8	-3	0.7	4.8	3						
OUC Highland	-8	-8	-8				8	8	8			
OUC Kirkman	-11	-11	-11	11	11	11						
OUC Kuhi	-6.3	-6.3	-6.3	6.3	6.3	6.3						
OUC Martin	-20.2	-20.2	-20.2	20.2	20.2	20.2						
OUC Navy			-2.8	-6.4	-6.4	-3.6	6.4	6.4	6.4			
OUC Orange	-5	-5	-5	5	5	·5				•		
OUC Pershing	-7	-7	-7	7	7	7						
Oviedo	-3.9	-5.1	-3.9	4	-4.5	4		9.6		0.1		0.1
Reedy Creek	15.2	6	11	-15.2	-6	-11						
Sanford	-1	-1.6	-0.9	-6	-5	-5	7.1	6.6	5.9	0.1		
Sanlando	0.55	-0.05	-0.05	-11.3			10.75			1		-0.05
Seminole Cty	-13.6	-7.3	-12.8	-5	-11.3	-3.9	18.6	18.6	16.7			
Winter Park	0.7	6.4	-0.9	-16	-21.7	-14.4	15.3	15.3	15.3	l		
Winter Springs	-2	-3.5		2.1	-2.5			6.1		0.1	0.1	

Table 31. East-central alternative water supply strategies for selected demand areas
loss limit	Case 3, 0%	Case 2, 1% MGD	Case 1, 2%
Surface water	187	166	134
Reclaimed Water	5		
Total alternative use	192	166	134
Total projected year 2010 demand	567	567	567
Number of new interconnects used	9	9	7
Number of existing interconnects used	11	11	13
% of 2010 demand met by alternatives to groundwater	34%	29%	24%

 Table 32. East-central total alternative water supply strategy

Table 33 provides the fraction of simulated year 1988 spring discharge attained for each loss limit case. The aquifer response was verified to be linear in the deficit model cases discussed previously.

Table 33. East-central spring discharges and fractions of simulated 1988 discharge

	Simulation Model Spring Discharges, cfs				Fraction disc	of year 198 harge attair	8 spring ned
	Decision	Model Loss	; Limit		Decisio	n Model Los	ss Limit
Spring	Case 3, 0%	Case 2, 1%	Case 1, 2%	1988	Case 3, 0%	Case 2, 1%	Case 1, 2%
Messant	12.60	12.55	12.48	12.48	1.01	1.01	1.00
Seminole	26.63	26.40	26.07	27.37	0.97	0.96	0.95
Rock	53.61	52.85	51.31	53.73	1.00	0.98	0.95
Wekiva	70.01	69.08	68.37	70.02	1.00	0.99	0.98
Miami	4.57	4.51	4.45	4.56	1.00	0.99	0.98
Starbuck	14.36	13.99	13.66	14.30	1.00	0.98	0.95
Palm	6.19	6.03	5.89	6.18	1.00	0.97	0.95
Sanlando	16.12	15.66	15.26	16.17	1.00	0.97	0.94
Camp La No Che	0.32	0.32	0.32	0.34	0.94	0.95	0.94
Blue	106.39	106.86	106.58	109.92	0.97	0.97	0.97
Gemini	7.45	7.47	7.42	7.67	0.97	0.97	0.97
Island	7.48	7.47	7.43	6.78	1.10	1.10	1.10
Witherington	3.78	3.71	3.65	3.78	1.00	0.98	0.96
Lake jessup	0.75	0.75	0.74	0.71	1.06	1.06	1.05
Clifton	1.52	1.51	1.50	1.40	1.08	1.08	1.07
Apopka	49.96	48.51	46.66	53.68	0.93	0.90	0.87
Sulphur	0.96	0.96	0.94	0.97	0.99	0.99	0.97

Finally, a display of the total annual costs as a function of environmental costs is provided in Figure 37 below. These costs are compared to an estimate of the projected year 2010 nonoptimized total annual cost. The general trend of costs increasing as environmental losses decrease is evident.



Figure 37. Total annual cost as a function of environmental constraints

### EAST-CENTRAL SUMMARY

Several general trends were evident. The decision models made extensive use of surface water as an alternative source in all examined cases. Total surface water use was 134, 166, and 187 MGD for cases with environmental loss limits of 2%, 1%, and 0% at areas with high or moderate potential for vegetative harm, respectively. Most surface water use was at the Apopka, Deltona, OUC, and Orange County WRWF public supply demand areas.

Reclaimed water for agricultural use was selected by only those citrus demand areas near Lake Apopka. This reclaimed use is due to the demand areas' proximity to Apopka Spring, which has displayed high variability in its flow measurements, ranging from a low of 28.4 cfs to a high of 70.4 cfs (Rao and Clapp, 1995). Decisions regarding model results in the vicinity of Apopka Spring should not overlook this uncertainty.

The east-central model also made considerable use of interconnects. Generally, the receivers of large quantities of surface water passed much of it on to demand areas in the central and eastern portions of the simulation model area. Existing (11-13 selected) and potential (7-9 selected) interconnects were selected, with flow rates of up to 5 MGD in existing interconnects. Potential interconnects generally supported higher flow rates. The model may not capture sufficient detail with regard to interconnects in all areas. OUC, in particular, deserves additional attention as to potential interconnects, as a decision model with more detail at OUC may help to ascertain the lowest cost interconnect options. The precise scheme of existing interconnects within OUC, to OUC, and from OUC was not available for this study.

The alternative sources selected by each case are strongly dependent upon environmental constraints. The east-central model uses a 15% allowable decrease in Upper Floridan head at control points with low potential for vegetative harm, and a 15% allowable reduction in spring discharge. The model required that a 2%,1% or 0% loss limit be specified at Upper Floridan control points having high or moderate potential for vegetative harm. Environmental loss constraints could be revised to reflect potential for vegetative harm throughout the entire active portion of the eastcentral study area. Though the vegetative harm analysis was available for the portion of the east-central region within SJRWMD boundaries, better results would be obtained with a complete analysis throughout the entire active portion of the region. In addition, constraints to preclude saltwater intrusion should be incorporated in future decision model efforts and may significantly alter the resulting optimal solution.

Agricultural demands are not projected to increase from 1988. In addition, agricultural use comprises only a small fraction of the total projected water demand in the study areas. For these reasons, agricultural demands do not play a large part in the decision model. Thus, future modeling efforts may benefit from 1)eliminating the optimization of agricultural well withdrawals and 2)eliminating alternative sources for agricultural use such as reclaimed water. This would allow for a corresponding increase in detail and available alternatives at public supply demand areas.

The results presented in this report provide a general overview of how the models work in their specific areas. A number of alternative sources remain to be incorporated including lower quality sources, artificial recharge, and aquifer mitigation/avoidance of impacts.

### VOLUSIA

The decision model formulation was applied to the Volusia region for three cases using 15% loss limits on spring discharges and surficial aquifer head at control points with low potential for vegetative harm, and the following loss limits at control points with moderate or high potential for vegetative harm: case 1-- 2% losses, case 2-- 1% losses, and case 3-- 0% losses. These cases were investigated based on the previously discussed deficit model results.

The results presented here are for illustrative purposes only and derived from estimated annualized costs; they are not intended to reflect final or proposed water supply alternatives. Tables 34-49 list Volusia results. Surficial aquifer drawdown plots are provided in Figures 38, 41, and 44 with improvement from the nonoptimized projected year 2010 condition shown in Figures 39, 42, and 45 for cases 1-3, respectively. Alternative sources selected by each case are provided in Figures 40,43, and 46 with colored lines representing surface water use and transport, public supply utility interconnects, and reclaimed water use for public and agricultural areas. Red lines denote decision model selections in all three examined cases, violet lines denote selections in two of the three examined cases, and blue lines represent selections in one case only.

Table 34 provides Volusia decision model statistics. All three cases were given the same relative gap, a measure of the difference between the current solution and the best integer solution possible. The final solution is the current solution at the time when the resolution limit is exceeded. As the relative gap decreases, the quality of the solution increases. Choices of relative gap (error) and resource limits (maximum CPU time) were dictated by hardware considerations, as in the east-central model, and better solutions could be obtained with more RAM than the currently available 256 MB. The total annual cost in the final solution increases as the environmental loss limits decrease. The decision model as written has 8,384 rows (constraints), 8,257 columns (variables), and 401,980 nonzeroes, which the CPLEX presolve routine reduces to 450 rows, 985 columns, and 96,003 nonzeroes.

	Case 3	Case 2	Case 1
loss limit in high harm area	0%	1%	2%
CPU time (hours)	0.4	0.4	0.2
Final solution (\$)	46,140,000	29,740,000	20,490,000
Error	0.009	0.006	0.002

Table 34. Volusia decision model statistics



Volusia projected year 2010 decision model optimized surficial drawdown allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm



Decision Modeling for Alternative Water Supply Strategies



case, allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm

General Water Bodies

Springs

4-5

5-6

6-7

7-8

Decision Modeling for Alternative Water Supply Strategies



Figure 40. Volusia Alternative Sources, decision model allowing 2% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm.



optimized surficial drawdown allowing 1% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm



Decision Modeling for Alternative Water Supply Strategies



7-8



Figure 43. Volusia alternative sources, decision model allowing 1% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm

131







Figure 46. Volusia alternative sources, decision model allowing 0% head loss at control points with high or moderate potential for vegetative harm and 15% discharge loss at springs and head loss at control points with low potential for vegetative harm

The linearity of the surficial aquifer response was demonstrated with the deficit model and is not repeated here. Optimized well withdrawal rates are given in Table A14 of the appendix for public supply utility wells, and Table A11 for agricultural wells.

Table 35 below provides reuse results for public areas. Very little use of reclaimed water was selected in any case. Edgewater, Ormond Beach Hudson, and New Smyrna Glencoe received reclaimed water, along with National Gardens. The Case 1 (2% loss) solution made no use of reclaimed water for public demand areas.

			MGD	
Reclaimed site	Public demand area	Case 3	Case 2	Case 1
Daytona Beach Regional	Holly Hill West	0.345		
Daytona Beach Bethune	Daytona Beach West	0.068		
Daytona Beach West	Daytona Beach East			0.083
New Smyrna Beach	New Smyma Glencoe	0.769		
Ormond Beach Br. Tr.	Ormond Beach Sr 40	0.231	·.	
Ormond Beach O	Ormond Beach Sr 40	0.058		
Ormond Beach O	Ormond Beach Division	0.664		
V. Cty Deltona North	Orange City C.	0.097		•
Tymber Creek	Ormond Beach Hudson	0.006		
Edgewater	Edgewater	1.052		
Edgewater	New Smyrna Glencoe		0.384	
Indian River Utilities	Edgewater	0.112	0	
Ormond Beach Br. Tr.	Tymber Creek	0.045	0.045	
Ormond Beach Br. Tr.	The Trails	0.023	0.018	
Tymber Creek	The Trails	0.121	0.127	
Sugar Mill	National Gardens	0.097	0.097	0.097
Total		3.688	0.671	0.18

Table 35. Volusia reuse to public demand areas

Table 36 below displays reuse for agricultural need areas. In the three cases, very little use of reclaimed water was selected. Only three fern growing areas, all near DeLand, used reclaimed water. The decision model formulation did not use binary variables for reclaimed water use to agricultural and public areas. The main consequence of this formulation is that no minimum use rate is specified and thus selected quantities may be small.

		Case 3	Case 2	Case 1
			MGD	
DeLand Regional	Fern 11	0.08	0.08	0.08
DeLand Regional	Fern 12	0.19	0.19	0.19
DeLand Regional	Fern 13	0.36	0.36	0.36
Total		0.633	0.633	0.633

Table 36. Volusia reuse to agricultural demand areas

New wells selected by the decision model are provided in Table 37. All three examined cases select new wells at Deltona and Ormond Beach Rima. Cases 1 and 2 also select new wells at Port Orange West.

Table 37. Volusia new wells

Public demand area	Case 3	Case2	Case1
(public supply utility well)		MGD	
Deitona (70)		1.5	1.5
Deltona (72)	1.5	1.5	1.5
Deltona (73)	1.5	1.5	1.5
Deltona (74)	2.25	1.9	1.84
Port Orange West (41)		1	1
Port Orange West (42)		0.4	1
Port Orange West (43)		1	1
Ormond Beach Rima (133)	0.2	0.25	0.35
Ormond Beach Rima (134)	0.3	0.21	0.11
Total	5.75	9.26	9.8

Table 38 below shows that all three models made extensive use of surface water at both available sites. The amount of surface water used increases by 111% from case 1 to case 2, and by an additional 88% from case 2 to case 3. The Sanford site is used heavily in all three cases.

Table 38. Volusia total surface water i
-----------------------------------------

	Case 3	Case 2	Case 1
		MGD	
Sanford	17.25	13.7	9.6
DeLand	28.5	10.6	1.9
Total	45.75	24.31	11.52

The use rates of surface water to public demand areas are provided in Table 39 below. The surface water users with highest use rates are Deltona, Port Orange West, Daytona Beach West, and DeLand. All three cases used surface water to satisfy a large part of Deltona's projected year 2010 demand.

			Case 3	Case 2	Case 1
Surface source		Public demand destination		MGD	
		area			
DeLand	to	DeLand Water U.	6. <del>9</del>	0.3	1.9
DeLand	to	Port Orange West	8.2	0	0
DeLand	to	Daytona Beach West	13.3	10.4	0
Sanford	to	Deltona	13.6	11.3	6.3
Sanford	to	Orange City	3.7	2.4	3.3
Total	<u> </u>		45.7	24.3	11.5

Table 39. Volusia use rate of surface water to public demand areas

Annual fixed costs of surface water sources and surface water transport are provided in Tables 40 and 41 below. Deltona and Port Orange West, and Daytona Beach West have large fixed charges associated with surface water use. Fixed transport costs are not large compared to surface water fixed costs. However, the model formulation requires a separate physical pipeline for each public demand area supplied by surface water which results in an inefficient use of pipe. Future efforts will include a more efficient surface water transportation network which will consist of a main pipeline with branches to the appropriate public supply demand areas. This type of distribution system is likely incur lower fixed and unit charges, though an equitable distribution of costs may be difficult to define.

Table 40.	Volusia	fixed	costs	of surface	water sources
		~~~~~~~		01 0 million 0 0	

:	_	· · · · · · · · · · · · · · · · · · ·	Case 3	Case 2	Case 1
Surface source		Public demand destination		\$/year	
		area		-	
DeLand	to	DeLand Water U.	3,831,400	145,900	1,034,900
DeLand	to	Port Orange West	4,547,100		
DeLand	to	Daytona Beach West	2,341,500	5,738,100	
Sanford	to	Deltona	7,528,800	6,227,200	3,485,000
Sanford	to	Orange City	2,021,200	1,335,300	1,837,700
Total			20,270,000	13,446,500	6,357,600

	Table 41.	Volusia fixed	costs of surface	water transport
--	-----------	---------------	------------------	-----------------

			Case 3	Case 2	Case 1	
Surface source		Public demand destination		\$/year		
		area				
DeLand	to	DeLand Water U.	118,400	50,000	67,000	
DeLand	to	Port Orange West	1,612,800			
DeLand	to	Daytona Beach West	2,314,500	1,919,300		
Sanford	to	Deltona	1,514,100	1,301,000	852,000	
Sanford	to	Orange City	262,400	223,000	252,000	
Total			5,822,200	3,493,300	1,171,000	

The following set of tables display the interconnects selected by each of the three Cases. Tables 42 and 43 display individual interconnects sorted by source and destination area. Table 44 gives the total inflows, total outflows, and the net flux of inflows minus outflows for each public area. It must be noted that the interconnect results may be examined on an individual basis, but their selection by the decision model becomes more apparent when surface water use, well use, and environmental restrictions are also considered. Some existing emergency interconnects that were selected by the decision model are noted (LAW Engineering, 1997).

Table 42 displays individual interconnects sorted by the destination area. The largest individual interconnect flows are observed at Daytona Beach and Port Orange, and Deltona. Table 43 displays individual interconnects listed by the source area. Table 44 provides the net flux (sum of inflows sum of outflows) for all demand areas.

· · · · · · · · · · · · · · · · · · ·	existing or proposed pipeline		Case 3	Case 2	Case 1	distance
source	F.F.C	destination		MGD		miles
Daytona Beach West	e	Daytona Beach East	9.21	5.76	1.14	3.60
Port Orange West	р	Daytona Beach West			3.30	1.71
Orange City	р	Deltona	2.70		3.65	3.60
Daytona Beach East	р	Holly Hill West	2.04	2.61		2.27
New Smyrna Samsula	р	New Smyrna SR 44		2.64		1.71
Edgewater	e	New Smyrna Glencoe	2.31	2.57	2.57	1.71
DeLand Water Utilities	р	New Smyrna Samsula		3.05		14.02
New Smyrna SR 44	р	New Smyrna Samsula	1.22			1.71
Port Orange West	р	New Smyrna SR 44	3.86		1.83	5.30
Holly Hill West	P	Ormond Beach Division		1.23		3.41
Holly Hill West	p	Ormond Beach Hudson	1.00			4.36
Ormond Beach Division	р	Ormond Beach Hudson	1.00	1.85	1.85	5.30
Ormond Beach SR 40	р	Ormond Beach Hudson	1.00	1.16	1.16	3.41
Ormond Beach Division	p	Ormond Beach SR 40	1.87	2.31	2.31	2.65
Port Orange West	е	Port Orange East	1.00			7.01
Daytona Beach West	р	Port Orange West		2.10		1.71
DeLand Water Utilities	p	Port Orange West			6.92	11.36
		· · · · · · · · · · · · · · · · · · ·	27.21	25.38	24.714	

Table 42. Volusia interconnects sorted by destination

	existing or proposed pipeline		Case 3	Case 2	Case 1	distance
source	••	destination		MGD		miles
Daytona Beach East	p	Holly Hill West	2.04	2.61		2.27
Daytona Beach West	е	Daytona Beach East	9.21	5.76	1.14	3.60
Daytona Beach West	р	Port Orange West		2.10		1.71
DeLand Water Utilities	p	New Smyrna Samsula		3.05		14.02
DeLand Water Utilities	р	Port Orange West			6.92	11.36
Edgewater	е	New Smyrna Glencoe	2.31	2.57	2.57	1.71
Holly Hill West	P	Ormond Beach Division		1.23		3.41
Holly Hill West	р	Ormond Beach Hudson	1.00			4.36
New Smyrna Samsula	p	New Smyrna SR 44		2.64		1.71
New Smyrna SR 44	p	New Smyrna Samsula	1.22			1.71
Orange City	р	Deltona	2.70		3.65	3.60
Ormond Beach Division	р	Ormond Beach Hudson	1.00	1.85	1.85	5.30
Ormond Beach Division	р	Ormond Beach SR 40	1.87	2.31	2.31	2.65
Ormond Beach SR 40	р	Ormond Beach Hudson	1.00	1.16	1.16	3.41
Port Orange West	р	Daytona Beach West			3.30	1.71
Port Orange West	р	New Smyrna SR 44	3.86		1.83	5.30
Port Orange West	e	Port Orange East	1.00			7.01
į,			27.21	25.38	24.714	

Table 43. Volusia interconnects sorted by source

Table 44. Volusia interconnect summary for public areas

1	sum of out	sum of outflow from		sum of inflov	v to		net flux (in	flow -out	low)
	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1
Public supply utility area	MGD			MGD			MGD		
Daytona Beach East	2.035	2.614		9.208	5.859	1.136	7.173	3.245	1.136
Daytona Beach West	9.208	7.961	1.136			3.295	-9.208	-7.961	2.159
DeLand WU		3.051	6.919				0	-3.051	-6.919
Edgewater	2.307	2.569	2.569				-2.307	-2.569	-2.569
Holly Hill West	1	1.234		2.035	2.614		1.035	1.38	
New Smyrna Glencoe				2.307	2.569	2.569	2.307	2.569	2.569
New Smyrna SR44	1.22			3.857	2.637	1.827	2.637	2.637	1.827
Orange City	2.701		3.650				-2.701		-3.65
Ormond Beach Division	2.867	4.162	4.162		1.234		-2.867	-2.928	-4.162
Ormond Beach SR40	1	1.156	1.156	1.867	2.312	2.312	0.867	1.156	1.156
Port Orange East				1			1		
Port Orange West	4.857		5.122		2.102	6.919	-4.857	2.102	1.797
Deltona				2.7		3.65	2.7		3.65
New Smyma Samsula		2.637		1.22	3.051		1.22	0.414	
Ormond Beach Hudson				3	3.006	3.006	3	3.006	3.006
Total	27.195	25.384	24.714	27.194	25.384	24.714	-0.001	0.0	0.0

Table 45 displays the annualized fixed charges for interconnects as calculated by the decision model for all three cases. The model used linear approximations of the nonlinear equations provided by CH2M Hill (1997)

as discussed in the Methods section. The actual cost of the interconnects are provided with the error associated with each case. The sum of the errors associated with each approximation is within 19% of the sum of true cost for all interconnects. The errors associated with the approximations for Volusia are slightly larger than in the east-central model results due to the extended range of possible flow rates in the Volusia model, i.e.; Volusia interconnect use rates may be much smaller than the minimums specified in the east-central model.

	cost, linear a	pproximation	, \$/year	Actual cost (CH2M Hill),	\$/year		Error,	\$/year
Destination area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1
New Smyrna SR44	269,000	74,400	204,400	331,300	65,800	238,400	-62,300	8,600	-34,000
Ormond Beach Division		60,000			111,400			-51,400	
Ormond Beach Hudson	413,800	264,300	264,300	422,300	348,000	347,000	-8,500	-83,700	-82,700
Port Orange West		68,900	1,428,600		59,700	949,000		9,200	479,600
Deltona	232,200		262,400	166,700		190,000	65,500		72,400
Holly Hill West	68,200	74,200		83,900	93,400		-15,700	-19,200	
New Smyrna Samsula	59,900	1,011,900		47,300	824,100		12,600	187,800	
Ormond Beach SR40	66,500	71,100	71,700	97,800	107,100	107,100	-31,300	-36,000	-35,400
Total (\$/year)	1,109,600	1,624,800	2,231,400	1,149,300	1,609,500	1,831,500	-39,700	15,300	399,900

Table 45. Volusia interconnect fixed c
--

Table 46 below provides a summary of well withdrawal for selected public supply utility demand areas. This table provides some insight into why surface water or interconnects are selected by the model as alternatives to wells for supplying a demand area's projected year 2010 water needs. For example, Deltona has a projected water demand of over 24.9 MGD; while case 1 and case 2 supply approximately half of this amount from wells, the remainder comes from surface water and interconnects. Port Orange West also utilizes less water from its wells in all three cases than in the nonoptimized case, but receives the difference from surface water. The sum of Volusia Four Townes, Orange City, and Holly Hill West wells, which are located in areas of low potential for vegetative harm, all withdraw greater quantities of water in decision model cases 1-3 than in the nonoptimized case.

	sum of we withdrawa	aii al ((mgd)					sum of well year 20	withdrawal -; 10 demand (i	projected ngd)
projected year 2010 demand (mgd)	Case 3	Case 2	Case 1	Public demand area	model ID	Potential for vegetative harm	Case 3	Case 2	Case 1
24.9	8.6	13.64	14.96	Deltona	DEL	LOW TO MODERATE	16.3	11.26	9.94
13.33	9.14	10.92	11.17	Daytona Beach West	DBW	MODERATE	4.19	2.41	2.16
8.57	5.22	6.47	6.78	Port Orange West	POW	MODERATE	3.35	2.1	1.79
7.17.		3.93	5.95	Daytona Beach East	DBE	MODERATE	7.17	3.24	1.22
6.92		9.71	11.97	DeLand WU	DWU	LOW	6.92	-2.79	-5.05
4.66	5.8	7.23	7.23	Edgewater	EDG	LOW	-1.14	-2.57	-2.57
3.65	2.7	1.24	3.98	Orange City	OCY	LOW	0.95	2.41	-0.33
3.08		0.12	0.51	New Smyrna Glencoe	NSG	LOW	3.08	2.96	2.57
3.01				Ormond Beach Hudson	OBH	LOW	3.01	3.01	3.01
2.77	4.98	5.70	6. 9 4	Ormond Beach Division	OBD	LOW	-2.21	-2.93	-4.17
1.16				Ormond Beach SR 40	OB4	LOW	1.16	1.16	1.16
2.64	1.42	2.22	2.64	New Smyrna Samsula	NSS	LOW	1.22	0.42	0
1.38			1.38	Holly Hill West	HHW	LOW	1.38	1.38	0
0.86		0.86	0.86	Port Orange East	POE	LOW	0.86	0	0
2.64			0.81	New Smyrna SR 44	NS4	LOW	2.64	2.64	1.83

Table 46. Volusia well withdrawal summary for selected public areas

Table 47 below displays the alternative supply strategies for selected public demand areas. The rightmost columns should total to zero in all three cases unless reclaimed water is used.

				· · · · · ·		-0							
	projected year 2 well with	2010 demand drawal (MGD	-sum of)	sum of i (inflow	sum of interconnect flux (inflow -outflow, MGD)			sum of surface water inflow (MGD)			total inflow -2010 demand (MGD)		
Public demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	
Deltona	16.3	11.26	9.93	2.7	0	3.65	13.6	11.3	6.3	0.00	-0.04	-0.01	
Daytona Beach West	4.19	2.41	2.16	-9.21	-7.96	2.16	13.3	10.4	0	0.10	-0.03	0.00	
Port Orange West	3.35	2.1	1.79	-4.86	2.1	1.8	8.2	0	0	0.01	0.00	-0.01	
Daytona Beach East	7.17	3.24	1.22	7.17	3.25	1.14				0.00	-0.01	0.08	
DeLand WU	6.92	-2.79	-5.05	0	-3.05	-6.92	6.9	0.3	1.9	0.02	-0.04	-0.03	
Edgewater	-1.14	-2.57	-2.57	-2.31	-2.57	-2.57				1.17	0.00	0.00	
Orange City	0.95	2.41	-0.33	-2.7	0	-3.65	3.7	2.4	3.3	-0.05	0.01	0.02	
New Smyrna Glencoe	3.08	2.96	2.57	2.31	2.57	2.57				0.77	0.39	0.00	
Ormond Beach Hudson	3.01	3.01	3.01	3	3	3				0.01	0.01	0.01	
Ormond Beach Division	-2.21	-2.93	-4.17	-2.87	-2.93	-4.16				0.66	0.00	-0.01	
Ormond Beach SR 40	1.16	1.16	1.16	0.87	1.16	1.16				0.29	0.00	0.00	
New Smyrna Samsula	1.22	0.42	0	1.22	0.41	0				0.00	0.01	0.00	
Holly Hill West	1.38	1.38	0	1.04	1.38	0				0.34	0.00	0.00	
Port Orange East	0.86	. 0	0	1	0	0				-0.14	0.00	0.00	
New Smyrna SR 44	2.64	2.64	1.83	2.64	2.64	1.83				0.00	0.00	0.00	

Table 47. Volusia alternative supply strategies for selected public areas

Table 48 below provides the summary of alternative water supply strategies used in each case, excluding new well development. Surface water and interconnects were used extensively in every case. Relatively little reclaimed water was used. The sum of surface water and reclaimed water use is approximately equivalent to the deficits reported in the previous section (19%, 26%, and 35% of projected year 2010 demand in deficit for cases 1-3, respectively).

Alternative	Case 3	Case 2	Case 1
Surface water (mgd)	45.7	24.3	11.5
Reclaimed water for femeries (mgd)	0.6	0.6	0.6
Reclaimed water for public irrigation (mgd)	3.7	0.7 .	0.2
Total (mgd)	50	25.6	12.3
% of 2010 demand satisfied by alternatives to groundwater	41.3%	21.2%	10.2%
Existing interconnects	3	2	· 2
Potential interconnects	8	8	7

Table 48. Volusia total alternative water strategies

Spring responses are provided in Table 49 below, and previously verified to be linear in the Volusia deficit model.

	Ponce De leon	Blue	Gemini
Conductance (ft2/second)	6.94	104.17	0.74
Elevation (ft)	1	1	1
Simulation Model	cfs	5	
1988 discharge	27.01	147.92	8.16
2010 nonoptimized discharge	26.53	132.29	7.68
Case 1 discharge	26.11	147.92	7.90
Case 2 discharge	25.49	140.63	7.35
Case 3 discharge	25.14	135.42	7.13
	Fraction of simulated	d year 1988 discha	irge
2010 nonoptimized	0.98	0.89	0.94
Case 1	0.97	1.00	0.97
Case 2	0.94	0.95	0.90
Case 3	0.93	0.92	0.87

Table 49. Volusia simulation model spring discharges

Finally, a display of the total annual costs as a function of environmental constraints is provided in Figure 47 below. These costs are compared to an estimate of the nonoptimzed projected year 2010 total annual cost. The case 1 solution has a total annual cost of \$6.8 million/year more the nonoptimized case. The case 2 solution costs and additional \$9.2 million/year over the case 1 solution. Case 3 costs an additional \$16.4 million/year over case 2. The nonoptimized projected year 2010 solution is relatively inexpensive because many wells which did not exist in 1988 have since been drilled, and there are few wells and treatment plants yet to be constructed.

The trend of costs increasing as environmental restrictions increase is evident.

VOLUSIA SUMMARY

Preliminary results show that the primary alternative source in Volusia County could be surface water from the St. Johns River near Sanford and DeLand with some use of interconnects and reclaimed water.

Total surface water use was 12, 24, and 46 MGD for the examined cases having 2%, 1%, and 0% surficial head loss limits from 1988 at areas with high or moderate potential for vegetative harm. Very little reclaimed water was used, either for fern growing agricultural areas or public supply demand area irrigation. From 2-3 new interconnects were selected, while 7-8 existing interconnects were selected in the three examined cases.

The public supply demand areas making the greatest use of surface water were Daytona Beach West, Port Orange West, Deltona, DeLand, and Orange City. Generally, the large receivers of surface water passed on this water to demand areas in the central portions of the simulation model area which has a high potential for vegetative harm, such as the Port Orange West and Daytona Beach West demand areas. These results would be expected to change considerably when further analysis regarding potential for vegetative harm and saltwater intrusion are considered.

As with the east-central area model, results were highly sensitive to environmental constraints. It is notable that the optimum alternative water supply strategies for Deltona were similar in both the east-central and Volusia applications.

CONCLUSIONS

The decision models provide insight as to the potential tradeoffs associated with the use of alternative sources, though results are strongly dependent on environmental restrictions and may change considerably. Using the mixed-integer models developed herein, a sensitivity analysis may be performed by making slight changes in allowable limits for environmental impact and/or the specification of high, moderate, or low potential for vegetative harm, and comparing the overall solutions. In changing the model to include a new objective function of minimizing both costs and drawdowns, one can develop a chart of minimal cost vs. minimal environmental impact solutions. With the data from several runs of varying environmental restrictions or cost criteria, water resources managers may assess the impacts and tradeoffs associated with competing schemes in order to evaluate which tradeoffs are acceptable.

The University will continue incorporating consultant and SJRWMD data into the decision model as it is made available. Alternative sources including lower quality sources, artificial recharge, and avoidance of impacts/mitigation have yet to be incorporated.

RECOMMENDATIONS

The specification of a particular control point's potential for vegetative harm is critical. Specifying high or low sensitivity at a particular point may result in a different optimal solution, as the decision model seeks alternative sources rather than depressing water levels at a highly sensitive control point. A number of different runs with varying environmental sensitivities should be pursued before making definitive statements about alternative source use in the study areas.

A decision model run without well capacities should be performed to determine the best current and proposed well sites. A number of alternative sources remain to be incorporated including lower quality sources, artificial recharge, and aquifer mitigation/avoidance of impacts. The use of alternative sources would decrease if well capacities were increased at certain locations.

Constraints precluding saltwater intrusion should be incorporated and are certain to yield different results.

Additional new well development should be included in future models as new wells may provide a considerably lower-cost option to the alternatives heretofore considered.

REFERENCES

Aguado, E., and Remson, I. *Ground-Water Hydraulics in Aquifer Management*, Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, **100**:HY1, pp. 103-108, 1974

Aguado, E., and Remson, I., Ground Water Management with Fixed Charges, ASCE Journal of the Water Resources Planning and Management Division, 375-382, July 1980

Aguado, E., Sitar, N., and Remson, I., Sensitivity Analysis in Aquifer Studies, Journal of Geophysical Research, 13(4) 733-737, 1977

Ahlfeld, D. P., Mulvey, J.M., Pinder, G.F., and Wood, E.F., Contaminated Groundwater Remediation Design Using Simulation, Optimization, and Sensitivity Theory 1: Model Development, *Water Resources Research*, 24(3), 431-444, 1988

Ahlfeld, D., Mulvey, J., "Optimal Groundwater Quality Remediation: An Overview," in Lev, B., Bloom, A., Gleit, S., Murphy, F., and Shoemaker, C. (EDS.). 1987 Strategic Planning in Energy and Natural Resources. North-Holland, New York

Ahlfeld, D., Mulvey, J., and Pinder, G., Designing Optimal Strategies for Contaminated Groundwater Remediation, *Advances in Water Resources* 9, 77-84, June 1986

Alley, W. M., Aguado, E., and Remson, I., Aquifer Management Under Transient and Steady-State Conditions, *Water Resources Research*, 12(5), 963-973, 1976

Bleed, A., Nachtnebel, H., Bogardi, I., and Supulla, R., Decision Making on the Daanube and the Platte, *Water Resources Bulletin*, 26(3) 479-487, 1990

Boniol, D., William, M., and Munch, D., Mapping Recharge to the Floridan Aquifer Using a Geographic Information System, SJRWMD Technical Publication SJ93-5

Brooke, A., Kendrick, D., and Meeraus, A., *GAMS: Release 2.24, A User's Guide*, The Scientific Press, Danvers, Massachusetts, 1992

147

Burger, P., Holland, M., Hatfield, K., Hearn, D., and Graham, W., Water Resource Allocation and Quality Optimization Modeling, St. Johns River Water Management District, Special Publication SJ96-SP5, Palatka, Florida, 1996

CH2M-Hill, Groundwater Flow and Solute Transport Modeling in Support of the Consumptive Use Permit Application for the City of Cocoa. Unpublished Report

CH2M-Hill, Surface Water: Planning-level Cost Estimates, Task B, Development of Surface Water Supply, Alternative Water Supply Strategies in the St. Johns River Water Management District, St. Johns River Water Management District, TM B.1.L, Draft, May 1997

Cplex Optimization Inc., CPLEX, Incline Village, Nevada, 1996

Danzig, G., *Linear Programming and Extensions*, Princeton University Press, Princeton, N.J., 1963

Deininger, R. A. Systems Analysis of Water Supply Systems, Water Resources Bulletin, 6:4, pp 573-579, 1970

Demas, C., and Burger, P., Optimization of Water Resource Allocation for East-central Florida, St. Johns River Water Management District, Student Intern Report, Palatka, Florida, 1995

Demas, C., Burger, P., Hatfield, K., Hearn, D., and Munch, D., *Optimization of Water Resource Allocation in Volusia County, Florida,* Proceedings, XXVII IAHR Congress, American Society of Civil Engineering (ASCE), San Francisco, California, 1997

Demas, C., Burger, P., Hearn, D., Hatfield, K., and Munch, D., Large-scale Simulation/optimization of Water Resource Allocation in East-Central Florida, Proceedings, 2nd International Symposium for Environmental Software Systems (ISESS), Whistler, British Columbia, 1997

Demas, C., Hatfield, K., Hearn, D., Burger, P., and Munch, D., Decision Modeling for Water Resource Management in Volusia County, Florida, Proceedings, Water Resources Management: Preparing for the 21st Century, American Water Works Association (AWWA), Seattle, Washington, 1997 Doughtery, D., and Marryott, R., Optimal Groundwater Management 1. Simulated Annealing, *Water Resources Research*, 27(10), 2493-2508, 1991

Ejaz, M.S., and Peralta, R.C., Maximizing Conjunctive Use of Surface and Ground Water Under Surface Water Quality Constraints, *Advances in Water Resources*, 18(2), 67-74, 1995

Fisher, M.L., An Applications Oriented Guide to Lagrangian Relaxation, Interfaces 15(2), 10-21, 1985

Freeze, R. A., Massmann, J., Smith, L., Sperling, T., and James, B., Hydrological Decision Analysis: 1. A Framework, *Ground Water*, 28(5), 738-766, 1990

Freeze, R. A., Massmann, J., Smith, L., Sperling, T., and James, B., Hydrological Decision Analysis: 2. Applications to Ground-Water Contamination, *Ground Water*, 536-588, 29(4), 1991

GeoTrans, Inc., Wekiva River Basin Groundwater Flow and Solute Transport Modeling Study Phase I: Regional Groundwater Flow Model Development., Unpublished Report. GeoTrans, Inc., Sterling, Virginia

Geraghty & Miller, Inc., Numerical Modeling of Ground-Water Flow and Seawater Intrusion, Volusia County, Florida, St. Johns River Water Management District, Special Publication SJ92-SP6, Palatka, Florida, 1992

Gorelick, S., A Review of Distributed Parameter Groundwater Management Modeling Methods, *Water Resources Research*, 19(2), 305-319, 1983

Hipel, K., Multiple Objective Decision Making in Water Resources, Water Resources Bulletin, 28(1), 3-12 1992

Huang, C., Wellhead Protection Area Deliniation Study, Volumes I and II, SJRWMD In-House Report, 1995

Hupalo, R., Neubauer, C., Keenan, L., Clapp, D., and Lowe, F., Establishment of Minimum Flows and Levels for the Wekiva River System, SJRWMD Technical Publication SJ94-1

HydroGeologic, Inc. Ground-water Flow and Solute Transport Modeling Study for Seminole County, Florida, and Adjoining Regions, St. Johns River Water Management District Special Publication SJ94-SP6, Palatka, Florida, 1994 HydroGeologic, Inc. Ground-water Flow and Solute Transport Modeling Study for Eastern Orange County and Adjoining Regions, St. Johns River Water Management District Special Publication SJ93-SP4, Palatka, Florida, 1992

HydroGeologic, Inc. Regional Ground-Water Flow Modeling for East-Central Florida with Emphasis on Orange and Seminole Counties, St. Johns River Water Management District Special Publication SJ92-SP17, Palatka, Florida, 1992

IBM Corporation, Optimization Subroutine Library, Guide, and Reference, Release 2, 3rd ed., IBM Corp., Kingston, N.Y., 1991

Jackson, J., Morrell, R., (Post, Buckley, Schuh, and Jernigan), and MacIntyre, D., (P.B. Water), *Phase II--Assessment of the Cost of Supplying Reclaimed Water to Areas of High Agricultural Withdrawals*, St. Johns River Water Management District, Draft Report, March 1997

Jammal & Associates, Inc., Ground Water Modeling in Support of the Consumptive Use Permit Application for Orange County's Proposed Southeast Regional Well Field, Unpublished Report, Jammal & Associates, Inc., Winter Park, Florida

Janssen, R., Multiobjective Decision Support for Environmental Management, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992

Karmakar, N., A New Polynomial Algorithm for Linear Programming, Combinatorica, 4, 373-395, 1984.

Kinser, P., and Minno, M., Estimating the Likelikhood of Harm to Native Vegetation from Ground Water Withdrawals, St. Johns River Water Management District, Technical Publication SJ95-8, Palatka, Florida, 1995

LAW Engineering and HSW Engineering, Water Supply and Wastewater Systems Component Cost Information, Investigation of Alternative Water Supply Strategies, Systems Interconnection, St. Johns River Water Management District, Technical Memorandum B.2.b, December 1996

LAW Engineering and HSW Engineering, Evaluation of Interconnection Strategies in Water Resource Caution Areas, Investigation of Alternative Water Supply Strategies, System Interconnection, Technical Memorandum B.1.c, St. Johns River Water Management District, February 1997 LAW Engineering and HSW Engineering, *Investigation of Alternative Water* Supply Strategies, Systems Interconnection, Technical Memorandum B.2.a, St. Johns River Water Management District, August 1996

Loucks, D. P., Developing and Implementing Decision Support Systems: A Critique and a Challenge, *Water Resources Bulletin*, 31(4), 571-582, 1995 Lynn, W., Loan, J., and Chariness, A., Systems Analysis for Planning Wastewater Treatment Plants, *J. Water Pollu. Control Fed.* 34(6), 565-581, 1962

McDonald, M., and Harbaugh, A., A Modular Three-Dimensional Finite-Difference Groundwater Flow Model, *Techniques of Water-Resources Investigations*, Book 6, Chapter A1, U. S. Geological Survey, Denver, Colorado 1988

Murray, L., and Halford, K., Hydrogeologic Conditions and Simulation of Ground-Water Flow in the Greater Orlando Metropolitan Area, East-Central Florida, Water-Resources Investigations Report 96-4181, U. S. Geological Survey, Tallahassee, Florida, 1996

Murtaugh, B., and Sanders, M., MINOS User's Guide, Department of Operations Research, Stanford University, California 1977

Nemhauser, G., Savelsberg, G., and Sigismondi, G., MINTO, A Mixed Integer Optimizer, *Operations Research Letters*, 15(1), 47-58, 1994

Post, Buckley, Shuh, and Jernigan, *Phase II: Replacement of Potable Quality Water for Landscape Irrigation*, Draft Report, St. Johns River Water Management District, February 1997 Report SO 77-9

Rao, D., and Clapp, D., Preliminary Evaluation of the Impacts of Spring Discharge Reductions on the Flows of Receiving Water Bodies and Natural Systems, St. Johns River Water Management District, Special Publication, 1995

Roy, B. Methodologie Multicritere d'Aide a la Decision, *Economica*, Paris, France 1985

Roy, B., Slowinkski, R., and Treichel, W., Multicriteria Programming of Water Supply Systems in Rural Areas, *Water Resources Bulletin*, 28(1), 13-31 1992 Sawyer, C. S., Ahlfeld, D. P., and King, A. J., Groundwater Remediation Design Using a Three-Dimensional Simulation Model and Mixed Integer Programming, *Water Resources Research*, 31(5), 1373-1385, 1995

Taha, H. A., Operations Research: An Introduction, 5th Ed, 245-254, Macmillan, New York, New York, 1992

Tibbals, C., Hydrology of the Floridan Aquifer System in East-Central Florida: U.S. Geological Survey Professional Paper 1403-E, 1990

Tibbals, C., and Frazee, J., Ground Water Hydrology in the Cocoa Wellfield Area, U.S. Geological Survey Open-File Report 75-676, 1976

Vergara, B. Water Supply Needs and Sources Assessment, St. Johns River Water Management District, Technical Publication SJ94-7, Palatka, Florida 1994

Williams, S., A Regional Flow Model of the Volusia Ground Water Basin, St. Johns River Water Management District, Technical Publication SJ96-xx, Palatka, Florida, 1996

Willis, R., and Newman, B., Management Model for Ground Water Development, Journal of The Water Resources Planning and Management Division, 159-171, May 1977

Yazicigil, H., and Rasheeduddin, M., Optimization Model for Groundwater Management in Multi-Aquifer Systems, *Journal of Water Resources Planning and Management*, 113(2), 257-273, 1987

APPENDIX A TABLES

Decision Modeling for Alternative Water Supply Strategies

153

Model ID	Rank By Projected Year 2010 Demand	Public Supply Demand Area	Year 1988 Demand (MGD)	Projected Year 2010 Demand (MGD)	Demand increase (MGD)	% of Total increase	Demand % Increase	% of Total Public Demand
AF1	67	USAF BAS Civil Engineer	0.80	0.80	0.00	0.00%	0.00%	0.16%
ALT	16	Altamonte Springs	7.95	10.19	2.24	0.84%	28.12%	2.04%
APO	4	Арорка	4.15	21.15	17.00	6.42%	409.71%	4.24%
CAS	30	Casselberry	4.83	6.33	1.50	0.57%	31.13%	1.27%
CFR	65	Cent. Fia. Res. Park	1.00	1.00	0.00	0.00%	0.00%	0.20%
CFU	43	Central Florida Utilities	1.27	3.03	1.76	0.66%	138.00%	0.61%
СНО	83	Chuluota	0.39	0.25	-0.14	-0.05%	-36.09%	0.05%
CLE	47	Clermont	1.43	2.47	1.04	0.39%	72.90%	0.49%
coc	2	Сосса	20.10	27.07	6.98	2.63%	34.71%	5.42%
CON	88	Conway	0.08	0.10	0.02	0.01%	27.27%	0.02%
DAV	60	Davenport	0.53	1 27	0.73	0.28%	138.00%	0.25%
DEI	3	Deltona	7.26	24.90	17.64	6.66%	243.11%	4 99%
FAT	58	Eatomille	0.61	1.41	0.81	0.31%	133.71%	4.33%
ECU	87		0.12	0.15	0.02	0.01%	15 30%	0.28%
EUG	0/		0.13	E 70	0.02	1.00%	15.55 %	0.0378
EUS	33	Eusils	2.91	0.19	2.00	1.09%	90.03%	1.15%
EDI		Florida Devenand Light	0.22	0.10	-0.05	-0.02%	-25.00%	0.03%
PPL 000	70	Pionda Power and Light	0.41	0.75	0.33	0.13%	81.10%	0.15%
GRU	68		0.29	0.79	0.50	0.19%	1/6.18%	0.16%
HAI	44	Haines City	1.18	2.80	1.63	0.61%	138.00%	0.56%
HHO	71		0.30	0.73	0.42	0.16%	138.00%	0.15%
нон	75	Howey in the Hills	0.31	0.45	0.13	0.05%	42.36%	0.09%
. IN1	63	B & W Canning	0.97	1.11	0.14	0.05%	14.34%	0.22%
. IN2	50	Florida Crushed Stone	2.18	2.18	0.00	0.00%	0.00%	0.44%
IN3	66	Florida Rock (Lake Sand)	0.87	0.87	0.00	0.00%	0.00%	0.17%
IN4 -	55	Floribra USA, Inc.	1.58	1.58	0.00	0.00%	0.00%	0.32%
1N5	61	Silver Sand (Clermont Mine)	1.24	1.24	0.00	0.00%	0.00%	0.25%
IN6	72	Silver Springs Citrus	0.71	0.71	0.00	0.00%	0.00%	0.14%
JKV	80	John Knox Village	0.05	0.35	0.30	0.11%	640.54%	0.07%
KIS	19	Kissimmee	3.83	9.11	5.28	1.99%	138.00%	1.82%
LHE	73	Lake Helen	0.22	0.58	0.36	0.13%	159.72%	0.12%
LHY	91	Lake Harney	0.03	0.03	0.00	0.00%	16.66%	0.01%
LMY	34	Lake Mary	0.50	5.62	5.12	1.93%	1024.28%	1.13%
LON	42	Longwood	2.03	3.15	1.12	0.42%	55.22%	0.63%
MAI	40	Maitiand	2.90	3.53	0.64	0.24%	21.99%	0.71%
MHN	51	City of Minne	1.28	2.01	0.73	0.27%	56.43%	0.40%
MIN	76	Minneola	0.19	0.45	0.26	0.10%	134.41%	0.09%
MON	85	Montverde	0.12	0.22	0.09	0.03%	74.11%	0.04%
MTD	36	Mt. Dora	2.35	4.45	2.11	0.80%	89.89%	0.89%
OAK	82	Oakland	0.29	0.28	-0.01	-0.01%	-4.89%	0.06%
000	35	Occee	2.13	5.47	3.34	1.26%	157.07%	1.10%
OCY	38	Orange City	0.65	4.04	3.40	1.28%	524.91%	0.81%
OE1	92	OCPUD E Bonneville/Corrine Terr.	0.94	0.00	-0.94	-0.36%	-100.00%	0.00%
OE2	22	OCPUD E Conway	2.50	7.66	5.16	1.95%	206.59%	1.53%
OE3	20	OCPUD E Econ	3.57	8.00	4.43	1.67%	123.84%	1.60%
OE4	52	OCPUD E Lake Nona	0.03	2.00	1.97	0.74%	5796.79%	0.40%
OE5	5	OCPUD E ERWF	0.00	20.25	20.25	7.65%	New	4.05%
ÓRO	39	Orange/Osceola Management	1.53	3.64	2.11	0.80%	138.01%	0.73%
OS1	27	OCPUD S Cypress Walk/Vistana	1.62	6.50	4.88	1.84%	301.52%	1.30%
OS2	74	OCPUD S Hunter's Creek	0.12	0.50	0.38	0.14%	319.17%	0.10%

Table A1. East-central public supply utility demand areas

154

Table A1--Continued

Park By Project VI Paice Sort View Project Sort View View View View View View View View									
Product Vare Denset Set Table Set S		Rank By		Year 1988	Projected Year				
Modella Data Partices Product Sources Demand 0564 283 Collu S and Services 0.094 132 0.555 1124 1.325 0.124 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.03555 0.03555		Projected Year	Dublis County Damand Asso	Demand	2010 Demand	Demand increase		Demand %	% of Total Public
OS4 28 OCFU 05 Grang Wood 2.28 6.48 4.12 1.55% 17.47% 1.327 OS5 49 Occode Sinte 0.96 2.28 1.32 0.035% 118.00% 0.048 OL1 6 OLC Marin 5.17 2.53 6.20 0.037% -7.285% 1.426 OL2 6 OLC Marin 5.97 2.75 -7.285 1.426 OL4 12 OLC Marin 5.97 7.285 1.426 OL4 12 OLC Marin 5.80 7.78 4.00 3.475 7.7575 3.282 OL5 8 OLC Katan 5.60 7.76 4.421 1.757 7.2855 2.295 OL7 13 OLC Katan 5.00 7.70 4.441 1.475 1.475 OL3 40 OL0 1.520 5.795 2.285 2.495 OL4 40.00 1.00 7.20 7.277 2.245 3.405 3.475	Model ID	2010 Demand	Public Supply Demand Area	(MGD)	(MGD)	(MGD)	% of Total Increase	Increase	Demand
GSC 44 Counce Service 0.054 2.28 1.32 0.577, 0.157, 0.057,	OS4	28	OCPUD S Orange Wood	2.36	6.48	4.12	1.56%	174.47%	1.30%
OUT S1 OLDC Marge S23 6.83 0.87 0.23% 13.89% 13.80%	OSC	49	Osceola Service	0.96	2.28	1.32	0.50%	138.00%	0.46%
OUZ 6 OUC Marin 9.17 20.19 11.01 4.19% 120.00% 4.49% OUA 211 OUC Highland 8.07 7.28 4.01 4.00% 7.18% 1.19% OUA 8 OUC Fighland 8.07 7.28 4.01 4.01% 4.11% 1.19% OUS 62 OUC Kalonan 6.28 11.00 4.24 1.79% 7.8.5% 2.29% OUI 31 OUC Kalonan 6.03 7.79 -0.454 -0.39% 2.29% OUI 32 OUC Fierrose 8.03 7.79 -0.454 -0.39% 0.39% OUI 32 OUC Nary 0.00 7.20 2.27% -0.39% 0.39% OUI 32 OUC Senton Enrory CP 0.04 0.00 0.00% 0.09% 0.09% OVI 17 Owedo 1.68 8.64 8.20% 2.29% 0.29% 0.29% 0.29% 0.29% 0.29% 0.29% 0.29%	OU1	31	OUC Dr. Phillips	5.33	6.20	0.87	0.33%	16.38%	1.24%
OLD 18 OLC Commany 9.99 9.90 -0.78 -0.20% -7.88% 1.14% CU4 21 OUC Fine Hils 11.18 0.80 4.01 4.04 4.04 5.05 0.40 4.04 5.05 0.40 5.05 0.11 5.00 1.10% 5.07 5.76,0% 2.28% 0.28% 1.11% 1.05% 5.76% 7.28% 2.28% 0.00 1.03 0.27% 1.28% 0.17% 1.28% 0.17% 1.28% 0.17% 1.28% 0.05% 1.18% 1.28% 0.05% 1.28% 0.05% 1.28% 0.05% 1.28% 0.06% 0.09%	OU2	6	OUC Martin	9.17	20.19	11.01	4.16%	120.06%	4.04%
OUK 21 OUC Septend 8.07 7.88 -0.01 -0.045 -1.15% 1.05% OUS 8 OUC Septenting 11.19 19.80 8.40 3.175 73.075 3.325 OUT 13 OUC Kenan 6.25 11.00 4.74 1.795 75.676 2.295 OUB 30 OUC Septence 8.63 7.09 -0.34 -0.395 .11.75 1.425 OUB 30 OUC Septence 0.00 15.30 5.775 .0.595 .0.595 OUL 32 OUC Namy 1.38 6.40 5.01 1.895 5.930, .0575 .0.495 OUL 32 OUC Naming 0.00 7.20 2.254 .0.495 .0.495 OUT 32 OUC Sensine Energy C2 .0.64 1.026 .0.265 .0.265 .0.267 OVI 44 OCPUU V Medic Mater Spingriv/enoth 1.15 0.830 .0.31 .0.305 .0.495 OVI Oric U W Me	OU3	18	OUC Conway	9.99	9.20	-0.79	-0.30%	-7.88%	1.84%
OUS 8 OUC Fine Hils 11.10 11.80 8.400 3.178 75.07% 3.282 OUB 12 OUC Kinhan 6.400 11.01 2.41 1.105 8.4715 2.285 OUB 25 OUC Pinntose 6.00 7.79 -0.44 -0.395 -11.795 1.425 OUB 10 OUC Sintan 0.00 7.09 -0.44 -0.395 -11.795 1.425 OUB 20 OUC Panyon 1.00 6.00 7.00 2.275 -2.285 1.485 OUID 28 OUC Sensing 0.00 7.00 7.20 2.2785 8.845 2.8597 OUID 28 OUC Sensing 0.00 4.00 0.0005 4.0075 4.085 OWI 44 OCPUD W Hidden SpingwalcoWindmen 1.93 0.00 -1.93 4.0775 -10.005 0.0079 OWI 44 OCPUD W Hidden SpingwalcoWindmen 1.93 0.000 -2.30 -1.105 -00.007 <t< td=""><td>OU4</td><td>21</td><td>OUC Highland</td><td>8.07</td><td>7.98</td><td>-0.10</td><td>-0.04%</td><td>-1.18%</td><td>1.60%</td></t<>	OU4	21	OUC Highland	8.07	7.98	-0.10	-0.04%	-1.18%	1.60%
OUK 11 2.91 1.10% 3.471% 2.25% OUF 13 OUC Kehran 6.28 11.10 4.74 1.79% 75.69K 2.20% OUB 25 OUC Nervace 6.60 7.69 4.94 4.03% 4.1175 1.14% OUB 10 OUC Nervace 0.00 15.30 5.73% 3.06% O10 24 OUC Nervace 0.00 7.20 2.27K 4.44K O12 26 OUC Nervace 6.64 4.04 0.00 0.00%<	OU5	8	OUC Pine Hills	11.19	19.60	8.40	3.17%	75.07%	3.92%
OU7 13 OU2 Kirkman 6.28 11.00 4.74 1.79% 75.69% 2.29% OU8 25 OU2 Primmes 8.00 7.70 0.434 0.45% 1.178% 1.42% OU0 000 Stylate 0.00 15.30 1.38% 358.05% 1.28% O11 24 OU2 Campie 0.00 7.00 7.20 2.24% 1.44% O12 27 OU2 Fearbing 0.00 7.00 7.00 2.64% .0.05% .0.05% O11 7.0 OU2 Sensing 6.64 1.028 6.652 2.24% 88.84% .65.87% OV1 1.17 Ordson Energy C* 0.64 6.04 .0.00 .0.05% .0.05% .0.05% .0.05% .0.05% .0.07% .44.65% .0.07% .44.65% .0.07% .0.07% .0.07% .0.07% .0.00% .0.07% .0.05% .0.07% .0.00% .0.07% .0.00% .0.07% .0.00% .0.07% .0.00%	OU6	12	OUC Kuhi	8.40	11.31	2.91	1.10%	34.71%	2.26%
010 2.5 010 Personse 8.03 7.09 -0.94 -0.395 -11.795 1.028 010 10 000 Sty Lake 0.00 15.30 15.30 15.30 1.395 0.00 1.287 0.287 0.28 0.298 1.288 0.1284 0.288 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.1284 0.0284 <td>OU7</td> <td>13</td> <td>OUC Kirkman</td> <td>6.26</td> <td>11.00</td> <td>4.74</td> <td>1.79%</td> <td>75.68%</td> <td>2.20%</td>	OU7	13	OUC Kirkman	6.26	11.00	4.74	1.79%	75.68%	2.20%
OU9 10 OUC Sky Lake 0.00 15.30 15.30 5.7% 3.0% 011 24 OUC Namy 1.39 6.40 7.50 7.20 2.27% 1.44% 012 2.8 OUC Oranga 0.00 7.20 7.70 2.24% 1.44% 013 7.8 OUC Stanton Energy CP 0.40 0.40 0.00 0.00% 0.00% 0.00% 014 To Neto 66.24 128.86 66.62 22.8% 58.8.4% 2.5.8% 0VH 1 Overo Mater Neto 1.16 58.8.46 3.20% 7.3.45% 1.0.8% 0WH 4.8 OCPUO Wear Neto 1.39 0.00 -1.33 -0.75% -0.0.0% 0.00% 0WH 4.95 OCPUO Wear Neto 1.99 0.00 -1.35 -0.75% -0.0.0% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <td< td=""><td>OU8</td><td>25</td><td>OUC Primrose</td><td>8.03</td><td>7.09</td><td>-0.94</td><td>-0.36%</td><td>-11.73%</td><td>1.42%</td></td<>	OU8	25	OUC Primrose	8.03	7.09	-0.94	-0.36%	-11.73%	1.42%
Oto 23 OUC Nany 1.38 6.40 5.01 1.89% 958.09% 1.28% Ot1 24 OUC Compa 0.00 7.20 7.20 2.27% 1.44% Ot2 28 OUC Parabing 0.00 7.00 2.64% 1.44% Ot12 73 OUC Stanon Energy C2 0.44 0.40 0.00 0.00% 0.00% OV1 17 Owded 68.24 128.86 66.62 22.8% 88.8% 25.80% OV1 17 Owded 1.15 3.63 0.64 3.20% 7.34% 1.98% OW1 48 OCPUD Weak Veaker/ymouth 1.53 0.00 1.433 -0.73% 1.00.00% 0.00% OW2 9.3 OCPUD Weak Veaker/ymouth 1.99 0.00 2.00 2.00 1.00.07% 0.00% OW5 7 OCPUD WWark 0.00 2.00 2.00 7.55% -0.00% OW6 9.0 OCPUD WWark 0.00	OU9	10	OUC Sky Lake	0.00	15.30	15.30	5.78%		3.06%
O11 24 OUC Pranting 0.00 7.20 7.20 2.27% 1.44% 012 25 OUC Preating 0.00 7.00 7.00 2.64% 1.44% 013 78 OUC Staton Energy Cr 0.44 0.40 0.00 0.00% 0.00% 014 17 Ovedo 6.824 128.8 6.852 2.2.8% 8.8.4% 2.5.8% 0V1 177 Ovedo 6.824 128.8 0.60 3.0.7% 1.00.0% 0.09% 0W1 48 OCPUD Wet Catal@Primoufn 1.83 0.00 -1.33 -0.73% 1.00.07% 0.00% 0W2 93 OCPUD Wetweetee 2.90 0.00 -2.90 -1.10% 1.00.07% 0.00% 0W4 95 OCPUD Wetweetee 2.90 0.00 2.000 7.55% 4.00% 0W6 90 OCPUD Wetweetee 0.64 0.07 0.03 0.01% 7.1.16% 0.01% PAM 77 Park Mano	O10	29	OUC Navy	1.39	6.40	5.01	1.89%	359.08%	1.28%
O12 26 DUC Penahing 0.00 7.00 7.00 2.84% 1.40% O13 78 OUC Stanton Energy Cr 0.40 0.40 0.00 0.00%	011	24	OUC Orange	0.00	7.20	7.20	2.72%		1.44%
O13 78 DUC Stanton Energy CP 0.40 0.40 0.00 0.00% 0.00% OVI OUC Total 6824 128.86 66.82 22.89% 88.84% 25.80% OVI 17 Ovédo 1.16 9.85 6.46 3.20% 733.45% 1.93% OWI 44 0.07U W Bert OakuPymouth 1.51 2.45 0.00 -0.37% -100.00% 0.00% OW2 93 OCPUD W Dat Madow 1.59 0.00 -1.33 -0.73% -100.00% 0.00% OW4 95 OCPUD W Nemside 2.90 0.00 -2.90 -1.10% -0.00% 0.00% OW5 7 OCPUD W Nem 0.00 2.00 7.55K -0.00% 0.00% 0.01% 71.14% 0.01% 0.01% 71.14% 0.01% 0.01% 71.14% 0.01% 0.02% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% <td>012</td> <td>26</td> <td>OUC Pershing</td> <td>0.00</td> <td>7.00</td> <td>7.00</td> <td>2.64%</td> <td></td> <td>1.40%</td>	012	26	OUC Pershing	0.00	7.00	7.00	2.64%		1.40%
OUC Total 68.24 128.85 60.92 22.89% 88.84% 25.89% OVI 17 Ovado 1.16 9.85 8.4.4 3.20% 733.45% 1.93% OW1 48 OCPUD W Bent Oates/Pyrnouth 1.85 2.43 0.00 48.85% 0.49% OW2 93 OCPUD W Holdes/Spings/Kelso/Windmen 1.93 0.00 -1.33 -0.75% -100.00% 0.00% OW3 54 OCPUD W Releasible 2.90 0.00 2.80 -1.10% -100.00% 0.00% OW4 95 OCPUD W Releasible 2.90 0.00 2.00 7.5% -0.00% 0.00%<	O13	78	OUC Stanton Energy Ctr	0.40	0.40	0.00	0.00%	0.00%	0.08%
OVI 17 Ovido 1.16 9.65 6.45 3.20% 733.45% 1.33% OW1 48 OC/UD W Bent Oaks///mouth 1.85 2.43 0.60 0.30% 448.85% 0.49% OW2 93 OC/UD W Hote Namgu/Kalso/Windmere 1.85 0.00 -1.33 -0.73% -100.00% 0.00% OW4 95 OC/UD W Reverside 2.50 0.00 -2.30 -1.10% -100.00% 0.00% OW5 7 OC/UD W Newside 2.50 0.00 2.00 7.55% 4.00% OW6 90 OC/UD W Magnotial_ato_iatin 0.04 0.07 0.03 0.01% 7.11.4% 0.01% PAW 50 CPUU M Magnotial_ato_iatin 0.64 0.02% 43.7% 0.08% PAW 84 Ramma Park 0.18 0.24 0.05 0.02% 2.20% 0.05% RCU 1 Reedy Creek Uitilies 12.46 29.00 16.54 6.25% 132.85% 15.1% <td>r</td> <td></td> <td>OUC Total</td> <td>68.24</td> <td>128.86</td> <td>60.62</td> <td>22.89%</td> <td>88.84%</td> <td>25.80%</td>	r		OUC Total	68.24	128.86	60.62	22.89%	88.84%	25.80%
OW1 448 OCPUD W Bent CalcaPhymouth 1.85 2.43 0.80 0.30% 448.85% 0.49% OW2 93 OCPUD W Hiddan Springs/Kalso/Windmare 1.33 0.00 -1.33 -0.73% -100.00% 0.00% OW4 95 OCPUD W Warvalde 2.90 0.00 -2.90 -1.10% -100.00% 0.00% OW5 7 OCPUD W Warvalde 2.90 0.00 2.00 7.55% -4.00% OW6 90 OCFUD W Warvalde 0.00 2.00 2.00 7.55% -4.00% OW6 90 OCFUD W Warvalde 0.01 4.04 -0.02% -9.37% 0.08% PM 77 Park Manor 0.05 0.44 0.04 -0.02% -9.37% 0.08% POI 57 Poinclana 0.51 1.44 0.04 0.02% 0.05% 0.02% 0.05% 0.28% 0.05% 0.28% 0.5% 1.80.0% 1.5% 1.80.0% 1.5% 1.5% 0.5%	ovi	17	Oviedo	1.16	9.63	8.48	3.20%	733.45%	1.93%
OW2 93 OCPUD W Hidden Springs/Kelso/Windmanne 1.33 0.00 -1.33 -0.73% -100.00% 0.00% OW3 94 OCPUD W Oak Meadow 1.33 0.00 -1.33 -0.73% -100.00% 0.00% OW4 95 OCPUD W WeiwField 2.00 0.00 2.200 7.55% 4.00% OW6 90 COPUD W MagnofarLake John 0.04 0.007 0.03 0.01% 7.114% 0.01% PAM 77 Park Manor 0.45 0.41 -0.04 -0.02% 4.33% 0.08% POI 57 Poinciana 0.61 1.44 0.44 0.23% 1.800% 0.29% RAV 84 Revena Park 0.16 0.24 0.05 0.02% 4.93% 0.05% SAF 23 Santord 5.05 7.52 2.49 0.94% 183.00% 0.86% SCL 37 SL Cloud 1.80 4.25 2.44 0.94% 183.00% 0.86% <td>OW1</td> <td>48</td> <td>OCPUD W Bent Oaks/Plymouth</td> <td>1.63</td> <td>2.43</td> <td>0.80</td> <td>0.30%</td> <td>48.85%</td> <td>0.49%</td>	OW1	48	OCPUD W Bent Oaks/Plymouth	1.63	2.43	0.80	0.30%	48.85%	0.49%
OW3 94 OCPUD W Oak Meadow 1.85 0.00 -1.83 -0.73% -100.00% 0.00% OW4 95 OCPUD W Filewaide 2.90 0.00 -2.90 -1.10% -100.00% 0.00% OW5 7 OCPUD W Magnofalute John 0.00 20.00 22.90 -1.10% -100.00% 0.00% OW6 90 OCPUD W Magnofalute John 0.04 0.07 0.03 0.01% 71.14% 0.01% PAM 77 Park Manor 0.45 0.41 -0.04 -0.02% -9.37% 0.08% POI 57 Painciana 0.61 1.44 0.84 0.32% 138.00% 0.29% RCU 1 Reedy Creek Utilities 10.16 0.22 0.05% 132.83% 5.51% SAF 23 Sartiord 5.03 7.52 2.49 0.94% 49.53% 1.51% SAF 23 Sartiord Utilities 9.03 10.75 1.72 0.63% 0.36%	OW2	93	OCPUD W Hidden Springs/Kelso/Windmere	1.93	0.00	-1.93	-0.73%	-100.00%	0.00%
OW4 95 OCPUD W Riverside 2.90 0.00 -2.20 -1.10% -100.00% 0.00% OW5 7 OCPUD W WWF 0.00 20.00 20.00 7.55% 4.00% OW6 90 OCPUD W MagnoliaLake John 0.04 0.07 0.03 0.01% 71.14% 0.01% PAM 77 Park Manor 0.45 0.41 -0.04 -0.02% 43.7% 0.08% POI 57 Poinciana 0.61 1.44 0.84 -0.22% 138.00% 0.29% RAV 84 Rawman Park 0.18 0.24 0.05 0.02% 28.23% 0.58% RCU 1 Reedy Creek Ulliões 12.46 23.00 16.54 6.25% 138.00% 0.05% SAF 23 Sarford 5.03 7.52 2.49 0.94% 19.83% 1.51% SAN 14 Sarfando Ulliñes 9.03 10.75 1.72 0.65% 19.80% 0.37% 1.5	OW3	94	OCPUD W Oak Meadow	1.93	0.00	-1.93	-0.73%	-100.00%	0.00%
OW5 7 CCPUD W WRWF 0.00 20.00 7.55% 4.00% OW6 90 OCPUD W Magndia/Lake John 0.04 0.03 0.01% 71.14% 0.01% PAM 77 Park Manor 0.45 0.41 4.04 -0.02% 43.37% 0.08% POI 57 Poinciana 0.61 1.44 0.84 0.32% 138.00% 0.22% RAV 84 Ravenna Park 0.16 0.24 0.05 0.02% 28.20% 0.05% RCU 1 Reedy Creek Uillikes 12.46 29.00 16.54 6.25% 132.83% 5.81% SAF 23 Sariord 5.03 7.75 2.49 0.94% 48.53% 1.51% SAN 14 Sartando Uillikes 9.03 10.075 1.72 0.65% 18.03% 2.15% SSC 56 SSU-Univ. Stores 0.66 1.55 0.90 0.34% 136.47% 0.31% SSU 62	OW4	95	OCPUD W Riverside	2.90	0.00	-2.90	-1.10%	-100.00%	0.00%
OW6 90 OCPUD W Magnolia/Lake John 0.04 0.07 0.08 0.01% 71.14% 0.01% PAM 77 Park Manor 0.45 0.41 -0.04 -0.02% -3.37% 0.08% POI 57 Poinciana 0.61 1.44 0.84 0.32% 138.00% 0.29% RAV 84 Raverna Park 0.16 0.24 0.05 0.02% 28.2% 0.05% RCU 1 Redy Creek Uillities 12.46 29.00 16.54 6.25% 132.83% 5.51% SAF 23 Sariando Uillities 9.03 10.75 1.72 0.65% 19.03% 2.15% SAN 14 Sariando Uillities 9.03 10.075 1.72 0.65% 130.07% 0.86% SEM 9 Seminole County 6.55 18.60 12.05 4.55% 183.86% 3.72% SSU 62 Southern St. Uil 1.00 1.22 0.23 0.24% 0.24% <td>OW5</td> <td>7</td> <td>OCPUD W WRWF</td> <td>0.00</td> <td>20.00</td> <td>20.00</td> <td>7.55%</td> <td></td> <td>4.00%</td>	OW5	7	OCPUD W WRWF	0.00	20.00	20.00	7.55%		4.00%
PAM 77 Park Manor 0.45 0.41 -0.04 -0.02% -9.37% 0.08% POI 57 Poinciana 0.61 1.44 0.84 0.32% 138.00% 0.29% RAV 84 Ravenna Park 0.18 0.24 0.05 0.02% 28.20% 0.06% RCU 1 Reedy Creek Uillities 12.46 29.00 16.54 6.25% 132.83% 5.61% SAF 23 Santord 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Santord 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Santord 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole Country 6.55 18.60 12.05 4.55% 103.84% 0.24% SSU 62 Southern SL Uhi 1.00 1.22 0.23 0.09% 0.24% SWA	OW6	90	OCPUD W Magnolia/Lake John	0.04	0.07	0.03	0.01%	71.14%	0.01%
POI 57 Poinciana 0.61 1.44 0.84 0.32% 138.00% 0.22% RAV 84 Ravenna Park 0.18 0.24 0.05 0.02% 28.20% 0.05% RCU 1 Reedy Creek Uillities 12.46 29.00 15.54 6.25% 132.83% 5.81% SAF 23 Sanford 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Santando Uillities 9.03 10.75 1.72 0.65% 19.03% 2.15% SCL 37 St. Cloud 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole Country 6.55 18.60 12.05 4.55% 193.86% 3.72% SSU 62 Southern St. Uhi 1.00 12.22 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.03 0.01% 46.32% 0.02% TAV<	PAM	77	Park Manor	0.45	0.41	-0.04	-0.02%	-9.37%	0.08%
RAV 94 Ravenna Park 0.18 0.24 0.05 0.02% 28.0% 0.05% RCU 1 Reedy Creek Utilities 12.46 29.00 16.54 6.25% 132.83% 5.81% SAF 23 Sarriord 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Sariando Utilities 9.03 10.75 1.72 0.65% 19.03% 2.15% SCL 37 St. Cloud 1.80 4.29 2.49 0.94% 138.0% 0.86% SEM 9 Seminole County 6.55 16.60 12.05 4.55% 133.86% 3.72% SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Asan. 0.06 0.08 0.03 0.01% 0.02% SWF 59 See World of Florida 1.30 0.00 0.00% 0.02% VOL 4	POI	57	Poinciana	0.61	1.44	0.84	0.32%	138.00%	0.29%
RCU 1 Reedy Creek Utilities 12.46 29.00 16.54 6.25% 132.83% 5.81% SAF 23 Sanford 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Sanfando Utilities 9.03 10.75 1.72 0.65% 19.03% 2.15% SCL 37 SL Cloud 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole County 6.55 18.80 12.05 4.55% 183.86% 3.72% SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 See Wotl of Florida 1.30 1.30 0.00 0.00% 0.02% 0.21% VCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.44%	RAV	84	Ravenna Park	0.18	0.24	0.05	0.02%	28.20%	0.05%
SAF 23 Santord 5.03 7.52 2.49 0.94% 49.53% 1.51% SAN 14 Santando Ubilities 9.03 10.75 1.72 0.65% 19.03% 2.15% SCL 37 St. Cloud 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole County 6.55 18.60 12.05 4.55% 183.86% 3.72% SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.02% TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% <tr< td=""><td>RCU</td><td>1</td><td>Reedy Creek Utilities</td><td>12.46</td><td>29.00</td><td>16.54</td><td>6.25%</td><td>132.83%</td><td>5.81%</td></tr<>	RCU	1	Reedy Creek Utilities	12.46	29.00	16.54	6.25%	132.83%	5.81%
SAN 14 Santando Utilities 9.03 10.75 1.72 0.65% 19.03% 2.15% SCL 37 St Cloud 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole County 6.55 18.60 12.05 4.55% 183.86% 3.72% SSS 56 SSU-Univ. Shores 0.66 1.55 0.90 0.34% 136.47% 0.31% SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.26% TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% VCL 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% <td>SAF</td> <td>23</td> <td>Sanford</td> <td>5.03</td> <td>7.52</td> <td>2.49</td> <td>0.94%</td> <td>49.53%</td> <td>1.51%</td>	SAF	23	Sanford	5.03	7.52	2.49	0.94%	49.53%	1.51%
SCL 37 SL Cloud 1.80 4.29 2.49 0.94% 138.00% 0.86% SEM 9 Seminole County 6.55 18.60 12.05 4.55% 183.86% 3.72% SSS 56 SSU-Univ. Shores 0.66 1.55 0.90 0.34% 136.47% 0.31% SSU 62 Southern SL UBI 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 See World of Florida 1.30 1.30 0.00 0.00% 0.02% TAV 411 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.229 0.11% 39.84% 0.21% VOL 45 Valusia County 1.19 2.52 1.33 0.50% 111.97% 0.50%	SAN	14	Santando Utilities	9.03	10.75	1.72	0.65%	19.03%	2.15%
SEM 9 Seminole County 6.55 18.60 12.05 4.55% 183.86% 3.72% SSS 56 SSU-Unix. Shores 0.66 1.55 0.90 0.34% 136.47% 0.31% SSU 62 Southern SL Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.00% 0.26% TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Weikva 0.70 0.77 0.06 0.02% 9.21% 0.15%	SCL	37	St. Cloud	1.80	4.29	2.49	0.94%	138.00%	0.86%
SSS 56 SSU-Univ. Shores 0.66 1.55 0.90 0.34% 136.47% 0.31% SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.00% 0.26% TAV 41 Tavares 1.16 3.38 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00%	SEM	9	Seminole County	6.55	18.60	12.05	4.55%	183.86%	3.72%
SSU 62 Southern St. Util 1.00 1.22 0.23 0.09% 22.85% 0.24% SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.00% 0.26% TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Valusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.37% <	SSS	56	SSU-Univ. Shores	0.66	1.55	0.90	0.34%	136,47%	0.31%
SWA 89 Seminole Woods Assn. 0.06 0.08 0.03 0.01% 46.32% 0.02% SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00% 0.00% 0.26% TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WFK 11 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WFK 11 Winter Springs 2.97 6.01 3.04 1.15% 102.51% <td< td=""><td>SSU</td><td>62</td><td>Southern St. Utii</td><td>1.00</td><td>1.22</td><td>0.23</td><td>0.09%</td><td>22.85%</td><td>0.24%</td></td<>	SSU	62	Southern St. Utii	1.00	1.22	0.23	0.09%	22.85%	0.24%
SWF 59 Sea World of Florida 1.30 1.30 0.00 0.00%	SWA	89	Seminole Woods Assn.	0.06	0.08	0.03	0.01%	46.32%	0.02%
TAV 41 Tavares 1.16 3.36 2.20 0.83% 190.07% 0.67% UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.37% WFK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38%	SWF	59	Sea World of Florida	1.30	1.30	0.00	0.00%	0.00%	0.26%
UCF 64 Univ. Central Fla 0.74 1.03 0.29 0.11% 39.84% 0.21% VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WFK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% <td>TAV</td> <td>41</td> <td>Tavares</td> <td>1.16</td> <td>3.36</td> <td>2.20</td> <td>0.83%</td> <td>190.07%</td> <td>0.67%</td>	TAV	41	Tavares	1.16	3.36	2.20	0.83%	190.07%	0.67%
VOL 45 Volusia County 1.19 2.52 1.33 0.50% 111.97% 0.50% WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WFK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.1	UCF	64	Univ. Central Fla	0.74	1.03	0.29	0.11%	39.84%	0.21%
WEK 69 Wekiva 0.70 0.77 0.06 0.02% 9.21% 0.15% WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WFK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 234 50 409.41 264.81 100.00% 112.89% 400.00%	VOL	45	Volusia County	1.19	2.52	1.33	0.50%	111.97%	0.50%
WGA 46 Winter Garden 1.44 2.52 1.08 0.41% 74.64% 0.50% WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WFK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 234 50 409.41 264.81 100.00% 112.89% 400.00%	WEK	69	Wekiva	0.70	0.77	0.06	0.02%	9,21%	0.15%
WGC 54 Winter Garden Citrus Products 1.87 1.87 0.00 0.00% 0.00% 0.37% WPK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Water Users 0.13 0.32 0.19 0.07% 112.12% 0.07% Total 234 50 409.41 264.81 100.00% 112.88% 400.00%	WGA	46	Winter Garden	1.44	2.52	1.08	0,41%	74.64%	0.50%
WPK 11 Winter Park 12.34 15.28 2.94 1.11% 23.83% 3.06% WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Water Users 0.13 0.32 0.19 0.07% 148.69% 0.06% ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07%	WGC	54	Winter Garden Citrus Products	1.87	1.87	0.00	0.00%	0.00%	0.37%
WSP 32 Winter Springs 2.97 6.01 3.04 1.15% 102.51% 1.20% ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.56% 0.38% ZWF 81 Zellwood Farms 0.13 0.32 0.19 0.07% 148.69% 0.06% ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07%	WPK	11	Winter Park	12 94	15.28	2 04	1 11%	23 829/	3 084
ZSU 53 Zellwood Station Utilities 0.95 1.89 0.93 0.35% 97.55% 0.38% ZWF 81 Zellwood Farms 0.13 0.32 0.19 0.07% 148.69% 0.06% ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 234.59 499.41 264.81 100.00% 112.29% 100.00%	WSD	39	Winter Springs	2.07	R 01	3.04	1 159	102 51%	1 20%
ZWF 81 Zellwood Farms 0.13 0.32 0.19 0.07% 148.69% 0.06% ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 234.59 409.41 264.81 100.00% 112.89% 400.00%	7911	52	Zellwood Station Utilities	0.05	1 90	0.04	0.35%	07 56%	n.20%
ZWU 79 Zellwood Water Users 0.17 0.37 0.19 0.07% 112.12% 0.07% Total 234.59 409.41 264.81 100.09% 112.89% 400.09%	ZWE	R1	Zellwood Farms	0.13	0.39	0.30	0.03%	148 60%	0.06%
	ZWU	79	Zeliwood Water Users	0.17	0.37	0.19	0.07%	112.12%	0.07%
		1	Total	234 50	499.41	264 81	100.00%	112 894	100.00%

Table A2. Volusia public supply utility demand areas

Public Supply Utility Need Area	Model ID	1988 Withdrawal Rate (mgd)	Projected 2010 Withdrawal Rate (mgd)	Projected Increase from 1988 to 2010(mgd)	% of Total Increase from 1988	Projected % Increase in Withdrawai Rate
DELTONA	DEL	7.28	24.90	17.62	35.44%	242%
DAYTONA BEACH WESTERN WF	DBW	10.27	13.33	3.06	6.15%	30%
PORT ORANGE WEST PROP	POW	3.98	8.57	4.59	9.24%	115%
DAYTONA BEACH EASTERN WF	DBE	2.94	7.17	4.24	8.52%	144%
DELAND	DWU	4.33	6.92	2.59	5.21%	60%
CITY OF EDGEWATER	EDG	1.54	4.66	3.12	6.27%	202%
ORANGE CITY	OCY	0.51	3.65	3.14	6.32%	618%
NEW SMYRNA GLENCOE WF	NSG	2.08	3.08	1.00	2.01%	48%
ORMOND BEACH HUDSON	OBH	0.00	3.01	3.01	6.05%	New
ORMOND BEACH DIVISION	OBD	2.71	2.77	0.07	0.14%	2%
NEW SMYRNA SAMSULA WF	NSS	1.78	2.64	0.85	1.72%	48%
NEW SMYRNA SR 44	NS4	0.00	2.64	2.64	5.30%	New
HOLLY HILL WESTERN WE	HHW	1.02	1.38	0.36	0.72%	35%
ORMOND BEACH SR 40	OB4	1.90	1.16	-0.75	-1.51%	-39%
DELAND - BRANDYWINE	DEB	0.50	0.90	0.40	0.79%	79%
PORT ORANGE EASTERN WF	POE	0.40	0.86	0.46	0.92%	115%
V CTY - FOUR TOWNS	VFT	0.54	0.79	0.25	0.51%	47%
THE TRAILS INC.	TTI	0.32	0.58	0.26	0.52%	81%
LAKE HELEN	LHE	0.22	0.58	0.36	0.71%	160%
V CTY - TERRA ALTA	VTA	0.10	0.53	0.43	0.87%	453%
ORMOND BEACH RIMA PROP	OBR	0.00	0.46	0.46	0.93%	New
SPRUCE CREEK	SPC	0.32	0.40	0.08	0.16%	24%
OR. CITY CTRY VILLAGE	000	0.13	0.39	0.25	0.51%	189%
NATIONAL GARDENS	NGA	0.21	0.39	0.17	0.35%	81%
DELAND - HOLIDAY HILLS	DHH	0.17	0.36	0.19	0.39%	115%
L BERESFORD WATER ASSN	LBW	0.16	0.33	0.17	0.34%	105%
FPL - SANFORD PWR PLNT	FPS	0.32	0.32	0.00	0.00%	0%
V CTY - LAKE MARIE	VLM	0.14	0.25	0.11	0.23%	81%
TOMOKA CORR. FACILITY	TCF	0.23	0.23	0.00	0.00%	0%
SSU SUGAR MILL 1990	SME	0.10	0.22	0.12	0.24%	125%
V CTY GOVT COMPLEX	VGC	0.20	0.20	0.00	0.00%	0%
TYMBER CREEK UTIL.	TCU	0.09	0.18	0.09	0.18%	96%
DELAND - WOODLAND MANOR	DWW	0.06	0.16	0.10	0.21%	178%
SHERWOOD MEDICAL CO.	SMC	0.16	0.16	0.00	0.00%	0%
JOHN KNOX VILL.	JKV	0.05	0.14	0.09	0.19%	200%
HOLLY HILL EASTERN WF	HHE	0.10	0.14	0.04	0.07%	35%
SUNSHINE HOLIDAY PK	SHP	0.07	0.13	0.06	0.11%	81%
PLANTATION BAY	PTB	0.06	0.12	0.07	0.13%	117%
HACIENDA DEL RIO	HDR	0.06	0.10	0.05	0.09%	81%
FPL - TURNER POWER PLNT	FPT	0.10	0.10	0.00	0.00%	0%
ELLWOOD TITCOMB	ETI	0.05	0.09	0.05	0.09%	100%
Total		45.84	96.20	49.78	100.00%	210%

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
46	58	1	ALT	ALTAMONTE SPR. (NEW CHARLOTTE ST W	1	0.65	4.15		4.49
48	54	2	ALT	ALTAMONTE SPR. (PLANT #3)		0.01	0.00	2-117-0139ANMG	1.50
49	57	3	ALT	ALTAMONTE SPR. (PLANT #1)		0.32	0.00	2-117-0130AN -	1.50
49	48	4	ALT	ALTAMONTE SPR. (PLANT #4)		0.08	3.02	2-117-0139ANMG	3.74
50	-57	5	ALT	ALTAMONTE SPR. (PLANT #1)		3.80	0.00	2-117-0130AN	1.50
52	45	6	ALT	ALTAMONTE SPR. (PLANT #5)		1.08	0.00	2-117-0139ANMG	4.49
53	55	7	ALT	ALTAMONTE SPR. (PLANT #2)		0.02	1.07	2-117-0130AN	3.46
52	45	8	ALT	ALTAMONTE SPRINGS (PLANT #5)		1.98	0.00		4.49
54	55	9	ALT	ALTAMONTE SPRINGS (PLANT #2)	2	1.04	1.95		3.46
43	31	10	APO	APOPKA - GROSSENBACHER WF.		0.00	3.38	2-095-0097ANGM	5.98
37	27	11	APO	APOPKA - PROPOSED NORTHWEST WF	2	1.04	4.44		5.98
43	31	12	APO	APOPKA - GROSSENBACHER WF.	2	0.00	3.38	2-095-0097ANGM	5.98
45	27	13	APO	APOPKA - PROPOSED SOUTHWEST WF	2	2.07	6.77		7.11
53	36	14	APO	APOPKA - SHEELOR OAKS WF.	2	2.03	3.17	2-095-0097ANGM	3.61
45	63	15	CAS	CASSELBERRY (NORTH WTP; WELL N-1)	1	0.31	0.48	2-117-0055ANG	0.90
53	63	16	CAS	CASSELBERRY (HOWELL PARK; CANON W	1	0.39	0.41	2-117-0055ANG	0.90
53	62	17	CAS	CASSELBERRY (HOWELL PARK; HP-1 WE	1	0.89	0.61		1.20
59	65	18	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	1	0.15	0.51	2-117-0055ANG	1.05
46	63	19	CAS	CASSELBERRY (NORTH WTP; WELL N240	2	0.07	1.01	2-117-0055ANG	1.50
53	64	20	CAS	CASSELBERRY (HOWELL PARK WTP; WEL	2	0.90	1.40		1.50
59	65	21	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	2	0.08	0.51		0.75
59	66	22	CAS	CASSELBERRY (SOUTH WTP; WELL S360	2	0.99	1.40		1.50
104	35	23	CFU	CENTRAL FLA UTIL (CAMELOT, CD 182	1	0.10	2.35	49-00076-W SFWMD	4.49
105	60	24	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.19	0.23	49-00076-W SFWMD	0.45
107	57	25	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.00	0.45	49-00076-W SFWMD	1.35
54	97	26	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.39	0.09	2-117-0132ANMR	0.43
55	96	27	CHU	SOUTHERN ST. UTIL (CHULUOTA)	1	0.91	0.16	2-117-0132ANMR	0.73
68	8	28	CLE	CLERMONT (GRAND)	1	0.52	1.57	2-069-0175AN	3.37
71	7	29	CLE	CLERMONT (4TH STREET)	1	0.19	0.90	2-069-0175AN	1.80
87	100	30	coc	COCOA (WELL #10)	1	0.15	0.15	2-095-0005	1.65
89	100	31	çoc	COCOA (WELL #9)	1	0.24	0.24	2-095-0005	1.65
90	100	32	COC	COCOA (WELL #8)	1	1.53	0.48	2-095-0005	1.65
92	95	33	COC	COCOA (WELL #13 & 13R)	1	2.42	0.60	2-095-0005	1.65
92	94	34	COC	COCOA (WELL #14)	1	0.13	1.66	2-095-0005	3.02
92	100	35	COC	COCOA (WELL #3)	1	5.83	0.00	2-095-0005	0.82
93	93	36	COC	COCOA (WELL #16)	1	2.70	3.53	2-095-0005	4.49
93	92	37	COC	COCOA (WELL #17)	1	0.40	1.74	2-095-0005	3.02
93	100	38	COC	COCOA (WELL #7) <phase correcti<="" i="" td=""><td>1</td><td>0.22</td><td>0.24</td><td>2-095-0005</td><td>1.65</td></phase>	1	0.22	0.24	2-095-0005	1.65
93	99	39	COC	COCOA (WELL #7A)	1	0.00	0.26	2-095-0005	1.65
94	100	40	COC	COCOA (WELL # 1)	<u> </u>	2.34	0.15	2-095-0005	1.65
94	92	41	COC	COCOA (WELL #18)	<u> </u>	0.00	1.86	2-095-0005	3.02
95	100	42	COC	COCOA (WELL #6) <phase correcti<="" i="" td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>1.30</td><td>0.00</td><td>2-095-0005</td><td>0.82</td></phase>	· · · · · · · · · · · · · · · · · · ·	1.30	0.00	2-095-0005	0.82
96	82	43	COC	COCOA (WELL #19)	1	0.42	1.86	2-095-0005	3.02
96	100	44	COC	COCOA (WELL #5)	1	0.26	0.24	2-095-0005	1.65
97	102	45	COC	COCOA (WELL #12A)	1	0.28	0.24	2-095-0005	1.65
97	100	46	COC	COCOA (WELL #4)	1	0.00	0.24	2-095-0005	1.65
97	92	47	COC	COCOA PROP. WELL 20	1	0.74	1.86	2-095-0005	3.02
98	100	48	COC	COCOA (WELL #11)	1	0.54	0.24	2-095-0005	1.65
98	102	49	COC	COCOA (WELL #12B)	1	0.42	0.24	2-095-0005	1.65

Table A3. East-central public supply utility wells
Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
46	58	1	ALT	ALTAMONTE SPR. (NEW CHARLOTTE ST W	1	0.65	4.15		4.49
48	54	2	ALT	ALTAMONTE SPR. (PLANT #3)	1	0.01	0.00	2-117-0139ANMG	1.50
49	57	3	ALT	ALTAMONTE SPR. (PLANT #1)	1	0.32	0.00	2-117-0130AN ·	1.50
49	48	4	ALT	ALTAMONTE SPR. (PLANT #4)	1	0.08	3.02	2-117-0139ANMG	3.74
50	57	5	ALT	ALTAMONTE SPR. (PLANT #1)	1	3.80	0.00	2-117-0130AN	1.50
52	45	6	ALT	ALTAMONTE SPR. (PLANT #5)	1	1.08	0.00	2-117-0139ANMG	4.49
53	55	7	ALT	ALTAMONTE SPR. (PLANT #2)	1	0.02	1.07	2-117-0130AN	3.46
52	45	8	ALT	ALTAMONTE SPRINGS (PLANT #5)	2	1.98	0.00		4.49
54	55	9	ALT	ALTAMONTE SPRINGS (PLANT #2)	2	1.04	1.95		3.46
43	31	10	APO	APOPKA - GROSSENBACHER WF.	1	0.00	3.38	2-095-0097ANGM	5.98
37	27	11	APO	APOPKA - PROPOSED NORTHWEST WF	2	1.04	4.44		5.98
43	31	12	APO	APOPKA - GROSSENBACHER WF.	2	0.00	3.38	2-095-0097ANGM	5.98
45	27	13	APO	APOPKA - PROPOSED SOUTHWEST WF	2	2.07	6.77		7.11
53	36	14	APO	APOPKA - SHEELOR OAKS WF.	2	2.03	3.17	2-095-0097ANGM	3.61
45	63	15	CAS	CASSELBERRY (NORTH WTP; WELL N-1)	1	0.31	0.48	2-117-0055ANG	0.90
53	63	16	CAS	CASSELBERRY (HOWELL PARK; CANON W	1	0.39	0.41	2-117-0055ANG	0.90
53	62	17	CAS	CASSELBERRY (HOWELL PARK; HP-1 WE	1	0.89	0.61		1.20
59	65	18	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	1	0.15	0.51	2-117-0055ANG	1.05
46	63	19	CAS	CASSELBERRY (NORTH WTP; WELL N240	2	0.07	1.01	2-117-0055ANG	1.50
53	64	20	CAS	CASSELBERRY (HOWELL PARK WTP; WEL	2	0.90	1.40		1.50
59	65	21	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	2	0.08	0.51		0.75
59	66	22	CAS	CASSELBERRY (SOUTH WTP; WELL S360	2	0.99	1.40		1.50
104	35	23	CFU	CENTRAL FLA UTIL (CAMELOT, CD 182	1	0.10	2.35	49-00076-W SFWMD	4.49
105	60	24	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.19	0.23	49-00076-W SFWMD	0.45
107	57	25	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.00	0.45	49-00076-W SFWMD	1.35
54	97	26	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.39	0.09	2-117-0132ANMR	0.43
55	96	_27	СНЛ	SOUTHERN ST. UTIL (CHULUOTA)	1	0.91	0.16	2-117-0132ANMR	0.73
68	8	28	CLE	CLERMONT (GRAND)	1	0.52	1.57	2-069-0175AN	3.37
71	7	29	CLE	CLERMONT (4TH STREET)	1	0.19	0.90	2-069-0175AN	1.80
87	100	30	COC	COCOA (WELL #10)	1	0.15	0.15	2-095-0005	1.65
89	100	31	coc	COCOA (WELL #9)	1	0.24	0.24	2-095-0005	1.65
90	100	32	COC	COCOA (WELL #8)	1	1.53	0.48	2-095-0005	1.65
92	95	33	COC	COCOA (WELL #13 & 13R)	1	2.42	0.60	2-095-0005	1.65
92	94	34	COC	COCOA (WELL #14)	1	0.13	1.66	2-095-0005	3.02
92	100	35	COC	COCOA (WELL #3)	1	5.83	0.00	2-095-0005	0.82
93	93	36	COC	COCOA (WELL #16)	1	2.70	3.53	2-095-0005	4.49
93	92	37	COC	COCOA (WELL #17)	1	0.40	1.74	2-095-0005	3.02
93	100	38	COC	COCOA (WELL #7) <phase correcti<="" i="" td=""><td>1</td><td>0.22</td><td>0.24</td><td>2-095-0005</td><td>1.65</td></phase>	1	0.22	0.24	2-095-0005	1.65
93	99	39	COC	COCOA (WELL #7A)	1	0.00	0.26	2-095-0005	1.65
94	100	40	COC	COCOA (WELL # 1)	1	2.34	0.15	2-095-0005	1.65
94	92	41	COC	COCOA (WELL #18)	1	0.00	1.86	2-095-0005	3.02
95	100	42	COC	COCOA (WELL #6) <phase correcti<="" i="" td=""><td>1</td><td>1.30</td><td>0.00</td><td>2-095-0005</td><td>0.82</td></phase>	1	1.30	0.00	2-095-0005	0.82
96	92	43	coc	COCOA (WELL #19)		0.42	1.86	2-095-0005	3.02
96	100	44	COC	COCOA (WELL #5)		0.26	0.24	2-095-0005	1.65
97	102	45	coc	COCOA (WELL #12A)		0.28	0.24	2-095-0005	1.65
97	100	46	coc	COCOA (WELL #4)		0.00	0.24	2-095-0005	1.65
97	92	47	COC	COCOA PROP. WELL 20		0.74	1.86	2-095-0005	3.02
98	100	48	coc	COCOA (WELL #11)		0.54	0.24	2-095-0005	1.65
98	102	49	coc	COCOA (WELL #12B)	1	0.42	0.24	2-095-0005	1.65

Table A3. East-central public supply utility wells

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Mode! Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
98	101	50	COC	COCOA (WELL #4A1)	1	0.00	0.24	2-095-0005	1.65
98	92	51	coc	COCOA PROP. WELL 22	t	0.00	3.73	2-095-0005	7.48
99	92	52	coc	COCOA PROP. WELL 32	1	0.00	3.73	2-095-0005	7.48
99	101	53	coc	COCOA PROP. WELL 39	1	0.00	0.48	2-095-0005	7.48
100	92	54	coc	COCOA PROP. WELL 33	1	0.00	1.86	2-095-0005	7.48
100	101	55	coc	COCOA PROP. WELL 41	1	0.00	0.48	2-095-0005	7.48
101	101	56	COC	COCOA PROP. WELL 43	1	0.00	0.48	2-095-0005	7.48
102	101	57	coc	COCOA PROP. WELL 44	1	0.01	0.24	2-095-0005	7.48
86	60	58	CON	SO. STATES UTIL (LAKE CONWAY PARK	1	0.01	0.01	2-095-0214AN	0.11
87	60	59	CON	SO, STATES UTIL (LAKE CONWAY PARK	1	0.03	0.01	2-095-0214AN	0.11
88	59	60	CON	SO, STATES UTIL (DAETWYLER SHORES	1	0.03	0.04	2-095-0215AN	0.11
88	60	61	CON	SQ. STATES UTIL (DAETWYLER SHORES	1	0.00	0.04	2-095-0215AN	0.11
3	86	62	DEL	DELTONA-PROPOSED	1	1.45	1.61	2-127-0093AUNM	1.87
	88	63	DEL		1	0.00	2 41	2-127-0093AN	3 74
	20	<u></u>		DELTONA-PROPOSED		0.00	0.80	2-127-0003A11NIM	1.87
	00	04 6F				0.00	0.00	2-127-0002AUANA	1.0/
	02	60				0.00	0.00	2-127-0093AUNM	1.07
4	74	00		DELTONA		0.40	0.00	2-127-0093AUNM	1.07
	74	67	DEL			0.40	0.00	2-127-0093AN	1.07
	/0	00	DEL			0.40	0.00	2-127-0093AN	1.07
⊢ <u></u> •	00	 	DEL		<u>-</u>	0.00	0.00	2-12/-0093AN	1.8/
6	86	70	DEL	DELTONA-PROPOSED	<u> </u>	0.48	0.80	2-127-0093AUNM	1.8/
	71	71	UEL		1	1.94	1.61	2-127-0093AN	1.87
7	78	72	DEL		1	1.45	3.21	2-127-0093AN	3.74
7	74	73	DEL	DELTONA-PROPOSED	1	0.48	3.21	2-127-0093AUNM	3.74
8	80	74	DEL	DELTONA	1	0.00	0.80	2-127-0093AN	1.87
8	76	75	DEL	DELTONA-PROPOSED	1	0.00	0.80	2-127-0093AUNM	1.87
8	83	76	DEL	DELTONA-PROPOSED	1	0.00	2.41	2-127-0093AUNM	3.74
9	77	77	DEL	DELTONA-PROPOSED	1	0.00	0.80	2-127-0093AUNM	1.87
9	80	78	DEL	DELTONA-PROPOSED	1	0.00	0.80	2-127-0093AUNM	1.87
9	85	79	DEL	DELTONA-PROPOSED	1	0.00	0.80	2-127-0093AUNM	1.87
9	88	80	DEL	DELTONA-PROPOSED	1	0.10	1.61	2-127-0093AUNM	1.87
77	103	81	ECU	ECON UTIL (WEDGEFIELD)	1	0.03	0.12	2-095-0278AUM	0.16
77	104	82	ECU	ECON UTIL (WEDGEFIELD)	<u> 1</u>	0.17	0.04	2-095-0278AUM	0.16
12	12	83	EUS	EUSTIS (C R 44A ?)	1	0.17	1.36	2-069-0539ANGM	2.69
12	13	84	EUS	EUSTIS (C R 44A ?)	1	1.33	1.36	2-069-0539ANGM	2.69
13	22	85	EUS	EUSTIS (HAZELTON AVE.)	1	1.23	0.54	2-069-0539ANGM	1.12
15	11	86	EUS	EUSTIS (ARDICE PLACE)	1	0.05	2.53	2-069-0539ANGM	4.86
86	93	87	FDC	FL DEPT OF CORR	1	0.11	0.05	2-095-0190ANGM2	0.22
87	92	88	FDC	FL DEPT OF CORR	1	0.05	0.11	2-095-0190ANGM2	0.22
87	93	89	FDC	FL DEPT OF CORR	1	2.05	0.05	2-095-0190ANGM2	0.22
104	47	90	KIS	CITY OF KISSIMMEE (NORTH BERMUDA)	1	1.77	4.89	49-00162-W SFWMD	8.98
106	49	91	KIS	CITY OF KISSIMMEE (RUBY ST.)		0.09	4.22	49-00103-W SFWMD	8.98
1	78	92	LHE	LAKE HELEN - PLANT #2		0.13	0.29	2-127-0646AN	0.75
2	78	93	LHE	LAKE HELEN - PLANT #1		0.01	0.29	2-127-0646AN	0.75
34	101	94	LHY	LAKE HARNEY WATER ASSOC		0.02	0.03	2-117-0022ANM2	0.29
35	101	95	LHY	LAKE HARNEY WATER ASSOC	1	0.00	0.00	2-117-0022ANM2	0.29
24	59	96	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	2-117-0053ANGM	2.30
25	59	97	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	2-117-0053ANGM	2.30
26	59	98	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	1.61	2-117-0053ANGM	2.30

Number Demand Area (MGD) Withd Rate (Well Application Number (IGD)	Well Capacity (MGD)
27 59 99 LMY LAKE MARY (NEW PUBLIC SUPPLY) 1 0.25 0.1	0 2-117-0053ANGM	2.30
28 59 100 LMY LAKE MARY (NEW PUBLIC SUPPLY) 1 0.25 0.4	0 2-117-0053ANGM	2.30
29 59 101 LMY LAKE MARY (NEW PUBLIC SUPPLY) 1 1.25 0.1	0 2-117-0053ANGM	2.30
39 57 102 LON LONGWOOD 1 0.78 2	8 2-117-0046AUG	3.37
40 60 103 LON LONGWOOD 1 0.57 0.1	7 2-117-0046AUG	3.37
55 60 104 MAI MAITLAND - THISTLE LANE 1 0.09 0.0	39 2-095-0090ANGF	2.54
57 56 105 MAI MAITLAND - MINNEHAHA CIRCLE 1 0.19 0.	1 2-095-0090ANGF	1.08
58 53 106 MAI MAITLAND - WELL NO. 5A 1 1.46 0.	2-095-0090ANGF	2.24
57 50 107 MAI MAITLAND - KELLER 2 0.58 1.	79 2-095-0090ANGF	6.43
58 53 108 MAI MAITLAND - WELL NO. 5A 2 0.74 0.	1 2-095-0090ANGF	2.24
65 87 109 OE1 OCPUD EAST REG: (BONNEVILLE) 1 0.20 0.	0 2-095-0060AUMG	7.48
68 65 110 OE1 OCPUD EAST REG: (CORRINE TERRACE) 1 1.79 0.1	0 2-095-0060AUMG	0.22
72 75 111 OE3 OCPUD EAST REG: (ECON) 1 1.79 4.	2-095-0060AUMG	4.19
73 75 112 OE3 OCPUD EAST REG: (ECON) 1 0.00 4.	2-095-0060AUMG	4.19
79 74 113 OE5 OCPUD EAST REG: ERWF 1 0.74 20	25 2-095-0060AUMG	20.94
82 66 114 OE2 OCPUD EAST REG: (CONWAY) 1 0.74 2.	2-095-0060AUMG	4.49
82 67 115 OE2 OCPUD EAST REG: (CONWAY) 1 0.03 2.	2-095-0060AUMG	4.49
94 73 116 OE4 OCPUD EAST REG: (LAKE NONA) 1 1.01 2.	0 48-00276-W SFWMD	2.99
82 67 117 DE2 OCPUD EAST REG: (CONWAY) 2 0.57 3.	17 2-095-0060AUMG	4.49
63 33 118 OCO OCOEE (HACKNEY PRAIRIE) 1 0.00 0.	58 2-095-0092AUGM2R	3.74
63 31 119 OCO OCOEE (JAMELA & WURST ROAD) 1 0.89 0.	20 2-095-0092AUGM2R	1.50
65 29 120 OCO OCOEE (JAMELA & WURST ROAD) 1 0.67 0.	93 2-095-0092AUGM2R	1.50
68 27 121 OCO OCOEE (KISSIMEE AVE) 1 0.00 0.	93 2-095-0092AUGM2R	4.32
73 28 122 OCO OCOEE (SOUTH PLANT) 2 0.89 2	94 2-095-0092AUGM2R	2.99
94 41 123 OS4 OCPUD SOUTH REG: (ORANGE WOOD) 1 0.89 2	40 48-0005?? SFWMD	3.61
95 41 124 OS4 OCPUD SOUTH REG: (ORANGE WOOD) 1 0.28 2	40 48-0005?? SFWMD	3.61
100 30 125 OS1 OCPUD SOUTH REG: (CYPRESS WALK) 1 0.28 1	25 48-00134 SFWMD	1.35
100 31 126 OS1 OCPUD SOUTH REG: (CYPRESS WALK) 1 0.08 1.	25 48-00134 SFWMD	1.35
100 56 127 OS3 OCPUD SOUTH REG: (MEADOW WOODS) 1 0.12 0.	20 48-00185-W SFWMD	5.39
101 46 128 OS2 OCPUD SOUTH REG; (HUNTERS CREEK) .1 1.05 0.	50 48-00231-W SFWMD	8.98
101 32 129 OS1 OCPUD SOUTH REG: (VISTANA) 1 0.59 4	00 48-0005?? SFWMD	4.19
94 41 130 OS4 OCPUD SOUTH REG: (ORANGE WOOD) 2 0.00 1	68 48-0005?? SFWMD	3.61
101 54 131 OS3 OCPUD SOUTH REG: SOUTH REG. WELL 2 0.19 10	.00	10.47
28 31 132 OW1 OCPUD WEST REG: (MT. PLYMOUTH LAK 1 0.00 0	90 2-095-0049ANGM	1.44
38 25 133 OW1 OCPUD WEST REG: (PLYMOUTH) 1 0.03 1	50 2-095-0283ANM2G	1.80
39 24 134 OW1 OCPUD WEST REG: (PLYMOUTH HILLS) 1 1.32 0	00 2-095-0283ANM2G	0.16
43 38 135 OW1 OCPUD WEST REG: (BENT OAKS) 1 0.08 0	00 2-095-0272AN	5.24
43 26 136 OW1 OCPUD WEST REG: (PLYMOUTH CENTRAL 1 0.02 0	00	0.16
54 32 137 OW1 OCPUD WEST REG: (ORANGE VILLAGE) 1 0.48 0	03 2-095-0282AU	0.09
55 46 138 OW4 OCPUD - RIVERSIDE 1 0.48 0	00 2-095-0310UM2GF	1.50
55 47 139 OW4 OCPUD - RIVERSIDE 1 0.48 0	00 2-095-0310UM2GF	1.50
56 46 140 OW4 OCPUD - RIVERSIDE 1 0.04 0	00 2-095-0310UM2GF	1.50
65 21 141 OW6 OCPUD WEST REG: (MAGNOLIA WOODS) 1 0.00 0	03 2-095-0281AUM	1.50
70 15 142 OW6 OCPUD WEST REG: LAKE JOHN SHORES 1 0.39 0	03 2-095-0280U	0.34
72 36 143 OW3 OCPUD WEST REGIONAL (OAK MEADOWS) 1 0.22 0	00 2-095-0310UM2GF	4.49
76 30 144 OW2 OCPUD WEST REG: (WINDERMERE DOWNS 1 0.03 0	00	0.30
79 27 145 OW2 OCPUD WEST REG: (WAUSEON RIDGE) 1 0.18 0	00	0.04
81 36 146 OW2 OCPUD WEST REG: (HIDDEN SPRINGS) 1 0.02 0	00 48-00059-W SFWMD	5.24
81 23 147 OW2 OCPUD WEST REG: (KELSO) 1 0.01 0	00	0.58

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
81	29	148	OW2	OCPUD WEST REG: (WINDERMERE)	1	0.06	0.00		0.01
82	36	149	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	1	0.48	0.00	48-00059-W SFWMD	5.24
55	46	150	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	2-095-0310UM2GF	1.50
55	47	151	OW4	OCPUD - RIVERSIDE	2	0.00	0.00	2-095-0310UM2GF	1.50
55	35	152	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.00	6.00	2-095-0310UM2GF	7.48
55	36	153	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.48	14.00	2-095-0310UM2GF	14.96
56	46	154	OW4	OCPUD - RIVERSIDE	2	1.55	0.00	2-095-0310UM2GF	1.50
72	36	155	OW3	OCPUD WEST REGIONAL (OAK MEADOWS)	2	1.42	0.00	2-095-0310UM2GF	4.49
82	36	156	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	2	0.14	0.00	48-00059-W SFWMD	5.24
4	73	157	OCY	Or. City Ctry V	1	0.17	0.39	2-127-0044AU	0.75
4	67	158	OCY	ORANGE CITY	1	0.34	0.91	2-127-0674ANV	1.87
4	68	159	OCY	ORANGE CITY	1	1.14	2.74	2-127-0674ANV	5.39
104	59	160	ORO	ORANGE/OSCEOLA (BEUNAVENTURA LAKE	1	0.39	2.72	49-00002-W SFWMD	5.39
104	58	161	ORO	ORANGE/OSCEOLA MGMENT	1	0.40	0.93		1.87
83	90	162	OU13	OUC-STANTON ENERGY CTR.	1	0.40	0.40		0.45
87	35	163	OU1	OUC (DR. PHILLIPS)	1	5.33	6.20	2-095-0002AUMGR	13.46
88	41	164	OU2	OUC (MARTIN)	1	9.17	20.19	2-095-0002AUMGR	20.94
68	55	165	OU4	OUC - HIGHLAND	2	2.31	2.42	2-095-0002AUMGR	8.98
68	64	166	OU10	OUC - NAVY	2	1.39	6.40	2-095-0002AUMGR	6.73
68	40	167	OU5	OUC - PINE HILLS	2	5.60	7.84	2-095-0002AUMGR	8.23
68	41	168	OU5	OUC - PINE HILLS	2	2.80	7.84	2-095-0002AUMGR	8.23
69	55	169	004	OUC - HIGHLAND	2	3.46	3.63	2-095-0002AUMGR	8.98
69	56	170	004	OUC - HIGHLAND	2	2.31	0.72	2-095-0002AUMGR	8.98
69	41	171	OU5	OUC - PINE HILLS	2	2.80	3.92	2-095-0002AUMGR	8.23
70	55	172	OU4	OUC - HIGHLAND	2	2.30	1.21	2-095-0002AUMGR	8.98
72	60	173	OUB	OUC - PRIMROSE	2	2.68	2.36	2-095-0002AUMGR	8.23
73	59	174	OUB	OUC - PRIMROSE SFWMD?	2	5.35	4.73	2-095-0002AUMGR	8.23
76	54	175	OU6	OUC - KUHL	2	2.80	3.77	2-095-0002AUMGR	8.23
77	62	176	OU3	OUC - CONWAY	· 2	3.33	6.13	2-095-0002AUMGR	8.23
77	55	177	OUS	OUC - KUHL	2	5.60	7.54	2-095-0002AUMGR	8.23
78	62	178	OU3	OUC - CONWAY	2	6.66	3.07	2-095-0002AUMGR	8.23
80	67	179	OU12	OUC (PERSHING)	2	0.00	7.00		7.48
80	39	180	007	OUC - KIRKMAN	2	2.09	3.67	2-095-0002AUMGR	8.23
80	40	181	OU7	OUC - KIRKMAN	2	4.17	7.33	2-095-0002AUMGR	8.23
88	53	182	OU9	OUC - SKY LAKE	2	0.00	15.30	2-095-0002AUMGR	15.71
98	55	183	OU11	OUC (ORANGE)	2	0.00	7.20		7.48
51	82	184	IVO	OVIEDO (PLNT #1)	1	0.37	3.02	2-117-0035ANGMR	5.98
52	83	185	OVI	OVIEDO (ALAFAYA WOODS - PLNT #2)	1	0.00	3.68	2-117-0035ANGMR	5.98
53	82	186	OVI	OVIEDO-PROP. WELL LAKE GEM		0.00	1.47		2.99
54	86	187	OVI	OVIEDO (ALAFAYA WOODS - PLNT #2)	1	0.22	1.47	2-117-0035ANGMR	2.99
69	79	188	PAM	PARK MANOR WATER WORKS		0.22	0.20	2-095-0470AUV	0.75
70	77	189	PAM	PARK MANOR WATER WORKS		0.41	0.20	2-095-0470AUV	0.75
114	34	190	POI	POINCIANA UTIL (IP-182)		0.06	0.98	49-00069-W SFWMD	1.12
117	39	191	POI	POINCIANA UTIL (IP-182) POINCIANA (CORES-1,283 89-90)		0.13	0.15	49-00069-W SFWMD	0.75
118	38	192	POI	POINCIANA (CORES-1,283 89-90)		0.12	0.31	49-00069-W SFWMD	0.75
22	67	193	RAV	UTILITIES OF FLA (RAVENNA PARK)		0.03	0.12	2-117-0120AN	0.37
23	65	194	RAV	UTILITIES OF FLA (HAVENNA PAHK) UTILITIES OF FLA (CRYSTAL LAKE)		0.03	0.07	2-117-0118AN	0.37
25	65	195	RAV	UTILITIES OF FLA (CHTSTAL LAKE)		0.00	0.02	2-117-0118AN	0.37
30	68	196	RAV	UTILITIES OF FLA (PARK RIDGE)	1	3.65	0.02		0.45

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
91	20	197	RCU	REEDY CREEK UTIL (PUMP STN A; 89-	1	1.82	8.89	48-00009 SFWMD	8.98
92	22	198	RCU	REEDY CREEK UTIL (PUMP STN A; 89-	1	1.29	4.45	48-00009 SFWMD	4.49
98	30	199	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	3.19	48-00009 SFWMD	3.37
100	31	200	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	1.59	48-00009 SFWMD	3.37
100	32	201	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	3.96	1.59	48-00009 SFWMD	3.37
101	22	202	RCU	REEDY CREEK UTIL (PMP STN B)	1	7.93	3.09	48-00009 SFWMD	4.11
102	24	203	RCU	REEDY CREEK UTIL (PMP STN B)	1	0.00	6.19	48-00009 SFWMD	8.98
21	61	204	SAF	SANFORD (WELLFIELD # 4) (PROP)	1	1.29	0.55	2-117-0026ANGM3	3.37
21	62	205	SAF	SANFORD (WELLFIELD #3)	1	0.86	2.07	2-117-0026ANGM3	3.74
21	63	206	SAF	SANFORD (WELLFIELD #3)	1	0.00	1.18	2-117-0026ANGM3	1.50
22	61	207	SAF	SANFORD (WELLFIELD # 4)	1 .	0.35	1.11	2-117-0026ANGM3	3.37
23	63	208	SAF	SANFORD (WELLFIELD #2)	1	0.71	0.00	2-117-0026ANGM3	2.92
24	63	209	SAF	SANFORD (WELLFIELD #2)	1	0.00	1.66	2-117-0026ANGM3	2.92
27	69	210	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.00	2-117-0026ANGM3	1.50
28	68	211	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.32	2-117-0026ANGM3	1.50
28	-69	212	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.30	2-117-0026ANGM3	1.50
29	68	213	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.21	2-117-0026ANGM3	1.50
29	69	214	SAF	SANFORD (WELLFIELD #1)	1	0.00	0.11	2-117-0026ANGM3	1.50
37	54	215	SAN	SANLANDO UTIL CORP (DES PINAR)	1	0.57	0.53	2-117-0006AUR	2.62
38	55	216	SAN	ANLANDO UTIL CORP (DES PINAR)		1.70	1.06	2-117-0006AUR	2.62
39	55	217	SAN	SANLANDO UTIL CORP (DES PINAR)		1.13	1.93	2-117-0006AUR	2.62
41	44	218	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	0.57	0.99	2-117-0006AUR	• 1.80
41	54	219	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	0.57	0.00	2-117-0006AUR	0.75
41	55	220	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	1.13	0.09	2-117-0006AUR	0.75
43	43	221	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	2.29	2-117-0006AUR	2.39
43	44	222	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	0.65	2-117-0006AUR	1.80
44	43	223	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	1.32	2-117-0006AUR	1.80
45	43	224	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.20	1.90	2-117-0006AUR	1.94
109	68	225	SCL	CITY OF ST. CLOUD	1	0.60	2.86	49-00084-W SFWMD	4.49
109	71	226	SCL	CITY OF ST. CLOUD	1	0.13	1.43	49-00084-W SFWMD	1.87
17	62	227	SEM	SEM CTY LAKE MONROE (1-4 IND. PAR	1	0.15	0.29		2.47
27	54	228	SEM	SEM. COUNTY (HANOVER WOODS)	1	0.31	0.60	2-117-0023ANGR2	2.24
28	57	229	SEM	SEM. COUNTY (HEATHROW)	1	0.31	1.87	2-117-0037ANF	3.59
32	59	230	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.50	2-117-0008AUGM	1.05
32	60	231	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.01	0.67	2-117-0008AUGM	1.05
33	62	232	SEM	SEM. COUNTY (COUNTRY CLUB)	1	0.00	1.33	2-117-0008AUGM	2.99
33	59	233	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.90	2-117-0008AUGM	1.05
33	60	234	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.30	2-117-0008AUGM	1.05
33	61	235	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.10	1.14	2-117-0008AUGM	1.20
48	41	236	SEM	SEM. COUNTY (BELAIRE)	1	0.20	0.10	2-117-0031ANMGR	1.20
49	42	237	SEM	SEM. COUNTY (LYNWOOD)	1	0.20	0.49		3.44
50	42	238	SEM	SEM. COUNTY (LYNWOOD)	1	1.30	0.49		3.44
53	62	239	SEM	SEM. COUNTY (LYNWOOD) SEM. COUNTY (INDIAN HILLS)		0.67	3.09	2-117-0031ANMGR	4.49
55	68	240	SEM	SEM. COUNTY (INDIAN HILLS) SEM CTY (CONSUMER)		2.00	1.80	2-117-0031ANMGR	4.49
55	69	241	SEM	SEM CTY (CONSUMER) SEM CTY (CONSUMER)		0.21	4.04	2-117-0031ANMGR	4.49
56	84	242	SEM	SEM CTY (CONSUMER)		0.52	0.97	2-117-0043ANMG	4.49
63	76	243	SSS	SEM CTY (LAKE HAYES)		0.07	0.85	2-095-0019ANFM	1.50
66	71	244	SSS	SO. STATES UTIL (UNIV. SHORES/SUN SO. STATES UTIL (UNIV. SHORES)		0.07	0.35	2-095-0216AN	0.75
66	72	245	SSS	SO. STATES UTIL (UNIV. SHORES)	1	0.02	0.35	2-095-0216AN	0.75

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	Well Application Number	Well Capacity (MGD)
42	45	246	SSU	SOUTHERN ST. UTIL (LAKE BRANTLEY)	1	0.12	0.02	2-117-0131AN	0.15
43	48	247	SSU	SOUTHERN ST. UTIL (MEREDITH MANOR	1	0.12	0.09	2-117-0128AN& 012	0.37
44	48	248	SSU	SOUTHERN ST. UTIL (MEREDITH MANOR	1	0.01	0.18	2-117-0128AN& 012	0.37
47	57	249	SSU	STATES UTIL (HARMONY HOMES)	1	0.44	0.05	2-117-0124AN & 01	0.45
47	52	250	SSU	SOUTHERN ST. UTIL (APPLE VALLEY)	1	0.08	0.51	2-117-0121AN	1.50
49	46	251	SSU	SOUTHERN ST. UTIL (LAKE HARRIET)	1	0.04	0.09	2-117-0126AN	0.90
50	54	252	SSU	SOUTHERN ST. UTIL (DOL RAY MANOR)	1	0.01	0.04		0.82
53	58	253	SSU	SO. STATES UTIL (FERN PARK)	1	0.14	0.05	2-117-0124AN & 01	0.37
54	54	254	SSU	SOUTHERN ST. UTIL (D. HILLS\BRETT	1	0.01	0.18	2-117-0125AN	0.60
33	96	255	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	2-117-0202ANR	0.12
33	97	256	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	2-117-0202ANR	0.12
34	96	257	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	2-117-0202ANR	0.12
34	97	258	SWA	SEMINOLE WOODS ASSOC, INC	1	0.40	0.02	2-117-0202ANR	0.12
95	38	259	SWF	SEA WORLD OF FLA.	1	0.90	0.40	48-00404-W SFWMD	1.35
95	39	260	SWF	SEA WORLD OF FLA.	1	0.06	0.90	48-00058-W SFWMD	1.35
61	83	261	UCF	UCF ,	1	0.06	0.09	2-095-0067ANGM2	0.37
62	84	262	UCF	UCF	1	0.12	0.09	2-095-0067ANGM2	0.37
.63	83	263	UCF	UCF	1	0.06	0.17	2-095-0067ANGM2	0.75
63	84	264	UCF	UCF	1	0.18	0.09	2-095-0067ANGM2	0.37
63	85	265	UCF	UCF	1	0.06	0.26	2-095-0067ANGM2	1.12
64	83	266	UCF	UCF	1	0.06	0.09	2-095-0067ANGM2	0.37
64	85	267	UCF	UCF	1	0.06	0.09	2-095-0067ANGM2	0.37
64	86	268	UCF	UCF	1	0.06	0.09	2-095-0067ANGM2	0.37
65	82	269	UCF	UCF	1	0.02	0.09	2-095-0067ANGM2	0.37
2	78	270	VOL	VOL COUNTY - CASSADAGA	1	0.07	0.04	2-127-0420ANG	0.15
4	65	271	VOL	VOL COUNTY - ?	1	0.00	0.10	2-127-0420ANG	0.22
4	63	272	VOL	VOL CTY - WEST ORANGE CITY	1	0.20	0.01	2-127-0420AN	0.15
5	67	273	VOL	VOL COUNTY - FOUR TOWNS	1	0.04	0.32	2-127-0420AN	0.75
5	68	274	VOL	VOL COUNTY-ORANGE CITY INDUS PARK	1	0.14	0.04	2-127-0420AN	0.15
6	68	275	VOL	VOL COUNTY - BREEZEWOOD	1	0.23	0.16	2-127-0420AN	0.75
6	67	276	VOL	VOL COUNTY - FOUR TOWNS	1	0.11	0.37	2-127-0420AN	0.75
6	66	277	VOL	VOL COUNTY HIGHLAND CTRY EST	1	0.24	0.46	2-127-0420ANG	0.90
7	68	278	VOL	VOL COUNTY - GLEN ABBEY OR SWALLO	1	0.14	0.77	2-127-0420AN	1.87
7	65	279	VOL	VOL COUNTY - LAKE MARIE	1.	0.02	0.25	2-127-0420AN	0.75
47	48	280	WEK	UTILITIES OF FLA (LITTLE WEKIVA)	1	0.06	0.03	2-117-0117AN	0.45
51	42	281	WEK	UTILITIES OF FLA (BEAR LAKE)	1	0.41	0.08	2-117-0116AN	0.60
51	49	282	WEK	UTILITIES OF FLA (WEATHERSFIELD)	1	0.07	0.42	2-117-0114AN	1.50
54	41	283	WEK	UTILITIES OF FLA (JANSEN)	1	0.14	0.08	2-117-0115AN	0.60
54	55	284	WEK	UTILITIES OF FLA (OAKLAND SHORES)	1	0.88	0.16	2-117-0113AN	0.60
67	20	285	WGA	WINTER GARDEN (PALMETTO STREET)	1	0.28	0.63	2-095-0430AUVG	2.54
68	19	286	WGA	WINTER GARDEN (FULLER CROSS)	1	0.28	0.63	2-095-0430AHVG	075
69	19	287	WGA	WINTER GARDEN (BOYD STREET)		0.00	0.63	2-095-0430AUVG	1.73
68	20	288	WGA	WINTER GARDEN (GUTU STREET) WINTER GARDEN PROPOSED PLANT #4		1.87	1.87	2-095-0430AUVG	0.75
70	22	289	WGC	WINTER GARDEN CITRUS PRODUCTS		2.47	0.63	2-095-0045411	1.88
63	58	290	WPK	WINTER GARDEN CITHUS PRODUCTS WINTER PARK - PLANT #1 (SWOOPE)		2.42	2.26	2-095-0391ANVG	4.49
63	67	291	WPK	WINTER PARK - PLANT #1 (SWOOPE) WINTER PARK PLANT #5 (UNIV.)		1.97	2.02	2-095-0391ANVG	6.73
58	63	292	WPK	WINTER PARK FLANT #5 (UNIV.) WINTER PARK - PLANT #4 (MAGNOLIA)		2.94	3.24	2-095-0391ANVG	5.46
61	53	293	WPK	WINTER PARK - PLANT #3 (Wymore)	2	0.00	3.12	2-095-0391ANVG	4.49
63	58	294	WPK	WINTER PARK - PLANT #1 (SWOOPE)	2	2.54	1.44	2-095-0391ANVG	4.49

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer	Year 1988 Withdrawal Rate (MGD)	Projected Year 2010 Withdrawal Rate (MGD)	*Well Application Number	Well Capacity (MGD)
63	67	295	WPK	WINTER PARK - PLANT #5 (UNIV.)	2	0.59	3.20	2-095-0391ANVG	6.73
37	64	296	WSP	WINTER SPRINGS (WTP #2)	1	0.31	0.71	2-117-0029ANGM	1.65
44	66	297	WSP	WINTER SPRINGS (WTP #3)	1	0.31	0.36	2-117-0029ANGM	1.65
44	67	298	WSP	WINTER SPRINGS (WTP #3)	1	1.76	1.56	2-117-0029ANGM	3.46
46	73	299	WSP	WINTER SPRNGS EAST 2	1	0.07	3.38	2-117-0214AUV	3.74
30	16	300	ZWF	ZELLWOOD FARMS	' 1	0.07	0.16	2-095-0251AU	0.37
30	17	301	ZWF	ZELLWOOD FARMS	1	0.17	0.16	2-095-0251AU	0.37
34	17	302	ZWU	ZELLWOOD WATER USERS	1	0.12	0.37	2-095-0276AU	0.75
35	20	303	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.31	2-095-0231AN	0.75
35	21	304	ZSU	ZELLWOOD STATION UTIL.	1	0.54	0.16	2-095-0231AN	0.75
35	22	305	ZSU	ZELLWOOD STATION UTIL.	1	0.12	0.80	2-095-0231AN	1.50
35	23	306	ZSU	ZELLWOOD STATION UTIL.	1	0.06	. 0.31	2-095-0231AN	0.75
36	19	307	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	2-095-0231AN	0.37
36	23	308	ZSU	ZELLWOOD STATION UTIL.	1	2.35	0.16	2-095-0231AN	0.37
17	14	309	MTD	CITY OF MT. DORA	1	1.16	4.45	2-069-0897AUVG	4.49
19	9	310	TAV	CITY OF TAVARES	1	0.09	3.36	2-069-0816ANV	3.74
9	71	311	FPL	FPL LAKE MONROE	1	0.32	0.15	2-127-0515AU	0.30
13	63	312	FPL	FLORIDA POWER & LIGHT-SANFORD POW	1	0.97	0.60	2-127-0545AU	1.20
68	1	313	1N1	B & W CANNING	1	2.18	1,11	2-069-0001AU	1.12
76	11	314	1N2	FLORIDA CRUSHED STONE	1.	0.87	2.18	2-069-0004ANR	2.24
98	8	315	IN3	FLA. ROCK (LAKE SAND PLANT)	1	1.58	0.87		0.90
103	31	316	IN4	FLORIBRA USA, INC	1	0.71	1.58	49-00117&118 SFWM	1.65
36	5	317	IN6	SILVER SPRINGS CITRUS	1	0.31	0.71	2-069-0063AU	0.75
37	6	318	нон	HOWEY-IN-THE-HILLS	1	0.61	0.45	2-069-0431AUNGM	0.45
59	54	319	EAT	EATONVILLE	1	0.12	1.41		1.50
62	12	320	MON	MONTEVERDE	1	1.28	0.22	2-069-0625AUMG	0.22
64	6	321	MHN	MINNEOLA HARBOR HILLS/12/13/88- P	1	1.00	2.01	2-069-0917ANM	2.02
67	84	322	CFR	CENT. FLA RES. PARK	1	0.19	1.00	2-095-0274ANGM	1.05
67	8	323	MIN	CITY OF MINNEOLA	1	0.29	0.45	2-069-1086AUVG	0.45
69	15	324	OAK	CITY OF OAKLAND	1	0.29	0.28	2-095-0366ANV	1.44
69	1	325	GRO	TOWN OF GROVELAND	1	1.24	0.79	2-069-0890ANVG	0.90
79	11	326	IN5	SILVER SAND (CLERMONT MINE)	1	0.30	1.24	2-069-0023AU	1.35
103	28	327	нно	HYATT HOUSE ORLANDO	1	0.96	0.73	49-00021-W SFWMD	0.75
103	19	328	OSC	OSCEOLA SERVICE	1	0.80	2.28		2.39
108	133	329	AF1	USAF BAS CIVIL ENGINEER/8/12/86		0.53	0.80	2-009-0075AUGF	0.90
115	16	330	DAV	DAVENPORT (1987)	1	1.18	1.27	POLK COUNTY	1.35
118	15	331	HAI	HAINES CITY	1	0.05	2.80		2.99
4	69	332	JKV	JOHN KNOX VILL.	1	0.05	0.35	2-127-0387AN	0.37

Table A4. Vo	lusia Public	Supply	/ Utility	/ Wells
--------------	--------------	--------	-----------	---------

Public Supply Utility Well or Control Point Number	Simulation Model Row Number	Simulation Model Column Number	1988 Well Withdrawal Rate (MGD)	Projected Year 2010 Well Withdrawal Rate (MGD)	Hydraulic Capacity (MGD, LAW B.3.a)	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm
1	68	13	0.54	0.00	2.40	DELAND WATER UTIL	DWU	LOW
2	67	12	0.54	0.77	2.40	DELAND WATER UTIL	DWU	LOW
3	66	12	1.08	1.54	2.40	DELAND WATER UTIL	DWU	LOW
4	64	11	0.54	0.77	2.40	DELAND WATER UTIL	DWU	LOW
5	67	14	0.54	0.77	2.40	DELAND WATER UTIL	DWU	LOW
6	61	14	0.54	0.77	2.40	DELAND WATER UTIL	DWU	LOW
7	65	11	0.54	0.77	2.40	DELAND WATER UTIL	DWU	LOW
8	70	13	0.00	1.54	2.40	DELAND WU 1990	DWU	LOW
9	41	73	0.03	0.05	0.26	HOLLY HILL EASTERN WF	HHE	LOW
10	41	74	0.02	0.02	0.26	HOLLY HILL EASTERN WF	HHE	LOW
11	40	. 74	0.02	0.02	0.26	HOLLY HILL EASTERN WF	HHE	LOW
12	40	73	0.02	0.02	0.26	HOLLY HILL EASTERN WF	HHE	LOW
13	40	72	0.02	0.02	0.26	HOLLY HILL EASTERN WF	HHE	LOW
14	41	54	0.29	0.35	0.69	HOLLY HILL WESTERN WF	ннพ	LOW
15	41	55	0.44	0.52	1.03	HOLLY HILL WESTERN WF	ннพ	LOW
16	40	55	0.29	0.35	0.69	HOLLY HILL WESTERN WF	ннพ	LOW
17	40	55	0.00	0.17	0.26	HOLLY HIL PROPOSED	ннพ	LOW
18	79	12	0.13	0.39	0.00	OR. CITY CTRY VILLAGE	0000	LOW
19	81	65	0.10	0.22	0.00	SSU SUGAR MILL EST	SME	HIGH
20	64	42	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
21	67	41	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
22	68	40	0.53	0.57	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
23	69	39	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
24	70	39	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
25	65	40	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
26	66	39	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
27	67	39	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
28	68	.39	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
× 29	65	38	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
30	66	38	0.53	0.57	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
31	69	40	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
32	67	38	0.27	0.29	0.33	PORT ORANGE WESTERN WF	POW	MODERATE
33	64	39	0.00	0.86	0.33	PORT ORANGE WEST PROP	POW	MODERATE
34	69	38	0.00	0.86	0.33	PORT ORANGE WEST PROP	POW	MODERATE
35	40	26	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
36	39	24	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
37	41	28	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
38	38	27	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
39	37	25	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
40	39	29	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
41	42	25	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
42	41	23	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
43	43	27	0.00	0.29	0.33	PORT ORANGE WEST PROP	POW	MODERATE
44	68	66	0.12	0.26	0.33	PORT ORANGE EASTERN WF	POE	LOW
. 45	68	65	0.03	0.07	0.33	PORT ORANGE EASTERN WF	POE	LOW

Public Supply Utility Well or Control Point Númber	Simulation Model Row Number	Simulation Model Column Number	1988 Well Withdrawal Rate (MGD)	Projected Year 2010 Well Withdrawal Rate (MGD)	Hydraulic Capacity (MGD, LAW B.3.a)	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm
46	66	66	0.03	0.07	0.33	PORT ORANGE EASTERN WF	POE	LOW
47	66	67	0.10	0.20	0.33	PORT ORANGE EASTERN WF	POE	LOW
48	65	66	0.06	0.13	0.33	PORT ORANGE EASTERN WF	POE	LOW
49	65	65	0.06	0.13	0.33	PORT ORANGE EASTERN WF	POE	LOW
50	84	11	0.49	0.75	1.03	DELTONA	DEL	LOW
51	84	- 9	0.49	0.75	1.03	DELTONA	DEL	LOW
52	83	13	0.49	0.75	1.03	DELTONA	DEL	LOW
53	86	13	0.49	0.75	1.03	DELTONA	DEL	LOW
54	84	10	0.97	1.51	2.06	DELTONA	DEL	LOW
55	85	12	1.46	2.26	3.10	DELTONA	DEL	LOW
56	84	18	0.49	0.75	1.03	DELTONA	DEL	LOW
57	85	12	0.49	0.75	1.03	DELTONA	DEL	LOW
58	83	18	0.49	.0.75	1.03	DELTONA	DEL	LOW
59	84	18	0.49	0.75	1.03	DELTONA	DEL	LOW
60	81	12	0.49	0.75	1.03	DELTONA	DEL	LÓW
61	85	17	0.49	0.75	1.03	DELTONA	DEL	LOW
62	81	16	0.00	0.75	1.03	DELT - PROPOSED	DEL	MODERATE
63	81	18	0.00	1.51	2.06	DELT - PROPOSED	DEL	LOW
64	82	15	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
65	83	17	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
66	84	9	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
67	84	10	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
68	84	11	0.00	1.51	2.06	DELT - PROPOSED	DEL	LOW
69	85	17	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
70	86	11	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
71	86	15	0.00	2.26	3.10	DELT - PROPOSED	DEL	LOW
72	87	13	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
73	87	15	0.00	0.75	1.03	DELT - PROPOSED	DEL	LOW
74	87	16	0.00	1.51	2.06	DELT - PROPOSED	DEL	LOW
75	75	54	0.16	0.08	0.00	SPRUCE CREEK	SPC	LOW
76	75	55	0.16	0.08	0.00	SPRUCE CREEK	SPC	LOW
77	75	54	0.00	0.16	0.22	SPRUCE CREEK PROP	SPC	LOW
78	75	55	0.00	0.08	0.22	SPRUCE CREEK PROP	SPC	LOW
79	79	40	0.59	0.88	1.15	NEW SMYRNA SAMSULA WF	NSS	LOW
80	80	41	0.59	0.88	1.15	NEW SMYRNA SAMSULA WF	NSS	LOW
. 81	80	42	0.30	0.44	1.15	NEW SMYRNA SAMSULA WF	NSS	MODERATE
82	80	43	0.30	0.44	1.15	NEW SMYRNA SAMSULA WF	NSS	MODERATE
83	86	64	1.19	1.76	2.29	NEW SMYRNA GLENCOE WF	NSG	MODERATE
84	86	65	0.89	1.32	1.15	NEW SMYRNA GLENCOE WF	NSG	MODERATE
85	78	36	0.00	0.44	1.15	NSB - PROPOSED	NS4	MODERATE
86	78	35	0.00	0.44	1.15	NEW SMYRNA SR 44	NS4	MODERATE
87	π	36	0.00	1.76	2.29	NEW SMYRNA SR 44	NS4	MODERATE
88	51	58	0.59	1.51	2.18	DAYTONA BEACH EASTERN WF	DBE	MODERATE
89	51	57	0.59	1.21	1.09	DAYTONA BEACH EASTERN WF	DBE	MODERATE
90	51	56	0.59	1.21	1.09	DAYTONA BEACH EASTERN WF	DBE	MODERATE

Public Supply Utility Well or Control Point Number	Simulation Model Row Number	Simulation Model Column Number	1988 Well Withdrawal Rate (MGD)	Projected Year 2010 Weil Withdrawal Rate (MGD)	Hydraulic Capacity (MGD, LAW B.3.a)	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm
91	50	52	1.17	3.25	3.27	DAYTONA BEACH EASTERN WF	DBE	MODERATE
92	50	51	0.93	1.47	2.18	DAYTONA BEACH WESTERN WF	DBW	MODERATE
93	49	50	0.93	1.76	2.18	DAYTONA BEACH WESTERN WF	DBW	MODERATE
94	58	46	0.93	0.27	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
95	58	45	1.87	0.94	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
96	58	44	0.93	0.49	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
97	58	43	0.93	0.21	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
98	58	42	0.93	0.41	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
99	57	43	0.93	0.33	1.09	DAYTONA BEACH WESTERN WF	DBW	MODERATE
100	56	43	0.93	0.32	1.09	DAYTONA BEACH WESTERN WF	DBW	LOW
101	55	42	0.93	0.63	1.09	DAYTONA BEACH WESTERN WF	DBW	LOW
102	53	42	0.00	0.31	1.09	DAYTONA WEST. 1988	DBW	LOW
103	52	42	0.00	2.32	3.27	DAYTONA WEST. 1988	DBW	LOW
104	51	43	0.00	0.40	1.09	DAYTONA WEST. 1988	DBW	LOW
105	50	43	0.00	1.63	2.18	DAYTONA WEST. 1988	DBW	LOW
106	49	43	0.00	0.48	1.09	DAYTONA WEST. 1988	DBW	MODERATE
107	57	41	0.00	0.55	1.09	DAYTONA WEST. 1988	DBW	MODERATE
108	54	43	0.00	0.53	1.09	DAYTONA WEST. 1988	DBW	LOW
109	53	43	0.00	0.27	1.09	DAYTONA WEST. 1988	DBW-	MODERATE
110	31	73	0.45	0.46	0.32	ORMOND BEACH DIVISION	OBD	LOW
111	32	72	0.90	0.92	0.96	ORMOND BEACH DIVISION	OBD	LOW
112	31	70	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
113	32	70	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
114	32	69	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
115	31	73	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
116	31	72	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
, 117	31	70	0.23	0.23	0.32	ORMOND BEACH DIVISION	OBD	LOW
118	29	64	0.63	0.23	0.32	ORMOND BEACH SR 40	OB4	LOW
119	30	61	0.63	0.23	0.32	ORMOND BEACH SR 40	OB4	LOW
120	28	65	0.00	0.23	0.32	ORMOND BEACH SR 40	OB4	MODERATE
121	29	65	0.00	0.23	0.32	ORMOND BEACH SR 40	OB4	MODERATE
122	30	59	0.63	0.23	0.32	ORMOND BEACH SR 40	OB4	LOW
123	25	52	0.00	0.46	0.64	ORMOND BEACH HUDSON	OBH	LOŴ
124	24	52	0.00	0.23	0.32	ORMOND BEACH HUDSON	ОВН	LOW
125	23	53	0.00	0.46	0.64	ORMOND BEACH HUDSON	ОВН	LOW
126	22	53	0.00	0.46	0.64	ORMOND BEACH HUDSON	ОВН	LOW
127	24	53	0.00	0.23	0.32	ORMOND BEACH HUDSON	OBH	LOW
128	24	54	0.00	0.23	0.32	ORMOND BEACH HUDSON	ОВН	LOW
129	23	54	0.00	0.23	0.32	ORMOND BEACH HUDSON	OBH	LOW
130	22	55	0.00	0.23	0.32	ORMOND BEACH HUDSON	ОВН	LOW
131	24	52	0.00	0.23	0.32	ORMOND BEACH HUDSON	ОВН	LOW
132	23	51	0.00	0.23	0.32	ORMOND BEACH HUDSON	OBH	LOW
133	32	43	0.00	0.23	0.32	ORMOND BEACH RIMA PROP	OBR	LOW
134	31	44	0.00	0.23	0.32	ORMOND BEACH RIMA PROP	OBR	LOW
135	78	10	0.05	0.14	0.00	JOHN KNOX VILL.	JKV	LOW

Public Supply Utility Well or Control Point Number	Simulation Model Row Number	Simulation Model Column Number	1988 Well Withdrawal Rate (MGD)	Projected Year 2010 Well Withdrawal Rate (MGD)	Hydraulic Capacity (MGD, LAW B.3.a)	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm
136	80	8	0.20	0.32	0.00	V CTY - FOUR TOWNS	VFT	LOW
137	79	8	0.20	0.32	0.00	V CTY - FOUR TOWNS	VFT	LOW
138	80	9	0.14	0.16	0.00	V CTY - BREEZEWOOD	VFT	LOW
139	83	6	0.14	0.25	0.00	V CTY - LAKE MARIE	VLM	LOW
140	81	7	0.09	0.52	0.00	V CTY - TERRA ALTA	VTA	LOW
141	π	7	0.01	0.01	0.00	V CTY - W ORANGE CITY	VTA	LOW
142	55	14	0.46	0.82	0.00	DELAND - BRANDYWINE	DEB	MODERATE
143	55	13	0.01	0.02	0.00	DELAND - SPRING GARDEN	DEB	MODERATE
143	55	13	0.01	0.02	0.00	DELAND - SPRING GARDEN	DEB	LOW
144	54	12	0.02	0.03	0.00	DELAND - GLENWOOD EST	DEB	LOW
145	51	14	0.06	0.16	0.00	DELAND - WOODLAND MANOR	DWW	MODERATE
146	74	13	0.12	0.26	0.00	DELAND - LONGLEAF PLANT.	DHH	LOW
147	72	10	0.05	0.10	0.00	DELAND - HOLIDAY HILLS	DHH	LOW
148	77	17	0.05	0.09	0.00	ELLWOOD TITCOMB	EII	MODERATE
149	87	68	0.28	0.85	0.00	CITY OF EDGEWATER	EDG	MODERATE
150	87	67	0.42	1.27	0.00	CITY OF EDGEWATER	EDG	MODERATE
152	88	59	0.42	1.27	0.00	CITY OF EDGEWATER	EDG	LOW
153	88	63	0.28	0.85	0.00	CITY OF EDGEWATER	EDG	LOW
154	27	59	0.09	0.18	0.00	TYMBER CREEK UTIL.	TCU	LOW
155	26	54	0.32	0.58	0.00	THE TRAILS INC.	TTI	LOW
156	77	16	0.11	0.29	0.00	LAKE HELEN	LHE	LOW
157	76	16	0.11	0.29	0.00	LAKE HELEN	LHE	LOW
158	90	74	0.06	0.10	0.00	HACIENDA DEL RIO	HDR	LOW
159	15	72	0.03	0.06	0.00	NATIONAL GARDENS	NGA	LOW
160	15	73	0.03	0.06	0.00	NATIONAL GARDENS	NGA	LOW
161	16	71	0.10	0.17	0.00	NATIONAL GARDENS	NGA	LOW
162	16	72	0.02	0.04	0.00	NATIONAL GARDENS	NGA	LOW
163	17	71	0.03	0.06	0.00	NATIONAL GARDENS	NGA	LOW
164	78	9	0.51	3.65	0.00	ORANGE CITY	OCY	LOW
165	14	65	0.07	0.13	0.00	SUNSHINE HOLIDAY PK	SHP	LOW
166	6	60	0.04	0.08	0.00	PLANTATION BAY	PTB	MODERATE
167	7	60	0.02	0.04	0.00	PLANTATION BAY	РТВ	LOW
168	68	8	0.16	0.33	0.00	L BERESFORD WATER ASSN	LBW	LOW
169	86	8	0.10	0.10	0.00	FPL - TURNER POWER PLNT	FPT	HIGH
170	64	16	0.10	0.10	0.00	SHERWOOD MEDICAL CO.	SMC	LOW
171	63	17	0.05	0.05	0.00	SHERWOOD MEDICAL CO.	SMC	LOW
172	85	4	0.08	0.08	0.00	FPL - SANFORD PWR PLNT	FPS	LOW
173	85	5	0.08	0.08	0.00	FPL - SANFORD PWR PLNT	FPS	LOW
174	80	7	0.08	0.08	0.00	FPL - SANFORD PWR PLNT	FPS	LOW
175	81	7	0.08	0.08	0.00	FPL - SANFORD PWR PLNT	FPS	LOW
176	50	40	0.23	0.23	0.00	TOMOKA CORR. FACILITY	TCF	MODERATE
177	76	8	0.20	0.20	0.00	V CTY GOVT COMPLEX	VGC	LOW

	Reference			Decision Model			Reclaimed Water
County	Number, PBSJ	WWTP Name	Decision Model	Identifier	Disinfection Level	Filters	Availability, MGD
Brevard	8	Brevard County North			basic	N	0.27
Brevard	9	Brevard County Port St. John		psj	intermediate	N	0.24
Brevard	11	Brevard County South Beaches			basic	N	5.92
Brevard	12	Brevard County South Central			high	Y	0.83
Brevard	13	Cape Canaveral			basic	N	1.16
Brevard	14	Cocoa Beach			high	Y	0
Brevard	15	Сосоа	ECF	000	high	Y	1.67
Brevard	16	Snug Harbor			basic	N	0
Brevard	17	Florida Cities Water, Inc.			basic	N	0.6
Brevard	18	Kennedy Space Center]		basic	N	0
Brevard	19	Melbourne			high	N	2.32
Brevard	20	Melbourne			high	Y	3.53
Brevard	21	Palm Bay Utilities Commision	· . · · · · · · · · · · · · · · · · · ·		hiah	Y	1.67
Brevard	22	Bockledge	<u> </u>		basic	N	1
Brevard	23	The Lakes of Melbourge			basic	N	0.06
Brevard	24	Titusville		tin	high	N	0.06
Brevard	25				hasic	N	1.8
Brevard	26				hasic	N	0
Brovard	20				basic		0.13
Brevard	28	Walter T. Mumby NASA			basic	N	0.18
Brevard	29	Watter T. Murphy NASA			hasic	N N	0.04
· Broward	29	Walter T Mumbu NASA			basic	N	0.04
Broward	30	West Molhauma	·		basic	N N	1.00
J aka	09		ECE	aak	Dasic	N	1.00
Lake	00	Clarback DV Pasarta	ECF	Udk	basic	N	0.05
Lake	89	Clement	EUF		Dasic	N	0.05
Lake	90		EUF	CIE	Dasic	N	0.77
Lake	91	Elevide Dept. of Corrections	ECF	eus	Internediate	N	0
	92	Crouchard		100	Dasic	N	0
Lake	90	Lakeward Day	ECE	gio	basic	N N	0.04
	94 0F	Laceburg	ECF		Dasic	N N	0
	95		EUF		Internetiate	N	0.10
	37	Mine Corp.	EUF		Dasic	N	0.13
Lake	9/	Florido Webe Convine	EUF	milo	Dasic	N	0
Lake	90				Dasic	N	0.09
Lake	99		EUF	SIU	Dasic	N	0
Lake	100		EUF		Dasic	N	0
Lake	101		ECF	TVC	Dasic	N	0.54
	102			1VW	pasic	N	0.38
Lake	103	I nousand I rails, Inc.	ECF	UNI	Dasic	N	0.03
Lake	104		ECF	uma	Dasic	N	0
Lake	105	Village Center Comm. Dev. Distr.	ECF	<u> </u>	basic	Y	0.68
Lake	106		ECF		basic	N	0.02
Orange	124	Apopka	ECF	apo	high	Y	0.4
Orange	125	Dale Whittington	ECF	<u> </u>	basic	N	0
Orange	126	Econ Utilites/Wedgefield	ECF	ecu	high	N	0
Orange	127	Fairways MHP	ECF	fmh	high	N	0
Orange	128	Ocoee	ECF	000	basic	N	0.8
Orange	129	OCPUD East	ECF	009	high	Υ	5.12
Orange	130	OCPUD Meadow Woods	ECF	ocm	high	Y	0.1
Orange	131	OCPUD South	ECF	ocs	l high	N	0

Table A5. Reclaimed water sites for east-central and Volusia regions

168

County	Reference Number, PBSJ	WWTP Name	Decision Model	Decision Model Identifier	Disinfection Level	Filters	Reclaimed Water Availability, MGD
Orange	132	OCPUD Cypress Walk	ECF	000	bigh	Y	0.1
Orange	133	OCPUD Northwest	ECF	ocn	basic	N	2.82
Orange	134	Orlando Fl Hotel Limited	ECF	hoi	basic	N	0.09
Orange	135	OUC Lake Nona	ECF	lan	high	Y	0
Orange	136	OUC Conserv I	ECF	or1	high	Y	1.41
Orange	137	OUC Conserv II	ECF	072	high	Y	4.7
Orange	138	Park Manor Water Works	FCF	020	hasic	Y	0.28
Orange	139	Beeco Properties	FCF	rsm	basic	 N	0.12
Orange	140	Beedy Creek Imp. Distr.	ECE	rcu	high	Y	6.73
Orange	141	Florida Water Service U. Shores #1	ECF		basic	Y	0.17
Orange	142	Florida Water Service U. Shores #2	FCF		hasic	N	0
Orange	142	Starlight Banch MHP	ECE	str	basic	N	• <u>•</u>
Orange	144		ECE	ucf	hasic	N	°
Orange	145	Winter Garden	ECE	um1/um2	basic	×	1 37
Orange	140	Winter Dark	ECF	wok	high		0.1
Orange	140	Zalkwood Station Coop	ECF	700	haoid	N	0.1
Corringle	147	Alafave Utilitian	EOF		bish	N V	0.1
Seminole	100	Alamanta Saringa		aiu	nign bisb		0.18
Seminole	10/		EUF		nign		3./4
Seminole	100	Casselberry		cas	nign	N	0.41
Seminole	109	Colorida las Bridas	EUP	ion	basic		0.43
Seminole	170		EUF	on	Dasic	Y	27.16
Seminole	1/1	Palm Valley Assoc.	EUr	pvm	Dasic	N	0.11
Seminole	1/2	Santord	ECF	sar	nign	Y	0
Seminole	1/3	Saniando Des Pinal/woodlands	EUF	woo	Dasic	N	0.48
Seminole	1/4	Saniando Wekva Hunt Club	ECF	wnc	Dasic	N	2.25
Seminole	1/5	Seminole County Greewood	ECP	gwi	nigh	Y	1.37
Seminole	176	Seminole County Northwest	ECP	sen	high	Y	0
Seminole	177	Florida Water Services Chuluota	ECP	chu	basic	<u>N</u>	0
Seminole	178	Utils. Inc-Lincoln Heights	ECP	<u>kn</u>	basic	N	0.08
Seminole	179	Utils incWethersheld	ECF		basic	N	0.11
Seminole	180	Winter Springs	ECF	WSe	high	Y	0.5
Seminole	181	Winter Springs	ECF	WSW	high	<u>Y</u>	0.88
Volusia	182	Daytona Beach Bethune	VOL	dbb	high	Y	6.33
Volusia	183	Daytona Beach Regional	VOL	dbw	high	Y	1.5
Volusia	184	Deland Brandy Trails	VOL	deb	basic	N	0
Volusia	185	Deland Regional	VOL	der	high	Y	2.39
Volusia	186	Edgewater		edg	high	Y	0.87
Volusia	187	Holly Hill	VOL	hhc	low	Y	0.28
Volusia	188	Indian River Utilites	VOL	inh	basic	N	0
Volusia	190	New Smyrna Beach Utilites Comm.	VOL	nsb	high	N	1.74
Volusia	191	Ormond Beach Breakaway Trails	VOL	obb	high	<u>N</u>	0
Volusia	192	Ormond Beach	VOL	obo	high	Y	3.35
Volusia	193	Port Orange	VOL	por	high	Y	4.04
Volusia	194	Florida Water Service Deltona	ECF,VOL	<u> </u>	basic	N	0
Volusia	195	Tymber Creek	VOL	tcs	basic	N	0
Volusia	196	Vol. County Deltona North	ECF,VOL	vod/vdn	basic	N	0.31
Volusia	197	Vol County Four Towns	ECF,VOL	vot/vft	basic	N	0.2
Volusia	198	Vol County SW Regional	ECF,VOL	vsr	high	Y	0.3
Volusia	199	Vol. County Spruce Creek	ECF,VOL	vsc	basic	<u>N</u>	0.17
1		Total	İ		1 .		108.97

		Cimula	tion Madel										
		Sinua	1001 MICOBI			Casa 3		Uraw	Case 2			Case 1	
										·			
	High or moderate												
Control	potential for												
Point	vegetative						•						
Number	harm	Row	Column	Public Supply Utility Demand Area	Modflow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
1	yes	46	58	ALTAMONTE SPR. (NEW CHARLOTTE)	0.9	0.0	0.9	1.2	0.4	0.8	1.5	0.8	0.7
2	yes	49	48	ALTAMONTE SPR. (PLANT #4)	0.5	0.0	0.5	0.8	0.4	0.4	1.2	0.8	0.3
3	yes	52	45	ALTAMONTE SPR. (PLANT #5)	-0.6	-1.0	0.4	-0.1	-0.5	0.4	0.3	0.0	0.3
4		53	55	ALTAMONTE SPR. (PLANT #2)	-0.3	-1.1	0.7	0.1	-0.6	0.7	0.9	0.3	0.6
5		54	55	ALTAMONTE SPRINGS (PLANT #2)	-0.3	-1.0	0.7	0.1	-0.6	0.7	0.8	0.3	0.6
6.	yes	43	31	APOPKA - GROSSENBACHER WF.	0.0	-0.2	0.2	0.7	0.5	0.2	1.1	0.9	0.2
7	yes	37	27	APOPKA - PROPOSED NORTHWEST WF	0.1	0.0	0.2	0.6	0.5	0.1	1.0	0.9	0.1
8	yes	45	27	APOPKA - PROPOSED SOUTHWEST WF	0.2	0.0	0.2	0.6	0.4	0.2	0.9	0.8	0.1
9	yes	46	63	CASSELBERRY (NORTH WTP; WELL N240	0.7	-0.6	1.3	1.0	-0.2	1.2	1.4	0.4	1.0
10	yes	53	64	CASSELBERRY (HOWELL PARK WTP; WEL	0.4	-0.9	1.3	0.8	-0.4	1.2	1.8	0.7	1.0
11	yes	59	66	CASSELBERRY (SOUTH WTP; WELL S360	-0.5	-1.4	1.0	-0.1	-1.0	0.9	0.5	-0.3	0.8
12		68	8	CLERMONT (GRAND)	0.3	0.3	0.0	0.4	0.4	0.0	0.5	0.5	0.0
13		92	94	COCOA (WELL #14)	-3.7	-4.0	0.2	-3.5	-3.7	0.2	-3.3	-3.5	0.2
14		93	93	COCOA (WELL #16)	-6.8	-7.0	0.2	-6.6	-6.8	0.2	-6.4	-6.6	0.2
15		93	92	COCOA (WELL #17)	-5.5	-5.8	0.2	-5.3	-5.6	0.2	-5.1	-5.3	0.2
16		94	92	COCOA (WELL #18)	-5.0 -5.3		0.2	-4.8	-5.1	0.2	-4.6	-4.8	0.2
17		96	92	COCOA (WELL #19)	-2.7 -3.0		0.2	-2.5	-2.8	0.2	-2.4	-2.6	0.2
18		97	92	COCOA PROP. WELL 20	-0.9 -1.1		0.2	-0.7	-1.0	0.2	-0.6	-0.8	0.2
19		98	92	COCOA PROP. WELL 22	1.1	0.9	0.2	1.3	1.1	0.2	1.4	1.2	0.2
20		99	92	COCOA PROP. WELL 32	3.3	3.1	0.2	3.4	3.2	0.2	3.4	3.3	0.2
21		99	101	COCOA PROP. WELL 39	5.8	5.6	0.2	5.8	5.6	0.2	5.8	5.6	0.1
22		100	92	COCOA PROP. WELL 33	6.2	6.1	0.2	6.2	6.1	0.2	6.2	6.1	0.1
23		100	101	COCOA PROP. WELL 41	5.6	5.5	0.2	5.7	5.5	0.1	5.6	5.5	0.1
24		101	101	COCOA PROP. WELL 43	6.0	5.9	0.1	6.0	5.9	0.1	6.0	5.9	0.1
25		102	101	COCOA PROP. WELL 44	6.1	6.0	0.1	6.1	6.0	0.1	6.1	6.0	0.1
26		88	60	SO. STATES UTIL (DAETWYLER SHORES	4.1	3.8	0.3	4.5	4.2	0.3	4.8	4.6	0.3
27	yes	4	88	DELTONA	0.1	0.0	0.1	0.3	0.3	0.0	0.5	0.5	0.0
28		7	78	DELTONA	0.1	-0.1	0.1	0.5	0.4	0.1	0.9	0.9	0.1
29		7	74	DELTONA-PROPOSED	0.6	0.5	0.1	1.2	1.1	0.1	1.8	1.8	0.1
30 -	yes	8	83	DELTONA-PROPOSED	0.1	0.0	0.1	0.3	0.2	0.1	0.5	0.5	0.1
31	yes	9	88	DELTONA-PROPOSED	0.0	0.0	0.1	0.2	0.1	0.1	0.3	0.2	0.1
32		Π	104	ECON UTIL (WEDGEFIELD)	2.2	1.9	0.3	2.5	2.2	0.3	2.8	2.6	0.3
33		12	12	EUSTIS (C R 44A ?)	2.0	2.0	0.0	2.0	2.0	0.0	2.1	2.1	0.0
34	L	12	13	EUSTIS (C R 44A ?)	1.3	1.2	0.0	1.3	1.3	0.0	1.4	1.4	0.0
35		15	11	EUSTIS (ARDICE PLACE)	1.8	1.8	0.0	1.9	1.9	0.0	2.0	2.0	0.0
36		104	47	CITY OF KISSIMMEE (NORTH BERMUDA)	5.2	5.0	0.1	5.3	5.2	0.1	5.5	5.3	0.1
37	yes	28	59	LAKE MARY (NEW PUBLIC SUPPLY)	1.0	0.0	1.0	1.2	0.4	0.9	1.5	0.7	0.8
38	yes	29	59	LAKE MARY (NEW PUBLIC SUPPLY)	0.8	-0.1	1.0	1.1	0.3	0.9	1.4	0.6	0.8
39	yes	39	57	LONGWOOD	0.0	-0.7	0.7	0.4	-0.3	0.7	1.3	0.8	0.6
40	yes	55	60	MAITLAND - THISTLE LANE	-0.3	-1.3	0.9	0.1	-0.8	0.9	1.3	0.6	0.7
41	yes	57	50	MAITLAND - KELLER	-0.3	-0.8	0.5	0.1	-0.4	0.5	0.6	0.3	0.4
42	yes	65	87	OCPUD EAST REG: (BONNEVILLE)	0.6	-0.4	1.0	0.9	0.0	0.9	1.2	0.4	0.8

Table A6. East-central LP optimization model results for control points

		Simula	tion Model					Draw	iourne (ft)				
						Case 3			Case 2		····-	Case 1	
											···		
	Linh or												
	moderate												
Control	potential for												
Point Number	vegetative	Row	Column	Public Supply Utility Demand Area	Maddam	Come	France	h fa dfi ann	0	F	h (a dflau u	6	Free
					MODIOW	Gams	Error	MODIOW	Gams	Error	WOOIIOW	Gams	Error
43	yes	72	75	OCPUD EAST REG: (ECON)	-1.2	-1.9	0.7	-0.8	-1.5	0.7	-0.4	-1.0	0.6
	yes	79	74	OCPUD EAST REG: ERWF	0.4	-0.2	0.6	0.7	0.2	0.5	1.1	0.7	0.5
45	yes	82	66	OCPUD EAST REG: (CONWAY)	0.5	0.0	0.5	0.9	0.4	0.5	1.3	0.9	0.4
46		94	. 73	OCPUD EAST REG: (LAKE NONA)	4.2	3.9	0.3	4.4	4.2	0.3	4.6	4.4	0.2
47	yes	63	33		-0.1	-0.4	0.3	0.4	0.2	0.3	0.8	0.6	0.2
48	yes	65	29	OCOEE (JAMELA & WURST ROAD)	-0.1	-0.4	0.3	0.4	0.2	0.2	0.8	0.6	0.2
49	yes	68	27		0.0	-0.3	0.2	0.6	0.3	0.2	0.9	0.7	0.2
50		73	28		0.3	0.0	0.2	0.9	0.7	0.2	1.3	1.1	0.2
51		94	41		6.7	6.5	0.2	6.9	6./	0.2	1.4	12	0.2
52		100	30	OCPUD SOUTH REG: (CYPRESS WALK)	5.3	5.2	0.2	5.0	4.9	0.2	5.0	4.9	0.1
53		100	56	OCPUD SOUTH REG: (MEADOW WOODS)	1.1	7.4	0.2	1.1	7,4	0.2	7.5	7.3	0.2
54		101	46		7.6	7.4	0.2	7.8	7.6	0.2	8.1	8.0	0.2
55		101	32	OCPOD SOUTH REG: (VISTANA)	7.6	7.4	0.2	0.9	5.8	0.2	6.9	0.8	0.1
		101	54	OCPUD SOUTH REG: SOUTH REG. WELL	6.9	0.7	0.2	7.1	6.9	0.2	7.2	7.1	0.2
5/		28		OCPUD WEST REG: (MI. PLYMOUTH LAK	0.5	0.5	0.1	0.7	0.6	0.1	0.8	0.8	0.1
58	yes	38	25	OCFUD WEST REG: (PLTMOUTH)	0.1	0.0	0.1	0.6	0.5	0.1	1.1	1.0	0.1
59	yes	43	30	OCPUD WEST REG: (BENT OARS)	0.2	-0.1	0.3	0.5	0.3	0.2	0.7	0.5	0.2
61	yes	50	40		-0.4	-0.0	0.4	0.1	-0.3	0.4	0.5	0.2	0.3
60	yes	70	21	OCPUD WEST REGIONAL (OAK MEADOWS)	0.1	-0.1	0.2	0.0	0.4	0.2	0.9	1.0	0.2
62	yes	81	30	OCPUD WEST REGIONAL (DAR MEADOWS)	0.3	0.0	0.3	0.8	1.2	0.3	1.4	1.2	0.2
64	<u> </u>	82	36	OCPUD WEST REG. (HIDDEN SPRINGS)	0.0	0.5	0.3	1.0	1.0	0.2	2.1	1.5	0.2
65		55	35	OCPUD WEST REG: WBWE WELL # 1	0.9	-0.3	0.3	1.0	0.2	0.3	2.5	0.6	0.2
65	yes	55	36	OCPUD WEST REG: WRWE WELL # 1	0.0	-0.3	0.0	0.4	0.2	0.0	0.0	0.0	0.2
67	y00	82	36	OCPUD WEST REG. (HIDDEN SPRINGS)	0.0	07	0.3	1.9	1.6	0.3	23	21	0.2
68	<u> </u>	4	68	OBANGE CITY	12	1.3	0.0	1.0	1.0	0.0	1.6	1.5	0.2
60		104	59	ORANGE/OSCEOLA (BELINAVENTI IBA LAKE	6.6	6.5	0.1	6.9	6.6	0.0	6.0	6.9	0.0
70	<u> </u>	83	90	OUC-STANTON ENERGY CTB	0.0	0.0	0.4	10	0.0	04	12	10	0.1
71		87	35	OUC (DB, PHILLIPS)	0.5	.03	02	27	25	0.7	31	20	0.2
72	+	88	<u>41</u>		7.6	74	0.3	60	5.8	03	7.6	74	0.2
73		68	55	OUC - HIGHLAND	-0.4	-0.9	0.6	01	-0.5	0.5	0.7	0.3	04
74	ves	68	64	OUC - NAVY	-0.4	•1.1	0.7	0.0	-0.6	0.7	0.6	0.0	0.6
75	yes	68	40	OUC - PINE HILLS	0.2	-0.2	0.4	0.7	0.3	0.3	1.2	1.0	0.3
76		69	55	OUC - HIGHLAND	-0.3	-0.9	0.6	0.1	-0.4	0.5	0.8	0.3	0.5
77	 	69	41	OUC - PINE HILLS	0.3	-0.1	0.4	0.8	0.4	0.3	1.3	1.1	0.3
78	yes	70	55	OUC - HIGHLAND	-0.3	-0.9	0.5	0.1	-0.4	0.5	0.8	0.4	0.5
79	yes	72	60	OUC - PRIMROSE	-0.1	-0.7	0.6	0.3	-0.3	0.6	0.9	0.4	0.5
80	<u> </u>	73	59	OUC - PRIMROSE SFWMD?	-0.1	-0.7	0.6	0.3	-0.2	0.6	0.9	0.4	0.5
81	yes	76	54	OUC - KUHL	0.2	-0.3	0.4	0.7	0.3	0.4	1.3	0.9	0.4
82	yes	77	62	OUC - CONWAY	0.3	-0.2	0.6	0.8	0.2	0.5	1.2	0.7	0.5
83		78	62	OUC - CONWAY	0.4	-0.2	0.6	0.9	0.3	0.5	1.3	0.8	0.5
84	yes	80	67	OUC (PERSHING)	0.5	-0.1	0.6	0.9	0.3	0.5	1.3	0.8	0.5

		Simula	tion Model					Drow	deumo /#\				
						Case 3		Draw	Case 2			Case 1	
	Lilah es												
} '	moderate												
Control	potential for												
Point	vegetative	Dow	Column	Bublic Superv Hilling Demand Area			_						_
Number		104	COLLINAT		Modilow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
85		80	40	OUC - KIRKMAN	1.1	0.8	0.3	1.7	1.4	0.3	2.3	2.1	0.2
86		88	53	OUC - SKY LAKE	6.3	6.0	0.3	6.6	6.3	0.3	7.1	6.8	0.3
. 87		98	55	OUC (ORANGE)	7.3	7.1	0.3	7.5	7.3	0.2	7.7	7.5	0.2
88	yes	51	82	OVIEDO (PLNT #1)	1.5	0.0	1.5	1.8	0.4	1.4	2.1	0.8	1.3
89	yes	52	83	OVIEDO (ALAFAYA WOODS - PLNT #2)	1.4	0.0	1.4	1.7	0.4	1.3	2.0	0.8	1.2
90	yes	70	77	PARK MANOR WATER WORKS	-0.4	-1.2	0.8	-0.1	-0.8	0.7.	0.4	-0.3	0.6
91		114	34	POINCIANA UTIL (IP-1&2)	2.2	2.2	0.1	2.3	2.2	0.0	2.3	2.3	0.0
92		117	39	POINCIANA (CORES-1,2&3 89-90)	3.7	3.7	0.0	3.8	3.7	0.0	3.8	3.8	0.0
93		91	20	REEDY CREEK UTIL (PUMP STN A; 89-	2.2	2.0	0.2	3.5	3.4	0.2	4.0	3.9	0.1
94		100	32	REEDY CREEK UTIL (PUMP STATION C)	8.0	7.8	0.2	5.7	5.6	0.2	5.5	5.4	0.1
95		102	24	REEDY CREEK UTIL (PMP STN B)	2.9	2.8	0.2	3.2	3.1	0.2	3.4	3.2	0.1
96	yes	21	61	SANFORD (WELLFIELD # 4) (PROP)	0.8	-0.2	1.0	9.0	0.0	0.9	1.1	0.3	0.8
97	yes	21	62	SANFORD (WELLFIELD #3)	0.4	-0.6	1.0	0.3	-0.7	1.0	0.5	-0.4	0.9
98	yes	22	61	SANFORD (WELLFIELD # 4)	1.0	0.0	1.0	1.3	. 0.3	1.0	1.5	0.7	0.8
99	yes	24	63	SANFORD (WELLFIELD #2)	1.0	0.0	1.0	1.3	0.3	1.0	1.5	0.7	0.8
100	. yes	27	69	SANFORD (WELLFIELD #1)	0.8	0.0	0.8	1.1	0.3	0.7	1.3	0.7	0.6
101	yes	29	69	SANFORD (WELLFIELD #1)	0.8	0.0	0.8	1.1	0.3	0.7	1.3	0.7	0.7
102	yes	37	54	SANLANDO UTIL CORP (DES PINAR)	0.5	0.0	0.5	0.8	0.4	0.4	1.1	0.8	0.4
103	yes	39	55	SANLANDO UTIL CORP (DES PINAR)	0.4	-0.2	0.6	0.7	0.2	0.5	0.8	0.4	0.4
104	yes	41	44	SANLANDO (WEKIVA HUNT CLUB)	0.3	0.0	0.3	0.7	0.4	0.3	1.0	0.8	0.2
105	yes	41	55	SANLANDO UTIL CORP (OVERSTREET)	0.6	0.0	0.6	0.9	0.4	0.5	1.2	0.7	0.4
106	yes	43	43	SANLANDO (WEKIVA HUNT CLUB)	0.3	0.0	0.3	0.7	0.4	0.3	1.0	0.8	0.2
107		109	68	CITY OF ST. CLOUD	3.8	3.7	0.1	3.9	3.8	0.1	4.0	3.9	0.1
108	yes	17	62	SEM CTY LAKE MONROE (I-4 IND. PAR	0.7	0.0	0.7	0.9	0.3	0.6	1.1	0.6	0.6
109	yes	27	54	SEM. COUNTY (HANOVER WOODS)	0.6	0.0	0.6	0.9	0.4	0.5	1.2	0.7	0.5
110	yes	28	57	SEM. COUNTY (HEATHROW)	0.8	0.0	0.8	1.1	0.4	0.8	1.4	0.7	0.7
111	yes	32	60	SEM. COUNTY (GREENWOOD LAKES)	1.0	0.0	1.0	1.3	0.4	1.0	1.6	0.7	0.8
112	yes	33	62	SEM. COUNTY (COUNTRY CLUB)	1.1	0.0	1.1	1.3	0.4	1.0	1.6	0.8	0.8
113	yes	33	61	SEM. COUNTY (GREENWOOD LAKES)	1.1	0.0	1.1	1.3	0.4	1.0	1.6	0.8	0.8
114	yes	48	41	SEM. COUNTY (BELAIRE)	0.3	0.0	0.3	0.7	0.4	0.3	1.1	0.9	0.2
115	yes	50	42	SEM. COUNTY (LYNWOOD)	0.1	-0.3	0.4	0.7	0.4	0.3	1.2	0.9	0.3
116	yes	55	69	SEM CTY (CONSUMER)	1.4	0.0	1.4	1.8	0.5	1.3	2.1	0.9	1.2
117	yes	56	84	SEM CTY (LAKE HAYES)	1.2	0.0	1.2	1.6	0.4	1.2	1.9	0.8	1.1
118	yes	63	76	SO. STATES UTIL (UNIV. SHORES/SUN	0.7	-0.4	1.1	1.1	0.0	1.1	1.5	0.5	1.0
119	yes	47	52	SOUTHERN ST. UTIL (APPLE VALLEY)	0.5	0.0	0.5	0.8	0.3	0.4	1.1	0.7	0.4
120	yes	49	46	SOUTHERN ST. UTIL (LAKE HARRIET)	0.1	-0.3	0.4	0.6	0.2	0.4	0.9	0.6	0.3
121	yes	50	54	SOUTHERN ST. UTIL (DOL RAY MANOR)	0.4	-0.2	0.6	0.8	0.2	0.6	1.2	0.7	0.5
122	yes	54	54	SOUTHERN ST. UTIL (D. HILLS\BRETT	-0.2	-0.8	0.7	0.2	-0.4	0.6	0.8	0.3	0.5
123		95	38	SEA WORLD OF FLA.	5.6	5.3	0.2	5.9	5.6	0.2	6.3	6.1	0.2
124	yes	63	83	UCF	0.7	-0.3	1.1	1.0	0.0	1.0	1.4	0.5	0.9
125		63	85	UCF	0.9	-0.2	1.0	1.2	0.2	1.0	1.5	0.6	0.9
126		6	68	VOL COUNTY - BREEZEWOOD	1.0	0.9	0.1	1.2	1.1	0.1	1.4	1.4	0.1

		Simula	tion Model			,		Draw	downs (ft)				
						Case 3			Case 2			Case 1	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -												
	High or												
	moderate												
Control Point	potential for												
Number	harm	Row	Column	Public Supply Utility Demand Area	Modflow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
127		6	66	VOL COUNTY HIGHLAND CTRY EST	1.0	0.9	0.1	1.2	1.1	0.1	1.4	1.4	0.1
128		7	68	VOL COUNTY - GLEN ABBEY OR SWALLO	0.9	0.8	0.1	1.1	1.1	0.1	1.4	1.4	0.1
129		7	65	VOL COUNTY - LAKE MARIE	0.8	0.7	0.1	1.0	1.0	0.1	1.2	1.2	0.1
130		51	49	UTILITIES OF FLA (WEATHERSFIELD)	0.2	-0.3	0.5	0.6	0.2	0.4	0.9	0.6	0.4
131		67	20	WINTER GARDEN (PALMETTO STREET)	-0.1	-0.3	0.2	0.6	0.4	0.2	0.9 .	0.7	0.2
132		69	19	WINTER GARDEN (BOYD STREET)	0.1	-0.1	0.2	0.9	0.8	0.2	1.2	1.1	0.2
133		70	22	WINTER GARDEN CITRUS PRODUCTS	-0.1	-0.4	0.2	0.5	0.4	0.2	0.8	0.7	0.2
134		63	58	WINTER PARK PLANT #1 (SWOOPE)	-0.9	-1.6	0.7	-0.5	-1.1	0.6	0.1	-0.4	0.5
135	yes	63	67	WINTER PARK PLANT #5 (UNIVERSITY)	-1.1	-1.9	0.9	-0.7	-1.5	0.8	-0.2	-0.9	0.7
136	yes	58	63	WINTER PARK - PLANT #4 (MAGNOLIA)	-0.4	-1.3	0.9	0.0	-0.9	0.9	0.7	0.0	0.7
137		61	53	WINTER PARK - PLANT #3 (Wymore)	-0.4	-1.0	0.6	0.0	-0.5	0.5	0.6	0.2	0.4
138	yes	37	64	WINTER SPRINGS (WTP #2)	1.1	0.0	1.1	1.4	0.4	1.0	1.6	0.8	0.9
139	yes	44	67	WINTER SPRINGS (WTP #3)	1.4	0.0	1.4	1.7	0.4	1.3	2.0	0.8	1.2
140	yes	46	73	WINTER SPRNGS EAST 2	1.5	0.0	1.5	1.8	0.4	1.4	2.1	0.8	1.3
141		35	22	ZELLWOOD STATION UTIL.	0.0	-0.1	0.1	0.7	0.6	0.1	1.2	1.1	0.1
142	[35	23	ZELLWOOD STATION UTIL.	0.1	-0.1	0.1	0.7	0.6	0.1	1.2	1.1	0.1
143		17	14	CITY OF MT. DORA	1.8	1.7	0.0	1.9	1.9	0.0	2.1	2.0	0.0
144		19	9	CITY OF TAVARES	1.9	1.8	0.0	1.9	1.9	0.0	2.0	2.0	0.0
145		76	11	FLORIDA CRUSHED STONE	0.5	0.4	0.1	0.7	0.7	0.1	0.9	0.8	0.1
146		98	. 8	FLA. ROCK (LAKE SAND PLANT)	0.5	0.4	0.1	0.7	0.6	0.1	0.8	0.7	0.1
147		103	31	FLORIBRA USA, INC	5.3	5.1	0.2	5.2	5.1	0.1	5.3	5.2	0.1
148		36	5	SILVER SPRINGS CITRUS	0.1	0.1	0.0	0.1	0.1	0.0	0.2	0.2	0.0
149		59	54	EATONVILLE	-0.6	-1.2	0.6	-0.2	-0.7	0.6	0.5	0.0	0.5
150		64	6	MINNEOLA HARBOR HILLS/12/13/88- P	0.6	0.5	0.0	0.6	0.6	0.0	0.7	0.6	0.0
151		67	84	CENT. FLA RES. PARK	0.5	-0.4	0.9	0.8	0.0	0.9	1.2	0.4	0.8
152	yes	69	15	CITY OF OAKLAND	0.2	0.0	0.2	0.8	0.6	0.2	1.0	0.8	0.1
153		79	11	SILVER SAND (CLERMONT MINE)	0.6	0.5	0.1	0.8	0.7	0.1	1.0	0.9	0.1
154		103	28	HYATT HOUSE ORLANDO	4.2	4.0	0.2	4.3	4.1	0.2	4.4	4.3	0.1
155		103	19	OSCEOLA SERVICE	2.6	2.4	0.2	2.8	2.7	0.2	3.0	2.8	0.1
156		108	133	USAF BAS CIVIL ENGINEER/8/12/86	0.2	0.2	0.0	0.2	0.2	0.0	0.2	0.2	0.0
157		115	16	DAVENPORT (1987)	3.7	3.7	0.0	3.7	3.7	0.0	3.8	3.8	0.0
				Total	187.5	117.6	69.9	234.4	169.0	65.3	285.1	229.2	56.0
				Minimum	-6.8	-7.0	0.0	-6.6	-6.8	0.0	-6.4	-6.6	0.0
				Maximum	8.0	7.8	1.5	7.8	7.6	1.4	8.1	8.0	1.3
				Average	1.2	1.2	0.4	1.5	1.1	0.4	1.8	1.5	0.4

Table A7. Volusia linear programming model results for control points

				Drawdowns (ft)								
	· · · · · · · · · · · · · · · · · · ·				Case 3			Case 2			Case 1	
Public well or control point	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm	Modflow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
1		DWILL	LOW	0.10	0.07	0.02	0.99	0.26	0.02	.0.08	0.15	0.07
<u> </u>		DWO	LOW	0.10	0.07	0.03	0.30	0.30	0.02	-0.06	-0.15	0.07
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		DWU	LOW	-0.30	-0.39	0.03		-0.13	0.02	0.25	0.23	0.02
3		DWU	LOW	-0.24	-0.20	0.02	-0.01	-0.02	0.01	1.12	0.49	0.01
		DWU	LOW	0.00	1.05	0.00	1.41	1.00	0.00	1.13	0.15	0.01
		DWU	LOW	1.24	1.21	0.03	1.41	1.38	0.03	-0.07	-0.15	0.08
		DWU	LOW	0.58	0.5/	0.07	0.71	0.71	0.00	0.70	0.70	0.00
<u>-</u>		DWU	LOW	0.14	0.14	0.00	0.25	0.25	0.00	1.10	1.10	0.00
8	DELAND WU 1990	DWU	LOW	0.04	-0.01	0.05	0.33	0.30	0.03	0.03	-0.03	0.06
			LOW	0.01	-0.01	0.02	0.19	0.18	0.01	0.32	0.32	0.00
10			LOW	0.01	-0.01	0.02	0.15	0.15	0.00	0.26	0.26	0.00
			LOW	0.01	-0.01	0.02	0.15	0.15	0.00	0.26	0.26	0.00
12			LOW	0.01	-0.01	0.02	0.19	0.19	0.00	0.32	0.32	0.00
13	HOLLY HILL EASTERN WE		LOW	0.01	-0.01	0.02	0.20	0.20	0.00	0.35	0.34	0.01
14			LOW	-0.01	0.01	0.02	0.20	0.20	0.00	0.3/	0.3/	0.00
15			LOW	0.00	0.02	0.02	0.34	0.35	0.01	0.61	0.01	0.00
			LOW	-0.00	0.00	0.03	0.00	0.00	0.00	0.64	0.64	0.00
		000		-0.00	0.00	0.05	0.00	0.33	0.00	0.64	0.50	0.00
18		CHE	LOW	0.01	0.05	0.04	0.30	0.32	0.02	0.53	0.53	0.00
	SSU SUGAR MILL EST	DOW		-0.01	0.00	0.01	0.13	0.13	0.00	0.20	0.20	0.00
20		POW	MODERATE	0.16	0.00	0.10	0.46	0.35	0.11	0.77	0.70	0.07
- 21		POW	MODERATE	0.01	-0.33	0.54	0.51	0.20	0.25	0.67	0.47	0.20
22	PORT ORANGE WESTERN WE	POW	MODERATE	-0.38	-1.39	1.01	0.54	-0.21	0.75	0.60	-0.04	0.64
23		POW	MODERATE	0.17	-1.01	1./0	0.00	-0.04	1.44	0.78	-0.47	1.25
24		POW	MODERATE	0.42	•1.55	1.9/	0.73	-0.95	1.00	0.98	-0.47	1.45
23	PORT ORANGE WESTERN WE	POW	MODERATE	0.10	-0.49	0.03	0.56	0.09	0.49	0.87	0.49	0.36
20		POW	MODERATE	0.01	-1.23	1.24	0.43	-0.51	0.94	0.03	-0.15	0.76
2/	PORT ORANGE WESTERN WE	P0W	MODERATE	-0.14	-1.51	1,37	0.41	-0.61	1.02	0.50	-0.30	0.80
28	PORT ORANGE WESTERN WE	POW	MODERATE	-0.13	-1.78	1.65	0.46	-0.81	1.27	0.58	-0.53	1.11
29	PORT ORANGE WESTERN WE	POW	MODERATE	0.55	0.00	0.55	0.70	0.32	0.44	1.01	0.05	0.30
30		POW	MODERATE	0.40	-0.75	1.21	0.74	-0.23	0.97	0.90	0.15	0.81
		POW	MODERATE	-0.03	-1.30	1.27	0.00	-0.41	1.02	1.02	-0.07	0.00
32		POW	MODERATE	0.54	0.00	0.79	0.65	-0.10	1.03	1.00	0.67	0.00
	PORT ORANGE WEST PROP	POW	MODERATE	1.07	0.00	1.07	1.23	0.33	0.00	1.12	0.07	0.45
35	PORT ORANGE WEST PROP	POW	MODERATE	0.42	-1.45	1.07	0.73	-0.92	1.65	0.98	-0.43	1.41
36	PORT ORANGE WEST PROP	POW	MODERATE	0.41	-1.40	1 33	0.79	-0.32	1.00	1.07	0.16	0.91
37	PORT ORANGE WEST PROP	POW	MODERATE	0.46	-0.05	0.51	0.78	0.35	0.43	1.07	0.70	0.35
38	PORT ORANGE WEST PROP	POW	MODERATE	0.60	-1.02	1 71	0.10	-0.00	1 54	1.00		1 21
30	PORT ORANGE WEST PROP	POW	MODERATE	20.0 7007	-0.61	1 24	0.07	-0.00	1.09	1.20	0.96	0.90
40	PORT ORANGE WEST PROP	POW	MODERATE	0.50	0.00	0.50	0.80	0.36	0.44	1 09	0.00	0.00
41	PORT ORANGE WEST PROP	POW	MODERATE	0.87	-0.05	0.00	0.00	0.00	0.86	1.00	0.52	0.30
42	PORT ORANGE WEST PROP	POW	MODERATE	0.73	0.00	0.32	1.02	0.12	0.65	1.24	0.32	0.50
43	PORT ORANGE WEST PROP	POW	MODERATE	0.51	0.20	0.31	0.86	0.57	0.29	1.04	0.81	0.22
44	PORT ORANGE EASTERN WF	POE	LOW	0.05	0.04	0,01	0.15	0.15	0,00	0.20	0.20	0.00
45	PORT ORANGE EASTERN WF	POE	LOW	0.04	0.04	0.00	0.13	0.13	0.00	0.17	0.17	0.00
46	PORT ORANGE EASTERN WF	POE	LOW	0.05	0.05	0.00	0.13	0.13	0.00	0.20	0.20	0.00
			·									

Punke with point   Parties with Supply   Point Supply   Po					Drawdowns (ft)								
Public well or corrent nomb   Public (2007)   Public for (2007)   Public for (2007)   Public for (2007)						Case 3			Case 2			Case 1	
97 PORT ORANGE EASTERN WF POE LOW 0.07 0.07 0.08 0.16 0.16 0.00 0.02 0.02 0.02 0.02 0.02 0.00 0.00 0.01 0.112 0.12 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Public well or control point number	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm	Modflow	Gams	·Error	Modflow	Gams	Error	Modflow	Gams	Error
44   PORT OPHICE ASTERNAM   POE   LOW   0.45   0.05   0.01   0.12   0.10   0.00   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20   0.20	47	PORT ORANGE EASTERN WF	POE	LOW	0.07	0.07	0.00	0.16	0.16	0.00	0.25	0.25	0.00
44   PORT ORNAGE EASTERN WF   POE   LOW   0.44   0.65   0.61   0.12   0.00   0.19   0.19   0.10     00   DELTONA   OEL   LOW   0.88   0.81   0.11   1.12   1.00   1.00   1.46   1.46   1.46   1.46   1.46   1.46   1.46   1.46   1.46   1.46   1.46   1.48   1.48   0.48   0.48   0.48   0.48   0.48   0.48   0.48   0.48   0.44   0.46   0.66   0.73   0.47   0.44   0.48   0.68   0.57   0.47   0.44   0.48   0.63   0.57   0.48   0.47   0.42   0.50   0.42   0.42   0.42   0.50   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42	48	PORT ORANGE EASTERN WF	POE	LOW	0.05	0.05	0.00	0.12	0.12	0.00	0.20	0.20	0.00
50 DLTONA DEL LOW 0.88 0.26 1.12 1.19 0.00 1.60 1.61 0.61   51 DELTONA DEL LOW 4.88 4.80 0.27 4.80 0.81 0.81 0.81 0.81 0.84 0.84 0.84 0.86 0.73 0.77   52 DELTONA DEL LOW 0.82 0.63 0.52 0.82 0.82 0.82 0.82 0.82 0.85 0.82 0.82 0.82 0.82 0.82 0.85 0.85 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.83 0.80 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.80 0	49	PORT ORANGE EASTERN WF	POE	LOW	0.04	0.05	0.01	0.12	0.12 ·	0.00	0.19	0.19	0.00
S1   DR10M   DR1   LOW   4.53   6.02   9.49   9.44   0.46   6.05   7.03     S2   DR170M   DR1   LOW   6.27   2.62   0.60   1.63   1.64   0.57   4.64   0.57   4.64   0.64   4.54   0.57     S5   DR170M   DEL   LOW   1.44   1.49   0.00   0.67   4.84   0.00   6.85   0.62   0.00   0.53   0.62   0.00   0.53   0.62   0.00   0.53   0.62   0.00   0.62   0.00   0.63   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62   0.62	50	DELTONA	DEL	LOW	0.38	0.26	0.12	1.12	1.09	0.03	1.60	1.61	0.01
SE   DELTOMA   DEL   LOW   0.22   0.42   0.45   0.84   0.87   0.84   0.87   0.84   0.87   0.84   0.87   0.84   0.87   0.84   0.81   0.81   0.84   0.81   0.84   0.81   0.84   0.81   0.84   0.81   0.84   0.83   0.84   0.81   0.84   0.81   0.84   0.81   0.84   0.81   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84   0.84	51	DELTONA	DEL	LOW	4.35	4.33	0.02	9.89	9.44	0.45	8.06	7.85	0.21
S5 DELTONA DEL LOW 2.57 2.42 0.05 1.52 1.88 0.37 2.42 2.43 0.03   54 DELTONA DEL LOW 1.54 1.58 0.56 4.87 4.89 0.03 6.25 0.51 0.15 0.55 0ELTONA DEL LOW 0.42 0.60 0.30 0.42 0.20 0.21 1.44 1.12 0.08   55 DELTONA DEL LOW 0.42 0.60 0.30 0.42 0.20 0.21 0.43 0.40 0.43 0.40 0.43 0.40 0.43 0.40 0.43 0.40 0.30 0.42 0.30 0.42 0.30 0.42 0.33 0.42 0.33 0.42 0.43 0.40 0.43 0.40 0.43 0.40 0.33 0.44 0.33 0.44 0.33 0.44 0.33 0.44 0.33 0.44 0.33 0.44 0.45 0.45 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 <td< td=""><td>52</td><td>DELTONA</td><td>DEL</td><td>LOW</td><td>0.02</td><td>0.10</td><td>0.08</td><td>0.37</td><td>0.45</td><td>0.08</td><td>0.66</td><td>0.73</td><td>0.07</td></td<>	52	DELTONA	DEL	LOW	0.02	0.10	0.08	0.37	0.45	0.08	0.66	0.73	0.07
S4   DELTONA   DEL   LOW   1.44   1.59   0.65   4.87   4.88   0.03   5.82   6.20   0.08     S5   DELTONA   DEL   LOW   0.42   0.50   0.63   0.42   0.30   0.27   0.28   0.01     S5   DELTONA   DEL   LOW   0.42   0.50   0.56   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.32   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42 <td>53</td> <td>DELTONA</td> <td>DEL</td> <td>LOW</td> <td>2.57</td> <td>2.62</td> <td>0.05</td> <td>1.52</td> <td>1.89</td> <td>0.37</td> <td>2.42</td> <td>2.45</td> <td>0.03</td>	53	DELTONA	DEL	LOW	2.57	2.62	0.05	1.52	1.89	0.37	2.42	2.45	0.03
SE   DELTONA   DEL   LOW   0.45   0.66   0.20   0.42   0.12   1.04   1.12   0.08     56   DELTONA   DEL   LOW   0.51   0.45   0.08   0.30   0.42   0.12   0.12   0.20   0.21   0.22   0.21   0.22   0.21   0.22   0.21   0.22   0.22   0.21   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.22   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.23   0.24   0.23   0.25   0.21   0.24   0.23   0.24   0.24	54	DELTONA	DEL	LOW	1.64	1.59	0.05	4.87	4.89	0.03	6.26	6.20	0.06
9E.ITONA   DEL   LOW   -0.51   -0.45   -0.65   -0.37   -0.34   -0.32   -0.27   -0.28   -0.01     S7   DELTONA   DEL   LOW   -0.42   -0.40   -0.40   -0.42   -0.22   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.27   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02   -0.02 <td>55</td> <td>DELTONA</td> <td>DEL</td> <td>LOW</td> <td>0.42</td> <td>0.50</td> <td>0.08</td> <td>0.30</td> <td>0.42</td> <td>0.12</td> <td>1.04</td> <td>1.12</td> <td>0.08</td>	55	DELTONA	DEL	LOW	0.42	0.50	0.08	0.30	0.42	0.12	1.04	1.12	0.08
SF   DELTONA   DEL   LOW   0.42   0.30   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.42   0.44   0.42   0.44   0.42   0.44   0.43   0.43   0.43   0.43   0.44   0.44   0.44   0.44   0.43   0.43   0.44   0.44   0.44	56	DELTONA	DEL	LOW	-0.51	-0.45	0.06	-0.37	-0.34	0.03	-0.27	-0.26	0.01
SE   DELTONA   DEL   LOW   -0.43   -0.43   -0.20   -0.20   -0.20   -0.20   -0.21   0.01     SP   DELTONA   DEL   LOW   -0.51   -0.45   -0.66   -0.27   -0.26   -0.10     G0   DELTONA   DEL   LOW   -0.61   -0.20   0.03   0.42   0.05   0.68   0.62   0.62   0.62     G1   DELTONA   DEL   LOW   -0.11   -0.20   0.19   0.55   0.48   0.17   1.11   0.97   0.44   0.05   0.06   0.01   0.06   0.03   0.05   0.06   0.01   0.06   0.01   0.06   0.01   0.06   0.01   0.06   0.01   0.06   0.01   0.06   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05	57	DELTONA	DEL	LOW	0.42	0.50	0.08	0.30	0.42	0.12	1.04	1.12	0.08
SP   DELTONA   DEL   LOW   -0.51   -0.45   0.06   -0.37   -0.34   0.03   -0.07   -0.36   0.01     60   DELTONA   DEL   LOW   -0.02   0.01   0.02   0.39   0.44   0.03   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   0.08   <	58	DELTONA	DEL	LOW	-0.43	-0.40	0.03	-0.29	-0.27	0.02	-0.20	-0.19	0.01
60   DELTONA   DEL   LOW   0.03   0.07   0.48   0.38   0.42   0.03   0.60   0.82   0.82     61   DELTONA   DEL   LOW   -0.12   0.00   0.12   0.03   0.44   0.05   0.48   0.07   0.11   0.97   0.14     62   DELT -PROPOSED   DEL   LOW   -0.20   0.18   0.33   0.07   0.75   1.12   0.88   0.28   0.88     64   DELT -PROPOSED   DEL   LOW   -0.22   -0.06   0.17   0.04   0.14   0.10   0.24   0.28   0.28   0.28   0.28   0.28   0.28   0.28   0.23   0.26   7.75   1.12   0.86   7.85   0.21   0.05   1.81   0.11   0.03   1.80   0.81   0.21   0.05   1.81   0.10   0.84   0.23   0.84   0.83   0.80   0.83   0.80   0.83   0.84   0.85   0.11   0.16   0.71	59	DELTONA	DEL	LOW	-0.51	-0.45	0.06	-0.37	-0.34	0.03	-0.27	-0.26	0.01
61   DEL   LOW   -0.12   0.00   0.12   0.39   0.44   0.05   0.83   0.08   0.08     62   DELT-PROPOSED   DEL   MODERATE   4.01   4.02   0.11   0.65   0.44   0.17   1.11   0.97   0.14     63   DELT-PROPOSED   DEL   LOW   4.013   1.30   0.37   4.75   1.12   0.68   4.28   4.94     64   DELT-PROPOSED   DEL   LOW   4.35   4.30   0.02   9.84   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.44   0.45   0.44   0.45   0.44   0.45   0.44   0.45   0.44   0.45   0.44   0.45   0.45   0.44   0.45   0.44   0.45   0.45   0.45   0.45   0.45   0.45	60	DELTONA	DEL	LOW	0.03	0.07	0.04	0.39	0.42	0.03	0.60	0.62	0.02
62   DELT - PROPOSED   DEL   MODERATE   -0.01   -0.20   0.19   0.65   0.48   0.17   1.11   0.97   0.14     63   DELT - PROPOSED   DEL   LOW   -0.03   -0.08   0.08   0.08   0.13   0.17   0.44   0.41   0.10   0.68   0.28   0.68     64   DELT - PROPOSED   DEL   LOW   -0.23   -0.06   0.17   0.44   0.14   0.10   0.24   0.28   0.68     65   DELT - PROPOSED   DEL   LOW   4.35   4.33   0.02   9.89   9.44   0.45   8.66   7.86   0.21     67   DELT - PROPOSED   DEL   LOW   1.44   1.50   0.05   4.47   4.89   0.03   6.26   6.20   0.60     68   DELT - PROPOSED   DEL   LOW   3.61   4.07   0.44   0.38   4.48   0.33   0.35   1.14   1.16   0.02     70   DELT - PROPOSED <td< td=""><td>61</td><td>DELTONA</td><td>DEL</td><td>LOW</td><td>-0.12</td><td>0.00</td><td>0.12</td><td>0.39</td><td>0.44</td><td>0.05</td><td>0.83</td><td>0.80</td><td>0.03</td></td<>	61	DELTONA	DEL	LOW	-0.12	0.00	0.12	0.39	0.44	0.05	0.83	0.80	0.03
63   DELT_PROPOSED   DEL   LOW   -0.3   -0.05   0.08   0.09   0.06   0.13   0.17   0.04     64   DELT_PROPOSED   DEL   LOW   0.00   -1.38   1.33   0.07   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.05   0.05   0.07   0.017   0.03   0.06   0.03   0.03   0.00   0.03   0.03   0.00   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.03   0.04	62	DELT - PROPOSED	DEL	MODERATE	-0.01	-0.20	0.19	0.65	0.48	0.17	1.11	0.97	0.14
64   DELT - PROPOSED   DEL   LOW   0.00   -1.33   1.33   0.07   -1.72   0.68   -0.28   0.98     65   DELT - PROPOSED   DEL   LOW   4.23   4.06   0.17   0.04   -0.14   0.10   0.24   0.28   0.06     66   DELT - PROPOSED   DEL   LOW   4.35   4.33   0.02   9.89   9.44   0.45   8.06   7.83   0.21   0.03   6.226   6.21   0.03   6.26   6.20   0.06     67   DELT - PROPOSED   DEL   LOW   0.38   0.26   0.12   1.12   1.09   0.03   1.80   1.81   0.01     68   DELT - PROPOSED   DEL   LOW   3.86   3.85   0.01   0.66   0.71   0.65   1.44   1.16   0.02     71   DELT - PROPOSED   DEL   LOW   3.85   4.87   0.82   3.84   4.87   0.83   3.85   4.87   0.82   7.33   DELT - PROP	63	DELT - PROPOSED	DEL	LOW	-0.13	-0.05	0.08	0.03	0.09	0.06	0.13	0.17	0.04
65   DELT - PROPOSED   DEL   LOW   4.23   4.06   0.17   0.04   4.14   0.10   0.24   0.28   0.05     66   DELT - PROPOSED   DEL   LOW   4.35   4.33   0.02   9.84   9.44   0.45   8.06   7.85   0.21     67   DELT - PROPOSED   DEL   LOW   1.84   1.59   0.05   4.87   4.89   0.03   6.26   6.20   0.06     68   DELT - PROPOSED   DEL   LOW   -0.12   0.00   0.12   0.39   0.44   0.05   0.83   0.80     70   DELT - PROPOSED   DEL   LOW   3.86   3.85   0.01   0.86   0.71   0.05   1.14   1.16   0.02     71   DELT - PROPOSED   DEL   LOW   3.84   4.87   0.38   4.38   0.30   0.30   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00	64	DELT - PROPOSED	DEL	LOW	0.00	-1.33	1.33	0.37	-0.75	1.12	0.68	-0.28	0.96
66   DEL   LOW   4.35   4.33   0.02   9.89   9.44   0.45   8.06   7.85   0.21     67   DELT-PROPOSED   DEL   LOW   1.84   1.59   0.05   4.87   4.89   0.03   6.26   6.20   0.06     68   DELT-PROPOSED   DEL   LOW   0.38   0.26   0.12   1.00   0.03   1.60   1.60   1.60   1.60   1.60   1.60   1.60   0.03   1.60   1.60   0.03   0.44   0.05   0.83   0.80   0.00     70   DELT-PROPOSED   DEL   LOW   3.65   4.67   0.82   3.44   4.57   0.83   3.95   4.47   0.82     71   DELT-PROPOSED   DEL   LOW   3.85   4.87   0.82   3.44   4.47   0.83   3.95   4.47   0.82   3.44   4.87   0.83   3.95   4.87   0.82     73   DELT-PROPOSED   DEL   LOW   0.06	65	DELT - PROPOSED	DEL	LOW	-0.23	-0.06	0.17	0.04	0.14	0.10	0.24	0.29	0.05
67   DELT - PROPOSED   DEL   LOW   1.84   1.59   0.05   4.87   4.89   0.03   6.26   6.20   0.06     68   DELT - PROPOSED   DEL   LOW   0.38   0.26   0.12   1.12   1.09   0.03   1.60   1.61   0.01     69   DELT - PROPOSED   DEL   LOW   -0.12   0.00   0.12   0.38   0.44   0.05   0.43   0.63   0.63   0.63   0.63   0.63   0.63   0.65   1.14   1.16   0.05   1.14   1.16   0.05   1.14   1.16   0.05   1.14   1.16   0.02   1.27     0.517   DELT - PROPOSED   DEL   LOW   3.85   4.87   0.32   3.94   4.87   0.33   3.95   4.87   0.32     73   DELT - PROPOSED   DEL   LOW   3.04   0.60   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.01   0.03	66	DELT - PROPOSED	DEL	LOW	4.35	4.33	0.02	9.89	9.44	0.45	8.06	7.85	0.21
68   DELT - PROPOSED   DEL   LOW   0.38   0.26   0.12   1.12   1.09   0.03   1.60   1.61   0.01     69   DELT - PROPOSED   DEL   LOW   3.65   0.01   0.38   0.44   0.05   0.43   0.80   0.03     70   DELT - PROPOSED   DEL   LOW   3.61   4.07   0.46   3.88   0.45   4.38   0.45   4.38   5.21   0.22     71   DELT - PROPOSED   DEL   LOW   3.85   4.47   0.82   3.84   4.87   0.83   3.45   4.87   0.83   3.85   4.87   0.82   0.44   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.	67	DELT - PROPOSED	DEL	LOW	1.64	1.59	0.05	4.87	4.89	0.03	6.26	6.20	0.06
69   DEL   LOW   -0.12   0.00   0.12   0.39   0.44   0.05   0.83   0.80   0.03     70   DELT-PROPOSED   DEL   LOW   3.86   3.65   0.01   0.66   0.71   0.05   1.14   1.16   0.02     71   DELT-PROPOSED   DEL   LOW   3.81   4.07   0.46   3.88   4.33   0.45   4.98   5.21   0.22     72   DELT-PROPOSED   DEL   LOW   3.94   4.87   0.33   3.95   4.87   0.32     73   DELT-PROPOSED   DEL   LOW   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00	68	DELT - PROPOSED	DEL	LOW	0.38	0.26	0.12	1.12	1.09	0.03	1.60	1.61	0.01
70   DEL   LOW   3.66   3.65   0.01   0.66   0.71   0.05   1.14   1.16   0.02     71   DELT-PROPOSED   DEL   LOW   3.61   4.07   0.46   3.88   4.33   0.45   4.98   5.21   0.23     72   DELT-PROPOSED   DEL   LOW   3.95   4.87   0.92   3.94   4.47   0.83   3.95   4.87   0.92     73   DELT-PROPOSED   DEL   LOW   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   <	69	DELT - PROPOSED	DEL	LOW	-0.12	0.00	0.12	0.39	0.44	0.05	0.83	0.80	0.03
71   DELT - PROPOSED   DEL   LOW   3.61   4.07   0.46   3.88   4.33   0.45   4.98   5.21   0.23     72   DELT - PROPOSED   DEL   LOW   3.95   4.87   0.92   3.94   4.87   0.93   3.95   4.87   0.92     73   DELT - PROPOSED   DEL   LOW   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.01   0.50   0.01   0.50   0.01   0.50   0.01   0.50   0.01   0.41   0.41   0.00     75   SPRUCE CREEK   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.31   0.41   0.41   0.00<	70	DELT - PROPOSED	DEL	LOW	3.66	3.65	0.01	0.66	0.71	0.05	1.14	1.16	0.02
72   DELT - PROPOSED   DEL   LOW   3.85   4.87   0.92   3.94   4.87   0.93   3.95   4.87   0.92     73   DELT - PROPOSED   DEL   LOW   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.01   0.34   0.38   0.02   0.51   0.50   0.00   0.00   0.00   0.01   0.44   0.00   0.02   0.31   0.44   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.01   0.79   0.80   0.01   0.79	71	DELT - PROPOSED	DEL	LOW	3.61	4.07	0.46	3.88	4.33	0.45	4.98	5.21	0.23
73   DELT - PROPOSED   OEL   LOW   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.01   0.71   0.71   0.71   0.71   0.71   0.70   0.35   0.02   0.01   0.03   0.02   0.03   0.02   0.33   0.41   0.41   0.00   0.00     76   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.30   0.27   0.30   0.33   0.41   0.41   0.41   0.00 <td>72</td> <td>DELT - PROPOSED</td> <td>DEL</td> <td>LOW</td> <td>3.95</td> <td>4.87</td> <td>0.92</td> <td>3.94</td> <td>4.87</td> <td>0.93</td> <td>3.95</td> <td>4.87</td> <td>0.92</td>	72	DELT - PROPOSED	DEL	LOW	3.95	4.87	0.92	3.94	4.87	0.93	3.95	4.87	0.92
74   DELT - PROPOSED   DEL   LOW   3.74   4.05   0.31   5.53   5.69   0.16   5.59   5.69   0.10     75   SPRUCE CREEK   SPC   LOW   0.09   0.16   0.07   0.34   0.36   0.02   0.51   0.50   0.01     76   SPRUCE CREEK   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     77   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     79   NEW SMYRNA SAMSULA WF   NSS   LOW   0.03   -0.22   0.01   0.64   0.64   0.00   0.90   0.00     80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.22   0.33   0.34   0.01   0.71   0.71   0.71   0.71   0.71   0.71   0.71   0.71   0.71   0.71   0.71   0.71 <td>73</td> <td>DELT - PROPOSED</td> <td>DEL</td> <td>LOW</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>. 0.00</td>	73	DELT - PROPOSED	DEL	LOW	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	. 0.00
75   SPRUCE CREEK   SPC   LOW   0.09   0.16   0.07   0.34   0.36   0.02   0.51   0.50   0.01     76   SPRUCE CREEK   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     77   SPRUCE CREEK PROP   SPC   LOW   0.09   0.16   0.07   0.34   0.36   0.02   0.51   0.50   0.01     78   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     79   NEW SMYRINA SAMSULA WF   NSS   LOW   -0.02   0.01   0.64   0.64   0.00   0.90   0.90   0.00     80   NEW SMYRINA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.71   0.00   0.00   0.02   0.28   0.01   0.47   0.46   0.01	74	DELT - PROPOSED	DEL	LOW	3.74	4.05	0.31	5.53	5.69	0.16	5.59	5.69	0.10
76   SPRUCE CREEK   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     77   SPRUCE CREEK PROP   SPC   LOW   0.09   0.16   0.07   0.34   0.36   0.02   0.51   0.50   0.01     78   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.68   0.27   0.30   0.03   0.41   0.41   0.00     79   NEW SMYRNA SAMSULA WF   NSS   LOW   -0.03   -0.02   0.01   0.64   0.64   0.00   0.90   0.00     80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.02   0.39   0.40   0.01   0.71   0.71   0.00   0.00   0.01   0.71   0.71   0.00   0.00   0.03   0.33   0.34   0.01   0.71   0.71   0.00   0.00   0.01   0.71   0.71   0.71   0.00   0.01   0.33   0.34   0.01<	75	SPRUCE CREEK	SPC	LOW	0.09	0.16	0.07	0.34	0.36	0.02	0.51	0.50	0.01
77   SPRUCE CREEK PROP   SPC   LOW   0.09   0.16   0.07   0.34   0.36   0.02   0.51   0.50   0.01     78   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     79   NEW SMYRNA SAMSULA WF   NSS   LOW   -0.02   0.01   0.64   0.64   0.00   0.90   0.90   0.00     80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.02   0.39   0.40   0.01   0.71   0.71   0.80   0.01     81   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.71   0.00     82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE	76	SPRUCE CREEK	SPC	LOW	0.07	0.15	0.08	0.27	0.30	0.03	0.41	0.41	0.00
78   SPRUCE CREEK PROP   SPC   LOW   0.07   0.15   0.08   0.27   0.30   0.03   0.41   0.41   0.00     79   NEW SMYRNA SAMSULA WF   NSS   LOW   -0.03   -0.02   0.01   0.64   0.64   0.00   0.90   0.90   0.90   0.00     80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.02   0.39   0.40   0.01   0.79   0.80   0.01     81   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.00     82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.06   0.31   0.34   0.03   0.67   0.68   0.01     83   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.00   0.00   0.01   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE	77	SPRUCE CREEK PROP	SPC	LOW	0.09	0.16	0.07	0.34	0.36	0.02	0.51	0.50	0.01
79   NEW SMYRNA SAMSULA WF   NSS   LOW   -0.03   -0.02   0.01   0.64   0.64   0.00   0.90   0.00     80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.02   0.39   0.40   0.01   0.79   0.80   0.01     81   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.00     82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.06   0.31   0.34   0.03   0.67   0.68   0.01     83   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.01   0.00   0.37   0.37   0.00   0.75   0.74   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   0.00   0.37	78		SPC	LOW	0.07	0.15	0.08	0.27	0.30	0.03	0.41	0.41	0.00
80   NEW SMYRNA SAMSULA WF   NSS   LOW   0.04   0.06   0.02   0.39   0.40   0.01   0.79   0.80   0.01     81   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.71   0.01     82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.06   0.31   0.34   0.03   0.67   0.68   0.01     83   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.01   0.00   0.01   0.29   0.28   0.01   0.46   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.74   0.73   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.01	79	NEW SMYRNA SAMSULA WF	NSS	LOW	-0.03	-0.02	0.01	0.64	0.64	0.00	0.90	0.90	0.00
81   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.02   0.01   0.03   0.33   0.34   0.01   0.71   0.71   0.71   0.00     82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.06   0.31   0.34   0.03   0.67   0.68   0.01     83   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.01   0.00   0.01   0.29   0.28   0.01   0.47   0.46   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.37   0.37   0.01   0.75   0.75   0.00     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01	80	NEW SMYRNA SAMSULA WF	NSS	LOW	0.04	0.06	0.02	0.39	0.40	0.01	0.79	0.80	0.01
82   NEW SMYRNA SAMSULA WF   NSS   MODERATE   -0.06   0.00   0.06   0.31   0.34   0.03   0.67   0.68   0.01     83   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.01   0.00   0.01   0.29   0.28   0.01   0.58   0.57   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.00   0.00   0.37   0.37   0.00   0.75   0.74   0.01     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.37   0.37   0.01   0.75   0.75   0.75   0.00     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00	81	NEW SMYRNA SAMSULA WF	NSS	MODERATE	-0.02	0.01	0.03	0.33	0.34	0.01	0.71	0.71	0.00
83   NEW SMTHINA GLENCOE WF   NSG   MODENATE   0.00   0.00   0.24   0.23   0.01   0.47   0.46   0.01     84   NEW SMYRNA GLENCOE WF   NSG   MODERATE   0.01   0.00   0.01   0.29   0.28   0.01   0.58   0.57   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.00   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.37   0.37   0.01   0.75   0.75   0.00     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.01   0.38   0.37   0.01   0.75   0.75   0.00     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00   0.03	82	NEW SMYHNA SAMSULA WF	NSS	MODERATE	-0.06	0.00	0.06	0.31	0.34	0.03	0.67	0.68	0.01
84   NEW SMYRNA GLENCOLE WP   NSG   MODERATE   0.01   0.00   0.01   0.29   0.28   0.01   0.38   0.57   0.01     85   NSB - PROPOSED   NS4   MODERATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.00   0.00   0.37   0.37   0.00   0.74   0.73   0.01     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.01   0.38   0.37   0.01   0.75   0.74   0.73   0.01     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00   0.03   0.19   0.20   0.01   0.28   0.28   0.28   0.28   0.28   0.28   0.28   0.28   0.28   0.20   0.01   0.28   0.28   0.28   0.20   0.01   0.28   0.28   0.28   0.20   0.29   0.25   0.25   <	83		NSG	MODERATE	0.00	0.00	0.00	0.24	0.23	0.01	0.47	0.46	0.01
85   INSB-PHOPOSED   NS4   MODENATE   -0.03   -0.03   0.00   0.37   0.37   0.00   0.75   0.74   0.01     86   NEW SMYRNA SR 44   NS4   MODERATE   0.00   0.00   0.37   0.37   0.00   0.75   0.74   0.73   0.01     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.01   0.38   0.37   0.01   0.75   0.75   0.01     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00   0.03   0.19   0.20   0.01   0.28   0.28   0.00     89   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   -0.01   0.03   0.19   0.19   0.00   0.33   0.33   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.04   0.25   0.25   0.00   0.51   0.51   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODER	84	NEW SMYRNA GLENCOE WF	NSG	MODERATE	0.01	0.00	0.01	0.29	0.28	0.01	0.58	0.57	0.01
360   INEW SMYTRIA SH 44   NS4   MODERATE   0.00   0.00   0.37   0.37   0.00   0.74   0.73   0.01     87   NEW SMYRNA SR 44   NS4   MODERATE   0.01   0.00   0.01   0.38   0.37   0.01   0.75   0.75   0.00     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00   0.03   0.19   0.20   0.01   0.28   0.28   0.00     89   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   -0.01   0.03   0.19   0.19   0.00   0.33   0.33   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.04   0.25   0.25   0.00   0.51   0.51   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE	85		NS4	MODERATE	-0.03	-0.03	0.00	0.37	0.37	0.00	0.75	0.74	0.01
o/   INEXT SMITHINA SH 44   INS4   MODERATE   0.01   0.01   0.38   0.37   0.01   0.75   0.75   0.00     88   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.03   0.00   0.03   0.19   0.20   0.01   0.28   0.28   0.00     89   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   -0.01   0.03   0.19   0.19   0.00   0.33   0.33   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.04   0.25   0.25   0.00   0.51   0.51   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     92   DAYTONA BEACH WESTERN WF   DBW   MOD	86	NEW SMTHNA SH 44	NS4	MODERATE	0.00	0.00	0.00	0.37	0.37	0.00	0.74	0.73	0.01
00   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   -0.01   0.03   0.19   0.20   0.01   0.28   0.28   0.00     89   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   -0.01   0.03   0.19   0.19   0.00   0.33   0.33   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.04   0.25   0.25   0.00   0.51   0.51   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     92   DAYTONA BEACH WESTERN WF   DBW   MODERATE   -0.03   0.00   0.03   0.20   0.21   0.01   0.47   0.47   0.00	87		DPE	MODERATE	0.01	0.00	0.01	0.38	0.37	0.01	0.75	0.75	0.00
OS   DATIONS BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.03   0.19   0.00   0.33   0.33   0.00     90   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.04   0.00   0.04   0.25   0.25   0.00   0.51   0.51   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     92   DAYTONA BEACH WESTERN WF   DBW   MODERATE   -0.03   0.00   0.03   0.20   0.21   0.01   0.47   0.47   0.00	88			MODERATE	-0.03	0.00	0.03	0.19	0.20	0.01	0.28	0.28	0.00
String   Dec   MODERATE   -0.02   0.00   0.02   0.17   0.10   0.51   0.51   0.00     91   DAYTONA BEACH EASTERN WF   DBE   MODERATE   -0.02   0.00   0.02   0.17   0.17   0.00   0.47   0.47   0.00     92   DAYTONA BEACH WESTERN WF   DBW   MODERATE   -0.03   0.00   0.03   0.20   0.21   0.01   0.47   0.47   0.00	- <u>00</u>			MODEDATE	-0.04	-0.01	0.03	0.19	0.19	0.00	0.33	0.33	0.00
92 DAYTONA BEACH WESTERN WF DBW MODERATE -0.03 0.00 0.03 0.20 0.21 0.01 0.47 0.47 0.47 0.00	ο1		DBE	MODERATE	.0.09	0.00	0.04	0.25	0.25	0.00	0.51	0.31	0.00
	92	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.03	0.00	0.03	0.20	0.21	0.01	0.47	0.47	0.00

							Draw	down	s (ft)			
					Case 3			Case 2			Case 1	
Public well or control point number	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm	Modflow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
93	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.05	0.00	0.05	0.22	0.24	0.02	0.45	0.46	0.01
94	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.01	0.00	0.01	0.17	0.17	0.00	0.30	0.30	0.00
95	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.03	-0.03	0.00	0.20	0.19	0.01	0.36	0.34	0.02
96	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.05	-0.06	0.01	0.36	0.34	0.02	0.63	0.58	0.05
97	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.13	-0.15	0.02	0.37	0.34	0.03	0.74	0.63	0.11
98	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.05	-0.07	0.02	0.35	0.33	0.02	0.71	0.66	0.05
99	DAYTONA BEACH WESTERN WF	DBW	MODERATE	-0.31	-0.34	0.03	0.29	0.26	0.03	0.57	0.51	0.06
100	DAYTONA BEACH WESTERN WF	DBW	LOW	-0.08	-0.14	0.06	0.08	0.05	0.03	0.16	0.14	0.02
101	DAYTONA BEACH WESTERN WF	DBW	LOW	0.21	0.19	0.02	0.33	0.32	0.01	-0.07	-0.09	0.02
102	DAYTONA WEST. 1988	DBW	LOW	0.18	0.07	0.11	0.32	0.22	0.10	0.26	0.16	0.10
103	DAYTONA WEST. 1988 DBW LOW 0.17 -0.07 0.24		0.30	0.09	0.21	0.38	0.19	0.19				
104	DAYTONA WEST. 1988	DBW	LOW	0.08	-0.56	0.64	0.34	-0.23	0.57	0.57	0.05	0.52
105	DAYTONA WEST. 1988	DBW	LOW	0.05	-0.13	0.18	0.36	0.18	0.18	0.66	0.49	0.17
106	DAYTONA WEST. 1988	DBW	MODERATE	0.02	0.00	0.02	0.38	0.33	0.05	0.71	0.66	0.05
107	DAYTONA WEST. 1988	DBW	MODERATE	0.01	0.00	0.01	0.33	0.32	0.01	0.66	0.64	0.02
108	DAYTONA WEST. 1988	DBW	LOW	0.12	0.08	0.04	0.28	0.24	0.04	0.20	0.17	0.03
109	DAYTONA WEST. 1988	DBW	MODERATE	0.12	0.00	0.12	0.32	0.21	0.11	0.35	0.26	0.09
110	ORMOND BEACH DIVISION	OBD	LOW	0.09	0.07	0.02	0.31	0.31	0.00	0.49	0.48	0.01
111	ORMOND BEACH DIVISION	OBD	LOW	0.04	0.02	0.02	0 <i>.2</i> 7	0.26	0.01	0.45	0.45	0.00
112	ORMOND BEACH DIVISION	OBD	LOW	-0.01	-0.02	0.01	0.20	0.20	0.00	0.37	0.36	0.01
113	ORMOND BEACH DIVISION	OBD	LOW	-0.02	-0.02	0.00	0.19	0.19	0.00	0.35	0.34	0.01
114	ORMOND BEACH DIVISION	OBD	LOW	-0.03	-0.03	0.00	0.14	0.14	0.00	0.27	0.27	0.00
115	ORMOND BEACH DIVISION	OBD	LOW	0.09	0.07	0.02	0.31	0.31	0.00	0.49	0.48	0.01
116	ORMOND BEACH DIVISION	OBD	LOW	0.05	0.04	0.01	0.29	0.28	0.01	0.48	0.47	0.01
117	ORMOND BEACH DIVISION	OBD	LOW	-0.01	-0.02	0.01	0.20	0.20	0.00	0.37	0.36	0.01
118	ORMOND BEACH SR 40	OB4	LOW	-0.10	-0.02	0.08	0.28	0.30	0.02	0.56	0.56	0.00
119	ORMOND BEACH SR 40	OB4	LOW	-0.24	-0.12	0.12	0.33	0.35	0.02	0.75	0.74	0.01
120	ORMOND BEACH SR 40	OB4	MODERATE	-0.04	_0.00	0.04	0.27	0.27	0.00	0.52	0.51	0.01
121	ORMOND BEACH SR 40	OB4	MODERATE	-0.05	0.00	0.05	0.24	0.25	0.01	0.44	0.44	0.00
122	ORMOND BEACH SR 40	OB4	LOW	-0.27	-0.18	0.09	0.38	0.38	0.00	0.87	0.86	0.01
123	ORMOND BEACH HUDSON	ОВН	LOW	-0.04	0.17	0.21	0.42	0.44	0.02	0.65	0.65	0.00
124	ORMOND BEACH HUDSON	OBH	LOW	-0.02	0.13	0.15	0.35	0.36	0.01	0.53	0.54	0.01
125	ORMOND BEACH HUDSON	OBH	LOW	0.00	0.12	0.12	0.37	0.39	0.02	0.56	0.56	0.00
126	ORMOND BEACH HUDSON	OBH	LOW	0.01	0.08	0.07	0.28	0.29	0.01	0.41	0.41	0.00
127	ORMOND BEACH HUDSON	OBH	LOW	-0.02	0.14	0.16	0.42	0.45	0.03	0.67	0.67	0.00
128	ORMOND BEACH HUDSON	OBH	LOW	-0.02	0.19	0.21	0.45	0.49	0.04	0.71	0.71	0.00
129	ORMOND BEACH HUDSON	OBH	LOW	0.01	0.15	0.14	0.39	0.41	0.02	0.60	0.60	0.00
130	ORMOND BEACH HUDSON	ОВН	LOW	0.03	0.12	0.09	0.29	0.31	0.02	0.44	0.44	0.00
131	ORMOND BEACH HUDSON	OBH	LOW	-0.02	0.13	0.15	0.35	0.36	0.01	0.53	0.54	0.01
132	ORMOND BEACH HUDSON	OBH	LOW	0.00	0.12	0.12	0.32	0.34	0.02	0.49	0.49	0.00
133		OBR	LOW	-0.02	0.00	0.02	0.32	0.33	0.01	0.69	0.70	0.01
134		OBR	LOW	-0.02	0.00	0.02	0.37	0.37	0.00	0.73	0.73	0.00
135		JKV	LOW	0.06	0.07	0.01	0.65	0.66	0.01	1.21	1.21	0.01
100				0.11	0.12	0.01	0.35	0.35	0.00	0.40	0.41	0.01
139	V CTY - BREEZEWOOD		LOW	0.00	0.00	0.00	0.20	0.20	0.00	0.39	0.39	0.00
	T	1		V-4.7	0.4.0	U.VE	0.04	1 0.00	0.01	1	0.01	

				Drawdowns (ft)								
					Case 3			Case 2		(	Case 1	
Public well or control point number	Well Description	Public Supply Utility Need Area	Potential for Vegetative Harm	Modflow	Gams	Error	Modflow	Gams	Error	Modflow	Gams	Error
139	V CTY - LAKE MARIE	VLM	LOW	0.57	0.57	0.00	1.09	1.10	0.01	1.10	1.10	0.00
140	V CTY - TERRA ALTA	VTA	LOW	0.23	0.23	0.00	0.54	0.54	0.00	0.57	0.57	0.00
141	V CTY - W ORANGE CITY	VTA	LOW	0.06	0.06	0.00	0.33	0.34	0.01	0.59	0.59	0.00
142	DELAND - BRANDYWINE	DEB	MODERATE	0.00	0.00	0.00	0.28	0.28	0.00	0.31	0.31	0.00
143	DELAND - SPRING GARDEN	DEB	MODERATE	0.00	0.00	0.00	0.34	0.34	0.00	0.40	0.41	0.01
144	DELAND - SPRING GARDEN	DEB	LOW	0.00	0.00	0.00	0.34	0.34	0.00	0.40	0.41	0.01
145	DELAND - GLENWOOD EST	DEB	LOW	-0.06	-0.05	0.01	0.15	0.16	0.01	0.22	0.22	0.00
146	DELAND - WOODLAND MANOR	DWW	MODERATE	-0.10	-0.09	0.01	0.18	0.18	0.00	0.22	0.22	0.00
147	DELAND - LONGLEAF PLANT.	DHH	LOW	0.00	-0.21	0.21	0.30	0,19	0.11	0.45	0.38	0.07
148	DELAND - HOLIDAY HILLS	DHH	LOW	-0.08	-0.10	0.02	0.26	0.25	0.01	0.53	0.52	0.01
149	ELLWOOD TITCOMB	Επ	MODERATE	-0.02	0.00	0.02	0.22	0.24	0.02	0.17	0.18	0.01
150	CITY OF EDGEWATER	EDG	MODERATE	0.30	0.29	0.01	0.57	0.55	0.02	0.81	0.80	0.01
151	CITY OF EDGEWATER	EDG	MODERATE	0.29	0.28	0.01	0.55	0.54	0.01	0.79	0.78	0.01
152	CITY OF EDGEWATER	EDG	LOW	0.18	0.18	0.00	0.23	0.23	0.00	0.27	0.27	0.00
153	CITY OF EDGEWATER	EDG	LOW	0.42	0.40	0.02	0.56	0.55	0.01	0.69	0.68	0.01
154	TYMBER CREEK UTIL.	TCU	LOW	-0.17	-0.08	0.09	0.43	0.44	0.01	0.88	0.88	0.00
155	THE TRAILS INC.	ודר	LOW	-0.09	0.09	0.18	0.50	0.52	0.02	0.89	0.89	0.00
156	LAKE HELEN	LHE	LOW	-0.03	-0.01	0.02	0.27	0.28	0.01	0.39	0.40	0.01
157	LAKE HELEN	LHE	LOW	0.01	0.00	0.01	0.61	0.60	0.01	0.92	0.92	0.00
158	HACIENDA DEL RIO	HDR	LOW	0.07	0.07	0.00	0.11	0.11	0.00	0.15	0.14	0.01
159	NATIONAL GARDENS	NGA	LOW	-1.58	-1.59	0.01	-1.52	-1.53	0.01	-1.44	-1.44	0.00
160	NATIONAL GARDENS	NGA	LOW	-1.61	-1.61	0.00	-1.55	-1.55	0.00	-1.47	-1.47	0.00
161	NATIONAL GARDENS	NGA	LOW	-3.10	-3.10	0.00	-3.03	-3.03	0.00	-2.93	-2.93	0.00
162	NATIONAL GARDENS	NGA	LOW	-2.66	-2.67	0.01	-2.59	-2.59	0.00	-2.47	-2.48	0.01
163	NATIONAL GARDENS	NGA	LOW	-1.36	-1.35	0.01	-1.26	-1.26	0.00	-1.15	-1,15	0.00
164	ORANGE CITY	OCY	LOW	0.05	0.06	0.01	0.54	0.54	0.00	1.10	1.10	0.00
165	SUNSHINE HOLIDAY PK	SHP	LOW	-0.01	0.00	0.01	0.02	0.02	0.00	0.05	0.05	0.00
166	PLANTATION BAY	PTB	MODERATE	0.00	0.00	0.00	0.17	0.17	0.00	0.35	0.35	0.00
167	PLANTATION BAY	PTB	LOW	0.01	0.01	0.00	0.20	0.21	0.01	0.40	0.40	0.00
168	L BERESFORD WATER ASSN	LBW	LOW	-0.04	-0.04	0.01	0.19	0.19	0.00	0.50	0.49	0.01
169	FPL - TURNER POWER PLNT	FPT	HIGH	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
170	SHERWOOD MEDICAL CO.	SMC	LOW	0.27	0.27	0.00	0.39	0.39	0.00	0.27	0.27	0.00
171	SHERWOOD MEDICAL CO.	SMC	LOW	0.19	0.19	0.00	0.29	0.29	0.00	0.27	0.27	0.00
172	FPL - SANFORD PWR PLNT	FPS	LOW	0.26	0.26	0.00	0.32	0.32	0.00	0.32	0.32	0.00
173	FPL - SANFORD PWR PLNT	FPS	LOW	0.33	0.33	0.00	0.41	0.41	0.00	0.40	0.40	0.00
174	FPL - SANFORD PWR PLNT	FPS	LOW	0.13	0.12	0.01	0.35	0.35	0.00	0.41	0.40	0.01
175	FPL - SANFORD PWR PLNT	FPS	LOW	0.23	0.23	0.00	0.54	0.54	0.00	0.57	0.57	0.00
176	TOMOKA CORR. FACILITY	TCF	MODERATE	0.10	-0.14	0.24	0.11	-0.13	0.24	0.33	0.12	0.21
177	V CTY GOVT COMPLEX	VGC	LOW	0.01	0.00	0.01	0.31	0.31	0.00	0.62	0.62	0.00
L			Total	33.06	8.91	35.57	95.67	73.84	28.51	129.48	109.85	23.29
L			Avg	0.19	0.05	0.20	0.54	0.42	0.16	0.73	0.62	0.13
		+	Min	-3.10	-3.10	0.00	-3.03	-3.03	0.00	-2.93	-2.93	0.00
			Max	4.35	4.35 4.87 1.97			9.44	1.68	8.06	7.85	1.45

					Well withdrawal rates (MGD)						
Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
46	58	1	ALT	ALTAMONTE SPR. (NEW CHARLOTTE ST W	1	0.00	4,15	0.00	0.00	0.00	4.49
48	54	2	ALT	ALTAMONTE SPR. (PLANT #3)	1	0.65	0.00	1.50	1.50	1.50	3.00
49	57	3	ALT	ALTAMONTE SPR. (PLANT #1)	1	0.01	0.00	1.50	1.50	0.11	1.50
49	48	4	ALT	ALTAMONTE SPR. (PLANT #4)	1	0.32	3.02	2.17	2.06	2.07	3.74
50	57	5	ALT	ALTAMONTE SPR. (PLANT #1)	1	0.08	0.00	1.04	1.34	1.50	1.50
52	45	6	ALT	ALTAMONTE SPR. (PLANT #5)	1	3.80	0.00	0.00	0.00	0.00	4.49
53	55	7	ALT	ALTAMONTE SPR. (PLANT #2)	1	1.08	1.07	0.00	0.00	0.53	3.46
52	45	8	ALT	ALTAMONTE SPRINGS (PLANT #5)	2	0.02	0.00	3.99	3.79	4.49	4.49
54	55	9	ALT	ALTAMONTE SPRINGS (PLANT #2)	2	1.98	1.95	0.00	0.00	0.00	3.46
43	31	10	APO	APOPKA - GROSSENBACHER WF.	1	1.04	3.38	0.25	1.50	2.11	5.98
37	27	11	APO	APOPKA - PROPOSED NORTHWEST WF	2	0.00	4.44	5.98	5.98	5.98	5.98
43	31	12	APO	APOPKA - GROSSENBACHER WF.	2	1.04	3.38	5.98	5.98	5.98	5. <del>9</del> 8
45	27	13	APO	APOPKA - PROPOSED SOUTHWEST WF	2	0.00	6.77	7.11	7.11	7.07	7.11
53	36	14	APO	APOPKA - SHEELOR OAKS WF.	2	2.07	3.17	0.00	0.00	0.00	3.61
45	63	15	CAS	CASSELBERRY (NORTH WTP; WELL N-1)	1	2.03	0.48	0.90	0.90	0.90	3.50
53	63	16	CAS	CASSELBERRY (HOWELL PARK; CANON W	1	0.31	0.41	0.90	0.90	0.20	2.11
53	62	17	CAS	CASSELBERRY (HOWELL PARK; HP-1 WE	1	0.39	0.61	0.79	0.79	0.00	2.11
59	65	18	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	1	0.89	0.51	0.00	0.00	0.00	2.88
46	63	19	CAS	CASSELBERRY (NORTH WTP; WELL N240	2	0.15	1.01	1.50	1.50	1.50	3.45
53	64	20	CAS	CASSELBERRY (HOWELL PARK WTP; WEL	2	0.07	1.40	0.00	0.00	1.50	1.50
59	65	21	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	2	0.90	0.51	0.75	0.75	0.75	0.75
59	66	22	CAS	CASSELBERRY (SOUTH WTP; WELL \$360	2	0.08	1.40	1.50	1.50	1.50	2.88
104	35	23	CFU	CENTRAL FLA UTIL (CAMELOT, CD 182	1	0.99	2.35	1.24	1.24	1.24	4,49
105	60	24	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.10	0.23	0.45	0.45	0.45	0.45
107	57	25	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.19	0.45	1.35	1.35	1.35	1.35
54	97	26	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.00	0.09	0.25	0.25	0.25	0.43
55	96	27	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.39	0.16	0.00	0.00	0.00	0.73
68	8	28	CLE	CLERMONT (GRAND)	1	0.91	1.57	0.67	0.67	0.67	3.37
71	7	29	CLE	CLERMONT (4TH STREET)	1	0.52	0.90	1.80	1.80	1.80	2.36
87	100	30	COC	COCOA (WELL #10)	1	0.19	0.15	0.00	0.13	0.93	1.65
89	100	31	COC	COCOA (WELL #9)	1	0.15	0.24	1.40	1.65	1.65	1.65
90	100	32	COC	COCOA (WELL #8)	1	0.24	0.48	1.65	1.65	1.65	1.65
92	95	33	COC	COCOA (WELL #13 & 13R)	1	1.53	0.60	0.00	0.00	0.00	1.65
92	94	34	COC	COCOA (WELL #14)	1	2.42	1,66	0.00	0.00	0.00	3.02
92	100	35	COC	COCOA (WELL #3)	1	0.13	0.00	0.82	0.82	0.82	0.82
93	93	36	COC	COCOA (WELL #16)	1	5.83	3.53	0.00	0.00	0.00	4.49
93	92	37	COC	COCOA (WELL #17)	1	2.70	1.74	0.00	0.00	0.00	3.02
93	100	38	coc	COCOA (WELL #7) <phase correct!<="" td=""  =""><td>1</td><td>0.40</td><td>0.24</td><td>1.65</td><td>1.65</td><td>1.65</td><td>1.65</td></phase>	1	0.40	0.24	1.65	1.65	1.65	1.65
93	99	39	COC	COCOA (WELL #7A)	1	0.22	0.26	0.00	0.00	0.00	1.65
94	100	40	COC	COCOA (WELL # 1)	1	0.00	0.15	1.65	1.65	1.65	1.65
94	92	41	COC	COCOA (WELL #18)	1	2.34	1.86	0.00	0.00	0.00	3.02
95	100	42	COC	COCOA (WELL #6) <phase correcti<="" i="" td=""><td>1</td><td>0.00</td><td>0.00</td><td>0.82</td><td>0.82</td><td>0.82</td><td>0.82</td></phase>	1	0.00	0.00	0.82	0.82	0.82	0.82
96	92	43	coc	COCOA (WELL #19)	1	1.30	1.86	0.00	0.00	0.00	3.02
96	100	44	coc	COCOA (WELL #5)	1	0.42	0.24	1.65	1.65	1.65	1.65
97	102	45	COC	COCOA (WELL #12A)	1	0.26	0.24	1.65	1.65	1.65	1.65
97	100	46	COC	COCOA (WELL #4)	1	0.28	0.24	1.65	1.65	1.65	1.65
97	92	47	COC	COCOA PROP. WELL 20	1	0.00	1.86	0.00	0.00	0.00	3.02
98	100	48	coc	COCOA (WELL #11)	1	0.74	0.24	0.00	1.26	0.83	1.65

# Table A8. East-central optimization model public supply well withdrawal rates

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity : (MGD)
98	102	49	COC	COCOA (WELL #12B)	1	0.54	0.24	1.65	1.65	1.65	1.65
98	101	50	COC	COCOA (WELL #4A1)	1	0.42	0.24	1.20	0.00	0.00	1.65
98	92	51	coc	COCOA PROP. WELL 22	1	0.00	3.73	0.00	0.00	0.00	7.48
99	92	52	COC	COCOA PROP. WELL 32	1	0.00	3.73	0.00	0.00	0.00	7.48
<i>,</i> 99	101	53	coc	COCOA PROP. WELL 39	1	0.00	0.48	0.00	0.00	0.00	7.48
100	92	54	COC	COCOA PROP. WELL 33	1	0.00	1.86	5.39	5.18	4.99	7.48
100	101	55	COC	COCOA PROP. WELL 41	1	0.00	0.48	0.00	0.00	0.00	7.48
101	101	56	COC	COCOA PROP. WELL 43	1	0.00	0.48	1.99	1.87	1.80	7.48
102	101	57	COC	COCOA PROP. WELL 44	1	0.00	0.24	3.93	3.82	3.71	7.48
86	60	58	CON	SO. STATES UTIL (LAKE CONWAY PARK	1	0.01	0.01	0.00	0.00	0.00	0.11
87	60	59	CON	SO. STATES UTIL (LAKE CONWAY PARK	1	0.01	0.01	0.00	0.00	0.00	0.11
88	59	60	CON	SO. STATES UTIL (DAETWYLER SHORES	1	0.03	0.04	0.00	0.00	0.00	0.11
88	60	61	CON	SO. STATES UTIL (DAETWYLER SHORES	1	0.03	0.04	0.00	0.00	0.00	0.11
3	86	62	DEL	DELTONA-PROPOSED	1	0.00	1.61	1.87	1.87	1.87	2.06
4	88	63	DEL	DELTONA	1	1.45	2.41	0.00	0.00	0.00	3.74
4	80	64	DEL	DELTONA-PROPOSED	1	0.00	0.80	1.87	1.87	1.87	1.87
4	82	65	DEL	DELTONA-PROPOSED	1	0.00	0.80	1.44	1.87	1.87	1.87
4	84	66	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.17	0.63	1.87
5	74	67	DEL	DELTONA	1	0.48	0.80	1.87	1.87	1.87	1.87
6	76	68	DEL	DELTONA	1	0.48	0.80	1.87	1.87	1.87	1.87
6	88	69	DEL	DELTONA	1	0.48	0.00	0.00	0.00	0.00	1.87
6	86	70	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
7	71	71	DEL	DELTONA	1	0.48	1.61	1.87	1.87	1.87	2.06
7	78	72	DEL	DELTONA	1	1.94	3.21	0.00	0.00	0.00	3.74
7	74	73	DEL	DELTONA-PROPOSED	1	1.45	3.21	0.43	1.92	3.38	3.74
8	80	74	DEL	DELTONA	1	0.48	0.80	0.00	0.00	0.00	1.87
8	76	75	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
8	83	76	DEL	DELTONA-PROPOSED	1	0.00	2.41	0.00	0.00	0.00	3.74
9	π	77	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	80	78	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	85	79	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	88	80	DEL	DELTONA-PROPOSED	1	0.00	1.61	0.00	0.00	0.00	1.87
77	103	81	ECU	ECON UTIL (WEDGEFIELD)	1	0.10	0.12	0.00	0.00	0.00	0.16
77	104	82	ECU	ECON UTIL (WEDGEFIELD)	1	0.03	0.04	0.15	0.15	0.15	0.16
12	12	83	EUS	EUSTIS (C R 44A ?)	1	0.17	1.36	2.69	2.69	2.69	2.69
12	13	84	EUS	EUSTIS (C R 44A ?)	1	0.17	1.36	0.00	0.00	0.00	2.69
13	22	85	EUS	EUSTIS (HAZELTON AVE.)	1	1.33	0.54	0.00	0.00	0.00	1.12
15	11	86	EUS	EUSTIS (ARDICE PLACE)	1	1.23	2.53	3.09	3.09	3.09	4.86
86	93	87	FDC	FL DEPT OF CORR	1	0.05	0.05	0.00	0.00	0.00	0.22
87	92	88	FDC	FL DEPT OF CORR	1	0.11	0.11	0.00	. 0.00	0.00	0.22
87	93	89	FDC	FL DEPT OF CORR	1	0.05	0.05	0.16	0.16	0.16	0.22
104	47	90	KIS	CITY OF KISSIMMEE (NORTH BERMUDA)	[ 1	2.05	4.89	0.13	0.13	0.13	8.98
106	49	91	KIS	CITY OF KISSIMMEE (RUBY ST.)	1	1.77	4.22	8.98	8.98	8.98	8.98
1	78	92	LHE	LAKE HELEN - PLANT #2	1	0.09	0.29	0.58	0.58	0.58	0.75
2	78	93	LHE	LAKE HELEN - PLANT #1	1	0.13	0.29	0.00	0.00	0.00	0.75
34	101	94	LHY	LAKE HARNEY WATER ASSOC	1	0.01	0.03	0.03	0.03	0.03	0.29
35	101	95	LHY	LAKE HARNEY WATER ASSOC	1	0.02	0.00	0.00	0.00	0.00	0.29
24	59	96	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	0.00	2.21	2.30	2.30
25	59	97	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	1.79	1.20	1.34	2.30

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
26	59	98	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	1.61	0.38	0.00	0.00	2.30
27	59	99	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	0.00	0.00	0.00	2.30
28	59	100	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.25	0.80	0.00	0.00	0.00	2.30
29	59	101	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.25	0.80	0.00	0.00	0.00	2.30
39	57	102	LON	LONGWOOD	1	1.25	2.28	0.00	0.00	1.15	3.37
40	60	103	LON	LONGWOOD	1	0.78	0.87	3.15	3.15	2.00	3.37
55	60	104	MAI	MAITLAND - THISTLE LANE	1	0.57	0.69	0.00	0.00	0.55	2.54
57	56	105	MAI	MAITLAND - MINNEHAHA CIRCLE	1	0.09	0.11	0.00	0.00	0.00	1.08
58	53	106	MAI	MAITLAND - WELL NO. 5A	1	0.19	0.24	0.00	0.00	0.00	2.24
57	50	107	MAI	MAITLAND - KELLER	2	1.46	1.79	0.00	0.00	2.99	6.43
58	53	108	MAI	MAITLAND - WELL NO. 5A	2	0.58	0.71	0.00	0.00	0.00	2.24
65	87	109	OE1	OCPUD EAST REG: (BONNEVILLE)	1	0.74	0.00	0.00	0.00	0.00	7.48
68	65	110	OE1	OCPUD EAST REG: (CORRINE TERRACE)	1	0.20	0.00	0.00	0.00	0.00	0.22
72	75	111	OE3	OCPUD EAST REG: (ECON)	1	1.79	4.00	0.00	0.00	0.00	4.19
73	75	112	OE3	OCPUD EAST REG: (ECON)	1	1.79	4.00	0.00	0.00	0.00	4.19
79	74	113	OE5	OCPUD EAST REG: ERWF	1	0.00	20.25	0.00	0.00	0.00	20.94
82	66	114	OE2	OCPUD EAST REG: (CONWAY)	1	0.74	2.09	0.00	0.00	0.00	4.49
82	67	115	OE2	OCPUD EAST REG: (CONWAY)	1	0.74	2.09	0.00	0.00	0.00	4.49
94	73	116	OE4	OCPUD EAST REG: (LAKE NONA)	1	0.03	2.00	2.00	2.00	2.00	2.99
82	67	117	OE2	OCPUD EAST REG: (CONWAY)	2	1.01	3.47	0.00	0.00	0.00	4.49
63	33	118	000	OCOEE (HACKNEY PRAIRIE)	1	0.57	0.68	0.00	. 0.00	0.00	3.74
63	31	119	000	OCOEE (JAMELA & WURST ROAD)	1	0.00	0.00	0.00	0.00	0.00	1.50
65	29	120	000	OCOEE (JAMELA & WURST ROAD)	1	0.89	0.93	0.00	0.00	0.00	1.50
68	27	121	000	OCOEE (KISSIMEE AVE)	1	0.67	0.93	0.00	0.00	0.00	4.32
73	28	122	000	OCOEE (SOUTH PLANT)	2	0.00	2.94	0.00	0.00	1.51	2.99
94	41	123	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	1	0.89	2.40	0.00	0.00	0.00	3.61
95	41	124	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	1	0.89	2.40	3.61	3.61	3.61	3.61
100	30	125	OS1	OCPUD SOUTH REG: (CYPRESS WALK)	1	0.28	1.25	1.35	1.35	1.35	1.35
100	31	126	OS1	OCPUD SOUTH REG: (CYPRESS WALK)	1	0.28	1.25	0.96	0.96	0.96	1.35
100	56	127	OS3	OCPUD SOUTH REG: (MEADOW WOODS)	1	0.08	0.20	1.65	1.37	0.83	5.39
101	46	128	OS2	OCPUD SOUTH REG: (HUNTERS CREEK)	1	0.12	0.50	0.50	0.50	0.50	8.98
101	32	129	OS1	OCPUD SOUTH REG: (VISTANA)	1	1.05	4.00	4.19	4.19	4.19	4.19
94	41	130	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	2	0.59	1.68	2.87	2.87	2.87	3.61
101	54	131	OS3	OCPUD SOUTH REG: SOUTH REG. WELL	2	0.00	10.00	8.55	8.83	9.37	10.47
28	31	132	OW1	OCPUD WEST REG: (MT. PLYMOUTH LAK	1	0.19	0.90	1.44	1.44	1.44'	1.44
38	25	133	OW1	OCPUD WEST REG: (PLYMOUTH)	1	· 0.00	1.50	0.00	0.00	0.42	1.80
39	24	134	OW1	OCPUD WEST REG: (PLYMOUTH HILLS)	1	0.03	0.00	0.00	0.00	0.16	0.16
43	38	135	OW1	OCPUD WEST REG: (BENT OAKS)	1	1.32	0.00	1.00	1.00	0.26	5.24
43	26	136	OW1	OCPUD WEST REG: (PLYMOUTH CENTRAL	1	0.08	0.00	0.00	0.00	0.16	0.16
54	32	137	OW1	OCPUD WEST REG: (ORANGE VILLAGE)	1	0.02	0.03	0.00	0.00	0.00	0.09
55	46	138	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
55	47	139	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
56	46	140	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
65	21	141	OW6	OCPUD WEST REG: (MAGNOLIA WOODS)	1	0.04	0.03	0.05	0.00	0.00	1.50
70	15	142	OW6	OCPUD WEST REG: LAKE JOHN SHORES	1	0.00	0.03	0.00	0.07	0.07	0.34
72	36	143	OW3	OCPUD WEST REGIONAL (OAK MEADOWS)	1	0.39	0.00	0.00	0.00	0.00	4.49
76	30	144	OW2	OCPUD WEST REG: (WINDERMERE DOWNS	1	0.22	0.00	0.00	0.00	0.00	0.30
79	27	145	OW2	OCPUD WEST REG: (WAUSEON RIDGE)	1	0.03	0.00	0.00	0.00	0.00	0.04
81	36	146	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	1	0.18	0.00	0.00	0.00	0.00	5.24

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
81	23	147	OW2	OCPUD WEST REG: (KELSO)	1	0.02	0.00	0.00	0.00	0.00	0.58
81	29	148	OW2	OCPUD WEST REG: (WINDERMERE)	1	0.01	0.00	0.00	0.00	0.00	0.01
82	36	149	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	1	0.06	0.00	0.00	0.00	0.00	5.24
55	46	150	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
55	47	151	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
55	35	152	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.00	6.00	5.04	5.04	5.04	7.48
55	36	153	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.00	14.00	14.96	14.96	14.96	14.96
56	46	154	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
72	36	155	OW3	OCPUD WEST REGIONAL (OAK MEADOWS)	2	1.55	0.00	0.00	0.00	0.00	4.49
82	36	156	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	2	1.42	0.00	0.00	0.00	0.00	5.24
4	73	157	OCY	Or. City Ctry V	1	0.14	0.39	0.00	0.00	0.00	0.75
4	67	158	OCY	ORANGE CITY	1	0.17	0.91	1.87	1.87	1.87	1.87
4	68	159	OCY	ORANGE CITY	1	0.34	2.74	2,17	2.17	2.17	5.39
104	59	160	ORO	ORANGE/OSCEOLA (BEUNAVENTURA LAKE	1	1.14	2.72	1.77	1.77	1.77	5.39
104	58	161	ORO	ORANGE/OSCEOLA MGMENT	1	0.39	0.93	1.87	1.87	1.87	1.87
83	90	162	OU13	OUC-STANTON ENERGY CTR.	1	0.40	0.40	0.40	0.40	0.40	0.45
87	35	163	OU1	OUC (DR. PHILLIPS)	1	5.33	6.20	0.37	6.20	6.20	13.46
	41	164	012	OUC (MARTIN)	+	9.17	20.19	12.92	10.88	11.85	20.94
68	55	165	0114		- ,	2.31	2.42	0.00	0.00	0.00	8.98
68	64	166	0010		2	1.39	6.40	0.00	0.00	6.00	6.73
68	40	167	0015		2	5.60	7.84	0.00	0.00	0.40	8.23
68	41	168	005		2	2.80	7.84	0.00	0.00	0.00	8.23
60	55	169	003		2	3.46	3.63	0.00	0.00	0.00	0.23
60	55	170	014		2	1 15	0.72	0.00	0.00	0.00	0.90
60		170	0115		2	1.15	2.02	0.00	0.00	0.00	0.30
70	41 55	172	005		2	2.00	3.92	0.00	0.00	0.00	8.23
70	55	172	004		2	1.15	1.21	0.00	0.00	0.00	8.98
70	50	173	000		2	2.00	4.70	0.00	0.00	0.00	8.23
76	59	174	008		2	3.35	4.73	7.09	7.09	6.79	8.23
70	- <del>54</del>	175	000		2	2.00	0.11	0.00	0.00	0.00	8.23
	62	170	003		2	0.00	0.13	3.15	5.43	0.00	8.23
	55	177	006		2	5.00	7.54	0.00	0.00	0.00	8.23
-/8	62	1/8	003		2	3.33	3.0/	0.00	0.00	0.00	8.23
80	6/	179	0012		2	0.00	7.00	0.00	0.00	0.00	7.48
80	39	180	007		2	2.09	3.67	0.00	. 0.00	0.00	8.23
80	40	181	007		2	4.17	/.33	0.00	0.00	0.00	8.23
	53	182	009	OUC - SKT LAKE	2	0.00	15.30	15.30	15.30	15.30	15.71
98	55	183	0011		2	0.00	/.20	7.20	7.20	7.20	7.48
51	82	184	OVI	OVIEDO (PLNT #1)	1	0.78	3.02	1.68	1.55	1.54	5.98
52	83	185	NO I	UVIEDU (ALAFAYA WOODS - PLNT #2)		0.37	3.68	0.13	0.00	0.00	5.98
53	82	186	OVI	OVIEDO-PROP. WELL LAKE GEM	1	0.00	1.47	0.36	0.92	0.85	2.99
54	86	187	OVI	OVIEDO (ALAFAYA WOODS - PLNT #2)		0.00	1.47	2.99	2.99	2.99	2.99
69	79	188	PAM	PARK MANOR WATER WORKS	1	0.22	0.20	0.41	0.41	0.41	0.75
70		189			1	0.22	0.20	0.00	0.00	0.00	0.75
114	34	190	POI	POINCIANA UTIL (IP-1&2)	1	0.41	0.98	0.00	0.00	0.00	1.12
117	39	191	POI	POINCIANA (CORES-1,2&3 89-90)	1	0.06	0.15	0.69	0.69	0.69	0.75
118	38	192	POI	POINCIANA (CORES-1,2&3 89-90)	1	0.13	0.31	0.75	0.75	0.75	0.75
22	67	193	RAV	UTILITIES OF FLA (RAVENNA PARK)	1	0.12	0.12	0.24	0.24	0.24	0.37
23	65	194	RAV	UTILITIES OF FLA (CRYSTAL LAKE)	1	0.03	0.07	0.00	0.00	0.00	0.37
25	65	195	RAV	UTILITIES OF FLA (PHILLIPS)	1	0.03	0.02	0.00	0.00	0.00	0.37

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
30	68	196	RAV	UTILITIES OF FLA (PARK RIDGE)	1	0.00	0.02	0.00	0.00	0.00	0.45
91	20	197	RCU	REEDY CREEK UTIL (PUMP STN A; 89-	1	3.65	8.89	4.69	8.05	8.98	8.98
92	22	198	RCU	REEDY CREEK UTIL (PUMP STN A; 89-	1	1.82	4.45	4.49	4.49	4.49	4.49
98	30	199	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	1.29	3.19	0.00	0.00	0.00	3.37
100	31	200	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	1.59	3.37	3.37	2.44	3.37
100	32	201	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	1.59	3.37	0.00	0.00	3.37
101	22	202	RCU	REEDY CREEK UTIL (PMP STN B)	1	3.96	3.09	4.11	4.11	4.11	4.11
102	24	203	RCU	REEDY CREEK UTIL (PMP STN B)	1	7.93	6.19	8.98	8.98	8.98	8.98
21	61	204	SAF	SANFORD (WELLFIELD # 4) (PROP)	1	0.00	0.55	0.00	0.00	0.00	3.37
21	62	205	SAF	SANFORD (WELLFIELD #3)	1	1.29	2.07	0.00	0.00	0.00	3.74
21	63	206	SAF	SANFORD (WELLFIELD #3)	1	0.86	1.18	1.50	1.16	1.09	1.50
22	61	207	SAF	SANFORD (WELLFIELD # 4)	1	0.00	1.11	0.00	0.00	0.00	3.37
23	63	208	SAF	SANFORD (WELLFIELD #2)	1	0.35	0.00	1.81	0.00	0.00	2.92
24	63	209	SAF	SANFORD (WELLFIELD #2)	1	0.71	1.66	0.00	1.03	1.05	2.92
27	69	210	SAF	SANFORD (WELLFIELD #1)	1	0.00	0.00	0.00	0.00	0.00	1.50
28	68	211	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.32	0.44	0.75	0.96	1.50
28	69	212	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.30	0.00	0.00	0.00	1.50
29	68	213	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.21	1.30	1.35	1.28	1.50
29	69	214	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.11	0.00	0.00	0.00	1.50
37	54	215	SAN	SANLANDO UTIL CORP (DES PINAR)	1	0.00	0.53	0.00	0.00	0.00	2.62
38	55	216	SAN	SANLANDO UTIL CORP (DES PINAR)	1	0.57	1.06	0.64	1.17	2.29	2.62
39	55	217	SAN ·	SANLANDO UTIL CORP (DES PINAR)	1	1.70	1.93	1.40	1.29	0.00	2.62
41	44	218	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	0.99	0.93	1.09	1.46	1.80
41	54	219	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	0.57	0.00	0.75	0.75	0.75	0.75
41	55	220	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	0.57	0.09	0.75	0.75	0.75	0.75
43	43	221	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	2.29	0.56	0.86	1.80	2.39
43	44	222	SAN	SANLANDO (WEKIVA HUNT CLUB)	1.	1.13	0.65	1.80	1.80	1.80	1.80
44	43	223	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	1.32	1.80	1.11	0.00	1.80
45	43	224	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	1.90	1.94	1.94	1.91	1.94
109	68	225	SCL	CITY OF ST. CLOUD	1	1.20	2.86	2.42	2.42	2.42	4.49
109	71	226	SCL	CITY OF ST. CLOUD	1	0.60	1.43	1.87	1.87	1.87	1.87
17	62	227	SEM	SEM CTY LAKE MONROE (1-4 IND. PAR	1	0.13	0.29	0.05	0.10	0.11	2.47
27	54	228	SEM	SEM. COUNTY (HANOVER WOODS)	1	0.15	0.60	0.00	0.00	0.09	2.24
28	57	229	SEM	SEM. COUNTY (HEATHROW)	1	0.31	1.87	0.10	0.05	0.08	3.59
32	59	230	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.50	0.43	0.98	0.46	1.05
32	60	231	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.67	0.00	0.00	0.00	1.05
33	62	232	SEM	SEM. COUNTY (COUNTRY CLUB)	1	0.01	1.33	0.10	0.22	0.24	2.99
33	59	233	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.00	0.90	1.05	1.05	1.05	1.05
33	60	234	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.30	0.91	0.00	1.00	1.05
33	61	235	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	1.14	0.00	0.30	0.00	1.20
48	41	236	SEM	SEM. COUNTY (BELAIRE)	1	0.10	0.10	1.20	0.00	0.25	1.20
49	42	237	SEM	SEM. COUNTY (LYNWOOD)	1	0.20	0.49	0.57	3.38	3.44	3.44
50	42	238	SEM	SEM. COUNTY (LYNWOOD)	1	0.20	0.49	0.00	0.00	0.39	3.44
53	62	239	SEM	SEM. COUNTY (INDIAN HILLS)	1	1.30	3.09	0.00	0.00	4.49	4.49
55	68	240	SEM	SEM CTY (CONSUMER)	1	0.67	1.80	0.17	0.39	0.00	4.49
55	69	241	SEM	SEM CTY (CONSUMER)	1	2.00	4.04	4.49	4.49	4.35	4.49
56	84	242	SEM	SEM CTY (LAKE HAYES)	1	0.21	0.97	0.00	0.04	0.01	4,49
63	76	243	SSS	SO. STATES UTIL (UNIV. SHORES/SUN	1	0.52	0.85	1.50	1.50	1.50	1.50
66	71	244	SSS	SO. STATES UTIL (UNIV. SHORES)	1	0.07	0.35	0.00	0.00	0.00	0.75

Model Row	Mođei Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
66	72	245	SSS	SO. STATES UTIL (UNIV. SHORES)	1	0.07	0.35	0.00	0.06	0.06	0.75
42	45	246	SSU	SOUTHERN ST. UTIL (LAKE BRANTLEY)	1	0.02	0.02	0.00	0.00	0.00	0.15
43	48	247	SSU	SOUTHERN ST. UTIL (MEREDITH MANOR	1	0.12	0.09	0.37	0.37	0.37	0.37
44	48	248	SSU	SOUTHERN ST. UTIL (MEREDITH MANOR	1	0.12	0.18	0.10	0.37	0.37	0.37
47	57	249	SSU	STATES UTIL (HARMONY HOMES)	1	0.01	0.05	0.00	0.00	0.00	0.45
47	52	250	SSU	SOUTHERN ST. UTIL (APPLE VALLEY)	1	0.44	0.51	0.75	0.47	0.47	1.50
49	46	251	SSU	SOUTHERN ST. UTIL (LAKE HARRIET)	1	0.08	0.09	0.00	0.00	0.00	0.90
50	54	252	SSU	SOUTHERN ST. UTIL (DOL RAY MANOR)	1	0.04	0.04	0.00	0.00	0.00	0.82
53	58	253	SSU	SO. STATES UTIL (FERN PARK)	1	0.01	0.05	0.00	0.00	0.00	0.37
54	54	254	SSU	SOUTHERN ST. UTIL (D. HILLS\BRETT	1	0.14	0.18	0.00	0.00	0.00	0.60
33	96	255	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
33	97	256	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.08	0.08	0.08	0.12
34	96	257	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
34	97	258	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
95	38	259	SWF	SEA WORLD OF FLA.	1	0.40	0.40	1.30	1.30	1.30	1.35
95	39	260	SWF	SEA WORLD OF FLA.	1	0.90	0.90	0.00	0.00	0.00	1.35
61	83	261	UCF	UCF	1	0.06	0.09	0.00	0.00	0.00	0.37
62	84	262	UCF	UCF	1	0.06	0.09	0.00	0.00	0.00	0.37
63	83	263	UCF	UCF	1	0.12	0.17	0.00	0.00	0.00	0.75
63	84	264	UĊF	UCF	1	0.06	0.09	0.00	0.00	0.00	0.37
63	85	265	UCF	UCF	1	0.18	0.26	0.28	0.28	0.28	1.12
64	83	266	UCF	UCF	1	0.06	0.09	0.00	0.00	0.00	0.37
64	85	267	UCF	UCF	1	0.06	0.09	0.37	0.37	0.37	0.37
64	86	268	UCF	UCF	1	0.06	0.09	0.37	0.37	0.37	0.37
65	82	269	UCF	UCF	1	0.06	0.09	0.00	0.00	0.00	0.37
2	78	270	VOL	VOL COUNTY - CASSADAGA	1	0.02	0.04	0.15	0.15	0.15	0.15
4	65	271	VOL	VOL COUNTY - ?	1	0.07	0.10	0.22	0.22	0.22	0.22
4	63	272	VOL	VOL CTY - WEST ORANGE CITY	1	0.00	0.01	0.15	0.15	0.15	0.15
5	67	273	VOL	VOL COUNTY - FOUR TOWNS	1	0.20	0.32	0.75	0.75	0.75	0.75
5	68	274	VOL	VOL COUNTY-ORANGE CITY INDUS PARK	1	0.04	0.04	0.15	0.15	0.15	0.15
6	68	275	VOL	VOL COUNTY - BREEZEWOOD	1	0.14	0.16	0.00	0.00	0.00	0.75
6	67	276	VOL	VOL COUNTY - FOUR TOWNS	1	0.23	0.37	0.00	0.00	0.00	0.75
6	66	277	VOL	VOL COUNTY HIGHLAND CTRY EST	1	0.11	0.46	0.90	0.90	0.90	0.90
7	68	278	VOL	VOL COUNTY - GLEN ABBEY OR SWALLO	1	0.24	0.77	0.00	0.00	0.00	1.87
7	65	279	VOL	VOL COUNTY - LAKE MARIE	1	0.14	0.25	0.20	0.20	0.20	0.75
47	48	280	WEK	UTILITIES OF FLA (LITTLE WEKIVA)	1	0.02	0.03	0.45	0.45	0.45	0.45
51	42	281	WEK	UTILITIES OF FLA (BEAR LAKE)	1	0.06	0.08	0.00	0.00	0.00	0.60
51	49	282	WEK	UTILITIES OF FLA (WEATHERSFIELD)	1	0.41	0.42	0.32	0.32	0.32	1.50
54	41	283	WEK	UTILITIES OF FLA (JANSEN)	1	0.07	0.08	0.00	0.00	0.00	0.60
54	55	284	WEK	UTILITIES OF FLA (OAKLAND SHORES)	1	0.14	0.16	0.00	0.00	0.00	0.60
67	20	285	WGA	WINTER GARDEN (PALMETTO STREET)	1	0.88	0.63	0.00	0.04	0.04	2.54
68	19	286	WGA	WINTER GARDEN (FULLER CROSS)	1	0.28	0.63	0.00	0.75	0.75	0.75
69	19	287	WGA	WINTER GARDEN (BOYD STREET)	1	0.28	0.63	0.00	1.73	1.73	1.73
68	20	288	WGA	WINTER GARDEN PROPOSED PLANT #4	2	0.00	0.63	0.00	0.00	0.00	0.75
70	22	289	WGC.	WINTER GARDEN CITRUS PRODUCTS	1.1	1.87	1.87	1.87	1.87	1.87	1.88
63	58	290	WPK	WINTER PARK - PLANT #1 (SWOOPE)	1	2.47	2.26	0.00	0.00	0.00	4.49
63	67	291	WPK	WINTER PARK PLANT #5 (UNIV.)	1	2.42	2.02	0.00	0.00	0.00	6.73
58	63	292	WPK	WINTER PARK - PLANT #4 (MAGNOLIA)	2	1.97	3.24	5.46	5.46	5.46	5.46
61	53	293	WPK	WINTER PARK - PLANT #3 (Wymore)	2	2.94	3.12	4.49	4.49	4.49	4.49

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1= Upper, 2= Lower Floridan)	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
63	58	294	WPK	WINTER PARK - PLANT #1 (SWOOPE)	2	0.00	1.44	0.00	0.00	0.00	4.49
63	67	295	WPK	WINTER PARK - PLANT #5 (UNIV.)	2	2.54	3.20	5.33	5.33	5.33	6.73
37	64	296	WSP	WINTER SPRINGS (WTP #2)	1	0.59	0.71	0.49	0.58	0.66	1.65
44	66	297	WSP	WINTER SPRINGS (WTP #3)	1	0.31	0.36	1.65	1.65	1.65	1.65
44	67	298	WSP	WINTER SPRINGS (WTP #3)	1	0.31	1.56	0.77	0.84	0.62	3.46
46	73	299	WSP	WINTER SPRNGS EAST 2	1	1.76	3.38	2.37	2.40	2.35	3.74
30	16	300	ZWF	ZELLWOOD FARMS	1	0.07	0.16	0.32	0.32	0.32	0.37
30	17	301	ZWF	ZELLWOOD FARMS	1	0.07	0.16	0.00	0.00	0.00	0.37
34	17	302	ZWU	ZELLWOOD WATER USERS	1	0.17	0.37	0.37	0.37	0.37	0.75
35	20	303	ZSU	ZELLWOOD STATION UTIL.	1	0.12	0.31	0.00	0.75	0.75	0.75
35	21	304	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	· 0.00	0.24	0.75	0.75
35	22	305	ZSU	ZELLWOOD STATION UTIL.	1	0.54	0.80	0.00	0.00	0.02	1.50
35	23	306	ZSU	ZELLWOOD STATION UTIL.	1	0.12	0.31	0.00	0.00	0.00	0.75
36	19	307	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	0.00	0.37	0.37	0.37
36	23	308	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	0.00	0.00	0.00	0.37
17	14	309	MTD	CITY OF MT. DORA	1	2.35	4.45	4.45	4.45	4.45	4.49
19	9	310	TAV	CITY OF TAVARES	1	1.16	3.36	3.36	3.36	3.36	3.74
9	71	311	FPL	FPL LAKE MONROE	1	0.09	0.15	0.00	0.00	0.00	0.30
13	63	312	FPL	FLORIDA POWER & LIGHT-SANFORD POW	1	0.32	0.60	0.75	0.75	0.75	1.20
68	1	313	IN1	B & W CANNING	1	0.97	1.11	1.11	1.11	1.11	1.12
76	11	314	IN2	FLORIDA CRUSHED STONE	1	2.18	2.18	2.18	2.18	2.18	2.24
98	8	315	IN3	FLA. ROCK (LAKE SAND PLANT)	1	0.87	0.87	0.87	0.87	0.87	0.90
103	31	316	IN4	FLORIBRA USA, INC	1	1.58	1.58	1.58	1.58	1.58	1.65
36	5	317	IN6	SILVER SPRINGS CITRUS	1	0.71	0.71	0.71	0.71	0.71	0.75
37	6	318	нон	HOWEY-IN-THE-HILLS	1	0.31	0.45	0.45	0.45	0.45	0.45
59	54	319	EAT	EATONVILLE	1	0.61	1.41	0.00	0.00	0.00	1.50
62	12	320	MON	MONTEVERDE	1	0.12	0.22	0.22	0.22	0.22	0.22
64	6	321	MHN	MINNEOLA HARBOR HILLS/12/13/88- P	1	1.28	2.01	2.01	2.01	2.01	2.02
67	84	322	CFR	CENT. FLA RES. PARK	1	1.00	1.00	1.00	1.00	1.00	1.05
67	8	323	MIN	CITY OF MINNEOLA	1	0.19	0.45	0.45	0.45	0.45	0.45
69	15	324	OAK	CITY OF OAKLAND	1	0.29	0.28	0.00	0.28	0.28	1.44
69	1	325	GRO	TOWN OF GROVELAND	1	0.29	0.79	0.79	0.79	0.79	0.90
79	11	326	IN5	SILVER SAND (CLERMONT MINE)	1	1.24	1.24	1.24	1.24	1.24	1.35
103	28	327	нно	HYATT HOUSE ORLANDO	1	0.30	0.73	0.73	0.73	0.73	0.75
103	19	328	osc	OSCEOLA SERVICE	1	0.96	2.28	2.28	2.28	2.28	2.39
108	133	329	AF1	USAF BAS CIVIL ENGINEER/8/12/86	1	0.80	0.80	0.80	0.80	0.80	0.90
115	16	330	DAV	DAVENPORT (1987)	1	0.53	1.27	1,27	1.27	1.27	1.35
118	15	331	HAI	HAINES CITY	· · · · · · · · · · · · · · · · · · ·	1.18	2 80	2.80	2.80	2.80	2 99
4	69	332	JKV	JOHN KNOX VILL.	1	0.05	0.35	0.00	0.35	0.35	0.37

# Table A9. Volusia LP optimization model public supply utility well withdrawal rates

Public well			Simula	tion Model	Model Well withdrawal rates (MGD)					
or Control Point Number	Well Description	Public Utility Need Area	Row	Column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Potential for Vegetative Harm
1	DELAND WATER UTIL	DWU	68	13	0.54	0.00	0.00	0.00	0.00	LOW
2	DELAND WATER UTIL	DWU	67	12	0.54	0.77	0.00	0.00	0.00	LOW
3	DELAND WATER UTIL	DWU	66	12	1.08	1.54	0.00	0.00	0.00	LOW
4	DELAND WATER UTIL	DWU	64	11	0.54	0.77	2.26	2.26	2.26	LOW
5	DELAND WATER UTIL	DWU	67	14	0.54	0.77	2.26	2.26	0.12	LOW
6	DELAND WATER UTIL	DWU	61	14	0.54	0.77	2.26	2.26	2.26	LOW
7	DELAND WATER UTIL	DWU	65	11	0.54	0.77	0.12	0.12	2.26	LOW
8	DELAND WU 1990	DWU	70	13	0.00	1.54	0.00	0.00	0.00	LOW
9	HOLLY HILL EASTERN WF	HHE	41	73	0.03	0.05	0.14	0.14	0.14	LOW
10	HOLLY HILL EASTERN WF	HHE	41	74	0.02	0.02	0.00	0.00	0.00	LOW
11	HOLLY HILL EASTERN WF	HHE	40	74	0.02	0.02	0.00	0.00	0.00	LOW
12	HOLLY HILL EASTERN WF	HHE	40	73	0.02	0.02	0.00	0.00	0.00	LOW
13	HOLLY HILL EASTERN WF	HHE	40	72	0.02	0.02	0.00	0.00	0.00	LOW
14	HOLLY HILL WESTERN WF	HHW	41	54	0.29	0.35	0.00	0.00	0.00	LOW
15	HOLLY HILL WESTERN WF	HHW	41	55	0.44	0.52	1.27	1.27	0.00	LOW
16	HOLLY HILL WESTERN WF	HHW	40	55	0.29	0.35	0.05	0.11	1.09	LOW
17	HOLLY HIL PROPOSED	HHW	40	55	0.00	0.17	0.00	0.00	0.29	LOW
18	OR. CITY CTRY VILLAGE	000	79	12	0.13	0.39	0.00	0.00	0.39	LOW
19	SSU SUGAR MILL EST	SME	81	65	0.10	0.22	0.00	0.22	0.22	HIGH
20	PORT ORANGE WESTERN WF	POW	64	42	0.27	0.29	0.27	0.32	0.51	MODERATE
21	PORT ORANGE WESTERN WF	POW	67	41	0.27	0.29	0.51	0.51	0.51	MODERATE
22	PORT ORANGE WESTERN WF	POW	68	40	0.53	0.57	0.00	0.52	0.25	MODERATE
23	PORT ORANGE WESTERN WF	POW	69	39	0.27	0.29	0.00	0.00	0.00	MODERATE
24	PORT ORANGE WESTERN WF	POW	70	39	0.27	0.29	0.00	0.00	0.00	MODERATE
25	PORT ORANGE WESTERN WF	POW	65	40	0.27	0.29	0.00	0.00	0.00	MODERATE
26	PORT ORANGE WESTERN WF	POW	66	39	0.27	0.29	0.00	0.00	0.00	MODERATE
27	PORT ORANGE WESTERN WF	POW	67	39	0.27	0.29	0.00	0.00	0.00	MODERATE
28	PORT ORANGE WESTERN WF	POW	68	39	0.27	0.29	0.00	0.00	0.00	MODERATE
29	PORT ORANGE WESTERN WF	POW	65	38	0.27	0.29	0.33	0.32	0.40	MODERATE
30	PORT ORANGE WESTERN WF	POW	66	38	0.53	0.57	0.57	0.57	0.57	MODERATE
31	PORT ORANGE WESTERN WF	POW	69	40	0.27	0.29	0.00	0.00	0.00	MODERATE
32	PORT ORANGE WESTERN WF	POW	67	38	0.27	0.29	0.51	0.51	0.51	MODEBATE
33	PORT ORANGE WEST PROP	POW	64	39	0.00	0.86	0.65	0.43	0.29	MODERATE
34	PORT ORANGE WEST PROP	POW	69	38	0.00	0.86	1.05	0.83	0.84	MODERATE
35	PORT ORANGE WEST PROP	POW	40	26	0.00	0.29	0.00	0.00	0.00	MODERATE
36	PORT ORANGE WEST PROP	POW	39	24	0.00	0.29	0.00	0.00	0.00	MODERATE
37	PORT ORANGE WEST PROP	POW	41	28	0.00	0.29	0.81	0.64	0.82	MODERATE
38	PORT ORANGE WEST PROP	POW	38	27	0.00	0.29	0.00	0.00	0.00	MODERATE
39	PORT ORANGE WEST PROP	POW	37	25	0.00	0.29	0.00	0.00	0.00	MODERATE
40	PORT ORANGE WEST PROP	POW	39	29	0.00	0.29	0.00	0.00	0.23	MODERATE
41	PORT ORANGE WEST PROP	POW	42	25	0.00	0.29	0.66	0.00	0.00	MODERATE
42	PORT ORANGE WEST PROP	POW	41	23	0.00	0.29	0.00	0.00	0.00	MODERATE
43	PORT ORANGE WEST PROP	POW	43	27	0.00	0.29	0.00	0.74	0.54	MODERATE
44	PORT ORANGE EASTERN WE	POF	68	66	0,12	0.26	0.00	0.86	0.00	LOW
45	PORT ORANGE EASTERN WE	POF	68	65	0.03	0.07	0.00	0.00	0.00	LOW
46	PORT ORANGE EASTERN WE	POE	66	66	0.03	0.07	0.00	0.00	0.00	LOW
47	PORT ORANGE EASTERN WF	POE	66	67	0.10	0.20	0.86	0.00	0.86	LOW

Public well			Simula	tion Model	Model Well withdrawal rates (MGD)					
or Control Point Number	Well Description	Public Utility Need Area	Row	Column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Potential for Vegetative Harm
48	PORT ORANGE EASTERN WF	POE	65	66	0.06	0.13	0.00	0.00	0.00	LOW
49	PORT ORANGE EASTERN WF	POE	65	65	0.06	0.13	0.00	0.00	0.00	LOW
50	DELTONA	DEL	84	11	0.49	0.75	0.00	0.00	0.00	LOW
51	DELTONA	DEL	84	9	0.49	0.75	1.50	1.50	1.50	LOW
52	DELTONA	DEL	83	13	0.49	0.75	0.00	0.00	0.00	LOW
53	DELTONA	DEL	86	13	0.49	0.75	0.00	0.00	1.50	LOW
54	DELTONA	DEL	84	10	0.97	1.51	0.00	2.04	2.26	LOW
55	DELTONA	DEL	85	12	1,46	2.26	0.00	0.00	0.00	LOW
56	DELTONA	DEL	84	18	0.49	0.75	0.00	0.00	0.00	MODERATE
57	DELTONA	DEL	85	12	0.49	0.75	0.00	0.00	0.00	LOW
58	DELTONA	DEL	83	18	0.49	0.75	0.00	0.00	0.00	LOW
59	DELTONA	DEL	84	18	0.49	0.75	0.00	0.00	0.00	MODERATE
60	DELTONA	DEL	81	12	0.49	0.75	0.00	0.00	0.00	LOW
61	DELTONA	DEL	85	17	0.49	0.75	0.00	0.00	0.00	MODERATE
62	DELT - PROPOSED	DEL	- 81	16	0.00	0.75	0.00	0.00	0.00	MODERATE
63	DELT - PROPOSED	DEL	81	18	0.00	1.51	0.00	0.00	0.00	MODERATE
64	DELT - PROPOSED	DEL	82	15	0.00	0.75	0.00	0.00	0.00	LOW
65	DELT - PROPOSED	DEL	83	17	0.00	0.75	0.00	0.00	0.00	MODERATE
66	DELT - PROPOSED	DEL	84	9	0.00	0.75	3.58	8.04	4.13	LOW
67	DELT - PROPOSED	DEL	84	10	0.00	0.75	0.00	0.00	3.43	LOW
68	DELT - PROPOSED	DEL	84	11	0.00	1.51	0.00	0.00	0.00	LOW
69	DELT - PROPOSED	DEL	85	17	0.00	0.75	0.00	0.00	0.00	MODEBATE
70	DELT - PROPOSED	DEL	86	11	0.00	0.75	5.59	0.00	0.00	LOW
71	DELT - PROPOSED	DEL	86	15	0.00	2.26	0.00	0.00	0.00	LOW
72	DELT - PROPOSED	DEL	87	13	0.00	0.75	2.01	1.82	1.55	LOW
73	DELT - PROPOSED	DEL	87	15	0.00	0.75	3.33	6.03	5.56	LOW
74	DELT - PROPOSED	DEL	87	16	0.00	1.51	0.00	0.00	0.00	LOW
75		SPC	75	54	0.16	0.08	0.00	0.00	0.00	LOW
76	SPRUCE CREEK	SPC	75	55	0.16	0.08	0.00	0.00	0.00	LOW
77	SPRUCE CREEK PROP	SPC	75	54	0.00	0.16	0.40	0.40	0.40	LOW
78	SPRUCE CREEK PROP	SPC	75	55	0.00	0.08	0.00	0.00	0.00	LOW
79	NEW SMYBNA SAMSULA WE	NSS	79	40	0.59	0.88	0.43	1.63	1.37	LOW
80		NSS	80	41	0.59	0.88	1.14	0.62	1.07	LOW
81	NEW SMYRNA SAMSULA WE	NSS	80	42	0.30	0.44	0.00	0.00	0.00	LOW
82	NEW SMYRNA SAMSULA WE	NSS	80	43	0.30	0.44	0.00	0.00	0.00	MODERATE
83	NEW SMYBNA GLENCOE WE	NSG	86	64	1.19	1.76	0.84	1.73	2.51	MODEBATE
84	NEW SMYBNA GLENCOE WE	NSG	86	65	0.89	1.32	0.00	0.00	0.37	LOW
85	NSB - PBOPOSED	NS4	78	36	0.00	0.44	0.00	0.01	0.18	MODERATE
86	NEW SMYRNA SR 44	NS4	78	35	0.00	0.44	0.00	0.01	0.15	MODERATE
87	NEW SMYRNA SR 44	NSA	77	36	0.00	1 76	0.00	0.10	0.53	MODERATE
89		DRE	51	50	0.00	1.51	0.44	2.26	1 27	MODERATE
80	DAYTONA BEACH FASTERN WE	DRF	51	57	0.50	1 91	0.00	0.00	0.00	MODEPATE
000 00	DAYTONA BEACH EASTERN WE	DRE	51	57	0.55	1.01	1.01	0.00	0.00	MODEDATE
91	DAYTONA BEACH FASTERN WE	DBE	50	52	1 17	3.25	1.01	0.57	3.00	MODERATE
92	DAYTONA BEACH WESTERN WE	DRW	50	51	0.03	1 47	1.40	0.0/	2 22	MODERATE
93	DAYTONA BEACH WESTERN WE	DRW	40	50	0.00	1.76	0.02	2 11	2.66	MODERATE
94	DAYTONA BEACH WESTERN WE	DRW	5.8		0.00	0.27	1.02	1.02	1.00	MODERATE
<u>"</u>			1		0.50	V-£1	1.02	1.02	1.04	MODERATE

Public well			Simula	tion Model	on Model Well withdrawal rates (MGD)					
or Control Point Number	Well Description	Public Utility Need Area	Row	Column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Potential for Vegetative Harm
95	DAYTONA BEACH WESTERN WF	DBW	58	45	1.87	0.94	1.69	1.69	1.69	MODERATE
96	DAYTONA BEACH WESTERN WF	DBW	58	44	0.93	0.49	1.24	1.24	1.24	MODERATE
97	DAYTONA BEACH WESTERN WF	DBW	58	43	0.93	0.21	0.96	0.96	0.96	MODERATE
98	DAYTONA BEACH WESTERN WF	DBW	58	42	0.93	0.41	1.04	0.96	1.09	MODERATE
99	DAYTONA BEACH WESTERN WF	DBW	57	43	0.93	0.33	0.00	1.08	1.08	MODERATE
100	DAYTONA BEACH WESTERN WF	DBW	56	43	0.93	0.32	1.03	0.07	0.28	LOW
101	DAYTONA BEACH WESTERN WF	DBW	55	42	0.93	0.63	1.38	1.31	0.00	LOW
102	DAYTONA WEST. 1988	DBW	53	42	0.00	0.31	0.02	0.00	0.00	LOW
103	DAYTONA WEST. 1988	DBW	52	42	0.00	2.32	0.13	0.00	0.00	LOW
104	DAYTONA WEST. 1988	DBW	51	43	0.00	0.40	0.00	0.00	0.00	LOW
105	DAYTONA WEST, 1988	DBW	50	43	0.00	1.63	0.00	0.00	0.00	LOW
106	DAYTONA WEST. 1988	DBW	49	43	0.00	0.48	0.00	0.00	0.00	MODERATE
107	DAYTONA WEST. 1988	DBW	57	41	0.00	0.55	0.00	0.00	0.46	MODERATE
108	DAYTONA WEST, 1988	DBW	54	43	0.00	0.53	0.00	0.00	0.00	LOW
109	DAYTONA WEST. 1988	DBW	53	43	0.00	0.27	0.00	0.00	0.00	MODERATE
110		OBD	31	73	0.45	0.46	1.21	1.21	1.21	LOW
111	ORMOND BEACH DIVISION	OBD	32	72	0.90	0.92	0.58	0.58	0.58	LOW
112	OBMOND BEACH DIVISION	OBD	31	70	0.23	0.23	0.00	0.00	0.00	LOW
113		OBD	32	70	0.23	0.23	0.00	0.00	0.00	LOW
114			32	69	0.23	0.23	0.00	0.00	0.00	LOW
115		OBD	31	73	0.23	0.23	0.00	0.00	0.00	LOW
115	ORMOND BEACH DIVISION	OBD	31	70	0.23	0.23	0.00	0.00	0.00	LOW
117		080	31	70	0.23	0.23	0.00	0.00	0.00	LOW
118	ORMOND BEACH SR 40	OB4	29	64	0.63	0.23	0.00	0.00	0.00	LOW
119	ORMOND BEACH SB 40	084	30	61	0.63	0.23	0.00	0.00	0.00	LOW
120	ORMOND BEACH SE 40	084	28	65	0.00	0.23	0.00	0.00	1 16	MODERATE
121	ORMOND BEACH SR 40	084	29	65	0.00	0.23	0.05	1 16	0.00	MODEBATE
122	ORMOND BEACH SR 40	084	30	59	0.63	0.23	0.00	0.00	0.00	LOW
123		084	25	52	0.00	0.46	0.00	0.00	0.00	LOW
124			24	52	0.00	0.93	0.00	0.00	0.00	LOW
105			23	52	0.00	0.46	0.00	0.00	0.00	
125			20	50	0.00	0.40	0.00	1.66	4.02	LOW
120			24	50	0.00	0.48	0.00	0.00	1.05	LOW
127			24	50	0.00	0.23	0.00	0.00	0.00	LOW
120			29	54	0.00	0.23	0.00	0.00	0.00	10W
120			20	55	0.00	0.23	0.86	0.00	1 18	1.0W
130		OBH	24	50	0.00	0.23	0.00	0.30	0.00	LOW
197			24	52 61	0.00	0.23	0.00	0.00	0.00	LOW
132			20		0.00	0.23	0.00	0.00	0.00	NODERATE
100			32	43	0.00	0.23	0.00	0.00	0.11	MODERATE
104			70	44	0.00	0.23	0.00	0.00	0.00	MODERATE
105			78	. 10	0.05	0.14	0.00	0.00	0.14	LOW
130			70	8	0.20	0.32	0.00	0.79	0.00	LOW
10/		VF1	19		0.20	0.10	0.00	0.00	0.79	
198			00 60		0.14	0.16	0.00	0.00	0.00	LOW
138			03		0.14	0.50	0.25	0.53	0.25	LOW
140				+	0.09	0.52	0.53	0.53	0.36	
141	V GIT - W UHANGE CITY	VIA	1 11	1	0.01	0.01	1 0.00	0.00	0.16	LOW

	· .									
Public well	, i		Simula	tion Model	lodel Well withdrawal rates (MGD)					
or Control Point Number	Well Description	Public Utility Need Area	Row	Column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Potential for Vegetative Harm
142	DELAND - BRANDYWINE	DEB	55	14	0.46	0.82	0.07	0.82	0.82	MODERATE
143	DELAND - SPRING GARDEN	DEB	55	13	0.01	0.02	0.00	0.00	0.00	MODERATE
143	DELAND - SPRING GARDEN	DEB	55	13	0.01	0.02	0.00	0.00	0.00	LOW
144	DELAND - GLENWOOD EST	DEB	54	12	0.02	0.03	0.18	0.08	0.08	MODERATE
145	DELAND - WOODLAND MANOR	DWW	51	14	0.06	0.16	0.16	0.16	0.16	LOW
146	DELAND - LONGLEAF PLANT.	DHH	74	13	0.12	0.26	0.00	0.00	0.00	LOW
147	DELAND - HOLIDAY HILLS	DHH	72	10	0.05	0.10	0.00	0.36	0.36	MODERATE
148	ELLWOOD TITCOMB	ETI	77	17	0.05	0.09	0.02	0.09	0.00	MODERATE
149	CITY OF EDGEWATER	EDG	87	68	0.28	0.85	1.04	1.04	1.04	LOW
150	CITY OF EDGEWATER	EDG	87	67	0.42	1.27	0.00	0.00	0.00	LOW
152	CITY OF EDGEWATER	EDG	88	59	0.42	1.27	2.02	2.02	2.02	LOW
153	CITY OF EDGEWATER	EDG	88	63	0.28	0.85	1.59	1.59	1.59	LOW
154	TYMBER CREEK UTIL.	TCU	27	59	0.09	0.18	0.13	0.18	0.18	LOW
155	THE TRAILS INC.	Π	26	54	0.32	0.58	0.00	0.00	0.58	LOW
156	LAKE HELEN	LHE	77	16	0.11	0.29	0.00	0.00	0.00	MODERATE
157	LAKE HELEN	LHE	76	16	0.11	0.29	0.15	0.36	0.58	MODERATE
158	HACIENDA DEL RIO	HDR	90	74	0.06	0.10	0.10	0.10	0.10	LOW
159	NATIONAL GARDENS	NGA	15	72	0.03	0.06	0.00	0.00	0.00	LOW
160	NATIONAL GARDENS	NGA	15	73	0.03	0.06	0.00	0.00	0.00	LOW
161	NATIONAL GARDENS	NGA	16	71	0.10	0.17	0.25	0.08	0.25	LOW
162	NATIONAL GARDENS	NGA	16	72	0.02	0.04	0.00	0.00	0.00	LOW
163	NATIONAL GARDENS	NGA	17	71	0.03	0.06	0.13	0.13	0.13	LOW
164	ORANGE CITY	OCY	78	9	0.51	3.65	0.00	0.33	3.65	LOW
165	SUNSHINE HOLIDAY PK	SHP	14	65	0.07	0.13	0.00	0.00	0.13	LOW
166	PLANTATION BAY	PTB	6	60	0.04	0.08	0.00	0.00	0.00	MODERATE
167	PLANTATION BAY	PTB	7	60	0.02	0.04	0.00	0.00	0.00	LOW
168	L BERESFORD WATER ASSN	LBW	68	8	0.16	0.33	0.33	0.33	0.33	LOW
169	FPL - TURNER POWER PLNT	FPT	86	8	0.10	0.10	0.00	0.00	0.00	LOW
170	SHERWOOD MEDICAL CO.	SMC	64	16	0.10	0.10	0.03	0.03	0.03	LOW
171	SHERWOOD MEDICAL CO.	SMC	63	17	0.05	0.05	0.13	0.13	0.13	LOW
172	FPL - SANFORD PWR PLNT	FPS	85	4	0.08	0.08	0.08	0.05	0.00	LOW
173	FPL - SANFORD PWR PLNT	FPS	85	5	0.08	0.08	0.08	0.00	0.00	LOW
174	FPL - SANFORD PWR PLNT	FPS	80	7	0.08	0.08	0.08	0.08	0.08	LOW
175	FPL - SANFORD PWR PLNT	FPS	81	7	0.08	0.08	0.08	0.08	0.08	LOW
176	TOMOKA CORR. FACILITY	TCF	50	40	0.23	0.23	0.23	0.00	0.00	HIGH
177	V CTY GOVT COMPLEX	VGC	76	8	0.20	0.20	0.00	0.00	0.00	LOW

# Table A10. East-central LP optimization and MIP decision model agricultural well withdrawal rates

					Well withdrawal rates (cfd)						
					N	IIP Decision Mod	del	LPC	Optimization Mo	dei	
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010
1	56	2	Citrus	C1	0.94	0.94	0.94	0.94	0.94	0.94	0.16
2	59	2	Citrus	C1	0.00	0.00	0.00	0.00	0.00	0.00	0.13
3	62	2	Citrus	C1	0.00	0.00	0.00	0.00	0.00	0.00	0.15
4	65	2	Citrus	C1	0.00	0.00	0.00	0.00	0.00	0.00	0.21
5	59	3	Citrus	C1	0.00	0.00	0.00	0.00	0.00	0.00	0.12
6	62	3	Citrus	C1	0.00	0.00	0.00	0.00	0.00	0.00	0.17
7	98	11	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.23
8	99	11	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.20
9	101	11	Citrus	C2	1.80	1.80	1.80	1.80	1.80	1.80	0.13
10	101	12	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.16
11	99	14	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.19
12	101	14	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.17
13	101	15	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.13
14	99	16	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.24
15	101	16	Citrus	C2	0.00	0.00	0.00	0.00	0.00	0.00	0.35
16	92	13	Citrus	C3	0.00	0.68	0.68	0.68	0.68	0.68	0.24
17	92	14	Citrus	СЗ	0.00	0.00	0.00	0.00	0.00	0.00	0.09
18	92	15	Citrus	C3	0.68	0.00	0.00	0.00	0.00	0.00	0.17
19	92	16	Citrus	C3	0.00	0.00	0.00	0.00	0.00	0.00	0.18
20	87	17	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.25
21	89	17	Citrus	C4	2.68	2.68	2.68	2.68	2.68	2.68	0.15
22	85	19	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.27
23	87	20	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.15
24	87	23	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.37
25	85	24	Citrus	C4 :	0.00	0.00	0.00	0.00	0.00	0.00	0.22
26	89	24	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.25
27	87	26	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.30
28	85	27	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.13
29	89	27	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.13
30	85	29	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.23
31	87	29	Citrus	C4	0.00	0.00	0.00	0.00	0.00	0.00	0.23
32	82	17	Citrus	C5	0.00	1.00	1.00	1.00	1.00	1.00	0.14
33	80	19	Citrus	C5	0.00	0.00	0.00	0.00	0.00	0.00	0.19
34	82	20	Citrus	C5	1.00	0.00	0.00	0.00	0.00	0.00	0.44
35	80	23	Citrus	C5	0.00	0.00	0.00	0.00	0.00	0.00	0.11
36	82	23	Citrus	. C5	0.00	0.00	0.00	0.00	0.00	0.00	0.11
37	77	13	Citrus	C6	0.00	2.53	2.53	0.00	2.53	2.53	0.25
38	80	13	Citrus	C6	0.00	0.00	0.00	2.53	0.00	0.00	0.12
39	74	14	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.14
40	77	14	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.20
41	72	15	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.10
42	π	15	Citrus	<u>C6</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.25
43	75	16	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.28
44	Π	16	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.40
45	75	17	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.20
46	77	17	Citrus	<u>C6</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.18
47	77	19	Citrus	C6	0.09	0.00	0.00	0.00	0.00	0.00	0.30

.

					Well withdrawal rates (cfd)						
					N	IIP Decision Mod	iel	LP C	ptimization Mo	del	
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010
48	77	24	Citrus	C6	0.00	0.00	0.00	0.00	0.00	0.00	0.12
49	67	13	Citrus	C7	0.00	0.46	0.46	0.46	0.46	0.46	0.31
50	65	14	Citrus	C7	0.00	0.00	0.00	0.00	0.00	0.00	0.15
51	69	15	Citrus	C8	0.00	0.50	0.50	0.00	0.50	0.50	0.11
52	69	16	Citrus	C8	0.00	0.00	0.00	0.00	0.00	0.00	0.27
53	69	17	Citrus	C8	0.00	0.00	0.00	0.50	0.00	0.00	0.11
54	72	19	Citrus	C9	0.00	1.84	1.84	1.84	1.84	1.84	0.16
55	74	20	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.51
56	72	24	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.19
57	74	24	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.25
58	72	26	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.23
59	74	27	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.10
60	71	29	Citrus	C9	1.20	0.00	0.00	0.00	0.00	0.00	0.13
61	74	29	Citrus	C9	0.00	0.00	0.00	0.00	0.00	0.00	0.15
62	74	31	Citrus	C9	-0.00	0.00	0.00	0.00	0.00	0.00	0.12
63	74	3	Citrus	C10	0.00	0.27	0.27	0.27	0.27	0.27	0.10
64	71	4	Citrus	C10	0.00	0.00	0.00	0.00	0.00	0.00	0.17
65	65	24	Citrus	C11	0.43	0.43	0.43	0.43	0.43	0.43	0.12
66	67	24	Citrue	C11	0.00	0.00	0.00	0.00	0.40	0.00	0.12
67	67	24	Citrue	011	0.00	0.00	0.00	0.00	0.00	0.00	0.15
60	20	12	Citruo	C12	0.00	0.00	0.56	0.00	0.00	0.00	0.10
60	20	14	Citrus	012	0.00	0.00	0.00	0.00	0.00	0.50	0.10
70		14	Citrus	C12	0.00	0.00	0.00	0.00	0.00	0.00	0.30
70	16	10	Citrus	C12	0.00	0.40	0.00	0.00	0.00	0.00	0.10
	10	10	Citrus	C13	0.00	0.49	0.00	0.00	0.00	0.49	0.10
70	10	11	Citrus	C13	0.49	0.00	0.49	0.00	0.49	0.00	0.13
73	10	11	Citrus	013	0.00	0.00	0.00	0.00	0.00	0.00	0.11
74	10	15	Citrus	C13	0.00	0.00	0.00	0.00	0.00	0.00	0.13
75	10	15	Citrus	C14	0.00	0.00	0.00	0.00	0.00	0.00	0.20
70	10	17	Citrue	C14	0.03	0.00	0.00	0.00	0.00	0.00	0.17
70	10	10	Citrus	C14	0.00	0.00	0.00	0.00	0.00	0.00	0.17
70	107	61	Citrue	C15	0.00	0.00	0.00	0.00	0.00	0.00	0.15
13	107		Citrue	010	0.00	0.00	0.00	0.00	0.00	0.00	0.10
81	100	6A	Citrue	C15	0.00	0.00	0.00	0.00	0.00	0.00	0.10
82	00	74	Citrue	C16	0.01	0.01	0.01	0.01	0.01	0.01	0.10
82	101	+	Citrue	C16	0.00	0.00	0.00	0.00	0.00	0.00	0.27
	101	70	Citrus	010	0.00	0.00	0.00	0.00	0.00	0.00	0.30
94	102	77	Citrue	C17	0.07	0.07	0.07	0.07	0.07	0.07	0.35
20	100	+ <u>''</u>	Citrue	C17	0.00	0.00	0.00	0.00	0.00	0.00	0.13
87	100	<u></u> 	Citrue	C17	0.57	0.57	0.57	0.57	0.00	0.00	0.04
	110	74	Citrue	C19	0.5/	0.07	0.0/	0.0/	0.0/	0.0/	0.10
80	110	74	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.12
00	444	70	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.95
<del>30</del>	110	79	Citrus	C19	0.00	0.00	0.00	0.82	0.00	0.00	0.00
	90	10	Citrue	C10	0.02	3.05	3.05	3.05	3.05	3 /15	0.10
03	80		Citrue	C10	0.00	0.00	0.00	0.00	0.00	0.00	0.10
	85	4	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.20

					·		W	ell withdrawal rate	es (cfd)		
					N	IIP Decision Mod	ie)	LP C	ptimization Mo	del	
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010
95	87	4	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.11
96	80	5	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.13
97	82	5	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.13
98	85	5	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.10
99	87	5	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.12
100	89	5	Citrus	C19	3.05	0.00	0.00	0.00	0.00	0.00	0.16
101	82	6	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.18
102	87	6	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.23
103	89	6	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.13
104	92	6	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.21
105	80	7	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.20
106	82	7	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.13
107	87	7	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.25
108	89	7	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.29
109	92	7	Citrus	C19	0.00	0.00	0.00	0.00	0.00	0.00	0.27
110	64	97	Citrus	C20	0.00	0.00	0.00	0.00	0.00	0.00	0.27
111	61	100	Citrus	C20	0.68	0.68	0.68	0.68	0.68	0.68	0.18
112	65	100	Citrus	C20	0.00	0.00	0.00	0.00	0.00	0.00	0.23
113	53	116	Citrus	C21	0.00	0.00	0.00	0.00	0.00	0.00	0.12
114	52	119	Citrus	C21	0.24	0.24	0.24	0.24	0.24	0.24	0.12
115	39	5	Citrus	C22	0.00	0.79	0.79	0.79	·0.00	0.79	0.19
116	43	5	Citrus	C22	0.79	0.00	0.00	0.00	0.79	0.00	0.20
117	39	6	Citrus	C22	0.00	0.00	0.00	0.00	0.00	0.00	0.28
118	43	6	Citrus	C22	0.00	0.00	0.00	0.00	0.00	0.00	0.12
119	31	5	Citrus	C23	0.35	0.35	0.35	0.35	0.35	0.35	0.20
120	33	6	Citrus	C23	0.00	0.00	0.00	0.00	0.00	0.00	0.15
121	21	7	Citrus	C24	0.54	0.54	0.54	0.54	0.54	0.54	0.17
122	24	8	Citrus	C24	0.00	0.00	0.00	0.00	0.00	0.00	0.12
123	28	8	Citrus	C24	0.00	0.00	0.00	0.00	0.00	0.00	0.13
124	31	8	Citrus	C24	0.00	0.00	0.00	0.00	0.00	0.00	0.12
125	50	8	Citrus	C25	1.11	1.11	1.11	1.11	1.11	1.11	0.11
126	56	9	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.15
127	62	9	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.15
128	65	9	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.11
129	67	9	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.26
130	50	10	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.11
131	59	10	Citrus	C25	0.00	0.00	0.00	0.00	0.00	0.00	0.20
132	77	9	Citrus	C26	0.00	1.22	1.22	1.22	1.22	1.22	0.13
133	80	9	Citrus	C26	0.00	0.00	0.00	0.00	0.00	0.00	0.15
134	77	10	Citrus	C26	0.00	0.00	0.00	0.00	0.00	0.00	0.45
135	80	10	Citrus	C26	0.00	0.00	0.00	0.00	0.00	0.00	0.23
136	77	11	Citrus	C26	0.00	0.00	0.00	0.00	0.00	0.00	0.26
137	87	9	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.16
138	89	9	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.17
139	92	9	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.28
140	96	9	Citrus	C27	1.72	1.72	1.72	1.72	1.72	1.72	0.11
141	89	10	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.14

					Well withdrawal rates (cfd)							
					MIP Decision Model			LP Optimization Model				
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010	
142	92	10	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.18	
143	95	10	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.26	
144	92	11	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
145	95	11	Citrus	C27	0.00	0.00	0.00	0.00	0.00	0.00	0.26	
146	77	64	SFWMD nc	F1	0.80	0.80	0.80	0.80	0.80	0.80	0.40	
147	80	64	SFWMD nc	F1	0.00	0.00	0.00	0.00	0.00	0.00	0.40	
148	104	44	SFWMD nc	F2	0.51	0.51	0.51	0.51	0.51	0.51	0.33	
149	89	61	SFWMD nc	F2	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
150	95	61	SFWMD nc	F2	0.00	0.00	0.00	0.00	0.00	0.00	0.13	
151	80	33	SFWMD nc	F3	0.00	0.00	0.00	0.00	0.00	0.00	0.50	
152	116	33	SFWMD nc	F3	0.83	0.83	0.83	0.83	0.83	0.83	0.11	
153	85	36	SFWMD nc	F3	0.00	0.00	0.00	0.00	0.00	0.00	0.21	
154	99	31	SFWMD nc	F4	0.00	0.00	0.00	0.00	0.00	0.00	1.07	
155	103	36	SFWMD nc	F4	1.55	1.55	1.55	1.55	1.55	1.55	0.01	
156	98	38	SFWMD nc	F4	0.00	0.00	0.00	0.00	0.00	0.00	0.25	
157	101	31	SFWMD nc	F4	0.00	0.00	0.00	0.00	0.00	0.00	0.21	
158	62	38	SFWMD nc	F5	0.40	0.40	0.40	0.40	0.40	0.40	0.40	
159	95	44	SFWMD nc	F6	0.31	0.31	0.31	0.31	0.31	0.31	0.31	
160	89	50	SFWMD nc	F7	0.03	0.03	0.03	0.03	0.03	0.03	0.03	
161	35	12	Lake nc	L1	0.14	0.14	0.14	0.14	0.14	0.14	0.08	
162	38	12	Lake nc	L1	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
163	19	7	Lake nc	L2	0.20	0.20	0.20	0.20	0.20	0.20	0.17	
164	17	10	Lake nc	12	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
165	33	4	Lake nc	L3	0.79	0.79	0.79	0.79	0.79	0.79	0.08	
166	35	4	Lake nc	L3	0.00	0.00	0.00	0.00	0.00	0.00	0.46	
167	39	4	Lake nc	L3	0.00	0.00	0.00	0.00	0.00	0.00	0.26	
168	52	2	Lake nc	L4	0.45	0.45	0.45	0.45	0.45	0.45	0.42	
169	52	4	Lake nc	L4	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
170	65	2	Lake nc	L5	0.15	0.15	0.15	0.15	0.15	0.15	0.01	
171	68	2	Lake nc	L5	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
172	83	4	Lake nc	L6	0.00	0.00	0.00	0.03	0.03	0.03	0.02	
173	76	6	Lake nc	L6	0.03	0.03	0.03	0.00	0.00	0.00	0.01	
174	97	8	Lake nc	L7	0.00	0.00	0.00	0.00	0.00	0.00	1.17	
175	100	9	Lake nc	L7	1.64	1.64	1.64	1.64	1.64	1.64	0.47	
•176	57	6	Lake nc	LB	0.09	0.09	0.09	0.09	0.09	0.09	0.06	
177	60	7	Lake nc	1.8	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
178	5	17	Lake nc	L9	0.00	0.00	0.00	0.00	0.00	0.00	0.21	
179	4	19	Lake nc	L9	0.47	0.47	0.47	0.00	0.00	0.00	0.05	
180	3	22	Lake nc	L9	0.00	0.00	0.00	0.47	0.47	0.47	0.04	
181 -	5	23	Lake nc	L9	0.00	0.00	0.00	0.00	0.00	0.00	0.08	
182	7	15	Lake nc	L10	0.07	0.07	0.07	0.07	0.07	0.07	0.06	
183	8	15	Lake nc	L10	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
184	2	44	Lake nc	L12	0.47	0.47	0.47	0.47	0.47	0.47	0.00	
185	4	44	Lake nc	L12	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
186	7	44	Lake nc	L12	0.00	0.00	0.00	0.00	0.00	0.00	0.13	
187	6	45	Lake nc	L12	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
188	7	45	Lake nc	L12	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
					Well withdrawal rates (cfd)							
-------	-------------------------	----------------------------	-----------	--------------------------	-----------------------------	-----------------	--------	---------	-----------------	--------	------------------------------	--
					N	1P Decision Mod		LP C	Optimization Mo	del		
Model	Simulation model row	Simulation model column	Туре	Agricultural demand area	Caro 2	Capa 2	Caro 1	C 200 2	Case 2	Case 1	1988 and projected vear 2010	
189	5	46	l ake no	12	0.00	0.00	0.00	0.00	0.00	0.00	0.14	
190	- 5	47	Lake nc	112	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
191	8	37	Lake nc	L13	0.28	0.28	0.28	0.28	0.28	0.28	0.02	
192	9	39	Lake nc	L13	0.00	0.00	0.00	0.00	0.00	0.00	0.20	
193	7	28	Lake nc	L14	0.00	0.00	0.00	0.54	0.54	0.54	0.11	
194	9	31	Lake nc	L14	0.54	0.54	0.54	0.00	0.00	0.00	0.04	
195	10	33	Lake nc	L14	0.00	0.00	0.00	0.00	0.00	0.00	0.39	
196	12	15	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
197	11	19	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
198	8	20	Lake nc	L15	1.39	1.39	1.39	1.39	1.39	1.39	0.04	
199	12	20	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.34	
200	8	21	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
201	12	21	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.17	
202	9	26	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
203	10	26	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
204	11	26	Lake nc	L15	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
205	12	28	Lake nc	L15	2.13	2.13	2.13	2.13	2.13	2.13	0.30	
206	15	16	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
207	16	16	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.14	
208	13	17	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.40	
209	16	17	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.47	
210	21	18	Lake nc	L16	0.00	0.00	0.00	0.00	. 0.00	0.00	0.30	
211	22	18	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.38	
212	16	22	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
213	18	26	Lake nc	L16	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
214	35	13	Orange nc	01	0.00	0.00	0.00	3.52	3.52	0.00	0.50	
215	32	14	Orange nc	01	3.52	3.52	3.52	0.00	0.00	3.52	0.34	
216	33	14	Orange nc	01	0.00	0.00	0.00	0.00	0.00	0.00	0.31	
217	34	14	Orange nc	01	0.00	0.00	0.00	0.00	0.00	0.00	0.53	
218	35	14	Orange nc	01	0.00	0.00	0.00	0.00	0.00	0.00	0.78	
219	37	14	Orange nc	01	0.00	0.00	0.00	0.00	0.00	0.00	0.76	
220	38	14	Orange nc	01	0.00	0.00	0.00	0.00	0.00	0.00	0.31	
221	76	14	Orange nc	011	2.68	2.68	2.68	2.68	2.68	2.68	2.68	
222	30	16	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
223	28	17	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
224	34	17	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
225	25	18	Orange nc	02	0.54	0.54	0.54	0.54	0.54	0.54	0.11	
226	31	18	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
227	26	19	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
228	30	19	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
229	33	19	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
230	29	21	Orange nc	02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
231	42	20	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
232	42	21	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.13	
233	42	22	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.19	
234	44	22	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
235	26	23	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.11	

					Well withdrawal rates (cfd)							
					M	IP Decision Mod	tel	LPC	otimization Mo	del		
Model	Simulation	Simulation		Agricultural							1988 and projected	
number	model row		iype	demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	year 2010	
236	27	23	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.11	
237	38	23	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
238	42	23	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
239	43	23	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
240	30	24	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
241	34	24	Orange nc	<u>O6</u>	1.51	1.51	1.51	0.13	1,51	1.51	0.02	
242	44	24	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
243	24	25	Orange nc	03	1.18	1.18	1,18	1.18	1.18	1.18	0.08	
244	47	25	Orange nc	06	0.00	0.00	0.00	1.38	0.00	0.00	0.74	
245	30	26	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
246	31	26	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
247	32	26	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.12	
248	40	26	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
249	45	26	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
250	54	26	Orange nc	09	0.00	0.00	0.00	2.30	2.30	2.30	0.50	
251	29	27	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
252	31	27	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
253	33	27	Orange nc	_03	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
254	45	27	Orange nc	06	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
255	52	27	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
256	53	27	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.12	
257	55	27	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
258	56	27	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
259	65	27	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
260	31	28	Orange nc	03	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
261	56	28	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.25	
262	59	28	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.35	
263	39	29	Orange nc	07	0.00	0.00	0.00	0.00	0.00	0.00	0.45	
264	40	29	Orange nc	07	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
265	48	29	Orange nc	08	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
266	46	30	Orange nc	08	0.00	0.00	0.00	0.00	0.00	0.61	0.01	
267	47	30	Orange nc	08	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
268	48	30	Orange nc	08	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
269	53	30	Orange nc	09	2.30	2.30	2.30	0.00	0.00	0.00	0.36	
270	54	30	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
271	59	30	Orange nc	09	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
272	33	31	Orange nc	07	1.10	1.10	1,10	0.00	0.00	0.00	0.33	
273	34	31	Orange nc	07	0.00	0.00	0.00	0.00	0.00	0.00	0.14	
274	39	31	Orange nc	07	0.00	0.00	0.00	0.00	0.00	0.00	0.13	
275	46	. 31	Orange nc	08	0.61	0.61	0.61	0.61	0.61	0.00	0.04	
276	48	31	Orange nc	08	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
277	33	32	Orange nc	07	0.00	0.00	0.00	1.10	1.10	1.10	0.03	
278	54	34	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.19	
279	55	34	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.48	
280	56	34	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.14	
281	51	35	Orange nc	010	1.34	1.34	1.34	1.34	1.34	1.34	0.05	
282	54	35	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.28	

		<u>.</u>			Well withdrawal rates (cfd)							
					M	IP Decision Mod	iel	LPC	ptimization Mo	dei		
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010	
283	57	35	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
284	46	36	Orange nc	04	0.00	0.00	0.00	0.00	0.00	0.00	0.13	
285	55	36.	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
286	57	36	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
287	44	37	Orange nc	04	0.17	0.17	0.17	0.17	0.17	0.17	0.02	
288	45	37	Orange nc	04	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
289	64	37	Orange nc	010	0.00	0.00	0.00	0.00	0.00	0.00	0.08	
290	71	85	Orange nc	05	0.00	0.00	0.00	0.00	0.00	0.00	2.70	
291	73	94	Orange nc	O5	5.93	5.93	5.93	0.00	0.00	0.00	3.07	
292	69	95	Orange nc	O5	0.00	0.00	0.00	5.93	5.93	5.93	0.16	
293	19	78	Seminole nc	S1	0.00	0.00	0.00	0.00	0.00	0.00	0.08	
294	20	78	Seminole nc	\$1	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
295	21	80	Seminole nc	S1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
296	20	81	Seminole nc	S1	0.23	0.23	0.23	0.00	0.00	0.00	0.02	
297	22	81	Seminole nc	S1	0.00	0.00	0.00	0.23	0.23	0.23	0.01	
298	20	55	Seminole nc	S2	0.23	0.23	0.23	0.23	0.23	0.23	0.08	
299	21	56	Seminole nc	S2	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
300	21	65	Seminole nc	S2	0.00	0.00	0.00	0.00	0.00	0.00	0.06	
301	33	68	Seminole nc	S6	0.53	0.53	0.53	0.53	0.53	0.53	0.00	
302	32	93	Seminole nc	S3	0.32	0.32	0.32	0.32	0.32	0.32	0.51	
303	31	100	Seminole nc	S3	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
304	32	100	Seminole nc	S3	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
305	35	101	Seminole nc	S3	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
306	40	83	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
307	43	84	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
308	44	84	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
309	43	85	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
310	44	85	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.07	
311	40	86	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
312	41	86	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
313	42	86	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
314	43	86	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
315	41	87	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
316	45	87	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.48	
317	46	87	Seminole nc	S4	1.76	1.76	1.76	1.76	1.76	1.76	0.05	
318	36	88	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.11	
319	45	88	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.10	
320	46	88	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
321	47	89	Seminole nc	\$4	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
322	46	90	Seminole nc	S4	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
323	49	90	Seminole nc	\$4	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
324	55	30	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
325	43	44	Seminole nc	\$7	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
326	44	44	Seminole nc	S7	0.38	0.38	0.38	0.38	0.38	0.38	0.04	
327	34	55	Seminole nc	S6	0.00	0.00	0.00	0.00	0.00	0.00	0.34	
328	21	64	Seminole nc	S2	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
329	52	74	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.04	

					Well withdrawal rates (cfd)						
					N	IIP Decision Mod	<b>te</b> l	LP C	Optimization Mo	del	,
Model number	Simulation model row	Simulation model column	Туре	Agricultural demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	1988 and projected year 2010
330	54	76	Seminole nc	\$5	0.00	0.00	0.00	0.00	0.00	0.00	0.16
331	50	77	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.20
332	51	77	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.14
333	52	77	Seminole nc	\$5	0.00	0.00	0.00	0.00	0.00	0.00	0.10
334	50	78	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.13
335	51	78	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.03
336	51	80	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.02
337	53	80	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.02
338	54	80	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.07 /
339	55	80	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.13
340	56	80	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.05
341	51	81	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.07
342	52	81	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.04
343	53	81	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.04
344	54	81	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.03
345	49	82	Seminole nc	S5	0.00	0.00	0.00	0.00	0.00	0.00	0.01
346	52	82	Seminole nc	S5	1.44	1.44	1.44	1.44	1.44	1.44	0.01
347	1	61	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.01
348	2	63	Volusia nc	V1	0.00	0.00	0.00	0.73	0.73	0.73	0.03
349	1	65	Volusia nc	V1	0.73	0.73	0.73	0.00	0.00	0.00	0.07
350	1 -	66	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.20
351	2	68	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.05
352	3	68	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.02
353	1	69	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.02
354	1	72	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.01
355	4	72	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.03
356	1	76	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.01
357	1	78	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.05
358	2	80	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.08
359	2	81	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.03
360	4	81	Volusia nc	V1	0.00	0.00	0.00	0.00	0.00	0.00	0.03
361	11	98	Volusia nc	V2	0.00	0.00	0.00	0.00	0.00	0.00	0.12
362	12	98	Volusia nc	V2	0.46	0.46	0.46	0.00	0.00	0.00	0.10
363	11	99	Volusia nc	V2	0.00	0.00	0.00	0.00	0.00	0.00	0.12
364	12	99	Volusia nc	V2	0.00	0.00	0.00	0.46	0.46	0.46	0.22

Simulation Model/row         Model And Model/row         Model And Model/row         Apriculture (Model/row         Model And Model/row         Case 2         Case 2         Case 3         Case 2         Case 3         Case 3 <th></th> <th></th> <th></th> <th>-</th> <th></th> <th colspan="8">Well withdrawal rates (MGD)</th>				-		Well withdrawal rates (MGD)							
Simulation Notosite Rev         Non-state Heading         Non-state Heading         Non-state Prejended Year0010         Case 2         case 1         case 3         case 2         case 3						· · · ·	M	IP decision mode	1 · · ·	LP c	ptimization mod	lei	
SinulationNetwirks NetwirksAps. Object.Networks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks NetwirksNetwirks 						1988 and							
above nov         above nov <t< td=""><td>Simulation</td><td>Simulation</td><td>Model Well</td><td></td><td>Agricultural</td><td>Nonoptimized</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Simulation	Simulation	Model Well		Agricultural	Nonoptimized							
ss         1         CHTNS         C1         0.05         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08         0.08<	Model Row	Model Column	Number	well type	Area	Projected Year 2010	case 3	Case 2	case 1	case 3	case 2	case 1	
37         18         2         Chriss         Ch         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>36</td> <td>18</td> <td>1</td> <td>CITRUS</td> <td><u>C1</u></td> <td>0.05</td> <td>0.09</td> <td>0.09</td> <td>0.09</td> <td>0.09</td> <td>0.09</td> <td>0.09</td>	36	18	1	CITRUS	<u>C1</u>	0.05	0.09	0.09	0.09	0.09	0.09	0.09	
32         17         3         C110/3         C2         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>37</td> <td>18</td> <td>2</td> <td>CITRUS</td> <td>C1</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	37	18	2	CITRUS	C1	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
S2         18         4         C1101S         C2         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>52</td> <td>17</td> <td>3</td> <td>CITRUS</td> <td>C2</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	52	17	3	CITRUS	C2	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
SS         17         S         C111/IS         G2         0.01         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00<	52	18	4	CITRUS	<u>C2</u>	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
35         17         6         C1105         C2         0.01         0.00         0.00         0.00         0.00         0.00           55         18         7         6         CTTRUS         C2         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td>53</td><td>17</td><td>5</td><td>CITRUS</td><td>62</td><td>0.01</td><td>0.07</td><td>0.07</td><td>0.07</td><td>0.07</td><td>0.07</td><td>0.07</td></t<>	53	17	5	CITRUS	62	0.01	0.07	0.07	0.07	0.07	0.07	0.07	
SS         19         7         Clinks         C2         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>55</td> <td>17</td> <td></td> <td>CITRUS</td> <td>62</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	55	17		CITRUS	62	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
36         1/7         6         CIRUS         C2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>55</td> <td>18</td> <td></td> <td>CITRUS</td> <td>02</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	55	18		CITRUS	02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
17         116         9         Clinus         C3         Col2         Clinus         Clinus <thclinus< th="">         Clinus         Cl</thclinus<>	71	1/		CITRUS	02	0.07	0.00	0.00	0.00	0.00	0.00	0.00	
//         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         // <th <="" th="">         //         //         //<!--</td--><td></td><td>16</td><td></td><td>CITRUS</td><td></td><td>0.02</td><td>0.00</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td><td>0.11</td></th>	//         //         // </td <td></td> <td>16</td> <td></td> <td>CITRUS</td> <td></td> <td>0.02</td> <td>0.00</td> <td>0.11</td> <td>0.11</td> <td>0.11</td> <td>0.11</td> <td>0.11</td>		16		CITRUS		0.02	0.00	0.11	0.11	0.11	0.11	0.11
16         11         CITNUS         C3         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.0	70	17	10	CITRUS		0.02	0.00	0.00	0.00	0.00	0.00	0.00	
To         To         To         CAT         CAT <thcat< th=""> <thcat< th=""> <thcat< th=""></thcat<></thcat<></thcat<>	/8 #6	1/	11		<u> </u>	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
14         15         CH         0.05         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.22         0.21         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54         1.54 <th1.54< th="">         1.54         1.54<!--</td--><td>40</td><td>13</td><td>12</td><td>CITRUS</td><td>C4</td><td>0.20</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th1.54<>	40	13	12	CITRUS	C4	0.20	0.00	0.00	0.00	0.00	0.00	0.00	
2         3         14         FERM         F1         0.13         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         1.34         0.30         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	4/	14	13		51 E1	. 0.38	1.54	1 54	1.54	1 54	0.22	0.22	
2         3         Farms         F1         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 </td <td>2</td> <td>8</td> <td>14</td> <td>FERN</td> <td>E1</td> <td>0.13</td> <td>1.04</td> <td>1.54</td> <td>1.54</td> <td>1.54</td> <td>1.54</td> <td>1.54</td>	2	8	14	FERN	E1	0.13	1.04	1.54	1.54	1.54	1.54	1.54	
2         10         10         10         10         10         10         10         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	15	FERN	F1	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
2         11         17         1000         1000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000	2	10	10	CEDN	<b>F1</b>	0.20	0.00	0.00	0.00	0.00	0.00	0.00	
2         12         10         FENN         F1         0.21         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>2</td> <td>10</td> <td>19</td> <td>CERN</td> <td>F1</td> <td>0.20</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	2	10	19	CERN	F1	0.20	0.00	0.00	0.00	0.00	0.00	0.00	
3         9         20         FERN         F1         0.25         0.00         0.00         0.00         0.00         0.00         0.00           3         10         21         FERN         F1         0.05         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td< td=""><td>2</td><td>12</td><td>10</td><td>EERN</td><td>E1</td><td>0.09</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	2	12	10	EERN	E1	0.09	0.00	0.00	0.00	0.00	0.00	0.00	
3         10         21         FERN         F1         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td></td> <td></td> <td>20</td> <td>FERN</td> <td>E1</td> <td>0.25</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>			20	FERN	E1	0.25	0.00	0.00	0.00	0.00	0.00	0.00	
6         70         71         71         70         70         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700		10	20	EERN	E1	0.23	0.00	0.00	0.00	0.00	0.00	0.00	
4         5         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         14         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	4		22	FERN	E1A	0.07	0.00	0.00	0.00	0.00	0.00	0.00	
4         10         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100	4	10	23	FERN	F1A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
4         12         25         FERN         F1A         0.04         0.06         0.00         0.00         0.00         0.00         0.00           5         9         26         FERN         F1A         0.04         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <		11	24	FERN	F1A	0.39	0.92	0.92	0.92	0.00	0.92	0.00	
5         9         26         FERN         F1A         0.04         0.00         0.00         0.00         0.00         0.00         0.00           5         11         27         FERN         F1A         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <	4	12	25	FERN	F1A	0.04	0.00	0.00	0.00	0.00	0.00	0.92	
5         11         27         FERN         F1A         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>5</td> <td>9</td> <td>26</td> <td>FERN</td> <td>F1A</td> <td>0.04</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	5	9	26	FERN	F1A	0.04	0.00	0.00	0.00	0.00	0.00	0.00	
6         10         28         FERN         F1A         0.08         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>5</td> <td>11</td> <td>27</td> <td>FERN</td> <td>F1A</td> <td>0.07</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	5	11	27	FERN	F1A	0.07	0.00	0.00	0.00	0.00	0.00	0.00	
6         11         29         FERN         F1A         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>6</td> <td>10</td> <td>28</td> <td>FERN</td> <td>F1A</td> <td>0.08</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	6	10	28	FERN	F1A	0.08	0.00	0.00	0.00	0.00	0.00	0.00	
6         12         30         FERN         F1A         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>6</td> <td>11</td> <td>29</td> <td>FERN</td> <td>F1A</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	6	11	29	FERN	F1A	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
7         12         32         FERN         F1A         0.02         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>6</td> <td>12</td> <td>30</td> <td>FERN</td> <td>F1A</td> <td>0.01</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	6	12	30	FERN	F1A	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
8         12         34         FERN         F1A         0.01         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>7</td> <td>12</td> <td>32</td> <td>FERN</td> <td>F1A</td> <td>0.02</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	7	12	32	FERN	F1A	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
7         8         31         FERN         F2         0.04         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	. 8	12	34	FERN	F1A	0.01	0.00	0.00	0.00	0.00	0.00	0.00	
8         8         33         FERN         F2         0.03         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	7	8	31	FERN	F2	0.04	0.00	0.00	0.00	0.00	0.00	0.00	
9         7         35         FERN         F2         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	8	8	33	FERN	F2	0.03	0.00	0.00	0.00	0.00	0.00	0.00	
9         8         36         FERN         F2         0.10         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00	9	7	35	FERN	F2	0.07	0.00	0.00	0.00	0.00	0.00	0.00	
10         7         37         FERN         F2         0.03         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>9</td> <td>8</td> <td>36</td> <td>FERN</td> <td>F2</td> <td>0.10</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	9	8	36	FERN	F2	0.10	0.00	0.00	0.00	0.00	0.00	0.00	
11         6         38         FERN         F2         0.24         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>10</td> <td>7</td> <td>37</td> <td>FERN</td> <td>F2</td> <td>0.03</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	10	7	37	FERN	F2	0.03	0.00	0.00	0.00	0.00	0.00	0.00	
11         7         39         FERN         F2         0.05         0.91         0.91         0.91         0.91         0.91         0.91           11         8         40         FERN         F2         0.08         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td>11</td><td>6</td><td>38</td><td>FERN</td><td>F2</td><td>0.24</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	11	6	38	FERN	F2	0.24	0.00	0.00	0.00	0.00	0.00	0.00	
11         8         40         FERN         F2         0.08         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>- 11</td> <td>7</td> <td>39</td> <td>FERN</td> <td>F2</td> <td>0.05</td> <td>0.91</td> <td>0.91</td> <td>0.91</td> <td>0.91</td> <td>0.91</td> <td>0.91</td>	- 11	7	39	FERN	F2	0.05	0.91	0.91	0.91	0.91	0.91	0.91	
12         8         44         FERN         F2         0.03         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>11</td> <td>8</td> <td>40</td> <td>FERN</td> <td>F2</td> <td>0.08</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	11	8	40	FERN	F2	0.08	0.00	0.00	0.00	0.00	0.00	0.00	
13         6         49         FERN         F2         0.03         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59         2.59 <td>12</td> <td>8</td> <td>44</td> <td>FERN</td> <td>F2</td> <td>0.03</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	12	8	44	FERN	F2	0.03	0.00	0.00	0.00	0.00	0.00	0.00	
13         7         50         FERN         F2         0.03         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>13</td> <td>6</td> <td>49</td> <td>FERN</td> <td>F2</td> <td>0.03</td> <td>2.59</td> <td>2.59</td> <td>2.59</td> <td>2.59</td> <td>2.59</td> <td>2.59</td>	13	6	49	FERN	F2	0.03	2.59	2.59	2.59	2.59	2.59	2.59	
13         8         51         FERN         F2         0.17         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>13</td> <td>7</td> <td>50</td> <td>FERN</td> <td>F2</td> <td>0.03</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	13	7	50	FERN	F2	0.03	0.00	0.00	0.00	0.00	0.00	0.00	
14         8         60         FERN         F2         0.07         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>13</td> <td>8</td> <td>51</td> <td>FERN</td> <td>F2</td> <td>0.17</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	13	8	51	FERN	F2	0.17	0.00	0.00	0.00	0.00	0.00	0.00	
11 10 41 FERN F3 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.0	14	8	60	FERN	F2	0.07	0.00	0.00	0.00	0.00	0.00	0.00	
	11	10	41	FERN	F3	0.11	0.00	0.00	0.00	0.00	0.00	0.00	

## Table A11. Volusia LP optimization and MIP decision model agricultural well withdrawal rates

					Well withdrawal rates (MGD)						
						M	IP decision mode	4	LP o	ptimization mod	tel
Simulation Model Row	Simulation Model Column	Modei Weli Number	Well type	Agricultural Area	1988 and Nonoptimized Projected Year 2010	case 3	case 2	case 1	case 3	case 2	case 1
11	0	42	FERN	F3	0.04	0.00	0.00	0.00	0.00	0.00	0.00
11	12	43	FERN	F3	0.17	0.00	0.00	0.00	0.00	0.00	0.00
12	9	45	FERN	F3	0.21	0.00	0.00	0.00	0.00	0.00	0.00
12	10	46	FERN	F3	0.26	0.00	0.00	0.00	0.00	0.00	0.00
12	11	47	FERN	F3	0.08	0.00	0.00	0.00	0.00	0.00	0.00
12	12	48	FERN	F3	0.09	0.00	0.00	0.00	0.00	0.00	0.00
13	9	52	FERN	F3	0.35	0.00	0.00	0.00	0.00	0.00	0.00
13	10	53	FERN	F3	0.26	0.00	0.00	0.00	0.00	0.00	0.00
13	11	54	FERN	F3	0.12	0.00	0.00	0.00	0.00	0.00	0.00
13	12	55	FERN	F3	0.07	0.00	0.00	0.00	0.00	0.00	0.00
13	13	56	FERN	F3	0.10	0.00	0.00	0.00	0.00	0.00	0.00
13	14	57	FERN	F3	0.04	0.00	0.00	0.00	0.00	0.00	0.00
14	9	61	FERN	F3	0.26	0.00	0.00	0.00	0.00	0.00	0.00
14	10	62	FERN	F3	0.37	0.00	0.00	0.00	0.00	0.00	0.00
14	11	63	FERN	F3	0.10	0.00	0.00	0.00	0.00	0.00	0.00
14	5	58	FERN	F4	0.02	0.00	0.00	0.00	0.00	0.00	0.00
14	6	59	FERN	F4	0.04	0.00	0.00	0.00	0.00	0.00	0.00
15	4	64	FERN	F4	0.23	0.00	0.00	0.00	0.00	0.00	0.00
15	5	65	FERN	F4	0.21	1.03	1.03	1.08	1.03	1.03	1.03
15	6	66	FERN	F4	0.15	0.00	0.00	0.00	0.00	0.00	0.00
15	7	67	FERN	F4	0.02	0.00	0.00	0.00	0.00	0.00	0.00
16	4	70	FERN	F4	0.13	0.00	0.00	0.00	0.00	0.00	0.00
16	5	71	FERN	F4	0.04	0.84	0.00	0.60	0.84	0.84	0.84
16	6	72	FERN	F4	0.07	0.00	0.00	0.00	0.00	0.00	0.00
17	2	75	FERN	F4	0.02	0.00	0.00	0.00	0.00	0.00	0.00
18	4	76	FERN	F4	0.01	0.00	0.00	0.00	0.00	0.00	0.00
18	7	79	FERN	F4	0.05	0.00	0.84	0.23	0.00	0.00	0.00
15	8	68	FERN	F4A	0.14	0.00	0.00	0.00	0.00	0.00	0.00
15	9	69	FERN	F4A	0.15	0.00	0.00	0.00	0.00	0.00	0.00
16	9	73	FERN	F4A	0.26	0.00	0.00	0.00	0.00	0.00	0.00
16	10	74	FERN	F4A	0.21	0.00	0.00	0.00	0.00	0.00	0.00
17	12	77	FERN	F4A	0.12	0.00	0.00	0.00	0.00	0.00	0.00
17	13	78	FERN	F4A	0.04	0.00	0.00	0.00	0.00	0.00	0.00
18	9	80	FERN	F4A	0.02	0.00	0.00	0.00	0.00	0.00	0.00
19	9	81	FERN	F4A	0.06	0.00	0.00	0.00	0.00	0.00	0.00
18	19	82	FERN	F5	0.07	0.00	0.00	0.00	0.00	0.00	0.00
20	18	83	FERN	F5	0.07	0.00	0.00	0.00	0.00	0.00	0.00
23	17	84	FERN	F5	0.11	0.53	0.53	0.53	0.53	0.53	0.53
23	18	85	FERN	F5	0.21	0.00	0.00	0.00	0.00	0.00	0.00
24	18	86	FERN	F5	0.02	0.00	0.00	0.00	0.00	0.00	0.00
25	18	87	FERN	F5	0.01	0.00	0.00	0.00	0.00	0.00	0.00
28	15	88	FERN	F6	0.05	0.00	0.00	0.00	0.00	0.00	0.00
29	15	89	FERN	F6	0.01	0.00	0.00	0.00	0.00	0.00	0.00
30	14	90	FERN	F6	0.05	0.00	0.00	0.00	0.00	0.00	0.00
30	15	91	FERN	F6	0.06	0.00	0.00	0.00	0.00	0.00	0.00
31	14	92	FERN	F6	0.05	0.00	0.00	0.00	0.00	0.00	0.00

					Well withdrawal rates (MGD)						
·····				·····		м	IP decision mode	1	LP	potimization mod	iei
Simulation Model Row	Simulation Model Column	Model Well Number	Well type	Agricultural Area	1988 and Nonoptimized Projected Year 2010	case 3	case 2	case 1	case 3	case 2	case 1
32	14	93	FERN	F6	0.06	0.00	0.00	0.00	0.00	0.00	0.00
33	14	94	FERN	F6	0.12	0.00	0.00	0.00	0.00	0.00	0.00
33	15	95	FERN	F6	1.65	0.00	0.00	0.00	0.00	0.00	0.00
34	14	96	FERN	F6	0.06	2.72	2.72	2.72	2.72	2.72	2.72
34	15	97	FERN	F6	0.05	0.00	0.00	0.00	0.00	0.00	0.00
35	14	98	FERN	F6	0.10	0.00	0.00	0.00	0.00	0.00	0.00
35	15	99	FERN	F6	0.01	0.00	0.00	0.00	0.00	0.00	0.00
36	13	100	FERN	F6	0.07	0.00	0.00	0.00	0.00	0.00	0.00
36	14	101	FERN	F6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
37	14	102	FERN	F6	0.07	0.00	0.00	0.00	0.00	0.00	0.00
37	16	103	FERN	F6	0.08	0.00	0.00	0.00	0.00	0.00	0.00
38	14	104	FERN	F6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
38	15	105	FERN	F6	0.01	0.00	0.00	0.00	0.00	0.00	0.00
38	16	106	FERN	F6	0.01	0.00	0.00	0.00	0.00	0.00	0.00
39	12	107	FERN	F6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
40	12	111	FERN	F6	0.08	0.00	0.00	0.00	0.00	0.00	0.00
40	14	112	FERN	F6	0.02	1.52	1.52	1.52	1.52	1.52	1.52
40	15	113	FERN	F6	0.04	0.00	0.00	0.00	0.00	0.00	0.00
39	15	108	FERN	F7	0.19	0.00	0.00	0.00	0.00	0.00	0.00
39	18	110	FERN	F7	0.06	0.00	0.00	0.00	0.00	0.00	0.00
40	17	114	FERN	F7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
40	18	115	FERN	F7	0.06	0.98	0.98	0.98	0.98	0.98	0.98
40	19	116	FERN	F7	0.03	0.00	0.00	0.00	0.00	0.00	0.00
41	17	119	FERN	F7	0.03	0.00	0.00	0.00	0.00	0.00	0.00
41	19	120	FERN	F7	0.06	1.41	1.41	1.41	1.41	1.41	1.41
41	20	121	FERN	F7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
42	17	126	FERN	F7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
42	19	127	FERN	F7	0.15	0.00	0.00	0.00	0.00	0.00	0.00
43	17	131	FERN	F7	0.06	0.00	0.00	0.00	0.00	0.00	0.00
44	17	136	FERN	F7	0.11	0.00	0.00	0.00	0.00	0.00	0.00
45	18	142	FERN	F7	0.09	0.00	0.00	0.00	0.00	0.00	0.00
46	18	145	FERN	F7	0.03	0.00	0.00	0.00	0.00	0.00	0.00
46	19	146	FERN	F7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
41	13	117	FERN	F8	0.03	0.00	0.00	0.00	0.00	0.00	0.00
41	16	118	FERN	F8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
42	11	122	FERN	F8	0.08	0.00	0.00	0.00	0.00	0.00	0.00
42	14	123	FERN	F8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
42	15	124	FERN	F8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
42	16	125	FERN	F8	0.01	0.00	0.00	0.00	0.00	0.00	0.00
43	11	128	FERN	F8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
43	13	129	FERN	F8	0.06	0.00	0.00	0.00	0.00	0.00	0.00
43	14	130	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
44	10	132	FERN	F8	0.07	0.00	0.00	0.00	0.00	0.00	0.00
44	11	133	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
44	13	134	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
44	14	135	FERN	F8	0.01	0.00	0.00	0.00	0.00	0.00	0.00

					Well withdrawal rates (MGD)						
						M	P decision mode	d	LP d	otimization mod	jel
Simulation Model Row	Simulation Model Column	Model Well Number	Well type	Agricultural Area	1988 and Nonoptimized Projected Year 2010	case 3	case'2	case 1	case 3	case 2	case 1
45	10	137	FERN	F8	0.09	0.00	0.00	0.00	0.00	0.00	0.00
45	11	138	FERN	F8	0.20	0.00	0.00	0.00	0.00	0.00	0.00
45	13	139	FERN	F8	0.08	0.00	0.00	0.00	0.00	0.00	0.00
45	14	140	FERN	F8	0.10	0.00	0.00	0.00	0.00	0.00	0.00
45	15	141	FERN	F8	0.06	0.00	0.00	0.00	0.00	0.00	0.00
46	10	143	FERN	F8	0.06	0.00	0.00	0.00	0.00	0.00	0.00
46	14	144	FERN	F8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
47	10	147	FERN	F8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
47	12	148	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
48	10	149	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
48	13	150	FERN	F8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
49	13	151	FERN	F8	0.03	0.00	0.00	0.00	0.00	0.00	0.00
49	15	152	FERN	F8	0.06	0.00	0.00	0.00	0.00	0.00	0.00
50	15	155	FERN	F8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
51	13	159	FERN	F8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
39	17	109	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
50	10	153	FERN	F9	0.02	0.00	0.00	0.00	0.00	0.00	0.00
50	11	154	FERN	F9	0.02	0.37	0.37	0.37	0.37	0.37	0.37
51	10	157	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
51	11	158	FERN	F9	0.02	0.00	0.00	0.00	0.00	0.00	0.00
52	9	161	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
52	10	162	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
53	9.	163	FERN	F9	0.07	0.00	0.00	0.00	0.00	0.00	0.00
53	10	164	FERN	F9	0.04	0.00	0.00	0.00	0.00	0.00	0.00
54	9	166	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
54	10	167	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
55	10 ·	168	FERN	F9	0.05	0.00	0.00	0.00	0.00	0.00	0.00
55	11	169	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
55	12	170	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
56	10	171	FERN	F9	0.04	0.00	0.00	0.00	0.00	0.00	0.00
56	11	172	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
57	9	173	FERN	F9	0.11	0.00	0.00	0.00	0.00	0.00	0.00
57	10	174	FERN	F9	0.02	0.00	0.00	0.00	0.00	0.00	0.00
57	11	175	FERN	F9:	0.09	0.00	0.00	0.00	0.00	0.00	0.00
58	9	176	FERN	F9	0.10	0.00	0.00	0.00	0.00	0.00	0.00
58	10	177	FERN	F9	0.00	0.00	0.00	0.00	0.00	0.00	0.00
58	- 11	178	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
58	12	179	FERN	F9	0.07	0.00	0.00	0.00	0.00	0.00	0.00
59	9	180	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
59	10	181	FERN	F9	0.07	0.00	0.00	0.00	0.00	0.00	0.00
61	9	182	FERN	F9	0.16	0.00	0.00	0.00	0.00	0.00	0.00
61	10	183	FERN	F9	0.02	0.00	0.00	0.00	0.00	0.00	0.00
62	9	184	FERN	<b>F</b> 9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
62	10	185	FERN	F9	0.10	0.00	0.00	0.00	0.00	0.00	0.00
63	9	186	FERN	F9	0.07	0.00	0.00	0.00	0.00	0.00	0.00
63	10	187	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00

p

					Well withdrawal rates (MGD)						
						M	IP decision mode	1	IPC	otimization mod	(e)
Simulation Model Row	Simulation Model Column	Model Well Number	Well type	Agricultural Area	1988 and Nonoptimized Projected Year 2010	case 3	case 2	case 1	case 3	Case 2	case 1
63	11	188	FERN	F9	0.03	0.00	0.00	0.00	0.00	0.00	0.00
64	9	189	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
64	10	190	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
64	11	191	FERN	F9	0.02	0.00	0.00	0.00	0.00	0.00	0.00
65	9	192	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
65	10	193	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
66	9	194	FERN	F9	0.04	0.00	0.00	0.00	0.00	0.00	0.00
68	8	195	FERN	F9	0.01	0.00	0.00	0.00	0.00	0.00	0.00
59	12	197	FERN	F9	0.16	0.00	0.00	0.00	0.00	0.00	0.00
50	18	156	FERN	F10	0.02	0.00	0.00	0.00	0.00	0.00	0.00
51	18	160	FERN	F10	0.09	0.00	0.00	0.00	0.00	0.00	0.00
53	18	165	FERN	F10	0.01	0.00	0.00	0.00	0.00	0.00	0.00
58	17	196	FERN	F10	0.02	0.00	0.00	0.00	0.00	0.00	0.00
59	14	198	FERN	F10	0.03	0.00	0.00	0.00	0.00	0.00	0.00
59	17	199	FERN	F10	0.03	0.00	0.00	0.00	0.00	0.00	0.00
60	14	200	FERN	F10	0.01	0.00	0.00	0.00	0.00	0.00	0.00
61	17	201	FERN	F10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
69	15	202	FERN	F11	0.04	0.00	0.00	0.00	0.00	0.00	0.00
72	15	203	FERN	F11	0.03	0.00	0.00	0.00	0.08	0.08	0.08
73	14	204	FERN	F11	0.01	0.00	0.00	0.00	0.00	0.00	0.00
73	16	205	FERN	F11	0.01	0.00	0.00	0.00	0.00	0.00	0.00
71	8	206	FERN	F12	0.01	0.00	0.00	0.00	0.00	0.19	0.19
71	9	207	FERN	F12	0.06	0.00	0.00	0.00	0.00	0.00	0.00
72	10	208	FERN	F12	0.11	0.00	0.00	0.00	0.00	0.00	0.00
73	10	209	FERN	F12	0.02	0.00	0.00	0.00	0.00	0.00	0.00
74	8	210	FERN	F13	0.04	0.00	0.00	0.00	0.00	0.25	0.36
74	9	211	FERN	F13	0.02	0.00	0.00	0.00	0.00	0.00	0.00
74	13	212	FERN	F13	0.02	0.00	0.00	0.00	0.00	0.00	0.00
75	14	213	FERN	F13	0.05	0.00	0.00	0.00	0.00	0.00	0.00
76	10	214	FERN	F13	0.07	0.00	0.00	0.00	0.00	0.00	0.00
76	16	215	FERN	F13	0.03	0.00	0.00	0.00	0.00	0.00	0.00
77	17	216	FERN	F13	0.02	0.00	0.00	0.00	0.00	0.11	0.00
78	9	217	FERN	F13	0.04	0.00	0.00	0.00	0.00	0.00	. 0.00
79	12	218	FERN	F13	0.03	0.00	0.00	0.00	0.00	0.00	0.00
82	16	219	FERN	F13	0.02	0.00	0.00	0.00	0.00	0.00	0.00
4	11	220	FOLIAGE 2	LI	0.04	0.06	0.00	0.00	0.00	0.00	0.00
16	12	221	FOLIAGE 2	LI	0.03	0.00	0.06	0.06	0.06	0.06	0.06
60	9	222	FOLIAGE 2	12	0.04	0.06	0.06	0.06	0.06	0.00	0.00
60	14	223	FOLIAGE 2	12	0.05	0.00	0.00	0.00	0.00	0.06	0.06
61	9	224	FOLIAGE 2	L3	0.05	0.10	0.10	0.10	0.10	0.10	0.10
62	9	225	FOLIAGE 2	L3	0.02	0.00	0.00	0.00	0.00	0.00	0.00
25	78	226	GOLF	G1	0.02	0.00	0.00	0.00	0.00	0.00	0.00
25	79	227	GOLF	G1	0.02	0.00	0.00	0.00	0.00	0.00	0.00
_26	79	228	GOLF	G1	0.07	0.00	0.00	0.00	0.00	0.00	0.00
27	79	229	GOLF	G1	0.02	0.16	0.16	0.16	0.16	0.16	0.16
28	78	230	GOLF	G1	0.04	0.00	0.00	0.00	0.00	0.00	0.00

					Well withdrawal rates (MGD)						
						м	IP decision mode	ł	LP d	ptimization mod	tel
Simulation Model Row	Simulation Model Column	Model Well Number	Well type	Agricultural Area	1988 and Nonoptimized Projected Year 2010	case 3	case 2	case 1	case 3	case 2	case 1
64	78	231	GOLF	G2	0.05	0.09	0.00	0.00	0.09	0.00	0.00
65	78	232	GOLF	G2	0.07	0.00	0.09	0.09	0.00	0.09	0.09
75	53	233	GOLF	G3	0.22	0.30	0.00	0.00	0.30	0.00	0.00
75	55	234	GOLF	G3	0.11	0.00	0.30	0.30	0.00	0.30	0.30
80	63	235	GOLF	G4	0.05	0.16	0.16	0.00	0.00	0.16	0.16
82	65	236	GOLF	G4	0.09	0.00	0.00	0.16	0.00	0.00	0.00
84	8	237	GOLF	G5	0.07	0.09	0.09	0.09	0.09	0.00	0.00
2	7	238	LIVESTOCK	P1	0.22	0.00	0.00	0.00	0.00	0.00	0.00
2	8	239	LIVESTOCK	P1	0.02	0.57	0.57	0.57	0.57	0.57	0.57
3	9	240	LIVESTOCK	P1	0.03	0.00	0.00	0.00	0.00	0.00	0.00
3	10	241	LIVESTOCK	P1	0.07	0.00	0.00	0.00	0.00	0.00	0.00
3	11	242	LIVESTOCK	P1	0.02	0.00	0.00	0.00	0.00	0.00	0.00
4	11	243	LIVESTOCK	P1	0.03	0.00	0.00	0.00	0.00	0.00	0.00
5	9	244	LIVESTOCK	P1	0.10	0.00	0.00	0.00	0.00	0.00	0.00
5	10	245	LIVESTOCK	P1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	4	246	LIVESTOCK	P1	0.04	0.00	0.00	0.00	0.00	0.00	0.00
10	7	247	LIVESTOCK	P2	0.04	0.00	0.00	0.00	0.00	0.00	0.00
14	5	248	LIVESTOCK	P2	0.06	0.43	0.43	0.43	0.00	0.00	0.00
9	8	249	LIVESTOCK	P2	0.01	0.00	0.00	0.00	0.00	0.00	0.00
12	6	250	LIVESTOCK	P2	0.02	0.00	0.00	0.00	0.00	0.00	0.00
11	7	251	LIVESTOCK	P2	0.01	0.00	0.00	0.00	0.00	0.00	0.00
13	6	252	LIVESTOCK	P2	0.08	0.00	0.00	0.00	0.00	0.00	0.00
10	8	253	LIVESTOCK	P2	0.02	0.00	0.00	0.00	0.43	0.43	0.43
16	5	254	LIVESTOCK	P2	0.14	0.00	0.00	0.00	0.00	0.00	0.00
5	23	255	LIVESTOCK	P2	0.05	0.00	0.00	0.00	0.00	0.00	0.00
6	16	256	LIVESTOCK	P3	0.08	0.00	0.00	0.00	0.00	0.00	0.00
7	12	257	LIVESTOCK	P3	0.04	0.17	0.17	0.17	0.17	0.17	0.17
7	13	258	LIVESTOCK	P3	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	8	259	LIVESTOCK	P4	0.04	0.00	0.00	0.00	0.00	0.00	0.00
13	7	260	LIVESTOCK	P4	0.05	0.00	0.00	0.00	0.00	0.00	0.00
14	6	261	LIVESTOCK	P4	0.01	0.00	0.00	0.00	0.00	0.00	0.00
15	6	262	LIVESTOCK	P4	0.01	0.00	0.00	0.00	0.00	0.00	0.00
16	6	263	LIVESTOCK	P4	0.15	0.00	0.00	0.00	0.00	0.00	0.00
17	6	264	LIVESTOCK	P4	0.05	0.32	0.32	0.32	0.32	0.32	0.32
18	5	265	LIVESTOCK	P4	0.04	0.00	0.00	0.00	0.00	0.00	0.00
11	10	266	LIVESTOCK	P5	0.02	0.00	0.00	0.00	0.00	0.00	0.00
12	9	267	LIVESTOCK	P5	0.01	0.00	0.00	0.00	0.00	0.00	0.00
13	8	268	LIVESTOCK	P5	0.12	0.00	0.00	0.00	0.00	0.00	0.00
14	8	269	LIVESTOCK	P5	0.01	0.21	0.21	0.21	0.21	0.21	0.21
16	7	270	LIVESTOCK	P5	0.13	0.00	0.00	0.00	0.00	0.00	0.00
12	10	271	LIVESTOCK	P6	0.13	0.00	0.00	0.00	0.00	0.00	0.00
15	8	272	LIVESTOCK	P6	0.05	0.46	0.46	0.46	0.46	0.46	0.46
14	9	273	LIVESTOCK	P6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
13	10	274	LIVESTOCK	P6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
15	9	275	LIVESTOCK	P6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
14	10	276	LIVESTOCK	P6	0.04	0.00	0.00	0.00	0.00	0.00	0.00

					Well withdrawal rates (MGD)						
						M	IP decision mode	1	LP	ptimization mod	lel ·
Simulation Model Row	Simulation Model Column	Model Well Number	Well type	Agricultura) Area	1988 and Nonoptimized Projected Year 2010	case 3	case 2	case 1	case 3	case 2	case 1
13	11	277	LIVESTOCK	P6	0.03	0.00	0.00	0.00	0.00	0.00	0.00
12	12	278	LIVESTOCK	P6	0.11	0.00	0.00	0.00	0.00	0.00	0.00
7	21	279	LIVESTOCK	P7	0.05	0.21	0.21	0.21	0.21	0.21	0.21
7	22	280	LIVESTOCK	P7	0.05	0.00	0.00	0.00	0.00	0.00	0.00
8	21	281	LIVESTOCK	P7	0.04	0.00	0.00	0.00	0.00	0.00	0.00
6	28	282	LIVESTOCK	P8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
6	29	283	LIVESTOCK	P8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
6	31	284	LIVESTOCK	P8	0.04	0.00	0.00	0.00	. 0.00	0.00	0.00
7	31	285	LIVESTOCK	P8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
8	29	286	LIVESTOCK	P8	0.04	0.00	0.00	0.00	0.00	0.00	0.00
8	31	287	LIVESTOCK	P8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
9	28	288	LIVESTOCK	P8	0.09	0.00	0.00	0.00	0.00	0.00	0.00
9	29	289	LIVESTOCK	P8	0.10	0.00	0.00	0.00	0.00	0.00	0.00
10	28	290	LIVESTOCK	P8	0.05	0.00	0.00	0.00	0.00	0.00	0.00
11	26	291	LIVESTOCK	P8	0.05	0.58	0.58	0.58	0.58	0.58	0.58
11	27	292	LIVESTOCK	P8	0.02	0.00	0.00	0.00	0.00	0.00	0.00
16	11	293	LIVESTOCK	P9	0.07	0.00	0.00	0.00	0.00	0.00	0.00
17	10	294	LIVESTOCK	P9	0.08	0.09	0.09	0.09	0.09	0.09	0.09
11	20	295	LIVESTOCK	P10	0.08	0.55	0.55	0.55	0.55	0.55	0.55
11	21	296	LIVESTOCK	P10	0.08	0.00	0.00	0.00	0.00	0.00	0.00
12	21	297	LIVESTOCK	P10	0.16	0.00	0.00	0.00	0.00	0.00	0.00
12	22	298	LIVESTOCK	P10	0.08	0.00	0.00	0.00	0.00	0.00	0.00
12	23	299	LIVESTOCK	P10	0.08	0.00	0.00	0.00	0.00	0.00	0.00
13	21	300	LIVESTOCK	P10	0.61	0.00	0.00	0.00	0.00	0.00	0.00
15	16	301	LIVESTOCK	P11	0.04	0.79	0.79	0.79	0.79	0.79	0.79
17	18	302	LIVESTOCK	P11	0.10	0.00	0.00	0.00	0.00	0.00	0.00
19	17	303	LIVESTOCK	P11	0.02	0.00	0.00	0.00	0.00	0.00	0.00
18	18	304	LIVESTOCK	P11	0.03	0.00	0.00	0.00	0.00	0.00	0.00
18	19	305	LIVESTOCK	P11	0.02	0.00	0.00	0.00	0.00	0.00	0.00
30	12	306	LIVESTOCK	P12	0.02	0.00	0.00	0.00	0.00	0.00	0.00
31	12	307	LIVESTOCK	P12	0.02	0.00	0.00	0.00	0.00	0.00	0.00
32	12	308	LIVESTOCK	P12	0.02	0.00	0.00	0.00	0.00	0.00	0.00
31	13	309	LIVESTOCK	P12	0.08	0.00	0.00	0.00	0.00	0.00	0.00
32	. 13	310	LIVESTOCK	P12	0.11	0.15	0.15	0.15	0.15	0.15	0.15
29	15	311	LIVESTOCK	P13	0.03	0.11	0.11	0.11	0.11	0.11	0.11
44	10	312	LIVESTOCK	P14	0.08	0.18	0.18	0.18	0.18	0.18	0.18
48	10	313	LIVESTOCK	P14	0.02	0.00	0.00	0.00	0.00	0.00	0.00
50	10	314	LIVESTOCK	P14	0.04	0.00	0.00	0.00	0.00	0.00	0.00
51	11	315	LIVESTOCK	P14	0.02	0.00	0.00	0.00	0.00	0.00	0.00
27	18	316	LIVESTOCK	P15	0.08	0.00	0.00	0.00	0.00	0.00	0.00
28	17	317	LIVESTOCK	P15	0.06	0.11	0.11	0.11	0.11	0.11	0.11
7	79	318	LIVESTOCK	P16	0.01	0.00	0.00	0.00	0.11	0.11	0.11
72	8	319	LIVESTOCK	P16	0.04	0.11	0.11	0.11	0.00	0.00	0.00
78	9	320	LIVESTOCK	P16	0.01	0.00	0.00	0.00	0.00	0.00	0.00
43	14	321	LIVESTOCK	P17	0.04	0.00	0.00	0.00	0.00	0.00	0.00
44	13	322	LIVESTOCK	P17	0.03	0.16	0.16	0.16	0.00	0.16	0.16

					Well withdrawal rates (MGD)						
						M	IP decision mode	1	LP o	ptimization mod	lei
					1988 and					·····	
Simulation	Simulation	Model Well		Agricultural	Nonoptimized	_			_		
Model Row	Model Column	Number	Well type	Area	Projected Year 2010	case 3	case 2	case 1	case 3	case 2	case 1
44	16	323	LIVESTOCK	P17	0.04	0.00	0.00	0.00	0.16	0.00	0.00
45	13	324	LIVESTOCK	P17	0.03	0.00	0.00	0.00	0.00	0.00	0.00
45	14	325	LIVESTOCK	P17	0.09	0.00	0.00	0.00	0.00	0.00	0.00
59	11	326	LIVESTOCK	P18	0.03	0.14	0.14	0.14	0.14	0.14	0.14
60	11	327	LIVESTOCK	P18	0.03	0.00	0.00	0.00	0.00	0.00	0.00
63	11	328	LIVESTOCK	P18	0.12	0.00	0.00	0.00	0.00	0.00	0.00
77	17	329	LIVESTOCK	P19	0.05	0.12	0.12	0.12	0.12	0.12	0.00
35	71	330	LIVESTOCK	P20	0.05	0.00	0.00	0.00	0.00	0.00	0.00
36	73	331	LIVESTOCK	P20	0.05	0.00	0.00	0.00	0.00	0.00	0.00
36	74	332	LIVESTOCK	P20	0.21	0.14	0.14	0.14	0.14	0.14	0.14
78	37	333	LIVESTOCK	P21	0.21	0.32	0.45	0.08	0.00	0.00	0.00
79	37	334	LIVESTOCK	P21	0.21	0.31	0.18	0.56	0.39	0.63	0.63
78	38	335	LIVESTOCK	P21	0.03	0.00	0.00	0.00	0.00	0.00	0.00
11	8	336	NURSERY	N1	0.05	0.00	0.00	0.00	0.00	0.00	0.00
12	8	337	NURSERY	N1	0.01	0.15	0.15	0.15	0.15	0.15	0.00
13	9	338	NURSERY	N1	0.06	0.00	0.00	0.00	0.00	0.00	0.00
14	10	339	NURSERY	N1	0.04	0.00	0.00	0.00	0.00	0.00	0.15
73	66	340	NURSERY	N2	0.03	0.07	0.07	0.00	0.07	0.07	0.07
73	67	341	NURSERY	N2	0.08	0.00	0.00	0.07	0.00	0.00	0.00
81	49	342	NURSERY	N3	0.04	0.00	0.00	0.00	0.12	0.12	0.12
82	49	343	NURSERY	N3	0.05	0.12	0.12	0.12	0.00	0.00	0.00
22	69	344	TURF	T1	0.05	0.00	0.00	0.00	0.00	0.00	0.00
23	68	345	TURF	T1	0.05	0.00	0.00	0.00	0.00	0.00	0.00
23	70	346	TURF	TI	0.05	0.19	0.00	0.00	0.19	0.19	0.19
24	69	347	TURF	T1	0.03	0.00	0.19	0.19	0.00	0.00	0.00
72	12	348	TURF	T2	0.03	0.07	0.00	0.00	0.00	0.00	0.00
72	13	349	TURF	T2	0.03	0.00	0.07	0.07	0.00	0.07	0.07
76	55	350	TURF	ТЗ	0.21	0.76	0.00	0.00	0.40	0.00	0.00
77	55	351	TURF	Т3	0.03	0.00	0.00	0.00	0.00	0.00	0.00
77	57	352	TURF	ТЗ	0.49	0.00	0.00	0.00	0.00	0.00	0.00
78	56	353	TURF	ТЗ	0.13	0.00	0.76	0.76	0.00	0.76	0.76
82	14	354	TURF	T4	0.03	0.00	0.00	0.00	0.00	0.00	0.00
83	9	355	TURF	T4	0.13	0.28	0.28	0.28	0.00	0.28	0.28
83	14	356	TURF	T4	0.17	0.00	0.00	0.00	0.00	0.00	0.00
90	27	357	TURF	T5	0.17	0.33	0.33	0.33	0.33	0.33	0.33
90	28	358	TURF	T5	0.07	0.00	0.00	0.00	0.00	0.00	0.00
89	19	359	VEGETABLE	V1	0.19	0.00	0.00	0.00	0.00	0.00	0.00
89	20	360	VEGETABLE	V1	0.07	0,00	0.00	0.00	0.00	0.00	0.00
89	21	361	VEGETABLE	V1	0.04	0.00	0.00	0.00	0.00	0.00	0.00
90	20	362	VEGETABLE	V1	4,992	0.37	0.37	0.37	0.37	0.37	0.37

## Table A12. Linear approximations for transport costs

	Annu	alized fixed cos	t estimates to ap	proximate ti	he following equ	uations:	· · · · · · · · · · · · · · · · · · ·		
	Less than 5 miles long:         \$[22460(Length in miles)^1.232 *(ADF in MGD)^0.43]/year								
			\$[22460(Length i	n miles)^1.23	2 *(ADF in MGD	)^0.43]/year			(a)
	More than 5 miles	long:							
		1 pump	station: \$[32040(L	ength in mile	s)^1.044 *(ADF	in MGD)^0.44] /y	ear		(b)
		2 pump s	tations: \$[43180(1	ength in mile	s)^0.935 *(ADF	in MGD)^0.448]/	year		(c)
		Annualize	ed unit charges a	are approxin	nated as				
			Les	s than 5 mile	s long: \$0/year				
			1 or 2 pump	stations: \$[5	1420(ADF in MG	D)]/year			(d)
Each seg	ment below has a	slope and an in	tercept for a stra	ight line app	proximation				
		linear approximat	tion = intercept + :	slope*(ADF ir	n cfd)			•	
				CH2M Hill (eqn a borc)	approximation	Error	% error		
	length in miles	adf (mod)	adf (cfd)		Shear				
	1	5	668 449	44 871	50272 7513	5 402	12 04%		
	1	75	1 002 674	53 418	54851 62695	1 434	2 68%		
	1	10	1 336 898	60 452	59430 5026	-1 021	-1 69%		
	1	15	2 005 347	71 966	68588 2530	-3 378	-4.69%		
		20	2 673 796	81 443	77746 0052	-3,697	-4 54%		
			3 342 245	89 645	86903 7565	-0,007	-3.06%		
		20	4 010 694	96 955	96061 5078	-994	-0.00%	· · · · · · · · · · · · · · · · · · ·	
		40	5 347 592	109 723	114377 0104	A 655	A 24%		·
	······································	intercent	41 115			4,000	42.470		
		sione	0.0137						
			0.010/						
[							-		
				CH2M Hill (eqn a.b.orc)	Linear approximation	Error			
<u> </u>	length in miles	adf (mgd)	adf (cfd)		\$/vear				
	2	5	668.449	105.399	118.100	12,701	12.05%		
	2	7.5	1.002.674	125.474	128.862	3.388	2,70%		
	2	10	1.336.898	141.997	139.624	-2.373	-1.67%		
L	2	15	2.005.347	169.043	161.148	-7,895	-4.67%	1	
	2	20	2.673.796	191.303	182.672	-8,631	-4.51%		
	2	25	3.342.245	210.568	204.196	-6.372	-3.03%		
1	2	30	4.010.694	227.741	225.720	-2.020	-0.89%		· · · · · · · · · · · · · · · · · · ·
	2	40	5.347.592	257.730	268.768	11.039	4.28%		
<b></b>	<u></u>	intercept	96.576						
<b> </b>	+	slope	0.0322						
	1	· ·		·			<u> </u>		

				CH2M Hill (eqn a, b, or c)	Linear approximation	Error				
	length in miles	adf (mgd)	adf (cfd)	<u>·</u>	\$/year					
	5	5	668,449	325,910	365,206	39,295	12.06%	-		
	5	7.5	1,002,674	387,987	398,494	10,507	2.71%			
	5	10	1,336,898	439,077	431,783	-7,294	-1.66%			
	5	15	2,005,347	522,709	498,361	-24,349	-4.66%			
	5	20	2,673,796	591,539	564,938	-26,601	-4.50%			
	5	25	3,342,245	651,111	631,516	-19,595	-3.01%			
_	5	30	4,010,694	704,211	698,093	-6,118	-0.87%			
	5	40	5,347,592	796,942	831,248	34,306	4.30%			
		intercept	298,628							
		slope	0.0996							
				CH2M Hill (eqn a, b, or c)	Linear approximation	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/year					
	6	5	668,449	422,308	473,996	51,688	12.24%			
	6	7.5	1,002,674	504,788	518,681	13,893	2.75%			
	6	10	1,336,898	572,905	563,367	-9,538	-1.66%			
	6	15	2,005,347	684,798	652,739	-32,059	-4.68%			
	6	20	2,673,796	777,205	742,111	-35,095	-4.52%			
	6	25	3,342,245	857,385	831,482	-25,903	-3.02%			
	6	30	4,010,694	929,000	920,854	-8,146	-0.88%			
	6	40	5,347,592	1,054,360	1,099,597	45,237	4.29%			
		intercept	384,624							
		slope	0.1337							
				CH2M Hill (eqn a, b, or c)	Linear approximation	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/year					
	7	5	668,449	496,046	556,728	60,683	12.23%			
	7	7.5	1,002,674	592,928	609,202	16,274	2.74%			
	7	10	1,336,898	672,938	661,675	-11,263	-1.67%			
	7	15	2,005,347	804,368	766,621	-37,747	-4.69%			
	7	20	2,673,796	912,910	871,568	-41,342	-4.53%			
	7	25	3,342,245	1,007,090	976,514	-30,576	-3.04%			
	7	30	4,010,694	1,091,210	1,081,461	-9,749	-0.89%			
L	7	40	5,347,592	1,238,458	1,291,354	52,896	4.27%			
		intercept	451,782	· · · · · ·						
		slope	0.1570			ļ				
				CH2M Hill (eqn a, b, or c)	Linear	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/vear	<u> </u>				
		5	668.449	570.250	640.020	69.770	12.23%			
		7.5	1,002.674	681.625	700.348	18.723	2.75%			
	1 8	10	1,336.898	773.604	760.675	-12.929	-1.67%			<u> </u>
	8	15	2.005.347	924.695	881.330	-43.365	-4.69%			
	8	20	2,673,796	1,049,474	1,001,985	-47,489	-4.53%			
<b> </b>	8	25	3,342,245	1,157.743	1,122,640	-35,103	-3.03%		<u> </u>	
	8	30	4,010,694	1,254,446	1,243,295	-11,150	-0.89%			
	8	40	5,347,592	1,423,721	1,484,605	60,884	4.28%			
<b></b>		intercept	519,365		· ·					
		siope	0.1805							

				CHOM Hill (or-	Linear					
				a, b, or c)	approximation	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/year			1		
	9	5	668,449	644,865	723,819	78,955	12.24%			
	9	7.5	1,002,674	770,812	792,068	21,256	2.76%			
	9	10	1,336,898	874,826	860,317	-14,510	-1.66%			
	9	15	2,005,347	1,045,687	996,814	-48,874	-4.67%	Ι		
	9	20	2,673,796	1,186,793	1,133,311	-53,482	-4.51%			
	9	25	3,342,245	1,309,228	1,269,808	-39,420	-3.01%			
	9	30	4,010,694	1,418,584	1,406,306	-12,278	-0.87%	_		
	9	40	5,347,592	1,610,008	1,679,300	69,292	4.30%			
		intercept	587,322							
		slope	0.2042							
									•	
				CH2M Hill (eqn a. b. or c)	Linear	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/voar			+		
	10	5	668.449	719 846	807.952	88,106	12.24%			
	10	7 6	1,002,674	860 439	884 121	23 683	2 75%	+		
	10	10	1.336.898	976.546	960.291	-16,255	-1.66%	+		
	10	10	2 005 347	1,167 274	1 112 631	-54 643	-4 68%	-+		
	10	20	2,000,04/	1.324 786	1 264 970	-59 816	-4.52%	$\rightarrow$		
<b> </b> -	10	20	3,342 245	1.461.457	1,417,310	-44 148	-3.02%	+		
	10	20	4 010 RQ4	1,583,528	1 569 649	-13 870	-0.88%			
	10		5 347 502	1,797 210	1 874 328	77 118	4 29%	+	•	
}		intercent	655 612	1,101,210	1,074,020		7.6.076	+		
		slope	0.2270					$\neg$		
				CH2M Hill (eqn	Linear					
ļ				a, b, or c)	approximation	Error		$\square$		L
	length in miles	adf (mgd)	adf (cfd)		\$/year			$\downarrow$		ļ
L	12.5	5	668,449	908,685	1,019,914	111,229	12.24%	_	<del></del>	· · · · · · · · · · · · · · · · · · ·
	12.5	7.5	1,002,674	1,086,159	1,116,070	29,911	2.75%			
<b>_</b>	12.5	10	1,336,898	1,232,726	1,212,227	-20,500	-1.66%	$\dashv$		
ļ	12.5	15	2,005,347	1,473,489	1,404,539	-68,949	-4.68%			{
	12.5	20	2,673,796	1,672,322	1,596,852	-75,469	-4.51%			<u> </u>
<b> </b>	12.5	25	3,342,245	1,844,846	1,789,165	-55,682	-3.02%	$\rightarrow$		
ļ	12.5	30	4,010,694	1,998,941	1,981,478	-17,463	-0.87%			
<u> </u>	12.5	40	5,347,592	2,268,679	2,366,103	97,424	4.29%			<u> </u>
I	<u> </u>	Intercept	827,601							
<u> </u>	<u> </u>	slope	0.2877			<u> </u>				
]	]			CH2M Hill (ean	Linear					
	<u> </u>			a, b, or c)	approximation	Error				
	length in miles	adf (mgd)	adf (cfd)		\$/year					
	15	5	668,449	1,099,205	1,233,740	134,536	12.24%			
	15	7.5	1,002,674	1,313,889	1,350,050	36,161	2.75%			
	15	10	1,336,898	1,491,186	1,466,361	-24,825	-1.66%			
	15	15	2,005,347	1,782,428	1,698,981	-83,447	-4.68%			
	15	20	2,673,796	2,022,949	1,931,601	-91,348	-4.52%			
	15	25	3,342,245	2,231,647	2,164,221	-67,425	-3.02%			
	15	30	4,010,694	2,418,049	2,396,842	-21,208	-0.88%			
	15	40	5,347,592	2,744,342	2,862,082	117,741	4.29%			
		intercept	1,001,120							
		slope	0.3480							

				· · · · · · · · · · · · · · · · · · ·			Well w	ithdrawal rates	(MGD)		
Model Row	Model Coiumn	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
46	58	1	ALT	ALTAMONTE SPR. (NEW CHARLOTTE ST W	1	0.00	4.15	0.00	0.00	0.00	4.49
48	54	2	ALT	ALTAMONTE SPR. (PLANT #3)	1	0.65	0.00	2.56	2.46	2.72	3.00
49.	57	3	ALT	ALTAMONTE SPR. (PLANT #1)	1	0.01	0.00	0.00	1.13	0.00	1.50
49	48	4	ALT	ALTAMONTE SPR. (PLANT #4)	1	0.32	3.02	1.95	1.05	0.81	3.74
50	57	5	ALT	ALTAMONTE SPR. (PLANT #1)	1	0.08	0.00	1.21	0.17	0.00	1.50
52	45	6	ALT	ALTAMONTE SPR. (PLANT #5)	1	3.80	0.00	0.90	1.92	3.20	4.49
53	55	7	ALT	ALTAMONTE SPR. (PLANT #2)	1	1.08	1.07	0.35	0.00	0.00	3.46
52	45	8	ALT	ALTAMONTE SPRINGS (PLANT #5)	2	0.02	0.00	0.63	3.46	3.46	4.49
54	55	9	ALT	ALTAMONTE SPRINGS (PLANT #2)	2	1.98	1.95	0.00	0.00	0.00	3.46
43	31	10	APO	APOPKA - GROSSENBACHER WF.	1	1.04	3.38	0.25	0.91	1.84	5.98
37	27	11	APO	APOPKA - PROPOSED NORTHWEST WF	2	0.00	4.44	0.00	0.00	0.00	5.98
43	31	12	APO	APOPKA - GROSSENBACHER WF.	2	1.04	3.38	5.75	5.75	5.75	5.98
45	27	13	APO	APOPKA - PROPOSED SOUTHWEST WF	2	0.00	6.77	0.00	0.00	0.00	7.11
53	36	14	APO	APOPKA - SHEELOR OAKS WF.	2	2.07	3.17	0.00	0.00	0.38	3.61
45	63	15	CAS	CASSELBERRY (NORTH WTP; WELL N-1)	1	2.03	0.48	3.18	3.45	1.61	3.50
53	63	16	CAS	CASSELBERRY (HOWELL PARK; CANON W	1	0.31	0.41	2.11	0.00	2.11	0.90
53	62	17	CAS	CASSELBERRY (HOWELL PARK; HP-1 WE	1	0.39	0.61	0.00	0.00	2.11	1.20
59	65	18	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	1	0.89	0.51	0.00	0.00	2.88	1.05
46	63	19	CAS	CASSELBERRY (NORTH WTP; WELL N240	2	0.15	1.01	0.00	2.88	3.45	1.50
53	64	20	CAS	CASSELBERRY (HOWELL PARK WTP; WEL	2	0.07	1.40	0.00	0.00	0.00	1.50
59	65	21	CAS	CASSELBERRY (SOUTH PLANT; WELL S-	2	0.90	0.51	0.00	0.00	0.00	0.75
59	66	22	CAS	CASSELBERRY (SOUTH WTP; WELL S360	2	0.08	1.40	1.04	0.00	2.88	1.50
104	35	23	CFU	CENTRAL FLA UTIL (CAMELOT, CD 182	1	0.99	2.35	1.24	1.24	1.24	4.49
105	60	24	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.10	0.23	0.45	0.45	0.45	0.45
107	57	25	CFU	CENTRAL FLA UTIL (C. FL. PKWY. CD	1	0.19	0.45	1.35	1.35	1.35	1.35
54	97	26	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.00	0.09	0.25	0.25	0.25	0.43
55	96	27	СНО	SOUTHERN ST. UTIL (CHULUOTA)	1	0.39	0.16	0.00	0.00	0.00	0.73
68	8	28	CLE	CLERMONT (GRAND)	1	0.91	1.57	0.11	0.11	0.11	3.37
71	7	29	CLE	CLERMONT (4TH STREET)	1	0.52	0.90	2.36	2.36	2.36	1.80
87	100	30	coc	COCOA (WELL #10)	1	0.19	0.15	0.00	0.00	0.00	1,65
89	100	31	coc	COCOA (WELL #9)	1	0.15	0.24	0.00	0.00	0.00	1.65
90	100	32	COC	COCOA (WELL #8)	1	0.24	0.48	0.00	0.00	0.00	1.65
92	95	33	coc	COCOA (WELL #13 & 13R)	1	1.53	0.60	0.00	0.00	0.00	1.65
92	94	34	coc	COCOA (WELL #14)	1	2.42	1.66	0.00	0.00	0.00	3.02
92	100	35	COC	COCOA (WELL #3)	1	0.13	0.00	0.00	0.00	0.00	0.82
93	93	36	COC	COCOA (WELL #16)	1	5.83	3.53	0.00	0.00	0.00	4.49
93	92	37	COC	COCOA (WELL #17)	1	2.70	1.74	0.00	0.00	0.00	3.02
93	100	38	coc	COCOA (WELL #7) <phase correcti<="" i="" td=""><td>1</td><td>0.40</td><td>0.24</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1.65</td></phase>	1	0.40	0.24	0.00	0.00	0.00	1.65
93	99	39	coc	COCOA (WELL #7A)	1	0.22	0.26	0.00	0.00	0.00	1.65
94	100	40	COC	COCOA (WELL # 1)	1	0.00	0.15	0.00	0.00	0.00	1.65
94	92	41	COC	COCOA (WELL #18)	1	2.34	1.86	0.00	0.00	0.00	3.02
95	100	42	coc	COCOA (WELL #6) <phase correct!<="" td=""  =""><td>1</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.82</td></phase>	1	0.00	0.00	0.00	0.00	0.00	0.82
96	92	43	coc	COCOA (WELL #19)	1	1.30	1.86	0.00	0.00	0.24	3.02
96	100	44	coc	COCOA (WELL #5)	1	0.42	0.24	0.00	0.00	0.00	1.65
97	102	45	coc	COCOA (WELL #12A)	1	0.26	0.24	0.00	0.70	0.57	1.65
97	100	46	COC	COCOA (WELL #4)	1	0.28	0.24	0.00	0.00	0.82	1.65
97	92	47	coc	COCOA PROP. WELL 20	1	0.00	1.86	2.18	0.00	3.02	3.02
98	100	48	coc	COCOA (WELL #11)	1	0.74	0.24	0.82	0.82	0.82	1.65
98	102	49	COC	COCOA (WELL #12B)	1	0.54	0.24	0.82	0.82	0.82	1.65

## Table A13. East-central MIP decision model public supply well withdrawal rates

Model Row	, Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
98	101	50	COC	COCOA (WELL #4A1)	1	0.42	0.24	0.82	0.82	0.82	1.65
98	92	51	coc	COCOA PROP. WELL 22	1	0.00	3.73	4.49	2.73	4.49	7.48
99	92	52	COC	COCOA PROP. WELL 32	1	0.00	3.73	3.00	4.49	2.14	7.48
99	101	53	COC	COCOA PROP. WELL 39	1	0.00	0.48	0.82	0.82	0.82	7.48
100	92	54	coc	COCOA PROP. WELL 33	1	0.00	1.86	4.14	4.35	3.56	7.48
100	101	55	coc	COCOA PROP. WELL 41	1	0.00	0.48	0.82	0.82	0.82	7.48
101	101	56	COC	COCOA PROP. WELL 43	1	0.00	0.48	0.82	0.82	0.82	7.48
102	101	57	coc	COCOA PROP. WELL 44	1	0.00	0.24	0.82	0.82	0.82	7.48
86	60	58	CON	SO. STATES UTIL (LAKE CONWAY PARK	1	0.01	0.01	0.00	0.00	0.00	0.11
87	60	59	CON	SO. STATES UTIL (LAKE CONWAY PARK	1	0.01	0.01	0.00	0.00	0.00	0.11
88	59	60	CON	SO. STATES UTIL (DAETWYLER SHORES	1	0.03	0.04	0.00	0.10	0.00	0.11
88	60	61	CON	SO. STATES UTIL (DAETWYLER SHORES	1	0.03	0.04	0.10	0.00	0.10	0.11
3	86	62	DEL	DELTONA-PROPOSED	1	0.00	1.61	2.06	2.06	2.06	2.06
4	88	63	DEL	DELTONA	1	1.45	2.41	0.17	0.25	0.48	3.74
4	80	64	DEL	DELTONA-PROPOSED	1	0.00	0.80	1.03	1.03	1.03	1.87
4	82	65	DEL	DELTONA-PROPOSED	1	0.00	0.80	1.03	1.03	1.03	1.87
4	84	66	DEL.	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
5	74	67	DEL	DELTONA	1	0.48	0.80	1.03	1.03	1.03	1.87
6	76	68	DEL	DELTONA	1	0.48	0.80	1.03	1.03	1.03	1.87
6	88	69	DEL	DELTONA	1	0.48	0.00	0.49	1.03	1.03	1.87
6	86	70	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
7	71	71	DEL	DELTONA	1	0.48	1.61	2.06	2.06	2.06	2.06
7	78	72	DEL	DELTONA	1	1.94	3.21	0.48	0.47	1.00	3.74
7	74	73	OEL	DELTONA-PROPOSED	t	1.45	3.21	0.00	0.00	0.00	3.74
8	80	74	DEL	DELTONA	1	0.48	0.80	0.00	0.41	0.60	1.87
8	76	75	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
8	83	76	DEL	DELTONA-PROPOSED	1	0.00	2.41	0.00	0.00	0.00	3.74
9	77	77	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	80	78	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	85	79	DEL	DELTONA-PROPOSED	1	0.00	0.80	0.00	0.00	0.00	1.87
9	88	80	DEL	DELTONA-PROPOSED	1	0.00	1.61	0.00	0.02	0.15	1.87
77	103	81	ECU	ECON UTIL (WEDGEFIELD)	1	0.10	0.12	0.15	0.15	0.15	0.16
77	104	82	ECU	ECON UTIL (WEDGEFIELD)	1	0.03	0.04	0.00	0.00	0.00	0.16
12	12	83	EUS	EUSTIS (C R 44A ?)	1	0.17	1.36	2.05	2.05	2.05	2.69
12	13	84	EUS	EUSTIS (C R 44A ?)	1	0.17	1.36	2.05	0.14	0.14	2.69
13	22	85	EUS	EUSTIS (HAZELTON AVE.)	1	1.33	0.54	0.00	0.00	0.00	1.12
15	11	86	EUS	EUSTIS (ARDICE PLACE)	1	1.23	2.53	1.69	3.60	3.60	4.86
86	93	87	FDC	FL DEPT OF CORR	1	0.05	0.05	0.00	0.00	0.00	0.22
87	92	88	FDC	FL DEPT OF CORR	1	0.11	0.11	0.00	0.16	0.16	0.22
87	93	89	FDC	FL DEPT OF CORR	1	0.05	0.05	0.16	0.00	0.00	0.22
104	47	90	KIS	CITY OF KISSIMMEE (NORTH BERMUDA)	1	2.05	4.89	0.13	0.13	0.13	8.98
106	49	91	KIS	CITY OF KISSIMMEE (RUBY ST.)	1	1.77	4.22	8.98	8.98	8.98	8.98
1	78	92	LHE	LAKE HELEN - PLANT #2	1	0.09	0.29	0.58	0.58	0.58	0.75
2	78	93	LHE	LAKE HELEN - PLANT #1	1	0.13	0.29	0.00	0.00	0.00	0.75
34	101	94	LHY	LAKE HARNEY WATER ASSOC	1	0.01	0.03	0.03	0.03	0.03	0.29
35	101	95	LHY	LAKE HARNEY WATER ASSOC	1	0.02	0.00	0.00	0.00	0.00	0.29
24	59	96	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	0.00	0.00	0.00	2.30
25	59	97	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	0.00	0.00	0.00	2.30
26	59	98	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	1.61	0.00	0.00	0.00	2.30
27	59	99	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.00	0.80	0.00	0.00	0.00	2.30

Model Row	Modei Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
28	59	100	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.25	0.80	0.00	0.00	0.00	2.30
29	59	101	LMY	LAKE MARY (NEW PUBLIC SUPPLY)	1	0.25	0.80	0.00	0.00	0.00	2.30
39	57	102	LON	LONGWOOD	1	1.25	2.28	0.00	0.00	1.17	3.37
40	60	103	LON	LONGWOOD	1	0.78	0.87	3.15	3.15	1.98	3.37
55	60	104	MAI	MAITLAND - THISTLE LANE	1	0.57	0.69	1.88	1.88	0.92	2.54
57	56	105	MAI	MAITLAND - MINNEHAHA CIRCLE	1	0.09	0.11	1.08	1.08	1.08	1.08
58	53	106	MAI	MAITLAND - WELL NO. 5A	1	0,19	0.24	0.57	0.57	1.53	2.24
57	50	107	MAI	MAITLAND - KELLER	2	1.46	1.79	0.00	0.00	0.00	6.43
58	53	108	MAI	MAITLAND - WELL NO. 5A	2	0.58	0.71	0.00	0.00	0.00	2.24
65	87	109	OE1	OCPUD EAST REG: (BONNEVILLE)	1	0.74	0.00	0.00	0.00	0.00	7.48
68	65	110	OE1	OCPUD EAST REG: (CORRINE TERRACE)	1	0.20	0.00	0.00	0.00	0.00	0.22
72	75	111	OE3	OCPUD EAST REG: (ECON)	1	1.79	4.00	0.41	0.00	0.00	4.19
73	75	112	OE3	OCPUD EAST REG: (ECON)	1	1.79	4.00	0.00	0.00	0.00	4.19
79	74	113	OE5	OCPUD EAST REG: ERWF	1	0.00	20.25	0.00	0.00	0.20	20.94
82	66	114	OE2	OCPUD EAST REG: (CONWAY)	1	0.74	2.09	0.00	0.00	0.00	4.49
82	67	115	OE2	OCPUD EAST REG: (CONWAY)	1	0.74	2.09	0.43	0.00	0.00	4.49
94	73	116	OE4	OCPUD EAST REG: (LAKE NONA)	1	0.03	2.00	2.00	2.00	2.00	2.99
82	67	117	OE2	OCPUD EAST REG: (CONWAY)	2	1.01	3.47	3.57	2.93	2.93	4.49
63	33	118	000	OCOEE (HACKNEY PRAIRIE)	1	0.57	0.68	0.47	0.47	1.83	3.74
63	31	119	000	OCOEE (JAMELA & WURST ROAD)	1	0.00	0.00	0.00	0.00	0.00	1.50
65	29	120	000	OCOEE (JAMELA & WURST ROAD)	1	0.89	0.93	0.00	0.00	0.00	1.50
68	27	121	000	OCOEE (KISSIMEE AVE)	1	0.67	0.93	0.00	0.00	0.00	4.32
73	28	122	000	OCOEE (SOUTH PLANT)	2	0.00	2.94	0.00	0.00	0.00	2.99
94	41	123	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	1	0.89	2.40	0.00	0.00	0.00	3.61
95	41	124	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	1	0.89	2.40	0.00	0.00	0.00	3.61
100	30	125	OS1	OCPUD SOUTH REG: (CYPRESS WALK)	1	0.28	1.25	1.73	1.08	1.36	1.36
100	31	126	OS1	OCPUD SOUTH REG: (CYPRESS WALK)	1	0.28	1.25	1.73	0.00	0.00	1.35
100	56	127	OS3	OCPUD SOUTH REG: (MEADOW WOODS)	1	0.08	0.20	3.30	3.00	2.58	5.39
101	46	128	OS2	OCPUD SOUTH REG: (HUNTERS CREEK)	1	0.12	0.50	0.50	0.50	0.50	8.98
101	32	129	OS1	OCPUD SOUTH REG: (VISTANA)	1	1.05	4.00	7.72	10.42	10.14	10.41
94	41	130	OS4	OCPUD SOUTH REG: (ORANGE WOOD)	2	0.59	1.68	1.79	1.48	1.48	3.61
101	54	131	OS3	OCPUD SOUTH REG: SOUTH REG. WELL	2	0.00	10.00	6.90	7.20	7.62	10.47
28	31	132	OW1	OCPUD WEST REG: (MT. PLYMOUTH LAK	1	0.19	0.90	0.00	0.59	1.44	1.44
38	25	133	OW1	OCPUD WEST REG: (PLYMOUTH)	1	0.00	1.50	0.00	0.00	0.00	1.80
39	24	134	OW1	OCPUD WEST REG: (PLYMOUTH HILLS)	1	0.03	0.00	0.16	0.12	0.16	0.16
43	38	135	OW1	OCPUD WEST REG: (BENT OAKS)	1	1.32	0.00	2.03	1.48	0.68	5.24
43	26	136	OW1	OCPUD WEST REG: (PLYMOUTH CENTRAL	1	0.08	0.00	0.16	0.16	0.16	0.16
54	32	137	OW1	OCPUD WEST REG: (ORANGE VILLAGE)	1	0.02	0.03	0.09	0.09	0.00	0.09
55	46	138	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
55	47	139	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
56	46	140	OW4	OCPUD - RIVERSIDE	1	0.48	0.00	0.00	0.00	0.00	1.50
65	21	141	OW6	OCPUD WEST REG: (MAGNOLIA WOODS)	1	0.04	0.03	0.07	0.07	0.07	1.50
70	15	142	OW6	OCPUD WEST REG: LAKE JOHN SHORES	1	0.00	0.03	0.00	0.00	0.00	0.34
72	36	143	OW3	OCPUD WEST REGIONAL (OAK MEADOWS)	1	0.39	0.00	0.00	0.00	0.00	4.49
76	30	144	OW2	OCPUD WEST REG: (WINDERMERE DOWNS	1	0.22	0.00	0.00	0.00	0.00	0.30
79	27	145	OW2	OCPUD WEST REG: (WAUSEON RIDGE)	1	0.03	0.00	0.00	0.00	0.00	0.04
81	36	146	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	1	0.18	0.00	0.00	0.00	0.00	5.24
81	23	147	OW2	OCPUD WEST REG: (KELSO)	1	0.02	0.00	0.00	0.00	0.00	0.58
81	29	148	OW2	OCPUD WEST REG: (WINDERMERE)	1	0.01	0.00	0.00	0.00	0.00	0.01
82	36	149	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	1	0.06	0.00	0.00	0.00	0.00	5.24

Model Row	Modei Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
55	46	150	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
55	47	151	OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
55	35	152	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.00	6.00	0.00	13.73	13.73	13.73
55	36	153	OW5	OCPUD WEST REG: WRWF WELL # 1	2	0.00	14.00	0.00	11.46	14.00	14.96
56	46	154	³ OW4	OCPUD - RIVERSIDE	2	0.48	0.00	0.00	0.00	0.00	1.50
72	36	155	OW3	OCPUD WEST REGIONAL (OAK MEADOWS)	2	1.55	0.00	0.00	0.00	0.00	4.49
82	36	156	OW2	OCPUD WEST REG: (HIDDEN SPRINGS)	2	1.42	0.00	0.00	0.00	0.00	5.24
4	73	157	OCY	Or. City Ctry V	1	0.14	0.39	0.00	0.00	0.00	0.75
4	67	158	OCY	ORANGE CITY	1	0.17	0.91	1.87	1.87	1.87	1.87
4	68	159	OCY	ORANGE CITY	1	0.34	2.74	2.17	2.17	2.17	5.39
104	59	160	ORO	ORANGE/OSCEOLA (BEUNAVENTURA LAKE	1	1.14	2.72	1.77	1.77	1.77	5.39
104	58	161	ORO	ORANGE/OSCEOLA MGMENT	1	0.39	0.93	1.87	1.87	1.87	1.87
83	90	162	OU13	OUC-STANTON ENERGY CTR.	1	0.40	0.40	0.40	0.40	0.40	0.45
87	35	163	OU1	OUC (DR. PHILLIPS)	1	5.33	6.20	6.20	6.20	6.20	13.46
88	41	164	OU2	OUC (MARTIN)	1	9.17	20.19	0.00	0.00	0.00	20.94
98	55	183	OU11	OUC (ORANGE)	2	2.31	2.42	0.00	0.00	0.00	8.98
80	67	179	OU12	OUC (PERSHING)	2	1.39	6.40	6,40	6,40	3.60	6.73
77	62	176	OU3	OUC - CONWAY	2	5.60	7.84	0.00	0.00	0.00	8.23
78	62	178	OU3	OUC - CONWAY	2	2.80	7.84	0.00	0.00	0.00	8.23
68	55	165	OU4	OUC - HIGHLAND	2	3.46	3.63	0.00	0.00	0.00	8.98
69	55	169	OU4	OUC - HIGHLAND	2	1.15	0.72	0.00	0.00	0.00	8.98
69	56	170	OU4	OUC - HIGHLAND	2	2.80	3.92	0.00	0.00	0.00	8.23
70	55	172	OU4	OUC - HIGHLAND	2	1.15	1.21	0.00	0.00	0.00	8.98
80	39	180	007	OUC - KIRKMAN	2	2.68	2.36	0.27	0.00	0.00	8.23
80	40	181	007	OUC - KIRKMAN	2	5.35	4.73	4 73	4.73	4.73	8.23
76	54	175	OU6	OUC - KUHL	2	2.80	3.77	3.79	3.79	3.79	8.23
77	55	177	OU6	OUC - KUHL	2	6.66	6,13	4 73	4.40	4.73	8.23
68	64	166	OU10	OUC - NAVY	2	5.60	7.54	1.24	1.21	1.21	8.23
68	40	167	OU5	OUC - PINE HILLS	2	3.33	3.07	3.73	0.00	1.47	8.23
68	41	168	OU5	OUC - PINE HILLS	2	0.00	7.00	0.00	0.00	0.00	7,48
69	41	171	OU5	OUC - PINE HILLS	2	2.09	3.67	0.00	0.00	0.00	8.23
72	60	173	OUB	OUC - PRIMBOSE	2	4.17	7.33	0.00	0.00	0.00	8.23
73	59	174	OU8		2	0.00	15.30	15 30	15 30	15.30	15.71
88	53	182	000		2	0.00	7.20	2 20	2 20	2.20	7.48
51	82	184	01		1	0.78	3.02	2.60	211	2.62	5.99
52	83	185		OVIEDO (ALAFAYA WOODS - PLNT #2)	1	0.37	3.68	1 12	0.71	1 15	5.98
52	82	186	01	OVIEDO-PROP WELL LAKE GEM	+ · ·	0.07	1.47	0.00	0.00	0.00	2 99
54	20	187	01	OVIEDO (AL AFAYA WOODS - PI NT #2)	· · · ·	0.00	1.47	1 97	1.65	1 97	2.00
69	70	188	PAM	PARK MANOR WATER WORKS	· · ·	0.22	0.20	0.41	0.41	0.41	0.75
70	77	189	ΡΔΜ		1 1	0.22	0.20	0.00	0.00	0.00	0.75
114	34	100	POI	POINCIANA I MIL (IP-182)	1	0.41	0.20	0.00	0.00	0.00	1 19
117	20	190	POI			0.06	0.50	0.00	0.00	0.00	0.75
112	20	102	POI	POINCIANA (CORES-1 283 99-90)	+	0.00	0.13	0.00	0.00	0.39	0.75
20	27	102	BAV		1	0.13	0.12	0.75	0.15	0.75	0.75
22	25	104	PAV		+	0.02	0.07	0.00	0.00	0.00	0.37
	RE CO	105	RAV		+	0.00	0.07	0.00	0.00	0.00	0.07
20	60	105	PAV		+	0.00	0.02	0.00	0.00	0.00	0.5
01	20	100	BCII	REFOY CREEK LITH (PLIMP STN A- 80		3.65	8.80	0.00	11.38	11 81	11 81
- m	20	108	BCU	REEDY CREEK UTIL (PLIMP STN A- 89-	+- <u>'</u>	1.82	4 45	8.71	0.00	4.57	871
98	30	199	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	1.29	3.19	7.87	0.00	0.00	3.37

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
100	31	200	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	1.59	3.99	0.00	0.00	3.37
100	32	201	RCU	REEDY CREEK UTIL (PUMP STATION C)	1	0.64	1.59	0.00	0.00	0.00	3.37
101	22	202	RCU	REEDY CREEK UTIL (PMP STN B)	1	3.96	3.09	11.81	11.81	11.81	11.81
102	24	203	RCU	REEDY CREEK UTIL (PMP STN B)	1	7.93	6.19	11.81	11.81	11.81	11.81
21	61	204	SAF	SANFORD (WELLFIELD # 4) (PROP)	1	0.00	0.55	0.00	0.00	0.00	3.37
21	62	205	SAF	SANFORD (WELLFIELD #3)	1	1.29	2.07	0.57	0.00	0.58	3.74
21	63	206	SAF	SANFORD (WELLFIELD #3)	1	0.86	1,18	2.16	2.16	2.16	2.16
22	61	207	SAF	SANFORD (WELLFIELD # 4)	1	0.00	1,11	0.00	0.00	0.00	3.37
23	63	208	SAF	SANFORD (WELLFIELD #2)	1	0.35	0.00	1.78	2.07	1.95	2.92
24	. 63	209	SAF	SANFORD (WELLFIELD #2)	1	0.71	1,66	0.00	0.00	0.00	2.92
27	69	210	SAF	SANFORD (WELLFIELD #1)	1	0.00	0.00	0.00	0.00	0.00	1.50
28	68	211	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.32	1.59	0.00	0.00	1.50
28	69	212	SAF	SANFORD (WELLFIELD #1)	1	0.61	0.30	0.00	1.67	1.42	1.50
29	68	213	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.21	0.00	0.00	0.00	1.50
29	69	214	SAF	SANFORD (WELLFIELD #1)	1	0.30	0.11	0.36	0.00	0.49	1.50
37	54	215	SAN	SANLANDO UTIL CORP (DES PINAR)	1	0.00	0.53	0.00	0.00	0.00	2.62
38	55	216	SAN	SANLANDO UTIL CORP (DES PINAR)	1	0.57	1.06	0.85	1.13	2.25	2.62
39	55	217	SAN	SANLANDO UTIL CORP (DES PINAR)	1	1.70	1.93	1.93	1.80	0.59	2.62
41	44	218	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	0.99	0.66	0.68	0.94	1.80
41	54	219	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	0.57	0.00	0.30	0.30	0.30	0.75
41	55	220	SAN	SANLANDO UTIL CORP (OVERSTREET)	1	0.57	0.09	0.30	0.30	0.30	0.75
43	43	221	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	2.29	· 0.00	0.00	0.60	2.39
43	44	222	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	0.65	2.70	2.70	2.70	2.70
44	43	223	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	1.32	1.84	1.14	0.37	1.80
45	43	224	SAN	SANLANDO (WEKIVA HUNT CLUB)	1	1.13	1.90	2.70	2.70	2.70	2.70
109	68	225	SCL	CITY OF ST. CLOUD	1	1.20	2.86	2.42	2.42	2.42	4.49
109	71	226	SCL	CITY OF ST. CLOUD	1	0.60	1.43	1.87	1.87	1.87	1.87
17	62	227	SEM	SEM CTY LAKE MONROE (I-4 IND. PAR	1	0.13	0.29	0.06	0.11	0.07	2.47
27	54	228	SEM	SEM. COUNTY (HANOVER WOODS)	1	0.15	0.60	0.24	0.31	0.39	2.24
28	57	229	SEM	SEM. COUNTY (HEATHROW)	1	0.31	1.87	0.54	0.61	0.62	3.59
32	59	230	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.50	1.66	0.95	1.23	1.66
32	60	231	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.67	0.00	0.00	0.00	1.05
33	62	232	SEM	SEM. COUNTY (COUNTRY CLUB)	1	0.01	1.33	0.61	0.62	0.00	2.99
33	59	233	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.00	0.90	0.32	1.66	1.66	1.66
33	60	234	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	0.30	0.00	0.00	0.00	1.05
33	61	235	SEM	SEM. COUNTY (GREENWOOD LAKES)	1	0.31	1.14	0.00	0.25	0.00	1.20
48	41	236	SEM	SEM. COUNTY (BELAIRE)	1	0.10	0.10	0.00	0.09	0.00	1.20
49	42	237	SEM	SEM. COUNTY (LYNWOOD)	1	0.20	0.49	0.00	0.62	1.47	3.44
50	42	238	SEM	SEM. COUNTY (LYNWOOD)	1	0.20	0.49	0.00	0.71	0.03	3.44
53	62	239	SEM	SEM. COUNTY (INDIAN HILLS)	• 1	1.30	3.09	0.00	0.00	0.00	4.49
55	68	240	SEM	SEM CTY (CONSUMER)	1	0.67	1.80	0.00	0.00	0.00	4.49
55	69	241	SEM	SEM CTY (CONSUMER)	1	2.00	4.04	1.57	4.52	0.31	4.49
56	84	242	SEM	SEM CTY (LAKE HAYES)	1	0.21	0.97	0.00	0.85	0.00	4.49
63	76	243	SSS	SO. STATES UTIL (UNIV. SHORES/SUN	1	0.52	0.85	0.50	1.55	0.00	1.50
66	71	244	SSS	SO. STATES UTIL (UNIV. SHORES)	1	0.07	0.35	0.00	0.00	0.50	0.75
66	72	245	SSS	SO. STATES UTIL (UNIV. SHORES)	1	0.07	0.35	1.05	0.00	1.05	1.05
42	45	246	SSU	SOUTHERN ST. UTIL (LAKE BRANTLEY)	1	0.02	0.02	0.15	0.00	0.15	0.15
43	48	247	SSU	J SOUTHERN ST. UTIL (LARE BHANTLEY) J SOUTHERN ST. UTIL (MEREDITH MANOR		0.12	0.09	0.37	0.37	0.37	0.37
44	48	248	SSU	SOUTHERN ST. UTIL (MEREDITH MANOR	1	0.12	0.18	0.37	0.37	0.37	0.37
47	57	249	SSU	STATES UTIL (HARMONY HOMES)	1	0.01	0.05	0.00	0.00	0.00	0.45

Modei Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Well Capacity (MGD)
47	52	250	SSU	SOUTHERN ST. UTIL (APPLE VALLEY)	1	0.44	0.51	0.32	0.32	0.32	1.50
49	46	251	SSU	SOUTHERN ST. UTIL (LAKE HARRIET)	1	0.08	0.09	0.00	0.16	0.00	0.90
⁵ 50	54	252	SSU	SOUTHERN ST. UTIL (DOL RAY MANOR)	1	0.04	0.04	0.00	0.00	0.00	0.82
53	58	253	SSU	SO. STATES UTIL (FERN PARK)	1	0.01	0.05	0.00	0.00	0.00	0.37
54	54	254	SSU	SOUTHERN ST. UTIL (D. HILLSIBRETT	1	0.14	0.18	0.00	0.00	0.00	0.60
33	96	255	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
33	97	256	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.08	0.08	0.08	0.12
34	96	257	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
34	97	258	SWA	SEMINOLE WOODS ASSOC, INC	1	0.01	0.02	0.00	0.00	0.00	0.12
95	38	259	SWF	SEA WORLD OF FLA.	1	0.40	0.40	1.30	1.30	1.30	1.35
95	39	260	SWF	SEA WORLD OF FLA.	1	0.90	0.90	0.00	0.00	0.00	1.35
61	83	261	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
62	84	262	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
63	83	263	UCF	UCF	1	0.12	0.17	0.17	0.17	0.17	0.75
63	84	264	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
63	85	265	UCF	UCF	1	0.18	0.26	0.26	0.26	0.26	1.12
64	83	266	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
64	85	267	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
64	86	268	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
65	82	269	UCF	UCF	1	0.06	0.09	0.09	0.09	0.09	0.37
2	78	270	VOL	VOL COUNTY - CASSADAGA	1	0.02	0.04	0.15	0.15	0.15	0.15
4	65	271	VOL	VOL COUNTY - ?	1	0.07	0.10	0.22	0.22	0.22	0.22
4	63	272	VOL	VOL CTY - WEST ORANGE CITY	1	0.00	0.01	0.00	0.00	0.00	0.15
5	67	273	VOL	VOL COUNTY - FOUR TOWNS	1	0.20	0.32	0.75	0.75	0.75	0.75
5	68	274	VOL	VOL COUNTY-ORANGE CITY INDUS PARK	1	0.04	0.04	0.15	0.15	0.15	0.15
6	68	275	VOL	VOL COUNTY - BREEZEWOOD	1	0.14	0.16	0.00	0.00	0.00	0.75
6	67	276	VOL	VOL COUNTY - FOUR TOWNS	1	0.23	0.37	0.00	0.00	0.00	0.75
6	66	277	VOL	VOL COUNTY HIGHLAND CTRY EST	1	0.11	0.46	0.90	0.90	0.90	0.90
7	68	278	VOL	VOL COUNTY - GLEN ABBEY OR SWALLO	1	0.24	0.77	0.00	0.00	0.00	1.87
7	65	279	VOL	VOL COUNTY - LAKE MARIE	+ 1	0.14	0.25	0.35	0.35	0.35	0.75
47	48	280	WEK		1	0.02	0.03	0.45	0.45	0.45	0.45
51	42	281	WEK		1	0.06	0.08	0.32	0.00	0.00	0.60
51	49	282	WEK		1 1	0.41	0.42	0.00	0.00	0.00	1.50
54	41	283	WEK		1	0.07	0.08	0.00	0.32	0.32	0.60
54	55	284	WEK	UTILITIES OF FLA (OAKLAND SHORES)	1	0.14	0.16	0.00	0.00	0.00	0.60
67	20	285	WGA	WINTER GARDEN (PALMETTO STREET)	1	0.88	0.63	2.00	0.52	1.98	2.54
AR A	19	286	WGA	WINTER GARDEN (FULLER CROSS)	+ <u>·</u>	0.28	0.63	0.52	2.00	2.00	2.00
	19	287	WGA	WINTER GARDEN (BOYD STREET)	1	0.28	0.63	0.00	0.00	1.38	1 73
68	20	288	WGA	WINTER GARDEN PROPOSED PLANT #4	2	0.00	0.63	0.00	0.00	0.00	0.75
70	22	289	WGC	WINTER GARDEN CITRUS PRODUCTS	1	1.87	1.87	1.87	1.87	1 87	1 88
63	58	290	WPK	WINTER PARK - PLANT #1 (SWOOPE)	+ <u>'</u>	2 47	2.26	0.00	0.00	0.00	4.40
63	67	291	WPK	WINTER PARK PLANT #5 (LINIV )	+	2 42	202	2.85	2 31	1.00	£ 72
58	63	202	WPK	WINTER PARK PLANT #5 (UNIV.)		1 07	3.24	7.06	7.04	7.06	5.75 5.46
	53	202	WPK	WINTER PARK - PI ANT #3 (Winnora)		204	3 12	P0.3	90.3	6.00	A AQ
29	55	290	WPK		+	0.00	1 44	0.09	0.03	0.09	4.43
62	20	204	WOK		+ <u></u> ,	2 64	3.20	0.00	6.19	0.00	£ 72
27	0/ EA	290	Web	WINTER SPRINGS (WTP #2)	÷	0.60	0.20	0.70	0.10	1.01	1.00
	40	230	Web	WINTER SPRINGS (WTP #2)	+	0.31	0.36	0.10	0.00	1 16	1 65
	£7	200	Web	P WINTER SPRINGS (WTP #3) P WINTER SPRINGS (WTP #3)		0.31	1.58	0.00	0.00	1 17	3.46
44	73	200	WSP	WINTER SPRINGS EAST 2	1	1.76	3.38	2.76	2.53	2.68	3.74

Model Row	Model Column	Well ID Number	Public Supply Demand Area	Well or Treatment Plant	Model Layer (1=Upper 2=Lower Floridan	Year 1988	Projected Year 2010	Case 3	Case 2	Case 1	Estimated Wel Capacity (MGD)
30	16	300	ZWF	ZELLWOOD FARMS	1	0.07	0.16	0.32	0.32	0.32	0.37
30	17	301	ZWF	ZELLWOOD FARMS	1	0.07	0.16	0.00	0.00	0.00	0.37
34	17	302	ZWU	ZELLWOOD WATER USERS	1	0.17	0.37	0.37	0.37	0.37	0.75
35	20.	303	ZSU	ZELLWOOD STATION UTIL.	1	0.12	0.31	0.00	0.75	0.75	0.75
35	21	304	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	0.75	0.75	0.75	0.75
35	22	305	ZSU	ZELLWOOD STATION UTIL.	1	0.54	0.80	0.39	0.02	0.02	1.50
35	23	306	ZSU	ZELLWOOD STATION UTIL.	1	0.12	0.31	0.75	0.00	0.00	0.75
36	19	307	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	0.00	0.37	0.37	0.37
36	23	308	ZSU	ZELLWOOD STATION UTIL.	1	0.06	0.16	0.00	0.00	0.00	0.37
17	14	309	MTD	CITY OF MT. DORA	1	2.35	4.45	4.45	4.45	4.45	4.49
19	9	310	TAV	CITY OF TAVARES	1	1.16	3.36	3.36	3.36	3.36	3.74
9	71	311	FPL	FPL LAKE MONROE	1	0.09	0.15	0.00	0.00	0.00	0.30
13	63	312	FPL	FLORIDA POWER & LIGHT-SANFORD POW	1	0.32	0.60	0.75	0.75	0.75	1.20
68	1	313	IN1	B & W CANNING	1	0.97	1.11	1.11	1.11	1.11	1.12
76	11	314	IN2	FLORIDA CRUSHED STONE	1	2.18	2.18	2.18	2.18	2.18	2.24
98	8	315	IN3	FLA. ROCK (LAKE SAND PLANT)	1	0.87	0.87	0.87	0.87	0.87	0.90
103	31	316	1N4	FLORIBRA USA, INC	1	1.58	1.58	1.58	1.58	1.58	1.65
36	5	317	IN6	SILVER SPRINGS CITRUS	1	0.71	0.71	0.71	0.71	0.71	0.75
37	6	318	нон	HOWEY-IN-THE-HILLS	1	0.31	0.45	0.45	0.45	0.45	0.45
59	54	319	EAT	EATONVILLE	1	0.61	1.41	1.41	1.41	1.41	1.50
62	12	320	MON	MONTEVERDE	1	0.12	0.22	0.22	0.22	0.22	0.22
64	6	321	MHN	MINNEOLA HARBOR HILLS/12/13/88- P	1	1.28	2.01	2.01	2.01	2.01	2.02
67	84	322	CFR	CENT. FLA RES. PARK	1	1.00	1.00	1.00	1.00	1.00	1.05
67	8	323	MIN	CITY OF MINNEOLA	1	0.19	0.45	0.45	0.45	0.45	0.45
69	15	324	OAK	CITY OF OAKLAND	1	0.29	0.28	0.28	0.28	0.28	1.44
69	1	325	GRO	TOWN OF GROVELAND	1	0.29	0.79	0.79	0.79	0.79	0.90
79	11	326	IN5	SILVER SAND (CLERMONT MINE)	1	1.24	1.24	1.24	1.24	1.24	1.35
103	28	327	HHO	HYATT HOUSE ORLANDO	1	0.30	0.73	0.73	0.73	0.73	0.75
103	19	328	OSC	OSCEOLA SERVICE	1	0.96	2.28	2.28	2.28	2.28	2.39
108	133	329	AF1	USAF BAS CIVIL ENGINEER/8/12/86	1	0.80	0.80	0.80	0.80	0.80	0.90
115	16	330	DAV	DAVENPORT (1987)	1	0.53	1.27	1.27	1.27	1.27	1.35
118	15	331	HAI	HAINES CITY	1	1.18	2.80	2.80	2.80	2.80	2.99
4	69	332	JKV	JOHN KNOX VILL	1	0.05	0.35	0.35	0.35	0.35	0.37

				Withdrawal	rates (MG	201	•			
					Tales (inc			•		
Weil or Control Point	Simulation model	Simulation model		non -opumized					Public Utility Need	Potential for
Number	row	column	1988	2010	Case 3	Case 2	Case 1	Well Description	Area	Vegetative Harm
1	68	13	0.54	0.00	0.00	0.00	0.62	DELAND WATER UTIL	DWU	LOW
2	67	12	0.54	0.77	0.00	0.00	0.00	DELAND WATER UTIL	DWU	LOW
3	66	12	1.08	1.54	0.00	0.65	2.29	DELAND WATER UTIL	DWU	LOW
4	64	11	0.54	0.77	0.00	2.26	2.26	DELAND WATER UTIL	DWU	LOW
5	67	14	0.54	0.77	0.00	2.26	2.26	DELAND WATER UTIL	DWU	LOW
6	61	14	0.54	0.77	0.00	2.26	2.26	DELAND WATER UTIL	DWU	LOW
7	65	11	0.54	0.77	0.00	2.26	2.26	DELAND WATER UTIL	DWU	LOW
8	70	13	0.00	1.54	0.00	0.00	0.00	DELAND WU 1990	DWU	LOW
9	41	73	0.03	0.05	0.00	0.14	0.00	HOLLY HILL EASTERN WF	HHE	LOW
10	41	74	0.02	0.02	0.14	0.00	0.14	HOLLY HILL EASTERN WF	HHE	LOW
11	40	74	0.02	0.02	0.00	0.00	0.00	HOLLY HILL EASTERN WE	HHE	LOW
12	40	73	0.02	0.02	0.00	0.00	0.00		HHE	LOW
13	40	72	0.02	0.02	0.00	0.00	0.00		нне	LOW
14	41	54	0.29	0.35	0.00	0.00	0.00	HOLLY HILL WESTERN WE	HHW	LOW
15	41	55	0.44	0.52	0.00	0.00	0.00		HHW	LOW
16	40	55	0.20	0.96	0.00	0.00	1.00			LOW
01	40	55	0.25	0.35	0.00	0.00	0.00			LOW
	40	33	0.00	0.17	0.00	0.00	0.29			LOW
18	79	12	0.13	0.39	0.29	0.39	0.39			LOW
19	81	65	0.10	0.22	0.22	0.22	0.22	SSU SUGAR MILL ESI	SME	HIGH
	64	42	0.27	0.29	0.48	0.47	0.51	PORT ORANGE WESTERN WP	POW	MODERATE
21	67	41	0.27	0.29	0.00	0.51	0.51	PORT ORANGE WESTERN WF	POW	MODERATE
22	68	40	0.53	0.57	0.32	0.27	0.57	PORT ORANGE WESTERN WF	POW	MODERATE
23	69	39	0.27	0.29	0.51	0.00	0.00	PORT ORANGE WESTERN WF	POW	MODERATE
24	70	39	0.27	0.29	0.51	0.51	0.28	PORT ORANGE WESTERN WF	POW	MODERATE
25	65	40	0.27	0.29	0.51	0.00	0.00	PORT ORANGE WESTERN WF	POW	MODERATE
26	66	39	0.27	0.29	0.00	0.00	0.00	PORT ORANGE WESTERN WF	POW	MODERATE
27	67	39	0.27	0.29	0.51	0.01	0.06	PORT ORANGE WESTERN WF	POW	MODERATE
28	68	39	0.27	0.29	0.51	0.32	0.00	PORT ORANGE WESTERN WF	POW	MODERATE
29	65	38	0.27	0.29	0.28	0.51	0.49	PORT ORANGE WESTERN WF	POW	MODERATE
30	66	38	0.53	0.57	0.57	0.57	0.57	PORT ORANGE WESTERN WF	POW	MODERATE
31	69	40	0.27	0.29	0.51	0.33	0.17	PORT ORANGE WESTERN WF	POW	MODERATE
32	67	38	0.27	0.29	0.51	0.51	0.51	PORT ORANGE WESTERN WF	POW	MODERATE
33	64	39	0.00	0.86	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
34	69	38	0.00	0.86	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
35	40	26	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
36	39	24	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
37	41	28	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
38	38	27	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
39	37	25	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
40	39	29	0.00	0.29	0.00	0.00	0.00	PORT ORANGE WEST PROP	POW	MODERATE
41	42	25	0.00	0.29	0.00	1.03	1.03	PORT ORANGE WEST PROP	POW	MODERATE
42	41	23	0.00	0.29	0.00	0.39	1.03	PORT ORANGE WEST PROP	POW	MODERATE
43	43	27	0.00	0.29	0.00	1.03	1.03	PORT ORANGE WEST PROP	POW	MODERATE
44	68	66	0.12	0.26	0.00	0.86	0.86	PORT ORANGE EASTERN WF	POE	LOW
45	68	65	0.03	0.07	0.00	0.00	0.00	PORT ORANGE EASTERN WF	POE	LOW
46	66	66	0.03	0.07	0.00	0.00	0.00	PORT ORANGE EASTERN WF	POE	LOW
47	66	67	0.10	0.20	0.00	0.00	0.00	PORT ORANGE EASTERN WF	POE	LOW
48	65	66	0.06	0.13	0.00	0.00	0.00	PORT ORANGE EASTERN WF	POE	LOW
49	65	65	0.06	0.13	0.00	0.00	0.00	PORT ORANGE EASTERN WF	POE	LOW

# Table A14. Volusia MIP decision model public supply utility area well withdrawal rates

				Withdrawal	rates (MG	iD)				
Well or Control Point Number	Simulation model row	Simulation model column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Well Description	Public Utility Need Area	Potential for Vegetative Harm
50	84	11	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL.	LOW
51	84	9	0.49	0.75	1.50	1.50	1.50	DELTONA	DEL.	LOW
52	83	13	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	LOW
53	86	13	0.49	0.75	1.50	1.50	1.50	DELTONA	DEL	LOW
54	84	10	0.97	1.51	0.00	2.26	2.26	DELTONA	DEL	LOW
55	85	12	1.46	2.26	0.00	0.44	1.85	DELTONA	DEL	LOW
56	84	18	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	MODERATE
57	85	12	0.49	0.75	0.34	1.50	1.50	DELTONA	DEL	LOW
58	83	18	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	LOW
59	84	18	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	MODERATE
60	81	12	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	LOW
61	85	17	0.49	0.75	0.00	0.00	0.00	DELTONA	DEL	MODERATE
62	81	16	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	MODERATE
63	81	18	0.00	1.51	0.00	0.00	0.00	DELT · PROPOSED	DEL	MODERATE
64	82	15	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	LOW
65	83	17	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	MODERATE
66	84	9	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	LOW
67	84	10	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	LOW
68	84	11	0.00	1 51	0.00	0.00	0.00	DELT - PROPOSED	DEL	LOW
69	85	17	0.00	0.75	0.00	0.00	0.00	DELT - PROPOSED	DEL	MODEBATE
70	86	11	0.00	0.75	0.00	1.50	1.50	DELT - PROPOSED	DEL	LOW
71	86	15	0.00	2.26	0.00	0.00	0.00		DEL	LOW
72	97	12	0.00	0.75	1.50	1.50	1.50		DEL	LOW
72	97	15	0.00	0.75	1.50	1.50	1.50		DEL	LOW
74	87	15	0.00	1.51	2.26	1.00	1.00		DEL	LOW
75	75	54	0.00	0.08	0.40	0.00	0.00		SPC	LOW
75	75	55	0.16	0.00	0.40	0.00	0.00		SPC SPC	LOW
77	75	54	0.00	0.00	0.00	0.40	0.40		SPC	LOW
70	75	54	0.00	0.10	0.00	0.00	0.00		SPC	LOW
70	79	40	0.00	0.00	1.42	1.69	1.62		NEC	LOW
79	23	40	0.59	0.00	0.00	1.05	1.00		NEC	LOW
00	80	41	0.39	0.60	0.00	0.00	0.00		NCC	LOW
01	80	42	0.30	0.44	0.00	0.00	0.00		NOO NOO	NODEDATE
02	80	43	0.30	0.44	0.00	0.00	0.00		NSS	MODERATE
00	00	64	1.19	1.70	0.00	0.12	0.00		NSG	MODERATE
- 04		03	0.09	0.44	0.00	0.00	0.51		NOG	LOW
00	70	30	0.00	0.44	0.00	0.00	0.10		N34	MODERATE
80		35	0.00	0.44	0.00	0.00	0.33	INEW SMITHINA SH 44	N54	MODERATE
8/		36	0.00	1./6	0.00	0.00	0.39		NS4	MODERATE
88	51	58	0.59	1.51	0.00	2.26	2.26		DBE	MODERATE
89	51	5/	0.59	1.21	0.00	1.67	0.00	DATIONA BEACH EASTERN WH	OBE	MODERATE
90	51	56	0.59	1.21	0.00	0.00	0.00	DAYTONA BEACH EASTERN WF	DBE	MODERATE
91	50	52	1.17	3.25	0.00	0.00	3.70	DAY IONA BEACH EASTERN WF	DBE	MODERATE
92	50	51	0.93	1.47	0.00	1.94	2.22	DAYTONA BEACH WESTERN WF	DBW	MODERATE
93	49	50	0.93	1.76	0.00	0.00	0.64	DAYTONA BEACH WESTERN WF	DBW	MODERATE
94	58	46	0.93	0.27	0.04	1.02	1.02	DAYTONA BEACH WESTERN WF	DBW	MODERATE
95	58	45	1.87	0.94	1.69	1.69	1.69	DAYTONA BEACH WESTERN WF	DBW	MODERATE
96	58	44	0.93	0.49	1.24	1.24	1.24	DAY IONA BEACH WESTERN WF	DBW	MODERATE
97		43	0.93	0.21	0.96	0.96	0.96	DAYTONA BEACH WESTERN WF	DBW	MODERATE
98	58	42	0.93	0.41	1.16	0.97	1.01	DAYTONA BEACH WESTERN WF	DBW	MODERATE

				Withdrawal	rates (MC	SD)				
Well or Control Point Number	Simulation model row	Simulation model column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Well Description	Public Utility Need Area	Potential for Vegetative Harm
99	57	43	0.93	0.33	1.08	1.08	0.80	DAYTONA BEACH WESTERN WF	DBW	MODERATE
100	56	43	0.93	0.32	0.00	0.37	0.91	DAYTONA BEACH WESTERN WF	DBW	LOW
101	55	42	0.93	0.63	1.38	0.98	0.59	DAYTONA BEACH WESTERN WF	DBW	LOW
· 102	53	42	0.00	0.31	0.00	0.00	0.00	DAYTONA WEST. 1988	DBW	LOW
103	52	42	0.00	2.32	1.12	0.59	0.00	DAYTONA WEST. 1988	DBW	LOW
104	51	43	0.00	0.40	0.00	0.00	0.00	DAYTONA WEST. 1988	DBW	LOW
105	50	43	0.00	1.63	0.00	0.08	0.00	DAYTONA WEST. 1988	DBW	LOW
106	49	43	0.00	0.48	0.30	0.00	0.00	DAYTONA WEST. 1988	OBW	MODERATE
107	57	41	0.00	0.55	0.18	0.00	0.09	DAYTONA WEST. 1988	DBW	MODERATE
108	54	43	0.00	0.53	0.00	0.00	0.00	DAYTONA WEST. 1988	DBW	LOW
109	53	43	0.00	0.27	0.00	0.00	0.00	DAYTONA WEST. 1988	DBW	MODERATE
110	31	73	0.45	0.46	1.21	1.21	1.21	ORMOND BEACH DIVISION	OBD	LOW
111	32	72	0.90	0.92	1.67	1.67	1.67	ORMOND BEACH DIVISION	OBD	LOW
112	31	70	0.23	0.23	0.00	0.00	0.98	ORMOND BEACH DIVISION	OBD	LOW
113	32	70	0.23	0.23	0.14	0.86	0.98	ORMOND BEACH DIVISION	OBD	LOW
114	32	69	0.23	0.23	0.00	0.00	0.00	ORMOND BEACH DIVISION	OBD	LOW
115	31	73	0.23	0.23	0.98	0.98	0.98	ORMOND BEACH DIVISION	OBD	LOW
116	31	72	0.23	0.23	0.98	0.98	0.98	ORMOND BEACH DIVISION	OBD	LOW
117	31	70	0.23	0.23	0.00	0.00	0.14	ORMOND BEACH DIVISION	OBD	LOW
118	29	64	0.63	0.23	0.00	0.00	0.00	ORMOND BEACH SR 40	OB4	LOW
119	30	61	0.63	0.23	0.00	0.00	0.00	ORMOND BEACH SR 40	OB4	LOW
120	28	65	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH SR 40	OB4	MODERATE
121	29	65	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH SR 40	OB4	MODERATE
122	30	59	0.63	0.23	0.00	0.00	0.00	ORMOND BEACH SR 40	OB4	LOW
123	25	52	0.00	0.46	0.00	0.00	0.00	ORMOND BEACH HUDSON	ОВН	LOW
124	24	52	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	ОВН	LOW
125	23	53	0.00	0.46	0.00	0.00	0.00	ORMOND BEACH HUDSON	ОВН	LOW
126	22	53	0.00	0.46	0.00	0.00	0.00	ORMOND BEACH HUDSON	ОВН	LOW
127	24	53	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	OBH	LOW
128	24	54	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	OBH	LOW
129	23	54	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	OBH	LOW
130	22	55	0.00	0.23	0.00	0.00	0.00	OBMOND BEACH HUDSON	OBH	LOW
131	24	52	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	OBH	LOW
132	23	51	0.00	0.23	0.00	0.00	0.00	ORMOND BEACH HUDSON	OBH	LOW
133	32	43	0.00	0.23	0.17	0.26	0.35		OBB	MODERATE
134	31	44	0.00	0.23	0.29	0.21	0.12	ORMOND BEACH RIMA PROP	OBR	MODERATE
135	78	10	0.05	0.14	0.14	0.14	0.14	JOHN KNOX VILL	JKV	LOW
136	80	8	0.20	0.32	0.00	0.00	0.00	V CTY - FOUR TOWNS	VET	LOW
137	79	8	0.20	0.32	0.79	0.79	0.79	V CTY - FOUR TOWNS	VET	LOW
138	80	9	0.14	0.16	0.00	0.00	0.00	V CTY - BREEZEWOOD	VET	IOW
130	83	 8	0.14	0.25	0.25	0.25	0.25		VIM	10W
140	 	7	0.09	0.52	0.53	0.53	0.53			IOW
1/41	77	7	0.01	0.01	0.00	0.00	0.00	V CTY - W OBANGE CITY	VTA	LOW
142	55	14	0.46	0.01	0.00	0.00	0.00		DEP	MODEPATE
143	55	13	0.40	0.02	0.00	0.02	0.04	DELAND - SPRING GARDEN	DER	MODERATE
143	55	12	0.01	0.02	0.00	0.00	0.00	DELAND - SPRING GARDEN	DED DED	IOW
140	50 54	10	0.01	0.02	0.00	0.00	0.00	DELAND - GIENMOOD EST	050	MODEPATE
145	<u>51</u>	14	0.06	0.16	31.0	0.16	0.00	DELAND - WOODLAND MANOR	nww	IOW
146	74	13	0.12	0.26	0.00	0.36	0.36	DELAND - LONGLEAF PLANT.	рнн	LOW

			Withdrawai rates (MGD)							
Well or Control Point Number	Simulation model row	Simulation model column	1988	Non -optimized projected year 2010	Case 3	Case 2	Case 1	Well Description	Public Utility Need Area	Potential for Vegetative Harm
147	72	10	0.05	0.10	0.36	0.00	0.00	DELAND - HOLIDAY HILLS	DHH	MODERATE
148	77	17	0.05	0.09	0.09	0.09	0.09	ELLWOOD TITCOMB	ញា	MODERATE
149	87	68	0.28	0.85	1.59	1.59	1.59	CITY OF EDGEWATER	EDG	LOW
150	87	67	0.42	1.27	0.59	2.02	2.02	CITY OF EDGEWATER	EDG	LOW
152	88	59	0.42	1.27	2.02	2.02	2.02	CITY OF EDGEWATER	EDG	LOW
153	88	63	0.28	0.85	1.59	1.59	1.59	CITY OF EDGEWATER	EDG	LOW
154	27	59	0.09	0.18	0.13	0.13	0.18	TYMBER CREEK UTIL.	TCU	LOW
155	26	54	0.32	0.58	0.43	0.43	0.58	THE TRAILS INC.	TI	LOW
156	77	16	0.11	0.29	0.17	0.49	0.00	LAKE HELEN	LHE	MODERATE
157	76	16	0.11	0.29	0.40	0.09	0.58	LAKE HELEN	LHE	MODERATE
158	90	74	0.06	0.10	0.10	0.10	0.10	HACIENDA DEL RIO	HDR	LOW
159	15	72	0.03	0.06	0.00	0.00	0.00	NATIONAL GARDENS	NGA	LOW
160	15	73	0.03	0.06	0.00	0.00	0.00	NATIONAL GARDENS	NGA	LOW
161	16	71	0.10	0.17	0.04	0.04	0.04	NATIONAL GARDENS	NGA	LOW
162	16	72	0.02	0.04	0.11	0.11	0.11	NATIONAL GARDENS	NGA	LOW
163	17	71	0.03	0.06	0.13	0.13	0.13	NATIONAL GARDENS	NGA	LOW
164	78	9	0.51	3.65	2.70	1.24	3.98	ORANGE CITY	OCY	LOW
165	14	65	0.07	0.13	0.13	0.13	0.13	SUNSHINE HOLIDAY PK	SHP	LOW
166	6	60	0.04	0.08	0.01	0.01	0.01	PLANTATION BAY	РТВ	MODERATE
167	7	60	0.02	0.04	0.12	0.12	0.12	PLANTATION BAY	PTB	LOW
168	68	8	0.16	0.33	0.33	0.33	0.33	L BERESFORD WATER ASSN	LBW	LOW
169	86	8	0.10	0.10	0.10	0.10	0.10	FPL - TURNER POWER PLNT	FPT	LOW
170	64	16	0.10	0.10	0.03	0.03	0.03	SHERWOOD MEDICAL CO.	SMC	LOW .
171	63	17	0.05	0.05	0.13	0.13	0.13	SHERWOOD MEDICAL CO.	SMC	LOW
172	85	4	0.08	0.08	0.08	0.08	0.08	FPL - SANFORD PWR PLNT	FPS	LOW
173	85	5	0.08	0.08	0.08	0.08	0.08	FPL - SANFORD PWR PLNT	FPS	LOW
174	80	7	0.08	0.08	0.08	0.08	0.08	FPL - SANFORD PWR PLNT	FPS	LOW
175	81	7	0.08	0.08	0.08	0.08	0.08	FPL - SANFORD PWR PLNT	FPS	LOW
176	50	40	0.23	0.23	0.23	0.23	0.23	TOMOKA CORR. FACILITY	TCF	HIGH
177	76	8	0.20	0.20	0.20	0.20	0.20	V CTY GOVT COMPLEX	VGC	LOW

ı.

## Table A15. East-central MIP decision model annualized public supply utility area fixed costs

Model		Fixed co	ost less intercon	nects	Fixed c	ost of interconr	nects	1	otal fixed costs		Nonoptimized
ID	Public supply demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	fixed costs
AF1	USAF BAS Civil Engineer										
ALT	Attamonte Springs	5,458,900	5,458,900	9,211,600				5,458,900	5,458,900	9,211,600	1,051,703
APO	Арорка	10,324,000	10,684,000					10,324,000	10,684,000		2,873,947
CAS	Casselberry			3,704,600						3,704,600	
CFR	Cent. Fla. Res. Park										
CFU	Central Florida Utilities										
СНИ	Chuluota										
CLE	Clermont										
-coc	Cocoa	13,685,000						13,685,000			
CON	Conway										
DAV	Davenport								•		
DEL	Deltona	8,401,400	7,937,000	7,485,200				8,401,400	7,937,000	7,485,200	2,398,476
EAT	Eatonville										
ECU	Econ Utilities										
EUS	Eustis										
FDC	Florida Dept. of Corrections										
FPL	Florida Power and Light										
GRO	Groveland Park										
HAI	Haines City										
нно	Hyatt House Orlando										
нон	Howey in the Hills										
IN1	B & W Canning							•			
IN2	Florida Crushed Stone										
IN3	Florida Rock (Lake Sand)										
IN4	Floribra USA, Inc.										
IN5	Silver Sand (Clermont Mine)										
IN6	Silver Springs Citrus										
JKV	John Knox Village										
KIS	Kissimmee										
LHE	Lake Helen										
LHY	Lake Harney		1						•		
LMY	Lake Mary	2,712,300	2,712,300	2,712,300				2,712,300	2,712,300	2,712,300	1,053,655
LON	Longwood							· · · · · · · · · · · · · · · · · · ·			
MAI	Maitland							······································			
MHN	City of Minne										
MIN	Minneola		1								
MON	Montverde									···	
MTD	Mt. Dora					<u> </u>					
010	OUC Navy	3,961,500	3,961,500	3,961,500	· _ · ·	124,120	124,120	3,961,500	4,085,620	4.085.620	
011	OUC Orange	560,720	560,720	560,720				560,720	560,720	560,720	1.835.432
012	OUC Pershing	T			48,441		ļ	48,441	1		
013	OUC Stanton Energy Ctr.	<b> </b>	†····				İ	[			
OAK	Oakland	†	†					[	<u> </u>	†	
000	Осозе	1	1						<u>+ .</u>		
OCY	Orange City		1						<u> </u>		<b> </b>
OE1	OCPUD E Bonneville/Corrine Terr.	1	1	 		·		l	<u>+</u>	<u> </u>	
OE2	OCPUD E Conway	<b> </b>	1	· · ·	129.539	398.820	361.550	129.539	398.820	361.550	
OF3	OCPUD E Econ	~		<u> </u>	1,119.622	1,135.300	619.680	1,119.622	1,135,300	619.680	<b> </b>
OF4	OCPUD E Lake Nona	<b>†</b>	1								t
L		<u> </u>	1	L			L	L	1	1	1

		Ciund cost loss intercomments			_						
Model		Fixed co	st less intercon	nects	Fixed c	ost of interconr	nects	T	otal fixed costs		Nonoptimized
	Public supply demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	fixed costs
OE5	OCPUD E ERWF				1,120,202	1,120,200	1,114,000	1,120,202	1,120,200	1,114,000	
ORO	Orange/Osceola Management										
OS1	OCPUD S Cypress Walk/Vistana	· · · ·									
OS2	OCPUD S Hunter's Creek										
OS3	OCPUD S Meadow Woods/SRWF	1,550,000	1,609,500	1,711,800				1,550,000	1,609,500	1,711,800	2,245,557
OS4	OCPUD S Orange Wood										
OSC	Osceola Service										
OU1	OUC Dr. Phillips										
OU2	OUC Martin				770,578	1,604,100	1,604,100	770,578	1,604,100	1,604,100	
OU3	OUC Conway										
004	OUC Highland	4,691,900	4,691,900	4,691,900	365,206			5,057,106	4,691,900	4,691,900	
OU5	OUC Plne Hills	10,067,000	10,067,000	10,067,000				10,067,000	10,067,000	10,067,000	
OU6	OUC Kuhl				1,261,370	586,770	1,000,200	1,261,370	586,770	1,000,200	
007	OUC Kirkman				990,764	1,790,800	887,620	990,764	1,790,800	887,620	
OU8	OUC Primrose	4,280,200	4,280,200	4,280,200				4,280,200	4,280,200	4,280,200	
OU9	OUC Sky Lake										
OVI	Oviedo										655,481
OW1	OCPUD W Bent Oaks/Plymouth										672,594
014/2	OCPUD w Hidden										
011/2									<u> </u>		
000											
014		10.052.000	10.050.000	10.252.000				10 252 000	10.252.000	10 252 000	
000		10,252,000	10,252,000	10,252,000				10,202,000	10,252,000	10,232,000	15.040
DAM	Derk Mener										13,042
PAM											
PUL	Poinciaria										
HAV											10,483
RCU	Reedy Creek										
SAF	Santord	3,335,600	2,857,700	2,833,600			·	3,335,600	2,857,700	2,833,600	/42,435
SAN	Saniando	5,454,600						5,454,600			234,545
SCL	St. Cloud										
SEM	Seminole County	8,832,900	8,832,900	7,996,900				8,832,900	8,832,900	7,996,900	
SSS	Southern States U. Shores										
SSU	Southern States U.					ļ					
SWA	Seminole Woods Association										
SWF	Sea World of Florida									ļ	
TAV	Tavares	<b> </b>			ļ						
UCF	Univ. Central Fla.					ļ	ļ				
VOL	Volusia County						<u> </u>	<b> -</b>	 	 	4,293
WEK	Wekiva		ļ			ļ <u>.</u>	ļ			<u> </u>	
WGA	Winter Garden	ļ				ļ	L		L	<b> </b>	892,909
WGC	Winter	ļ									
WPK	Winter Park	8,069,000	8,069,000	8,069,000			}	8,069,000	8,069,000	8,069,000	
WSP	Winter Springs	ļ	3,339,700		577,944	ļ		577,944	3,339,700	ļ	
ZSU	Zellwood Station	<b></b>					<u> </u>	ļ			
ZWF	Zeilwood Farms					ļ	L				
ZWU	Zellwood Water Users	<u> </u>					ļ	ļ			
1	Total	101,637,020	85,314,320	77,538,320	6,383,666	6,760,110	5,711,270	108,020,686	92,074,430	83,249,590	14,686,552

Table A16. East-	-central MIP decision	model annual	public suppl	y utility area	unit costs
------------------	-----------------------	--------------	--------------	----------------	------------

		L Init c	voet lace interno	maant	linit	and of internet	neet		Total unit cost		Nonoptimized unit
	Public demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	
451	USAS BAS Civil Engineer	50,300	50 300	50.300	00000			50 300	50.200	50 200	50.200
	Altamate Sorias	1 717 100	1 742 700	640.910				1 717 100	1 742 700	50,309	50,309
	Ananonite Springs	2 820 100	2 096 100	2 660 600				0.900.100	1,742,700	040,010	1 220 005
CAS		2,029,100	2,900,100	2,000,500				2,829,100	2,986,100	2,060,500	1,330,285
CAS	Cast Fig. Dec. Part	398,070	1,042,000	1,710,100				398,070	1,042,600	1,/16,100	398,065
	Cent. Fla. Res. Park	62,879	62,879	62,8/9				62,879	62,879	62,879	62,879
CFU		190,630	190,630	190,630				190,630	190,630	190,630	190,631
CHU	Chuluota	15,721	15,721	15,721	·			15,721	15,721	15,721	15,721
CLE	Clermont	155,160	155,160	155,160				155,160	155,160	155,160	155,155
COC	Cocoa	3,998,900	2,162,500	2,083,600				3,998,900	2,162,500	2,083,600	1,702,710
CON	Conway	6,357	6,357	6,357				6,357	6,357	6,357	6,357
DAV	Davenport	79,599	79,599	79,599				79,599	79,599	79,599	79,599
DEL	Deltona	2,477,300	2,415,600	2,352,900				2,477,300	2,415,600	2,352,900	1,565,903
EAT	Eatonville	88,936	88,936	88,936				88,936	88,936	88,936	88,936
ECU	Econ Utilities	9,680	9,680	9,680				9,680	9,680	9,680	9,680
EUS	Eustis	363,890	363,890	363,890				363,890	363,890	363,890	363,892
FDC	Florida Dept. of Corrections	10,375	10,375	10,375				10,375	10,375	10,375	13,833
FPL	Florida Power and Light	46,856	46,856	46,856				46,856	46,856	46,856	46,856
GRO	Groveland Park	49,528	49,528	49,528				49,528	49,528	49,528	49,528
HAI	Haines City	176,390	176,390	176,390				176,390	176,390	176,390	176,394
нно	Hyatt House Orlando	45,650	45,650	45,650				45,650	45,650	45,650	45,651
нон	Howey in the Hills	28,106	28,106	28,106				28,106	28,106	28,106	28,106
IN1	B & W Canning	69,803	69,803	69,803				69,803	69,803	69,803	69,803
IN2	Florida Crushed Stone	137,350	137,350	137,350				137,350	137,350	137,350	137,352
1N3	Florida Rock (Lake Sand)	54,638	54,638	54,638				54,638	54,638	54,638	54,638
iN4	Floribra USA, Inc.	99,349	99,349	99,349				99,349	99,349	99,349	99,349
IN5	Silver Sand (Clermont Mine)	77,798	77,798	77,798				77,798	77,798	77,798	77,798
IN6	Silver Springs Citrus	44,394	44,394	44,394				44,394	44,394	44,394	44,394
JKV	John Knox Village	22016.597	22016.597	22016.597				22,017	22,017	22,017	22016.6
KIS	Kissimmee	572,900	572,900	572,900				572,900	572,900	572,900	572,896
LHE	Lake Helen	36.315	36.315	36.315	· · ·			36.315	36.315	36.315	36.315
LHY	Lake Hamey	2.201	2,201	2.201				2.201	2.201	2.201	2.201
LMY	Lake Mary	398.300	398,300	398.300		· · · · · ·		398,300	398.300	398,300	353.528
LON	Longwood	198,090	198.090	198.090	·			198 090	198,090	198 090	198 090
MAI	Maitland	222 140	222 140	222,140				222 140	222 140	222 140	222 140
MHN	City of Minne	126 400	126.400	126 400				126 400	126,400	126.400	126.400
Adini		29 106	28 106	28 106				28 106	28 106	29 106	28 106
AAONI	Manturada	12 597	12 597	12 597				12 597	10 597	10 507	19 507
MON	Monverde	10,007	13,307	10,007	l			13,307	090.150	13,307	13,307
MIU		280,150	280,150	200,150			+	280,150	260,150	280,150	280,154
010		1,181,000	1,181,000	1,005,000			<u> </u>	1,181,000	1,181,000	1,005,000	402,469
011		138,320	138,320	138,320		<u> </u>	<u> </u>	138,320	138,320	138,320	452,777
012	OUC Pershing	L	L	L		<u> </u>	<u> </u>	0	0	0	440,200
013	OUC Stanton Energy Ctr.	25,272	25,272	25,272			<b> </b>	25,272	25,272	25,272	25,272
OAK	Oakland	17,640	17,640	17,640	· · ·		<u> </u>	17,640	17,640	17,640	17,640
000	Occes	29,799	344,250	115,320	<b> </b>		<u> </u>	29,799	344,250	115,320	344,251
OCY	Orange City	254,270	254,270	254,270	<b> </b>	<u> </u>	<u> </u>	254,270	254,270	254,270	254,270
OE1	OCPUD E Bonneville/Corrine Terr.	5	5	5	<b> </b>		ļ	5	5	5	0
OE2	OCPUD E Conway	251,560	8,346	184,380			<u> </u>	251,560	8,346	184,380	481,578
OE3	OCPUD E Econ	25,599		ļ	385,710	406,390	406,390	411,309	406,390	406,390	503,086
OE4	OCPUD E Lake Nona	125,770	125,770	125,770			1	125,770	125,770	125,770	125,771

								Nonontimized unit			
		Unit c	ost less interco	nnect	Unit	cost of intercon	inect		Total unit cost		COSts
	Public demand area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	
OE5	OCPUD E ERWF			12,888	1,028,700	1,028,700	1,018,300	1,028,700	1,028,700	1,031,188	1,273,436
ORO	Orange/Osceola Management	229,130	229,130	229,130				229,130	229,130	229,130	229,132
OS1	OCPUD S Cypress Walk/Vistana	703,520	723,210	723,210				703,520	723,210	723,210	408,757
OS2	OCPUD S Hunter's Creek	31,443	31,443	31,443				31,443	31,443	31,443	31,443
OS3	OCPUD S Meadow Woods/SRWF	641,430	641,430	641,430				641,430	641,430	641,430	641,435
OS4	OCPUD S Orange Wood	112,730	93,047	93,047				112,730	93,047	93,047	407,499
OSC	Osceola Service	143,510	143,510	143,510	_			143,510	143,510	143,510	143,510
OU1	OUC Dr. Phillips	389,890	389,890	389,890				389,890	389,890	389,890	389,892
OU2	OUC Martin				1,025,600	1,025,600	1,025,600	1,025,600	1,025,600	1,025,600	1,269,663
OU3	OUC Conway	531,910	389,910	389,910				531,910	389,910	389,910	578,611
OU4	OUC Highland	970, <del>6</del> 40	970,640	970,640				970,640	970,640	970,640	501,765
OU5	OUC Plne Hills	2,384,300	2,384,300	2,384,300				2,384,300	2,384,300	2,384,300	1,232,560
OU6	OUC Kuhi	316,430	314,450	314,450	572,930	574,530	574,530	889,360	888,980	888,980	711,237
007	OUC Kirkman				558,830	558,830	558,830	558,830	558,830	558,830	691,806
QU8	OUC Primrose	1,176,800	1,159,600	1,159,600				1,176,800	1,159,600	1,159,600	445,797
OU9	OUC Sky Lake	962,150	962,150	962,150				962,150	962,150	962,150	962,152
ovi	Oviedo	357,600	342,310	360,800	200,580	212,930	197,990	558,180	555,240	558,790	605,904
OW1	OCPUD W Bent Oaks/Plymouth	153,000	153,000	153,000				153,000	153,000	153,000	153,001
OW2	Springs/Kelso/Windmere	5	5	5				5	5	5	0
OW3	OCPUD W Oak Meadow	5	5	5				5	5	5	0
OW4	OCPUD W Riverside	5	- 5	5				5	5	5	0
OW5	OCPUD W WRWF	2,433,000	3,702,600	4,176,900			144,440	2,433,000	3,702,600	4,321,340	1,257,715
OW6	OCPUD W Magnolia/Lake John	4,150	4,150	4,150				4,150	4,150	4,150	4,150
PAM	Park Manor	25,608	25,608	25,608				25,608	25,608	25,608	25,608
POI	Poinciana	90,641	90,641	90,641				90,641	90,641	90,641	90,641
RAV	Ravenna	14,840	14,840	14,840				14,840	14,840	14,840	14,840
RCU	Reedy Creek	2,778,900	2,089,800	2,515,500				2,778,900	2,089,800	2,515,500	1,823,686
SAF	Sanford	907,390	834,950	834,500				907,390	834,950	834,500	473,026
SAN	Sanlando	2,016,700	675,900	675,900				2,016,700	675,900	675,900	675,894
SCL	St. Cloud	269,710	269,710	269,710				269,710	269,710	269,710	269,711
SEM	Seminole County	2,577,000	2,577,000	2,396,800				2,577,000	2,577,000	2,396,800	1,169,610
SSS	Southern States U. Shores	97,767	97,767	97,767				97,767	97,767	97,767	97,766
SSU	Southern States U.	76,886	76,886	76,886				76,886	76,886	76,886	76,885
SWA	Seminole Woods Association	5,344	5,344	5,344				5,344	5,344	5,344	5,344
SWF	Sea World of Florida	81,743	81,743	81,743				81,743	81,743	81,743	81,743
TAV	Tavares	211,230	211,230	211,230				211,230	211,230	211,230	211,230
UCF	Univ. Central Fla.	64,709	64,709	64,709				64,709	64,709	64,709	64,709
VOL	Volusia County	158,550	158,550	158,550			ļ.	158,550	158,550	158,550	158,546
WEK	Wekiva	48,240	48,240	48,240			ļ	48,240	48,240	48,240	48,239
WGA	Winter Garden	158,220	158,220	337,030			<b> </b>	158,220	158,220	337,030	236,429
WGC	Winter	117,760	117,760	117,760			ļ	117,760	117,760	117,760	39,555
WPK	Winter Park	2,865,100	2,972,500	2,764,400	ļ			2,865,100	2,972,500	2,764,400	960,896
WSP	Winter Springs	248,300	994,860	378,020	305,360	ļ		553,660	994,860	378,020	378,021
ZSU	Zellwood Station	118,580	118,580	118,580		ļ		118,580	118,580	118,580	118,578
ZWF	Zellwood Farms	20,394	20,394	20,394			<b> </b>	20,394	20,394	20,394	20,394
ZWU	Zellwood Water Users	23,022	23,022	23,022	<b> </b>			23,022	23,022	23,022	23,022
	Total	41,751,591	40,571,016	39,551,127	4,077,710	3,806,980	3,926,080	45,829,301	44,377,996	43,477,207	31,411,215

		ייייייייייייייייייייייייייייייייייייי	otal optimized cost	s .	T-t-t	Difference between	optimized and no costs	noptimized total
Model ID	Public supply demand area	Case 3	Case 2	Case 1	costs	Case 3	Case 2	Case 1
AF1	USAF BAS Civil Engineer	50,309	50,309	50,309	50,309	50,309	50,309	50,309
ALT	Altamonte Springs	7,176,000	7,201,600	9,852,410	1,692,509	7,200,591	7,251,791	8,800,711
APO	Apopka	13,153,100	13,670,100	2,660,500	4,204,231	11,777,969	12,451,969	1,116,769
CAS	Casselberry	398,070	1,042,600	5,420,700	398,065	398,075	1,687,135	6,738,735
CFR	Cent. Fia. Res. Park	62,879	62,879	62,879	62,879	62,879	62,879	62,879
CFU	Central Florida Utilities	190,630	190,630	190,630	190,631	190,629	190,629	190,629
СНИ	Chuluota	15,721	15,721	15,721	15,721	15,721	15,721	15,721
CLE	Clermont	155,160	155,160	155,160	155,155	155,165	155,165	155,165
coc	Cocoa	17,683,900	2,162,500	2,083,600	1,702,710	19,980,090	2,622,290	2,464,490
CON	Conway	6,357	6,357	6,357	6,357	6,357	6,357	6,357
DAV	Davenport	79,599	79,599	79,599	79,599	79,599	79,599	79,599
DEL	Deltona	10,878,700	10,352,600	9,838,100	3,964,379	9,391,621	8,803,821	8,226,621
EAT	Eatonville	88,936	88,936	88,936	88,936	88,936	88,936	88,936
ECU	Econ Utilities	9,680	9,680	9,680	9,680	9,680	9,680	9,680
EUS	Eustis	363,890	363,890	363,890	363,892	363,888	363,888	363,888
FDC	Florida Dept. of Corrections	10.375	10,375	10,375	13,833	6.917	6,917	6,917
FPL	Florida Power and Light	46,856	46,856	46.856	46,856	46.856	46,856	46.856
GRO	Groveland Park	49,528	49,528	49,528	49,528	49,528	49,528	49,528
HAI	Haines City	176.390	176.390	176.390	176.394	176.386	176.386	176.386
нно	Hvatt House Orlando	45.650	45.650	45.650	45.651	45,650	45,650	45.650
нон	Howev in the Hills	28,106	28.106	28,106	28.106	28.106	28.106	28,106
INT	B & W Canning	69,803	69.803	69.803	69,803	69,803	69,803	69.803
IN2	Florida Crushed Stone	137.350	137.350	137.350	137.352	137.348	137.348	137.348
IN3	Fiorida Bock (Lake Sand)	54,638	54.638	54,638	54,638	54.638	54,638	54,638
IN4		99,349	99.349	99.349	99.349	99,349	99.349	99,349
IN5	Silver Sand (Clermont Mine)	77,798	77,798	77,798	77.798	77,798	77,798	77,798
ING	Silver Springs Citrus	44.394	44.394	44.394	44.394	44 394	44.394	44 394
JKV		22016.597	22016.597	22016 597	22016.6	22016-594	22016 594	22016.594
KIS	Kissimmee	572 900	572 900	572 900	572 896	572 904	572 904	572 904
LHE		36,315	36.315	36.315	36.315	36.315	36.315	36.315
1.87	Lake Harney	2,201	2,201	2.201	2,201	2,201	2,201	2,201
LMY	Lake Mary	3,110,600	3,110,600	3.110.600	1.407.183	2.101.717	2.101.717	2,101,717
LON	Longwood	198.090	198.090	198.090	198.090	198,090	198,090	198.090
MAI	Maitland	222,140	222,140	222,140	222.140	222,140	222,140	222,140
MHN	City of Minne	126,400	126,400	126,400	126,400	126,400	126 400	126.400
MIN	Minneola	28,106	28,106	28,106	28,106	28,106	28,106	28,106
MON	Montverde	13.587	13.587	13.587	13.587	13.587	13,587	13.587
MTD	Mt. Dora	280,150	280,150	280,150	280,154	280,146	280,146	280,146
010		5,142,500	5,266,620	5.090.620	402 469	5.921.031	6 169 271	5,817,271
011		699.040	699.040	699.040	2,288,209	-1.450.849	-1.450.849	-1 450 849
012		48.441	0	0	440 200	-343 318	-440 200	-440 200
013	OUC Stanton Energy Ctr	25 272	25 272	25 272	25 272	25 979	25 279	25 272
OAK	Oaldand	17 640	17.640	17 640	17 640	17 640	17 640	17 640
000	Ослее	29 799	344.250	115.320	344 251	-284 653	344 249	-113 611
000	Orange City	254.270	254.270	254.270	254,270	254 270	254 270	254 270
0F1	OCPUD E Bonneville/Corrine Terr	5	5	5	0	9	9	9
0F2	OCPUD E Conway	381.099	407 166	545.930	481.578	280.620	332 754	610.282
OF3	OCPUD E Econ	1,530,931	1.541.690	1,026.070	503.086	2.558 777	2,580 294	1,549,054
OE4	OCPUD E Lake Nona	125.770	125.770	125.770	125,771	125,769	-1	-1

# Table A17. East-central MIP decision model total annual costs for public supply utility areas

		Total optimized costs			Difference between optimized and nonoptimized total costs			
Model ID	Public europy demand area	Case 3	Case 2	Case 1	Total nonoptimized	Case 3	Case 2	Case 1
OF5		2,148,902	2 148 900	2,145 189	1,273,496	3,024,368	3.024.364	3,016,930
080	Oranne/Osceola Management	229 130	229 130	229.130	229 132	229 128	229 128	229 128
051	OCPLID S Cypress WalkAvistana	703 520	723 210	723 210	408 757	998 283	1 037 663	1 037 663
052	OCPUD S Hunter's Creek	31 443	31 443	31 443	31 443	31.443	31 443	31 443
053	OCPLID S Meadow Woods/SBWE	2 191 430	2 250 930	2 353 230	2 886 991	-54 131	5 369	107 669
000	OCRUD S Orange Wood	112 730	93 047	93 047	407 499	-182 039	-221 405	-221 405
050	Oscenia Senice	143 510	143 510	143 510	143 510	143 510	143 510	143 510
000	OUC Dr. Phillins	389 890	389,890	389 890	389 892	389 888	389 888	389 888
0112	OLIC Martin	1 796 178	2 629 700	2 629,700	1,269,663	2 322 693	3,989,737	3,989,737
002		531 910	389 910	389 910	578 611	485,209	201,209	201 209
004		6.027 746	5 662 540	5 662 540	501,765	6.861.826	6,131,415	6.131.415
OU5		12 451 300	12 451.300	12,451,300	1,232,560	13 603.040	13,603,040	13.603.040
006		2,150,730	1.475.750	1,889,180	711,237	3,590,223	2,240,263	3.067.123
007		1 549 594	2 349 630	1 446 450	691 806	2 407 382	4 007 454	2 201 094
OUR	OUC Primrose	5,457,000	5,439,800	5,439,800	445.797	6,188.003	6,153,603	6,153,603
000		962 150	962 150	962,150	962,152	962,148	962.148	962,148
01	Oviedo	558,180	555 240	558,790	1,261,385	-145.025	-150.905	-143,805
0W1	OCPUD W Bent Oaks/Plymouth	153,000	153,000	153.000	825.595	-519.595	-519.595	-519.595
0.W2	OCPUD W Hidden Springs/Kelso/Windmere	5	5	5	0	9	9	9
0112	OCPUD W Oak Meadow	5	5	5	0	v	0	
014		5	5	5	0			9
0.005		12 685 000	13 954 600	14 573 340	1 257 715	13 860 285	16 399 485	17 636 965
OW6	OCPUD W Magnolia/Lake John	4 150	4 150	4 150	19 192	-10 892	-10 892	-10 892
PAM	Park Manor	25.608	25,608	25.608	25.608	25,608	25.608	25.608
POI	Poinciana	90.641	90.641	90.641	90.641	90.641	90.641	90.641
BAV	Ravenna	14,840	14,840	14.840	25.323	4.358	4.358	4.358
RCU	Reedy Creek	2.778.900	2.089.800	2.515.500	1.823.686	3,734,114	2,355,914	3.207.314
SAF	Sanford	4.242.990	3.692.650	3,668,100	1,215,460	3,934,920	3.312.140	3,287,140
SAN	Sanlando	7.471.300	675.900	675.900	910,439	8.577.561	441.361	441.361
SCL	St. Cloud	269.710	269.710	269.710	269.711	269.709	269.709	269,709
SEM	Seminole County	11,409,900	11.409.900	10.393.700	1,169.610	12.817.290	12.817.290	11.620.890
SSS	Southern States U. Shores	97.767	97.767	97.767	97.766	97,768	97.768	97,768
SSU	Southern States U.	76.886	76.886	76.886	76.885	76.888	76,888	76.888
SWA	Seminole Woods Association	5.344	5.344	5.344	5.344	5,344	5.344	5.344
SWF	Sea World of Florida	81.743	81.743	81.743	81.743	81.743	81.743	81.743
TAV	Tavares	211.230	211.230	211.230	211.230	211.230	211.230	211.230
UCF	Univ. Central Fla.	64.709	64,709	64,709	64.709	64.709	64,709	64.709
VOL	Volusia County	158.550	158.550	158.550	162.839	154.261	154.261	154.261
WEK	Wekiva	48.240	48,240	48.240	48.239	48.241	48,241	48.241
WGA	Winter Garden	158.220	158,220	337.030	1,129.338	-812.898	-812.898	-455.278
WGC	Winter	117,760	117,760	117,760	39,555	195.965	195.965	195.965
WPK	Winter Park	10,934,100	11,041,500	10,833,400	960,896	12,838,304	13,053,104	12,636.904
WSP	Winter Springs	1,131,604	4,334,560	378,020	378,021	1,885,187	4,951,399	378,019
ZSU	Zeitwood Station	118,580	118,580	118,580	118,578	118,582	118,582	118,582
ZWF	Zeliwood Farms	20,394	20,394	20,394	20,394	20,394	20,394	20,394
ZWU	Zellwood Water Users	23,022	23,022	23,022	23,022	23,022	23,022	23,022
	Total	153,849,987	136,452,426	126,726,797	46,097,768	159,965,186	141,366,994	129,691,737

# Table A18. Volusia MIP decision model public supply utility area annual fixed costs

		Fixed o	cost less intercor	nnects	Fixed	cost of intercon	nects	Total fixed costs			
Model ID	Public Supply Utility Area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Nonoptimized Fixed costs
DBE	DAYTONA BEACH EASTERN WF			65,156						65,156	
DBW	DAYTONA BEACH WESTERN WF	9,720,100	7,657,400		62,377		81,186	9,782,477	7,657,400	81,186	
DEB	DELAND - BRANDYWINE										
DEL	DELTONA	10,266,000	9,005,500	5,790,100	230,380		262,373	10,496,380	9,005,500	6,052,473	3,113,285
DHH	DELAND - HOLIDAY HILLS										
DWU	DELAND	3,949,900	195,880	1,101,400				3,949,900	195,880	1,101,400	
DWW	DELAND - WOODLAND MANOR										
EDG	CITY OF EDGEWATER	910,550	300,200					910,550	300,200		
ETI	ELLWOOD TITCOMB										
FPS	FPL - SANFORD PWR PLNT										
FPT	FPL - TURNER POWER PLNT										
HDR	HACIENDA DEL RIO	19,900						19,900			
HHE	HOLLY HILL EASTERN WF										
HHW	HOLLY HILL WESTERN WF	23,891			71,462	229,415		95,353	229,415		
JKV	JOHN KNOX VILL.										
LBW	L BERESFORD WATER ASSN		•								
LHE	LAKE HELEN										
NGA	NATIONAL GARDENS	75,728	75,728	75,728				75,728	75,728	75,728	
NS4	NEW SMYRNA SR 44			363,710	266,600	74,416	204,378	266,600	74,416	568,088	1,183,614
NSG	NEW SMYRNA GLENCOE WF	601,480						601,480			_
NSS	NEW SMYRNA SAMSULA WF				59,091	1,011,854		59,091	1,011,854		
OB4	ORMOND BEACH SR 40	226,040			66,503	71,079	71,079	292,543	71,079	71,079	207,574
OBD	ORMOND BEACH DIVISION	503,000				59,992		503,000	59,992		
ОВН	ORMOND BEACH HUDSON	4,522			413,770	24,308	264,308	418,292	24,308	264,308	1,349,228
OBR	ORMOND BEACH RIMA PROP	207,570	207,570	207,570				207,570	207,570	207,570	207,574
000	OR. CITY CTRY VILLAGE	75,736						75,736			
OCY	ORANGE CITY	2,283,500	1,558,300	2,089,500				2,283,500	1,558,300	2,089,500	
POE	PORT ORANGE EASTERN WF		_								
POW	PORT ORANGE WEST PROP	6,411,300	635,980	801,270		68,920	1,428,584	6,411,300	704,900	2,229,854	1,107,467
РТВ	PLANTATION BAY										
SHP	SUNSHINE HOLIDAY PK										
SMC	SHERWOOD MEDICAL CO.	_									
SME	SSU SUGAR MILL 1990										
SPC	SPRUCE CREEK										108,162
TCF	TOMOKA CORR. FACILITY										
тси	TYMBER CREEK UTIL.	35,046	35,046					35,046	35,046		
π	THE TRAILS INC.	113,230	113,230					113,230	113,230		
VFT	V CTY - FOUR TOWNS										
VGC	V CTY GOVT COMPLEX										
VLM	V CTY - LAKE MARIE										
VTA	V CTY - TERRA ALTA										
	Total	35,427,493	19,784,834	10,494,434	1,170,182	1,539,984	2,311,908	36,597,675	21,324,818	12,806,342	7,276,903

Table A19. \	Volusia MIP	decision model	public supply	/ utility	y area annual	unit costs
--------------	-------------	----------------	---------------	-----------	---------------	------------

		Unit c	ost less intercor	unects	Unit c	ost of interco	nnects	1	otal unit costs		Nonontimized Unit
Model ID	Public Supply Utility Area	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	Case 3	Case 2	Case 1	costs
DBE	DAYTONA BEACH EASTERN WF		247,030	388,810				0	247,030	388,810	451,113
DBW	DAYTONA BEACH WESTERN WF	2,190,700	1,947,600	702,160				2,190,700	1,947,600	702,160	838,015
DEB	DELAND - BRANDYWINE	56,429	56,429	56,429				56,429	56,429	56,429	56,432
DEL	DELTONA	2,200,200	2,226,800	1,706,200				2,200,200	2,226,800	1,706,200	1,565,969
DHH	DELAND - HOLIDAY HILLS	22,794	22,794	22,794				22,794	22,794	22,794	22,795
DWU	DELAND	490,260	629,070	885,150				490,260	629,070	885,150	435,148
DWW	DELAND - WOODLAND MANOR	10,211	10,211	10,211				10,211	10,211	10,211	10,211
EDG	CITY OF EDGEWATER	565,540	520,600	454,410				565,540	520,600	454,410	266,258
ETI	ELLWOOD TITCOMB	5,741	5,741	5,741				5,741	5,741	5,741	5,741
FPS	FPL - SANFORD PWR PLNT	19,898	19,898	19,898				19,898	19,8 <del>9</del> 8	19,898	19,899
FPT	FPL - TURNER POWER PLNT	5,978	5,978	5,978				5,978	5,978	5,978	5,978
HDR	HACIENDA DEL RIO	9,189	6,401	6,401				9,189	6,401	6,401	6,401
HHE	HOLLY HILL EASTERN WF	8,690	8,690	8,690		_		8,690	8,690	8,690	8,691
HHW	HOLLY HILL WESTERN WF	5,268		86,787				5,268		86,787	86,792
JKV	JOHN KNOX VILL.	8,931	8,931	8,931				8,931	8,931	8,931	8,932
LBW	L BERESFORD WATER ASSN	20,639	20,639	20,639				20,639	20,639	20,639	20,640
LHE	LAKE HELEN	36,316	36,316	36,316		_		36,316	36,316	36,316	36,317
NGA	NATIONAL GARDENS	34,967	34,967	34,967				34,967	34,967	34,967	24,358
NS4	NEW SMYRNA SR 44			50,956	192,000		92,794	192,000	0	143,750	165,832
NSG	NEW SMYRNA GLENCOE WF	132,630	7,787	31,927				132,630	7,787	31,927	193,470
NSS	NEW SMYRNA SAMSULA WF	93,750	139,810	165,820		155,000		93,750	294,810	165,820	165,832
OB4	ORMOND BEACH SR 40	49,844			_			49,844	0	0	72,706
OBD	ORMOND BEACH DIVISION	425,260	358,630	436,220				425,260	358,630	436,220	174,494
ОВН	ORMOND BEACH HUDSON	997		[	50,802	93,969	93,969	51,799	93,969	93,969	189,035
OBR	ORMOND BEACH RIMA PROP	29,081	29,081	29,081				29,081	29,081	29,081	29,082
000	OR. CITY CTRY VILLAGE	34,970	24,360	24,360				34,970	24,360	24,360	24,361
OCY	ORANGE CITY	424,910	248,750	485,520				424,910	248,750	485,520	229,550
POE	PORT ORANGE EASTERN WF		53,893	53,893				0	53,893	53,893	53,896
POW	PORT ORANGE WEST PROP	1,373,000	406,920	426,090			351,510	1,373,000	406,920	777,600	539,144
PTB	PLANTATION BAY	7,684	7,684	7,684				7,684	7,684	7,684	7,684
SHP	SUNSHINE HOLIDAY PK	7,941	7,941	7,941				7,941	7,941	7,941	7,942
SMC	SHERWOOD MEDICAL CO.	9,890	9,890	9,890				9,890	9,890	9,890	9,889
SME	SSU SUGAR MILL 1990	13,581	13,581	13,581				13,581	13,581	13,581	13,582
SPC	SPRUCE CREEK	25,256	25,256	25,256				25,256	25,256	25,256	25,257
TCF	TOMOKA CORR. FACILITY	14,316	14,316	14,316	<u> </u>			14,316	14,316	14,316	14,317
TCU	TYMBER CREEK UTIL.	16,182	16,182	11,272	[			16,182	16,182	11,272	11,273
111	THE TRAILS INC.	52,284	52,284	36,420				52,284	52,284	36,420	36,422
VFT	V CTY - FOUR TOWNS	49,898	49,898	49,898	[			49,898	49,898	49,898	49,900
VGC	V CTY GOVT COMPLEX	12,456	12,456	12,456				12,456	12,456	12,456	12,456
VLM	V CTY - LAKE MARIE	15,956	15,956	15,956	[			15,956	15,956	15,956	15,957
VTA	V CTY - TERRA ALTA	33,136	33,136	33,136				33,136	33,136	33,136	33,137
	Total	8,514,775	7,335,907	6,402,185	242,802	248,969	538,273	8,757,577	7,584,876	6,940,459	5,944,905

# Table A20. Volusia MIP decision model public supply utility area annual total costs

						Difference between optimized and nonoptimized total		
		Total costs			Total nonoptimized	costs		
Model ID	Public Supply Utility Area	Case 3	Case 2	Case 1	costs	Case 3	Case 2	Case 1
DBE	DAYTONA BEACH EASTERN WF	0	247,030	453,966	451,113	-451,113	-204,083	2,853
DBW	DAYTONA BEACH WESTERN WF	11,973,177	9,605,000	783,346	838,015	11,135,161	8,766,985	-54,669
DEB	DELAND - BRANDYWINE	56,429	56,429	56,429	56,432	-2	-2	-2
DEL	DELTONA	12,696,580	11,232,300	7,758,673	4,679,254	8,017,326	6,553,046	3,079,419
DHH	DELAND - HOLIDAY HILLS	22,794	22,794	22,794	22,795	-1	-1	<u> </u>
DWU	DELAND	4,440,160	824,950	1,986,550	435,148	4,005,012	389,802	1,551,402
DWW	DELAND - WOODLAND MANOR	10,211	10,211	10,211	10,211	0	0	0
EDG	CITY OF EDGEWATER	1,476,090	820,800	454,410	266,258	1,209,832	554,542	188,152
ETI	ELLWOOD TITCOMB	5,741	5,741	5,741	5,741	0	0	0
FPS	FPL - SANFORD PWR PLNT	19,898	19,898	19,898	19,899	-1	-1	-1
FPT	FPL - TURNER POWER PLNT	5,978	5,978	5,978	5,978	0	0	0
HDR	HACIENDA DEL RIO	29,089	6,401	6,401	6,401	22,688	0	0
HHE	HOLLY HILL EASTERN WF	8,690	8,690	8,690	8,691	0	0	0
ннพ	HOLLY HILL WESTERN WF	100,622	229,415	86,787	86,792	13,829	142,623	-6
JKV	JOHN KNOX VILL.	8,931	8,931	8,931	8,932	0	0	0
LBW	L BERESFORD WATER ASSN	20,639	20,639	20,639	20,640	-1	-1	-1
LHE	LAKE HELEN	36,316	36,316	36,316	36,317	-2	-2	-2
NGA	NATIONAL GARDENS	110,695	110,695	110,695	24,358	86,337	86,337	86,337
NS4	NEW SMYRNA SR 44	458,600	74,416	711,838	1,349,446	-890,846	-1,275,030	-637,608
NSG	NEW SMYRNA GLENCOE WF	734,110	7,787	31,927	193,470	540,640	-185,683	-161,544
NSS	NEW SMYRNA SAMSULA WF	152,841	1,306,664	165,820	165,832	-12,991	1,140,832	-12
OB4	ORMOND BEACH SR 40	342,387	71,079	71,079	280,279	62,107	-209,200	-209,200
OBD	ORMOND BEACH DIVISION	928,260	418,622	436,220	174,494	753,766	244,128	261,726
OBH	ORMOND BEACH HUDSON	470,091	118.277	358.277	1,538,263	-1.068.172	-1,419,986	-1.179.986
OBR	ORMOND BEACH RIMA PROP	236.651	236.651	236.651	236.656	-5	-5	-5
000	OR, CITY CTRY VILLAGE	110.706	24,360	24,360	24.361	86.345	-1	.1
OCY	ORANGE CITY	2,708,410	1.807.050	2.575.020	229,550	2.478.860	1.577.500	2 345 470
POE	PORT ORANGE EASTERN WF	0	53,893	53,893	53,896	-53,896	-2	-2
POW	PORT OBANGE WEST PROP	7,784,300	1.111.820	3.007.454	1.646.610	6.137.690	-534,790	1 360 844
PTB	PLANTATION BAY	7.684	7.684	7.684	7.684	0	0	0
SHP		7,941	7.941	7.941	7 942	0	0	
SMC	SHERWOOD MEDICAL CO	9.890	9,890	9.890	9.889	1	1	
SME		13 581	13 581	13 581	13 582			-1
SPC		25 256	25 256	25 256	133 419	-108 163	-108 163	-108 163
TCE		14 316	14 316	14 316	14 317	-100,100	-1	-100,100
TCH		51 228	51 229	11 070	11 979	30.055	30.055	-1
- <del></del>		165 514	165 514	36 400	36.400	100.000	120.002	
		AD 909	AD 200	40 000	40 000	123,033	123,033	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		43,030	43,030	43,030	43,300		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-2
VGC		12,400	12,430	12,400	12,400			U
		15,930	10,900	15,950	10,85/			•1
		33,130	33,136	33,130	33,13/		-1	•1
	Total	45,355,253	28,909,694	19,746,801	13,221,808	32,133,445	15,687,886	6,524,993

# APPENDIX B: GAMS FILES

EAST-CENTRAL LP OPTIMIZATION MODEL VOLUSIA LP OPTIMIZATION MODEL EAST-CENTRAL MIP DECISION MODEL VOLUSIA MIP DECISION MODEL
## EAST-CENTRAL LP OPTIMIZATION MODEL GAMS FILE

Stitle minimize deficits and drawdowns while meeting 2010 demands

- * deficit optimization modeling for the east-central Florida region
- *
- * demand areas are wellfields
- * Units
- *
- * all flows, demands, spring discharge, and use rates are in cfd
- * heads and drawdowns are in feet
- * note that rcw, reclaimed water, and reuse denote the same thing

sets

h all control points / welpt1*welpt157 /

i public well cells / mw1*mw332 /

j public demand areas / alt, apo, cas, cfu, chu, cle, coc, con, del, ecu, eus, fdc, kis, lhe, lhy, lmy, lon, mai, oco, ocy, oro, ou1, ou2,ou3,ou4,ou5,ou6,ou7,ou8,ou9,o10,o11,o12,o13, os1,os2,os3,os4,oe1,oe2,oe3,oe4,oe5,ow1,ow2,ow3,ow4,ow5,ow6, ovi, pam, poi, rav, rcu, saf, san, scl, sem, sss, ssu, swa, swf, ucf, vol, wek, wga, wgc, wpk, wsp, zwf, zwu, zsu, mtd, tav, fpl, in1, in2, in3, in4, in6, hoh, eat, mon, mhn, cfr, min, oak, gro, in5, hho, osc, af1, dav, hai, jkv /

the following set is preliminary, areas were loosely defined by visual

- inspection, County, and type
  - k agricultural areas / c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13, c14,c15,c16,c17,c18,c19,c20,c21,c22,c23,c24,c25,c26,c27,f1,f2,f3 f4,f5,f6,f7,l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l12,l13,l14,l15,l16, o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,o11,s1,s2,s3,s4,s5,s6,s7,v1,v2 /

l springs / sprin1*sprin17 /

m agricultural wells / aw1*aw364 /

table alpha(i,h) public well influence coefficients for heads (ft squared per day) welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

 mw1
 .542E-05
 .578E-06
 .442E-06
 .105E-05
 .955E-06
 .172E-06
 .110E-06
 .132E-06
 .148E-05
 .102E-05

 mw2
 .112E-05
 .893E-06
 .636E-06
 .119E-05
 .103E-05
 .223E-06
 .139E-06
 .167E-06
 .634E-06
 .571E-06

 mw3
 .216E-05
 .658E-06
 .506E-06
 .148E-05
 .132E-05
 .189E-06
 .119E-06
 .142E-05
 .102E-05

 mw4
 .578E-06
 .211E-05
 .994E-06
 .731E-06
 .679E-06
 .294E-06
 .178E-06
 .218E-06
 .379E

table gamma(i,1) public well influence coefficients for springs (ft squared per day) sprin1 sprin2 sprin3 sprin4 sprin5 sprin6 sprin7 sprin8 sprin9 sprin10

 mw1
 .215E-07
 .873E-08
 .100E-07
 .167E-06
 .294E-06
 .533E-06
 .554E-06
 .565E-06
 .860E-08
 .518E-09

 mw2
 .231E-07
 .977E-08
 .123E-07
 .214E-06
 .375E-06
 .683E-06
 .745E-06
 .803E-06
 .893E-08
 .412E-09

 mw3
 .211E-07
 .877E-08
 .104E-07
 .174E-06
 .303E-06
 .528E-06
 .560E-06
 .566E-06
 .862E

table beta(m,h) ag well influence coefficients for heads (ft squared per day) welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

 aw1
 .276E-08
 .355E-08
 .473E-08
 .395E-08
 .671E-08
 .789E-08
 .907E-08
 .237E-08
 .276E-08

 aw2
 .294E-08
 .401E-08
 .401E-08
 .428E-08
 .669E-08
 .749E-08
 .910E-08
 .268E-08
 .321E-08

 aw3
 .323E-08
 .420E-08
 .549E-08
 .452E-08
 .711E-08
 .775E-08
 .937E-08
 .291E

table zeta(m,l) ag well influence coefficients for springs (ft squared per day) sprin1 sprin2 sprin3 sprin4 sprin5 sprin6 sprin7 sprin8 sprin9 sprin10

 aw1
 .118E-08
 .395E-09
 .237E-08
 .316E-08
 .237E-08
 .237E-08
 .237E-08
 .237E-08
 .237E-08
 .247E-10

 aw2
 .107E-08
 .535E-09
 .401E-09
 .241E-08
 .241E-08
 .241E-08
 .241E-08
 .241E-08
 .535E-09
 .167E-10

 aw3
 .969E-09
 .323E-09
 .485E-09
 .258E-08
 .258E-08
 .258E-08
 .258E-08
 .258E-08
 .646E

table dist(j,q) distance from public area j to area q in thousand feet

alt apo cas cfu cle coc del eus kis lhe lhy lmy lon mai oe1 oe2 oe3 oe4 oe5 ocoalt0. 43. 22. 128. 122. 126. 109. 103. 128. 131. 99. 42. 19. 14. 55. 69. 63. 98. 72. 53.apo43. 0. 65. 142. 87. 163. 129. 69. 141. 145. 140. 63. 54. 51. 96. 100. 102. 129. 108. 37.cas22. 65. 0. 126. 142. 108. 104. 123. 126. 128. 80. 45. 22. 20. 36. 59. 46. 87. 57.

table dists(i,p) distance from municipal well i to surface source p in thousand feet

gri xma mon del mwl 138.118.57.114. mw2 133.125.62.118. mw3 139.119.62.119.

parameters

ho(h) 1988 head of control point in feet

/ welpt1 41.993435 welpt2 41.544031 welpt3 43.744708 welpt4 44.258228

qo(i) 1988 withdrawal rate of public well in cfd

/ mw1	0
mw2	86425
mw3	1995
mw4	43359
mw5	10895

parameter servm(j,i) service mapping demand area j to public well i

/ alt. mw1*mw9 = 1
apo. mw10*mw14 = 1
cas. mw15*mw22 = 1
cfu. mw23*mw25 = 1
parameter dm(j) demand of public area j in cfd

/ alt 1362200 apo 2827867 cas 846194 cfu 405236

parameter mcap(i) capacity of public well i in cfd

/ mw1	600000
mw2	200000
mw3	200000
mw4	500000

parameter serva(k,m) maps ag area k to ag area m

```
/ c1.aw1*aw6 = 1
c2.aw7*aw15 = 1
c3.aw16*aw19 = 1
```

parameter qao(m) 1988 withdrawal rate of ag well m in cfd

/ aw1	21706
aw2	17120
aw3	19566

parameter acap(k) capacity of ag well in cfd; acap(k) = sum(m,serva(k,m)*qao(m));

parameter da(k) demand of ag area in cfd; da(k) = sum(m,serva(k,m)*qao(m));

parameter qso(l) initial discharge rate of spring(l) cfd

/ sprin1 1.10898E+06 sprin2 2.43490E+06 sprin3 4.82220E+06

parameter cd(l) conductance of spring(l) cfd

/ sprin1 1.300E+05 sprin2 1.300E+06 sprin3 5.400E+06

parameter el(l) elevation of spring(l) ft

/ sprin1 26.0 sprin2 34.0 sprin3 30.0 parameter hso(1) 1988 potentiometric head of spring(1) ft

/ sprin1 34.295 sprin2 35.819

parameter hsno(l) nonoptimized 2010 head of spring(l) ft

/ sprin1 33.984 sprin2 35.628

1

parameter qna(m) 2010 nonoptimized withdrawal rate of ag well m cfd

aw1	21706.
aw2	17120.
aw3	19566.
aw4	27820.
aw5	16203.

parameter qno(i) 2010 nonoptimized withdrawal rate of public well i (cfd)

001/20
0.
0.
403714.

parameter harm(h) potential for vegetative harm

velpt1*welpt3 = 1
welpt6*welpt11 = 1
welpt27 = 1

welpt30*welpt31 = 1

parameter sm sum of public demands; sm=sum(j,dm(j))*0.00000748; parameter sa sum of ag demands; sa=sum(k,da(k))*0.00000748;

parameter hno(h) 2010 nonoptimized head of control point h in ft

welpt1 34.286378 welpt2 37.234242 welpt3 40.117960 welpt4 38.147063 welpt5 38.732193

parameter look(h) maximum head loss at harm areas; look(h) $hrm(h) = 100^{(1 - hno(h)/ho(h));$ 

variables

withdrawal or use rates

qp(i) total pump rate of public well cell i

q1(i,j) pump rate of public well cell i

qa(m) pump rate of agricultural well cell m

qd(j) deficit for j cfd

qd2(j) deficit for j mgd

qa(m) pump rate of agricultural well cell m

#### hydrogeologic

d(h) drawdown at control point h

hd(h) head at control point h

- hs(l) head at spring l
- ps(l) percent of 1988 discharge at spring l

accounting

fdt sum of public deficits

pct percent in deficit

Z total drawdown plus deficits

positive variables qp,q1,ps,qd,qa;

equations

Hydrogeologic equations

draw(h) calculate drawdown at control point h head(h) calculate head at control point h sph(l) calculate head at spring l dis(l) calculate percent of 1988 discharge at spring l spcap(l) lower limit of spring discharge ddp(h) cap percent head loss at low harm area ddp2(h) cap percent head loss at high harm area

#### Appendix B: East-central LP optimization model GAMS file

Municipal Water Management equations

```
capm(i) do not exceed capacity of municipal well i
muntot(i) calc total pumping at mwell i
md(j) satisfy demand at public area j with interconnects
md2(j) convert deficit to mgd
sumf sum of deficits
sumf2 percent deficits
```

* Agricultural Water Management equations

capa(m,k) do not exceed capacity of agricultural well m adem(k) satisfy demand at agricultural area k

ctot sum of drawdowns and deficits ;

```
*
* Hydrogeologic Constraints
```

Hydrogeologic Constraints on the Aquifer

 $\begin{array}{l} head(h) ... hd(h) = E = hno(h) \\ -sum(i,alpha(i,h)^*(qp(i) -qno(i))) \\ -sum(m,beta(m,h)^*(qa(m) -qna(m))); \\ draw(h) ... d(h) = E = ho(h) -hd(h); \\ ddp(h) ... d(h) = L = 0.15^*ho(h); \end{array}$ 

ddp2(h)(harm(h) eq 1) .. d(h) =L= 0.00*ho(h);

Hydrogeologic Constraints on Springs

 $sph(l) ...hs(l) = E=-sum(i,gamma(i,l)*(qp(i) -qno(i))) -sum(m,zeta(m,l)*(qa(m) -qna(m))) \\ +hsno(l); \\ dis(l) ...ps(l) = E= (hs(l) -el(l))/(hso(l) -el(l)); \\ spcap(l) ...hs(l) = G= 0.85*(hso(l) -el(l)) + el(l);$ 

Water Management Constraints for Municipal Need Areas

```
* well
capm(i) .. qp(i) =L= mcap(i);
```

* total well withdrawal rate muntot(i) .. qp(i) =E= sum(j,q1(i,j));

* satisfy demand at public area

 $\begin{array}{l} md(j) .. \ sum(i,q1(i,j)*servm(j,i)) \\ + \ qd(j) = G = \ dm(j) \ ; \\ md2(j) .. \ qd2(j) = E = \ qd(j)*0.00000748; \end{array}$ 

#### Appendix B: East-central LP optimization model GAMS file

```
* sum of public deficits
   sumf ... fdt =E= sum(j,qd(j))*0.00000748;
   sumf2 .. pct =E = fdt/(sm+sa);
     *****
****
   Water Management Constraints for Agricultural Need Areas
           capa(m,k)$serva(k,m) .. qa(m) = L = acap(k);
* note east-central model does not have agricultural deficits
   adem(k) ... sum(m,qa(m)) = G = da(k);
* total costs plus deficits
   \cot ... Z = E = sum(h,d(h)) +
       sum(j,qd(j));
   model mincost /all/;
   option iterlim = 10000;
   option reslim = 10000;
   option optcr = 0.001;
   option lp=mpswrite;
   solve mincost using lp minimizing Z;
   display d.l,qd2.l,qp.l,qa.l,ps.l,fdt.l,pct.l,sa,sm,look;
  FILE F1 /op.efdd0/;
  PUT F1;
  LOOP(H, PUT hd.L(H)@15 /);
  LOOP(H, PUT d.L(H)@15 /);
  FILE F3 /op.w/;
  PUT F3;
  LOOP(I, PUT qp.L(I)@15 / );
  LOOP(m, PUT qa.L(m)@15 / );
  FILE F4 /op.s/;
  PUT F4;
```

LOOP(l, PUT pS.L(l)@15 / ); LOOP(l, PUT HS.L(l)@15 / );

LOOP(j, PUT qd2.L(j)@15 / );

FILE F5 /op.def/;

PUT F5;

### VOLUSIA LP OPTIMIZATION MODEL GAMS FILE

Stitle minimize environmental impact, deficits and meet 2010 demands

* volusia regional model

service areas are wellfields

*

' Units

* all flows, demands, and use rates are in cfd

* all final costs are in dollars per year

* heads and drawdowns are in feet

sets

h all control points / welpt1*welpt177 /
i public well cells / mw1*mw177 /
j public water service areas
 /dwu,hhe,hhw,occ,sme,pow,poe,del,spc,
 nss,nsg,ns4,dbe,dbw,obd,ob4,obh,obr,jkv,
 vft,vlm,vta,deb,dww,dhh,eti,edg,tcu,tti,lhe,
 hdr,nga,ocy,shp,ptb,lbw,fpt,smc,fps,tcf,vgc/
k agricultural areas / c1,c2,c3,c4,f1,f1a,f2,f4,f4a,f3,f5,f6,f7,f8
f9,f10,f11,f12,f13,l1,l2,l3,g1,g2,g3,g4,g5,p1,p2,p3,
 p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,
 p19,p20,p21,n1,n2,n3,t1,t2,t3,t4,t5,v1/
l springs / ponce,blue,gemini/
m agricultural wells / aw1*aw362 /

table alpha(i,h) well influence coefficients for wells at control po welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

 mw1
 .874E-05
 .587E-05
 .505E-05
 .140E-05
 .365E-05
 .623E-06
 .178E-05
 .662E-05
 .140E-08
 .896E-09

 mw2
 .624E-05
 .799E-05
 .698E-05
 .208E-05
 .239E-05
 .655E-06
 .269E-05
 .476E-05
 .173E-08
 .116E-08

 mw3
 .563E-05
 .727E-05
 .763E-05
 .233E-05
 .788E-06
 .303E-05
 .404E-05
 .108E-08

table beta(m,h) agricultural well influence coefficients for contro welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

aw1 .818E-07 .756E-07 .768E-07 .396E-07 .558E-07 .483E-07 .384E-07 .694E-07 .796E-07 .606E-07 aw2 .880E-07 .818E-07 .830E-07 .421E-07 .607E-07 .520E-07 .421E-07 .750E-07 .794E-07 .604E-07 aw3 .327E-06 .296E-06 .301E-06 .150E-06 .233E-06 .213E-06 .146E-06 .274E-06 .343E-06 .263E-06

table gamma(i,l) influence coeffs of public wells on springs heads ponce blue gemini

 mw1
 .440E-07
 .441E-07
 .981E-07

 mw2
 .480E-07
 .466E-07
 .951E-07

 mw3
 .540E-07
 .443E-07
 .916E-07

 mw4
 .655E-07
 .431E-07
 .835E-07

table zeta(m,l) ag well influence coefficients for spring heads ponce blue gemini

aw1	.332E-06	.287E-08	.867E-08
aw2	.314E-06	.302E-08	.929E-08
aw3	.132E-06	.940E-08	.291E-07
aw4	.108E-06	.788E-08	.273E-07

Parameter

ho(h) 1988 surficial head of control point (ft)

/

welpt1 65.620004 welpt2 67.556763 welpt3 68.941133

high(h) control points with high potential for vegetative harm

welpt19 1 welpt176 1

med(h) control points with moderate potential for vegetative harm /

welpt20 1 welpt21 1 welpt22 1 welpt23 1 welpt24 1

qmo(i) 1988 withdrawal rate of utility well (cfd)

/ mw1 72335. mw2 72335. mw3 144670.

parameter servm(j,i) service mapping public i to demand area j

/ dwu. mw1*mw8 = 1
hhe . mw9*mw13 = 1
hhw . mw14*mw17 = 1
occ . mw18 = 1
parameter dm(j) demand of area j (cfd)

/ dwu 925020 hhe 18474 hhw 184496 occ 51785 sme 28872

parameter serva(k,m) map ag well to ag area

/ c1.aw1*aw2 = 1 c2.aw3*aw8 = 1

parameter qna(m) 2010 nonoptimized withdrawal rate of ag well m (cfd)

aw1 6158. aw2 6158. aw3 1573.

> parameter acap(k) capacity of ag well (cfd); acap(k) = sum(m,serva(k,m)*qna(m));

parameter da(k) demand of ag area (cfd); da(k) = sum(m,serva(k,m)*qna(m));

parameter qno(i) 2010 nonoptimized withdrawal rate of public well i (cfd)

mw1 0. mw2 102780. mw3 205560. mw4 102780. parameter mcap(i) capacity of public well (cfd) / mw1 300000. mw2 302780.

mw3305560.mw4302780.mw5302780.

parameter hno(h) 2010 nonoptimized surficial head value of control point h (cfd)

welpt1 63.467080 welpt2 65.509538 welpt3 67.034249 welpt4 72.771046 parameter sm sum of public demands; sm=sum(j,dm(j))*0.00000748; parameter sa sum of ag demands; sa=sum(k,da(k))*0.00000748;

parameter hso(1) 1988 spring head /ponce 4.890709 blue 2.42100 gemini 12.01101 /;

parameter hsno(l) 2010 nonopt spring head /ponce 4.815960 blue 2.26777859 gemini 10.365401 /;

parameter el(l) spring elevation
/ponce 1.0
blue 1.0
gemini 1.0 /;
dno(h) = ho(h)-hno(h);
parameter dnp(h) nonoptimized percent head loss;
dnp(h) = 100.*dno(h)/ho(h);

parameter look(h) maximum head loss at harm areas; look(h)\$(med(h) or high(h)) = 100*(1 - hno(h)/ho(h)); variables

withdrawal or use rates qd(j) deficit of public area j cfd qd2(j) deficit of public area j mgd qad(k) deficit of ag area k cfd qad2(k) deficit of ag area k mgd q1(i,j) use rate of public supply well cell i for need area j qp(i) total pump rate of public well i qa(m) pump rate of agricultural well cell m

hydrogeologic

hd(h) drawdown at control point h d(h) drawdown at control point h hs(l) head at spring l sd(l) discharge at spring l

- ds(l) percent of 1988 discharge at spring l
- accounting
  - si sum of interconnects
  - sf sum of public deficits
  - td total deficit
  - sfa sum of ag deficits
  - pct percent public in deficit pct2 percent ag in deficit
  - pct3 percent total in deficit
  - Z total drawdown plus deficits

positive variables qp, qa,qd,qad, q1;

equations

*

Hydrogeologic equations

draw(h) calculate drawdown at control point h head(h) calculate drawdown at control point h spring(l) calculate spring head at spring l sl(l) calculate discharge at spring l ddph(h) cap head loss in high harm area ddpm(h) cap head loss in moderate harm area ddpl(h) cap head loss in low harm area

* Municpal Water Management equations

capm(i) do not exceed capacity of municpal well i muntot(i,q) calc total pumping at public i mdm(j) satisfy demand at municpal area j md2(j) satisfy demand at municpal area j sumf sum of fake public sources in mgd sumt sum of all deficits mgd

Agricultural Water Management equations

capa(m,k) do not exceed capacity of agricultural well m adem(k) satisfy demand at agricultural area k md3(k) satisfy demand at municpal area j sumfa pct of ag deficit sumf2 pct of public deficit sumf3 pct of ag inf deficit sumf4 pct of total deficit

* Average drawdown

ctot calculate total drawdown plus deficits;

* Hydrogeologic Constraints

Hydrogeologic Constraints on the Aquifer

 $\begin{aligned} head(h) & ... hd(h) = E = hno(h) -sum(i,alpha(i,h)*(qp(i) -qno(i))) -sum(m,beta(m,h)*(qa(m) -qna(m))); \\ spring(l) & ... hs(l) = E = hsno(l) -sum(i,gamma(i,l)*(qp(i) -qno(i))) -sum(m,zeta(m,l)*(qa(m) -qna(m))); \\ draw(h) & ... d(h) = E = ho(h) -hd(h); \end{aligned}$ 

 $sl(l) .. hs(l) = G = 0.85^{(hso(l)-el(l))} + el(l);$ 

ddpm(h)\$(med(h) eq 1) .. d(h) =L= 0.02*ho(h);

ddph(h)\$(high(h) eq 1) .. d(h) =L= 0.02*ho(h);

ddpl(h)\$(med(h) eq 0 and high(h) eq 0) .. d(h) =L= 0.15*ho(h);

*************************

* Water Management Constraints for Municipal Need Areas

*********************

muntot(i,q) ... qp(i) = E = sum(j,q1(i,j));

capm(i)\$(ul(i) eq 0) .. qp(i) =L= mcap(i);

mdm(j) ... sum(i,q1(i,j)\$servm(j,i)) + qd(j) = G = dm(j);

************************

Water Management Constraints for Agricultural Need Areas

****************

capa(m,k)\$(serva(k,m) eq 1) .. qa(m) =L= acap(k);

adem(k) ... sum(m,qa(m)) + qad(k) = G = da(k);

*******

* Accounting

***********************

md3(k) .. qad2(k) = E = qad(k)*0.00000748; md2(j) .. qd2(j) = E = qd(j)*0.00000748;sumf .. sf = E = sum(j,qd(j)*0.00000748); sumfa .. sfa = E = sum(k,qad(k)*0.00000748); sumfa .. sfa = E = sif (sin); sumf2 .. pct = E = sf/(sin); sumf3 .. pct2 = E = sfa/(sin); sumf4 .. pct3 = E = (sf+sfa)/(sin+sin);

Objective function

ctot .. Z = E = sum(h,d(h)) + sum(j,qd(j)) + sum(k,qad(k))

model mincost /all/; option iterlim = 1000000; option reslim = 1000000; option optcr = 0.0001; option lp=mpswrite; solve mincost using lp minimizing Z; display qd2.l,qad2.l,qp.l, q1.l, qa.l, d.l, dno, dnp,sm,sa,sfa.l,sf.l,td.l,pct.l, pct2.l,pct3.l,look ; FILE F1 /op.vfdd2/;

PUT F1;

#### LOOP(H, PUT d.L(H)@15 /);

FILE F3 /op.w/; PUT F3; LOOP(I, PUT qp.L(I)@15 / ); LOOP(m, PUT qa.L(m)@15 / );

## EAST-CENTRAL MIP DECISION MODEL GAMS FILE

Stitle minimize cost of meeting 2010 demands

- * decision modeling for the east-central Florida region
- * minimize cost of meeting 2010 demands
- * demand areas are wellfields
- Units
- * all flows, demands, spring discharge, and use rates are in cfd
- * all final costs are in dollars per year
- * heads and drawdowns are in feet
- * note that rcw, reclaimed water, and reuse denote the same thing
- * note that this model is for demonstration purposes only
- * many calculations that are performed herein may not be necessary
- * in future models, including intermediate calculations for distances
- service maps, etc.

sets

h all control points / welpt1*welpt157 /

i public well cells / mw1*mw332 /

j public demand areas / alt, apo, cas, cfu, chu, cle, coc, con, del, ecu, eus, fdc, kis, lhe, lhy, lmy, lon, mai, oco, ocy, oro, ou1, ou2,ou3,ou4,ou5,ou6,ou7,ou8,ou9,o10,o11,o12,o13, os1,os2,os3,os4,oe1,oe2,oe3,oe4,oe5,ow1,ow2,ow3,ow4,ow5,ow6, ovi, pam, poi, rav, rcu, saf, san, scl, sem, sss, ssu, swa, swf, ucf, vol, wek, wga, wgc, wpk, wsp, zwf, zwu, zsu, mtd, tav, fpl, in1, in2, in3, in4, in6, hoh, eat, mon, mhn, cfr, min, oak, gro, in5, hho, osc, af1, dav, hai, jkv /

the following set is preliminary, areas were loosely defined by visual inspection, County, and type

k agricultural areas / c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13, c14,c15,c16,c17,c18,c19,c20,c21,c22,c23,c24,c25,c26,c27,f1,f2,f3 f4,f5,f6,f7,11,12,13,14,15,16,17,18,19,110,112,113,114,115,116, o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,o11,s1,s2,s3,s4,s5,s6,s7,v1,v2 /

1 springs / sprin1*sprin17 /

m agricultural wells / aw1*aw364 /

the following set is very preliminary. The actual sites and
 quantities of available reclaimed water are not known

n reclaimed water sites /bti,bco,bro,bcn,bps,alt, alu, ams, apo, cle, eus, fmh, fdc, gro, gwl, kis, lan, lep, lon, mtd, oak,occ,oce, ocn, ocs, hoj, or1, orf, or2, pvm, pam, rsm, rcu, saf, scl, slu, whc, sen, chu, sup, str, tvc, tvw, tin, tht, uma, lih, vod, vof, wg1, wg2, wse, wsw, zsc,cmp,mfl,omw,oco,vls woo,cas,vsr,vft /

p surface water sources /gri, saf, tit, coc/

alias(j,q)

table alpha(i,h) public well influence coefficients for heads (ft squared per day) welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

mw1	.542E-05	.578E-06	.442E-06	.105E-05	.955E-06	.172E-06	.110E-06	.132E-06	.148E-05	.102E-05
mw2	.112E-05	.893E-06	.636E-06	.119E-05	.103E-05	.223E-06	.139E-06	.167E-06	.634E-06	.571E-06
mw3	.216E-05	.658E-06	.506E-06	.148E-05	.132E-05	.189E-06	.119E-06	.145E-06	.120E-05	.105E-05

table gamma(i,l) public well influence coefficients for springs (ft squared per day) sprin1 sprin2 sprin3 sprin4 sprin5 sprin6 sprin7 sprin8 sprin9 sprin10

mw1 .215E-07 .873E-08 .100E-07 .167E-06 .294E-06 .533E-06 .554E-06 .565E-06 .860E-08 .518E-09 mw2 .231E-07 .977E-08 .123E-07 .214E-06 .375E-06 .683E-06 .745E-06 .803E-06 .893E-08 .412E-09

table beta(m,h) ag well influence coefficients for heads (ft squared per day) welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

 aw1
 .276E-08
 .355E-08
 .473E-08
 .395E-08
 .671E-08
 .789E-08
 .907E-08
 .237E-08
 .276E-08

 aw2
 .294E-08
 .401E-08
 .508E-08
 .401E-08
 .428E-08
 .669E-08
 .749E-08
 .910E-08
 .268E-08
 .321E-08

 aw3
 .323E-08
 .420E-08
 .549E-08
 .452E-08
 .711E-08
 .775E-08
 .937E-08
 .291E-08
 .355E-08

table zeta(m,l) ag well influence coefficients for springs (ft squared per day) sprin1 sprin2 sprin3 sprin4 sprin5 sprin6 sprin7 sprin8 sprin9 sprin10

aw1	.118E-08	.395E-09	.395E-09	.237E-08	.316E-08	.237E-08	.237E-08	.237E-08	.789E-09	.247E-10
aw2	.107E-08	.535E-09	.401E-09	.241E-08	.321E-08	.241E-08	.241E-08	.241E-08	.535E-09	.167E-10
aw3	.969E-09	.323E-09	.485E-09	.258E-08	.323E-08	.258E-08	.258E-08	.258E-08	.646E-09	.20

table dist(j,q) distance from public area j to area q in miles

alt apo cas cfu cle coc del eus kis lhe lhy lmy lon mai oel oel oel oel oel oel oel oelalt apo cas cfu cle coc del eus kis lhe lhy lmy lon mai oel oel oel oel oel oel oelalt 0.0 8.1 4.2 24.2 23.1 23.8 20.6 19.6 24.2 24.8 18.8 7.9 3.7 2.6 10.4 13.0 11.9 18.6 13.6 10.0apo 8.1 0.0 12.3 26.8 16.5 30.9 24.4 13.0 26.6 27.5 26.4 12.0 10.3 9.6 18.2 18.9 19.3 24.3 20.5 7.0cas 4.2 12.3 0.0 23.8 26.9 20.5 19.7 23.4 23.9 24.3 15.1 8.5 4.2 3.8 6.7 11.2 8.7 16.4 10.8 13.4cfu 24.2 26.8 23.8 0.0 27.4 18.8 43.4 39.4 0.6 48.1 34.1 31.8 27.2 21.7 20.6 13.5 18.5 11.4 16.2 20.3

table dists(i,p) distance from municipal well i to surface source p in thousand feet

gri saf tit coc mw1 168. 55. 153. 177. mw2 162. 60. 159. 182. mw3 168. 60. 153. 175. mw4 152. 65. 169. 190.

parameters

ho(h) 1988 head of control point in feet

welpt1 41.993435 welpt2 41.544031 welpt3 43.744708 welpt4 44.258228

qo(i) 1988 withdrawal rate of public well in cfd

/ mw1	0
mw2	86425
mw3	1995
mw4	43359

parameter servm(j,i) service mapping demand area j to public well i

```
/ alt. mw1*mw9 = 1
apo. mw10*mw14 = 1
cas. mw15*mw22 = 1
cfu. mw23*mw25 = 1
```

parameter dm(j) demand of public area j in cfd

/ alt 1362200 apo 2827867 cas 846194 cfu 405236

parameter nmarea(j) number of wells in public demand area

/ alt 9 apo 5 cas 8 cfu 3 chu 2 cle 2 coc 27 con 4

parameter scap(p) cfd capacity of alternate surface water source p /gri 4264679 saf 41978346 tit 22192374 coc 16978503 /;

parameter at3(q) potential receiver for area transfer * these areas came up with deficits in the deficit model *

con 3 del 2 lmy 2 mai 1

1

parameter exist(j,q) interconnects that already exist /ou5.ou7 = 1 ou7.ou5 = 1

```
ou7.ou2 = 1

ou2.ou7 = 1

ou2.ou4 = 1

ou2.ou5 = 1

ou5.ou2 = 1
```

Parameter distsp(p,j) service mapping surface source p to municipal area j; distsp(p,j)\$(nmarea(j) gt 0) = sum(i,dists(i,p)*servm(j,i))/nmarea(j); parameter distspm(p,j) distance in miles; distspm(p,j) = distsp(p,j)/5.28; parameter servs(p,j) service mapping surface source p to municipal area j; servs(p,j)\$(distspm(p,j) lt 20 and dm(j) gt 668450) = 1; parameter at(j,q) denotes potential area to area transfer; at(j,q)\$((ord(j) ne ord(q) and dm(j) gt 668450 and dmm(q) gt 668450 and dist(j,q) lt 15 and at3(q) gt 1) or (exist(j,q) eq 1) ) = 1;

```
parameter atsum sum of all possible interconnects;
atsum= sum((j,q),at(j,q)$(exist(j,q) eq 0));
parameter stsum sum of all possible surface water transports;
stsum= sum((p,j),servs(p,j));
```

parameter mcap(i) capacity of public well i in cfd

```
/
mw1 600000
mw2 385027
```

mw3 200000

parameter serva(k,m) maps ag area k to ag area m

```
/ c1.aw1*aw6 = 1
c2.aw7*aw15 = 1
c3.aw16*aw19 = 1
```

parameter qao(m) 1988 withdrawal rate of ag well m in cfd

/ aw1	21706
aw2	17120
aw3	19566

parameter acap(k) capacity of ag well in cfd; acap(k) = sum(m,serva(k,m)*qao(m));

parameter da(k) demand of ag area in cfd; da(k) = sum(m,serva(k,m)*qao(m));

parameter rcap(n) capacity (cfd) of reclaimed water site

```
* brevard county
bti 240642
bco 223262
```

parameter servra(n,k) service mapping rcw site n to ag area k

```
tvc.c12 = 1
tvc.c13 = 1
tvc.c14 = 1
tvw.c22 = 1
tvw.c24 = 1
```

parameter servrm(n,j) service mapping rcw site n to public area j

/ alt.alt = 1 apo. apo = 1 cle. cle = 1 bti.coc = 1

parameter nagarea(k) number of ag wells in the agarea

/ c1 6 c2 9 c3 4

parameter qso(l) initial discharge rate of spring(l) cfd

```
/ sprin1 1.10898E+06
sprin2 2.43490E+06
sprin3 4.82220E+06
sprin4 6.11496E+06
```

parameter hso(l) 1988 potentiometric head of spring(l) ft

/ sprin1 34.295 sprin2 35.819 sprin3 30.860 sprin4 29.806

parameter cd(l) conductance of spring(l) cfd / sprin1 1.300E+05 sprin2 1.300E+06 sprin3 5.400E+06 sprin4 3.600E+05

parameter el(l) elevation of spring(l) ft

/ sprin1 26.0 sprin2 34.0 sprin3 30.0 sprin4 13.0

parameter hsno(l) nonoptimized 2010 head of spring(l) ft / sprin1 33.984

sprin2 35.628 sprin3 30.727 sprin4 28.251 sprin5 33.534 sprin6 32.898

parameter ul(i) mgd capacities of twenty six upper layer proposed public wells

/ mw1 = 5 mw62 = 2 mw64 = 2 mw65 = 2 mw76 = 2 mw70 = 2 mw75 = 2 mw76 = 4

#### parameter ftp(i) fixed cost of treatement plants dollardaypercfperyear

/ mw1 = 1.857 mw11 = 1.857 mw13 = 1.857 mw62 = 1.415 mw64 = 1.415

parameter ful(i) fixed cost of twenty six upper layer proposed public wells dollardaypercfperyear

/ mw1 = 0.02234
mw62 = 0.05585
mw64 = 0.05585
mw65 = 0.05585
mw66 = 0.05585
mw70 = 0.05585

parameter ll(i) mgd capacities of five lower layer proposed public wells

/ mw11 = 5 mw13 = 7 mw131 = 11

parameter fll(i) fixed cost of five lower layer proposed public wells dollardaypercfperyear

/ mw11 = 0.05368 mw13 = 0.03834 mw131 = 0.0244

parameter qna(m) 2010 nonoptimized withdrawal rate of ag well m cfd

aw1	21706.
aw2	17120.
aw3	19566.
aw4	27820.

parameter qno(i) 2010 nonoptimized withdrawal rate of public well i (cfd)

′ mw1	554772.
mw2	0.
mw3	0.
mw4	403714.

parameter qai(m) initial guess for ag well withdrawal cfd

aw1	125497	
aw2	0	
aw3	0	
aw4	0	

parameter inter(j,q) total cost of interconnect in dollars; inter(j,q)\$(dist(j,q) le 1.5) =41115;

```
inter(j,q)(dist(j,q) gt 1.5 and dist(j,q) le 3.5) = 96576;
inter(j,q)(dist(j,q) gt 3.5 and dist(j,q) le 5.5) = 298628;
inter(j,q)(dist(j,q) gt 5.5 and dist(j,q) le 6.5) = 384624;
parameter slope(j,q) total cost of interconnect in dollars;
slope(j,q)(dist(j,q) le 1.5) = 0.0137;
```

slope(j,q)\$(dist(j,q) gt 1.5 and dist(j,q) le 3.5) =0.0322; slope(j,q)\$(dist(j,q) gt 3.5 and dist(j,q) le 5.5) =0.0996; slope(j,q)\$(dist(j,q) gt 5.5 and dist(j,q) le 6.5) =0.1337;

parameter inters(p,j) total cost of interconnect in dollars; inters(p,j)\$(distspm(p,j) le 1.5) =41115;

```
\frac{1}{1}
```

inters(p,j)\$(distspm(p,j) gt 1.5 and distspm(p,j) le 3.5) =96576; inters(p,j)\$(distspm(p,j) gt 3.5 and distspm(p,j) le 5.5) =298628; inters(p,j)\$(distspm(p,j) gt 5.5 and distspm(p,j) le 6.5) =384624; inters(p,j)\$(distspm(p,j) gt 6.5 and distspm(p,j) le 7.5) =451782; parameter slopes(p,j) total cost of interconnect in dollars; slopes(p,j)\$(distspm(p,j) le 1.5) = 0.0137; slopes(p,j)\$(distspm(p,j) gt 1.5 and distspm(p,j) le 3.5) =0.0322;

slopes(p,j)\$(distspm(p,j) gt 3.5 and distspm(p,j) le 5.5) =0.0996; slopes(p,j)\$(distspm(p,j) gt 5.5 and distspm(p,j) le 6.5) =0.1337;

parameter sm sum of public demands; sm = sum(j,dm(j)*0.00000748); parameter sa sum of ag demands; sa = sum(k,da(k)*0.00000748);

prameter fqs(p) annual fixed cost per flow rate of surface source in dollars

/gri 2.344 * saf 4.142 * saf 3.3606 saf 3.1122 tit 3.939 coc 3.939 /; parameter uqs(p) annual unit cost per flow rate of surface source in dollars /gri 0.344 saf 0.53 tit 0.53 tit 0.53 coc 0.53 /;

*nonoptimized costs for comparison

parameter cno nonoptimized costs;

parameter hno(h) 2010 nonoptimized head of control point h in ft

welpt1 34.286378

welpt2 37.234242 welpt3 40.117960

parameter harm(h) potential for vegetative harm

welpt1 1 welpt21 welpt31 welpt41 welpt5 1 welpt61 welpt71

variables

binaries

y2(j,q) binary for an interconnect public area j supplies area q ysp(p,j) binary for new connection (surface source p to public area j)

withdrawal or use rates

qp(i) total pump rate of public well cell i

q1(i,j) pump rate of public well cell i

q2(j,q) area to area transfer from area j to area q

q22(j,q) new interconnect transfer (mgd)

q23(j,q) existing transfer (mgd)

qa(m) pump rate of agricultural well cell m qr(n) total reuse rate from rcw site n

qr2(n) total reuse rate mgd from rcw site n to ag area

qa(m) pump rate of agricultural well cell m

qra(n,k) reuse rate cfd from rcw site n to ag area k

qra2(n,k) reuse rate mgd from rcw site n to ag area k

qrp(n,j) reuse rate from rcw site n to public area j

qr(n) total reuse rate from rcw site n

qs(p) use rate of surface water source p cfd

qs2(p) use rate of surface water source p mgd

qqs(p,j) use rate of surface source p to public area j qqs2(p,j) use rate of surface source p to public area j

hydrogeologic

d(h) drawdown at control point h

hd(h) head at control point h

hs(l) head at spring l

ps(l) percent of 1988 discharge at spring l

accounting

sm sum of public demands

fdt sum of public deficits

fnt sum of interconnects

sa sum of ag demands

rt total reuse rate from rcw

rtp total reuse use for public areas

rtw(j) total use of wells per demand area

rti(j) total use of interconnects area j out

rtq(q) total use of interconnects at area q in

* costs

fp1(j) fixed cost of new surface source

fp2(j) fixed cost of new surface source connections to public areas

fw(j) fixed cost of well

fic(q) fixed cost of new public interconnect

ds(j,q) length of new public interconnect

- fra(k) fixed cost of treatment and line for reclaimed to ag
- frp(j) fixed cost of treatment and line for reclaimed to public
- up(j) unit cost of public supply area
- ui(q) unit cost of public supply area transport
- ua(k) unit cost of ag area
- Z total costs

positive variables qp,q1,q2,qa,qr,ps,qqs,qs,qra,qrp;

qa.l(m) = qai(m); binary variables Y2,YSP;

#### equations

Hydrogeologic equations

draw(h) calculate drawdown at control point h head(h) calculate head at control point h sph(l) calculate head at spring l dis(l) calculate percent of 1988 discharge at spring l spcap(l) lower limit of spring discharge ddp(h) cap percent head loss ddp2(h) cap percent head loss high harm area

*

Municipal Water Management equations

*

nsmax(p) set max flow rate for large new surface source nsp(p,j) turn on new surface source connection to public if utilized nsp2(p,j) convert surface source use to MGD nsp3(j) convert surface source use to MGD ssum(p) sum of surface sources

ss(p) convert surface source use to MGD

capm(i) do not exceed capacity of municipal well i

muntot(i) calc total pumping at mwell i

md(j) satisfy demand at public area j with interconnects

n1a flow in one direction allowed

n10 Only 20 interconnects may be chosen

n2a convert flow rate to MGD

n2b convert flow rate to MGD

mc1(j,q) turn on proposed connect from municipal well to other municipal wsa

mcla(j,q) turn on proposed connect from municipal well to other municipal wsa mc2(j,q) set minimum flow rate for new public interconnect

mc3(q) sum of flows in do not exceed demands

mcs(q) sum of nows in do not exceed dema

rtwe(j) total use of wells per demand area rtis(j) total use of interconnects area j out

rtis2(j) total use of interconnects at area q in

sumin sum of interconnects

Agricultural Water Management equations

capa(m,k) do not exceed capacity of agricultural well m adem(k) satisfy demand at agricultural area k

* Reclaimed Water Management equations

rtm total reclaimed use for public areas

cr1(n) convert reclaimed to mgd

cr2(n,k) convert reclaimed to ag to mgd

newcrm(j,n) turn on proposed connect from mun area j to rcw site n rtot total reclaimed use

capr(n) do not exceed capacity of reclaimed water site n

rlim(j) limit fraction of total public demand for reclaimed use

newcr(k,n) turn on proposed connect from ag area k to rcw site n nrcw(n) calculate total reclaimed water use from source n

Costs

#### cost constraint equations

ssp1(j) fixed cost of surface water ssp2(j) fixed cost of surface water suwe(j) new well fixed cost snws(q) new public to public interconnect fixed cost dst(j,q) total distance of public interconnect fixed cost sconrag(k) fixed interconnect cost for reclaimed to ag sconrm(j) fixed interconnect cost for reclaimed to public upun(j) unit costs for public supply utility area j ut(q) unit costs for public transport to area q uag(k) unit costs for ag area k

ctot sum of all costs;

***	******************	*****
*	Hydrogeologic Constraints	
***	*********	******

- * Hydrogeologic Constraints on the Aquifer head(h) .. hd(h) =E=hno(h) -sum(i,alpha(i,h)*(qp(i) -qno(i))) -sum(m,beta(m,h)*(qa(m)\$(ord(m) le 145) + qai(m)\$(ord(m) gt 145) -qna(m))); draw(h) .. d(h) =E= ho(h) -hd(h); ddp(h)\$(harm(h) ne 1) .. d(h) =L= 0.15*ho(h) ; ddp2(h)\$(harm(h) eq 1) .. d(h) =L= 0.00*ho(h) ;
- * Hydrogeologic Constraints on Springs sph(l) .. hs(l) =E=-sum(i,gamma(i,l)*(qp(i) -qno(i))) -sum(m,zeta(m,l)*(qa(m)\$(ord(m) le 145) +qai(m)\$(ord(m) gt 145) -qna(m))) +hsno(l); dis(l) .. ps(l) =E= (hs(l) -el(l))/(hso(l) -el(l)); spcap(l) .. hs(l) =G= 0.85*(hso(l) -el(l)) + el(l);

* Water Management Constraints for Public demand Areas

* surface water source ( 20 MGD)
nsmax(p) .. qs(p) =L= scap(p);

nsp(p,j)(servs(p,j) eq 1) .. qqs(p,j) =L= dm(j)*ysp(p,j); nsp3(j) .. sum(p,qqs(p,j)\$servs(p,j)) =L= dm(j);

* well capm(i) .. qp(i) =L= mcap(i);

* total well withdrawal rate muntot(i) .. qp(i) =E= sum(j,q1(i,j));

* satisfy demand at public area

#### Appendix B: East-central MIP decision model GAMS file

- $\begin{array}{l} md(j) .. sum(i,q1(i,j)*servm(j,i)) + sum(q,q2(q,j)$at(q,j)) \\ + sum(p,servs(p,j)*qqs(p,j)) = G= dm(j) + sum(q,q2(j,q)$at(j,q)); \\ \end{array}$
- * binary for public interconnect mc1(j,q)\$(at(j,q) eq 1 and exist(j,q) eq 0) .. q2(j,q)\$at(j,q) =L= dm(q)*Y2(j,q)\$at(j,q); mc1a(j,q)\$(at(j,q) and exist(j,q) eq 1) .. q2(j,q)\$at(j,q) =L= 668450*Y2(j,q)\$at(j,q);
- * minimum flow rate for new public interconnect mc2(j,q)\$(at(j,q) = 1 and exist(j,q) eq 0) .. 534760*Y2(j,q)\$at(j,q) =L= q2(j,q)\$at(j,q);
- * sum of flows in do not exceed demand mc3(q) .. sum(j,q2(j,q)\$at(j,q)) =L= dmm(q);
- * no more than 20 interconnects
   n10 .. sum((j,q),Y2(j,q)) =L= 20;
- * one directional flow public interconnect n1a(j,q)\$(at(j,q) eq 1 ) .. Y2(j,q)\$at(j,q) + Y2(q,j)\$at(q,j) =L= 1;
- * capacity limit public use of reclaimed water newcrm(j,n)\$servrm(n,j) .. qrp(n,j) =L=rcap(n);

**************************

- * Water Management Constraints for Agricultural Need Areas
- * capacity limit on wells capa(m,k)\$(serva(k,m) and ord(m) le 145) ... qa(m) =L= acap(k);
- * satisfy ag demands adem(k) .. sum(m,(qa(m)\$(serva(k,m) eq 1 and ord(m) le 145) +qai(m)\$(serva(k,m) eq 1 and ord(m) gt 145))) + sum(n,qra(n,k)\$servra(n,k)) =G= da(k);
- * capacity limit for ag use of reclaimed water

newcr(k,n)\$servra(n,k) .. qra(n,k) = L = rcap(n);

*************************

- * Water Management Constraints for Reclaimed Water Sources
- * total reclaimed water use at each reclaimed water site nrcw(n) .. sum(k,qra(n,k)\$servra(n,k)) +sum(j,qrp(n,j)\$servrm(n,j)) =E= qr(n);
- * do not exceed capacity of reclaimed water site capr(n) .. qr(n) =L= rcap(n);
- * total reclaimed water use from all reclaimed water sites
   rtot .. rt =E= sum(n,qr(n));
- * do not satisfy more than 0.25 of public area demand with reclaimed water rlim(j) .. sum(n,qrp(n,j)\$servrm(n,j)) =L= 0.25*dm(j);

*************

* fixed charges for new (alternative) sources

* fixed charge of a new Upper or Lower Floridan high quality well and treatment suwe(j) .. fw(j) =E= sum(i,servm(j,i)*(0.0164 + ful(i) + fll(i) + ftp(i))*qp(i) \$(ul(i) gt 0 or ll(i) gt 0));

* fixed cost of new connections from public wells to other water service areas

#### Appendix B: East-central MIP decision model GAMS file

snws(q).. fic(q) = E = sum(j, (inter(j,q)*Y2(j,q)\$(at(j,q) eq 1 and exist(j,q) eq 0)+ slope(j,q)*q2(j,q) \$(at(j,q) eq 1 and exist(j,q) eq 0)));  $dst(j,q) .. ds(j,q) = E = dist(j,q)^{*}Y2(j,q)$  at(j,q);

- * fixed cost of a surface water source ssp1(j) ... fp1(j) = E = sum(p,qqs(p,j)*fqs(p));
- * fixed cost of lines from surface source to public demand area ssp2(j) ... fp2(j) = E = sum(p, (inters(p,j)*YSP(p,j) + slopes(p,j)*qqs(p,j)));
- * fixed cost of reclaimed water for agricultural sconrag(k) .. fra(k) =E= sum(n,4.9*qra(n,k)\$servra(n,k));
- * fixed cost of public use of reclaimed water and lines sconrm(j) ... frp(j) = E = sum(n, 5.85*qrp(n, j) servrm(n, j));

* unit charges of public area less transport ****

upun(j) ... up(j) = E = sum(i, 0.47042*qp(i)\$servm(j, i))+ sum(n,1.29*qrp(n,j)\$servrm(n,j)) + sum(p,uqs(p)*qqs(p,j)\$servs(p,j))+ sum(p,0.38*qqs(p,j)\$(distspm(p,j) gt 5));

*****

* unit cost of public area transport *******

ut(q) .. ui(q) = E= sum(j, 0.38*q2(j,q)\$(dist(j,q) gt 5 and at(j,q) eq 1));

*******

* unit cost agricultural area

*******

uag(k) ... ua(k) = E = sum(m, 0.1229*(qa(m))(serva(k,m) eq 1 and ord(m) le 145))+qai(m)\$(serva(k,m) eq 1 and ord(m) gt 145))) + sum(n,1.36*gra(n,k)\$servra(n,k));

***********

* total costs

****

ctot .. Z = E = sum(j,up(j)) + sum(j,fw(j)) + sum(j,frp(j)) + sum(j,fp1(j)) + sum(j,fp2(j))+ sum(q,ui(q)) + sum(q,fic(q)) + sum(k,fra(k)) + sum(k,ua(k));

******

* equality constraints for accounting in mgd

**********

* reclaimed water conversions to MGD 

* total public use of reclaimed water

rtm .. rtp =E= sum((n,j),qrp(n,j)\$servrm(n,j)*0.00000748);

* sum of public interconnects

sumin .. fnt =E= sum((j,q),q2(j,q) $at(j,q)^{0.0000748}$ ;

* new interconnects

- n2a(j,q) (at(j,q) eq 1 and exist(j,q) eq 0) .. q22(j,q) = E = q2(j,q)*0.00000748; * existing interconnects
- n2b(j,q) (at(j,q) eq 1 and exist(j,q) eq 1) .. q23(j,q) = E = q2(j,q)*0.00000748;

* total use of interconnects from source

- rtis(j) .. rti(j) = E = sum(q,q2(j,q) at(j,q) 0.00000748);
- * total use of interconnects to destination

```
rtis2(q) .. rtq(q) =E= sum(j,q2(j,q)$at(j,q)*0.00000748) ;
* total public use of wells
rtwe(j) .. rtw(j) =E= sum(i,q1(i,j)$servm(j,i)*0.00000748) ;
* surface water use
nsp2(p,j)$(servs(p,j) eq 1) .. qqs2(p,j) =E= qqs(p,j)*0.00000748;
ssum(p) .. qs(p) =E= sum(j,qqs(p,j)$servs(p,j));
ss(p) .. qs2(p) =E= qs(p)*0.00000748;
model mincost /all/;
```

option iterlim = 10000; option reslim = 54000; option optcr = 0.016;

option lp=mpswrite; solve mincost using mip minimizing z;

display d.l,qp.l,qa.l,up.l,qr2.l, qrp.l,qra2.l, y2.l,ysp.l,q22.l,q23.l,fic.l,qs2.l,qqs2.l,up.l,ui.l, ua.l,Z.l,fp1.l,fp2.l,ds.l,stsum,atsum, servs, rt.l,rtp.l,ps.l,fnt.l,rtw.l,rti.l,rtq.l,cno;

FILE F1 /op.dd/; PUT F1; LOOP(H, PUT hd.L(H)@15 /); LOOP(H, PUT d.L(H)@15 /);

FILE F3 /op.w/; PUT F3; LOOP(I, PUT qp.L(I)@15 / ); LOOP(m, PUT qa.L(m)@15 / );

FILE F4 /op.s/; PUT F4; LOOP(I, PUT pS.L(I)@15 / ); LOOP(I, PUT HS.L(I)@15 / );

### VOLUSIA MIP DECISION MODEL GAMS FILE

\$title minimize cost of meeting 2010 demands

```
*
 volusia regional model
```

- service areas are wellfields

Units

all flows, demands, and use rates are in cfd

all final costs are in dollars per year

heads and drawdowns are in feet

sets

h all control points / welpt1*welpt177 / i public well cells / mw1*mw177 / j public water service areas /dwu,hhe,hhw,occ,sme,pow,poe,del,spc, nss,nsg,ns4,dbe,dbw,obd,ob4,obh,obr,jkv, vft,vlm,vta,deb,dww,dhh,eti,edg,tcu,tti,lhe, hdr,nga,ocy,shp,ptb,lbw,fpt,smc,fps,tcf,vgc/ k agricultural areas / c1,c2,c3,c4,f1,f1a,f2,f4,f4a,f3,f5,f6,f7,f8 f9,f10,f11,f12,f13,l1,l2,l3,g1,g2,g3,g4,g5,p1,p2,p3, p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18, p19,p20,p21,n1,n2,n3,t1,t2,t3,t4,t5,v1/ l springs / ponce, blue, gemini / m agricultural wells / aw1*aw362 / n reclaimed water sites /dbb,dbw,der,deb,del,edg,hhc,irh,sbs,nsb,

obb,obo,por,sss,ssd,tmv,tcs,vdn,vft,vsc,vsr/

p surface water sources /saf,dld/

alias(j,q);

table alpha(i,h) well influence coefficients for wells at control po welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

.874E-05 .587E-05 .505E-05 .140E-05 .365E-05 .623E-06 .178E-05 .662E-05 .140E-08 .896E-09 mw1 .624E-05 .799E-05 .698E-05 .208E-05 .239E-05 .655E-06 .269E-05 .476E-05 .173E-08 .116E-08 mw2 .563E-05 .727E-05 .763E-05 .246E-05 .233E-05 .788E-06 .303E-05 .404E-05 .108E-08 .984E-09 mw3 .304E-05 .400E-05 .441E-05 .373E-05 .131E-05 .758E-06 .351E-05 .221E-05 .199 mw4

table beta(m,h) agricultural well influence coefficients for contro welpt1 welpt2 welpt3 welpt4 welpt5 welpt6 welpt7 welpt8 welpt9 welpt10

.818E-07 .756E-07 .768E-07 .396E-07 .558E-07 .483E-07 .384E-07 .694E-07 .796E-07 .606E-07 aw1 .880E-07 .818E-07 .830E-07 .421E-07 .607E-07 .520E-07 .421E-07 .750E-07 .794E-07 .604E-07 aw2 aw3 .327E-06 .296E-06 .301E-06 .150E-06 .233E-06 .213E-06 .146E-06 .274E-06 .343E-06 .263E-06 .264E-06 .238E-06 .238E-06 .116E-06 .189E-06 .155E-06 .116E-06 .226E-06 .341E-06 .261E-06 aw4

influence coeffs of public wells on springs heads table gamma(i,l) ponce blue gemini

mw1	.440E-07	.441E-07	.981E-07
mw2	.480E-07	.466E-07	.951E-07
mw3	.540E-07	.443E-07	.916E-07
mw4	.655E-07	.431E-07	.835E-07

table zeta(m,l) ag well influence coefficients for spring heads ponce blue gemini

aw1	.332E-06	.287E-08	.867E-08
aw2	.314E-06	.302E-08	.929E-08
aw3	.132E-06	.940E-08	.291E-07
aw4	.108E-06	.788E-08	.273E-07

table dist(j,q) distance in thousand feet between demand areas

del dbw pow dbe dwu edg ocy nsg obh obd nss ns4 hhw ob4 deb poe vft del 0 101 83 120 46 110 19 101 138 145 74 65 124 148 69 115 27 dbw 101 0 9 19 69 92 92 83 46 50 51 46 25 46 60 37 97 pow 83 9 0 37 60 74 83 69 65 69 37 28 44 65 60 37 88 dbe 120 19 37 0 85 92 116 83 35 33 60 60 12 32 88 23 120 dwu 46 69 60 85 0 125 28 113 102 120 74 62 92 111 18 102 37

table dists(p,j) distance in thousand feet between surface source to demand area del dbw pow dbe dwu edg ocy nsg obh obd nss ns4 hhw ob4 deb poe vft saf 37 101 83 120 46 110 19 101 138 145 74 65 124 148 69 115 27 dld 46 69 60 85 10 125 28 113 102 120 74 62 92 111 18 102 37

parameters

;

```
servs(p,j) map surface source to demand area
/saf.del 1
saf.dbw 1
saf.pow 1
saf.dbe 1
saf.dwu 1
yy2(j) demand areas that have interconnect possiblities
/dwu1
hhw 1
 pow 1
 y3(q) demand areas that have interconnect possiblities
/dwu 1
hhw 1
 pow 1
exist(j,q) existing interconnects
/obh.dbe = 1
deb.obh = 1
poe.dbe = 1
dbe.poe = 1
dbw.dbe = 1
dbe.dbw = 1
pow.poe = 1
poe.pow = 1
nsg.edg = 1
edg.nsg = 1/
 parameter at(j,q) potential for area to area transfer;
 at(j,q)$(yy2(j) eq 1 and y3(q) eq 1 and ord(j) ne ord(q) )=1;
parameters
rcap(n) mgd capacity of reclaimed water site
```

dbb 1604000 dbw 1336000 del 534759

1

```
scap(p,j) capacity for surface connection (mgd)
* this is the 2010 demand of the public area
/ saf.del 3328875
 saf.ocy 487968
 saf.edg 622600
servra(n,k) service map for reclaimed water to agricultural area
 obo.f1 = 1
 deb.f1 = 1
 der.f1 = 1
 obb.f1 = 1
servrm(n,j) service map for reclaimed water to public area
 dbb.dbe = 1
 dbb.dbw = 1
 dbb.hhw = 1
 dbw.dbe = 1
 ho(h) 1988 surficial head of control point (ft)
1
welpt1 65.620004
welpt2 67.556763
welpt3 68.941133
high(h) control points with high potential for vegetative harm
/
 welpt191
 welpt176 1
1
 med(h) control points with moderate potential for vegetative harm
/
welpt201
weipt211
welpt221
welpt231
ul(i) new public supply utility well
1
mw33*mw43 = 1
mw62*mw74 = 1
mw77*mw78 = 1
mw85*mw87 = 1
mw120*mw121 = 1
mw123*mw134 = 1
1
    qo(i) 1988 withdrawal rate of utility well (cfd)
           72335.
 / mw1
```

mw2 72335. mw3 144670. mw4 72335.

parameter servm(j,i) service mapping public i to demand area j

/ dwu. mw1*mw8 = 1

```
hhe . mw9*mw13 = 1
  hhw.mw14*mw17 = 1
  occ.mw18 = 1
  parameter dm(j) demand of area j (cfd)
  / dwu 925020
   hhe 18474
   hhw 184496
parameter tp(i) fixed charge for treatment plant dollar day per cf per year
mw33*mw43 = 1.857
mw62*mw74 = 1.639
mw77*mw78 = 3.282
mw85*mw87 = 3.282
mw120*mw121 = 3.282
mw123*mw134 = 3.282
1;
    parameter serva(k,m) map ag well to ag area
    / cl.aw1*aw2 = 1
     c2.aw3*aw8 = 1
     c3.aw9*aw11 = 1
     c4.aw12*aw13 = 1
     f1.aw14*aw21 = 1
parameter qna(m) 2010 nonoptimized withdrawal rate of ag well m (cfd)
     1
          6158.
aw1
aw2
          6158.
aw3
          1573.
     parameter acap(k) capacity of ag well (cfd);
     acap(k) = sum(m,serva(k,m)*qna(m));
     parameter da(k) demand of ag area (cfd);
     da(k) = sum(m,serva(k,m)*qna(m));
    parameter qno(i) 2010 nonoptimized withdrawal rate of public well i (cfd)
    1
mw1
            0.
 mw2
         102780.
mw3
         205560.
parameter qai(m) initial guess for ag well withdrawal (cfd)
/aw1 12316
aw2 0
aw3 9973
aw4 0
parameter mcap(i) capacity of public well (cfd)
    /
 mw1
          300000.
mw2
          302780.
         305560.
mw3
  parameter hno(h) 2010 nonoptimized surficial head value of control point h (cfd)
welpt1 63.467080
welpt2 65.509538
welpt3 67.034249
```

parameter distm(j,q) distance in miles between public demand areas; distm(j,q)=dist(j,q)/5.28; parameter distspm(p,j) distance in miles between public demand areas; distspm(p,j)=dists(p,j)/5.28; parameter sm sum of public demands; sm = sum(j,dm(j)*0.00000748); parameter sa sum of ag demands; sa = sum(k,da(k)*0.00000748);

parameter inter(j,q) total cost of interconnect in dollars; inter(j,q)\$(distm(j,q) le 1.5) =20140; inter(j,q)\$(distm(j,q) gt 1.5 and distm(j,q) le 3.5) =47308; parameter slope(j,q) total cost of interconnect in dollars; slope(j,q)\$(distm(j,q) le 1.5) = 0.0328; slope(j,q)\$(distm(j,q) gt 1.5 and distm(j,q) le 3.5) =0.0769; slope(j,q)\$(distm(j,q) gt 3.5 and distm(j,q) le 5.5) =0.2379; slope(j,q)\$(distm(j,q) gt 5.5 and distm(j,q) le 6.5) =0.6013; parameter inters(p,j) total cost of interconnect in dollars; inters(p,j)\$(distspm(p,j) le 1.5) =20140; inters(p,j) (distspm(p,j) gt 1.5 and distspm(p,j) le 3.5) =47308; inters(p,j)\$(distspm(p,j) gt 3.5 and distspm(p,j) le 5.5) =146285; parameter slopes(p,j) total cost of interconnect in dollars; slopes(p,j)\$(distspm(p,j) le 1.5) = 0.0328; slopes(p,j)\$(distspm(p,j) gt 1.5 and distspm(p,j) le 3.5) =0.0769; slopes(p,j)\$(distspm(p,j) gt 3.5 and distspm(p,j) le 5.5) =0.2379; parameter hso(l) 1988 spring head /ponce 4.890709 blue 2.42100

gemini 12.01101 /;

parameter hsno(l) 2010 nonopt spring head /ponce 4.815960 blue 2.26777859 gemini 10.365401 /;

parameter el(l) spring elevation /ponce 1.0 blue 1.0 gemini 1.0 /; parameter icap(j,q) capacity of interconnect (cfd);

parameter dno(h) nonoptimized drawdowns (ft); dno(h) = ho(h)-hno(h); parameter dnp(h) nonoptimized percent head loss; dnp(h) = 100.*dno(h)/ho(h);

variables

binaries

y2(j,q) binary for an interconnect public area j supplies area q ysp(p,j) binary for new connection (surface source p to public area j)

withdrawal or use rates

rtw(j) total use of wells in mgd at area j

q2(j,q) area to area transfer from j to q cfd

q22(j,q) new interconnect transfer from j to q mgd

q23(j,q) existing interconnect transfer from j to q mgd

q1(i,j) use rate of public supply well cell i for need area j

qp(i) total pump rate of public well i

qa(m) pump rate of agricultural well cell m

qra(n,k) reuse rate from reclaimed site n to ag area k

qra2(n,k) mgd reuse rate from reclaimed site n to ag area k

qrp(n,j) reuse rate from reclaimed site n to public area j qrp2(n,j) mgd reuse rate from reclaimed site n to public area j qr(n) total reuse rate from reclaimed site n qs(p) use rate of surface water source p qqs(p,j) use rate of surface source p to public area j cfd qqs2(p,j) use rate of surface source p to public area j mgd

hydrogeologic

hd(h) drawdown at control point h

- d(h) drawdown at control point h
- hs(l) head at spring l
- sd(l) discharge at spring l
- qs(l) percent of 1988 discharge at spring l
- accounting

ds(j,q) length of selected interconnect

si sum of interconnects

rt total reuse rate from reclaimed

rtp total reuse rate for public areas

cost

fp1(j) fixed cost of new surface source

fp2(j) fixed cost of new surface source

fw(j) fixed cost of setup of well

- fic(q) fixed cost of new public interconnect
- fra(k) fixed cost of treatment and line for reclaimed to ag
- frm(j) fixed cost of treatment and line for reclaimed to public
- up(j) fixed cost of public supply area
- ua(k) fixed cost of ag area

fi(q) unit cost of interconnect supplying area q sumin(q) sum of interconnect influx to area q

sumout(j) sum of interonnect outflow for area j cno sum of nonoptimized costs

z sum of costs

positive variables qp, qa, q1, up, qs,qqs, qra,qrp,qr,ua,fw,ua,q2; binary variables y2,ysp;

#### equations

#### *

Hydrogeologic equations

draw(h) calculate drawdown at control point h head(h) calculate drawdown at control point h spring(l) calculate spring head at spring l sl(l) calculate discharge at spring l ddph(h) cap head loss in high harm area ddpm(h) cap head loss in moderate harm area ddpl(h) cap head loss in low harm area

Municpal Water Management equations

nsmax(p) set max flow rate for large new surface source

nsp(p,j) turn on new surface source connection to public if utilized

mc1(j,q) do not exceed capacity of interconnect

mc2(j,q) do not exceed capacity of interconnect

capm(i) do not exceed capacity of public well i

muntot(i,q) calc total pumping at public i

mdm(j) satisfy demand at public demand area j

- n1(j,q) limit flow to one direction
- rtm total reclaimed use for public areas

rlim(j) limit reclaimed use at public area j

- cost constraint equations
  - ssp1(j) fixed cost of surface water

ssp2(j) fixed cost of surface water
suwe(j) new well and treatment plant fixed cost
snws(q) new public to public nterconnect fixed
sconrag(k) fixed interconnect cost for reclaimed to ag
sconrm(j) fixed interconnect cost for reclaimed to public
upun(j) unit costs for public supply utility area j
uag(k) unit costs for ag area k
ut(q) unit costs for interconnects supplying area q

- ----
- Agricultural Water Management equations

capa(m,k) do not exceed capacity of agricultural well m adem(k) satisfy demand at agricultural area k

* Reclaimed Water Management equations

capr(n) do not exceed capacity of reclaimed water site n newcr(k,n) turn on proposed connect from ag area k to reclaimed site n newcrm(j,n) turn on proposed connect from public area j to reclaimed site n nrcw(n) calculate total reclaimed water use from source n

#### * accounting

newcr2(k,n) MGD flow for connect from ag area k to reclaimed site n newcrm2(j,n) MGD flow for connect from public area j to reclaimed site n

sq(q) sum of interconnect influx to area q MGD

sqi(j) sum of interonnect outflow for area j MGD

ssum(p) sum of surface sources MGD

sumi sum of interconnects MGD

mcla(j,q) convert new interconnect to MGD

mc1b(j,q) convert existing interconnect to MGD

mc1c(j,q) length of interconnect (for accounting)

- nsp2(p,j) convert to MGD
- rtwe(j) total use of wells at demand area j MGD

rtot total reclaimed use MGD

costs

cnot calc nonopt cost ctot calculate total cost:

Hydrogeologic Constraints

Hydrogeologic Constraints on the Aquifer

 $\begin{array}{l} head(h) \ .. \ hd(h) = E = \ hno(h) \ -sum(i, alpha(i, h)^{*}(qp(i) -qno(i))) \ -sum(m, beta(m, h)^{*}(qa(m) -qna(m))); \\ spring(l) \ .. \ hs(l) = E = \ hsno(l) \ -sum(i, gamma(i, l)^{*}(qp(i) -qno(i))) \ -sum(m, zeta(m, l)^{*}(qa(m) -qna(m))); \\ draw(h) \ .. \ d(h) = E = \ ho(h) \ -hd(h); \\ sl(l) \ .. \ hs(l) = G = \ 0.85^{*}(hso(l) - el(l)) \ + \ el(l); \\ \end{array}$ 

```
ddpm(h)(med(h) eq 1) .. d(h) =L= 0.02*ho(h);

ddph(h)(high(h) eq 1) .. d(h) =L= 0.02*ho(h);

ddpl(h)$(med(h) eq 0 and high(h) eq 0) .. d(h) =L= 0.15*ho(h);
```

* Water Management Constraints for public demand areas

chose surface water source (20 MGD)

nsmax(p) .. qs(p) = L = 5347600;

nsp(p,j)\$servs(p,j) .. qqs(p,j) = L = dm(j)*ysp(p,j);

muntot(i,q) .. qp(i) = E = sum(j,q1(i,j));

capm(i) ... qp(i) = L = mcap(i);

* satisfy public demand mdm(j) .. sum(i,q1(i,j)\$servm(j,i)) + sum(q,q2(q,j)\$at(q,j)) + sum(n,servrm(n,j)*qrp(n,j)) + sum(p,servs(p,j)*qqs(p,j)) =G= dm(j) + sum(q,q2(j,q)\$at(j,q));

do not exceed demand of area to area interconnect

 $\begin{array}{l} mc1(j,q) \\ \label{eq:mc1} mc1(j,q) \\ \label{eq:mc2} mc2(j,q) \\ \label{eq:mc2} (j,q) \\ \label{eq:mc2} (j,q) \\ \label{eq:mc1} (j,q)$ 

* flow is in only one direction

n1(j,q)\$at(j,q) .. Y2(j,q) + Y2(q,j) =L= 1;

newcrm(j,n)\$servrm(n,j).. qrp(n,j) = L = rcap(n);

* Water Management Constraints for Agricultural Need Areas

************************

rlim(j).. sum(n,qrp(n,j)\$servrm(n,j)) =L= 0.25*dm(j);

capa(m,k)\$(serva(k,m) eq 1) .. qa(m) =L= acap(k);

adem(k) ... sum(m,qa(m)\$serva(k,m)) + sum(n,qra(n,k)\$servra(n,k)) = G = da(k);

newcr(k,n)\$servra(n,k) ... qra(n,k) = L = rcap(n);

* Water Management Constraints for Reclaimed Water Sources

nrcw(n) .. sum(k,qra(n,k)) + sum(j,qrp(n,j) + servrm(n,j)) = E = qr(n);

capr(n) ... qr(n) = L = rcap(n);

********

* fixed charges for new sources

* fixed cost of a new Upper or Lower Floridan high quality well including treatment

 $suwe(j) ... fw(j) = E = sum(i, servm(j, i)^{*}(qp(i)^{*}(0.0756 + tp(i)))^{sul(i)});$ 

fixed cost of new public interconnect

snws(q) .. fic(q) =E= sum(j, (inter(j,q)*Y2(j,q) \$(at(j,q) eq 1 and exist(j,q) eq 0) + slope(j,q)*q2(j,q))\$(at(j,q) eq 1 and exist(j,q) eq 0));

* fixed cost of surface source and transport to public area ssp1(j) .. fp1(j) =E= sum(p, 4.142*qqs(p,j)); ssp2(j) ... fp2(j) = E = sum(p, (inters(p,j)*YSP(p,j) + slopes(p,j)*qqs(p,j)));

```
* fixed cost of reclaimed water for agricultural
sconrag(k) .. fra(k) =E= sum(n,2.681*qra(n,k)$servra(n,k));
```

```
* fixed cost of reclaimed water for public
sconrm(j) .. frm(j) =E= sum(n,5.85*qrp(n,j)*servrm(n,j));
```

******

```
* unit charges for all sources (existing and new
```

 $ut(q) .. \ fi(q) = E = sum(j, 0.38*q2(j,q)\$(distm(j,q) \ gt \ 5));$ 

```
* all agricultural
```

uag(k) .. ua(k) =E= + sum(m,0.1229*qa(m)\$serva(k,m)) + sum(n,1.175*qra(n,k)\$servra(n,k));

******

```
* all costs
```

******

#### ********************

* equality constraints for accounting

*total interconnect flux to area q sq(q) .. sumin(q) =E= sum(j,q2(j,q)*0.00000748\$at(j,q));

```
*total interconnect flux from area j
  sqi(j) .. sumout(j) =E= sum(q,q2(j,q)*0.00000748$at(j,q));
*sum of public reclaimed water use
  rtm .. rtp =E= sum((n,j), 0.00000748*qrp(n,j)$servrm(n,j));
* total public use of wells
  rtwe(j) .. rtw(j) =E= sum(i,q1(i,j)$servm(j,i)*0.00000748);
* total public use of surface water
  ssum(p) .. qs(p) =E= sum(j,qqs(p,j)$servs(p,j)*0.00000748);
* total public use of interconnects
  sumi ... si =E= sum((j,q),q2(j,q)*0.00000748);
* public use of reclaimed water
  newcrm2(j,n)$servrm(n,j).. qrp2(n,j) =E=qrp(n,j)*0.00000748;
* agricultural use of reclaimed water
  newcr2(k,n)$servra(n,k) ... qra2(n,k) = E = qra(n,k)^*0.00000748;
* public use of surface water
  nsp2(p,j) servs(p,j) .. qqs2(p,j) = E = qqs(p,j)*0.00000748;
* total use of reclaimed water
 rtot .. rt =e= sum(n,qr(n)*0.00000748);
* new interconnect
  mc1a(j,q)$(at(j,q) and exist(j,q) eq 0).. q22(j,q) =E= q2(j,q)*0.00000748;
* existing interconnect
  mc1b(j,q)$(at(j,q) and exist(j,q) eq 1).. q23(j,q) =E= q2(j,q)*0.00000748;
* length of interconnect
  mc1c(j,q) at(j,q) .. ds(j,q) = E = Y2(j,q)*distm(j,q);
* nonoptimized costs
```

 $\begin{array}{l} {\rm cnot} .. \ {\rm cno} = & {\rm E} = \ {\rm sum}({\rm i}, 4704^* {\rm qno}({\rm i})) + \ {\rm sum}({\rm i}, {\rm (qno}({\rm i})^* (0.0756 + \ {\rm tp}({\rm i})) ) {\rm (sul}({\rm i})) \\ + \ {\rm sum}({\rm m}, 0.1229^* {\rm qna}({\rm m})); \end{array}$ 

model mincost /all/; option iterlim = 10000; option reslim = 39000; option optcr = 0.01; option lp=mpswrite; solve mincost using mip minimizing Z; display qp.l, q1.l, qa.l, d.l, dno, dnp, rtw.l, y2.l,q22.l,q23.l,ds.l,up.l,fic.l,si.l,qs.l,qqs2.l,ysp.l,qr.l,

qra2.l,qrp2.l,rt.l,rtp.l,fi.l,z.l,fp1.l,fp2.l,sumin.l,sumout.l
cno.l,sm,sa;

FILE F1 /op.dd/; PUT F1; LOOP(H, PUT d.L(H)@15 /);

FILE F3 / op.w/; PUT F3; LOOP(I, PUT qp.L(I)@15 / ); LOOP(m, PUT qa.L(m)@15 / );

# APPENDIX C: SUPPORTING FORTRAN AND UNIX SCRIPT CODES

# **RUNNING THE MODELS**

## SUPPORTING PROGRAMS

The following program perturbs a 'nonoptimized well withdrawal scheme' (vnew.wel) to generate perturbed well withdrawal rates (pumpinc) along with the differences between the nonoptimized and perturbed rates (wel. inc). These well files will be used to generate influence coefficients. First note that the simulation model well input files are arranged thusly:

public supply utility wells to be optimized agricultural wells to be optimized background wells that are not optimized

For the following codes, there are 177 public wells, 362 agricultural wells, and 852 background (nonoptimized) wells in the simulation model well input file. There are 177 control points where aquifer head is constrained.

#### *Program prw2.f

dimension dmk(696),pcap(696) OPEN (UNIT=1,FILE='vnew.wel') OPEN (UNIT=2,FILE='wel.inc') OPEN (UNIT=3,FILE='pumpinc') OPEN (UNIT=4,FILE='mlim') OPEN (UNIT=41,FILE='aglim') OPEN (UNIT=5,FILE='mcap') do I=1,177 * number of public supply utility wells in the optimization process* read(4,*)dmk(i) read(5,*)pcap(i) enddo do I=1,362 * number of agricultural wells in the optimization process* ii=i+177 read(41,*)dmk(ii) enddo READ(1,*)ia,ib read(1,*)icwrite(2,6)ia,ib write(2,5)ic do i=1,1391 read(1,*)il,ir,ic,po ppo = abs(po)if(pcap(i).gt.0.)ulim=pcap(i) if(dmk(i).lt. pcap(i))ulim= dmk(i) if(pcap(i).eq.0.)ulim=dmk(i) write(*,*)i,pcap(i),ulim Perturbation scheme if(ppo.lt.0.25*ulim) pr = -ulim if(ppo.ge.0.25*ulim.and. \$ ppo.lt.0.5*ulim) pr = -ulim if(ppo.ge.0.5*ulim.and. s ppo.lt.0.75*ulim) pr = -ulim if(ppo.ge.0.75*ulim) pr = 0.9*po del=(pr)-(po) if(i.gt.539)pr=po if(i.gt.539)del=0.
```
write(2,4)il,ir,ic,pr
write(3,4)il,ir,ic,del
enddo
```

4 FORMAT(3i10,f10.0)

- 5 FORMAT(i10)
- 6 FORMAT(2i10)

STOP END

With perturbed pumping rates generated, a simulation model run must be performed for each perturbed well in the well file, or each well that will be represented the optimization model. The following UNIX script file is used to generate 539 runs of the simulation model, one for each well that is optimized. Each run uses a different well file. The first run uses a perturbed withdrawal rate for well 1 and nonperturbed well withdrawal rates for wells 2-539. The second run uses a nonperturbed well withdrawal rate for wells 1 and 3-539 and a perturbed pumping rate for well 2, and so on. All output is concatenated for later use in generating influence coefficients. Program DRUNX requires about 24 hours to run using an IBM PowerParallel SP2 computer.

*Program DRUNX

#!/bin/sh

```
PROG=drunx
WE=./wk
WELL=./new.delta
OUTPUT1=./hdout
OUTPUT2=./drain
HEAD=./ho
DR=./do
RERUN=1
while [$RERUN -lt 540] *number of wells in the optimization process*
do
 echo "Iteration ... $RERUN"
 echo "$RERUN" > $WE
 incwe
                                    **executable code to generate a new well input file for each run
 #----run modflow here
 modflow < files10
                                     *simulation model executable with input file list
 #---rename output file with unique names---
```

```
#—rename output file with unique names
cat $OUTPUT1 >> $HEAD
cat $OUTPUT2 >> $DR
rm $WE
```

RERUN=`expr \$RERUN + 1`

done

The following program is used to generate a new well file for running the simulation model, one new well file for each well to be optimized. The

nonoptimized well withdrawal scheme (vnew.wel) is used with a different withdrawal rate for the particular well being perturbed at the time.

*Program incwe.f

```
OPEN (UNIT=1,FILE='vnew.wel')
OPEN (UNIT=2,FILE='wel.inc')
OPEN (UNIT=20,FILE='wk')
OPEN (UNIT=3,FILE='new.delta')
```

C

С

```
read(1,6)ia,ib
   read(1,5)ia
   read(2,6)ia,ib
   read(2,5)ia
   read(20,*)kkk
   write(3,6)ia.ib
   write(3,5)ia
   do I=1,1391 *number of wells in the simulation model well input file*
   read(1,4)il,ir,ic,po
   read(2,4)il,ir,ic,poi
   if(kkk.eq.i)write(3,4)il,ir,ic,poi
   if(kkk.ne.i)write(3,4)il,ir,ic,po
  enddo
4 FORMAT(3i10,f10.0)
```

5 FORMAT(i10) 6 FORMAT(2i10) 20 FORMAT(t19,g9.3) STOP END

Now that all of the wells have been perturbed and aquifer response generated for each perturbed well, the influence coefficients may be generated. The following program generates the change in head at a particular control point due to a change in pumping at a particular well. The following equation is used:

$$\alpha_{i,j} = [h'_j - h_j] / [Q_i - Q_i]$$

where h' and Q' represent the perturbed aquifer head and perturbed well withdrawal rates while the unprimed quantities refer to the nonoptimized original aquifer head and well withdrawal rate. In the program below, the influence coefficients are given by the cfw matrix for aquifer heads and cfs for aquifer springs.

*Program inf2.f

```
С
    determination of influence coefficients
```

```
Dimension pump(539),cfw(539,177),cfs(539,3)
Dimension hin(177), din(3), hout(177)
OPEN (UNIT=1,FILE='hno')
OPEN (UNIT=2,FILE='dno')
OPEN (UNIT=3,FILE='ho')
OPEN (UNIT=4,FILE='do')
OPEN (UNIT=5,FILE='pumpinc')
```

OPEN (UNIT=7,FILE='wifm') OPEN (UNIT=71,FILE='wifa') OPEN (UNIT=8,FILE='difm') OPEN (UNIT=10,FILE='difa')

С

```
do i=1.539
    read(5,*)il,ir,ic,pump(i)
   enddo
                                                    *number of control points*
   do j=1,177
    read(1,*)hin(j)
   enddo
   do i=1,539
   do j=1,177
    read(3,*)hout(j)
       cfw(i,j)=-(hin(j)-hout(j))/(pump(i))
       cfw(i,j)=abs(cfw(i,j))
    if(i.le.177)write(7,*)cfw(i,j), i, j
    if(i.gt.177)write(71,*)cfw(i,j)
   enddo
   enddo
   do i=1,3
    read(2,*)din(i)
   enddo
   do i=1,539
   do j=1,3
    read(4,*)dout
      cfs(i,j)=-(din(j) - dout)/(pump(i))
      cfs(i,j)=abs(cfs(i,j))
    if(i.le.177)write(8,*)cfs(i,j)
    if(i.gt.177)write(10,*)cfs(i,j)
   enddo
   enddo
30 continue
```

STOP END

Now that the influence coefficients have been generated, they must be formatted so that they can be used in the GAMS for optimization. The following four programs are used to format influence coefficients. They are not completely automatic, and some formatting is still required after running the control point programs. Program zetaap.f creates the tables of agricultural well influence coefficients for control points:

* Program zetaap.f

C *** PROGRAM CONVERTS FILE *** C *** CONTAINING THE INFLUENCE COEFFICIENTS TO A FORMAT WHICH THE *** C *** GAMS PROGRAM CAN READ. OUTPUT DATA TABLE HAS (10) COLUMNS & *** C *** HAS CHARACTERS OUT TO A MAXIMUM OF 120 SPACES. *** С CHARACTER*20 OLDFILE, NEWFILE CHARACTER*5 P(177),PT CHARACTER*6 W CHARACTER*10 A CHARACTER*24 Y.X CHARACTER*60 YY,XX **DIMENSION V(362,177)** open(unit=7,file='wifa') open(unit=8,file='paout')

```
ntw=177
  nm=362
С
С
С
С
C *** DETERMINE # OF ROWS TO READ BASED ON # OF INTEREST POINTS ***
С
  ZNIP=NTW
  ZZ=AINT(ZNIP/15.01)+1.0
  NP=ZZ*15
  NIP=ZNIP
С
C *** SET UP INTEREST POINT LABELS TO BE PRINTED IN TABLE ***
C
  A='0123456789'
С
  DO 10 I=1,9
   P(I)=A(I+1:I+1)
10 CONTINUE
С
  IF (NIP.GT.9) THEN
   K=9
   DO 20 J=2,10
    DO 30 I=1.10
     K=K+1
     P(K)=A(J:J)//A(I:I)
     CONTINUE
30
20 CONTINUE
С
   IF (NIP.GT.99) THEN
    K=99
    DO 40 J=2,10
     IF (K.GT.NIP) GOTO 40
     DO 45 I=1,10
      DO 50 L=1,10
       K=K+1
       P(K)=A(J:J)//A(I:I)//A(L:L)
50
       CONTINUE
45
      CONTINUE
40
     CONTINUE
   ENDIF
  ENDIF
С
C *** WRITE HEADERS AND READ INFLUENCE CLOEFFICIENT INPUT DATA ***
С
   Y='table beta(m,h)'
  YY='agricultural well influence coefficients for control points'
  X='TABLE PHI(N,H)
   XX='WELL INFLUENCE COEFFICIENTS FOR AG WELLS WRT DELTA QUALITY '
  PT='welpt'
С
   OPEN (UNIT=7,FILE=OLDFILE,ACCESS='SEQUENTIAL')
*
   OPEN (UNIT=8,FILE=NEWFILE,STATUS='NEW')
С
   DO 100 II=1,2
    IF (II.EQ.1) THEN
     WRITE (8,4000) Y,YY
     W='aw'
     NW=NM
     do I=1,362
                                  *number of agricultural wells*
      do j=1,177
                                  * number of control points where head is constrained *
       read(7,*)v(i,j)
```

```
enddo
     enddo
С
C *** DETERMINE # OF SETS REQUIRED BASED ON # OF INTEREST POINTS ***
С
   ZK= AINT(ZNIP/10.01)
   KZ = (ZK^{*10}) + 1
С
C *** WRITE INFLUENCE COEFFICIENTS IN TABULAR FORM TO OUTPUT FILE. ***
C *** AMOUNT OF DATA DEPENDS ON WELL AND INTEREST POINT NUMBERS ***
С
   DO 90 L=1,KZ,10
С
C *** WRITE WELPT# LABELS ***
С
    ASSIGN 7000 TO KK
    IF (L.EQ.1) ASSIGN 5000 TO KK
    LN=L+9
    IF (L.EQ.KZ) LN=NIP
   IF (LN.EQ.100) ASSIGN 7100 TO KK
    IF (LN.GT.100) ASSIGN 7200 TO KK
    WRITE (8,KK) (PT//P(I), I=L,LN)
    WRITE (8,*)
С
C *** WRITE WELL# LABELS AND DATA ***
С
    IF (NW.LE.9) THEN
     ASSIGN 6000 TO LL
     DO 60 I=1,NW
     IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6050 TO LL
      WRITE (8,LL) W,I,(V(I,J), J=L,LN)
      CONTINUE
60
    ELSE
С
     DO 65 I=1,9
      WRITE (8,6000) W,I,(V(I,J), J=L,LN)
65
      CONTINUE
С
     IF (NW.LE.99) THEN
      ASSIGN 6100 TO LL
      DO 70 I=10,NW
       IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6150 TO LL
       WRITE (8,LL) W,L,(V(I,J), J=L,LN)
70
       CONTINUE
     ELSE
С
      DO 75 I=10,99
       WRITE (8,6100) W,I,(V(I,J), J=L,LN)
       CONTINUE
75
С
      ASSIGN 6200 TO LL
       DO 80 I=100,NW
        IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 8000 TO LL
        WRITE (8,LL) W,I,(V(I,J), J=L,LN)
 80
        CONTINUE
С
     ENDIF
    ENDIF
С
    IF (L.EQ.KZ) WRITE (8,9000)
    WRITE (8,*)
С
 90 CONTINUE
```

С WRITE (8,*) С 100 CONTINUE C C *** CLOSE FILES *** С CLOSE (UNIT=7) CLOSE (UNIT=8) C 222 FORMAT (10F5.0) 500 FORMAT (F10.3,I10) 1000 FORMAT (A20) 1100 FORMAT (I10) 1150 FORMAT (F10.0) 1200 FORMAT (F10.0) 2000 FORMAT (A80) 3000 FORMAT (15E10.4) 4000 FORMAT (5X,A24,1X,A51) 5000 FORMAT (11X,10A11) 6000 FORMAT (1X,A2,I1,4X,10E11.3) 6050 FORMAT (1X,A2,I1,4X,10E11.3) 6100 FORMAT (1X,A2,I2,3X,10E11.3) 6150 FORMAT (1X,A2,I2,3X,10E11.3) 6200 FORMAT (1X,A2,I3,2X,10E11.3) 7000 FORMAT (2X,'+',8X,10A11) 7100 FORMAT (2X, +',8X,10A11) 7200 FORMAT (2X,'+',7X,10A11) 8000 FORMAT (1x,A2,I3,2X,10E11.3) 9000 FORMAT (10X,';') С

END

C

*Program zetamp.f

C *** PROGRAM CONVERTS FILE ***

Program zetamp.f generates public well influence coefficients for changes in aquifer head at control points:

C *** PROGRAM CONVERTS FILE CREATED BY THE SWIFT BATCH PROGRAM *** C *** CONTAINING THE INFLUENCE COEFFICIENTS TO A FORMAT WHICH THE *** C *** GAMS PROGRAM CAN READ. OUTPUT DATA TABLE HAS (10) COLUMNS & *** C *** HAS CHARACTERS OUT TO A MAXIMUM OF 120 SPACES. *** C *** THE WELL INFLUENCE COEFFICIENTS ARE CONVERTED BY PROGRAM **** C *** THE WELL INFLUENCE COEFFICIENTS ARE CONVERTED BY PROGRAM **** C CHARACTER*20 OLDFILE,NEWFILE CHARACTER*5 P(177),PT CHARACTER*6 W CHARACTER*10 A CHARACTER*60 YY,XX DIMENSION V(177,177) open(unit=7,file='wifm')

C *** CONTAINING THE INFLUENCE COEFFICIENTS TO A FORMAT WHICH THE *** C *** GAMS PROGRAM CAN READ. OUTPUT DATA TABLE HAS (10) COLUMNS & ***

C *** HAS CHARACTERS OUT TO A MAXIMUM OF 120 SPACES. ***

```
open(unit=8,file='pmout')
ntw=177
```

```
nm=177
С
  WRITE (6,*)
  WRITE (6,*)
   WRITE (6,*)
С
С
C *** DETERMINE # OF ROWS TO READ BASED ON # OF INTEREST POINTS ***
С
   ZNIP=NTW
   ZZ=AINT(ZNIP/15.01)+1.0
  NP=ZZ*15
  NIP=ZNIP
С
C *** SET UP INTEREST POINT LABELS TO BE PRINTED IN TABLE ***
С
   A='0123456789'
С
   DO 10 I=1,9
   P(I)=A(I+1:I+1)
10 CONTINUE
С
   IF (NIP.GT.9) THEN
   K=9
    DO 20 J=2,10
    DO 30 I=1.10
     K=K+1
     P(K)=A(J:J)//A(I:I)
     CONTINUE
30
20 CONTINUE
С
    IF (NIP.GT.99) THEN
     K=99
     DO 40 J=2,10
     IF (K.GT.NIP) GOTO 40
     DO 45 I=1,10
       DO 50 L=1,10
       K=K+1
       P(K)=A(J:J)//A(I:I)//A(L:L)
50
       CONTINUE
45
       CONTINUE
40
     CONTINUE
    ENDIF
   ENDIF
С
C *** WRITE HEADERS AND READ INFLUENCE CLOEFFICIENT INPUT DATA ***
С
   Y='table alpha(i,h)'
   YY='well influence coefficients for wells at control points
   PT='welpt'
С
    OPEN (UNIT=7,FILE=OLDFILE,ACCESS='SEQUENTIAL')
۰
*
    OPEN (UNIT=8,FILE=NEWFILE,STATUS='NEW')
С
    DO 100 II=1,2
    IF (II.EQ.1) THEN
     WRITE (8,4000) Y,YY
     W='mw'
     NW=NM
     do i=1,177
      do j=1,177
       read(7,*)v(i,j)
```

enddo enddo С C *** DETERMINE # OF SETS REQUIRED BASED ON # OF INTEREST POINTS *** С ZK= AINT(ZNIP/10.01)  $KZ = (ZK^{*}10) + 1$ С C *** WRITE INFLUENCE COEFFICIENTS IN TABULAR FORM TO OUTPUT FILE. *** C *** AMOUNT OF DATA DEPENDS ON WELL AND INTEREST POINT NUMBERS *** С DO 90 L=1,KZ,10 С C *** WRITE WELPT# LABELS *** С ASSIGN 7000 TO KK IF (L.EQ.1) ASSIGN 5000 TO KK LN=L+9 IF (L.EQ.KZ) LN=NIP IF (LN.EQ.100) ASSIGN 7100 TO KK IF (LN.GT.100) ASSIGN 7200 TO KK WRITE (8,KK) (PT//P(I), I=L,LN) WRITE (8,*) С C *** WRITE WELL# LABELS AND DATA *** С IF (NW.LE.9) THEN ASSIGN 6000 TO LL DO 60 I=1,NW IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6050 TO LL WRITE (8,LL) W,I,(V(I,J), J=L,LN) 60 CONTINUE ELSE С DO 65 I=1,9 WRITE (8,6000) W,I,(V(I,J), J=L,LN) CONTINUE 65 С IF (NW.LE.99) THEN ASSIGN 6100 TO LL DO 70 I=10,NW IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6150 TO LL WRITE (8,LL) W,I,(V(I,J), J=L,LN) 70 CONTINUE ELSE С DO 75 I=10,99 WRITE (8,6100) W,I,(V(I,J), J=L,LN) CONTINUE 75 С ASSIGN 6200 TO LL DO 80 I=100,NW IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 8000 TO LL WRITE (8,LL) W,I,(V(I,J), J=L,LN) 80 CONTINUE С ENDIF ENDIF С IF (L.EQ.KZ) WRITE (8,9000) WRITE (8,*) C 90 CONTINUE

С WRITE (8,*) С 100 CONTINUE С C *** CLOSE FILES *** С CLOSE (UNIT=7) CLOSE (UNIT=8) С 222 FORMAT (10F5.0) 500 FORMAT (F10.3,I10) 1000 FORMAT (A20) 1100 FORMAT (I10) 1150 FORMAT (F10.0) 1200 FORMAT (F10.0) 2000 FORMAT (A80) 3000 FORMAT (15E10.4) 4000 FORMAT (5X,A24,1X,A51) 5000 FORMAT (11X,10A11) 6000 FORMAT (1X,A2,I1,4X,10E11.3) 6050 FORMAT (1X,A2,I1,4X,10E11.3) 6100 FORMAT (1X,A2,I2,3X,10E11.3) 6150 FORMAT (1X,A2,I2,3X,10E11.3) 6200 FORMAT (1X,A2,I3,2X,10E11.3) 7000 FORMAT (2X,'+',8X,10A11) 7100 FORMAT (2X,'+',8X,10A11) 7200 FORMAT (2X,'+',7X,10A11) 8000 FORMAT (1x,A2,I3,2X,10E11.3) 9000 FORMAT (10X,';') С END

Program zetams.f generates public well influence coefficients for changes in head at spring cells:

*Program zetams.f C *** PROGRAM CONVERTS FILE *** C *** CONTAINING THE INFLUENCE COEFFICIENTS TO A FORMAT WHICH THE C *** GAMS PROGRAM CAN READ. OUTPUT DATA TABLE HAS (10) COLUMNS & *** C *** HAS CHARACTERS OUT TO A MAXIMUM OF 120 SPACES. *** C

```
CHARACTER*20 OLDFILE, NEWFILE
  CHARACTER*5 P(177),PT
  CHARACTER*6 W
  CHARACTER*10 A
   CHARACTER*24 Y.X
   CHARACTER*60 YY,XX
  DIMENSION V(177,3)
  open(unit=7,file='difm')
  open(unit=8,file='smout')
  ntw=3
  nm=177
С
С
  *** DETERMINE # OF ROWS TO READ BASED ON # OF INTEREST POINTS ***
С
C
   ZNIP=NTW
   ZZ=AINT(ZNIP/15.01)+1.0
```

```
NP=ZZ*15
  NIP=ZNIP
С
С
  *** SET UP INTEREST POINT LABELS TO BE PRINTED IN TABLE ***
С
   A='0123456789'
С
   DO 10 I=1,9
   P(I)=A(I+1:I+1)
10 CONTINUE
С
   IF (NIP.GT.9) THEN
   K=9
    DO 20 J=2,10
    DO 30 I=1,10
     K=K+1
     P(K)=A(J:J)//A(I:I)
30
     CONTINUE
20 CONTINUE
С
    IF (NIP.GT.99) THEN
    K=99
     DO 40 J=2,10
      IF (K.GT.NIP) GOTO 40
      DO 45 I=1,10
      DO 50 L=1.10
       K=K+1
       P(K)=A(J:J)//A(I:I)//A(L:L)
50
       CONTINUE
       CONTINUE
45
     CONTINUE
40
    ENDIF
   ENDIF
С
C *** WRITE HEADERS AND READ INFLUENCE CLOEFFICIENT INPUT DATA ***
С
   Y='table gamma(i,l)'
   YY='influence coeffs of public wells on springs heads'
   PT='welpt'
С
*
   OPEN (UNIT=7,FILE=OLDFILE,ACCESS='SEQUENTIAL')
*
    OPEN (UNIT=8,FILE=NEWFILE,STATUS='NEW')
C
*
    DO 100 II=1,2
    IF (II.EQ.1) THEN
     WRITE (8,4000) Y,YY
     W='mw'
     NW=NM
     do i=1,177
      do j=1,3
       read(7,*)v(i,j)
      enddo
     enddo
С
C *** DETERMINE # OF SETS REQUIRED BASED ON # OF INTEREST POINTS ***
С
   ZK= AINT(ZNIP/10.01)
   KZ = (ZK^{*}10) + 1
С
C *** WRITE INFLUENCE COEFFICIENTS IN TABULAR FORM TO OUTPUT FILE. ***
C *** AMOUNT OF DATA DEPENDS ON WELL AND INTEREST POINT NUMBERS ***
С
```

```
DO 90 L=1,KZ,10
С
   ** WRITE WELPT# LABELS ***
С
С
    ASSIGN 7000 TO KK
   IF (L.EQ.1) ASSIGN 5000 TO KK
   LN=L+9
   IF (L.EQ.KZ) LN=NIP
    IF (LN.EQ.100) ASSIGN 7100 TO KK
    IF (LN.GT.100) ASSIGN 7200 TO KK
    WRITE (8,KK) (PT//P(I), I=L,LN)
    WRITE (8,*)
С
C *** WRITE WELL# LABELS AND DATA ***
С
    IF (NW.LE.9) THEN
     ASSIGN 6000 TO LL
     DO 60 I=1,NW
     IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6050 TO LL
      WRITE (8,LL) W,I,(V(I,J), J=L,LN)
60
     CONTINUE
    ELSE
С
    DO 65 I=1,9
      WRITE (8,6000) W,I,(V(I,J), J=L,LN)
65
     CONTINUE
С
     IF (NW.LE.99) THEN
      ASSIGN 6100 TO LL
      DO 70 I=10,NW
      IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6150 TO LL
       WRITE (8,LL) W,I,(V(I,J), J=L,LN)
       CONTINUE
70
     ELSE
С
      DO 75 I=10,99
       WRITE (8,6100) W,I,(V(I,J), J=L,LN)
       CONTINUE
75
С
      ASSIGN 6200 TO LL
       DO 80 I=100,NW
        IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 8000 TO LL
        WRITE (8,LL) W,I,(V(I,J), J=L,LN)
80
        CONTINUE
С
     ENDIF
    ENDIF
С
    IF (L.EQ.KZ) WRITE (8,9000)
    WRITE (8,*)
С
90 CONTINUE
С
   WRITE (8,*)
С
 100 CONTINUE
С
C *** CLOSE FILES ***
С
   CLOSE (UNIT=7)
   CLOSE (UNIT=8)
С
222 FORMAT (10F5.0)
```

```
500 FORMAT (F10.3,I10)
1000 FORMAT (A20)
1100 FORMAT (I10)
1150 FORMAT (F10.0)
1200 FORMAT (F10.0)
2000 FORMAT (A80)
3000 FORMAT (15E10.4)
4000 FORMAT (5X,A24,1X,A51)
5000 FORMAT (11X,10A11)
6000 FORMAT (1X,A2,I1,4X,10E11.3)
6050 FORMAT (1X,A2,I1,4X,10E11.3)
6100 FORMAT (1X,A2,I2,3X,10E11.3)
6150 FORMAT (1X,A2,I2,3X,10E11.3)
6200 FORMAT (1X,A2,I3,2X,10E11.3)
7000 FORMAT (2X,'+',8X,10A11)
7100 FORMAT (2X, +', 8X, 10A11)
7200 FORMAT (2X,'+',7X,10A11)
8000 FORMAT (1x,A2,I3,2X,10E11.3)
9000 FORMAT (10X,';')
С
   END
```

Program zetaas.f generates tables of influence coefficients for agricultural wells on spring heads:

```
*Program zetaas.f
C *** PROGRAM CONVERTS FILE ***
C *** CONTAINING THE INFLUENCE COEFFICIENTS TO A FORMAT WHICH THE ***
C *** GAMS PROGRAM CAN READ. OUTPUT DATA TABLE HAS (10) COLUMNS & ***
C *** HAS CHARACTERS OUT TO A MAXIMUM OF 120 SPACES. ***
С
  CHARACTER*5 P(362),PT
  CHARACTER*6 W
  CHARACTER*10 A
  CHARACTER*24 Y.X
  CHARACTER*60 YY,XX
  DIMENSION V(362,3)
  open(unit=7,file='difa') *input file for influence coefficients*
  open(unit=8,file='saout') *output file in GAMS tabular format*
  ntw=3
  nm=362
С
C *** DETERMINE # OF ROWS TO READ BASED ON # OF INTEREST POINTS ***
С
   ZNIP=NTW
   ZZ=AINT(ZNIP/15.01)+1.0
  NP=ZZ*15
  NIP=ZNIP
С
C *** SET UP INTEREST POINT LABELS TO BE PRINTED IN TABLE ***
С
   A='0123456789'
С
   DO 10 I=1,9
   P(I) = A(I+1:I+1)
10 CONTINUE
С
   IF (NIP.GT.9) THEN
    K=9
    DO 20 J=2,10
     DO 30 I=1,10
     K=K+1
     P(K)=A(J:J)//A(I:I)
```

```
30
     CONTINUE
20
    CONTINUE
С
   IF (NIP.GT.99) THEN
    K=99
    DO 40 I=2.10
     IF (K.GT.NIP) GOTO 40
     DO 45 I=1,10
      DO 50 L=1,10
       K=K+1
       P(K)=A(J:J)//A(I:I)//A(L:L)
50
       CONTINUE
45
      CONTINUE
     CONTINUE
40
   ENDIF
  ENDIF
С
C *** WRITE HEADERS AND READ INFLUENCE CLOEFFICIENT INPUT DATA ***
С
  Y='table zeta(m,l)'
  YY='ag well influence coefficients for spring heads
  PT='welpt'
С
С
   DO 100 II=1,2
    IF (II.EQ.1) THEN
    WRITE (8,4000) Y,YY
    W='aw'
    NW=NM
     do i=1,362
     do j=1,3
       read(7,*)v(i,j)
     enddo
     enddo
С
C *** DETERMINE # OF SETS REQUIRED BASED ON # OF INTEREST POINTS ***
С
   ZK = AINT(ZNIP/10.01)
  KZ = (ZK^{*}10) + 1
С
C *** WRITE INFLUENCE COEFFICIENTS IN TABULAR FORM TO OUTPUT FILE. ***
C *** AMOUNT OF DATA DEPENDS ON WELL AND INTEREST POINT NUMBERS ***
С
   DO 90 L=1,KZ,10
С
C *** WRITE WELPT# LABELS ***
С
    ASSIGN 7000 TO KK
    IF (L.EQ.1) ASSIGN 5000 TO KK
    LN=L+9
    IF (L.EQ.KZ) LN=NIP
    IF (LN.EQ.100) ASSIGN 7100 TO KK
    IF (LN.GT.100) ASSIGN 7200 TO KK
    WRITE (8,KK) (PT//P(I), I=L,LN)
    WRITE (8,*)
С
C *** WRITE WELL# LABELS AND DATA ***
С
    IF (NW.LE.9) THEN
     ASSIGN 6000 TO LL
     DO 60 I=1.NW
     IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6050 TO LL
      WRITE (8,LL) W,I,(V(I,J), J=L,LN)
```

60	CONTINUE
c	ELSE
C	DO 65 I=1,9
	WRITE (8,6000) W,I,(V(I,J), J=L,LN)
65	CONTINUE
С	
	IF (NW.LE.99) THEN
	DO 70 I=10.NW
	IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 6150 TO LL
-	WRITE $(8,LL)$ W,I, $(V(I,J), J=L,LN)$
70	CONTINUE
С	ELSE
-	DO 75 I=10,99
	WRITE (8,6100) W,I,(V(I,J), J=L,LN)
75	CONTINUE
С	A SELCAL (200 TO LL
	DO 80 I=100 NW
	IF ((LN.EQ.NIP).AND.(I.EQ.NW)) ASSIGN 8000 TO LL
	WRITE (8,LL) W,I,(V(I,J), J=L,LN)
80	CONTINUE
C	ENIDIE
	ENDIF
с	
	IF (L.EQ.KZ) WRITE (8,9000)
~	WRITE (8,*)
00	
c	CONTINUE
- ,	WRITE (8,*)
С	
100	CONTINUE
222	FORMAT (10F5 0)
500	FORMAT (F10.3.110)
100	0 FORMAT (A20)
110	0 FORMAT (I10)
1150 FORMAT (F10.0)	
200	0  FORMA1(F10.0) $0  FORMAT(A80)$
300	0 FORMAT (15E10.4)
400	0 FORMAT (5X,A24,1X,A51)
5000 FORMAT (11X,10A11)	
6000 FORMAT (1X,A2,I1,4X,10E11.3)	
0000 FORMAT (17,74,11,47,10211.3) 6100 FORMAT (1X A2 12 3X 10F11 3)	
6150 FORMAT (1X.A2.I2.3X.10E11.3)	
6200 FORMAT (1X,A2,I3,2X,10E11.3)	
7000 FORMAT (2X,'+',8X,10A11)	
7100 FORMAT (2X,'+',8X,10A11)	
7200 FORMAT (2X,'+',7X,10A11)	
900 900	0 FORMAT (1X,AZ,IS,ZX,IUE11.3) 0 FORMAT (10X.'.')
~	

END

Constant of the second second

Model output includes flow or use rates, costs and predictions for aquifer drawdown and spring heads. Because the unit response matrix is only an approximation, the true aquifer response to the optimal well withdrawal scheme is obtained using MODFLOW. Once the true response is obtained, comparisons may be made with a FORTRAN program.

The following program generates a comparision between the optimization model predictions and the simulation model results. Generally the predictions and true response agree within six inches except at control points where surficial heads are specified.

```
*Program compare.f
   OPEN (UNIT=1,FILE='h88') *1988 head*
   OPEN (UNIT=2,FILE='hno') * nonoptimized projected year 2010 head*
   OPEN (UNIT=3,FILE='opho') * simulation model output of heads at control points using the optimal well withdrawl
strategy*
   OPEN (UNIT=31,FILE='op.dd') *optimization model predictions for control point heads*
   OPEN (UNIT=32,FILE='op.d2') *optimization model predictions for control point drawdowns*
С
    write(8,*)"ddno,ddo"
    write(83,*)"h20,hop,hg"
   do i=1,177
    read(1,*)h88
    read(2,*)h20
    read(3,*)hop
    read(31,*)hg
    read(32,*)dg
222 format(e15.5)
    read(11,*)il,ir,ic
    ddno=h88-h20
    ddo=h88-hop
    write(8,11)ddno,ddo
    write(810,11)ddno
    write(811,11)ddo
    pct=100*(ddo -dg)/ddo
    pct2=100*(hop -hg)/hop
    apct = apct + abs(pct)
    apct2 = apct2 + abs(pct2)
     write(9,*)hop,hg,pct2
    write(9,*)hop,hg
    write(95,*)hop
    write(96,*)hg
    diff=ddo-dg
    diffi=diff*12.0
    dd2=h20-dnew
    write(100,*)dd2
    write(89,11)ddo,dg,diff,diffi,pct
     as = abs(ddo-dg)
    write(893,11)ddo,dg,as
     write(892,19)diff,area
с
    write(892,19)diff
write(82,11)ddo,dg
    write(83,11)h20,hop,hg
 11 format(5(f12.4,3x))
 19 format(f12.4,2x,e15.5) sumno+ddno
    enddo
     apct=apct/177.
    apct2=apct2/177.
     write(82,*)apct
```

```
write(9,*)apct2
write(*,*)sumno,sum
write(8,*)sumno,sum
12 format(9(f9.4,3x))
STOP
END
```

The following section of code is from the SBAS1H subroutine of MODFLOW. It illustrates the modifications to the output that are used for all FORTRAN codes in the optimization process. In addition to compactly formatted output of pertinent head and spring data, several print statements throughout MODFLOW are commented out (though not shown) so as to save run time.

The code below is for the Volusia model.

```
*Program modflow.f
*Modifications to MODFLOW source code subroutine SBAS1H
   -VERSION 1653 15MAY1987 SBAS1H
C-
С
   *********
С
   PRINT AND RECORD HEADS
С
               ********
С
С
    SPECIFICATIONS
С
   CHARACTER*4 TEXT
   DOUBLE PRECISION HNEW
С
  DIMENSION HNEW(NCOL, NROW, NLAY), IOFLG(NLAY, 4), TEXT(4),
     BUFF(NCOL,NROW,NLAY), hnw(137,119,2), ibound(ncol,nrow,nlay)
  1
С
ced
   DIMENSION xx(137),yy(119),left(119),iright(119)
   DIMENSION delr(91), delc(86), x(86), y(91), h88(86,91,3), dd(86,91)
ced
С
  DATA TEXT(1), TEXT(2), TEXT(3), TEXT(4) /' ',' ',' ',
      'HEAD'/
  1
c
С
ced
```

* various output files. Files *Hdout* and *drain* are required for generating the output files which are concattentated during *the running of the unix script file which runs Modflow repeatedly, once for each well in the optimization model, they *c *create the concatenated files *ho* and *do* which are eventually used to generate influence coefficients.

```
OPEN(UNIT=422,FILE='hdout')

OPEN(UNIT=425,FILE='drain')

OPEN(UNIT=499,FILE='grid')

OPEN(UNIT=423,FILE='points.prn')

OPEN(UNIT=424,FILE='hform')

*the following lines write spring heads to a file named drain

write(425,*)hnew(12,35,2)

write(425,*)hnew(6,76,2)

write(425,*)hnew(7,86,2)
```

*the following lines write the entire surficial head response to a file named grid do j=1,91 do i=1,86 write(499,987)j,i,hnew(i,j,1)

```
987 format(3x,2(i5,3x),f10.3)
   enddo
   enddo
* the following lines write the new heads at control points to a file named hdout
   do n=1,177
    read(423,*)nwr,nwc
    j=nwr
     i=nwc
     write(422,*)HNEW(i,j,1),j,i
     if(n.lt.10)write(424,223)n,HNEW(i,j,1)
    if(n.ge.10.and.n.lt.100)write(424,224)n,HNEW(i,j,1)
     if(n.ge.100)write(424,225)n,HNEW(i,j,1)
223 format('welpt',i1,2x,f11.6)
224 format('welpt',i2,2x,f11.6)
225 format('welpt',i3,2x,f11.6)
   enddo
* the following lines write the entire Upper Floridan response to file 444
   do j=1,119
      write(444,223)(hnew(i,j,1),i=1,137)
   enddo
* the following lines write the entire Lower Floridan response to file 445
   do j=1,119
      write(445,223)(hnew(i,j,2),i=1,137)
   enddo
*the following files write surficial aquifer response at control points to files 422 and 424
   do n=1,157
    read(423,*)il,nwr,nwc
     j=nwr
     i=nwc
     write(422,*)HNEW(i,j,1),j,i
     write(424,223)n,HNEW(i,j,1)
```

```
enddo
```

```
10 format(i5, f9.2)
sum=sum+ddo
```