version 1.0
© 2001 John H. Epler, Ph.D.

IDENTIFICATION MANUAL FORTHE LARVAL CHIRONOMIDAE (DIPTERA) OF NORTH AND SOUTH CAROLINA

John H. Epler, Ph.D.

Aquatic Entomologist
461 Tiger H ammock Road
Crawfordville, FL 32327
jhepler@concentric.net

This document was made possible by EPA G rant \#X 984170-97
WQ Program Sec, 104(b)93)
EPA Region 4 and Human Health and Ecological Criteria Division
Project Officer: D avid Lenat
N orth C arolina D epartment of Environment and N atural Resources
Division of Water Quality

27 September 2001
version 1.0
© 2001 John H. Epler, Ph.D.

TABLE OF CONTENTS

Introduction 1.1
The Family Chironomidae 1.1
H ow to usethis manual 1.3
H ow to usea dichotomouskey 1.4
M orphology 1.6
Glossary and Abbreviations 1.10
About the N ames 1.13
Collecting and Preserving Chironomidae 1.13
Identifying Chironomidae 1.14
M aterials and Equipment Required for Larval Chironomid Identification 1.16
Sorting Chironomid Larvae 1.18
Slide Preparation 1.22
CM C M ethod 1.23
Canada Balsam/Euparal M ethod 1.24
Slide making with CM C 1.26
Rearing Larvae 1.27
Quality Assurance 1.28
Literature 1.30
Sources 1.31
A Tour of the Subfamilies 1.32
Subfamily Podonominae 1.33
SubfamilyTanypodinae 1.34
Subfamily D iamesinae 1.35
Subfamily Prodiamesinae 1.36
Subfamily Orthocladiinae 1.37
Subfamily Chironominae 1.39
K ey to the subfamilies of Chironomidae of the southeastern U.S. 1.41
Subfamily Telmatogetoninae 2.1
K ey to the genera of larval Telmatogetoninae of the eastern U.S. 2.1
Telmatogeton 2.2
Thalassomya 2.3
Subfamily Podonominae 3.1
K ey to the genera of larval Podonominae of eastern N orth America 3.1
Boreochlus 3.3
Paraboreochlus 3.4
Subfamily Tanypodinae 4.1
K ey to the genera of larval Tanypodinae of the southeastern U.S. 4.1
Ablabesmyia 4.19
K ey to Ablabesmyia larvae of the southeastern U.S. 4.20
Alotanypus 4.27
Apsectrotanypus 4.28
Bethbilbeckia 4.29
Brundiniella 4.30
Cantopelopia 4.31
Clinotanypus 4.32
Codotanypus 4.33
Key to Coelotanypus larvae of the eastern U.S. 4.34
Conchapelopia 4.35
Denopelopia 4.36
Djalmabatista 4.37
Fittkauimyia 4.38
Guttipelopia 4.39
H ayeomyia 4.40
Helopelopia 4.41
Hudsonimyia 4.42
Krenopedopia 4.43
Labrundinia 4.44
Key to Labrundinia larvae of the southeastern U.S. 4.45
Larsia 4.50
K ey to Larsia larvae of the southeastern U.S. 4.51
M acropelopia 4.53
M eropelopia 4.54
M onopelopia 4.55
K ey to M onopelopia larvae of the southeastern U.S. 4.56
N atarsia 4.57
K ey to N atarsia larvae of the southeastern U.S. 4.58
Nilotanypus 4.59
K ey to N ilotanypus larvae of the southeastern U.S. 4.60
Paramerina 4.61
Pentaneura 4.62
Procladius 4.63
K ey to Procladiuslarvae of the southeastern U.S. 4.64
Psectrotanypus 4.65
K ey to Psectrotanypus larvae of the southeastern U.S. 4.66
Radotanypus 4.67
Reomyia 4.68
Rheopelopia 4.69
Key to Rheopelopia larvae of the southeastern U.S. 4.70
Tanypus 4.71
K ey to Tanypuslarvae of the southeastern U.S. 4.72
Telopelopia 4.75
Thienemannimyia 4.76
Trissopelopia 4.77
Zavrelimyia 4.78
Preliminary key to Z avrelimyia larvae of the southeastern U.S. 4.79
Subfamily Diamesinae 5.1
K ey to the genera of larval Diamesinae of the eastern U.S. 5.1
Diamesa 5.4
K ey to Diamesa larvae of the southeastern U.S. 5.5
Lappodiamesa 5.6
Pagastia 5.7
Potthastia 5.8
K ey to Potthastia larvae of the southeastern U.S. 5.9
Pseudodiamesa 5.10
Sympotthastia 5.11
K ey to Sympotthastia larvae of the eastern U.S. 5.12
Diamesinaegenus P 5.13
Subfamily Prodiamesinae 6.1
K ey to the genera of larval Prodiamesinae of the eastern U.S. 6.1
Compteromesa 6.3
M onodiamesa 6.4
K ey to M onodiamesa larvae of the eastern U.S. 6.5
Odontomesa 6.6
Prodiamesa 6.7
Subfamily Orthocladiinae 7.1
K ey to the genera of larval O rthocladiinae of the southeastern U.S. 7.1
A camptocladius 7.33
Acricotopus 7.34
Antillocladius 7.35
Brillia 7.36
K ey to Brillia larvae of the southeastern U.S. 7.37
Bryophaenocladius 7.38
Camptocladius 7.39
Cardiocladius 7.40
K ey to C ardiocladiuslarvae of the southeastern U.S. 7.41
Chaetocladius 7.42
Clunio 7.43
Compterosmittia 7.44
Corynoneura 7.45
K ey to C orynoneura Iarvae of the southeastern U.S. 7.46
Cricotopus 7.50
K ey to Cricotopuslarvae of the southeastern U.S. 7.51
Diplocladius 7.63
D oithrix 7.64
Epiococladius 7.65
K ey to Epoi cocladiuslarvae of the eastern U.S. 7.66
Eukiefferiella 7.68
K ey to Eukiefferiella larvae of the southeastern U.S. 7.69
Euryhapsis 7.73
Georthocladius 7.74
Gymnomedriocnemus 7.75
H eleniedla 7.76
H eterotrissocladius 7.77
K ey to Heterotrissocladius larvae of the southeastern U.S. 7.78
H ydrobaenus 7.80
K renosmittia 7.81
Limnophyes 7.82
Lopescladius 7.83
M esocricotopus 7.84
M esosmittia 7.85
M etriocnemus 7.86
K ey to M etriocnemuslarvae of the southeastern U.S. 7.87
N anocladius 7.89
K ey to N anocladiuslarvae of the southeastern U.S. 7.90
Orthocladius 7.97
Key to Orthocladiuslarvae of the southeastern U.S. 7.98
Parachaetocladius 7.110
Paracricotopus 7.111
Parakiefferiella 7.112
K ey to Parakiefferiella larvae of the southeastern U.S. 7.113
Parametriocnemus 7.116
Paraphaenocladius 7.118
K ey to Paraphaenocladiuslarvae of the southeastern U.S. 7.119
Parasmittia 7.120
Paratrichocladius 7.121
Platysmittia 7.122
Psectrocladius 7.123
K ey to Psectrocladiuslarvae of the southeastern U.S. 7.124
Pseudorthocladius 7.131
Pseudosmittia 7.132
Psilometriocnemus 7.133
Rheocricotopus 7.134
K ey to Rheocricotopus larvae of the southeastern U.S. 7.135
Rheosmittia 7.138
Smittia 7.139
Stilocladius 7.140
Symbiocladius 7.141
Synorthodadius 7.142
Thienemannia 7.143
Thienemanniella 7.144
K ey to Thienemanniella larvae of the southeastern U.S. 7.145
Tokunagaia 7.150
Trichochilus 7.151
T vetenia 7.152
Key to T vetenia larvae of the southeastern U.S. 7.153
Unniella 7.156
Xylotopus 7.157
Zalutschia 7.158
K ey to Z alutschia larvae of the southeastern U.S. 7.159
O rthocladiinaespecies C 7.161
OrthocladiinaegenusE 7.162
Orthocladiinaegenus H 7.163
O rthocladiinae genus। 7.164
Subfamily Chironominae 8.1
K ey to the genera of larval C hironominae of the southeastern U.S. 8.1
Apedilum 8.34
Axarus 8.35
Beardius 8.36
Beckidia 8.37
Chernovskiia 8.38
Chironomus 8.39
K ey to Chironomuslarvae of the southeastern U.S. 8.40
Cladopelma 8.45
Cladotanytarsus 8.46
K ey to Cladotanytarsuslarvae of the southeastern U.S. 8.47
Constempellina 8.51
Cryptochironomus 8.52
Cryptotendipes 8.53
D emejjerea 8.54
Demicryptochironomus 8.55
K ey to Demicryptochironomus larvae of the southeastern U.S. 8.56
Dicrotendipes 8.58
K ey to Dicrotendipes Iarvae of the southeastern U.S. 8.59
Einfeldia 8.65
K ey to Einfeldia Iarvae of the southeastern U.S. 8.66
Endochironomus 8.68
Endotribelos 8.69
Fissimentum 8.70
Gillotia 8.71
Glyptotendipes 8.72
K ey to G lyptotendipes larvae of the southeastern U.S. 8.73
Goeldichironomus 8.78
K ey to G oeldichironomuslarvae of the southeastern U.S. 8.79
H arnischia 8.83
H yporhygma 8.84
Kiefferulus 8.85
K ey to Kiefferuluslarvae of the southeastern U.S. 8.86
Kloosia 8.88
Lauterborniella 8.89
Lipiniella 8.90
M anoa 8.91
M icrochironomus 8.92
M icropsectra 8.93
K ey to M icropsectra larvae of the southeastern U.S. 8.94
M icrotendipes 8.99
N eostempellina 8.100
Neozavrdia 8.101
Nilothauma 8.102
0 misus 8.103
Pagastiella 8.104
Parachironomus 8.105
K ey to Parachironomuslarvae of the southeastern U.S. 8.106
Paracladopelma 8.112
K ey to Paracladopel ma larvae of the southeastern U.S. 8.113
Paralauterborniella 8.116
Parapsectra 8.117
Paratanytarsus 8.118
K ey to the Paratanytarsuslarvae of the southeastern U.S. 8.119
Paratendipes 8.122
Phaenopsectra 8.123
Polypedilum 8.125
K ey to Polypedilum larvae of the southeastern U .S. 8.126
Pontomyia 8.136
Pseudochironomus 8.137
Rheotanytarsus 8.138
K ey to Rheotanytarsuslarvae of the southeastern U.S. 8.139
Robackia 8.141
Saetheria 8.142
K ey to Saetheria larvae of the southeastern U.S. 8.143
Stelechomyia 8.144
Stempellina 8.145
K ey to Stempellina larvae of the southeastern U.S. 8.146
Stempellinella 8.148
K ey to Stempellinella larvae of the southeastern U.S. 8.149
Stenochironomus 8.151
Stictochironomus 8.152
Sublettea 8.153
Tanytarsus 8.154
K ey to Tanytarsus Iarvae of the southeastern U.S. 8.155
Tribelos 8.164
K ey to Tribel os larvae of the southeastern U.S. 8.165
Virgatanytarsus 8.167
Xenochironomus 8.168
Xestochironomus 8.169
Zavrelia 8.170
Zavreliella 8.171
Chironomini genusIII 8.172
Chironomini genusIV 8.173
H arnischia complex genus A 8.174
H arnischia complex genus B 8.175
H arnischia complex genus C 8.176
H arnischia complex genus D 8.177
Bibliography 9.1
Checklist of the Chironomidae of North and South C arolina 10.1

INTRODUCTION

and key to subfamilies

HIRONOMIDAE - a word that brings either a smile, a groan or a look of terror, or perhaps all! Chironomidae - a fantastically diverse large group of small flies whose larvae inhabit just about every niche possible in most freshwater aquatic ecosystems- not to mention marine and terrestrial forms.

As a benthologist, at one time or another you will have some sort of interaction with Chironomidae. W hether it is a pleasant or unpleasant encounter may depend on how well you feel about and what you know about the organisms with which you are working. Yes, identifying chironomids can be a daunting task, but it is possible - sometimes even easy! - and the amount of information one can gather can be prodigious. Too many studies list Chironomidae only at the family level; identification at the generic level introduces many moredata, while species-level identifications provide the most data, especially when biodiversity is an issue.

The C hironomidaetypically have been shunned by many benthologists because of perceived difficulties in specimen preparation, identification, taxonomy, morphology and literature.

The Family Chironomidae

The Chironomidae are a relatively primitive (phylogenetically speaking) group of flies (D iptera) in the suborder Nematocera. Commonly called nonbiting midges, or "blind mosquitoes", as adults and "bloodworms" as larvae, chironomids areclosely related to mosquitoes (Culicidae) and biting midges (Ceratopogonidae). Unliketheir nasty relatives, female chironomids do not bite!

The Chironomidae are usually the most abundant macroinvertebrategroup, in numbers of species and individuals, encountered in the majority of freshwater aquatic habitats. In addition, chironomids

Hey - wéve got a new guy in the lab! Let's make him do the chironomid identifications!!!
D epending on the taxa, identification can be easy or perhaps difficult; I've examined collections of Chironomidae that were basically 100% correctly Chironomidae that were basically 100% correctly
identified, but I've also seen some collections with as many as 65% of the specimens misidentified!

Hopefully, this manual will make your life with Chironomidaeeasier. It is possiblethat, with experience, you will eventually be able to identify most chironomids to genus, or even species. Note that some identifications can be done while the larvae arestill in fluid preservative (BUT only with much experience!!!!)

\qquad

An adult midge, Dicrotendipes thanatogratus
have invaded the sea, being found along coastlines world wide and occurring at least 30 m down in the ocean, and the land, where they may be encoun-
tered in a corn field or in dry hardwood forest litter. They occur on all continents - chironomids are the only free-living holometabolous (meaning with complete metamorphosis; a four stage life cycle) insects to do 50 - and arefound living from heights of 5600 m on glaciers in N epal down to depths of over 1000 m in Lake Baikal. Chironomid larvae, pupae and adults form an integral part of the food web, serving asfood for larger invertebrates, fish, amphibians and birds. M any larvae possess giant chromosomes and have been used extensively in genetic research. Chironomid adultsareconsidered nuisances when large emergences occur in close proximity to human habitations. They have also been implicated in allergenic reactions in humans (see Ali (1991) and Armitage et al. (1995) for an overview of pestiferous Chironomidae). Chironomids are recorded as pests in rice fields, wherethelarvaeminetheleaves and eat the seeds and seedlings. In somewhat of a turnabout, relatives of these pest species (mostly members of the genus Cricotopus) may find a use in biological control of nuisance aquatic plants in the southern US.

H owever, to benthologists, the C hironomidae have long been known as potential indicators of water quality. Some groups of genera and/or species are known to inhabit water of high quality; others are well known dwellers in water of poor quality. Unfortunately, many of the larvae have been (and some still are) very difficult to identify, and much of the literature is burdened with studies donewith C hironomidae that were misidentified.

Some of the confusion is due to the complexity of thetaxonomy of thefamily. TheC hironomidaehave suffered a "double whammy" of sorts: a) their names were confusing due to changes necessitated by the C ode of Zoological N omenclature at the time, and b) therewere two system of classification, onebased on adults, the other on immature stages. Ashe (1983) gives an excellent review of the taxonomic problems the Chironomidae have gone through. Today thesedifferences have been largely reconciled because knowledgeable workers utilize characters from all life stages to separate species and delimit

Chironomid larvae, pupae and adults form an integral part of the food web, serving as food for larger invertebrates, fish, amphibians and birds.
genera. A comprehensive update of our knowledge of the biology and ecology of the Chironomidae has recently been published (Armitage et al. 1995). Identifications of chironomid larvae became much more realistic in 1983 when the first volume of the EntomologicaScandinavica "H olarctic K eys", dealing with larvae, was published (W iederholm 1983). A pupal volume was produced three years later (W iederholm 1986), followed by the adult volume (W iederholm 1989). The volumes combine keys, excellent illustrations and, most importantly, diagnoses for each genus. (A diagnosisis a short description of the characters of a taxon that will separate it from other similar taxa.) H owever, many new genera and previously unknown larvae have been described and some previously described genera have been reorganized since the publication of the larval volume. These books remain a necessity for chironomid workers but must be supplemented with more recent literature.

The family is divided into 11 subfamilies, seven of which occur in N orth America. Two of the subfamilies, Telmatogetoninae and Podonominae, are relatively restricted in habitat; two other subfamilies, the D iamesinae and Prodiamesinae, are, depending on your locality, relatively uncommon. Themajority of C hironomidae you will encounter will probably be members of the subfamilies Tanypodinae, Orthocladiinae and Chironominae.

H ow to use this manual

A rea covered: This manual was written for use in the states of North and South Carolina, and will identify all genera known to me from these states. In actuality, this manual should identify larvae of most genera and species encountered on what is commonly called the Southeastern C oastal Plain. States covered include Alabama, Florida, Georgia, eastern Kentucky, Mississippi, North and South C arolina, eastern Tennessee and most of D elaware, Pennsylvania and Virginia. The manual should be useful for most of the eastern United States, with the caveat that the further that one is from the Southeast, the less effective the manual will be.

Illustrations and abbreviations: The majority of the illustrations in this manual were produced by the author from southeastern US specimens, most of which were reared or otherwise associated. Some are somewhat schematic in that all parts of a structure are not drawn. For example, in the Chironominae, often only one ventromental plate is drawn, and only a portion of the ventromental striae are shown; premandibular brushes are often not drawn unless they are an important character, and the pecten mandibularis is not fully drawn on most mandibles. When specimens were unavailable or not suitable for illustration, figures were borrowed from other sources. Thus, some illustrations differ in the amount of shading, structures included, etc. If the illustrations were from publications other than my own, the source of each figure is cited at least once within the manual.

Abbreviations used are explained in the Glossary that begins on page 1.10.

Taxonomy: In general, I havenot used the author's name(s) for genera and species within the text and keys; complete names are listed in chapter 10. For arrangement of tribes and subgenera, see C aldwell et al. (1997) or Oliver et al. (1990).

M any larvae are undescribed or unassociated with the adult stages. Species definitions in the Chironomidae are, for the most part, based on the adult male. Several undescribed larval "types" are known on the genus and species level. These have
been given letter or number designators, such as "Tanytarsus sp. A" or "Chironomini genus III". These may represent taxa with described adults, or species new to science. When reared or otherwise associated with an identifiable life stage, the names can be updated. M any new, undescribed species are included in this manual. However, a manual such as this is not the proper place to publish new names and descriptions. Thus, as is noted in the text, these new species will be described in papers currently in progress. However, the following changes are proposed in this manual:

Corynoneura tarisRoback is considered ajunior synonym of C. lobata Edwards

Einfeldia austini (Beck \& Beck) is moved to Chironomusand is now Ch. (Lobochironomus) ausini (Beck \& Beck).

TheLayout: Thismanual is divided into ten chapters. This introduction is the first chapter, followed by seven subfamily chapters, which arethen followed by a Bibliography and a checklist of the Chironomidae of N orth and South C arolina. The subfamily chapters are arranged phylogenetically; chapters are paginated separately. Each subfamily chapter has a key to genera which is followed by "generic units" in alphabetical order. Undescribed genera are at the end of each chapter. Each genus unit consists of several parts:

A Diagnosis, or short descriptive summary of the genus' morphological characters which will separateit from similar taxa. Although this manual is intended for stand-alone use, it will be most effective when used in conjunction with the more detailed diagnoses in W iederholm (1983). N otethat the diagnoses in this manual pertain to character states of southeastern taxa! Some genera include species that are different from those in the Southeast. For instance, Dicrotendipes lobiger, a species not known to occur in the Southeast, has a frontoclypeal apotome- all southeastern D icrotendi ipeshave a frontal apotome.

A N otes section which contains additional information concerning the taxonomy and biology of the genus.

An Additional References section lists additional literature that may give more information. Wiederholm (1983, 1986, 1989) is always considered to be an additional reference.

Illustrations of important body structures are included for each genus; a K ey to species and a N otes on species section are included when possible.
The K eys: The keys are written for fourth instar larvae! M easurements are only valid for fourth instar Iarvae, but ratios may still be useful for other instars. Illustrations are usually arranged from left to right and/or top to bottom with regards to the order of statements in the couplet(s). If you are new to chironomids, you'll have to start with the key for subfamilies that starts on page 1.41 at the end of this chapter. Key your larva to subfamily, then go to the subfamily chapter. There you may key your larva to genus. If it fits, then key your specimen to species, if a species key is available for that genus. W hen (if!) you get to the species, check to see if there are additional notes (" N otes on species") concerning that species.

H ow to use a dichotomous key: The identification keysused in thismanual aredichotomouskeys. N ever used a dichotomous key before? Read on!

A dichotomous key is basically a series of either/or statements ("dichotomous" means "dividing into two parts"). O nerunsthrough thestatements making choices and eventually should end up with an answer or "identification". For example, let's say you have 4 objects - a red triangle named Phil, a white square called Bobby, a white circle named Mickey and a red circlenamed Jerry. H ere's how a key would work to identify them. The first couplet (group of choices) would read:

1 O bject red in color 2
1' O bject white in color 3
H ereyou have a choice- your object is either red or white. If it's red, go to couplet " 2 "; if it's white go to couplet " 3 ". W hen we go to " 2 " we see:

[^0]W hat's that " 1 " doing in parentheses after the " 2 ", you may ask? T hat's the number of the couplet that led you to where you are now! In a long key, you can use these numbers to trace your steps back. Sometimes you may have to venture forward in a key when you're not sure which couplet fits your taxon, i.e., try going both waysfrom a couplet. W ith the parenthetical numbers, it's easier to retrace your steps. You can even start at an endpoint in the key (your "identification") and run through the key backwards!

The key ends with:

$3\left(1^{\prime}\right)$	O bject square ...
3^{\prime}	O bject circular

N ow you may think you've identified your objects, but now comes a very important part - you must check your "identification" against a diagnosis (a brief synopsis of the characters that distinguish your taxon from others that may resemble it) or a description (a full blown listing of the characters of the taxon). Pictures may al so help, but pictures can also be a trap into which you can easily fall. W hy? Because the picture may be of a structure that is similar in several organisms and may not illustrate a definitive character for your organism. W hen W iederholm (1983) first appeared, featuring figures of many Palaearctic species, there was an increase in "records" of those species from the U S. H mmm ...

Remember that if you start to key something, that something will end up somewhere in the key - but that doesn't mean you've identified it correctly. If you go to key a larva to species in the wrong genus key, sure, you'll end up with an identification - but it'll be wrong (trust me - I've seen this a lot!!). Another thing to remember about using a key - don't insert information that is not specifically put forth in the key at the point in the key at which you are working; i.e., answer only the question(s) in that specific couplet.

And, most importantly, you must have your identifications verified by a qualified expert! Be sure to read the sections on "Identifying Chironomidae" (page 1.14) and "Q uality Assurance" (page 1.28)

Acknowledgements

Although I am the sole author of this manual (and thus must accept all responsibility for any errors or omissions), a work such as this is the result of the combined efforts and assistance of many helpful people.

For procuring and managing the funding for this project I am grateful to Dave Lenat (NCDENR), Jim H arrison (U SEPA) and Susan Jackson (U SEPA).

Our understanding of the chironomid fauna is greatly enhanced by reared material, but it requires special effort to obtain such material. I am deeply indebted to the following workers who went the extra mile/kilometer and provided reared material: Robert Bode (N Y StateD epartment of Environmental Conservation), Mike Bolton (Ohio EPA), Broughton Caldwell (Lawrenceville, GA), C arlosde laR osa (Brooker Creek Preserve, FL), Barb H ayford (WayneStateC ollege, N E), M ikeH eyn (FD EP, Tallahassee) Rick Jacobsen (Everglades N ational Park), Bob Rutter (FDEP, Punta Gorda), Ford Walton (FD EP, Punta G orda), Charles Watson (SBI Environmental), and Tom Wilda (D uke Power, NC).

M any other workers graciously supplied specimens. I thank Peter Adler (Clemson University), Don Azuma (AN SP), Mike Bolton, Steven Brooks (The Natural History M useum, London, England), Broughton Caldwell, Jim Cuda (University of Florida), Jeff Cumming (Canadian National Collection), John D avis and his staff at Environmental Services \& Permitting (Alachua, FL); C arlos de la Rosa, D ana D enson (FDEP, O rlando), Larry Eaton (NCDEN R), SteveFend (USGS, M enlo Park, CA), H arry Gaymon (SC D epartment of H ealth and Environmental Control), Jon Gelhaus (ANSP), Stephen Grabe (Environmental Protection Commission of Hillsborough County, Tampa, FL); Phyllis Guthrie (G ainesville, FL), Tor Christian H estenes (University of Bergen, Bergen, Norway), Rick H oebeke (C ornell U niversity), Rick Jacobsen, Ryan King (Duke University), Don Klemm (USEPA), Steve Krotzer (Alabama Power), D ave Lenat (NCDENR), Phil Lewis (USEPA), Jim Liebherr (Cornell University), Rob M attson (SuwanneeRiver Water M anagement District, FL), Steve M oore
(Clemson University), Peggy M organ (FD EP, Tampa), John M orse (Clemson University), Steve M oulton, (USGS, Denver, CO), Chuck Parker (Great Smoky M ountains National Park), Bill and Jan Peters (Florida A\& M University), Bob Rutter (FDEP, Punta Gorda), Wolfgang Schacht (Zoologische Staatssammlung, M unich, Germany), M ichelleScharer (University of Puerto Rico), M arty Sneen (EA Engineering, Science, \& Technology, Inc., D eerfield, IL), M artin Spies (Zoologische Staatssammlung, M unich, Germany), D oug Strom (FD EP, Port St. Lucie), D avid Wahl (American Entomological Institute, Gainesville, FL), H arold Walther (Canadian National Collection), Ford Walton, Charles Watson, Cliff Webber (Auburn University), Tom Wilda and Doug Wymer (Tennessee Tech University) for the loan, gift or opportunity to examine some of the specimens utilized in this study.

Thanksto the following workers who reviewed sections of the manual or tested keys: Bohdan Bilyj (Biotax, Otobicoke, O ntario, C anada), Mike Bolton, Mac Butler (North Dakota State University), Broughton Caldwell, Pete Cranston (University of C alifornia, Davis), Anker H alvorsen (Bergen, Norway), Rick Jacobsen, D aveLenat, SteveM oulton and his crew at USGS (Brian Creutzburg, Gregg Easley, T homas G reene, Scott G rotheer, Rob H ood, James K ippen, Brian K restian, D an Pickard, Brady Richards, M arcia Siebenmann, Joe Slusark), Bob Rutter, Ole Sæther (University of Bergen, Bergen, N orway), M artin Spies, Jim Sublette (Tucson, AZ), Charles Watson and Tom W ilda.

Judy and Barry M errill (M errill C onsultants, D allas, TX) supplied much of the funding for my laboratory and computer equipment- thanks again, guys! Their generosity has made it far easier to accomplish the gargantuan task of producing this manual.

M y wifeLindahelped securefunding for this project, has handled the administrative tasks, proofed text, prepared the table of contents and has put up with the isolation that results from my being almost totally involved with the production of this manual for the last four years. I am forever grateful for her help, love and understanding.

M orphology

Another component of the complexity of theC hironomidae is their morphology. Just as many species have gone under several different synonyms, many anatomical structures have often gone under several names. For example, the mentum has been called the hypochilum, hypostoma, hypostomium, hypostomial plate, labium, or labial plate. M any of these changes in structure names were evolutionary, due to our increased knowledge of chironomid morphology. Sæther (1980a) produced a glossary of chironomid morphology terminology that is largely followed today.

Chironomid larvae bear a sclerotized, non-retractile head capsule, with opposing mandibles, on a narrow, cylindrical body. There usually is one pair of unjointed anterior parapods ("prolegs") on the first body segment, one pair of unjointed posterior parapods on the last body segment, which also bears a pair of setae-bearing procerci, and one to three (usually two) pairs of anal tubules. Someterrestrial chironomids and others living in specialized environments have lost one or both pairs of parapods. Thereare usually no spiracles, except in somemembers of the subfamily Podonominae. There are four larval instars (the larvae sheds its skin four times before pupating).

The Head Capsule

The majority of the characters used for larval identification arefound on the sclerotized head capsule, with most of the more easily found characters located on the ventral side of the head. Below is a ventral view of the head capsule of D icrotendipes, a typical member of the subfamily Chironominae; most other N earctic subfamilies are generally similar, except for the Tanypodinae (see page 6).

The premandibles are located below the surface of the labrum; they areabsent in somesubfamilies. The number of apical teeth and the presence or absence of a group of setae, the premandibular brush, can be of importance.

M any characters useful in identification are located on the mandible. These include the number and shape of the inner, apical and dorsal teeth, the presence or absence of a seta interna, the morphology of the seta subdentalis and the pecten mandibularis.

The maxilla bears structures useful in identification, such as the maxillary palp and various setae and setal combs.

The placement and/or shape of a pair of setae posterior to the mentum, the setae submenti, areof importance in some taxa.

The mentum is often one of the most noticeable structures of the head capsule. The shape and number of teeth can be of great importance in identification. In several subfamilies, ventromental plates are present. A group of setae, the beard, may be present under or near the ventromental plates and/or the margin of the mentum or the maxilla.

M entum of an Orthocladiinae larva, Rheocri cotopus robacki, showing beard setae beneath ventromental plates.

D orsal view of the labrum

Although located on the dorsum of thehead capsule, the labrum is usually folded under in slide mounts and is most often viewed "dorsally" in a ventral aspect. Several very important setae and other structures are located on or near the labrum - the \mathbf{S} setae, the labral lamellae and the pecten epipharyngis.

D orsal view of the head capsule

Posterior to the labrum are the labral sclerites. All of the labral sclerites figured above are not always present, dependent upon various degrees of fusion of the sclerites. Labral sclerite 1 is often fused with the apotome, forming a frontoclypeal apotome.

In all subfamilies, the antennaeprovideimportant characters. A commonly used character is the antennal ratio, AR. This is the length of the basal antennal segment divided by the combined lengths of the remaining segments (the remaining segments are collectively termed the flagellum). The apical segments are sometimes difficult to discern, especially in those genera with 6 -, 7 - or 8 -segmented antennae. The placement and shape of the Lauterborn organs, sensory structures usually located on the second antennal segment or at its apex, are important, as is the location of thering organ. Phase contrast opticsaid greatly in observing these hyaline(translucent) structures of the antennae and the dorsum of the labrum.

The tanypodine head capsule

M embers of the subfamily Tanypodinae differ from all other subfamilies in having retractile antennae and numerous other uniquely modified structures. M any of the specialized structures, such as the ligula, paraligula and the M appendage, are modifications of the premento-hypopharyngeal complex and associated structures, located dorsally of the mentum.

All Tanypodinae are predacious; the long apical tooth of the mandibleiswell suited

Conchapelopia maxillary palp, with three segmented b sensillum

Glossary and Abbreviations

0 utdated terms are in italics; plurals are in parentheses. M ost structures are illustrated in figures on the previous pages.
accessory blade - smaller elongate structure adjacent to antennal blade, usually partially fused with antennal blade at base .
accessory tooth - in Tanypodinae, small tooth between basal tooth and apical tooth of mandible; see also dorsal accessory tooth.
anal seta (setae) - seta(e) located on apex of procercus; also termed procercal setae.
antennal blade - elongate structure adjacent to antennal flagellum, arising from apex of first segment.
apotomal fenestra - circular to oval to quadrate area, usually anteromedial, on apotomethat is lighter in color, a different thickness or of a different "texture" than the remainder of apotome.
apotome - see frontal apotome.
AN SP - Academy of N atural Sciences of Philadelphia.
AR - antennal ratio. In larvae, the ratio of the length of the basal antennal segment divided by the length of the combined apical segments (theflagellum). W hen I measurethe flagellum, I measure from the bottom of segment 2 to the apex of the last segment; intersegmental membranes are incuded.
b sensillum - small, cylindrical, one to three sectioned ("segmented") sensillum on apex of maxillary palp; useful in delimiting genera in the Thienemannimyia group of tanypod larvae.
basal tooth - large tooth near base of seta subdentalis of tanypod mandible.
beard - in chironomid larvae, a group of setae present beneath or adjacent to the lateral margin of the mentum and ventromental plates. A cardinal beard, the type most often found in orthoclads, is one which originates from the cardo of the maxilla; it often appears as setae beneath the ventromental plates. A ventromental beard originates from the dorsal, inner surface of the ventromentum; it isfound in prodiamesines and the orthoclad Diplocladius.
bifid - divided into two parts.
cardo (cardines) - the inner basal portion of the maxilla.
chaetulae laterales - simpleor pectinateblades on each side of the pecten epipharyngis.
clypeus - dorsal sclerite of the head immediately anterior to the frontal apotome that bears the $S 3$ setae.
conjunctiva (conjunctivae) - intersegmental membrane(s).
corona - in Tanypodinae pupae, theclear area near apex of thoracic horn.
crenulate - incised in a regular manner, so that a margin appears to have a series of small rounded or truncated teeth, as in the margin of a scallop shell; adjective: crenulated.
digitiform - finger-like.
distal - towards the apex.
dorsal - referring to the upper surface or "top" side.
dorsal accessory tooth - dorsal tooth or teeth of mandiblein addition to the "normal", more apical and larger dorsal tooth; present in several species of Tanytarsus.
dorsum - the upper surface; the "top" side.
exuviae - shed skin. "Exuviae" is the singular and plural form of this word; the use of theword "exuvium" is incorrect.
FAM U - Florida A \& M University, Tallahassee, FL.
FDEP - Florida D epartment of Environmental Protection.
flagellum - collective term for the apical segments of the antenna.
frontal apotome - elongate plate at center of dorsum of head formed by sutures that, in most taxa, will split and allow the pupa to emerge. If the clypeus is fused to the apotome, it is termed the frontoclypeal apotome.
frontal pit - small to medium, internal pit found near middle of anterior margin of the frontal apotome of some larvae (Dicrotendi pes) or directly anterior to apotome (Glyptotendipes). This is not the same struc-
ture as the apotomal fenestra (q.v.).
frontoclypeal setae - the $S 3$ setae, borne on the fused clypeus and frontal apotome.
in part - in the keys, this means that the taxon appears in the key more than once.
labial plate - mentum.
labral lamella (lamellae) - scale-like to plumose structures near median anterior margin of labrum.
labral sclerite(s) - central sclerite(s) directly anterior to clypeus and frontal apotomeon dorsum of head.
Iabrum - the anterior dorsal portion of the head capsule, essentially the upper lip.
lateral - towards the side (al so laterad)
Lauterborn organs - sensory organs on antennae, usually located on apex of second segment, but may ariseelsewhere. U sually digitiform but may beon pedicels and collectively may appear leaf-like (in Tanytarsini).
ligula - in Tanypodinae, a sclerotized, toothed, tongue-like internal plate near center of head.
M appendage - membranous, triangular to arrowhead shaped appendage (in Tanypodinae) near anterior center of prementum; usually bears the pseudoradula (q.v.).
maxilla (maxillae) - mouthpart located near base of mandible; bearsthemaxillary palp. Composed of cardo, galea, lacinia, stipes (these structures essentially fused in chironomid larvae) and maxillary palp.
maxillary plate - basal ventral side of maxilla that lies above striae of ventromental plate; the striae of the maxillary plate join with the striae of the ventromental plate to form tubes through which silk may be expressed.
medial - referring to the middle or towards the middle.
mentum (menta) - (usually) toothed plate on anterior ventral margin of head capsule, composed of a fused ventromentum and dorsomentum.
mola - inner portion of mandible below teeth.
nomen dubium (nomina dubia) - a scientific name that is considered doubtful or unknown in its application; it usually refers to
a name that can not be reliably connected to a taxon because there is no extant material of the taxon and/or the taxon can not be identified from its description.
NCDENR - N orth C arolina D epartment of Environment and N atural Resources.
palmate - like a hand, with finger-like processes.
paralabial plate - ventromental plate.
paraligula - small sclerotized structure adjacent to ligula.
parapod(s) - "legs" of larva; most larvae have a pair of anterior and a pair of posterior parapods (posterior pair often absent in terrestrial larvae).
pecten epipharyngis - structure located beneath the anterior central margin of the labrum, often composed of three scales, lamellae or spines (most Orthocladiinae), or may be a pectinate comb (many Chironominae).
pecten galearis - small, usually comb-like structure on the dorsal surface of the galea of the maxilla.
pecten hypopharyngis - in Tanypodinae, the comb-like structures on either side of the base of the ligula.
pecten mandibularis - group of setae near ventral apex of mandible.
pedestal - in tanytarsine larvae, the tubercle on the dorsum of the head capsule from which the antenna arises.
pectinate - comb-like.
pedicel - stalk or stem.
pharate - stage within the cuticle of the preceding stage, such as the pharate pupa developed within the larval skin, or a pharate adult developed within the pupal skin.
plastron - in Tanypodinae, the apical porous plate on the pupal thoracic horn.
plumose - featherlike, extremely finely divided.
postmentum - ventral area of head capsule posterior to the mentum.
premandible - one of a pair of elongate movable structures beneath the labrum, lacking or vestigial in somesubfamilies (Podonominae, Tanypodinae).
premandibular brush - group of setae near premandible.
prementum - internal, soft, ventral lobe of the premento-hypopharyngeal complex, located dorsal of thementum, that carries the ligula, paraligula, labial palp and M appendage.
procercus (procerci) - tubercle (may be elongate, especially in Tanypodinae) located abovethe anus; bears the anal setae apically. Absent or vestigial in some taxa.
proximal - towards the base.
pseudoradula - Iongitudinal band of fineto coarse points present on middle of M appendage.
ring organ - a circular structure (campaniform sensillum) found on the basal segment of the maxillary palp and the antenna.
rugose - wrinkled or corrugated.
SI, S II, S III, SIVA, S IVB - major setae of the anterodorsal surface of the labrum.
S 1-S 12 - setae of the head capsule (not including the setae of the labrum listed above). They are numbered from the anterior end to the posterior end of the head and may have specific names for the structure they arisefrom or to which they are closest. Those used in this manual are the S 1 and S 2 se tae, also termed the labral setae; the $S 3$ se tae, termed the clypeal or frontoclypeal se tae; and the 59 and $S 10$ setze of thetanypod genus Larsia.
seta interna - seta located near base of dorsal side of mandible; it is usually apically branched.
seta subdentalis - seta on mandible proximal to inner teeth.
setae submenti (singular: seta submenti) - pair of setae immediately posterior to mentum; in some taxa displaced farther posteriorly.
sternite - ventral portion of a segment (in pupae refers to an abdominal segment).
stria (striae) - fine, impressed line; usually refers to lines on the ventromental plates of Chironominae ("strial ridges"). Striate or striated refers to a structure having striae.
style - small (usually) cylindrical sensory organ usually located at tip of second antennal segment; occasionally located near middle of segment.
supraanal setae - setae ventral to procerci and dorsal to anal tubules.
taenia (taeniae) - flattened, ribbon-like setae; adjective form: taeniate
taxon (taxa) - a taxonomic unit, such as a species, genus, family, etc.
tergite - dorsal portion of a segment (in pupae refers to an abdominal segment).
teneral - recently molted. Teneral individuals susually do not havethe "normal" coloration and portions of the body are not yet completely sclerotized ("hardened").
thoracic horn - structure near the "shoulder" of pupa; may be a simple bag-like structure, tubular, ellipsoid, branched, plumose or absent.
triangulum occipitale - the roughly triangular area between the posterior margin of the head capsule and thefirst suture anterior to it (the secondary postocciptal margin).
tribe - a taxonomic unit between the subfamily and genus; e.g., similar genera within a subfamily are grouped into tribes. The only tribes used in this manual are those of the subfamily Chironominae: Chironomini, Pseudochironomini and Tanytarsini.
tubules - tubular gill-like structures originating from body segments X-XI (ventral and/or caudolateral tubules) or from near anus (anal tubules).
USGS - United States G eological Survey.
VP - ventral pore, a sensory structure on the venter of the head capsule.
venter - the lower or "bottom" side.
ventral - referring to the lower or "bottom" side. ventromental plate(s) - plate-like or shelf-like ventral outgrowth of the head capsule adjacent to each side of the mentum.
vortex (vortices) - circular group of spines located on posterolateral portion of some pupal abdominal sternites, formerly termed "pedes spurii A".

About the N ames ...

As noted previously, one of the confusing aspects of working with chironomids has been the apparently rampant changing of names. There are good reasons for some of this "name changing". First is the Principle of Priority, one of the main principles of the International C ode of Zoological Nomenclature (International Commission on Zoological N omenclature 1999). Simply put, the first name given an organism is the one that has priority over other names applied to the same organism at a later date. As with everything, there are exceptions! The "rules" have been suspended in some cases. An example would be when a name that has been in usage for a long time is discovered to be a junior synonym of a name that has not been used since it was published; the older name may be suppressed by a special ruling of the International Commission on Zoological N omenclature. This has happened with several names in the Chironomidae, including the family name itself! SeeAshe (1983) for a more de tailed explanation of some of the family's name changes.

Other name changes may occur when a species is transferred from one genus to another. In Latin, there are three genders: masculine, feminine and neuter. The gender of the species name must agree in gender with the genus name. Thus, when a species is moved from one genus to another with a different gender, the spelling of the species name may change. For example, Johannsen described the species Chironomusflavus. Chironomus, ending in -us, is masculine, so flavus is masculine to agree with it.

When the species was moved to Polypedilum (which ending in -um, is neuter), flavus was changed to flavum to agree in gender with the neuter Polypedilum. It seems pretty simple, doesn't it? H A! There are also many other things to consider when coining names, such as the derivation of the name, its case, its tense, etc. And, just to confuse things, in plants, many genera ending in -us are feminine! For an insight on the formation and meaning of scientific names, see Brown (1956) and Ride et al. (1985).

Wealso haveproblems with mistaken identities. The example I just used, Polypedilum flavum, is the correct name for the species that has been called Polypedilum convictum in this country for years! This happened becauseTownes (1945) synonymized the N earctic Chironomus flavus with the Palaearctic Chironomus convictus, because the adults were apparently inseparable (the species were originally de scribed in Chironomus; later taxonomic work showed that they belonged in the genusPolypedilum). However the immature stages are quite different. The necessity for a "namechange" was postulated in Epler (1992, 1995 - and note that I failed to correct the specific name for gender!) and finally made "official" in O yewo \& Sæther (1998).

Collecting and Preserving Chironomidae

Larval Chironomidae can be collected with any of thestandard benthic collection devices. Larvae are best preserved in 70-80\% ethanol. Formalin pre served larvae (and other life stages) can be difficult to clear if left in formalin for more than a few days or weeks.

M any workers add R ose Bengal stain to samples to facilitate "picking"- if you don't absolutely need it,
please don't use it. I strongly recommend that this stain N OT be used! Rose Bengal often excessively stains many head capsules, making them too dark for proper light transmission. This obscures many of the tiny structures present on chironomids, rendering specimens very difficult to identify. M ountants, such as CM CP-9AF, that stain specimens should also not be used.

Identifying Chironomidae

Believe it or not, identifying chironomid larvae is easier than identifying the larvae of some other aquatic groups! Chironomidaehavefascinated many aquatic scientists (it seems there is always a plentiful supply of "nuts"), and a large number of taxa have been reared and associated with their adult forms. The adults are important becausehistorically, most Chironomidae species have been described based on characters of the adult male. Compared to some other families of aquatic flies, Iarval Chironomidae offer numerous morphological characters for identification. Problems arise when all these easily seen characters are similar in closely related (or sometimes not so closely related) taxa. Some characters are minute and hyaline, and are visible best under a high power oil immersion lens, using phase contrast or Nomarski optics/lighting.

Because of the similarity of some of these easily observed characters, it often is not possible to identify a chironomid by simply matching structures of your larva with a picture of a structure. This apparently has been the case in many misidentified N orth American specimensl've seen; many of these specimens were apparently matched with pictures of structuresillustrated in W iederholm (1983), for they bear names of species known only from the Palaearctic. M atch-the-picture technology may work with identifying birds, but not, in general, with chironomids! Of course, there are many exceptions; they wouldn't be chironomids if there were no exceptions!! T herearemany species with H olarctic distribution patterns - and we will continue to find more such taxa as our knowledge of the N earctic fauna grows - but one must exercise caution when applying names to taxa which are apparently extralimital.

Identifying an organism does not mean just running it through a key and coming up with an "identification" - after all, if you start to key something out, it will key somewhere! That does not mean you have arrived at the correct destination. O nce a specimen has been keyed, you must double check your findings by consulting a diagnosis or description of the taxon you believe you have, or check it
against specimens in a reference collection, if such a collection is available and if the collection has been verified by an expert. You should also look for information on distribution and hopefully some illustrations of morphological structures unique to that taxon; a major failing of many identification guidesistheir lack of diagnoses or descriptions, and insufficient illustrations. W hilewell written keyswill work for some groups for some geographical areas, this is not al ways the case with our wonderful chironomids! A lot of misinformation has been "provided" by poorly written or researched keys. You should also keep in mind that the specimen you're keying out may be new to science and/or was not seen by the person who wrote the key(s) you are using.

There is no single document that will allow one to identify all North American chironomid larvae to the species level; W iederholm $(1983,1986,1989)$ and Coffman \& Ferrington (1996) go only to genus. There are two ways you can try to identify larvae to species:

1) Go to the literature and search for revisions of the taxa that you have already identified to genus. If the genus has been revised, you may be able to find keys or descriptions that will enable you to identify your specimen.
2) Look for regional guides to larval identification. Unfortunately, for N orth America there are very few such guides, and of those, two (Beck 1976, 1979; Webb \& Brigham 1982) should not be used because of the inaccurate information they contain. Regional guides such as those by Epler (1995) and Simpson \& Bode (1980) are reasonably accurate, although they are both out of date taxonomically (what's new?). The 1995 Epler guide was updated via the W orld W ide W eb, but this current manual supercedes it and will be the one updated via my web site from now on (see Sources).

The credibility of good identifications with a re gional guide may be high if the guide is extensively researched. Take for example the guide to Florida

Iarval Chironomidae (Epler 1995). This guide was possible because of the large amount of reared material that was available to the author. Previous workers in Florida, such as Bill and Beth Beck, Annelle Soponis and myself, had reared a considerablenumber of the species in Florida, and additional reared material and information had been provided by other workers such Broughton Caldwell, Bohdan Bilyj, M artin Spies, Mike Bolton, Jim Sublette, Bob Rutter, M ike H eyn, Charles Watson and many others. A larval guide to species level identification was possible because many of the larvae had been associated with the adult stage (although, of course, not enough!) in a relatively small area (Florida). This current guide to the C arolinas was possible for the same reasons- and most of the same people (see Acknowledgements). I also studied a large number of type specimens and in essence did mini-revisions of many of the genera in this manual.

In order to really get a handle on the larval Chironomidae of North America, more revisionary work utilizing all life stages is necessary. And more regional guides to larvae and pupae are needed!

Regional guides can sometimes be used outside of the region they cover, but one must exercise caution! Regional guides often omit taxa that may be present in your area, and includetaxa that probably will not be present in your area. In general, the chironomid fauna of any area is elucidated by the collection of adults (remember, most of the names of species are based on characters of adult males) and the rearing of larvae to adulthood, thus (hopefully) making it possible to identify the larvae. The Southeast US is one of the better known areas of theN earctic, but westill have dozens of undescribed species. We must use letter or number designators (sp. A, sp. 1, etc.) to "identify" such species until the immature stages are associated with described adults, or the complete metamorphosis of the new species is described.

Do not identify specimens to a level beyond your capability or the capability of current taxonomy. Given the incomplete status of our knowledge of some chironomid taxa, many times an identification
to a species group or complex will be all that is currently possible. Also, remember that most keys are based on fourth instar larvae. The fourth instar is the last larval instar; reared associations usually consist of the fourth instar larval exuviae, the pupal exuviae and the adult. Thus the fourth instar may be the only larval instar known with any morphological "precision". Some larval characters may change from one instar to the next; this is especially true for relative/ comparative lengths of some body parts; earlier instars may not, or in some cases, will not, key correctly. Thereis no shamein listing a specimen as a "D icrotendipes sp." when you can not be positive of your determination at the species level (without fourth instar specimens or associated material this may benecessary for many larvae). I have seen numerous studies and species lists based solely on larval identifications that would be impossible to achieve without associated specimens - just how werethose specimens identified? By comparing pictures? W ishful thinking? Intuition?D id somebody pin a list on a wall and throw darts at it? (I've seen some collections that apparently were identified in a manner similar to this!) If you can't realistically and accurately put a species name on a specimen, drop back and punt at the generic leve!!

If you are uncertain of a generic or species identification but are relatively sure that you're close to be ing correct with a name, you can use the modifier "cf.". This is an abbreviation for a Latin term that means "compare to". If you're uncertain about the genus, use: "cf. M eropelopia" (or whatever genus); if uncertain of the species use: "Goeldichironomus cf. natans" (or whatever). Q uestion marks can also be used, but many workers place them incorrectly, which leads to confusion! This confusion is best avoided by not using question marks in names. Also, do not use the modifier "nr." (an abbreviation for "near"; an example would be "Polypedilum nr. illinoense"). This implies a close phylogenetic relationship between your specimen and another species. M any keys are artificial constructs used to identify organisms; they do not necessarily imply phylogenetic relationships. Thus if your specimen keys to a couplet but doesn't quite fit, it does not automatically follow that your specimen is "near" the other taxon in that couplet.

Materials and Equipment Required for Larval Chironomid Identification

M icroscopes: You will need a dissecting (stereo) microscope for sorting larvae and mounting them on microscope slides. A compound microscope is necessary for identification; one with phase-contrast optics or better is recommended. The compound microscope should have several objective lenses: a low power scanning lens (4X, which gives "40 power" with a 10X eye piece), which makes it easier to locate your specimens on your slide, a 40X ("400 power") lens for most work and a 100X ("1000 power") oil-immersion lens; 10X and 20X objectives may be desirable, but are not necessary. Phase contrast opticsand a high power oil-immersion lens may be expensive, but are necessary for observing minute hyaline structures such as the SI, labral lamellae and the apical sensilla of the maxillary palpus. Another necessity is a measuring reticle (a glass disc etched with a grid or ruler line, which fits into one of the microscope's eyepieces); this accessory is needed to provide accurate length measurements (often the only way to separate some species) and to calculate ratios. Be sure to calibrate your reticle with a stage micrometer (usually, a precisely etched glass slide is used) at all magnifications you will be using.
M icroscope slides, cover slips (glasses) and boxes: W hatever size you find convenient. Use glass cover slips. DO NOT USE PLASTIC COVER SLIPS!!! It is often necessary to press down on cover slips to reposition or flatten larvae; plastic cover slips will scratch and becomeimpossible to see through. Round or square cover slips from 12 to 22 mm work well for most larvae. I favor the round ones because they allow more rotation and better positioning of your specimens. Although I have no empirical data, it also seems that round coverslips are less prone to air fingers than square or rectangular ones. N ote that small
round coverslips, from 6 to 10 mm , areuse ful for mounting associated larval and pupal exuviae with the emergent adult. Good slideboxes for maintaining reference collections are a necessity; don't scrimp on quality!
M ounting medium. There are two major kinds of mounting media:

1\} media in which chironomid larvae can be mounted directly from water or alcohol. CM C-10 is the most widely used of these; H oyer's (or Berlese's) is also sometimes used. These media almost always must be ringed to achieve any degree of longevity; slides made with them may be considered at best to be "semi-permanent".

2\} media which require "clearing" and/or dehydration of the material to be mounted. This includes mountants such as C anada balsam and Euparal. In general, these me dia can produce museum quality slides that can be considered "permanent".

Both types have their advantages and disadvantages - of course! N othing is ever simple!! We'll discuss CMC first, since it apparently is the medium of choicefor most benthologists involved in largestudies where hundreds or thousands of slides must be made.

CMC The negligible or reduced specimen preparation time no doubt makes CM C a favoritetime saver. CM C medium comes in several varieties - CM C-10 (and to a much lesser extent, CM C-9) appears to be the most widely used for invertebrateslide making. CM C is a water-based medium; mate rial can be mounted in it from alcohol or water, and the medium does impart a clearing action (clearing refers to themaceration or "digestion" of inner muscle tissue, thus allowing light raysto pass through thebody. Remember that a compound microscope
essentially shines a light through the viewed subject; if there is too much muscle tissue obstructing the light beams, one can not readily observe the structures necessary for identification.) N ote that CM C may not sufficiently clear larvae with thick, dark head capsules (some diamesines, orthoclads and chironomines) or specimens that have been heavily stained with Rose Bengal; in such cases, the larvae may have to be cleared in KOH before mounting (see under Canada balsam technique).
advantages: quick mounting; clearing action; possible to mount large numbers of larvae in short time; can be thinned with water or alcohol; water-base makes it easy to soak off old cover slips and remount material.
disadvantages: medium may develop "air fingers" unless (or even if!) coverslip is ringed; medium can crystallize; some larvae will not clear sufficiently for identification without prior maceration in KOH ; some larvaemay effervesce and produce gas bubbles after the coverslip is put on; medium is temporary or semi-permanent at best; bad odor and may be hazardous.

H oyer's medium apparently can no longer be purchased in the U S because it containschloral hydrate, a federally controlled substance. However, if you wish to go through the agony of obtaining a federal permit (or if you have a friend in the chemistry department), H oyer's may be prepared from the following ingredients:

30 g gum arabic (ground crystal sor powder, not flakes)
200 g chloral hydrate
20 cc glycerin
50 cc water
After mixing (it will take some time for all materials to go into solution - do not heat the mixture to speed the process!), filter the mixture through glass wool before usage and/or storage.
advantages: same as those for CM C .
disadvantages: same as those for CM C; not available commercially.

Canada balsam and Euparal. Thesemedia require xylene, cellosolve (ethylene glycol monoethyl ether), or for Euparal, "Euparal essence", for thinning, and specimens must be cleared and dehydrated before mounting.
advantages: produces superior slides for permanent storage.
di sadvantages: specimens must be cleared and dehydrated before mounting; long drying time.

Storage and dispensing of mounting media. In general, one should store media in the containers in which they were shipped; media may be affected by exposure to air or light. These containers are usually too large to work as a dispensing unit. There are containers made specifically to hold mountant, such as Wheaton balsam bottles (figured below). These bottles usually come with a rod or wand for dispensing the mountant. To help prevent evaporation or desiccation of the mountant, I put a small amount of petroleum jelly on the bottom lip of the bottle top. CM C, C anada balsam and Euparal can bestored in and dispensed from W heaton bottles, but I also use a small plastic squezze bottle(I use the little bottlesfrom pH testing kits made for pools) for dispensing CMC.

W heaton balsam bottle
Also see page 1.25 for a checklist of other materials that you may need.

Sorting Chironomid Larvae

M ounting every chironomid from a sample is often unrealistic when huge numbers are collected. I always sort chironomids before slide mounting them. If you are mounting several specimens on oneslide, you (hopefully) should at least have similar taxa under the cover slip and will be in the same part of the book when trying to identify them!
M any Chironomidae can be sorted to genus, even species, while still in fluid preservative, and representatives from each sorted group can be mounted.

N OTE, however, that you should have considerable of experience before identifying unmounted larvaefrom fluid, and you should frequently mount specimens from groups you already "know" in order to be sure you're still looking at the same taxa. It is always best to remain skeptical of one's abilities!

Chironomid larvae possess an abundance of characters that can be observed while in alcohol. Some of these are:

1. The general appearance of the body

Is the body setose ("hairy")? Are the setae scattered, arranged in lines along the side of the body or are they grouped as tufts near the posterior corners of a segment? Are there setae at the end of the abdomen? If so, are they long or short? Is the body curved or the head distinctly bent? Are posterior parapods present? Arethere any darkened claws on the posterior parapods? W hat is the condition of the anal tubules?

Parachaetocladius has extremely long anal seta (N ote: some other taxa also have long anal setae.)

The anal tubules of N ilotanypus and Pentaneura are longer than their posterior parapods

Are ventral or lateral tubules present near the end of the abdomen? If ventral tubules are present, how many pairs arethereand how arethey shaped? N ote the shape and length of the anal tubules.

ventral tubules on abdominal segment VIII of Glyptotendipes barbipes

ventral tubules on abdominal segment VIII of a Chironomus species

> ventral tubules on abdominal segment VIII of Goeldichironomus holoprasinus- note the bifid first pair

Size can also be considered; some larvae arehuge(Chironomus, Glyptotendipes); others aretiny (C orynoneura, Thienemanniella). But, remember that although different taxa may be different sizes, different instars of one species will be of different dimensions. First instar larvae are tiny and may be generally planktonic; depending on the mesh size of your net or sieves, you may collect second instar larvae as well as the third and fourth instars usually collected.

different instars of the same species will be of different sizes

2. Color of the body

Best seen with live or fresh specimens (most alcohol preserved specimens will bleach). Somelarvae may be white, cream, red, green or even purple! Some larvae may have color bands on the body. The larva of Cricotopus lebetis has its second and third thoracic segments colored a bright blue!

3. Shape and structures of the head capsule

Some larvae have rounded head capsules, others are apically pointed; some are flattened. There are larvae with bumps, knobs or projections on the head capsule. Note the length of the antennae (see 5). The mentum and associated structures are easily visible on larger larvae and can get you right to genus with sometaxa. In alateral or ventral view, the triangulum occipitale provides a good character to separate larvae of K iefferulus and G oeddichironomus(where it islarge) from those of Dicrotendi pes, Einfeldia and Chironomus (where it is small) while still in fluid preservative.

the head capsule of Brundinella is rounded

Denopelopia has a narrow head capsule

Rheocricotopus tuberculatus has a pair of small tubercles ventrally

the triangulum occipitale of Goeldichironomus is large

the triangulum occipitale of D icrotendipes is small

4. Color or markings of the head capsule

As with body colors, head capsules come in a variety of colors, from colorless to black. The dorsum and/ or venter of the head may bear stripes, spots or bars. The postmentum (the area of the head capsule posterior to the mentum, also called the gular region) or the posterior margin of the head capsule may be darkened. N ote how many eyespots are present and how they are arranged.

5. Antennae.

The shape and length of the antennae are diagnostic for many taxa. Larvae of the subfamily Tanypodinae have retractile antennae (they can be pulled into the head capsule) and are thus easily identified to subfamily while alive or in alcohol.
N ote the long antennae of Corynoneura.

N otethat the members of the tribeTanytarsini (subfamily C hironominae) havetheir antennae mounted on elongated pedestalswhich aresometimes adorned with spines and other projections.

Stempellina - note the ornate pedestal

Stempellinella - this particular species has a long curved projection from the pedestal

the unadorned pedestal of a Tanytarsus species

this M icropsectra has a spine on its pedestal

6. Cases

M any benthic larvae build tubes of detritus, feces, and other available materials that are cemented with silk (Chironomus, Glyptotendipes, Tanytarsus); some larvae build transportable cases and they may often be collected while still in their cases. N ote the distinctive cases of Zavreliella (like a hydroptilid caddisfly case) or the cases of Rheotanytarsus. Although it is not possible to identify most Rheotanytarsuslarvae to species, they can be separated into two major groups by the type of larval/pupal case - the Rh. pellucidus group has a case with a long attachment stem; the Rh. exiguus group's case is attached along its side.

Slide Preparation

W hat follows bel ow arethe "long-winded", detailed directions for slide-making, replete with all kinds of good tips. A simple, basic version is provided on page 29, which may beeasier to refer to while making slides. H OW EVER, besureto read ALL of the material below before you make slides for the first time!! - or if you think there is a chance you may learn something new here ...

1 Alwaysstart with clean slides and cover slips. N ote that although the box of cover slips may read "pre-cleaned", apparently a different definition of theterm is being used than that accepted by most biologists; slides and especially cover slipscan always benefit from a quick wipe before use (as long as a clean tissue is used).

2 Label the slide! Basically, slides without good labels are useless!! Few things are as irritating to a taxonomist than finding an interesting specimen with no collection data! Using codes or sample collection numbers is fine while the slide is in the lab, etc., but be sure to label the slide with complete information before sending it off to an expert for identification or verification, and before putting it into your reference collection. Years from now there is a good chance that nobody in the lab will remember to what the codes referred.

Always include complete collection data on any slides in your reference or voucher specimen collections!!!

There are several ways to put a label on a slide. Peel off and stick on labels are satisfactory, as are frosted slides, providing the "frosting' is fine. Avoid coarsely frosted slides - they do not allow fine writing. Satisfactory labels can also be made with transparent (regular "Scotch") tape. The tape method can be quite useful when making largenumbers of slides; one can lineup several slides and run a length of tape across all of them, and then use a knife or razor edge to separate the now labeled slides. Tape can be written on with pen or pencil; if using a pen, use at least waterproof ink. Alcoholproof India ink is recommended - sooner or later, someone will spill something like alcohol over the slide and ...

tape can be applied to several sides at once and then cut with a knife, etc.

Remember that a compound microscope inverts the image. If you want to be ableto look at your specimen and read the label on the slide, turn the slide around. This way you can read theslidelabel whilethe slideis on the microscope stage, and the head capsule will be oriented correctly.

Now you're ready to mount your specimens. W hat you do next depends on the type of mounting medium you are using. We'll discuss the most popular method using CM C first.

CM C method

M ost specimens need no preparation before mounting in CM C ; larvae may be mounted from alcohol or water. Place 2-5 drops of CMC on the slide (the amount will vary with how many specimens you aremounting, their size, etc.). It is generally to your advantage to use a small excess of mountant; this will reduce the possibility of "air fingers" from forming near the edge of the coverslip. H owever, if you are mounting many (more than seven or so) larvae under one coverslip, too much mountant may ooze out from under the slip and may carry a few larvae with it. If this happens, you can pick up the coverslip and try again, or you can sometimes push the larva(e) back under the slip.

Place the specimen(s) in the mountant, laying the larva(e) ventral side up (and head pointed up). You will note that allowing the larvae to sit in the mountant for a short period will soften them a bit and make them easier to manipulate. Tease out some of the larger bubbles that may form (don't worry about getting them all; most will disperse on their own). When mounting from alcohol or water, if too much liquid is carried with the larvae, the mountant may spread out too much - it sometimes is necessary to wick the liquid off the larvae by gently touching them to a paper towel or similar absorbent surface.

The number of specimens and coverslips per slide is your choice. Certainly, "special" larvae deserve their own separate slides, but for efficiency it is possible to mount numerous larvae on a slide. N otethat whileit is possibleto mount 10 or morelarvae under a single large coverslip (22 mm), and to put two such cover slipson aslide, such a technique frequently results in numerous larvae being oriented in aless than satisfactory position.

Some workers remove the

TIP: When mounting several larvae under one coverslip, it may be easier to lay them all on one side (all facing the same direction) and roll them over on their backs with the coverslip (after it is put on). Also, allowing the mountant to set up a bit after placing the larvae in it but before placing the coverslip on may help them stay in place when you finally do put the coverslip on.
head and mount it under a separate coverslip. This is not necessary for most larvae, but certain recalcitrant larvae do require decapitation in order to position the head capsule correctly. Be certain to mount the body on the same slide! Both head capsule and detached body can often be mounted under the same coverslip.

Using forceps(I usean old pair with relatively blunt points), take a clean coverslip and gently lower it over the mountant at an angle. Try not to drop the slip onto the mountant - this may trap air bubbles. If your mountant is a bit thick or has set up prematurely, dip the coversip in alcohol, wipe it off, and then dip it back in the alcohol again to pick up a tiny drop of alcohol, then placeit over the mountant; the drop of alcohol helps the coverslip settle over the medium more smoothly. Once the mountant has filled in under the coverslip, you can finish arranging your larva(e) under the slip. By pushing the coverslip from one side, etc., you can roll the larva(e) to the position desired. Then, gently press down on the coverslip over the head capsule with blunt forceps, pencil eraser, etc. to spread the mouthparts, and over the anal end to spread the claws of the hind parapods (especially important with tanypod larvae). It is important to spread the mandibles so that their inner teeth can be viewed.

Lay the slide on a flat surface and allow it to cure at room temperature for 2-3 hours. As it dries, the medium may shrink and produce air fingers at the
time saving to examine the specimens before ringing them, and only ringing the slides with unusual, important or new specimens. After this the slides can be placed in a drying oven (do not exceed 55° C) for a day or two (usually longer at room temperature) and are then ready for detailed examination. Slides may be examined earlier, but do not use the oil immersion lens on slides until the medium has dried; otherwise, the coverslip may lift off or shift sideways and specimens may be damaged, or you may coat your objectivelens with mountant!
"Bad" slides can be remounted easily by soaking the coverslip off in water; old slides may require soak-
ing for several days. If the coverslip has al ready been ringed with fingernail polish, the seal ant can beremoved with ethyl acetate.

If CM C slides are examined within $3-4$ weeks (and perhaps after even Ionger periods of time), it is usually possible to reorient larvae under a coverslip by applying pressure with blunt forceps over the area that needs to be moved. I do this at 40X power the low power scanning objective of my compound microscope. You may be amazed how much you can move or squash specimens. Use caution about too much pressure or the coverslip will break!

C anada Balsam/Euparal M ethod

Important or potentially important material should be mounted in a good permanent medium. The two media most often used are C anada balsam and Euparal. Although both of these media can impart a slight clearing action, it generally is not sufficient for observation of many characters (although small larvae will often be sufficiently cleared). Thus we have several more steps in this slide making procedure involved in preparing the specimens before mounting. These steps include clearing the larvae followed by baths in various liquids. You will need several small containers, one for each bath - two of which will need lids to prevent evaporation of the liquids. I use very small, nesting watch glasses. Bear in mind that there are several techniques for treating specimens before mounting. What follows are the best methods I have used. Note that if you are mounting larval or pupal exuvize (shed skins), you need only soak the exuviae in 95% propanol before mounting in either balsam or Euparal.

1- Begin with placing the larvae in a 10% solution of potassium hydroxide (KOH). KOH will digest the inner muscle tissue and leave the sclerotized portions of the larval exoskeleton, including the body. Larvae can be left in the solution over night at room temperature and by the next morning they should be sufficiently clear to begin the next step, dehydration. Or, to speed things up, the KOH soIution with the larvae can be gently heated to just
below its boiling point. You may wish to put the larvae and KOH in test tubes and then immerse the tubes in a beaker with boiling water, essentially a water bath. Or theKOH solution can be warmed directly on a hot plate using small ceramic pots containing the solution. Of course one must be very cautious not to over clear the specimens.

2 - Whether using heated or room temperature KOH , the next step for the specimens after clearing is a bath in distilled water. N ote that some clearing action may continue in the water - larvae that have been over cleared may seem to "disappear" at this stage! D on't worry too much - the specimens are still there. If the specimens are not easily visible, try lighting from below, or tilt the container; often bodies will line up along themeniscus. Transfer the specimens using a small dropper, or drapethem over a needle, or lift them between the tips of forceps be gentle! Specimens should sit in the water bath approximately 3 to 10 minutes, depending on the number of specimens and their size.

3 - Following the water bath, specimens are placed in glacial acetic acid (this container should remain covered) for 3-10 minutes.

4 - Traditionally, the last bath may differ whether Euparal or C anada balsam is used. If using balsam, specimens go into a bath of 95\% propanol layered
over cedar wood oil. N ote that it is probably not necessary to use cedar wood oil, but be sure to test this before you mount important material without the cedar wood oil bath. I have had success using a final bath of just 95\% propanol. If you are using Euparal, place in a bath of just 95\% propanol. As with previous baths, allow 3-10 minutes. W ith either fluid, the container should be covered to slow evaporation or absorption of atmospheric water.

From this point, directions are similar to theCM C method. Apply several drops of mountant on the slide. Using fine forceps or a needle, transfer the larva(e) to the mountant. The liquid transferred with the larva(e) will thin the mountant a bit. Arrange your larva(e) and put on a cover slip. N ote that because the head capsule has been cleared, it will not take as much pressure to spread the mandibles, etc. O ften, the weight of the coverslip will suffice. It is not necessary to ring slides made with C anada balsam or Euparal.

O ncetheslideis made, it should be placed in a drying oven. Slides made with balsam or Euparal take a much longer time to dry than those made with CM C. It may take two to three weeks before a Euparal slide can be looked at under an oil immersion lens.

If the mountant hardens too quickly, it may be thinned. W ith C anada balsam, use a bit of xylene; 95\% propanol will also work, but xylene usually does a much better job. Euparal can bethinned on theslidewith 95\% propanol; Euparal essenceshould be used to thin Euparal that has become too thick or has dried out in its dispensing or storage containers. If slides need to be remade or cover slips need to be replaced, use xylenefor balsam slides and Euparal essence or 95\% propanol for Euparal mounts.

Cellosolve (ethylene glycol monoethyl ether) may be used as a thinner for Canada balsam (if all the xylene, normally used as a thinner for balsam, has been evaporated from the balsam). M aterial that doesn't require extensiveclearing (lightly sclerotized body parts, etc.) can beplaced in a bath of cellosolve
and then directly in balsam. H owever, cellosolve is very prone to contamination with atmospheric water. This contamination can produce a cloudy mountant - and many times you won't know this until several weeks after the slides have been made. I no longer recommend using cellosolve.

W hen largenumbers of larvaefrom several sitesmust be processed, an efficient assembly line procedure can be set up with both the CM C and C anada balsam methods.

Checklist of necessary lab equipment and materials:

slides
coverslips
slide labels
mounting medium
slide storage boxes
compound microscope with (at least) phase contrast optics
stereo (dissecting) microscope
forceps ("tweezers")
labware (dishes, vials, watch glasses, etc.)
70-80\% ethanol
ethyl acetate
clear fingernail polish

* 95\% propanol (used because it evaporates much more slowly than ethanol)
* glacial acetic acid
* cedar wood oil
* xylene
* hot plate
* Euparal essence (only if using Euparal)
* $=$ if using Canada balsam or Euparal

A note on forceps. I use forceps with the finest points available, D umont \#5's. It is important to keep your forceps as sharp as possible. I've been in labs where technicians were using old, blunt forceps that felt like two hugetrees under the scope. O btain ahard honing stone for maintaining sharp points; you'll be amazed at the comfort difference using sharp forceps makes!

Slide making with
 CMC

(see text for more details)
Start with a clean slide. The first thing you need to do is to label the slide! A short code, etc., is OK, but be sure to add complete label data if the slide will be a voucher or reference specimen, or if you send it to an expert for identification or verification.

Then turn the slide around. Remember that a compound microscope inverts the image. This way you can read the slide label while the slide is on the microscope stage, and the head capsule will be oriented correctly.

Place 2-5 drops of CM C on the slide (the amount will vary with how many specimens you are mounting, their size, etc.)

Take a clean cover slip and gently lower it over the mountant at an angle. Try not to drop the slip onto the mountant - this will trap air bubbles.
Place the specimen(s) in the mountant, laying the larva(e) ventral side up (and head pointed up). Tease out some of the larger bubbles that may form (don't worry about getting them all; most will disperse on their own).

O nce the mountant has filled in under the cover slip, you can finish arranging your larva(e) under the slip. By pushing the cover from one side, etc., you can roll the larva(e) to the position desired. Then, gently press down on the cover slip over the head capsule with your forceps, pencil eraser, etc. to spread the mouthparts, and over the anal end to spread the claws of the hind parapods.

Lay the slide on a flat surface and allow it to cure at room temperature for 2-3 hours. Check for air fingers; if any are present fill them in with more CMC and allow to cure for 1-2 hours. Then use clear fingernail polish or more CM C to ring the coverslips. Slides can be placed in a drying oven (do not exceed $55^{\circ} \mathrm{C}$) for a day or two (perhaps longer at room temperature) and are then ready for examination.

Rearing Larvae

Identification of some larvae is greatly aided by, or sometimes requires, associated pupal or adult material. Sometimes we get lucky and collect late fourth instar larvae in which developing pupal structures, such asthethoracic horn or various setal structures, can be observed; these can be particularly useful for separating genera of theT hienemannimyia complex or Cricotopuslarvae from those of O rthocladius. Or one may collect pupae with larval exuviae still attached; sometimes pupae are found with developed adult genitalia within whilethe larval exuviaeis still attached. M ost often, though, one must collect living larvae and rear them to adulthood to make an association that may enable you to put a species name on a larva or with larval complexes that have not yet been deciphered.

Rearing refers to the process of allowing isolated larvae to go through the remaining stages of metamorphosis in order to associate the adult stage with the larval stage (and, of course, the pupal stage as well). Rearing most chironomid larvae is simple: collect live larvae in the field. W hether using a net or any other sampling device, place the material collected in a white(or any light color) pan, then sort through the detritus for larvae. U se an eye dropper for collecting and transferring larvae- do not pick up living larvae with forceps - they damage very easily! Place each larva in a separate 2 or 4 dram vial with a small amount of water from thehabitat, and placea cork or other permeable stopper in it (don't use cotton unless you have nothing else; adults may lose legs and antennae in it). Thevials can then beplaced
in racks or floats; I use closed cell foam with holes bored through it that are just a bit smaller than the diameter of the vials. M aintain an even temperature. This may require using a cooler; Iarvae are difficult to overcool for short periods, but succumb easily to high heat.

If field time is limited, take container (cooler) with samplers with live insects back to lab, and sort larvae there. In the lab, place the vials in rafts floating in water, or if air conditioned, they can probably be left at room temperature. I've had good results at temperatures ranging from $15^{\circ}-20+^{\circ} \mathrm{C}$. This will vary depending on what and where you have collected, time of year, etc. Lentic taxa tend to be easier to rear than lotic taxa; in the Southeast US, psammophilic taxa (sand dwellers) seem to be the most difficult to rear. Check vials daily. If you have collected fourth instar larvae, they may pupate, and eventually an adult may emerge. Allow the adult to harden for several hours or a day, and then knock it into the water with a squirt of alcohol. There you haveit: an adult with its shed pupal and larval skins! Be sure to add preservative in an adequate strength (70-80\% ethanol). Incomplete rearings (larva died in transition to pupa, or pupa died before adult emerged) can also be extremely valuable. Reared larvae may besent to expertsfor identification. You could be the person who makes an important association which allows better identifications for everyone. And, rearing and observing live larvae, pupae and adults can bequite interesting, educational and even fun!

a simplerearingsetup

Q uality Assurance

An often neglected factor in macroinvertebrate studies is the quality assurance of identifications. AIthough stringent guidelines may be in place for sample collection methods, chemical analyses or statistical tests, etc., too often too little attention is paid to monitoring or improving the abilities of lab personnel performing identifications.

We're all human - we all make mistakes - and we're working with biological units that are subject to variation. It's easy to mislabel a slide or write the wrong thing down if one is momentarily distracted - perhaps the person next to you in the lab had a big meal of beansthe night before, etc. I view these errors as "mechanical" mistakes that are basically inevitable; regular QA/QC procedures should handle or catch many of these types of errors.

Identifying something incorrectly is another story. N ovices and masters - all of us - need the feedback concerning the accuracy of our identifications. Then why don't more workers have their work checked?

I can postulate a number of reasons. The number one reason related to me by most biologists is that, although they'd liketo have their work verified, they don't have the funds to have their material checked by outside experts. This is not a good reason. After all, the beginning data points for any study involving organisms are the organisms, and everything should be doneto insure the accuracy of thosedata. And, sorry to say, passing the specimens around the lab for various opinions as to their identity isin many instances not asatisfactory solution. Funds for verification by experts should be incorporated into every study. In the past, it was often possible to get "free" identification help from taxonomists at museums, universities, etc. In some cases, this is still possible, but for many groups it no longer is. Museums have cut back on personnel, retiring systematists at universities are replaced by ecologists or molecular biologists with insufficient training in taxonomy, and many of the "old guard" have passed on. There are not that many students studying systematics today - why should they when the prospects for a job in systematics are bleak? Talk about
"biodiversity" is cheap and hypocritical when systematics is not supported. Administrators must be made aware of the importance of correct identifications and the necessity (sometimes) to use an outside expert.

Reason number two is that many naive biologists actually believe they know what they're doing when it comes to identifying organisms. However, identifying an organism does not mean just running it through a key and coming up with an "identification" (see the section on Identifying Chironomidae above). If you don't have your work checked by someone who knows what he/she is doing, there is a good chance you have misidentified some taxa.

Reason number three is related to number two some biologists believe that their work is so "good" that there is no reason to have it checked - it is a matter of personal ego. But this is supposed to be science we're doing, and a mainstay of science is the process of peer review.

And just in case there are non-believers out there who think that their work doesn't need to be checked, peruse the table below. It is a small sampling of the larval chironomid collections that I've examined recently. They come from a variety of sources: county, state and federal labs, universities and private consulting firms.

Collection	N umber of specimens	Number misidentified	$\%$ misidentified
G	70	4	6
J	57	4	7
H	185	22	12
A	14	2	14
C	73	13	18
D	32	9	28
I	85	26	31
E	61	26	43
B	50	24	48
F	86	52	60

C an you imaginea collection with 60% of thespecimens misidentified? Can you imagine writing a report utilizing such data? Imagine no longer, be cause it's been done!

Voucher specimens. All studies should have a collection of voucher specimens, i.e., specimens that are representatives of the organisms identified from that study. Ideally, such a collection would be verified by an expert.

Experts. Just who qualifies as an expert? H ow do you know whether you have a diamond or a cubic zirconium? A few things to consider:

Thefirst thing one needs to realize is that mere possession of a Ph.D. does not mean that the bearer is an expert in taxonomy. The worst collections I've examined were "identified" by people with Ph.D s. However, if that person earned his/her Ph.D. by doing a generic revision or similar systematic work, he/she could be considered expert at least with the taxon or taxa studied. Workers who have earned a Ph.D. may have been exposed to more serious taxonomic experience than those persons who have not spent as much time in a laboratory, but note that several N orth American experts do not hold aPh.D.! Experience gained through years of working may be more instructive than taking courses, provided that the experience has been tempered with ample verification of identifications. Nothing beats the opportunity to examine material that has been correctly identified; some taxa bear nuances (or a "gestalt") that illustrations or descriptions don't quite bring out. In some cases it may even be necessary to study type material (but please note that such a circumstance would be relatively rare!).

H as your "expert" published on the taxonomy of the group in question? W hat we're talking about here is not papers dealing with new records for distribution or life history studies, but genuine taxonomic work, such as describing new taxa, redescribing taxa, generic revisions, reviews of museum specimens, etc. In lieu of published taxonomic experience, a conscientious worker with many years of
experience, an up to date library and an extensive collection of verified reference specimens might be considered as an expert. Q uite often, benthologists have seen more material of some taxa than the museum taxonomist!

Is your "expert" able to confirm or deduce larval identities based on associated pupal or adult stages? W ithout such an ability, it would seem hard to deem such a worker as an expert, although, as outlined above, there are many workers who have a great deal of expertise with only one life stage.

In general, we chironomid taxonomists have our areas of taxonomic and geographic specialization; if we have a specimen whose identity is unclear, we tend to send it to the worker who is the specialist with that group (usually the last person that did any taxonomic work on it - barring those who have already passed on) or region. A major problem isthat there are not enough people doing genuine systematic research (and publishing it!) with Chironomidae in North America - the active publishing experts can be counted on two hands, and several fingers will beleft over. D on't forget that these experts are often fooled (just read the literature!) and biological entities seem sometimes to get a bit cranky if you try to put a name on them. For instance, although I've worked with the genus Dicrotendipes for over 25 years, I still can not consistently separate some specimens of the common species D. modestus, D. tritomus and D. neomodestus, in either the larval, pupal or adult stages. Whether this is dueto "natural" variation, hybridization or thepresence of unrecognized, cryptic species is not known. It still is not possible to separate at the genus level many species of Orthocladius larvae from those of Cricotopus and/or Paratrichocladius, although with dedication, larval/pupal/adult associations and lots of experience, the larvae of many species of these three genera can be identified at the species level.

If you learn one thing from this manual, it should be:

Literature

O ne of the most important things a good taxonomist has, in addition to lots of experience and a collection of correctly identified reference specimens, is an extensive, up to date library. K eeping up with the literature can be a daunting task, but today that task is aided by such helpful things as the annual NABS bibliographies and other literature available from Internet sites such as the Chironomid H ome Page (see Sources).

Literature that should be in every lab is listed below. Literature that is not to be trusted is Beck (1976, 1979) and Webb \& Brigham (1982); these publications are fraught with mistakes and misinformation.

If you're going to seriously work with Chironomidae, you should at a minimum obtain the following literature:

Armitage, et al. 1995
Coffman \& Ferrington 1996
Epler 1995
Oliver et al. 1990
Oliver \& Dillon 1994b
Sather 1980a
W iederholm 1983, 1986, 1989

Regional Guides

Epler 1995
Oliver et al. 1978
Simpson \& Bode 1980

Other handy literature, including bibliographies, checklists, works on eggs, pupae and adults; some of these publications deal with the fauna of other areas, but they may include some taxa that occur in the N earctic or may eventually be found here.

Ashe 1983
C aldwell et al. 1997
Fittkau 1962
Fittkau et al. 1976
H offrichter \& Reiss 1981
H udson et al. 1990
Langton 1991
N olte 1993
Oliver \& Roussel 1983b
Pinder 1978
Roback 1957, 1971
Schmid 1993
Simpson 1982
Simpson \& Bode 1980
Spies \& Reiss 1996
Townes 1945

Sources

Listed below are sources for laboratory materials, literature and additional information. Note that these are my recommendations and that the mention of a company, product or service does not indicate endorsement by any government agency!

Lab M aterials:

CMC mounting medium:
M asters C ompany, Inc.
890 Lively Blvd.
Wood Dale, IL 60191
(630) 238-9292

Fax: (630) 238-9297
General lab products:
VW R Scientific Products
http://www.vwrsp.com
Entomology equipment:
BioQ uip Products
17803 LaSalle Avenue
Gardena, CA 90248-3602
(310)-324-0620
email: bioquip@aol.com
BioQ uip is the best source for almost all entomological equipment and many books.

Livesay's, Inc.
456 West Columbus D rive
Tampa, FL 33602
(813)229-2715

Source for extra fine point D umont number 5 forceps (Swiss made; expensive, but the best).

Literature:

Unfortunately, the larval volume (W iederholm 1983) of the H olarctic Keys is out of print. The other Entomologica Scandinavica Holarctic Keys and other Ent. scand. chironomid related papers can be purchased from the following:

Scandinavian Entomology Ltd.
P.O. Box 24

S-240 17 S. Sandby,
Sweden
email: Lennart.Cederholm@zool.Iu.se

Entomologica Scandinavica on the web: http://darwin.biol.IU.se/systzool/zoomus/ZooD oc/Publ will take you to an index; click on the ESS numbers for a listing of Entomologica Scandinavica Supplements and their prices.

The H olarctic Keys are also available from:
Apollo Books
Kirkeby Sand 19
DK-5771 Stenstrup Denmark
email: apollobooks@vip.cybercity.dk
web: http://www.apollobooks.com

Information sources on the W orld W ide Web:

Chironomidae and Water Beetles of Florida:
http://www.concentric.net/-jhepler/index.html
Features checklists of the Chironomidae of Florida, North Carolina, South C arolina and updates, additions and corrections to Epler's manuals, including this current manual.

The Chironomid H ome Page

http://www.ouc.bc.ca/fwsc/iwalker/intpanis/
Central source of general information on Chironomidae and chironomid workers; includes a world-wide directory of chironomid workers and access to an extensive bibliography dealing with Chironomidae.

ChironomidaeL listserv

A listserv islikeadistribution housefor communications on certain subjects. Subscribers send in e mail messages to a central address, and the computer there sends that message out to all subscribers. To subscribe, simply send an email messageto majordomo@cf.ac.uk with the text: "subscribe Chironomidae L".

A Tour of the Subfamilies

As noted before, seven of the described subfamilies of C hironomidae occur in N orth America. We'll take a short morphologically-based tour of these subfamilies in presumed phylogenetic order, beginning with the most "primitive". N ote that characters referred to below pertain to North American members of the subfamilies; in other parts of the world some subfamilies have members which may differ. This tour is followed by a key to the subfamilies of the southeastern United States.

Subfamily Telmatogetoninae

Recognized by the short 4 segmented antennae (less than $1 / 5$ the length of the mandible), well developed mentum, the dense median brush of the prementum, and the lack of procerci and anal tubules. Two genera occur in North America; Telmatogeton is found on both coasts north to and including Canada; Thalassomya is apparently restricted to south Florida. All Nearctic members of this subfamily are marine coastal organisms, where they usually occur on al gae on rocks, but note that some H awaiian Telmatogeton species have invaded freshwater.

4 segmented antenna of Telmatogeton

Telmatogeton prementum with dense median brush

Thalassomya mentum with brush of prementum visible dorsal to it

Telmatogeton mandible

posterior segments of Telmatogeton

Subfamily Podonominae

Recognized by annulate 3rd antennal segment, lack of premandibles, a well developed mentum and long, well developed procerci. Five genera are found in N orth America. Podonomines are usually uncommon and restricted to cold springs, brooks and streams where the larvae are often associated with mosses.

Subfamily Tanypodinae

M embers of this subfamily are easily recognized by the retractile antennae, lack of premandibles, a well developed ligula and well developed procerci. The setae and sensory pits of the head capsule are also very useful in identifying genera and some species. These setae were reviewed in detail by K owalyk (1985). At least 39 genera occur in the Nearctic. All tanypods are predacious; larvae are found in all types of water bodies, including brackish water. Some genera possess hemoglobin and can live in low oxygen environments.

Tanypod mandibles can run from the extremely simple one of Rheopelopia

to one with a few teeth (Paramerina)

to one with many teeth
(Fittkauimyia, Psectrotanypus)

consist of two divided plates
(Procladius)

or have only a few widely separated blunt "teeth" (Ablabemyia)

Claws on the posterior parapods can be of importance; above are 4 examples from the genus Tanypus

Theligulaisalso very important in tanypod taxonomy

Subfamily Diamesinae

M ost N earctic genera have an annulate 3rd antennal segment, a well developed mentum and premandibles and 3 well developed brushes of setae on the prementum. Protanypus, the sole N earctic diamesine without an annulate 3rd antennal segment, can be recognized by the numerous setae on the head capsule, which al so bears two long ventrolateral posteriorly directed processes. Larvae of the Potthastia longimana group lack teeth on the mentum. Ventromental plates may be vestigial to well developed; in some genera they obscure the teeth of the mentum. There are no beard setae associated with the ventromentum. Procerci may be present or absent. Eleven genera occur in the Ne earctic, with at least one additional "genus" from the SE US known only as a larva. Diamesines are most often found in cold or cool flowing water, but also are found in springs and lakes.

Subfamily Prodiamesinae

Recognized by the 4 segmented antennae, with segments 3 and 4 very small; well developed premandibles, prementum without a brush or brushes of setae and the well developed mentum with large unstriated ventromental plates, these plates with setae (often very long) beneath or adjacent to them. Four genera are known from the N earctic, where larvae are found in springs, streams/rivers, ponds and the littoral zone of lakes.

Odontomesa fulva mentum and mandible

Prodiamesa olivacea mentum and mandible

Subfamily 0 rthocladiinae

A morphologically and ecologically diverse subfamily, usually with well developed antennae (although sometimes strongly reduced) with 3-7 segments, a prementum without a dense brush or brushes of setae; well developed premandibles, and a well developed mentum, with or without unstriated ventromental plates (although weak ridges may be present in some taxa), with or without setae adjacent to or beneath them; some terrestrial/semi-aquatic larvae lack procerci, anal tubules and/or anterior and posterior parapods. At least 81 described genera occur in North America, with several additional taxa that probably represent new genera. Larvae are found in all aquatic habitats, including coastal marine areas; some taxa are completely terrestrial.

simpleSI (Nanocladius)

plumose SI (Heterotrissocladius)
bifid SI (Cricotopus)

Labral setae are very important for identification

Pseudosmittia

M etriocnemus

Unniella

4 segments

5 segments

6 segments

Orthoclad antennae exhibit a wide range of segmentation and design

Cricotopus politus

Cricotopus sylvestris

Georthocladius

Nanocladius

Rheosmittia

Premandibles may be simple or multi-toothed, with or without a brush of setae

Orthoclad mandibles offer many characters for identification - their shape, number of teeth, presence or absence of a seta interna, and numerous other features

The mentum may lack ventromental plates, or ...

ventromental plates may be small to large and may have a beard beneath or adjacent to them

Pseudosmittia posterior without procerci and reduced parapods
Some species modified for terrestrial or semi-terrestrial life have reduced or vestigial parapods, procerci and/or anal tubules

G eorthodadiusposterior without procerci or parapods

Subfamily Chironominae

N earctic genera possess antennae with 5-8 segments; premandibles are present; the prementum does not bear large brushes. M ost N earctic chironomines possess a well developed mentum with striated ventromental plates (these plates are reduced and unstriated in theleaf-mining/wood-boring generaStenochironomus and Xestochironomus); a beard is not present in members of this subfamily. Two pairs of anal tubules are usually present; some genera may bear additional lateral and/or ventrolateral tubules; procerci and parapods are usually well developed. At least 71 described genera are found in North America, with several additional undescribed taxa that probably represent new genera. Larvae are found in all aquatic habitats, including coastal marine areas; some taxa can withstand extended periods of desiccation.

Antennae may provide important characters for species identification - above, 5 species of Polypedilum

Although most Chironominaehave 5 segmented antennae, several genera possess 6-8 segmented antennae

-
©

For identification purposes, the mentum and ventromental plates provide some of the most important characters, such as the number and arrangment of teeth on the mentum, its shape and the shape of the ventromental plates and the number of striae on them

Stenochironomus

H arnischia complex genus B

0
0
Cryptochironomus

Goeldichironomus

Key to the subfamilies of Chironomidae of the southeastern U nited States

Use this key in conjunction with the figures found in the "Tour of the Subfamilies" beginning on page 1.32

1 Antennae retractile within head capsule; a large well sclerotized ligula present ... Tanypodinae (C hapter 4)

1' Antennae not retractile within head capsule; a well sclerotized ligula not present

2(1') Third antennal segment annulated .. 3

2' Third antennal segment never annulated (second antennal segment or Lauterborn organ pedicels may beannulated)

3(2) Premandibles absent; prementum without 3 large brushes of setae; procerci well developed, very long

Podonominae (Chapter 3)

3' Premandibles present; prementum with 3 dense brushes of setae; procerci vestigial or small, never long D iamesinae (C hapter 5)

$4\left(2^{\prime}\right) \quad$ Striated ventromental plates present; no beard (setae) present beneath ventromental plates ..
\qquad Chironominae(in part) (Chapter 8)

4' Ventromental plates, if present, without striae (some Nanocladius, p. 7.89, may have a few markings on ventromental plates)

5(4') Ventromental plates strongly expanded, with beard (setae) beneath (beard very well developed in 2 genera); antennae4 segmented, with segments 3 and 4 very small Prodiamesinae(C hapter 6)

5' If ventromental plates strongly expanded, then beard either absent or antennae not 4 segmented ..

6(5') Ventromental plates fused to maxillae so not apparent; mentum concave; head flattened dorsoventrally, chisel-shaped; larvae mining in dead submerged wood and/or submerged leaves; may be common in Hester-D endy samplers contructed of plant materials \qquad
\qquad

6' M entum, ventromental plates and head not as above; in a variety of habitats that may include submerged dead wood or leaves

7

7(6') Antennae short, 4 segmented; prementum with well developed median brush; beard, procerci and anal tubules absent; exclusively marine in Southeast \qquad Telmatogetoninae (C hapter 2)

7' Antennae 3-7 segmented; prementum without well developed median brush; beard present or absent; procerci and anal tubules present or absent (usually present, but often absent in terrestrial genera); Iarvae in a variety of habitats, but if marine, then antennae with 5 segments Orthocladiinae (Chapter 7)

SU BFAM ILY

TELM ATOGETONINAE

DIAGN OSIS: Antennae 4 segmented, short (less than $1 / 5$ length of mandible). Labrum with simple S setae. Labral lamellae absent. Premandibles present. M entum with 11-15 teeth, ventromental plates and beard absent. Prementum with dense, well developed median brush. Body with well developed anterior and posterior parapods. Procercus absent. Anal tubules absent in eastern U.S. species.

N OTES: In the continental United States, this subfamily is restricted to coastal marine environments such as rocky shores, coastal jetties, sea walls, salt water canals, etc. Larvae are almost invariably associated with al gae growing attached to rocks. Two genera, each represented by a single species, occur in the eastern U nited States: Telmatogeton isfound from Florida to N ewfoundland; T halassomya is apparently restricted to Florida in the U.S. Larvae of this subfamily may be mistaken for some orthoclad larvae, but can be easily distinguished by the dense median brush on the prementum, short antennae and the absence of procerci.

Key to the genera of larval Telmatogetoninae of the eastern United States
1 Anterodorsal portion of head without medial sclerites anterior to apotome; premandible simple; mandible apparently with 3 inner teeth; mentum with 13 teeth \qquad Thalassomya

apotome

premandible

mandible

mentum

1' Anterodorsal portion of head with 2 well developed medial sclerites anterior to apotome; premandible with 3 blunt apical teeth; mandible with 4 inner teeth; mentum with 15 teeth (outer tooth very small; median tooth may appear notched) \qquad Telmatogeton

premandible

mandible

mentum

Genus Telmatogeton

DIAGN O SIS: Separated from Thalassomya by the presence of labral sclerites anterior to the apotome; premandible with blunt apical teeth; and 15 -toothed mentum.

N OTES: O nly one species, T. japonicus, is known from eastern N orth America; it is known to occur from Florida north to N ewfoundland (Epler 1992; 1995, Colbo 1996). I have not seen any specimens from the Carolinas but it undoubtedly occurs here and is recorded by Caldwell et al. (1997). I have found this species to be abundant in M arch on rock jetties in several locations in Florida. Adults "swarm" on or immediately above the rocks of the jetties. Larvae and pupae can be collected from algae scraped from the rocks; larval and pupal exuviae are easily collected by skimming beachsidefoam produced by wave action.

Although all Tematogetoninae in the eastern U.S. are marine, several species of Telmatogeton have invaded freshwater in H awaii.

ADDITIONAL REFERENCES: Tokunaga 1935; W irth 1952.

Genus T halassomya

DIAGNOSIS: Thalassomya can be separated from Telmatogeton by the lack of distinct labral sclerites anterior to the apotome; the simple premandible; and the lower number of teeth on the mentum.

N OTES: O ne species, Th. bureni, is known from Florida in the Southeast U.S. Although Oliver et al. (1990) record this coastal marine species from Florida to N orth Carolina (and include a record from landlocked K entucky!), I have not seen any specimens of T halassomya collected north of coastal central Florida (D unedin).

W irth (1952) described the larva from specimens collected from algae on rocks at Lake W orth in Florida. I have collected larvae of Thalassomya from al gae scraped from completely submerged rocks in the Intracoastal W aterway in Pompano Beach, FL, where they coexisted with larvae of the orthoclad genus Clunio. I have also collected adults of Th. bureni on rock jetties in Dunedin and K ey West, Florida.

W irth (1952) described the larva of Th. bureni with 11 mental teeth and 3 inner teeth on the mandible. H owever, specimens of Thalassomya I've collected possess 13 mental teeth (the outermost teeth are small and can be closely appressed to their neighbors) and 4 inner teeth on the mandible. Some specimens appear to have only 3 teeth, but apparently this is a result of the innermost tooth being closely appressed to the molar region of the mandible. M y specimens were not reared; if one assumes only one species occurs in the Southeast U .S., they represent Th. bureni.

ADDITIO N AL REFEREN CES: W irth 1949; 1952.

antenna

premandible

mandible

mentum

apotome

SU BFAM ILY

PODONOMINAE
DIAGNOSIS: Antennae 4 or 5 segmented, with annulated 3rd segment (in eastern N orth American species); last segments very small. Labrum with well developed, simple, sickle-shaped S I and S II setae, S III similar in size and shape or more slender. Labral lamellae absent. Premandibles absent. M entum with simpleor trifid median tooth and 7-15 pairs of lateral teeth; ventromental plates weakly developed; beard absent. Prementum with numerous rows of small pectinate scales apically. Body with well developed anterior and posterior parapods. Procerci well developed. Anal tubules present.

N OTES: Podonomine larvae are often associated with mosses in springs, brooks and small streams; recent evidence also indicates that at least one genus, Paraboreochlus, may be hyporheic. Two genera of Podonominae occur in the Carolinas: Boreochlus and Paraboreochlus. Three other genera occur in N orth America and are included in the key below; although not recorded from the C arolinas, some of these other genera may eventually be found in the Smoky M ountains. In eastern N orth America, Trichotanypus is recorded from Greenland; Lasiodiamesa from N ew H ampshire, New York, O ntario and Q uebec; and Parochlus from M aine, N ew York, N ew Brunswick, O ntario, Q uebec and Greenland.

K ey to the genera of larval Podonominae of eastern North America

1 M edian tooth/teeth deeply recessed from anterior margin of mentum Trichotanypus
(not recorded from the Carolinas and not included in this manual)
1' Median tooth/teeth not deeply recessed 2

Trichotanypus

2(1') M entum with 15 pairs of lateral teeth; each procercuswith morethan 10 setae Lasiodiamesa (not recorded from the Carolinas and not included in this manual)

2' Mentum with $6-8$ pairs of lateral teeth; each procercus with less than 10 setae 3

3(2') Procercus uniformly colored, either completely light or completely dark \qquad Parochlus
(not recorded from the Carolinas and not included in this manual)
3' Procercus light anteriorly, darkened posteriorly 4

4(3') Annulate 3rd segment of antenna long; supraanal setae absent or reduced; each procercus with 5 setae Boreochlus

4' Annulate 3rd segment shorter; supraanal setae long and dark; each procercus with 7-8 setae ... Paraboreochlus

Paraboreochlus

Paraboreochlus

Genus Boreochlus

DIAGN OSIS: This genus is separated from other podonomines by long annulate third antennal segment (much longer than segment 2); mentum with 6-8 lateral teeth; mandible without small spines on outer margin; supraanal setae not developed as long dark setae; and procerci lighter anteriorly, darker posteriorly, each procercus with 5 setae.

N OTES: There apparently is only one species, B. persimilis, in eastern N orth America. I've seen numerous adultsfrom several locationsin Great Smoky M ountainsN ational Park and northern G eorgia. Boreochlus larvae are usually found living among mosses, etc., in springs and small streams.

The larvae illustrated below were collected at springs in O hio and Pennsylvania and are not associated with an adult. An interesting character not mentioned in any previous description of a podonomine larva is the large style (or Lauterborn organ?) at the apex of the annulated 3rd segment that is subequal to the accompanying 4th segment, giving the appearance of a bifid apex

ADDITIONAL REFERENCES: Brundin 1966.

apex of antenna

mandible

mentum

premento-hypopharyngeal area

Genus Paraboreochlus

DIAGN OSIS: This genus is separated from other podonomines by the shorter annulate third antennal segment (slightly longer than segment 2); mandible with small spines on or near proximal outer margin; mentum with 6-8 lateral teeth; supraanal setae well developed as long dark setae; and procerci lighter anteriorly, darker posteriorly, each procercus with 7-8 setae.

N OTES: O ne species, P. stahli, is known from eastern N orth America. This genus is recorded from the Smoky M ountains in North Carolina by Beck (1980), based on a single larva from an unnamed stream in Swain Co. I have not seen any material of this genus from the Carolinas; the larva illustrated below was collected in M aine and agrees well with the description of P. stahli.

Larvae are reported to occur in mosses in cold springs, seeps and small streams. I collected the larva figured below from a gravel-bottomed stream near a peat bog in M aine. There is some evidence that larvae are hyporheic (D onley, et al. 1999).

ADDITIO N AL REFEREN CES: Brundin 1966; Coffman et al. 1988; D onley et al. 1999.

DIAGN OSIS: Antennae retractile into head capsule, 4 segmented in southeastern United States taxa. Labrum with sensillaeusually simple, occasionally multibranched, on pedicels or with expanded bladderlike bases. Labral lamellae absent. M entum with large membranous triangular M appendage; dorsomental teeth present as separate or fused transverse plates, in longitudinal rows, or as a few usually blunt teeth located laterad, or apparently absent; ventromental plates and beard absent. Prementum bears a large, well sclerotized 4-7 toothed ligula. Body with well developed anterior and posterior parapods; with or without lateral fringe of setae, sometimes with long setae; procerci present and well developed. Anal tubules usually well developed in freshwater forms; reduced in brackish water taxa.

N OTES: M ost members of this subfamily are free swimming or crawling predators; some burrow in bottom mud. Larvae are found in a variety of habitats, including water held by bromeliads or pitcher plants, as well as the more normal aquatic habitats such as springs, seeps, ditches, marshes, streams, rivers, ponds and lakes; one species is symbiotic in unionid mussels.

At the generic level the larvae of all southeastern tanypod genera are known. H owever, all are not easily identified. A particular problem exists with one group of the tribe Pentaneurini, the Thienemannimyia group. In the C arolinas the group includes C onchapelopia, H ayesomyia, H elopelopia, M eropelopia, Rheopelopia and perhaps Telopelopia and Thienemannimyia (not yet recorded from the C arolinas). While mature larvae of some of these genera can be easily identified, you may have to be happy with an identification of "Thienemannimyia group sp." for many early instar larvae of this complex of closely related genera. M ature fourth instar larvae with developing pupal characters may be positively identified by the internally developing thoracic horn; this structure is illustrated for each of these genera in the diagnoses and in the key below.

A very useful paper for confirming some genus level identifications by using the setae and sensillar structures of the tanypod head capsule is K owalyk (1985)

K ey to the genera of larval Tanypodinae of the southeastern United States

1 H ead capsule rounded to oval; dorsomental teeth present in well developed transverse plates or in longitudinal rows; body with well developed lateral setal fringe 2

round head capsule

1' H ead capsule more elongate; dorsomentum without well developed teeth in transverse plates or longitudinal rows; body without well developed lateral fringe of setae (a small partial fringe of 4 setae is present in N atarsia)

2(1) D orsomental teeth arranged in longitudinal rows

2' D orsomental teeth arranged in transverse or somewhat diagonal plates 4

inner teeth separate from outer teeth
3(2) M andible with apical tooth strongly hooked and with large pointed basal tooth; ligula usually with even number of teeth, inner teeth separate from outer teeth; dorsal ante rior margin of body segment 4 (abdominal segment 1) without a pair of small sclerotized hooks \qquad Clinotanypus

3' M andible with apical tooth gently curved, with basal tooth low and rounded; ligula usually with odd number of teeth, with outermost inner teeth appressed to outer teeth; dorsal anterior margin of body segment 4 (abdominal segment 1) with a pair of small sclerotized hooks \qquad Codotanypus

inner tooth appressed to outer tooth

sclerotized hooks on anterior margin of body segment 4

4(2') M andible with stout base, so that apical tooth appears small in relation to rest of mandible; M appendage without a pseudoradula Tanypus

4' M andible not as stout, apical tooth appears large in relation to rest of mandible; M appendage with a pseudoradula \qquad 5

5(4') $\quad M$ andiblewith numerous additional teeth, either in several dorsal and ventral rows or arranged on inner side of mandible \qquad 6

6(5) Ligula with 5 teeth, inner teeth slanted towards median tooth; dorsomental teeth arranged in concave arch; mandible with several rows of additional small dorsal and ventral teeth .. Fittkauimyia

6' Ligula with 4 straight teeth; dorsomental teeth in straight transverse row; mandible with row of additional teeth on inner side \qquad Psectrotanypus

$7\left(5^{\prime}\right) \quad$ Ring organ of maxillary palp located near base 8
7' Ring organ of maxillary palp located near middle or apex \qquad 9

8(7) D orsomental plates each with 5 large teeth (excluding the innermost and outermost teeth) and extended medially to reach or almost reach the pseudoradula ... Bethbilbeckia

8' D orsomental plates each with 6 large teeth (excluding the innermost and outermost teeth), with medial extension not reaching pseudoradula \qquad M acropelopia

9(7') Ligula with black or dark brown teeth; para ligula with teeth on outer side \qquad
paraligula with teeth on outer side

9' Ligula yellow-brown to reddish-brown; para ligula with onetooth on inner side 11

10(9) Antennal blade subequal to length of flagellum; ligula with 5 teeth (4 teeth in aberrant specimens) \qquad Prodadius

10' Antennal blade about twice as long as flagellum; ligula usually with 4 teeth, but may have 5 teeth Djalmabatista

11(9') Third antennal segment about twice as long as wide; dorsomental plates each with 5-7 largeteeth Alotanypus

11' Third antennal segment shorter, about as long as wide; dorsomental plates with 4 to 6 large teeth \qquad

12(11') Apex of dorsomental plates with pointed medial extension; small claw of posterior parapod with expanded base ... Brundiniella

12' Apex of dorsomental plates not medially pointed; small claw of posterior parapod without expanded base 13

$13\left(12^{\prime}\right)$ Inner teeth of ligula curve outward; dorsomental plates with 4 large teeth \qquad Apsectrotanypus

13' Inner teeth of ligula directed forward; dorsomental plates with 5 large teeth \qquad Radotanypus (not recorded from the C arolinas)

14(1') M axillary palp with 2 or more sclerotized sections 15

14' M axillary palp with single sclerotized basal segment .. 16

15(14) M axillary palp with 2 unequal segments, basal segment less than $1 / 2$ length of second segment; pseudoradula broadened posteriorly, appearing attached to transverse bar, with granules of pseudoradula not arranged in Iongitudinal rows

Paramerina

15' M axillary palp with 2-6 segments, if only 2 segments then segments subequal in length or basal segment greater than $1 / 2$ length of apical segment (notethat in some species with morethan 2 segments, basal segment may be very small); pseudoradula not broadened posteriorly, not appearing attached to transverse bar; with granules of pseudoradula often arranged in Iongitudinal rows Ablabesmyia

16(14') M edian tooth of ligula longer than inner teeth, reaching or surpassing level of outer teeth 17

17(16) One small claw on posterior parapod bifid; anal tubules shorter than posterior parapods; head usually with lateral spines or covered with numerous small points or granules, or both, or rarely head capsule smooth \qquad Labrundinia (in part)

18(16') Apex of antennal segment 2 with large Lauterborn organs, appearing like a tuning fork \qquad

18' Lauterborn organs smaller, apex of second antennal segment not appearing like a tuning fork

23

19(18) Paraligula with 2 inner teeth; small claws of posterior parapod with large inner tooth; all claws of posterior parapod pale \qquad D enopelopia (not recorded from the C arolinas)

19' Paraligula with oneinner tooth; posterior parapod with either pale simple claws or one dark claw and/or one or more small, transparent pectinate claws \qquad 20
$20\left(19^{\prime}\right)$ G ranulose area at base of ligula forming a band .. 21

21(20) Body segments 4-10 with a small anterolateral fringe of 4 larger setae; pseudoradula with fine, uniform granulation \qquad N atarsia (in part)

21' Body without small anterolateral fringe of 4 setae; granulation of pseudoradula coarse and arranged in longitudinal rows \qquad Krenopelopia

$22\left(20^{\prime}\right)$ Posterior parapods with all claws transparent to pale yellow-ish-brown, with 3 smaller pectinateclaws \qquad Cantopelopia

22' Posterior parapods each with one small dark claw $O R$, if all claws transparent to pale yellowish-brown, then with either no pectinateclawsor at most 2 pectinateclaws \qquad M onopelopia

23(18') Surface of head granulose; body surface with undulating longitudinal wrinkles; 2-3 small claws of posterior parapod with 3 or more inner teeth \qquad Guttipelopia

body segment

23' Surface of head usually smooth (covered with spinules in one species of Labrundinia, couplet 27); body surface smooth; at most 1 small claw of posterior parapod with a single inner tooth 24
$24\left(23^{\prime}\right) \mathrm{M}$ andible with a moderately large to large basal tooth

25

24^{\prime}
Basal tooth of mandible small to minute ... 32

25(24) Supraanal setae arising from large tubercles with dark sclerotized area; (in the most common spe cies, P. inconspicua, anal tubules are long and thin, greatly exceeding length of posterior parapods and mandible with large, sharply pointed, apically directed basal tooth; these characters are absent in another species tentatively placed here; seePentaneura) \qquad Pentaneura

P. inconspoicua mandible

25' Supraanal setae not arising from large tubercles with sclerotized area; anal tubules elongate conical, at most subequal to posterior parapods; basal tooth of mandible variable, but never large, sharply pointed and directed apically (seefigures above) 26

26(25) One small claw of posterior parapod with inner tooth or apically bifid

27

26' Small claws of posterior parapod simple 29

27(26) H ead covered with spinules and with weak, blunt, lateral and ventral spines; inner tooth of small bifid claw on posterior parapod subequal to or longer than upper tooth Labrundinia (in part)
(L. sp. A, not known from the Carolinas)

27' H ead smooth, without lateral or ventral spines; inner tooth of small claw on posterior parapod much shorter than upper tooth
28

28(27', 30) Ring organ of maxillary palp 0.3-0.4 from base; basal segment about 6 times as long as wide \qquad Reomyia
 ment about 4 times as long as wide Zavrelimyia

$29\left(26^{\prime}\right)$ Body segments $4-10$ with a small anterolateral fringe of 4 larger setae N atarsia (in part)

29' Body segments without such a fringe 30

$30\left(29^{\prime}\right)$ Second antennal segment long, with AR 2.4-3.4 .. back to 28
30' Second antennal segment shorter, with AR 3.5-5.0 \qquad 31

long segment 2
short segment 2
$31\left(30^{\prime}\right)$ Antennae long, about 3.5X length of mandible, with ring organ of basal segment near middle; inner apical margin of dorsomentum directed medially; common \qquad Larsia

31' Antennae shorter, about twice as long as mandible, with ring organ of basal segment near bottom of distal third; inner apical margin of dorsomentum directed apically; rare \qquad Telopelopia (not recorded from the C arolinas)

$32\left(24^{\prime}\right)$ Ring organ of maxillary palp near middle of basal segment .. 33

32' Ring organ of maxillary palp near apex of basal segment 34

33(32) Procercus 4 or more times as long as wide; claws of posterior parapod without extensive thin lamellateouter margin; apicomedial margin of dorsomentum rounded \qquad Hudsonimyia

procercus
(anal setae abbreviated)

33' Procercus 2.5-3.5 times as long as wide; most claws of posterior parapod with very thin, extensive lamellate outer margin; apicomedial margin of dorsomentum produced to a fine point Trissopelopia
apicomedial margin
procercus (anal setae abbreviated)

Beginning with couplet 34 below, the remainder of this key deals with the T hienemannimyia group. In the C arolinas the group includes Conchapelopia, H ayesomyia, H elopelopia, M eropelopia, Rheopelopia and perhaps Telopelopia (see couplet 31) and Thienemannimyia. While mature larvae of some of these genera can be easily identified, you may have to settlefor an identification of "T hienemannimyia group sp." for many larvae of this complex of closely related genera. M ature fourth instar larvae with developing pupal characters (prepupae) may often be positively identified by the developing thoracic horn; a typical example of this structure is illustrated for each of these genera in the key below.
$34\left(32^{\prime}\right) \mathrm{M}$ axillary palp with b sensillum 3 segmented ... 35
34' M axillary palp with b sensillum 2 segmented ... 37

35(34) Basal and accessory teeth of mandible extremely reduced, accessory tooth visible only at 1000X; subbasal seta of posterior parapod unevenly bifid; pupal thoracic horn simple, saccoid \qquad Rheopel opia (in part)

35' Basal and accessory teeth larger, visible at 400X; subbasal seta of posterior parapod simple; pupal thoracic horn with plastron (see below)

36(35') Fourth instar only: first antennal segment length >375 $\mu \mathrm{m}$; length of basal segment of maxillary palp $>70 \mu \mathrm{~m}$; central tooth of ligula about as long as wide; pupal thoracic horn with small plastron plateand large corona (clear area) \qquad Helopelopia

36' Fourth instar only: first antennal segment length $<375 \mu \mathrm{~m}$; length of basal segment of maxillary palp $<70 \mu \mathrm{~m}$; central tooth of ligula about twice as long as wide; pupal thoracic horn with large plastron plate, corona variable

pupal thoracic horn

Conchapelopia

pupal thoracic horn

37(34') Basal segment of maxillary palp shorter than antennal segment 2; basal and accessory teeth of mandibleextremely reduced, accessory tooth visible only at 1000X; pupal thoracic horn simple, saccoid, with indistinct respiratory atrium \qquad Rheopelopia (in part)

pupal thoracic horn

37' Basal segment of maxillary palp longer than second antennal segment; basal and accessory teeth larger, visible at 400X; pupal thoracic horn with plastron or respiratory atrium convoluted (see below) 38

38(37') Posterior margin of head capsule pale; length of antennal segment 1 divided by mandible length greater than 1.75; pupal thoracic horn with plastron and without a corona (clear area near apex)
\qquad M eropelopia

38' Posterior margin of head capsule brown OR pale; length of antennal segment 1 divided by mandible length less than 1.90 (usually less than 1.50); pupal thoracic horn without plastron, corona present or absent

39(38') Fourth instar only: AR >5.0; second antennal segment length about $40 \mu \mathrm{~m}$; sclerotized base of antennal blade about as long as wide; pupal thoracic horn without corona, respiratory atrium with numerous convolutions
\qquad Thienemannimyia (not recorded from the C arolinas)

39'
Fourth instar only: AR <5.0; second antennal segment length about $50 \mu \mathrm{~m}$; sclerotized base of antennal blade about twice as long as wide; pupal thoracic horn with a distinct aeropylesurrounded by a corona, respiratory atrium with only oneor two convolutions \qquad H ayesomyia

Genus Ablabesmyia
DIAGN OSIS: The anteriorly narrowed, elongate oval head capsule; large basal tooth of the mandible; maxillary pal pus with 2 or moresegments, with thering organ small (about $1 / 3$ to $1 / 2$ width of basal palpal segment) and located between the apical two segments; pseudoradula not broadened posteriorly, not connected to a transverse bar, and with its granules arranged in longitudinal rows, will distinguish this genus.

N OTES: Ablabemyia is a common and widely distributed genus in the Southeast US; almost every described species known from the eastern U.S. has been recorded from the C arolinas. It is doubtful that all the Ablabesmyia species recorded from the two states actually occur there; some records are apparently based on larvae that were misidentified (many misidentifications are due to the use of older, incorrect literature, such as Beck 1976, 1979). I have not been able to see C arolinas material of all the purported species. The genus is represented in the N earctic by three subgenera - A. (Ablabemmia), A. (Asayia) and A. (Kardia). Larvae of the latter two subgenera have maxillary palpi with only two segments; with the exception of A. annulata, these larvae may be very difficult to separate. Species-level identifications of larvae of the subgenus Karelia must be viewed with skepticism unless accompanied by associated pupae or adult males. M ost members of theA. (A.) rhamphe group can not be reliably identified as larvae without associated adult males.

Roback (1985) noted that Ablabemyia larvae were found over a pH range of $<4.1->8.1$, but were pre dominantly found in a circumneutral range of 6.1-7.0. H eobserved that they preferred softer, less alkaline water (but see A. cinctipes under N otes on species). Roback al so stated that larvae of the subgenus K arelia were most often encountered in lakes, ponds and swamps, but were also found in large shallow streams. M ost other species in the genus were found in flowing water; at least one "form" of one species (A. janta) is known to live within freshwater mussels. It appears that A. mallochi is the most common and widespread species in streams and rivers throughout the C arolinas and the Southeast US.

M any name changes havetaken placein this genus; seethechecklist and N otes on species following thekey for synonyms. Roback (1985) described several "varieties" for several Ablabesmyia species, but considered that he did not have enough data to justify establishing them as different species. Identification of many larvae to the species level is difficult, especially in the subgenus Karelia; in many instances, your best identification with this group may be to subgenus. N ote that early instar larvae may not possess the full complement of maxillary palpus segments! Larvae must be reared to positively identify several species!

AD DITIO N AL REFEREN CES: C aldwell 1993; K owalyk 1985; Roback 1971, 1982a, 1985; Roback et al. 1980.

dorsomentum and M appendage

mandible

A. peleensis A. rhamphe A. mallochi

A. annulata

K ey to Ablabesmyia Iarvae of the southeastern United States

1 M axillary palpus with 2 sclerotized segments
\qquad 2

1' M axillary palpus with 3 or more sclerotized segments (the basal segment may be small) .. Ablabesmyia (Ablabesmyia) sp. 8

2 (1) Apices of ligula teeth even, with 3 middleteeth apically truncate; procercus length 7-8X width; numerous well developed lateral hooklets on distal 4/10 of posterior parapod
\qquad A. (Asayia) annulata

2' Apices of ligula teeth form a concave arc, middle teeth pointed; procercus length 2-4X width; lateral hooklets on posterior parapod smaller and less numerous \qquad
\qquad A. (Karelia) sp. 3
(most of these species are difficult to separate; reared associations are necessary for accurate species determination; in most instances your most accurate identification may be "A. (K arelia) sp.")

3(2') Apex of inner tooth of ligula directed relatively straight forward; 1-3 dark claws on posterior parapod \qquad A. pelensis

3' Apex of inner tooth of ligula directed slightly outward; 0-3 dark claws on posterior parapod 4

A. peleensis

A. cinctipes

4(3') Posterior parapod with all clawspale; length of apical pal pal segment 1.7-3X length of basal segment \qquad A. philosphagnos

4' Posterior parapod with 1-3 claws darker than others (difference in color may be slight); length of apical palpal segment 0.9-1.7X length of basal segment \qquad 5

NOTE:
4th instar
Iarvae are necessary for accurate measurements!!
(separation of the taxa beyond this couplet is very difficult; reared material is necessary; your best identification will probably be A. (Karelia) sp.)

5 (4') Posterior parapod with 3 darker claws; ratio of length of apical pal pal segment/basal palpal segment 0.9-1.3 (mean 1.2); $A R=4.6-5.2$ (mean 4.8)
A. cinctipes

5' Posterior parapod with 1-2 darker claws; apical palpal segment/basal palpal segment 1.2-2.3; AR 4.0-6.1 \qquad 6

6(5') O ne dark claw on posterior parapod much longer than the other dark claw; length of first antennal segment >600 $\mu \mathrm{m}$; length of second antennal segment $>96 \mu \mathrm{~m}$ (4th instar only!!)
\qquad A. illinoensis

6' D ark claws of posterior parapod about the samesize (although one may be larger than the other, but not to the extent as in A. illinoensis); length of first antennal segment < $600 \mu \mathrm{~m}$; length of second antennal segment <90 $\mu \mathrm{m}$ (4th instar only!!)

\qquad

AR 5.2-6.1; basal antennal segment $>500 \mu \mathrm{~m}$ \qquad A. idei

NOTE:
4th instar larvae are necessary
for accurate
mesernents A. sp . A

7' AR 4.0-4.9; basal antennal segment $<425 \mu \mathrm{~m}$ \qquad (known only from Florida)

8(1') M axillary palpus with 3 sclerotized segments \qquad 9

9(8) Apices of ligula teeth even or almost so \qquad A. janta (in part) 12

8' M axillary palpus with $5-6$ segments \qquad

A. janta variety I has 1-2 slightly infuscated posterior parapod claws and is found only associated with unionid mussels see N otes
seeNotes

Two "varieties" of A. janta will key here;

A. janta variety II has 2 dark posterior parapod claws and is free-living

10(9') H ead capsule with two large ventral spots; at most one dark claw on posterior parapod; no truncate-based claw present on posterior parapod
A. simpsoni

10' H ead capsule with at most a diffuse ventromesal spot; posterior parapod with 2 dark claws; a truncate-based claw present on posterior parapod 11

truncate-based claw
$11\left(10^{\prime}\right)$ Ligula $>80 \mu \mathrm{~m}$; mandible $>155 \mu \mathrm{~m}$ (see N otes)

11' Ligula usually $<80 \mu \mathrm{~m}$; mandible $<155 \mu \mathrm{~m}$.... A. rhamphe group (larvae of A. janta var. III, A. parajanta and A. rhamphe are inseparable without associated adult males; see N otes)

12(8') M axillary palpus with 5 segments; small claw of posterior parapod without an expanded base
\qquad A. mallochi

A. monilis

A. malloch

12' M axillary palpus with 6 segments; small claw of posterior parapod with or without an expanded base 13

claw with expanded base

claw without expanded base
$13\left(12^{\prime}\right) \mathrm{H}$ ead with a dorsal anteromesal brown spot; small claw of posterior parapod without expanded base A. hauberi

13' H ead without a dorsal anteromesal brown spot; small claw of posterior parapod with expanded base
A. aspera

N otes on species

A. annulata - This large species is unmistakable with its two-segmented maxillary palp, the ligula with the median teeth even and usually apically truncated, and the numerous large spines on the shaft of the posterior parapods. This species in apparently uncommon but widespread throughout the Southeast. This species is not keyed correctly in Beck $(1976,1979)$ and Webb \& Brigham (1982).
A. aspera - An uncommon species in the Southeast; this species is very closely related to A. hauberi. Adults and pupae of A. aspera and A. hauberi are very difficult to separate, but the larvae are usually distinct. However, I have seen Florida A. aspera larvae with a small amount of brown anteromesally, but not as large or as dark as that of A. hauberi. Be sure to examine the small claw of the posterior parapod. Roback (1985) did not record A. aspera from the C arolinas, but I've seen mate rial from the Piedmont (Barnwell Co.) in South C arolina; its presence in Florida and Georgia, and in Pennsylvania and West Virginia indicates that it should be found throughout the Carolinas. I have seen some larvae from Florida with a six-segmented palp, no head spot and a small claw on the posterior parapod without an expanded base. W hether this represents a hybrid or a distinct, separate taxon is unknown; none of the larvae were associated with other life stages.
A. cinctipes - The immature stages of this species have been described recently by Caldwell (1993). He found larvae living in a shallow, well-water fed pond with a high pH (7.6-8.8) and conductivity ($410-494 \mu \mathrm{mhos} / \mathrm{cm} @ 25^{\circ} \mathrm{C}$), the highest values published for an Ablabesmyia sp. However, larvae have been collected in Florida from an excavated pond with a conductivity value of 3465 $\mu \mathrm{mhos}$ (R. Rutter, pers. com.). Differences in coloration of the claws of the posterior parapod are subtle and make this species, as with the majority of species in the subgenus Karelia, difficult to identify. It will not key correctly in Beck (1976; 1979). It is likely that this species name has been misidentified often, and most records of A. cinctipes based on larvae are probably erroneous.
A. hauberi - This species is usually easily recognized as a larva; it is closely related to A. aspera (see above) and may bea southern form of that species. It is recorded from most of the states in the Southeast; it may reach its northern limit in N orth C arolina.
A. ide - Roback (1971) considered this species a synonym of A. illinoensis, but in 1985 returned it to species status. This member of the subgenus Karelia is not easily identifiable as a larva; larvae should beassociated with a pupa (which isdistinctive; see Roback (1985)) or an adult male. Unless accompanied by such an association, Iarvae should be identified as "A. (K arelia) sp." Roback recorded this species from South C arolina; I have also seen adults referable to this species from South Carolina (Barnwell Co.). It is also recorded from Pennsylvania and New York and thus probably occurs throughout the C arolinas.
A. illinoensis - This is a northern species recorded for the Carolinas by H udson et al. (1990) and Caldwell et al. (1997); Roback (1985) did not record this species from further south than N ew York. I have not examined any material referable to this taxon from the Carolinas (or from anywhere in the Southeast) and doubt that it occurs there. The size differential of the dark claws of the posterior parapod should identify the larvae of this species, but any identifications of this taxon should be backed by associated or reared material.
A. janta - An enigmatic species - Roback (1985) recorded three varieties based on larvae and pupae; adult genitalia weresimilar for all threevarieties. Ablabesmyia janta var. I isfound associated with unionid clams (see Roback et al. 1980 and Roback 1982a) and is recorded from Florida, O klahoma, Tennessee and Texas. Varieties II and III are free living; var. II has been recorded from South C arolina (K eowee Res., O coneeC o.) by Roback (1985). Variety III is based on a single rearing from Florida that may be missassociated. Unless larvae distinctly belong to varieties I or II, this taxon must be identified as "A. rhamphe group sp.", since larvae are indistinguishable from the other members of that group (see A. rhamphe).
A. mallochi - A very common and widespread species in lotic habitats throughout the eastern US. The names auriensis, ornata and tarella are considered synonyms, although ornata may represent a distinct species. R oback (1985) considered two varieties of A. mallochi larvae: var. I was distinguished by the longest dark claw of the posterior parapod being 105-121 $\mu \mathrm{m}$ in length; in var. II the longest dark claw was $30-95 \mu \mathrm{~m}$ long. Roback (1985) considered that he did not have enough evidence to justify establishing two species from his material; if the varieties were elevated to species rank, var. II would correspond with A. ornata. Roback (1985) recorded both varieties from Florida, Georgia, Kentucky and N orth and South C arolina in the Southeast. M ore data, based on reared material, are needed.
A. monilis - Another difficult to identify (as a larva) species that apparently reaches its southern limit in South C arolina. Roback (1985) used ligula and mandible length to separateA. monilislarvae from the A. rhamphe group. H owever, I have reared a specimen of A. parajanta from north Florida in which the larval ligula is $80 \mu \mathrm{~m}$ long, the lower limit for Roback's A. monilis. Larval A. monilis should only be identified to the species level with associated material.
A. parajanta - A member of the A. rhamphe group found throughout the Southeast; this species is not identifiable to the species level as a larva. Records of this species based solely on larvae should be corrected to "A. rhamphe group sp."
A. peleensis - Another member of the subgenus Karelia; larvae are usually identifiable because of the forward pointing inner teeth of the ligula. This character can bequite variable and is dependent on the angle at which the ligula is viewed. Roback (1985) noted two larval types based on differences of the dark claws on the posterior parapods. Larval type 1, recorded by Roback (1985) from Florida, Georgia, Kentucky, South Carolina and Tennessee, has the base of one of the dark claws expanded; larval type 2, recorded from Florida and Georgia, does not.
A. philosphagnos - This species, likeA. cinctipes, will not key correctly in Beck $(1976,1979)$ and Webb \& Brigham (1982), perhaps due to confusion concerning the coloration of the posterior parapod claws. Older records of A. cinctipes that may be based on identifications using those keys should be viewed with skepticism.
A. rhamphe - As a larva, not separable from A. janta type III and A. parajanta. Larvae should be identified as "A. rhamphe group." Associated adult males are necessary for correct species level identification.
A. simpsoni - Roback (1985) described this new species based on a reared specimen from New York; heal so recorded a single larva from the Savannah River in South C arolina. I have seen a specimen from the C oastal Plain of N orth Carolina (Tar River in Edgecombe C o.) that also fits this distinctively marked species.
A. sp. A - A member of the subgenus Karelia known only from Florida. Epler (1995) considered two undescribed taxa (sp. A and sp. B) to be present in south Florida. H owever, further examination of reared material showed overlap of measurements; based on material currently available, it appears that A. sp. A and sp. B should be lumped as A. sp. A. This taxon is very similar to A. ide and A. illinoensis, but based on adult male genitalia, appears to be an undescribed species.

DIAGN O SIS:Alotanypus can be distinguished by the rounded head capsule; the long third antennal segment (at least twice as long as wide); yellow-brown ligula; maxillary palp with ring organ near middle; well developed dorsomental plates with 5-7 large and 1 or 2 small teeth; mandible with all ventrolateral setae simple; and the lateral fringe of setae on the body.

N OTES: O ne species, A. aris, occurs in the eastern United States. It is recorded from Alabama, northern Florida, Georgia and North and South C arolina in the Southeast. Larvae of this uncommon species have been found in acid water (pH 3.9-4.0) in springs, seeps and bogs (Roback 1978; 1987b). N ote that the dorsomental plates on the specimen illustrated below have six large teeth on one side, five on the other; five large teeth is the normal number for A . aris. A western species, A . venustus (C oquillett), has six large teeth on its dorsomental plates.

ADDITIO N AL REFEREN CES: Roback 1971, 1978a, 1987b.

Apsectrotanypus

DIAGNOSIS: This genus is recognized by the rounded head capsule; the short antennal segment 2 (about twice as long as wide) and very small segment 3 ; yellowish-brown ligula with inner teeth turned out; well developed dorsomental tooth plates, each with 4 large and 1 small tooth; maxillary palp with ring organ near its middle; thebranched ventrolateral setae 2 and 3 of the mandible; posterior parapod without a small claw with an expanded base; and the lateral setal fringe of the body.

N OTES: O nly one species, A. johnsoni, is known from the eastern U.S. In the Southeast, it has been recorded from the C arolinas, Georgia and northern and western Florida. Apsectrotanypuslarvae are usually found in cool mountain streams, but have been found on the Piedmont and C ostal Plain.

O nce considered a member of M acropelopia and Psectrotanypus, Apsectrotanypus has also been confused with Bethbil beckia; the characters given in the diagnosis above will distinguish Apsectrotanypus from those taxa.

ADDITIONAL REFERENCES: Roback 1971, 1978a.

antennal apex

mandible

ligula and paraligula

mentum and M appendage

DIAGN OSIS: D istinguished by the rotund head capsule; ring organ in bottom third of maxillary palp; yellow-brown ligula with inner teeth directed forward; and dorsomental plates with 6 (5 large, 1 small) teeth each and with a medial extension that reaches or almost reaches the pseudoradula; and the weak lateral fringe of setae along the body.

N OTES: O nly one species, B. floridensis, is described for thisgenus; it hasbeen confused with Apsectrotanypus and M acropelopia. H owevere, an additional undescribed larva (with pharate pupa) has been found in eastern N orth C arolina; unless associated with an adult or pupa, larvae should beidentified as "Bethbilbeckia sp.". Originally described from northern Florida, B. floridensis has also been collected in Georgia and South Carolina in the Southeast. Its presence in Ohio (Bolton 1992) and Virginia (collection of Charles W atson) indicates that it should also befound in N orth C arolina; it has been collected in theC oastal Plain, Piedmont and M ountain regions from blackwater streams, seeps and small mountain streams.

Fittkau \& M urray (1988) stated that mandibular ventrolateral seta 3 is simple. H owever, their illustration (fig. 15) shows this seta as bifid. On one unassociated larval specimen from Florida that I've examined this seta is multibranched. This specimen also has 6 large teeth on one side of the mentum; the lateral fringe of body setae is weak.

Fittkau \& M urray (1988) and Epler (1995) described the antenna as 5 segmented. H owever, Charles W atson has pointed out to methat the antenna is actually 4 segmented. In all specimens I've examined in which the antennal segments are clearly visible, there is an extended membranous area between segments 2 and 3; apparently the base of the style (or a wide peg sensillum or Lauterborn organ?) seen through this membranous area has been mistaken for a third segment.

AD DITIO N AL REFEREN CES: Fittkau \& M urray 1988.

maxillary palp

ligula and paraligula

antennal apex, ventral

mandible

antennal apex, dorsal

mentum and M appendage

antennal segments 2-4 of another specimen

Genus Brundiniella

DIAGN O SIS: Distinguished by the weak lateral setal fringe on the body; maxillary palp with ring organ near middle; rounded head capsule; yellow-brown ligula with inner teeth directed more or less straight forward; well developed dorsomental plates each with 5 large teeth and two smaller teeth, and with a thin, pointed, medial extension that reaches or almost reaches the pseudoradula; and the expanded base of the small claw of the posterior parapod.

N OTES: O ne species, B. eumorpha, is known from the C arolinas and Georgia in the Southeast, where it may be relatively common in mountain and upper Piedmont streams. The species was formerly placed in Psectrotanypus; Roback (1978a) established a new genus, Brundinia, for it but it was later (Roback 1978b) discovered that the name was preoccupied and it was replaced by the name Brundiniella.

Roback (1978a) and Fittkau \& Roback (1983) illustrated ventrolateral setae 2 and 3 of the mandible as multibranched. H owever, in one specimen I've examined (and figured below) from North C arolina all the ventrol ateral setae are simple.

ADDITIONAL REFERENCES: Kowalyk 1985; Roback 1978a, 1978b.

antennal apex

ligula and paraligula

mandible

mentum and M appendage

DIAGN OSIS: This genus is distinguished by the large, well sclerotized Lauterborn organs at the apex of antennal segment 2 that resemble a tuning fork; the triangular rugose area at the base of the ligula; the lack of well-developed dorsomental teeth; and posterior parapods with transparent claws and three smaller claws on each parapod with large inner teeth.

N OTES: O ne species, C. gesta, occurs in the Southeast US. Larvae have been collected from a creek in Georgia, from creeks and ponds in northern Florida and from sphagnum mats in an Ohio bog.

Until recently, the immature stages of C. gesta were unknown. The larva referred to as an "apparently undescribed, species of M onopelopia" in Epler \& Janetzky (1999: 222) is the larva of C. gesta. Thispresents a problem in tanypod taxonomy, because the larva and pupa of C. geta are very similar to those of some M onopelopia (e.g., M . tillandsia from Florida and M. mikeschwartzi from Jamaica), and it had been assumed that Cantopelopia was more closely related to Paramerina. However, the only differences noted between adult male Cantopelopia and M onopedopia are the two tibial spurs of Cantopelopia (M onopelopia bears a single tibial spur) and the apically wide gonstylus of C antopelopia compared to the apically attenuated gonostyli of all described M onopelopia species. Perhaps C antopelopia should be considered at most to be a subgenus of M onopel opia.

AD DITIO N AL REFEREN CES: Roback 1971; Epler \& Janetzky 1999.

Cantopelopia geta, larval structures

Genus Clinotanypus

DIAGN O SIS: This genus is distinguished by the strongly hooked apical tooth and large pointed inner tooth of the mandible; dorsomental teeth in longitudinal rows on the M appendage; ligula usually with an even number of teeth, with outer pairs not closely appressed; absence of sclerotized hooks on the dorsal anterior margin of body segment 4 (abdominal segment 1); and well developed lateral setal fringe.

N OTES: Larvae occur in ponds and lakes as well as streams and rivers. They prefer soft sediments and can befound in "clean" water or water that has been organically enriched. Roback (1976) recorded thefollowing water chemistry parameters for the genus: $\mathrm{pH}<4.0-9.0$, with a mean of 6.2 ; total hardness $0-300 \mathrm{ppm}$, mean 69.8; alkalinity $0-200$, mean 47.8 ; specific conductivity $0-600 \mu$ mhos @ $25^{\circ} \mathrm{C}$, mean 140.6 . It has been found in water with a dissolved oxygen level of less than 4 ppm (Roback 1974b).

O ne species, C. pinguis, is widely distributed in the eastern United States, and is the only species recorded from the C arolinas, where it is most common on the C oastal Plain. Three additional species are recorded from Florida. Because these 3 species are so poorly known, and because few workers collect or identify adults, any of these 3 species may also occur in the Carolinas. The immature stages of C . aureus were described by Roback (1976) from a single reared specimen from silt in a small, slow stream at the bottom of D evil's M illhopper, a large sinkhole near G ainesville, FL. I have reared a single specimen of C . wirthi from a small stream feeding a lakein south central Florida. Roback (1976) separated the larvae of C. aureus and C . pinguis on measurements of the first antennal segment and the maxillary palpus; the single associated larva of C . wirthi has a longer first antennal segment $(790 \mu \mathrm{~m})$ than those measurements given by Roback (1976: 197) for C. pinguis; the basal palpal segment fits in the range for C. pinguis. W ith such a small sample size, the range of variation is unknown; all of these species may be variants of a single species. Adults are necessary for species level identification; unless reared, all Clinotanypus larvae should be identified as "Clinotanypus sp.".

ADDITIONAL REFEREN CES: Boesel 1974; Kowalyk 1985; Roback 1971, 1976.

ligula

mentum and M appendage

mandible

DIAGNOSIS: The well developed lateral setal fringe; smoothly curved apical tooth with low, rounded basal tooth of the mandible; dorsomental teeth in longitudinal rows; ligula usually with an odd number of teeth, with outer pairs closely appressed; and a pair of small, sclerotized hooks on the dorsal anterior margin of body segment 3 (abdominal segment 1) will distinguish this genus.

N OTES: Three species of Codotanypus are recorded from the eastern United States; two additional species, undescribed as larvae, arefound from Louisiana north to the Great Plains and westward. Codotanypus larvae are found in or on bottom sediments in marshes, ponds, lakes and the slower portions of streams and rivers. At least one species, C. concinnus, can be found in, but is not necessarily limited to, extremely eutrophic water bodies.

Although most C oelotanypuslarvae possess a ligula with an odd number of teeth, specimens are often found with an even number of teeth. The converse may also be true with the closely related genus Clinotanypus. N ote that the sclerotized spurs on the dorsal anterior margin of body segment 4 can be observed on larger specimens while under a dissecting microscope.

The key which follows is constructed from data in Roback (1974a); the data are based on 4th instar larvae which were reared to the adult stage. The antennal ratios should work for most 3rd instar larvae as well, but measurements of the basal segment of the maxillary palpus will hold true only for 4th instar larvae.

AD DITIO N AL REFEREN CES: Boesel 1974; K owalyk 1985; Roback 1971; 1974a.

mentum and M appendage

normal ligula

aberrant ligula

body segment 3 with anterior sclerotized spurs on segment 4

K ey to Coelotanypus larvae of the eastern United States

1 M entum with 9 or more teeth on each side C. tricolor

1' M entum with 5-8 teeth on each side 2

2 (1') $\quad A R=7.0$ or more; basal segment of maxillary palp >70 $\mu \mathrm{m}$ (4th instar larvae only!)
C. concinnus
2^{\prime}
AR <6.7; basal segment of maxillary palp $<70 \mu \mathrm{~m}$ (4th instar larvae only!)
C. scapularis

Genus Conchapelopia
DIAGN O SIS: Conchapelopia larvae are distinguished by long scattered body setae; first antennal segment $<370 \mu \mathrm{~m}$; the 3 segmented b sensillum on the maxillary palp; ring organ in distal third of maxillary palp; basal segment of maxillary palp $<70 \mu \mathrm{~m}$; mandible with small basal and accessory teeth; ratio of maxillary palp length/width at ring organ 4.4 or less; pseudoradula with 8-12 rows of coarse granules; central tooth of ligula about twice as long as wide; and the simple subbasal seta of posterior parapod.

N OTES: Five species are recorded from the Carolinas; species separation of unassociated larvae is not practically possible. C onchapelopia is a member of theT hienemannimyia group. Separation of the larvae of the genera of this group, which in the Carolinas includes Conchapelopia, Hayesomyia, H elopelopia, M eropelopia, Rheopelopia and perhaps Telopelopia and Thienemannimyia, can be difficult. Late 4th instar C onchapelopia larvae can be positively identified if the developing pupal thoracic horn is visible (see figure below); note the large plastron plate. Fittkau \& M urray (1983) stated that C onchapdopia larvae have a pseudoradula of about 8 longitudinal rows of granules. This character may be difficult to discern, and many associated larvae I've examined have about 10-12 rows of granules in the pseudoradula.

Conchapelopia larvae have been recorded from waters with a pH range of 5.1-8.0, with most records at a pH of <7.0; specific conductivity ranged from $0-400 \mu \mathrm{mhos} @ 25^{\circ} \mathrm{C}$, with most records below 300 ; total hardness from $0-250+\mathrm{ppm}$, most records below 200; alkalinity $0-200 \mathrm{ppm}$, most below 40 ; and water temperatures ranged from $9-28^{\circ} \mathrm{C}$.

AD DITION AL REFERENCES: Beck \& Beck 1966; Roback 1971; 1981.

pupal thoracic horn

mandible

DIAGN O SIS: Denopelopia larvae are distinguished by the large Lauterborn organs "fused" to the apex of antennal segment 2, giving a tuning fork appearance; the trifid paraligula; lack of well developed dorsomental tooth plates; 2 small claws of posterior parapod with a large inner tooth; and all claws of posterior parapod pale.

N OTES: O ne species, D. atria, is described for this genus. Denopelopia has not been recorded from the C arolinas, but it may eventually befound on the C oastal Plain in South or N orth C arolina. Thenorthernmost specimens I've seen are from the O rlando, Florida, area. I've also reared this species from a vegeta-tion-choked pond in a cattle pasture in southwestern C osta Rica. The immature stages occur in shallow water and can withstand low D $0(0.3 \mathrm{mg} / \mathrm{I})$ and high iron ($108 \mathrm{mg} / \mathrm{l}$) levels.

ADDITIONAL REFERENCES: Roback \& Rutter 1988.

apex of antenna, dorsal and lateral

ligula and paraligula

paraligula

mandible

small claw of posterior parapod

DIAGN OSIS: This genus closely resembles Procladius, but may be separated by the long antennal blade, which is about twice (or more) the length of the flagellum (segments 2-4); the apically bilobed basal tooth of the mandible; and by its (usually) 4 toothed ligula. Like Procladius, it has a well developed lateral setal fringe and well developed dorsomental teeth arranged on plates.

N OTES: O ne species, D. pulchra, is known from N orth America. It was formerly placed in the genus Procladius, subgenus Calotanypus, as P. (C.) pulcher; P. (C.) maculatus is considered a junior synonym. Although this species usually has a 4 toothed ligula, 5 toothed "variants" may be encountered. Roback (1980) noted that some South American species of Djalmabatista had 5 toothed ligulae. Thus, some 5 toothed "variants" may represent a different species; C aldwell et al. (1997) list 5 toothed Iarvae as an undescribed species. Tennessen \& G ottfried (1983) found high variation in ligula tooth numbers in D. pulchra from northern Alabama, but apparently none of their material was reared and no analysis of pupal and adult characters was done. I have examined a single reared male collected from G reenville C o., SC, by C harles Watson; the adult is apparently inseparable from D. pulchra; the pupa bears more taeniate setae (about a dozen) on the anterolateral margin of T III than described for D. pulchra. H owever, until more material is reared and the range of character variation is assessed, no definite statements on the taxonomic position of larvae with 5 toothed ligulae can be made. It may be wisest to note the existence of these 5 toothed taxa as "D jalmabatista pulchra variant".

Djalmabatista larvae occur in ponds, lakes, streams and rivers. They apparently prefer soft water, low alkalinity, a slightly acidic to circumneutral pH , and are tolerant of moderate levels of iron (Roback \& Tennessen 1978).

AD DITIO N AL REFEREN CES: K owalyk 1985; Roback 1971, 1980, 1989; Roback \& C offman 1977; Roback \& Tennessen 1978; Tennessen \& G ottfried 1983.

Genus Fittkauimyia

DIAGNOSIS: Fittkauimyia is easily diagnosed by the dorsomental teeth arranged in a concave arc; multiple dorsal and ventral accessory teeth on the mandible; and its distinctive ligula.

N OTES: O ne species, Fittkauimyia serta, is known from N orth America, where it is found as far west as Texas and O klahoma and at least as far north as N orth C arolina (N ew H anover Co .) in the East. Thelarva still has not been conclusively associated with the adult, which was formerly classified in the monotypic genus Parapelopia. Parapelopia was tentatively synonymized with Fittkauimyia by Roback (1982b), based on associated specimens of another species from Australia; Oliver et al. (1990) list Parapelopia as a junior synonym of Fittkauimyia. Roback's (1982b) larval species Fittkauimyia sp. 2 is the only species known (as a larva) from the SE US and is most likely the larva of F. serta.

Fittkauimyia larvae are found in marshes, ponds, lakes, streams and rivers.
ADDITIO NAL REFERENCES: Davis 1992; Roback 1971; 1982b.

ligula and paraligula

mentum and M appendage

mandible

DIAGNOSIS: Thegranulosesurface of the head capsule; longitudinally wrinkled body surface; posterior parapods with 2-3 small claws, each with 3 or more inner teeth; and at least 3 darker claws on the posterior parapods distinguish Guttipelopia.

N OTES: O ne species, Guttipelopia guttipennis, occurs in the Southeast US. It was formerly considered a separate species, G. currani, but was synonymized by Bilyj (1988). A second species occurs in Canada in M anitoba and O ntario.

Larvae are most often found in sphagnum bogs, ditches, ponds and lakes, but may occur in streams on the Coastal Plain.

AD DITION AL REFEREN CES: Beck \& Beck 1966; Bilyj 1988; Kowalyk 1985; Roback 1971.

head capsule

ligula and paraligula

mandible

small claws of posterior parapod

body segment

Genus H ayesomyia

DIAGNOSIS: Larvae of this genus are distinguished by the 2 segmented b sensillum of the maxillary palp; ring organ in distal third of basal segment of maxillary palp; second antennal segment length about $50-60 \mu \mathrm{~m}$; length of basal antennal segment divided by mandible length less than or equal to 1.8 ; sclerotized base of the antennal blade almost twice as long as wide; AR $\llcorner .0$; small basal and accessory teeth of the mandible; and the long scattered body setae. The pupal thoracic horn has a distinct aeropyle surrounded by a corona, respiratory atrium with only one or two convolutions.

N OTES: O ne species, Hayesomyia senata, is described from N orth America; it occurs throughout the continental US. A member of the Thienemannimyia group, H. senata was formerly placed in Thienemannimyia (q.v.). Hayesomyia larvae are extremely difficult to separate from those of M eropelopia and Thienemannimyia, and one may have to be content with an identification of "Thienemannimyia group sp." or "H ayesomyia/M eropdopia sp." for many specimens encountered. Late fourth instar larvae with a pharate, internally developed pupal thoracic horn may be positively identified; note the distinctive aeropyle and corona. The dark coloration on the caudal margin of the head capsule referred to by Epler (1992, 1995) is variable; someH ayesomyia head capsules are pale or only slightly darkened on the posterior margin of the small triangular posteroventral sclerite.

H ayesomyia senata larvae are most often found in rivers. Roback (1981) supplied the following water chemistry data: specific conductivity $301-400 \mu \mathrm{mhos} @ 25^{\circ} \mathrm{C}$; pH $7.1-8.0$; total hardness $51-150 \mathrm{ppm}$; alkalinity $41-200 \mathrm{ppm}$; temperature $19-28^{\circ} \mathrm{C}$.

ADDITION AL REFERENCES: M urray \& Fittkau 1985; Roback 1971; 1981.

Genus
 H elopelopia

DIAGN O SIS: H elopelopia is similar to Conchapelopia in having a 3 segmented b sensillum on the maxillary palp; ring organ in distal third of palp; and small basal and accessory teeth on the mandible. It may be separated by the longer first antennal segment ($>375 \mu \mathrm{~m}$) and basal segment of the maxillary palp (>70 $\mu \mathrm{m}$); smaller central tooth of the ligula (about as long as wide); ratio of length of maxillary pal $\mathrm{p} /$ width at ring organ 4.6 or more; and pseudoradula with about 12 longitudinal rows of coarse granules.

N OTES: This genus, a member of the Thienemannimyia group of genera, was formerly included as a subgenus of Conchapelopia. Two species are known from the Nearctic ; both occur in the Carolinas. Spe cies level identification of larvae without associated adults is not possible for only H . cornuticaudata is described in the immature stages. Positive separation of H elopelopia from C onchapelopia may be achieved with late 4th instar larvae; note that the developing pupal thoracic horn has a much smaller plastron plate. Also note that the corona in C onchapel opia is quite variable in size.

Helopelopia cornuticaudata larvae are found over a wide range of total hardness ($0-250 \mathrm{ppm}$) and alkalinity factors ($0-200 \mathrm{ppm}$); they are found in waters with a pH of $5.1->8.1$ and at water temperatures from $14-28^{\circ} \mathrm{C}$ (Roback 1981). They are most often found in small streams to large shallow streams.

ADDITIONAL REFERENCES: Roback 1971; 1981.

ligula and paraligula

mandible

maxillary palp

pupal thoracic horn

DIAGNOSIS: The lack of well developed dorsomental tooth plates, each with three small teeth and apicomedial margin rounded; maxillary palp with ring organ proximal to or at middle of segment; small accessory and basal teeth on mandible; basal outer margin of larger posterior parapod claws not extensively lamellate; procercus about 4 times as long as wide; and lack of a setal fringe will distinguish this genus.

N OTES: Two species are described from the Southeast; H. karelena from both C arolinas and Georgia, and H. parrishi from northern Georgia. Larvae of H. parrishi were collected from shallow (1 cm) water flowing over granitic bedrock covered with moss, algae and detritus; H. karelena larvae collected in South C arolina were found in a bluegreen algae mat on steep granite outcrops with a low flow of water. Thetwo species may be separated by coloration: the head capsule and posterior parapod claws of H . parrishi are yellowish brown; the head capsule and posterior parapod claws of H . karelena arebrown, with the posterior portion of the head capsule usually much darker than the anterior. An apparent third species reported from N W Florida by Epler (1995) is not a H udsonimyia, but is a Thienemannimyia group member, probably a M eropelopia.

Sublette \& Sasa (1994) relegated Hudsonimyia to subgeneric status under Pentaneura; immature stages linked to adults of a new species described from G uatemala were only provisionally associated and present an apparent mix of characters. Given the substantial differences between the two taxa in the larval and pupal stages, for the present I'm retaining the generic status of H udsonimyia, a position also adopted by C aldwell et al. (1997).

AD DITIO N AL REFEREN CES: Caldwell \& Soponis1982; K owalyk 1985; Roback 1971; 1979a; Sublette \& Sasa 1994.

H. karelena, head capsule

H. parrishi, mandible

H. parrishi, maxillary palp

mentum and M appendage

H. parrishi, ligula and paraligula

procercus
(anal setae abbreviated)

Genus Krenopelopia

DIAGNOSIS: K renopelopia larvae may be distinguished by the large Lauterborn organs on the apex of antenna segment 2, giving the appearance of a tuning fork; bifid paraligula; pseudoradula with small coarse granules in longitudinal bands; ligula with granulose area forming a basal band; lack of well developed dorsomental tooth plates; large basal tooth on the mandible; and the lack of any lateral setal fringe on abdominal segments (lateral setae are present, but none in fringe rows).

N OTES: Larvae of the only described southeastern species, K. hudsoni, were reported from South C arolina living in muddy seeps along the borders of small springs or spring-fed streams (Roback 1983). C aldwell et al. (1997) reported K. hudsoni from N orth C arolina; I've also examined material from a spring near a bog in Ohio.

The single larval specimen of an apparently undescribed species of K renopelopia from northern Florida reported by Epler (1995) is a N atarsia (aberrant?) with extremely long Lauterborn organs (see N atarsia).

AD DITIO N AL REFEREN CES: Kowalyk 1985; Roback 1983.

apex of antenna

ligula and paraligula

mentum and M appendage

mandible
K. hudsoni, larval structures

Genus Labrundinia

DIAGN O SIS: This genus is distinguished by the median tooth of the ligula usually longer than the inner teeth (one species in FL has the median tooth equal to or less than inner teeth); head capsule usually covered with spinules/nodules/granules or with small to large lateral spines al ong the side of the head near the middle (one species in FL with no lateral spines), or with both head nodules and lateral spines; pseudoradula slightly broadened posteriorly; mandible with large basal tooth; one small bifid claw on posterior parapod; and anal tubules shorter than posterior parapods.

N OTES: Labrundinia larvae are found in herbaceous marshes, ponds, lakes and the slower moving portions of streams and rivers. Roback (1987a) noted larvae occurring at the following water chemistry parameters: $\mathrm{pH} 4.5-7.2$ (most around 7.0); total hardness $19-94 \mathrm{ppm}$; alkalinity $0-82 \mathrm{ppm}$; specific conductivity $48-197 \mu$ mhos @ $25^{\circ} \mathrm{C}$; temperature $19-24^{\circ} \mathrm{C}$.

As can be seen from the diagnosis above, no one character will identify all Labrundinia larvae. C ontrary to the diagnosis provided in Fittkau \& Roback (1983), the pseudoradula is broadened posteriorly in many species, but not to the extent shown in Nilotanypus, a genus which may be confused with Labrundinia.

Roback (1987a) reviewed the genus and recorded 6 described species from the Southeast; all are found in the Carolinas. Two additional larval species which he gave number designators (sp. 3 nr vireceens (see N otes) and Sp. 6) also occur in the C arolinas. I've examined material very similar to Roback's L. Sp. 8 from Florida; these three species and three additional unnamed taxa (L. spp. A, B and C) from Florida are included in the following key. A species known only from pupae, L. sp. 10, occurs in Georgia. The existence of at least six unassociated larval taxa indicates that more work on the genus is needed. Benthic workers can contribute greatly by attempting to rear these taxa.

ADDITIONAL REFERENCES: Beck \& Beck 1966; Kowalyk 1985; Roback 1971, 1987a.

Key to Labrundinia Iarvae of the southeastern United States

1 Surface of head capsule covered with small spinules or nodules; lateral spines present or absent near middle side of head 2

1' Surface of head capsule smooth; Iateral spines or spurs usually present (lacking in one spe cies) near middle side of head 7

2 (1) Head without ventral darker area near center of head, although caudal margin of head may be darkened; lower spur of bifid posterior para pod claw longer than upper 3

posterior parapod claws

2' H ead with ventral darker area near center of head; lower spur of bifid posterior parapod claw subequal to or shorter than upper 4

3 (2) Head without lateral spines; caudal margin of head may be darkened; lower groove of bifid posterior parapod claw forming an acute angle \qquad L. pilosella

3' Head with small lateral spines; caudal margin of head not darkened; lower groove of bifid posterior paarapod claw forming a Ushaped angle \qquad L. maculata

4 (2') M edian tooth of ligula subequal to or shorter than inner teeth; lateral spines of head weakly developed \qquad L. sp.A (not recorded from theC arolinas)

4' M edian tooth of ligula much longer than inner teeth; lateral spines/spurs of head weakly or well developed \qquad 5

5 (4') Lateral spine group of head consists of a large spur; lower groove of bifid posterior parapod claw forms an acute angle \qquad L. sp. B (not recorded from the C arolinas)

6 (5') Bifid claw of posterior parapod short .. L. Sp. 8 (not recorded from the C arolinas; see N otes)

6' Bifid claw of posterior parapod more elongate
\qquad L. sp. 6

7 (1') Head with medial brown transverse band L. johannseni

7' H ead without dark medial transverse band, although caudal margin may be darkened \qquad

8 (7') Head without a lateral spur or group of spines \qquad
(not recorded from the C arolinas; see N otes)
8' Head with a single large lateral spur or group of small spines 9

9 (8') Bifid claw of posterior parapod with Ushaped lower groove and lower tooth broad
\qquad L. neopilosella

9' Bifid claw of posterior parapod with Vshaped lower groove and lower tooth narrower 10

$10\left(9^{\prime}\right)$ Lateral spine group of head consists of a single large spur about 20-25 $\mu \mathrm{m}$ long \qquad
\qquad
10' Lateral spine group of head consists of about 2-7 small spines 11

11(10') Lower spur of bifid posterior parapod claw short .. L. becki

11' Lower spur of bifid posterior parapod claw elongate \qquad L. vireccens

N otes on species

L. becki - A relatively common species known to occur from Florida north to Pennsylvania. Roback (1971) noted that Beck \& Beck (1966) had misinterpreted L. pilosella; he described this taxon as new. It is not keyed correctly in Beck \& Beck (1966) and Beck $(1976,1979)$.
L. johannseni - An easily recognized species because of the distinctive dark band across the middle of the head capsule. Recorded from Florida to Tennessee.
L. maculata - An apparently uncommon species. Roback (1987a) recorded it from California, Kansas, N orth C arolina and Texas; it has also been found in Florida and Georgia. The nodules/spinules of the head capsule may be weakly developed; use caution when keying any Labrundinia larva!
L. neopilosella - A common species found throughout the Southeast. The middle tooth of the ligula is almost always longer than the other teeth; however, this character state may occur in other Labrundinia species. Roback (1987a) described five varieties (including the nominal species) of this species; two (varieties 1 and 2) are recorded only from Alaska and C anada; var. 3 is known from Louisiana and Florida, var. 4 from Florida and Kentucky. The forms are separated on the basis of minor differences in the bifid posterior parapod claws, subbasal setae of the posterior parapods and the number of head capsule spines; see Roback (1987a) for more information.
L. pilosella - The most common and widespread of L abrundinia species in the eastern US. It is keyed as L. floridana, a junior synonym, in Beck \& Beck (1966) and Beck (1976, 1979). In N orth Carolina, most stream records of Labrundinia are for L. pilosella; other species are less common, usually lentic and are usually found on the C oastal Plain.
L. virescens - H udson et al. (1990) stated that this species, along with L. pilosella and L. neopilosella, was among the most common and widespread Labrundinia in North Carolina. H owever, Roback (1987a) and Epler (1995) found this species to be scarce and uncommon; material that I've examined from N orth C arolina determined as L. virescenshas been misidentified L. becki and L. pilosella.
L. sp. 3 nr. virescens - This species was described (Roback 1987a) from pupae only; Caldwell et al. (1997) reported that associated material showed that this taxon is the same as Roback's L. sp. 4 (described from larvae only). It is found throughout the Southeast; H udson et al. (1990) reported L. sp. 4 to be common in M ayo Reservoir in N orth Carolina.
L. sp. 6 - Recorded from Florida, Georgia, Kentucky, N orth C arolina and Tennessee.
L. sp. 8 - I've examined a larva from south Florida that is probably this species, described by Roback (1987a) from Cuba. The specimen does not appear to have the apparent spur on the mandible below the inner teeth. Roback noted that thistaxon may bethe same ashisL. sp. 7 from C olombia (which lacks the apparent spur on the mandible).
L. sp. A - K nown only from Florida, it is unusual for N earctic species in that the middletooth of the ligula is subequal to or shorter than the other ligula teeth. Since this species and L. sp. B occur in northern Florida, they will probably eventually be found on the C oastal Plain in the C arolinas.
L. sp. B - Known only from Florida; found throughout the peninsula.
L. sp. C - K nown only from Florida. Thistaxon is very similar to L. becki (similar bifid posterior parapod claws) and may be a variety of that species that lacks lateral spine groups on the head.

Labrundinia sp. 10 is a pupal species recorded only from Georgia (Roback 1987a).

Genus Larsia

DIAGNOSIS: The basal segment of maxillary palp with ring organ located near the middle to near the distal end of segment; apical portion of dorsomentum directed medially; large basal tooth of mandible; long antennae ($1 / 2$ length of the head and at least $3 X$ mandible length); AR 3.5-5.0; ring organ of basal antennal segment near middle; and the lack of any setal fringe will distinguish species of Larsia.

N OTES: Four described species are known from N orth and South C arolina; L. decolorata and L. berneri appear to be the most common species encountered in the Southeast. At least two undescribed species are known from the Carolinas; both are included in the following key. The South Carolina record for L. planensis in H udson et al. (1990) and Caldwell et al. (1997) is unconfirmed; it is not included in the following key. Larsia lurida, described and keyed in Beck \& Beck (1966), is a junior synonym of L. decolorata (Roback 1971). Although O liver et al. (1990) follow Roback (1971) and list L. indistincta as a junior synonym of L. decolorata, Bilyj (pers. comm.) considers it a valid species; it is treated as a distinct species in this manual.

Larsia larvae are most often found in marshes, ponds and the littoral zone of lakes, but can also befound in the slower moving portions of rivers and streams; at least one species has been collected from hot springs in Colorado.

Larsia is currently being revised by B. Bilyj (BIOTAX, Etobicoke, O ntario, C anada). He has graciously provided much of the following information. I have adapted a key to species he has provided; head capsule figures are adapted from hisillustrations. The placement of ventral head capsule setae S9 and S10, and the ventral pore (VP), are of importance in separating Larsia species; K owalyk (1985) provides an in-depth study of the setae of the tanypod head.

AD DITIO N AL REFEREN CES: Beck \& Beck 1966; Bilyj 1984; K owalyk 1985; Roback 1971; Sublette \& Sasa 1994.

antenna

K ey to Larsia larvae of the southeastern U nited States

1 Ventral cephalic setae S9 and S10 and ventral pore (VP) forming a more or less straight line perpendicular to longitudinal axis of head capsule \qquad L. berneri

1' \quad S9, S10 and VP forming a right angle or a straight line diagonal to longitudinal axis of head capsule \qquad 2

3(2) $\mathrm{S} 9, \mathrm{~S} 10$ and VP forming an $80^{\circ}-90^{\circ}$ angle with $S 9$ usually anterior to $V P$, but if slightly anterolateral then S10 more or less lateral to VP; ring organ of maxillary palp located $0.52-0.56$ or $0.73-0.81$ from base 4

3' $\mathrm{S} 9, \mathrm{~S} 10$ and VP forming a $90^{\circ}-110^{\circ}$ angle with S9 anterolateral to VP and S10 distinctly posterior to VP ; ring organ of maxillary palp located 0.60-0.68 from base L. sp. A
\qquad

variation in ventral setae

4(3) Ring organ located 0.73-0.81 from base \qquad L. canadensis

4' Ring organ located 0.52-0.56 from base \qquad L. sp. B

(-59	${ }^{\text {() }}$ S9
θ	\bigcirc
VP	VP
®	(0)
S10	S10

variation in ventral setae

DIAGN O SIS: Distinguished by the rotund head capsule; pseudoradula composed of coarse granules that fade away basally; maxillary palp with ring organ near base; reddish-brown ligula with 5 teeth; dorsomental plates with medial apex not reaching pseudoradula, each plate with 6 larger teeth with a smaller tooth at each end; small claws of posterior parapods without expanded bases; and the weak lateral setal fringe.

N OTES: O nly one species, M. decedens, is known from the eastern U nited States. I have not seen any adults or pupae from the Carolinas but have seen M acropelopia larvae from a bog and streams in and around Great Smoky M ountains N ational Park, from a tributary to the South ToeRiver in Yancey County and the Elk River in Avery C ounty in North C arolina. These are the southernmost records for the genus in the eastern United States; records of M acropelopia from Florida in Oliver et al. (1990) refer to A psectrotanypus or Bethbilbeckia (see Epler 1995). M acropelopia larvae may be found in springs, small streams, ponds and bogs.

ADDITIO N AL REFEREN CES: K owalyk 1985; Roback 1971, 1978a.

ligula and paraligula

maxillary palp

mentum and M appendage

DIAGNOSIS: Meropelopia larvae are distinguished by the long scattered body setae; pale posterior margin of head caapsule; 2 segmented b sensillum of the maxillary palp; ring organ in distal third of maxillary palp; basal segment of maxillary palp equal to or longer than second antennal segment; length of basal antennal segment/mandible length greater than 1.75; sclerotized base of the antennal blade about twice as long as wide; and mandible with small basal and accessory teeth.

N OTES: Two species, M. americana and M. flavifrons, are described from N orth America; both occur in the C arolinas. Larvae of the two species are separable only by size (data from reared 4th instar larvae from Roback (1981): M. flavifrons has basal segment of maxillary palp <60 $\mu \mathrm{m}$, first antennal segment <300 $\mu \mathrm{m} ; \mathrm{M}$. americana is larger); pupae and adults are more easily separated. Species level identification of M eropelopia larvae would be suspect without associated pupae or adults. Consider yourself fortunate if you can identify these larvae to genus, let alone species!

M eropelopia was formerly considered a subgenus of C onchapelopia, from which it is easily separated by the 2 segmented b sensillum of the maxillary palp (Conchaplopia has a 3 segmented b sensillum). It is more difficult to separate M eropelopia from H ayesomyia and Thienemannimyia, and one may have to be content with an identification of "T hienemannimyia group sp." for many specimens. As with other members of the Thienemannimyia group, mature 4th instar larvae may be identified to genus with certainty if the developing pupal thoracic horn is visible; note the lack of a corona.

M eropelopia flavifrons occurs in streams and rivers. Roback (1981) recorded the following water chemistry data for M eropelopia: total hardness 0-150 ppm, most < 50 ; alkalinity $0-80 \mathrm{ppm}$, most <40; specific conductivity $0-300 \mu \mathrm{mhos} @ 25^{\circ} \mathrm{C}$, most <100; pH 4.1-8.0, most from 6.1-7.0; temperature $9-28^{\circ} \mathrm{C}$, most from 9-18.

ADDITIO N AL REFERENCES: Roback 1971, 1981.

maxillary palp (b sensillum shaded)

ligula and paraligula

mandible

thoracic horn of pupa

DIAGN OSIS: This genus is distinguished by the large, well sclerotized Lauterborn organs at the apex of antennal segment 2 that resemble a tuning fork; the triangular rugose area at the base of the ligula; the lack of well-developed dorsomental teeth; and posterior parapods with at least one dark claw or with all claws transparent; if all claws transparent then smaller claws have large inner teeth and only two such claws present on each parapod (this last character only found on a Jamaican species not known from the US).

N OTES: O nly one species of M onopdopia, M. boliekae, is known for certain from the C arolinas. Two other described species are recorded from Florida and another species is known from phytotelmata in Jamiaca. The larva of Cantopelopia gesta is very similar and is included in the following key; see also Cantopelopia.

M onopelopia larvae are usually found in small bodies of water such as ponds and marshes; they are also sometimes encountered in streams. Two species, M. tillandsia (N earctic and perhaps N eotropical), and M. mikeschwartzi (Jamaica) live (exclusively?) in bromeliad phytotelmata.

ADDITIO N AL REFEREN CES: Beck \& Beck 1966b; Epler \& Janetzky 1999; Kowalyk 1985; Roback 1986a, 1987c.

M. boliekae, dark small claw of posterior parapod

M. boliekae, ligula

mandible

dorsomentum and M appendage

M. tillandsia, small claw of posterior parapod

M. tillandsia, ligula

K ey to M onopelopia larvae of the southeastern U nited States

1 All claws of posterior parapod pale yellow-brown or colorless 2

1' At least one dark claw on posterior parapod 3

2(1) Small claws of posterior parapod with at most a few small teeth on inner surface \qquad
M. tillandsia
(not known from the Carolinas)

2' \quad Three small claws on posterior parapod with many largeinner teeth \qquad Cantopelopia gesta

3(2') Teeth of ligula in relatively straight line; procercus length/width 3.0 or less; relatively common \qquad M . boliekae

3' Teeth of ligula in concave arc; procercus length/ width >4.0; rare \qquad M . tenuicalcar

M. boliekae

M. tenuicalcar

N otes on species

M. boliekae - The only species in the genus known from the Carolinas; found on the C oastal Plain; also known from Cuba. It apparently is most common in weedy ponds, but also occurs in streams.
M . tenuicalcar - This H olarctic species is recorded only from Florida in the SE U.S. Roback (1986a) also recorded this species from N ew Brunswick, N ewfoundland and O ntario in eastern Canada, and I've examined material from 0 hio; given such a distribution, it should also occur in the C arolinas. M . tillandsia - Recorded with certainty only from southern Florida, where it lives in bromeliad phytotelmata. An additional phytotelmatic species, M. mikeschwartzi, is known from Jamaica. The larva of M. mikeschwartzi can be separated from M. tillandsia and C. gesta by the 2 pectinate smaller claws on each of its posterior parapods. Records of M. tillandsia from N orth C arolina (C aldwell et al. 1997) probably refer to C. geta.
Cantopelopia gesta, known from Florida, Georgia and South C arolina in the SE US, is included in the key above because of its similarity to M onopelopia larvae; see Cantopel opia for more information.

Genus Natarsia

DIAGNOSIS: Theshort antennae (about 1/3 length of head and twicethelength of the mandible); large basal tooth of the mandible; absence of well developed dorsomental tooth plates; pseudoradula with fine granules not in longitudinal rows; basal segment of maxillary palp with ring organ in apical third; and the anterolateral fringe of 4 larger setae on body segments 4-10 are distinctive.

N OTES: Two taxa of thegenus N atarsia areknown from the Southeast; both have been recorded from the C arolinas. H owever, the taxonomy of the two species, N. baltimorea and N. sp. A, is unclear. Although most larvae of the two taxa are distinctive, pupa and adults can only be separated by size. Roback (1978) al so described larval variants of each species; a variant of N. baltimorea had a long, thin spine on the apex of antennal segment 2 (Roback 1978: 196); while a variant of N. sp. A (based on a larva with discernable pupal characters; these pupal characters placed the specimen in N. sp. A) possessed a ligula with apically even teeth. Additional variants are discussed under N otes on species.

The Lauterborn organs of some N atarsia sp. A type larvae are extremely elongate, surpassing antennal segment 3 and, as in one specimen illustrated below, most of the length of antennal segment 4. These long Lauterborn organs may cause workers to confuse such specimens with K renopelopia (q.v.) or other taxa.
N atarsia larvae are found in streams and marshes; they can apparently withstand organic and toxic discharges, especially sewage (Hudson et al. 1990). Roback (1978) gave the following water chemistry data for N. sp. A: pH 5.1-7.0; total hardness 0-100 ppm; alkalinity 0-40; specific conductivity 0-300 $\mu \mathrm{m}$ @ $25^{\circ} \mathrm{C}$; temperature $14-28^{\circ} \mathrm{C}$.

AD DITIO N AL REFEREN CES: Kowalyk 1985; Roback 1971;

N. sp. A ligula and paraligula

N. sp. A maxillary palp

mentum and M appendage

mandible

body segment showing anterolateral fringe of 4 setae

K ey to N atarsia Iarvae of the southeastern U nited States

1
Ligula apically concave \qquad N. sp. A

1' Ligula apically straight \qquad N. baltimorea

N otes on species

N. sp. A - Roback (1971) had concluded that larger specimens incorrectly identified by M alloch (1915) as Tanypushirtipennis represented a junior synonym, in part, of N . baltimorea. Because of differences in the larvae, Roback later (1978) believed that these larger specimens of N . baltimorea represented another species and tentatively named them N atarsia sp. A. M ore reared material is needed before this taxon can be redescribed and, if it represents a new species, given a new name. This taxon displays some variation in the length of the Lauterborn organs and antennal segment 3. Variations I've observed are illustrated below. Larvae with very long Lauterborn organs have been mistaken for Krenopelopia. It is not known if larvae with long Lauterborn organs and/or a short antennal segment 3 represent another species of N atarsia or are just the extreme end of a range of variation.

N. sp. A

N FL specimen

N. sp. A

N FL specimen

N. sp. A SC specimen

N. baltimorea SC specimen

Antennal apices of N atarsia species

Genus Nilotanypus
DIAGN OSIS: This genus is distinguished by its small size; head without nodules/spinules or lateral spines; ligula with the median tooth longer than the inner teeth; at least one small or medium claw of the posterior parapod pectinate or with several small spines; pseudoradula with fine granules and greatly broadened posteriorly; and the long anal tubules that exceed the posterior parapods.

N OTES: Four taxa assigned to Nilotanypus have been recorded from the US (Roback 1986b). Two species, N. americanus and N. fimbriatus, are known from North and South C arolina. I have also seen an adult male specimen from SE Alabama which fits the description for N . kansensis, this species may also occur in the C arolinas. Some taxonomic uncertainty exists, for the male of N . americanus remains undescribed. Roback (1986b) also described a larval type from Texas (incorrectly located on his map, fig. 91). Species separation of the larvae of N. ameri canus and N. kansensis is difficult and impossible without 4th instar larvae (which should be reared to confirm identification); the pectinate small claw on the posterior parapod of N. fimbriatus easily distinguishes that species. Specimens of Nilotanypus which are not clearly assignable to N . fimbriatus should be identified as "Nilotanypus sp."

Nilotanypus can be confused with some Labrundinia larvae because of the similar ligula morphology; the two may be difficult to separate if the posterior portion of the body is missing. N ote that the mandible's basal tooth is much larger in Labrundinia than in Nilotanypus.

Nilotanypus larvae are usually found in clean, relatively shallow sand bottomed streams, but also occur commonly in large coastal plain rivers. Some populations are apparently not tolerant of some forms of pollution, and may serve as indicators of good water quality. Roback (1986b) gave the following water chemistry data associated with N . americanus. alkalinity <20 ppm; D $04.6-9.4 \mathrm{mg} / \mathrm{l}$; pH 4.7-7.0; total hardness $16-44 \mathrm{ppm}$; specific conductivity $32-92 \mu \mathrm{mhos} @ 25^{\circ} \mathrm{C}$; temperature $15-18^{\circ} \mathrm{C}$. The larva of N . kansensis is known from moss along the margins of springs.

ADDITIO N AL REFERENCES: Kowalyk 1985; Roback 1971; 1986 b.

N. americanus posterior parapod claw

N. fimbriatus posterior parapod claw

ligula
caudal end of body
(anal tubules shaded)

K ey to N ilotanypus larvae of the southeastern United States

1 One medium claw of posterior parapod pectinate N. fimbriatus

1' O neor moremedium claws of posterior parapod with inner row of small spines/serrations, never pectinate
\qquad

2 Length of antenna segment $2<44 \mu \mathrm{~m}$; head length usually $<326 \mu \mathrm{~m}$ \qquad N. americanus
2^{\prime}
Length of antenna segment $2>44 \mu \mathrm{~m}$; head length usually $>326 \mu \mathrm{~m}$ \qquad N. kansensis (not known from theC arolinas)

DIAGN OSIS: Larvae of this genus are distinguished by the large basal tooth of the mandible; the two segmented maxillary palp, with the proximal segment $<1 / 2$ length of the distal segment; and the pseudoradula broadened posteriorly, appearing attached to a transverse bar and consisting of small granules not arranged in parallel rows.

N OTES: Three species are known from the Southeast; two species are known from the Carolinas: P. anomala and P. fragilis. A third species recorded from Florida and Texas, P. testa, may occur in the C arolinas. The immature stages of the latter two species are undescribed; the larva of P. anomala was described by Beck \& Beck (1966). It may be possible to distinguish P. anomala by the darkened caudal margin of the head capsule; however, specimens should be reared for correct identification. N ote that identifications based solely on unassociated larvae can not be positive. Unless reared and identified to species as adults, larvae should be identified as "Paramerina sp."

Although Fittkau \& Roback (1983) stated that the claws of the posterior parapods were simple, some species possess bifid small claws.

Larvae are found in marshes and streams.
ADDITIONAL REFERENCES: Beck \& Beck 1966; Kowalyk 1985; Roback 1971; Sublette \& Sasa 1994.

mentum and M appendage

maxillary palp

mandible

ligula and paraligula

DIAG N O SIS: Larvae are distinguished by the sclerotized tubercle at the base of each supraanal seta, long procerci (6 or more times as long as wide) and lack of a setal fringe. The common species P. inconspicua is distinguished by the large, pointed, apically directed basal tooth of the mandible; apices of ligula teeth even or almost so; ring organ in apical third of basal maxillary palp segment; lack of well developed dorsomental teeth; one dark claw on each posterior parapod; and anal tubules longer than posterior parapods.

N OTES: O ne species, P. inconspicua, is common throughout the Southeast in rivers and streams. The species P. inculta was synonymized with P. inconspicua by Roback (1971). Mike Bolton (O hio EPA) has provided a reared female and additional larva of another species from O hio which may belong in Pentaneura, tentatively included here as Pentaneura sp. A. This species lacks the pointed basal tooth of the mandible, Iong anal tubules, dark claw on the posterior parapod and the ligula is different from P. inconspicua. Pupal characters place this enigmatic taxon in Pentaneura; more material is needed. This species has not been found in the Southeast, but Hudson et al. (1990) noted an undescribed species based on an adult from South C arolina's Savannah River Plant. I have not seen this specimen and do not know if it is conspecific with P. sp. A.

ADDITIONAL REFEREN CES: Beck \& Beck 1966; Kowalyk 1985; Roback 1971.

DIAGNOSIS: Procladiuslarvae are distinguished by the rotund head capsule; well developed dorsomental tooth plates; mandible with large blunt basal tooth; black/dark brown five toothed ligula; paraligula with numerous small teeth; antennal blade subequal to the flagellum; and body with well developed lateral setal fringe.

N OTES: Four Procladius species are recorded from the C arolinas. Two subgenera occur in the Southeast: P. (Psilotanypus) with one species, P. bellus, and P. (H olotanypus) [referred to as P. (Procladius) in Roback (1980) and Webb \& Brigham (1982)] with three species, P. denticulatus, P. freemani and P. sublette; P. wilhmi is known from Arkansas and Tennessee and may also occur in the C arolinas. N ote that characters of the pecten hypopharyngis used to separate subgenera in Webb \& Brigham (1982: 11.61) will not work consistently. The length of the apical tooth of the paraligula is variable, and may not be useful as a character to separate the two subgenera in the Southeast, contrary to the key in Fittkau \& Roback (1983: 64). Some larvae may be identified to subgenus, but with the exception of P. bellus, species identification of unreared larvae is not possible. Procladiusbellus and P. sublette are by far the most common species in the Southeast. Earlier records of P. culiciformis from the Southeast (Florida) are most likely referable to P. freemani or P. sublettei.

Procladius larvae are found in the bottom sediments of bogs, ponds, lakes and the slower moving portions of streams and rivers. Roback (1980) recorded the following water chemistry data: pH , 4.1-8.0; total hardness (ppm CaCo ${ }_{3}$ < $50-260$, with most records < 51 ; alkalinity $<40-200$, with most < 41 ; specific conductivity $<100-500 \mu \mathrm{mhos} @ 25^{\circ} \mathrm{C}$, with most <200; and water temperature $<8-28^{\circ} \mathrm{C}$, with most records for $19-23^{\circ}$. Larvae may be found in heavily polluted conditions, and are subject to numerous deformities (see W arwick 1989; 1990).

Larvae with a 4 toothed ligula may be confused with D jalmabatisa, but may be separated by the shorter antennal blade in Procladius. The small claws of the posterior parapod do allow identification of some forms of P. bellus, other specimens are best identified as "Procladius sp."

ADDITION AL REFEREN CES: Kowalyk 1985; Roback 1971, 1980; Sublette et al. 1998; Warwick 1989, 1990.

mandible

ligula and paraligula

apex of antenna

K ey to Procladiuslarvae of the southeastern U nited States

1 O ne or two of the smallest claws on the posterior parapods with large inner teeth P. bellus(in part) 2

1' Smallest claws of posterior parapods without large inner teeth \qquad

2(1) Each posterior parapod with 1 toothed small claw
P. bellus var. 2

2' Each posterior parapod with 2 toothed small claws P. bellus var. 3

3(1') Apices of several larger claws of posterior parapod drawn out to hair-like extension and smallest claws without expanded bases \qquad P. (H olotanypus) sp.

3'
Apices of larger claws of posterior parapod with simple point and smallest claws with expanded bases
P. bellus var. 1

N otes on species

P. bellus - A widespread and abundant species. Roback (1980) noted three varieties of P. bellus, all of which have been found in the Southeast; some of these may represent different species (see H udson et al. 1990), but much more work is needed. Roback (1971) noted that the holotype of P. riparius was different from the rest of the type series; he partially synonymized P. riparius with P. bellus. Oliver et al. (1990) listed P. riparius as a separate species. Sublette et al. (1998) synonymized P. riparius with P. bellus, noting that the slide of the P. riparius holotype's genitalia was actually that of a Cod otanypus. C harlesW atson (pers. comm.) has pointed out the hair-like apices of some of the large claws of the posterior parapod of P. (H olotanypus) species; use caution when identifying larvae for it is not known if that character is found in all species. Reared material is a definite asset, and in most cases a necessity, for the identification of Procladius larvae to the species level.

DIAGN OSIS: Distinguished by the well developed, transverse dorsomental tooth plates; mandible with several large inner teeth; a pale ligula with 4 even teeth; numerous long apicolateral branches on the paraligula; and body with a lateral setal fringe.

N OTES: Two taxa, Psectrotanypus dyari and Ps. sp. A, are known from the C arolinas; a third species, Ps. discolor, may also occur. Derotanypus, in the US found mostly in the northern west, is similar to Psectrotanypus, but differs mainly in possessing numerous small dorsal teeth on the mandible and the ventromental plates are concave, not straight as in Psectrotanypus.

Larvae arefound in bogs, ponds, springs, streams and small rivers. Psectrotanypusdyari istolerant of organic pollution.

ADDITIO N AL REFERENCES: Kowalyk 1985; Roback 1971; 1978a.

Ps. dyari mentum and M appendage

Ps. dyari ligula and paraligula

Ps dyari mandible

Ps. sp. A ligula and paraligula

K ey to Psectrotanypus larvae of the southeastern United States

1 Ligula short and squat; paraligula with 10 or fewer lateral branches; small claw of posterior parapod with ovoid base \qquad Ps. dyari

posterior parapod claw

1' Ligula longer and narrower; paraligula with more than 12 branches; small claw of poste rior parapod simple \qquad 2

posterior parapod claw

2(1') Head capsule yellow-brown, with a posterior dark dorsal mark \qquad Ps sp. A

2' H ead capsule yellowish-brown, without dark marking \qquad Ps. discolor (not known from the C arolinas)

N otes on species

Ps. discolor - Not recorded from the Carolinas, but known from West Virginia and may eventually be found in the Smoky M ountains. Roback (1978a) found Ps. discolor larvae in a sphagnum bog and nearby stream, in acid conditions (pH 3.9-4.0); I've collected it from peat bogs in M aine. See also Ps. sp. A below.
Ps. dyari - Found throughout the eastern US, usually in organically enriched water. Roback (1978) noted that P. dyari appeared to be the only member of its tribe (the M acropelopiini) tolerant of high levels of organic pollution. He gave the following water chemistry parameters for the species: pH 6.1-8.0; total hardness $51-200 \mathrm{ppm}$; alkalinity < 40-200 ppm; specific conductivity < 100-400 umhos @ $25^{\circ} \mathrm{C}$; temperature $9-23^{\circ} \mathrm{C}$.
Ps. sp. A - Charles Watson (pers. comm.) has reared this cold stenotherm species from depositional areas of springs and headwater streams in Virginia, Tennessee and both C arolinas. Psectrotanypus sp. A may be a southern variant of Ps. discolor but it differs in coloration in all life stages and is probably specifically distinct from that species. Pupae show the only structural differences, mainly in the shape of the anal fin, which is asymmetrical in Ps. sp. A and symmetrical in Ps. discolor.

DIAGN OSIS: Distinguished by the rotund head capsule; ring organ near middle of maxillary palp; ligula with inner teeth directed forward; dorsomental plates with 5 largeteeth, a bifid innermost tooth and a small outer tooth, plates without medial extension; small claw of posterior parapod without an expanded base; and the lateral setal fringe on the body.

N OTES: Radotanypus has not been collected in the Southeast, but its presence in O hio (Bolton 1992) indicates that it may eventually be found in the mountains. There appears to be only one species in the Nearctic, R. florens (Johannsen) (formerly placed in Apsectrotanypus); B. Bilyj (pers. comm.) considers R. submarginella (Sublette) to be a junior synonym. Radotanypus larvae are very similar to Apsectrotanypus, Bethbilbeckia and Brundiniella.

Larvae have been collected in a stream and a small river in Wyoming, and from a spring and streams in an alkaline fen in Ohio.

ADDITIO N AL REFEREN CES: Fittkau \& M urray 1985; Epler 1986 b.

Genus Reomyia

DIAGN O SIS: Larvae of this genus are not readily separable from Zavrelimyia; associated pupae will aid in accurate identification. Larvae are distinguished by the elongate, smooth head capsule; lack of well developed dorsomental teeth; pseudoradula with moderately fine, scattered granulation and broad base; long, thin basal segment of the maxillary palp (5.8-6.0 times as long as wide) with ring organ 0.30-0.39 from base; large basal tooth on the mandible; AR 2.4-2.6; posterior parapods with or without one small to medium claw with an inner tooth; and body without a fringe of swim setae.

N OTES: At least one undescribed species is known from the Southeast that can provisionally be placed in Reomyia. Broughton Caldwell (pers. comm.) has reared this species from Coweeta in N orth C arolina; Leeper \& Taylor (1998) recorded a Reomyia from South C arolina near the Savannah River Site.

Reomyia wartinbei, a western North American species and the type species of the genus, was originally described as a Zavrelimyia (Roback 1984) but elevated to generic status in Roback (1986c). The pupa of Reomyia was included in Fittkau \& M urray (1986) asTanypodinae genus III; the larva has remained unde scribed. Reomyia is very similar to Zavrelimyia and may not be separable from that genus in the larval stage. The N orth C arolina Reomyia sp. A material has a mix of characters that confuse the boundaries of Reomyia and Zavrelimyia; pupal characters such as the thin, elongateD setae will place it in Reomyia (these setae are shorter and rounded in trueZavrelimyia). In the adult C oweeta Reomyia specimens, wing vein R_{3} does not attain the costa, a scutal tubercle i s present (however, at least one species of Zavrel imyia has a scutal tubercle (B. Bilyj, pers. comm.)) and the lengths of the fourth and fifth tarsomeres of the mid leg fit within thelimts of Reomyia. There is variation in the larvae of R. sp. A; some (two female larvae with Reomyia-type pupae) possess a posterior parapod claw with an inner tooth, while apparently conspecific specimens (two male larvae with Reomyia-type pupae) do not; however, another female larva was reared without the inner tooth. A revision of Zavrelimyia is needed to clearly define the generic limits of Reomyia and Zavrelimyia; it is likely that Reomyia may be considered at most a subgenus of Zavrelimyia.

ADDITIONAL REFERENCES: Roback 1984, 1986c.

male posterior parapod claw

pupal thoracic thorn

female posterior parapod claw

maxillary palp

mentum and M appendage

Genus Rheopelopia
DIAGN OSIS: Distinguished by the lack of dorsomental teeth; 2 or 3 segmented b sensillum; maxillary palp with ring organ in distal third; basal portion of maxillary palp usually shorter than antennal segment 2; mandible with an extremely reduced basal tooth and apparently absent accessory tooth; and the long, thick, radially arranged body setae;:

N OTES: The taxonomy of larval Rheopel opia is poorly understood. At least three taxa are known from the Carolinas, but only one, Rh. acra, is known from adult specimens; the other taxa, a probable Rh. paramaculipennis and Rh. sp. 3 Roback, are known only from unassociated larvae. Two other "species" of Rheopelopia are known from the Southeast: Rh. sp. A Epler is known from the Suwannee River system in northern Florida (Epler 1992, 1995) and Rh. sp. 2 Roback is known from Georgia and C anada (Roback 1981). Rheopelopia sp. A may be a southern form of Rh. paramaculipennis with a darker head capsule. N ote that the latter two taxa have a 2 segmented b sensillum of the maxillary palp, rather than the 3 segmented b sensillum diagnosed in Fittkau \& Roback (1983).

The Rheopelopia acra group is apparently the most commonly encountered taxon of the genus in the Carolinas. There are at least two species in this group, Rh. acra and Rh. perda; only Rh. acra has been recorded from the Southeast. The two taxa may be variants of the same species (Roback 1981). I've examined onelarvathat may be Rh. paramaculipennisfrom theD an River in C aswell Co ., N C ; Rheopelopia sp. 3 is rare in mountain streams.

Rheopelopia larvae may be difficult to separate from other members of the Thienemannimyia group, although the al most toothless mandible is distintinctive; developing pupal structures within the larval cuticle will help in identification. The spineless, saccoid type of pupal thoracic horn illustrated below is found in Rh. paramaculipennis, Rh. sp. A and Rh. sp. 2; the thoracic horn of the Rh. acra group species bears small spines apically (see also Roback 1981: 115).

Rheopelopia larvae are usually, as their name implies, found in running water.
ADDITIONAL REFEREN CES: Roback 1971, 1981.

K ey to Rheopelopia Iarvae of the southeastern U nited States

1 M axillary palp with b sensillum 2 segmented .. 2

1' M axillary palp with b sensillum 3 segmented .. 3

2(1) H ead capsule light yellow-brown \qquad

2' H ead capsule brown Rh. sp. A (not recorded from the C arolinas)

3(1') Posterior 2/3 of head capsule dark brown .. Rh. sp. 3

3' D ark brown coloration, if present, limited to posterior margin of head capsule

4(3') Subbasal seta of posterior parapod unevenly bifid \qquad Rh. acra group

[^1]DIAGN OSIS: Tanypuslarvae may be distinguished by the stout mandible (the apical tooth appears small in relation to the remainder of the mandible); well developed, transverse dorsomental teeth; lack of a pseudoradula; and the well developed lateral setal fringe on the body.

N OTES: Six Tanypus species are recorded from the C arolinas; a seventh species, T. telusRoback, is known only from Florida; its larva is undescribed. In the C arolinas, Tanypus is basically a genus of the Piedmont and Coastal Plain regions.

Larvae are usually found in or on soft sediments of marshes, ponds and lakes but also occur in the slower portions and side pools of streams and rivers. Tanypus carinatus and T. neopunctipennis can be common in organically enriched systems. D ata in Roback (1977) indicate that Tanypus larvae are found in apH range of $<4-8.0$, an alkalinity range of $<40-160 \mathrm{ppm}$, a total hardness range of $<50-200 \mathrm{ppm}$ and a specific conductivity range of $<100-400 \mu$ mhos @ $25^{\circ} \mathrm{C}$. The larvae feed on the soft parts of chironomid larvae (the head capsule is not engulfed as in many other Tanypodinae), worms, diatoms and plant parts.

Larvae of four southeastern species (T. carinatus, T. concavus, T. punctipennis and T. stellatus) possess a pair of ventral "lobes" posterolaterally on abdominal segment VI ; the two other species (T . clavatus and T . neopunctipennis) have a more simple, mesally infolded line of setae at the same position.

AD DITIO N AL REFEREN CES: K owalyk 1985; Roback 1969, 1971, 1977.

T. carinatus

T. stellatus

T. neopunctipennis

lobe on abdominal segment VI of T . concavus
small claws of posterior parapod

Key to Tanypus larvae of the southeastern United States
 (the larva of T. telus, a Florida species, is undescribed)

1 Smaller claws of posterior parapods pectinate; ligula pale, relatively long and narrow; 4 anal tubules present

1' Smaller claws of posterior parapods simple or expanded, with at most a serrate inner margin; ligula darker, shorter and wider; 6 anal tubules present or tubules vestigial

2(1) Ligula long and narrow, about 5 times as long as width near middle; paraligula with 8 or more branches \qquad T. concavus

2' Ligula shorter and not as narrow, about 2-3 times as long as width near middle; paraligula with 7 or fewer branches \qquad T. stelatus

T. concavus

T. stellatus

3 (1') Teeth of ligula in even arc; smaller claws of posterior parapods simple \qquad 4

3' M edian 3 teeth of ligula much Ionger than outer teeth; smaller claws of posterior parapods with expanded base 5

4(3) Paraligula deeply divided to about $1 / 2$ its length; head capsulepale ... T. punctipennis

4 Paraligula not as deeply divided, at most about $1 / 3$ if its length; head capsule darkened T. carinatus

T. punctipennis

T. carinatus

5(3') Smaller claws of posterior parapod with serrate inner margin; anal tubules reduced; usually found in brackish water
T. clavatus

5' Smaller claws of posterior parapod with smooth inner margin; 6 anal tubules present; not commonly found in brackish water T. neopunctipennis

N otes on species

T. carinatus - A common and widespread species; Roback (1977) noted that it occupied the widest range of physicochemical parameters in the genus. I've encountered it most often in waters with low dissolved oxygen and high organic content.
T. clavatus - Apparently a brackish water species, although Oliver et al. (1990) list it for K entucky. As with their putative record of Thalassomya bureni from Kentucky (see p. 2.3), the K entucky record is probably a misidentification. They also record T. clavatusfor N orth C arolina. Although I've seen no specimens from the C arolinas, with its salt marsh Atlantic shore line, their record for N orth Carolina is probably valid; if true, it should also occur in South Carolina. Roback (1977) gave a salinity range of 5-25 0/00 for this species. As with many brackish water species of Chironomidae, the anal tubules are vestigial.
T. concavus - The larva of this species has still not been positively associated with the adult, but the taxon keyed here probably is T. concavus; (Roback (1977) called it T. poss. concavus. I've seen numerous adultsfrom Pen Branch at theSavannah River Sitein South C arolina and several larvaefrom N orth Carolina.
T. neopunctipennis - This species can apparently tolerate brackish water; Roback (1977) recorded it from water with a salinity of $4.450 / 00$ in Florida. It often occurs with T. carinatus (Roback 1977; Epler 1995).
T. punctipennis - Roback (1977: 64) noted that T. punctipennis apparently tolerated a wide range of environmental conditions ranging from "a clean, clear, slightly brown-water stream to a largeturbid river". N ote that the taxon called T. punctipennis in the Nearctic is probably not the same as the species originally described from Europe; morerevisionary work is needed.
T. stellatus - This species is often found in deeper water than other species of the genus. Roback (1977) recorded it from depths of up to 14 meters in Tennessee.

DIAGN O SIS: This genus is distinguished by the lack of dorsomental teeth; 2 segmented b sensillum; maxillary palp with ring organ in distal third; apical portion of dorsomentum directed apically; large basal tooth of the mandible; AR around 3.8; ring organ of basal antennal segment in distal third; and lack of a setal fringe (long, thin scattered body setae present).

N OTES: O ne species, T. okoboji (Walley), is known from the United States. The larval stage is the most easily distinguished member of the Thienemannimyia group because of the large basal tooth of the mandible. It has not been collected in the C arolinas but its presence in O hio, M aryland and Virginia (O liver et al. 1990) indicates that it may eventually be collected in the Carolinas.

Roback's (1981) Iarval description and the diagnosis in Fittkau \& Roback (1983) stated that the b sensillum of the maxillary palp is two segmented. H owever, Fig. 5.33F in Fittkau \& Roback (1983) shows the b sensillum as three segmented. The b sensillum was two segmented on the only specimen I've examined, a larva (with a well developed pharate pupa within) from O hio, illustrated below. The pupal thoracic horn is similar to that of Conchapelopia, H ayesomyia, Helopelopia and M eropelopia, but pupae can be distinguished by the well developed thoracic comb of Telopelopia.

Telopdopia larvae are apparently most often found in rivers, but also occur in lentic situations.
ADDITION AL REFERENCES: Kowalyk 1985; Roback 1971, 1981.

ligula and paraligula

maxillary palp (b sensillum shaded)

antenna

pupal thoracic horn

DIAGNOSIS: Distinguished by the lack of well developed dorsomental teeth; ring organ in distal third of maxillary palp; 2 segmented b sensillum; antennal segment 2 length about $40 \mu \mathrm{~m}$, shorter than basal segment of maxillary palp; sclerotized base of the antennal blade as long as wide; AR 5.3 or more; mandible with small basal and accessory teeth; and the long scattered body setae. The pupal thoracic horn lacks a corona; respiratory atrium with numerous convolutions.

N OTES: Following the reassignment of $T h$. senata to H ayesomyia (q.v.), there are no described species of Thienemannimyia known from the Southeast. Thesingle described eastern U S species, Th. norena (Roback), has not been recorded south of Pennsylvania in the eastern US. It may eventually be found in the mountains of the Carolinas; Caldwell et al. (1997) report an undescribed Thienemannimyia from Alabama.

H ead capsule coloration mentioned in the literature may be deceiving. Roback (1981) stated in couplet 3 of his key "caudal margin of head dark brown". N one of Roback's material that I examined had head capsules with the entire caudal margin dark brown; all were light brown with only the posterior margin of the small triangular posteroventral sclerite a dark brown. Note that of the characters given in couplet 1 in the revised key offered by M urray \& Fittkau (1985), only the AR of 6 and the length/width of the basal sclerotized area of the antennal blade may be useful to separate Thienemannimyia larvae from those of H ayesomyia or M eropelopia in the material that I've examined.

Larvae of T hienemannimyia are recorded from creeks, streams and rivers.
ADDITIO N AL REFEREN CES: Roback 1971, 1981.

Genus Trissopelopia

DIAGNOSIS: This genus is distinguished by the long, slender basal segment of the maxillary palp, with ring organ near middle; apicomedial margin of dorsomentum produced as a single fine point; long, slender mandible; procercus 2.5-3.5 times as long as wide; basal outer margin of some posterior parapod claws flattened as a lamella; and lack of a setal fringe.

N OTES: O ne species, T. ogemawi, is known from the eastern U nited States; in the Southeast, it has been recorded from Georgia and both C arolinas.

Larvae are usually found in seeps, springs and cool streams.
AD DITIO N AL REFEREN CES: K owalyk 1985; Roback 1971.

DIAGN O SIS: This genus may be distinguished by the lack of well developed dorsomental teeth; maxillary palp with ring organ 0.52 or more from base; basal segment of maxilla about 4 times as long as wide; ligula usually with small lateral projections near base; mandible with large basal tooth; AR 2.4-3.4; one small claw on each posterior parapod usually (some taxa lack this claw) with an inner tooth; and body lacking a setal fringe. See also Reomyia.

N OTES: C aldwell et al. (1997) list three taxa for the C arolinas; however, Z. sinuosa and Z. thryptica both apparently represent species complexes. Zavrelimyia is in great need of taxonomic revision; it will be difficult to determine how many species are present in the C arolinas until such a revision is completed. The situation is further complicated by the presence of at least one species that conforms to the closely related genus Reomyia in the Southeast; larvae of the two genera are very difficult to separate, but may be distinguishable by the position of the ring organ of the maxillary palp, which is closer to the base in Reomyia (see Reomyia). The inner tooth found on a small claw of the posterior parapod, long considered a key character for identifying Zavrelimyia larvae, is absent in Z. bifasciata and some Z. thryptica complex specimens; this inner tooth also may be present or absent in Reomyia.

Zavrelimyia larvae arefound in springs, spring-fed streams and pools, and the littoral zone of lakes; they are relatively common in streams and rivers throughout N orth C arolina. I've collected and reared larvae of the Z. sinuosa complex from amphibian egg masses in a bog in M aine.

ADDITION AL REFEREN CES: Kowalyk 1985; Roback 1971.

ligula and paraligula

mandible

mentum and M appendage

small claw of posterior parapod

Z. sinuosa complex, basal segment of maxillary palp

Z. thryptica complex, basal segment of maxillary palp

Preliminary key to Zavrelimyia Iarvae of the southeastern United States

1 Posterior $1 / 4$ of head capsule dark brown Z. sp. A
1' H ead capsule basically unicolorous \qquad 2

2(1') Larger, head capsule length about 0.83 mm ; AR 3.17; small claw of posterior parapod without inner tooth Z. bifasciata

2' Smaller, head capsule length $0.62-0.64 \mathrm{~mm}$; AR less than 3.05 ; small claw of posterior parapod with or without inner tooth

3(2') AR 2.42-2.68 Z. thryptica complex
3' AR 2.70-3.04 \qquad Z. sinuosa complex

N otes on species

Z. bifasciata - Apparently the largest species of Zavrelimyia in the eastern United States. C aution must be used in identifying this larva, because the data above are based on a single reared specimen from 0 hio. AR 3.17, ring organ 0.54 from base.
Z. sinuosa complex - Apparently a complex of species (B. Bilyj, pers. comm.). N ote that the two complexes are based on adult characters and may not correlate with larval characters, although there seems to be a range in the small sample of reared material examined. This "range" could disappear with more rearings!
Z. thryptica complex - This complex is more common than the sinuosa complex in the South. See the sinuosa complex above.
Z. sp. A - Based on a few unassociated larvae from N orth C arolina; AR 2.43-3.10, ring organ 0.56-0.59 from base. This taxon may belong to the Z. sinuosa complex, but is easily recognized by the head capsule coloration.

DIAGN OSIS: Antennae 5 segmented, 3rd segment annulated in Southeast US genera. Labrum with simple S setae (S III may be bifid). Labral lamellae present, may be obscure. Premandibles present. M entum with 0 to more than 15 teeth; ventromental plates present, may be vestigial; beard absent. Prementum with setose median ligula and pair of paraligulae, appearing as 3 brushes. Body with well developed anterior and posterior parapods. Procerci present, vestigial or absent. Anal tubules present.

N OTES: M embers of this subfamily tend to be, in general, cool-adapted, flowing water inhabitants, but some are also found in springs and lakes. Two additional diamesine genera that have not been found in the southeastern US, and are not included in the key below, are Boreoheptagyia and Protanypus. Serra-Tosio (1989) noted that the N ew York record for B. Iurida (G arrett) was an error; this species apparently does not inhabit the eastern US. The larva is distinctive, with several tubercules on the head, patterned body and circular groups of spines on the posterior parapods. Protanypus is also distinctive with 4 -segmented antennae (no annulate 3rd segment) and a head capsule beset with numerous short setae (see Sæther 1975b).

Key to the genera of larval Diamesinae of the eastern United States

1 M entum without teeth; mandible without seta interna
.............................. Potthastia (in part, longimana group)
1' M entum with teeth (may behidden below ventromentum); mandible with well developed seta interna 2

Potthastia Iomgimana mentum
P. Iongimana mandible without seta interna

Diamesa mandible

2(1') Setae submenti displaced posteriorly, closer to postocciptal margin than mentum \qquad Pagastia

2' Setae submenti in normal position, closer to mentum than postoccipital margin \qquad 3

3 (2') Premandible apically simple, with at most 1-4 small inner teeth \qquad 4

3' Premandible with numerous apical, preapical or inner teeth \qquad 7

apically simple premandibles

premandible with multiple inner teeth

4(3) Labrum with numerous long, thin lamellae; teeth of mentum usually completely covered by ventromentum; mentum with broad ventromental plates \qquad D iamesinae genus \mathbf{P}

4' Labrum with various chaetae and lamellae, never almost completely covered by lamellae; if mental teeth covered by ventromentum, ventromental plates not as above
$5\left(4^{\prime}\right) \quad M$ edian tooth of mentum about 2-3 times width of first lateral teeth; premandible with $3-4$ inner teeth \qquad Lappodiamesa (not known from the Carolinas)

5' M edian tooth of mentum 3 to more than 5 times greater than width of first lateral tooth, or median tooth weakly bilobed, premandible with 1-2 inner teeth, or none

6(5') M edian tooth of mentum at least 5 X width of first lateral tooth; galea of maxilla with row of about 5-7 peg-like lamellae in addition to setae-like lamellae \qquad Potthastia (in part, gaedii group)

maxilla
6' M edian tooth of mentum less than 4X width of first lateral tooth, or median tooth weakly bilobed; maxilla with galea bearing mostly setae-like lamellae \qquad Sympotthastia

7(3') M entum with median teeth subequal; pecten epipharyngis with 5 scales; procercus vestigial, at most a small sclerotized ring, bearing 4 (usually) anal setae \qquad D iamesa

o

7' M entum with 3 large triangular median teeth; pecten epipharyngis with 7 or more scales/spines; procercuswell developed/sclerotized, with 5-9 anal setae \qquad Pseudodiamesa
(not known from the Carolinas)

0

pecten epipharyngis

Genus D iamesa

DIAGNOSIS: The pecten epipharyngis with 5 scales; premandible with 5 or more teeth and a branched lateral spine; mentum with more than 15 teeth; and vestigial to reduced procerci will distinguish eastern N earctic members of this genus.

N OTES: C aldwell et al. (1997) list two species of Diamesa for the Southeast, utilizing records of adult specimens. Based on a limited amount of larval material, none of it associated with adults, there appear to be at least three species of Diamesa in the Carolinas. Each of these taxa may represent more than one species. In the following key D iamesa sp. B is probably D. nivoriunda, but without associated adult specimens identification remains tentative.

Diamesa larvae are usually found in cool running water. H udson et al. (1990) noted that D. nivoriunda tolerates high turbidity and siltation.

ADDITIO N AL REFEREN CES: D oughman 1983; H ansen \& C ook 1976; M akarchenko 1986.

K ey to Diamesa larvae of the Southeast United States

$1 \quad \mathrm{H}$ ead capsulevery dark brown, almost as dark as postocciput; basal segment of antenna subequal to length of flagellum; mentum more strongly arched
D. sp. C

1' Head capsule light brown to brown, postocciput much darker than remainder of head capsule; basal segment of antenna about
twice as long as flagellum; mentum not as head capsule; basal segment of antenna about
twice as long as flagellum; mentum not as strongly arched \qquad 2

\qquad

2(1') S III bifid; mentum with 17-19 teeth \qquad D. sp. B

2' SIII simple; mentum with 19-21 teeth \qquad D. sp. A

Genus Lappodiamesa

DIAGNOSIS: The 7-9 scaled pecten epipharyngis; premandiblewith simple apical tooth and 3-4 smaller inner teeth; mentum with convex median tooth flanked by smaller lateral teeth; and well developed procerci serve to distinguish this genus.

N OTES: This genus has not yet been found in the C arolinas, but the occurrence of L. boltoni Sæther \& W illassen in O hio indicates that this taxon may eventually be found in the SE US. In Ohio, M. Bolton (pers. comm.) found the species in shallow vernal woodland runs and pools.

Although Sæzher \& W illassen (1988) described the pecten epipharyngis with 7 scales, two larvae I've examined appear to possess 9 scales in the pecten epipharyngis.

ADDITIO NAL REFEREN CES: Sæther \& Willassen 1988.

Genus Pagastia

DIAGN O SIS: The mentum, with teeth almost completely coverd by the ventromentum; and the poste riorly displaced setae submenti will distinguish this genus from other eastern US diamesines.

N OTES: One species, P. orthogonia, is known from the Southeast US. It occurs mainly in mountain streams, but also has been found in springs.

Theteeth of the mentum are often difficult to discern because of the dark coloration of the ventromentum; note also the distinctive mandible of P. orthogonia (which is similar to that of the western N earctic species P. sequax (G arrett)).

ADDITION AL REFEREN CES: M akarchenko \& M akarchenko 2000; Oliver \& Roussel 1982.

Genus Potthastia

DIAGN OSIS: Two larval types are included in this genus: the longimana group is characterized by the premandible with broad apex bearing numerous teeth; the complete absence of teeth on the mentum; and mandible without a seta interna. The gaedii group is characterized by the simple premandible, with no inner teeth; mentum with median tooth 5 or more times the width of first lateral tooth; maxilla with galea bearing about 5 peg-like lamellae. Both larval types have well sclerotized procerci.

N OTES: Three species of Potthastia are found in the Southeast US; P. Iongimana appears to be the commonest and most widespread. It appears that our N earctic representative of the longimana group is P. longimana. H owever, I am not convinced that the two species of the gaedii group found in the SE US are conspecific with the Palaearctic species P. gaedii and P. montium. I have seen reared males of a species which is close to P. montium, but with slightly different genitalia. I've also examined a NC male that appears similar to P. gaedii, but is slightly different; it bears a determination label by Sæther that reads "n. sp. nr. gaedii". Examination of more reared material from both the Nearctic and Palaearctic will be necessary to confirm identifications.

N ote also that Oliver (1983) described the premandible of gaedii group larvae as being simple, with the lateral spine absent. H owever, the premandible of P. cf. montium bears a thin lateral spine, as figured below and by D oughman (1985a: fig. 30).

ADDITION AL REFEREN CES: D oughman 1985a.

K ey to Potthastia Iarvae of the southeastern United States

1 M entum without teeth; mandible without seta interna \qquad P. longimana

1' M entum with teeth; mandible with seta interna \qquad 2
$\stackrel{\circ}{\circ}$

2(1') M edian tooth of mentum as dark as lateral teeth; an irregular dark spot present between bases of antennae \qquad P. cf. montium

2' M edian and first lateral teeth of mentum lighter than remaining teeth; no spot present between antennal bases \qquad P. cf. gaedii

0

0

0
unflattened mentum

Genus Pseudodiamesa

DIAGNOSIS: The 7-scaled pecten epipharyngis; multitoothed premandible; mentum with 3 largetriangular median teeth and well developed ventromental plates (that may obscure the mental teeth); and well developed procerci identify this genus.

N OTES: Pseudodiamesa has not been recorded from the Carolinas. It is included here solely on the basis of a questionable record of a single larva of Ps. pertinax (G arrett) from a Tennessee quarry by Beck (1980); I have not examined this specimen nor seen any material of the genus from the eastern US. With the exception of Beck's record, the 3 N earctic species of Pseudodiamesa are known only from the western and northern US and C anada.

Johannsen (1937a) was incorrect in stating that the larval ventromental plates (as "paralabial plates") were lacking in Ps. pertinax; they are present and well developed. N ote that in the same publication, Johannsen also erroneously stated that ventromental plates were absent in Sympotthastia (as Diamesa (Psilodiamesa)) fulva (which has lead to some confusion; see Sympotthastia).

Larvae are known from springs, streams and lakes, including the profundal zone.
ADDITIO N AL REFEREN CES: Johannsen 1937a; Oliver 1959, 1976.

Genus Sympotthastia

DIAGNOSIS: This genus is distinguished by the premandiblewith simpleapex, with 1-2 (4?) small inner teeth; maxilla with gal ea bearing mostly setae-like lamellae; median tooth of mentum less than 4X width of first lateral tooth, or median tooth weakly bilobed; and the well developed procerci.

N OTES: Oliver et al. (1990) record S. fulva from NC and SC and S. zavreli from N C. However, C aldwell et al. (1997) did not accept the Carolinas record of S. fulva and listed S. zavreli "with reservations". It has not been conclusively demonstrated that NC Sympotthastia larvae are conspecific with the Palaearctic species S. zavreli; I know of no records based upon adult or pupal specimens that will corroborate D oughman's (1985b) identification of this species; thus it is treated in this manual as S. cf. zavreli.

Johannsen's (1937a) and D oughman's (1985b) descriptions of the larva of S. fulva are incorrect in stating that ventromental plates are absent. M y examination of the allotype's larval exuviae revealed that the head capsule has been split in two and is excessively flattened. The lateral teeth of the mentum have been forced to the outside of the ventromentum, which is produced at its lateral edge as a ventromental plate.

The maxilla of Sympotthastia may bear one or two peg-like lamellae or sensory bodies on the galea, but never the row of 4-5 peg-like lamellae found in members of the very similar Potthastia gaedii group.

ADDITIONAL REFERENCES: D oughman 1985b.

K ey to Sympotthastia larvae of the eastern U nited States

$1 \quad \mathrm{M}$ andible with distal inner tooth subequal to remaining inner teeth; AR about 1.50; procercal setae more than twice as long as supraanal setae
S. fulva
(not recorded from the C arolinas?)

1' \quad M andible with distal inner tooth larger than remaining inner teeth; AR 1.84-2.17; procercal setae 1.4-1.8 X length of supraanal setae
S. cf. zavreli

D iamesinae genus P

DIAGNOSIS: The labrum, with numerous long, thin lamellae; premandible with several inner teeth; mentum with 7 pairs of lateral teeth and dome-shaped median tooth, all teeth usually completely covered by ventromentum; broad ventromental plates; and well sclerotized procerci will distinguish this taxon.

N OTES: Thistaxon has been reported from sand-bottomed streams in Alabama, Florida and Georgia in addition to N orth C arolina. Adults and pupae are unknown.

AD DITIO N AL REFEREN CES: Doughman 1985a.

SU BFAM ILY

PRODIAM ESINAE

DIAGNOSIS: Antennae4 segmented, not reduced; 3rd and 4th segments very small. Labrum with SI apically toothed or apicolaterally fringed; S II and S III simple; S IV normal or S IV A with long fringed terminal element mounted on long pedicellate base. Labral lamellae present. Premandibles present. M entum with 15-18 teeth; ventromental plates large, with weak to well developed beard. Prementum without dense brush(es) of setae. Body with well developed anterior and posterior paropods, procerci and anal tubules.

N OTES: Larvae are found in freshwater habitats such as springs, streams/rivers, ponds and the littoral zone of lakes. Three genera, each with a single species, occur in the Carolinas, with the strong possibility of a fourth genus, M onodiamesa, also being found here eventually.

K ey to the genera of larval Prodiamesinae of the eastern United States

1 M entum with median tooth pale, single, convex; mandible inflated \qquad 0 dontomesa

1' M entum with median teeth dark, concave, or double; mandible not inflated as above \qquad 2

2(1') Mentum with two projecting median teeth separated by a concave area (may not appear concave due to wear) M onodiamesa

2' M entum with two deeply sunken median teeth 3

3(2') Premandible apically bifid; ventromental beard well developed
Prodiamesa

3' Premandiblesimple; ventromental beard weak \qquad

Genus C ompteromesa

DIAGNOSIS: This genus is distinguished by the premandible with a single apical tooth; mentum with median teeth lower than second lateral teeth; and weak ventromental beard.

N OTES: O ne species, C. oconeensis, is known from South C arolina. The immature stages are unknown. Adults have been collected near seeps and small streams in the upper Piedmont.

The immature stages of another species, Compteromesa haradensis, were recently described from Japan (N iitsuma \& M akarchenko 1997). Larvae were collected from a bottom sample of decomposed emergent plants, in a stream flowing slowly through a rice paddy.

ADDITIO N AL REFEREN CES: N iitsuma \& M akarchenko 1997; Sæther 1981a, 1985d.

Genus M onodiamesa

DIAGNOSIS: Distinguished from other prodiamesines by the mentum with two projecting median teeth separated by a concave area; "normal" mandible; and weak ventromental beard.

N OTES: T hree species of M onodiamesa are recorded from the U.S. east of the M ississippi. In the Southeast, larvae have been collected in Alabama and N orth Carolina. Larvae of the genus are usually associated with littoral to profundal sandy substrata in mesotrophic to oligotrophic lakes; they have also been re corded from eutrophic lakes and in lotic situations.

I've examined a larva that is most probably M. depectinata from the Cullasaja River in the mountains of N orth Carolina and have also seen a larva from M ayberry Creek, Bibb Co., AL, that is probably M. depectinata. The Alabama specimen is apparently a 3rd instar; the basal segment of the antenna is much shorter in proportion to the second segment. TheN C specimen has an AR of 1.82 ; the AL specimen's AR is 1.20; Sæther (1973) gives an AR of 1.39 for a 3rd instar M. depectinata and 2.03-2.25 for 4th instar larvae. The ventromental plates of both specimens are not concave posterolaterally, but have a generally straight outer margin.

ADDITIO N AL REFEREN CES: Sæher 1973.

M. depectinata antenna, mandible, mentum

antenna and mentum of Alabama M onodiamesa specimen

K ey to M onodiamesa larvae of the eastern U.S.

1 Ventromental plates small and narrow; posterolateral margin of ventromental plate does not cover large genal seta; basal antennal segment with setal mark abovering organ \qquad M. tuberculata

1' Ventromental plates larger and wider; posterolateral margin of ventromental plate covers or almost covers large genal seta; basal antennal segment with setal mark at same level as ring organ 2

2(1') Posterolateral margin of ventromental plates concave or approximately straight; ventromental plates broader, 29-38 $\mu \mathrm{m}$ wide
\qquad M. depectinata

2'
Posterolateral margin of ventromental plates rounded; ventromental plates narrower, 24$26 \mu \mathrm{~m}$ wide \qquad M . bathyphila

Genus 0 dontomesa

DIAGN OSIS: The unique S setae of the labrum (see illustration below); odd number of teeth on the mentum, with a single, pale convex median tooth; well developed ventromental beard and the inflated mandible will distinguish this genus.

N OTES: A single species, O. fulva, occurs throughout the Southeast U.S. The larvae are filter feeders (Shilova 1966); they are usually encountered in sandy, lightly silted substrata in slowly flowing waters and in the littoral zone of lakes. The species is somewhat tolerant of pollution.

An additional species, 0 . ferringtoni Sæther, has been reported from 0 hio (M. Bolton, pers. comm.). The larva can be separated from 0 . fulva by the basal external seta of the mandible: in 0 . ferringtoni this seta is single at the base and then split into 7-12 apical branches, while it is split to the base into $12-23$ branches in 0 . fulva (see below).

ADDITIO N AL REFEREN CES: Sæther 1985a; Shilova 1966.

0. fulva mentum

SIV A
0. fulva labral setae

0. fulva antenna

O. fulva mandible

0. ferringtoni basal external seta

0. fulva premandible

Genus Prodiamesa

DIAGNOSIS: The simple S setae; apically bifid premandible; mentum with 14 dark teeth (18 apparent teeth if accessory teeth on first lateral teeth are counted) with the median 2 teeth deeply recessed; and "normal" mandible will distinguish this genus from 0 dontomesa. As in 0 dontomesa, the ventromental beard is well developed.

N OTES: A single species, P. olivacea, is recorded from theC arolinas and Georgia. Larvae inhabit springs, streams and rivers, ponds and the littoral zone of lakes; they are moderately tolerant of pollution.

ADDITIO N AL REFEREN CES: Sæther 1985d.

SUBFAMILY

ORTHOCLADIINAE

DIAGNOSIS: Antennae with 3-7 segments; may be strongly reduced or may be longer than head capsule. Labrum with SI variable (simple, bifid, branched, serrated, palmate or plumose); S II usually simple but may bebifid, branched, palmate or plumose; SIII simple(rarely bifid); SIV normal. Labral lamellae present or absent. M entum usually well sclerotized, with several to morethan 25 teeth; ventromental plates absent/vestigial to very large, without striae (occasionally with ridges in Nanocladius); beard present or absent. Prementum variably developed but never with dense well developed median brush of setae. Body with anterior parapods(sometimes reduced and/or fused); with posterior parapods well developed, separate or fused, or parapods reduced or absent. Setal fringe, setal tufts or long setae sometimes present. Anal tubules normally present, may be reduced or absent/vestigial.

N OTES: O ne of the most diverse of the chironomid subfamilies; orthoclad larvae are found in an amazing variety of habitats, running the gamut from terrestrial (corn fields, dung, greenhouses, leaf litter in hardwood forests) to seeps, springs, streams, rivers, ponds and lakes in freshwater, and coastal estuarine and littoral marineareas. M ost larvae are scrapers, shredders or collectors-gatherers; some taxa are predators, some are parasites.

K ey to the genera of larval O rthocladiinae of the southeastern U nited States

(larvae are unknown for Apometrionemus, Chasmatonotus, D iplosmittia, Lipurometriocnemus, Plhudsonia, Saetheriella, Sublettiella and Tavastia)

1 Length of antennae at least 1/2 length of head capsule .. 2
1' Length of antennae less than $1 / 2$ length of head capsule

2(1) M entum with wide, domelike median tooth, first lateral tooth lower than median tooth and second lateral tooth; apical tooth of mandible long, rounded and expanded

Heterotrissocladius (in part)

2' M entum with bifid or trifid median tooth, or if single, not dome-like and first lateral tooth subequal to median tooth and second lateral teeth; apical tooth of mandible not as above
$3\left(2^{\prime}\right) \quad$ Well developed ventromental plates present (see figures in couplet 4); mandible with globose base
\qquad

3' Ventromental plates weak or indistinguishable; mandible with normal base

4(3) D orsomentum with numerousfineanterior and lateral teeth \qquad Orthocladiinae sp. C

4' D orsomentum with afew rudimentary median teeth \qquad N anocladius(in part)

5(3') Last segment of antenna long, thin, whip-like \qquad

5' Last segment of antenna short (but may have short hair-like extension, see figure couplet 7') .. 6

6(5') Antennae with 4 distinct segments and usually much longer than head; head capsule sometimes with surface sculpturing; seta at base of posterior parapod with accessory spinelets

seta at base of posterior parapod of several C orynoneura species

6' Antennae with 5 distinct segments or 5-6 indistinct segments, at most as long as head, usually shorter; head capsule without surface sculpturing; seta at base of posterior parapod simple 7

7(6') Antennae with 5 distinct segments; mentum without a large pair of hypopharyngeal scalesdorsal to it; a simple spine-like seta present at baseof posterior parapod \qquad Thienemanniella

7' Antennae with segment 2 unevenly sclerotized so that antennae may appear 6 segmented; mentum with a pair of large hypopharyngeal scales dorsal to it; no spinelike seta at base of posterior parapod \qquad Rheosmittia

8(1') Procerci absent, or at most a vestigial tubercle present, or if without procerci but strong anal seta present, then without anal tubules and in marine habitat
(most genera that will key here are marine, terrestrial/semi-terrestrial or parasitic)

8' Procerci present, but may be reduced - if reduced then strong anal setae present (larvae found in a variety of habitats, but usually aquatic)

reduced procerci but well developed anal setae and anal tubules present

9(8) SI plumose, palmate or fringed apically
plumose S I

9' SI simple or bifid (if simple, may be weakly serrate laterally 13

10(9) Antennal blade longer than flagellum \qquad 11

10' Antennal blade subequal to or shorter than flagellum \qquad

11(10) Pecten epipharyngis of 3 small scales; SI palmate Parasmittia

12(10') M arine; premandible apically simple; anal setaepresent Clunio

12' N ot marine, but terrestrial or semi-aquatic; premandible apically bifid; no anal setae \qquad Smittia

13(9') SI bifid 14

13' SI simple or weakly serrate laterally 15
bifid S

14(13) Anal claws and posterior parapods present, but occasionally claws absent and posterior parapods reduced; 1-3 weak anal setae present; premandible with brush \qquad Pseudosmittia
anal claws on reduced posterior parapod

14' Anal claws, anal setae and posterior parapods absent; premandible without brush \qquad Camptocladius

15(13') Anal tubules long, with numerous constrictions, always longer than posterior parapods (if posterior parapods present - they may be absent); mandible with well developed seta interna

15' Anal tubules absent or short and squat, shorter than or subequal to posterior parapods; mandible without seta interna

16(15) Premandible simple; mandible with 2 inner teeth; mentum with single, wide median tooth; anal setae well developed \qquad Georthocladius(in part)

16' Premandible apically bifid; mandible with 3 inner teeth; mentum with weakly divided median tooth; anal setae developed or reduced (see anal setaefigures in couplet 17)

17(16') Anal setae reduced; antenna with short 4th segment Georthodadius(in part)

17' Anal setae well developed; antenna with long 4th segment

18(15') M entum without distinct median teeth, with 4-5 pairs of spine-like lateral teeth; antennae extremely reduced; mandible with a subapical cluster of sharply pointed teeth; ectoparasitic on mayflies

18' M entum with a distinct single or bifid median tooth, lateral teeth not spine-like; antennae not reduced as above; mandible with inner teeth not sharply pointed; freeliving, semi-aquatic or terrestrial

19(18') M entum with single median tooth \qquad M esosmittia

19' M entum with bifid median tooth (or 2 median teeth) 20

20(19') Posterior parapods appearing divided, anterior portion with claws, posterior portion bare; anal setae usually present and well developed \qquad G ymnometriocnemus

lateral view

ventral view

20' Posterior parapods not divided; anal setae usually absent, but may be present \qquad Bryophaenocladius

21(8') Procercus with one seta at least $1 / 4$ as long as body
\qquad

21. Procercus without such a long seta

22(21) M entum with 6 pairs of sharply pointed lateral teeth and single median tooth with small median projection; premandible apically bifid; maxillary palp elongate K renosmittia

22' M entum with 4 pairs of lateral teeth, median tooth bifid or single, broad and without median projection; premandible simple; maxillary palp not elongate

23(22') M andible with 3 inner teeth \qquad Pseudorthocladius

23' M andible with 1-2 inner teeth \qquad Parachaetocladius
$24\left(21^{\prime}\right)$ Lateral teeth of mentum appearing to be on plates separate from and usually covered by ventromentum

0

24' Lateral teeth appearing contiguous with median portion of mentum 26

25(24) M andible with small inner teeth; antennae more than $1 / 3$ length of head capsule; mentum as figured; associated with bluegreen algae or peat

$0 \quad 0$
o

(

\qquad Acamptocladius

0
\circ

25' M andible without inner teeth; antennae strongly reduced; mentum as figured; parasitic in unionid mussels \qquad Trichochilus

26(24') M entum strongly arched, with 4-8 median teeth; body with numerous long, stout setae; phoretic or parasitic on ephemerid mayflies \qquad

26' M entum not as above; if body has long, strong setae, then mentum with only 1 or 2 median teeth; freeliving, except for some N anocladius (couplet 38)

27(26') Beard (group of setae) present beneath or adjacent to ventromental plates (may be only a few setae and may require observation at 1000X) 28

27' Beard absent 37

28(27) Vestigial, hair-like 6th antennal segment present and usually easily visible; mentum with single broad median tooth 29

28 Antennae with 5 apparent segments; if vestigial 6th segment visible (someZalutschia), then mentum with 2-4 median teeth

30

29(28) Ventromental plates elongate, covering most of lateral teeth; SI simple or apically toothed \qquad Stilocladius

apically toothed S
29' Ventromental plates smaller; S I bifid .. Parakiefferiella (in part)

bifid S
$30\left(28^{\prime}\right)$ S I simple; median teeth of mentum elongate; beard well developed with apically branched filamaents; mandible with large seta subdentalis and inner spine; abdominal segments with alternating simple and plumose setae

Synorthocladius

30^{\prime} S I simple, bifid, coarsely pectinate, palmate or plumose; mentum, beard and mandible not as above; abdominal segments without alternating simple and plumose setae (a single pair of setal tufts may be present posterolaterally)
$31\left(30^{\prime}\right)$ M andible with 4 inner teeth; ventromental plates with dense beard; S I plumose; labral lamellae well developed, apically pectinate \qquad Diplocladius

31' M andible with 3 or fewer inner teeth (do not mistake darkened molar area for a 4th tooth!); mentum, beard and S I variable; if labral lamellae present, weakly developed and never apically pectinate 32

32(31') M andible without seta interna; S I bifid (may be secondarily split into more teeth); mentum as figured \qquad Acricotopus

32' M andible with seta interna; IF mandible without seta interna, then SI broadly trifid

broadly trifid S I

33(32') S I broadly trifid, palmate or with about 4 long, narrow teeth; procercus with small to large spurs
\qquad Psectrocladius(in part)

33' SI simple, bifid, apically split into 4 or more short teeth, plumose or coarsely serrate; if procercus with spurs, SI bifid or apically split into 4 or more short teeth

34(33') Beard well developed; S I bifid or apically split into 4 or more short teeth; procercus usually with spurs

34' Beard weak to vestigial; SI simple, bifid, coarsely pectinate or plumose; procercus without spurs ..

35(34) Apical tooth of mandible longer than width of 3 inner teeth; ventromental plates large and triangular; head capsule without ventral tubercules \qquad Psectrocladius(in part) (some Ps. (M onopsectrodadius))

35' Apical tooth of mandible shorter than or subequal to width of 3 inner teeth; if ventromental plates large and triangular (as figured in couplet 34 above), then head capsulewith pair of ventral tubercles

36(34') SI coarsely pectinate to plumose; weak labral lamellae present; mentum with 2-4 median teeth, which are usually lighter in color than lateral teeth

Zalutschia
SI
labral lamellae

36' SI simple or bifid; mentum with single median tooth
$37\left(27^{\prime}, 36^{\prime}\right)$ Ventromental plates well developed, extending well beyond lateral margin of mentum

37' Ventromental plates absent/vestigial or, if present, do not extend beyond lateral margin of mentum (may extend to margin, but not far beyond, or plates very thin as in couplet 70)

38(37) All S setae simple; mentum with a small pair of median teeth which are often well separated from the 0-6 pairs of lateral teeth (which may be small and fused or closely appressed to each other); ventromental plates elongate; some species phoretic or parasitic on a variety of aquatic insects
\qquad N anocladius (in part)

38' SI never simple; mentum not as above; not phoretic or parasitic on aquatic insects 39

39(38') Antennae 7 segmented (7th segment hairlike, vestigial); 3rd antennal segment minute, < $1 / 3$ length of 4th \qquad Heterotrissocladius (in part)

39' Antennae with $5-6$ segments; 3rd segment never as small as $<1 / 3$ length of 4th
40(39') Ventromental plates appear double; setae submenti located well anterior to posterior margin of ventromental plates
\qquad

40' Ventromental plates single; setae submenti located near posterior margin of ventromental plates or more posteriad .. 42

41(40) M entum always with double median tooth; antenna with long basal segment, AR >1.25; antennal blade shorter than flagellum \qquad Parametriocnemus

41' M entum with single or double median tooth; basal antennal segment shorter, AR 0.5-1.0; antennal blade subequal to or longer than flagellum \qquad Paraphaenocladius

42(40') M entum with large, pale, domeshaped median tooth
\qquad Parakiefferiella (in part)

42' Median tooth of mentum not as above 43

43(42') M edian tooth of mentum lower than 2nd lateral teeth; 1st lateral tooth reduced and fused to 2nd lateral tooth; mandible with 4 distinct inner teeth \qquad Unniella

43' M entum not as above; mandible with 3 inner teeth

44(43') Antenna 5 segmented; premandible with brush (may be weak) \qquad Chaetocladius (in part)

note that some larvae may have bifid median tooth

44' Antennae with 6 segments, 6th vestigial, hairlike; premandible without brush 45

45(44) Mentum with bifid median tooth
Hydrobaenus(in part)

45' M entum with single median tooth
46

46(45') Apical tooth of mandible thin; premandible with 2 large apical teeth; mentum as figured
\qquad H ydrobaenus (in part)

46' Apical tooth of mandible inflated; premandible with 3 large apical teeth; mentum as figured .. 0 rthocladiinae genusI

47(37') Antennae with 6 segments, 6th segment vestigial, hairlike 48

NOTE: SomeCricotopus may have an apparent hair-like6th segment and may key to Parakiefferiella below. N ote that the 6th segment of Parakiefferiella is about as long as the 5th and is easily seen at 400X whilethe vestigial segment of Cricotopus is much smaller and difficult to observe at that magnification; Parakiefferiella usually have larger ventromental plates than most Cricotopus.

47' Antennae with 5 or fewer segments, last segment not hairlike 50

48(47) M entum with single median tooth \qquad

48' M entum with bifid median tooth (figures below)

49(48') Setaesubmenti well posterior to a linedrawn between posterior margins of ventromental plates; antennal blade subequal to flagellum Psilometriocnemus

49' Setze submenti just posterior to a line drawn between posterior margins of ventromental plates; antennal blade much longer than fla gellum \qquad Platysmittia

50(47') Abdomen with a lateral fringe of setal tufts; mentum as figured; mining in submerged, partially decomposed wood .. Xylotopus

fringe of setal tufts

fringe of setal tufts

0

51(50') Abdomen with long simple setae, at least $1 / 2$ as long as the segment bearing them 52

51' Abdomen without long simple setac; OR if long setae present, they are arranged as a pair of single tufts, one on each side posterolaterally on body segments
52(51) SI simple 53

52' S I bifid, or with several apical teeth, or plumose 54

53(52) Inner margin of mandible with several spines; procerci without spurs \qquad Eukiefferiella (in part)

53' Inner margin of mandible without spines; procerci with spurs \qquad Paracricotopus

54(52') S I bifid
68

54' SI with several apical teeth or plumose \qquad 55

55(54') M andible with 3 inner teeth and inner margin with several spines; common in streams and rivers
\qquad T vetenia

0
55' M andible with 4 inner teeth and inner margin smooth; known only from bromeliads in peninsular Florida \qquad M etriocnemus(in part)

56(51') S I simple \qquad 57

56' S I bifid, serrate, pectinate or plumose 68

pecten epipharyngis

57(56) M entum with huge median tooth and reduced lateral teeth \qquad Orthocladius(in part) (O. (S.) lignicola)

57' M edian tooth of mentum not as above 58

58(57') M edian teeth of mentum deeply recessed M etriocnemus(in part) (M. fuscipes)

58' M edian teeth of mentum not deeply recessed as above
59

\qquad
59(58') Inner margin of mandible with spines (these may be small) \qquad 60

59' Inner margin of mandible smooth

60(59) Procercus reduced, with 2 setae thicker than the rest on each procercus; seta interna of mandible with long stalk that branches near apex; mentum with 5 pairs of lateral teeth

Cardiocladius (in part)

60' Procercus at least as long as wide, setae about equally thick; seta interna usually divided to near base, but if divided near apex than mentum with 4 pairs of lateral teeth

61(60') M entum with 4 pairs of lateral teeth .. Eukiefferiella (in part)

61' M entum with 5 pairs of lateral teeth .. 62

62(61') Antenna with 4 segments .. Eukiefferiella (in part)

62' Antenna with 5 segments \qquad 63

4 segments

5 segments
$63\left(62^{\prime}\right)$ Anal setae much shorter than posterior parapods
\qquad Cardiocladius(in part)

63' Anal setae longer than posterior parapods \qquad 64

65' Supraanal setae shorter than anal tubules; abdominal setae short \qquad Tokunagaia

66' Body without setal tufts; mentum with bifid median tooth (see below)
67

67(66') Premandible apically simple; mentum with median teeth strongly projecting anteriorly, without rounded ventromental plates posterolaterally \qquad Chaetocladius(in part) (Ch. ligni)

67' Premandible apically bifid; median teeth of mentum do not extend as far forward as above; mentum with rounded ventromental plates posterolaterally \qquad Limnophyes(in part) (although the S I of Limnophyes is serrated, serrations may beweak and SI may appear simple; thus some specimens will key here)

\qquad

68 M entum with at most 13 teeth
69

69(68') SI bifid 70

69' SI serrated, apically fringed/toothed, pectinate or plumose

70(69) M entum with 2 median teeth; antenna with long 4th segment and antennal blademuch Ionger than flagellum \qquad M esocricotopus

70' M entum with single median tooth; 4th antennal segment subequal to 3rd and antennal blade at most subequal to flagellum

71(70') Inner margin of mandible with serrations \qquad Cricotopus (in part) (C. (C.) bicinctus)
serrations

71' Inner margin of mandible smooth 72

72(71') Some abdominal segments with posterolateral setal tufts (may be quite small; most easily found on middle abdominal segments) \qquad 73

72' Abdominal segments without tufts of setae

73(72) Lauterborn organs well developed, appearing as moderately large circular organs at apex of antennal segment 2; mentum with median and appressed first lateral teeth projecting strongly forward from rest of mentum; setal tufts $<100 \mu \mathrm{~m}$ long Orthocladius(in part) (0.(S.) annectens)

74(72') H ead capsule dark brown; mandible with 2-3 dorsal teeth; restricted to colonies of blue-green alga N ostoc .. Cricotopus(in part) (C. (N.) nostocicola)

74' H ead capsule yellowish to dark brown; mandible without dorsal teeth; not restricted to N ostoc ..

75(74') M andible without seta interna \qquad

75' M andible with seta interna

76(75') Some abdominal segments (usually middle segments) with long setae, at least $1 / 2$ as long as the segment bearing them \qquad 77

76 Abdominal segments with setae $<1 / 2$ as long as the segment bearing them 78

77(76') Premandibleapically simple, with weak brush \qquad ... Cricotopus(in part)

77' Premandiblesimpleor apically bifid, without brush Orthocladius(in part)

78(76') H ead capsule light brown to dark brown or dark reddish-brown; mandibles usually darkly colored to base (base may be paler than apex, but overall the mandible is dark) .. Orthocladius(in part)

78' H ead capsule yellow to light yellow-brown; mandibles with dark apex and inner teeth and light colored base, never darkly colored to base .. 79

79(78') Premandible apically bifid \qquad Orthocladius (in part) (0.(0.) oliveri)

79' Premandible simple 80

80(79') M entum with second lateral tooth appressed to first lateral tooth \qquad Cricotopus(in part)

80' Second lateral tooth of mentum not appressed to first .. 81

81(80') Outer margin of mandible rugose Orthocladius(in part)

81' O uter margin of mandible mostly smooth 82

82(81') Ventromental plates appear to extend well past a line drawn between bases of setae submenti ... 0 rthocladius(in part)

extending

not extending

82' Ventromental plates not extending as far posteriorly

83(82') M entum with first lateral teeth constricted at base so that they appear wider in the middle than at bottom; minute spines present at base of seta subdentalis (often difficult to observe); head caspule with slightly more heavily sclerotized area laterad to mentum

Paratrichocladius

83' First lateral tooth of mentum usually as wide or wider at bottom than at middle; small spines not present at base of seta subdentalis; sclerotized area laterad to mentum variable

84

84(83') M edian and first lateral teeth of mentum paler than remaining lateral teeth \qquad Orthocladius (in part)

84' Teeth of mentum unicolored 85

85(84') M entum triangular in outline or with median and first lateral teeth projecting above remaining lateral teeth; setae submenti located below lateral margin of mentum; pharate pupa with chitinous rings posterolaterally on at least tergitesI-III \qquad Orthocladius(in part)

chitinous rings on pupal tergite III

85' M entum convexly arched, median and first lateral teeth not projecting above remaining lateral teeth; setae submenti located more towards center line of mentum; pharate pupa without chitinous rings on tergites \qquad C ricotopus(in part)

86(69') Well developed labral lamellae present

86' Labral lamellae absent or vestigial 90

87(86) M entum with 2-4 median teeth, none elongate; setae submenti located near base of mentum 88

87' M entum with 2 elongate median teeth (small central tooth sometimes present between median teeth); setae submenti displaced posteriorly, not near base of mentum

88(87) Procerci well developed, at least twice as long as wide; supranal setae shorter than anal tubules M etriocnemus(in part)

88 Procerci weakly developed, about as wide as long; supraanal setae as long as or longer than anal tubules \qquad Thienemannia

89(87') Antennal segment 2 divided by weakly sclerotized area near base Brillia

89' Antennal segment 2 not divided \qquad Euryhapsis

90(86') Pecten epipharyngis with 15-20 long narrow teeth \qquad Orthocladiinae genus E

0

90' Pecten epipharyngis with 3 teeth

91(90') M entum with 2 broad median teeth divided by U-shaped or wideV-shaped gap; second antennal segment weakly divided near base; antennal blade much longer than flagellum; mandible with 3 inner teeth \qquad Heleniella

91' M edian teeth of mentum not separated by Ushaped or broad V-shaped gap; second antennal segment not weakly divided near base; if antennal blade longer than flagellum, then mandible with 4 inner teeth 92

92(91') Antennal blade longer than flagellum; S I apically pectinate/plumose; mandible with 4 inner teeth; found only in bromeliad phytotelmata in peninsular Florida \qquad O rthocladiinae genus H

92' Antennal blade subequal to flagellum; SI serrated; mandible with 3 or 4 inner teeth; not restricted to bromeliads in peninsular Florida

93(92') M andible with 3 inner teeth; supraanal setae about as long as anal setae \qquad Limnophyes (in part)

93' M andible with 4 inner teeth; supranal setae about $1 / 3$ length of anal setae \qquad Compterosmittia

DIAGNOSIS: This genus is diagnosed by the 5 segmented antennae, with 3rd and 4th segments difficult to distinguish; all S setae simple; ventromentum extended anteriorly to dorsomentum, with 3 central ventromental teeth (middle one may appear bifid) and with dorsomental teeth appearing to be arranged in two lateral lobes, each with about 12-18 teeth; and procerci and anal tubules present.

N OTES: Thisgenushas not been recorded from N orth or South Carolina, but its presencein C anada and Florida indicates that it will eventually be found in the C arolinas. A single N earctic species, A. dentolatens (Sæ̈her) (originally described as a new genus, Phycoidella), has been described from larvae reared from bluegreen algae (A phanocapsa sp.) colonies in a lake in C anada; a Palaearctic species, A. reissi C ranston \& Sæether, was collected from peat pools. O ne of theFlorida A camptocladius collecting sites (St. LucieC o. in southeast central Florida) was a shallow water (0.4 m) savannah area, with gelatinous algae, Eriocaulon, N ymphaea, Rhynchospora and Eleocharis growing from a peaty bottom.

The Florida specimens do not appear to be conspecific with A. dentolatens. They will key to A. sp. (submontanus(Edwards)?) in Cranston \& Sæ丸her (1982), but it is very doubtful that they are that species.

ADDITIO N AL REFEREN CES: Cranston \& Sæher 1982; Sæther 1971.

antenna

premandible

mentum

mandible

DIAGN O SIS: Distinguished by the bifid to coarsely pectinate/palmateSI setae; mandible without a seta interna; mentum with 6 pairs of lateral teeth, with its broad median tooth notched, dividing it weakly into 4 parts; moderate ventromental plates with well developed, long beard; procerci without spurs; and anal tubules present.

N OTES: Two species are described from N orth America; only one, A. nitidellus(M alloch) is known from the northeastern US. An Acri cotopus pupa has been collected from South C arolina; a single larva has been found in N orth C arolina. These specimens probably represent A. nitidellus; reared material is necessary to confirm their identity.

Hirvenoja (1973: fig. 38.6) and Cranston, et al. (1983: fig. 9.3D) illustrate the SI setae as bifid with serrated margins. The SI of A. nitidelus is more coarsely pectinate as illustrated by Johannsen (1937a: fig. 198; as Spaniotoma senex); the SI setae of N orth C arolina and O hio specimens are similar.

Acricotopuslarvae are found in small streams, temporary pools, bog pools and the littoral zone of lakes. The single North C arolina larva examined came from a stream impacted by toxic and organic wastes.

ADDITION AL REFEREN CES: Cranston \& Oliver 1988a; H irvenoja 1973; Johannsen 1937a.

DIAGN OSIS: The coarsely palmate SI; pecten epipharyngis appearing platelike with numerous small rounded teeth; 5 segmented antennae with blade much longer than flagellum; apically bifid premandible; mandible with seta interna; well developed posterior parapods; and the lack of procerci and anal tubules will distinguish this genus.

N OTES: Two species of Antillocladius occur in the Southeast; only the immature stages of A. pluspilalus have been described (Sæther 1984). Larvae occur in seeps and around small streams, or are completely terrestrial; the Florida specimens figured below came from hardwood leaf litter.

The larva of A. pluspilalus was described from a single exuviae; its mentum differs slightly from the unassociated Florida material figured here. Note the unusual pecten epipharyngis, which is similar to the type found in some Chironominae.

ADDITION AL REFERENCES: Sæther 1981b, 1982, 1984.

antenna

premandible

labral area

A. pluspilalus mentum (adapted from Sæther 1984)

mandible

mentum, FL specimen

posterior end

Genus Brillia

DIAGNOSIS: Distinguished by the well developed pectinate labral lamellae; plumose SI; 4 segmented antenna with segment 2 divided in basal third by a weakly sclerotized area; antennal blade subequal to flagellum; distinctive mentum; posteriorly displaced setae submenti (near posterior margin of head capsule); and procerci and anal tubules present.

N OTES: Three species are described from eastern N orth America; all three occur in the C arolinas. The species formerly known as "Brillia par" is now placed in Xylotopus.

Brillia larvae are almost always associated with submerged allochthonous wood and leaves, and may be found in springs, streams, rivers and the littoral margins of lakes.

ADDITION AL REFERENCES: Oliver \& Roussel 1983.

B. flavifrons mentum

B. parva, mentum

K ey to Brillia larvae of the southeastern U nited States

1 6th lateral tooth of mentum placed posterior to 5th lateral tooth \qquad 2

1' 6th lateral tooth of mentum even with or ante rior to 5th lateral tooth B. parva

2(1) Labral sclerite 1 entire or narrowly separated medially, separation $<8 \mu \mathrm{~m}$...... B. flavifrons

2' Labral sclerite 1 widely separated medially, separation $>10 \mu \mathrm{~m}$ \qquad B. sera

Genus Bryophaenocladius

D IAGNOSIS: The five segmented antenna; simple, stout S setae; mandible without seta interna; lack of procerci and anal setae; and posterior end bent downward at a 90° angle, with posterior parapods undivided, will distinguish this genus.

N OTES: Based on adult specimens, five species are recorded from the Carolinas; it is not possible to identify larvae to species. Larvae are very similar to those of Gymnometriocnemus; apparently only the divided posterior parapods of Gymnometriocnemuslarvae will separate them from Bryophaenocladius, which lack the division. The larva illustrated as "M esosmittia sp." in Epler (1995:6.51) is most likely a Bryophaenocladius.

Larvae are mostly terrestrial but several species are aquatic, inhabiting lake shorelines. Some terrestrial larvae may be pests of greenhouse plants and some crops (lettuce, potatoes and tomatoes).

ADDITIO N AL REFEREN CES: C ranston 1987; Sæther 1973a; Tuiskunen \& Lindeberg 1986.

Genus Camptocladius

DIAGNOSIS: Distinguished by the bifid SI and S II; reduced, three segmented antennae, with 3rd segment subequal to or shorter than 2nd and blademuch longer than flagellum; apically bifid premandible without brush; and the absence of procerci and posterior parapods.

N OTES: Apparently a monotypic genus, C. stercorarius has not been recorded from the C arolinas. H owever, this species is widely distributed throughout the H olarctic and no doubt occurs in the C arolinas; I've examined unassociated specimens from north Florida (illustrated below).

Larvae are terrestrial and are usually found in cow dung and rotting vegetable matter.
ADDITIONAL REFERENCES: Strenzke 1940, 1950a.

antenna

labrum

premandible

mandible

mentum

posterior end

Genus Cardiocladius

DIAGN OSIS: Distinguished by the brown to dark brown head capsule; simple S setae, with SI long, thick and heavily sclerotized; short basal sclerite; heavily sclerotized premandible with a broad, usually simple apex; mandible with inner serrations/spines; seta interna of mandible with long simple basal stalk that branches apically; body with short setae; and reduced procerci.

N OTES: Two species of C ardiocladius are recorded from the C arolinas. Both species are lotic and appear to be more common in fast flowing water; H udson et al. (1990) stated that larvae may be "fairly tolerant of toxic pollution".

C ardiocladius larvae have been reported to be associated with or even predacious on simuliid larvae. Since many simuliid larvae prefer fast running water, as do Cardiocladius larvae, the association makes sense. H owever, there is (to my knowledge) no published evidence of Cardiocladius predation on simuliid larvae; all guts of C . obscuruslarvael've examined werefilled with detritus, apparently algae. N otethat C . albiplumus can be ectoparasitic on hydropsychid caddisfly pupae (see N otes on species)

ADDITIO N AL REFEREN CES: Bode 1983; Oliver \& Bode 1985; Parker \& Voshell 1979.

K ey to C ardiocladius larvae of the southeastern United States

1 Antennal segments 3 and 4 subequal; each procercus with 2 setae that are thicker and longer than others; anal end not deflexed ventrally \qquad C. obscurus

1' Antennal segment 4 about twice as long as segment 3; procerci without thicker, longer setae as above; anal end deflexed ventrally \qquad C. albiplumus

N otes on species

C. albiplumus - Bode (1983) initially described the larva of this species as "Eukiefferiella similis group". Oliver \& Bode (1985) associated the immature stages with the adult (previously described by Sæther (1969)) and noted that the species should be placed in Cardiocladius, although the immature stages appeared more closely aligned with Eukiefferiella. The inclusion of C . albiplumus in Cardiocladius confuses the limits of Eukiefferiella and related genera; on-going revisionary work will hopefully clarify the status of the species. Larvae have been reported as ectoparasites on hydropsychid caddisfly pupae (Parker \& Voshell 1979); such larvae grow to a much larger size than other C . albiplumus larvae that have fed on al gae. N ote that the median tooth has a central nipple like projection which is often worn off. C ardi ocladius albiplumus also has supraanal setae; these setae are noted as absent in other species of C ardi ocladi us (C ranston et al. 1983). N ote also that the deflexed posterior of C . albiplumus is similar to that of Paraphaenocladius and will cause it to key to Paraphaenocladius in Cranston et al. (1983).
C. obscurus - Larvae of this species are far more commonly encountered than those of C . albiplumus.

Genus Chaetocladius

DIAG N O SIS: In contrast to the adults and pupae, larvae of C haetocladiuscan be difficult to diagnose due to considerable variation in some larval structures. Larvae may be diagnosed by the following: SI simple (one species, Ch. ligni), serrate, branched or plumose; labral lamellae present near bases of SI (sometimes absent/vestigial, as in Ch. ligni); antennae 5 segmented, with segment 3 shorter than or subequal to 4; premandible apically simple or bifid, with weak to moderate brush; mentum with 1 or 2 median teeth; and ventromental plates small to large, when large may extend beyond lateral margin of mentum.
N OTES: C aldwell et al. (1997) report two species of Chatocladius from the C arolinas based on adult specimens; I've seen two species from the Smoky M ountains based on pupae. There are probably several more species present in the Southeast, but with the exception of Ch . ligni (with its distinctive mentum and labral setae), it is not possible to identify larvze to species. Chaetocladius stamfordi has been shown to be a junior synonym of Ch. piger (C aldwell 1997); Chaetocladius requires revision in the N earctic. The preanal segment of Ch . ligni is curved over the posterior segments, similar to Cardiocladius albiplumus and Paraphaenocladius species; I've seen larvae of Ch. ligni from Great Smoky M ountains N ational Park in N orth C arolina.

Chaetocladiuslarvae may be semi-terrestrial or aquatic, being found in wet leaves, springs, ditches, streams, ponds and permanent and temporary pools, as well as in wells and sewage treatment plants; one species, Ch. ligni, mines in immersed wood.

ADDITIONAL REFEREN CES: C aldwell 1997; Cranston \& Oliver 1988b.

Ch. sp. bifid premandible

Ch. sp.
simple premandible

Ch. ligni premandible
 mandible

Ch. sp. antenna

Ch. sp.
labrum

Ch. Iigni
labral setae
 mentum

Ch. Iigni antenna

Genus Clunio
DIAGN OSIS: This genus is easily identified by its plumose SI and SII; premandible with simple apex; lack of procerci and anal tubules; and its marine/brackish water habitat.

N OTES: O ne species, C. marshalli, is known from the southeastern United States. Specimens from near W ilmington, N C, are the northernmost examples I've examined.

I've collected larvae and pupae from algae covered rocks in the Intracoastal Waterway in Florida, where they co-existed with T halasomya larvae.

ADDITION AL REFEREN CES: H ashimoto 1976; Stone \& Wirth 1947; Strenzke 1960; W irth 1949.

premandible

mentum

labrum
posterior end

Genus Compterosmittia

DIAGN O SIS: Distinguished by the absence of labral lamellae; serrated SI; 5 segmented antenna, with blade shorter than to subequal to flagellum; apically bifid premandible, without brush; mentum with 2 median teeth and 5 pairs of lateral teeth; ventromental plates weak, with posterolateral portion appearing as a rounded tooth; mandible with 4 inner teeth, proximal tooth distinctly separate from mola; body setae shorter than $1 / 2$ length of segment; and supraanal setae $1 / 3$ length of anal setae.

N OTES: One species, C. nerius, is known from the eastern U nited States, where it is recorded from N ew York and both C arolinas. The immature stages are undescribed; the diagnosis above and figures below are based on larvzefrom H ong K ong and Tasmania. Larvze arevery similar to Limnophyes and Paralimnophyes; pupae of C ompterosmittia are inseparable from those of Limnophyes.

Larvae from the Australian and O riental regions were collected from phytotelmata (plant held waters); the habitat of immature C. nerius is unknown.

ADDITION AL REFEREN CES: Cranston \& Kitching 1995; Sæther 1981b.

labrum and premandible

antenna

mentum

DIAGN OSIS: Distinguished by the small size (less than 4 mm) and long, 4 segmented antennae that are subequal to or longer than head capsule length.

N OTES: Four named species are recorded from the C arolinas. H owever, it is uncertain whether these named species, three of which are Palaearctic, have been correctly identified, although I have seen pupal and adult material that is most certainly C. Iobata (see N otes on species for C. taris). Seasonal variation in the number of adult antennal flagellomeres can cause confusion, perhaps leading to misidentification of adults (see Schlee (1968) and Hirvenoja \& Hirvenoja (1988)). Larval keys written for European species will not work correctly in the Nearctic; matching a specimen's mentum with an illustration from the literature (mostly based on Pal aearctic species) does not mean that a correct identification has been achieved. All Nearctic records of Corynoneura species based on larvae must be treated with extreme skepticism. Because of the difficulties in identifying Corynoneura species, some due to vague descriptions or misunderstandings by earlier workers who did not examine type material, it appears that the names C. scutelata, C. celeripes and C. taris have been grossly misused; see Schlee (1968) and H irvenoja \& Hirvenoja (1988). N ote that the species keyed and illustrated as C. scutellata in Pinder (1978) is C. gratias Schlee (H irvenoja \& Hirvenoja (1988)). Needless to say, the Nearctic species of C orynoneura are in great need of revision!

Corynoneura are found in a wide variety of habitats, and it is not unusual to find two or more species in one sample. The key that follows must be considered preliminary; there may be other species in the Southeast whose larvae I have not seen and can not include in the key. Note especially that 4th instar larvae are necessary for correct use of much of the key; H irvenoja \& H irvenoja (1988) found that antennae lengthened from the first to the last instars. Also note that relative lengths of antennal segments may vary within a species from instar to instar.

AD DITION AL REFEREN CES: Boesel \& Winner 1980; H irvenoja \& H irvenoja 1988; Schlee 1968; Sublette \& Sasa 1994.

C. Iobata head capsule with closeup of reticulate sculpturing

C. sp. B mentum

C. sp. B

C. sp. C

C. sp. G mentum

C. sp. D
subbasal setae of posterior parapod

Key to Corynoneura larvae of the southeastern United States

1 H ead capsule integument with pustules/granules or sculpturing consisting of fine scratches, often in a reticulate pattern (sculpturing usually strongest dorsally, but may be faint in some specimens) (see figures in couplet 2)

1' H ead capsule integument smooth, unsculptured

2(1) H ead capsule integument pustulate/granulate; mentum with 2 median teeth; known only from southern Florida

2' H ead capsule integument with sculpturing that usually forms a reticulate pattern; mentum with 3 median teeth (see couplet 3 below); widespread 3

3(2') First lateral tooth of mentum well defined, rising to about the same level as second lateral tooth, mentum with 5 well defined lateral teeth on each side \qquad C. sp. C

First lateral tooth of mentum vestigial or appressed closely to outer median tooth so that mentum may appear to have only 4 lateral teeth per side 4

4(3') Basal antennal segment shorter, less than to slightly greater than postmentum length \qquad C. Iobata

4' Basal antennal segment longer; much longer (at least $10 \mu \mathrm{~m}$) than postmentum length \qquad C. sp. G

5(1) M entum with 2 median teeth; posterior parapod subbasal setze with lateral spinules running along almost entire side of main shaft, not confined to basal half or less
C. sp. B

5' M entum with 3 median teeth; posterior parapod subbasal seta with lateral spinules of main shaft confined to basal half or less

C. sp. E

C. sp. D
$6\left(5^{\prime}\right)$ Total length of antennae subequal to head capsule length, basal segment about 80-100 $\mu \mathrm{m}$ (4th instar only!) C. sp. E

6' Total antennal length much longer than head capsule length; basal segment 190-325 $\mu \mathrm{m}$ 7

7(6') M entum with 5 pairs of lateral teeth; basal antennal segment 190-210 $\mu \mathrm{m}$ long (4th instar only!)
C.sp. H

7' \quad M entum with 6 pairs of lateral teeth; basal antennal segment 300-325 $\mu \mathrm{m}$ long (4th instar only!) C. sp. D

N otes on species

C. Iobata - In the N earctic this species was formerly referred to as C. taris. I have re-examined theholotype male of C. taris; contrary to Roback's (1957) description, the gonocoxite does bear a small medial lobe and is basically identical to C. Iobata Edwards. Both species have antennae with 10 flagellomeres; however, in adult males of Palaearctic C. lobata the last antennal segment is as long as the preceding 4-6 flagellomeres while in the holotype C. tarisit is slightly shorter than the preceding 3 flagellomeres. Given the propensity for variation known in the genus Corynoneura (see Schlee (1968) and H irvenoja \& H irvenoja (1988)), this difference appears insignificant. I have measured the C. taris holotype's AR as 0.36; this falls within the range of ARs (0.20-0.64) for this species given by Schlee (1968). Both taxa have an S-shaped setae at the enlarged apex of the hind tibia. Associated pupae from north Florida will key to C. lobata in Langton (1991) and in a manuscript key to North American pupal exuviae. Under a different coverslip on the same slide as the holotype of C. tarisis a whole mounted larva; it is not an exuviae and thus can not be directly associated as the larval exuviae of the holotype (which, according to Roback (1957), was reared.) It is this larva that Epler (1995) used as a basis for C. taris in his larval key. Its basal antennal segment is as long as the postmentum length (163 $\mu \mathrm{m}$). Cranston's (1982) key stated that the first antennal segment length of C. Iobata was less than $200 \mu \mathrm{~m}$ but greater than $130 \mu \mathrm{~m}$. I've also examined reared specimens of C. Iobata from England and have compared them to reared Nearctic material (mostly from Florida). I can see no differences that would suggest that the two taxa are not the same entity and thus I consider the two synonymous; lobata is the older name and has priority. A single reared male C. Iobata from Ohio is slightly different in that the pupa differs slightly in bearing very light tergal shagreen in contrast to the moderate to heavy shagreen of C . lobata.

N ote that the ovoid darker area on the mid-dorsum of the head mentioned by Epler (1995) can also be observed on C. sp. C and C. sp. G. Corynoneura sp. G may be a variant of C. lobata with longer antennae; reared material is necessary to confirm whether the two taxa are different species.
C. sp. B - This is apparently the same taxon called "C. celeripe"" by Simpson \& Bode(1980); the mentum and subbasal setae of the posterior parapods are similar. H owever, I have reared C. sp. B from the Suwannee and Withlacoochee Rivers in northern Florida; this species does not appear to be C celeripes. M ale genitalia of C. sp. B are somewhat similar to C. lobata, but differ in having a truncate transverse sternapodeme; that of C. lobata is sharply arched and directed anteriorly. The larva of C. coronata Edwards as illustrated by C ranston (1982) and C ranston et al. (1983) also has a mentum similar to C. sp. B, but C. sp. B is not that species either; C. coronata has sculpturing on the head capsule. This taxon appears to be an undescribed species and is apparently common throughout the Southeast (and perhaps the entire eastern U.S.). H irvenoja \& H irvenoja (1988) separated some species as larvae by antennal length. U sing such criteria, C. sp. B may consist of more than one species: in Florida and South Carolina material examined, there were two size classes based on basal antennal length/postmentum length. In specimens with basal antennal segment lengths of $150 \mu \mathrm{~m}$ or more, basal segment length was greater than postmentum length; in specimens with basal antennal lengths $125 \mu \mathrm{~m}$ or less, basal segment length was less than or subequal to postmentum length. W hether this is due to allometry, seasonal, or species differences will remain uncertain until adults of both varieties are associated with larvae (I have reared only the "short" antennal variety).
C. sp. C - Very similar to C. lobata and C. sp. G, but with a well developed first lateral tooth on the mentum. This species has long antennae; the basal segment is much longer than postmentum length. This taxon may be C. lacustris or C. scutellata but reared material is needed for confirmation.
C. sp. D - Thistaxon is unique in that most specimens have a mentum with 6 pairs of lateral teeth (plus three median teeth); C ranston et al. (1983) stated that C orynoneura has 5 pairs of lateral teeth plus 2 or 3 median teeth. The outermost 6th tooth may appear as only a notch on some specimens; the figure accompanying couplet 6 ' is of a considerably flattened mentum. N ote also the smooth head capsule integument and the very long antennae. I have not yet seen this taxon from the C arolinas.
C. sp. E - A species with short antennae for a C orynoneura; total antennal length is subequal to the length of the head capsule. I have seen specimens from as far north as the Blue Ridge Parkway in N orth Carolina.
C. sp. F - Known only from marshes in south Florida, this species is unique among North American Corynoneura known to me in that the head capsule integument bears tiny pustules or granules. Its head capsule is rather squat for a C orynoneura; the basal antennal segment is longer than the postmentum length.
C. sp. G - I have set aside larvae with longer antennae than C. Iobata as a separate taxon. If the basal antennal length is more than $10 \mu \mathrm{~m}$ greater than the postmentum length, I have called such larvae C. sp. G. There does seem to be a "natural" gap here, but, as usual, more material is needed! I have seen material of this taxon from South C arolina and northern Florida.
C. sp. H - A smooth head capsuled species with moderately long antennae, I have seen this taxon only from the Santa Fe River in northern Florida. Since much of northern Florida's chironomid fauna is found throughout the southeastern C oastal Plain, it should probably occur in that region of the C arolinas.
In addition to the described species listed by Caldwell et al. (1997), I have examined male specimens of what is probably C. oxfordana Boesel, described from O hio, from the Savannah River Plant area in South Carolina and Coweeta H ydrologic Lab in N orth C arolina; the immature stages are undescribed.

Genus Cricotopus

DIAGN O SIS: A difficult genus to diagnose precisely because of variation in many key characters; many larvae are difficult or impossible to separate from 0 rthocladius (0 rthocladius) and Paratrichocladius larvae. SI most often bifid, but sometimes simple or with one branch considerably larger than the other; pecten epipharyngis a simple scale ([C. (Isocladius)] or with 3 scales [C. (Cricotopus) and C. (N ostococladius)]; simple (usually) or bifid premandible; weakly developed ventromental plates; beard very weak or vestigial; mentum with an odd number of teeth; and abdominal segments with or without a pair of posterolateral setal tufts.

N OTES: About 16 species of Cricotopus, representing three subgenera (Cricotopus, Isocladius and N ostococladius), are recorded for theC arolinas. M any of these records are based on pupae or adults, because reliable identifications are often not possible with N earctic Cricotopus larvae that have not been associated with a pupa or an adult. As noted above, some Cricotopuslarvae are very difficult to separate from those of 0 . (O rthocladius) and Paratrichocladius. It may be necessary to run specimens through both the C ricotopus and O rthocladiuskeys; in many instances it will be necessary to have associated pupae or adults for accurate identifications. Quite often, the best you may be ableto do is an identification of "Cricotopus(0 rthocladius sp.". Hirvenoja (1973) revised Cricotopus for the western Palaearctic; his keys to adults, pupae and larvae have been translated and modified in Simpson et al. (1983). N ote that in the Southeast there are several species that will not fit in H irvenoja's keys or species groups, and the conspecificity of many N earctic forms with Palaearctic species has not been conclusively demonstrated - a revision of the N earctic species is greatly needed!

C ontrary to the diagnosis in Cranston et al. (1983), most C ricotopuslarvae do have a weak cardinal "beard" near the lateral margin of the mentum (H irvenoja (1973) gives beard length measurements). Also note that the presence of posterolateral setal tufts on the abdominal segments will not distinguish larvae as Cricotopus- at least two species of 0 rthocladius (0 . annectens and 0 . lignicola) possess setal tufts. H owever, note that the extremely long setal tufts of C. sylvestris group larvae easily identify them, visible even in alcohol. Larvae with both a simple SI and setal tufts (except for 0 . lignicola) are Cricotopus.

Larvae are found in a variety of aquatic habitats, where they are often associated with plants. C. (Isocladius) species tend to be more common in lentic conditions; C. (Cricotopus) species are more common in lotic situations; C. (N ostococladius) is associated with the blue green alga N ostoc. Some Cricotopuslarvae may be economically important as pests in rice fields (members of the C. (I.) sylvestris group) and as biocontrol agents for nuisance aquatic plants (C. (I.) lebetis for hydrilla). Cricotopus bicinctus and C . infuscatus are tolerant of many types of water pollution.

The key that follows must be used with caution; our knowledge of N earctic Cricotopus larvae is still relatively poor. You should have an associated pupa or adult that indicates that your specimen is a Cricotopus (you may have to run your specimen through the 0 rthocladius key as well); and before applying a specieslevel name to a larva, it should be verified by an associated pupa or adult.

ADD IT IO N AL REFEREN CES: Boesel 1983; Epler et al. 2000; Hirvenoja 1973; LeSage \& H arrison 1980; Oliver 1977, 1984; Simpson \& Bode 1980; Simpson et al. 1983 (translation of keys of H irvenoja 1973).

C. politus simple premandible
C. (I.) lebetis
labrum

C. lebetis antenna

C. politus mentum

C. trifasciatus mentum

C. lebetis mentum

K ey to Cricotopus larvae of the southeastern United States

(For best results you should have at least a pupal association that confirms that your specimen is indeed a Cricotopusbefore using this key. M ost identifications should be considered tentative unless backed by a pupal or adult association.)

1 H ead capsule dark brown to almost black .. 2
1' H ead capsule light yellow brown to light brown .. 3

2(1) O uter margin of mandible with 2-3 dorsal teeth; mentum distinctly elongate and arched; restricted to blue-green alga Nostoc
\qquad C. (N.) nostocicola

2' O uter margin of mandible without teeth; mentum as figured; not found in N ostoc

3(1') M andible with truncate molar area and rugose outer margin; premandible with large rounded inner tooth

"Santa Fe"

absurdus

3' M andible without truncate molar area, outer margin smooth or rugose; premandible not as above 6

4(3) M entum with 6 pairs of lateral teeth, first lateral tooth reduced \qquad C.(I.) absurdus

4' \quad M entum with 5 pairs of lateral teeth, first lateral tooth not reduced (figures below)

5(4') M entum with first pair of lateral teeth much higher than remainder of mentum \qquad C.(I.) sp. "Santa Fe"

5' M entum with first pair of lateral teeth lower, more level with remaining lateral teeth \qquad C. (I.) sp. "O zarks"

6(3') Premandible apically bifid \qquad 7

6' Premandible simple 12

7(6) Second lateral tooth of mentum not reduced and apressed to first lateral tooth; setal tufts of abdominal segments short, at most 1/3 length of segment bearing them 8

(adapted from H irvenoja 1973)

7' Second lateral tooth of mentum reduced and apressed to first lateral tooth abdominal setal tufts very long, as long as or longer than segment bearing them \qquad C. (I.) sylvestris group 9 (members of this group are very difficult to separate; your best identification may be "Cricotopus sylvestris group sp.")

8(7) $\quad M$ andible with light base; premandible with very weak brush \qquad C. (C.) tibialis (n ot recorded from the SE US)

mandible with light base

C. fuscusmandiblewith dark base
(adapted from H irvenoja 1973)

8' M andible with dark base; premandible without brush \qquad C. (C.) fuscus

9(7') Abdominal segments I-VII with setal tufts; S I simple; thorax with bright blue coloration in life; lives exclusively (?) within stems of the aquatic weed hydrilla \qquad C. (I.) lebetis

9' Abdominal segments I-VI with setal tufts; S I bifid (although may be unevenly bifid, with one branch much larger than theother); thorax not bluein life; not restricted to hydrilla stems \qquad 10

10(9') Apical tooth of small claws of anterior parapodsslightly Iarger than subapical teeth \qquad C. (I.) sylvestris

N ote- you will have to examineseveral claws; the differences can be very slight!

Apical tooth of small claws of anterior parapods much larger than subapical teeth

11

longer inner spines shorter inner spines
$11\left(10^{\prime}\right)$ AR of 4th instar larva 1.4-1.7 ...
C. (I.) tricinctus AR of 4th instar larva 1.7-2.0. C. (I.) trifasciatus

12(6') M edian tooth of mentum about 3 times (or more) as wide as first lateral tooth

12' M edian tooth of mentum at most 2.5 times width of first lateral tooth 19

13(12) Inner margin of mandible with serrations \qquad C. (C.) bicinctus

13' Inner margin of mandible smooth \qquad 14

$14\left(13^{\prime}\right) 1 s t, 2$ nd and 6 th lateral teeth of mentum reduced (6th tooth may beabsent) \qquad C. (C.) trifascia

14' M entum not as above; 6th lateral tooth well developed \qquad 15

15(14') 2nd lateral tooth of mentum reduced, setting off central 5 teeth from remainder of mentum
\qquad C. (C.) cf. patens

15' 2nd lateral tooth not reduced, mentum not as above

16

$16\left(15^{\prime}\right)$ AR around 2.0-2.5; median tooth of mentum projects strongly forward \qquad C.(C.) cf. cylindraceus

C. cf. cylindraceusmentum 0

16’ AR around 1.5; median tooth not projecting forward as above 17

The following 3 species are very difficult to separate as isolated larvae; associated pupae or adult males are necessary for accurate identification.
$17\left(16^{\prime}\right)$ Setal tufts on abdominal segments absent or reduced, $<50 \mu \mathrm{~m}$ in length \qquad C. (C.) politus

17' Setal tufts on abdominal segments better developed, about 80-100 $\mu \mathrm{m}$ in length 18

18' D orsal anterior margin of galea without or with <2 rows of pectinatelamellae ..
C. (C.) vierriensis

19(12') Pecten epipharyngis a single lobe (or scale) with at most a small notch or lobe near the base of each side; mentum with 2nd lateral tooth small and partially fused to 1st lateral tooth \qquad 20

$$
\begin{gathered}
\text { CAUTION : D o not mistake the } \\
\text { adjacent chaetulae laterales for outer } \\
\text { lobes of the pecten epipharyngis! }
\end{gathered}
$$

"

$18\left(17^{\prime}\right)$ D orsal anterior margin of galea of maxilla with numerous pectinate lamellae .. C. (C.) albiforceps

AR = antennal ratio.
Calculated by dividing the
length of the basal segment
by the length of the flaged-
lum (the remaining anten-
nal segments.)

$$
20
$$

chaetulae laterales

19' Pecten epipharyngis with 3 nearly equal sized lobes or scales; mentum with 2nd lateral not as small and not fused to 1st lateral tooth (except in C. luciae and C. tremulus, couplet 26)

20(19) Antennae short; S I simple; mentum as figured C. (I.) degans

20' Antennaenormal; SI bifid; mentum not as above .. 21

21(20) Setal tuft on abdominal segment VII with 20-50 setae
C. (I.) reversusgroup

21' Setal tuft on abdominal segment VII with <10 setaeor absent
C. (I.) intersectus
$22\left(19^{\prime}\right) 0$ uter margin of mandible smooth or indistinctly rugose \qquad

smooth outer margin

rugose outer margin

23(22) M andible with light base
C. (C.) annulator complex (C. (C.) annulator (in part), C. (C.) sossonae, C. (C.) varipes)
(these 3 species can not be distinguished as larvae; see N otes)

23' M andibledark to base \qquad C. (C.) annulator (in part)

24(22') M entum with 2nd lateral tooth about as large as other lateral teeth; premandible without brush 25

24' M entum with 2nd lateral tooth small and appressed to 1st lateral tooth; premandible with weak brush (may requireobservation at 1000X)

26

25(24) M andible with light base
.......... C. (C.) triannulatus, C. (C.) infuscatus(in part) (see N otes)

25' M andibledark to base \qquad C. (C.) infuscatus(in part)

26(24') M andible with light base \qquad C. (C.) luciae

26'
M andible dark to base
C. (C.) tremulus

dark base

N otes on Species

Species level (and even accurate generic level) identifications of Cricotopus larvae are difficult. Perceived differences in larvae are often only variants of the same species; associated pupae and/or adults are usually needed for accurate species level identification - as with O rthocladius, pupae usually providethe best means of species identification. Dave Lenat (NC DEN R) has written a laboratory key for combined Cricotopus and O rthocladi usspecies; thetaxa weregiven C/O numbers, some of which werealso used in Lenat (1993b). I have attempted to reconcile his system of numbers with the names listed below; his number is listed in brackets at the end of each species summary when applicable. N ote that some of the numbers may apply to several species and that some species may have several numbers associated with them. Again, unless larval material is somehow associated with a pupa or adult (often through pharate pupae within very late $4^{\text {th }}$ instar larvae, or pupae with attached larval exuviae - sometimes such pupae may have almost completely
developed adults within, thus giving a completelarval-pupal-adult association), specieslevel identifications can only be considered tentative!
C. (I.) absurdus - This species is not known from the C arolinas but I have seen associated material from O hio, as well as larvae from the O zarks (where it occurred with C. sp. "O zarks"), northern Florida and Georgia. The conelike pecten epipharyngis indicates that the species should be placed in I socladius. In addition to the characters noted in the key, this species has long ($80-100 \mu \mathrm{~m}$), well developed setal tufts and a long, thin seta subdentalis.
C. (C.) albiforceps - I have seen adults from Lake N orman, N C , that closely conform to the description of this species as described by H irvenoja (1973). The specimens differ from the description in having the first two abdominal tergites infuscate rather than white as in typical albiforceps. H owever, H irvenoja (1973: 233) noted that some northern individuals had tergiteIV or the first two tergites more or less dark. Larvae I've examined from N C identified as C. albiforceps do not key to that species in H irvenoja (1973) but key to C. vierriensis (which they are not); and key to C. pulchripes in Cranston (1982), but the antennae are shorter; the larva lacks well developed setal tufts on the abdominal segments. H irvenoja (1973) noted that the surface of the galea of the maxilla of C. albiforceps (a member of H irvenoja's festivellus group) bears many small pectinate lamellae; that of C. vierriensis bears only a few such lamellae. The galea of C . politus bears numerous such pectinate lamellae. I have not seen genuine larval or pupal material of C . albiforceps from the C arolinas.
C. (C.) annulator - I've examined larvae identified as C. annulator from NC but they do not fit the description in Hirvenoja (1973) in that the base of the mandible is not dark. H irvenoja's (1973) description of the larva of C . annulator was based on the larva of C . bituberculatus Goetghebuer, a species he placed as a probablejunior synonym of C. annulator; the base of the mandible is dark in C. bituberculatus. H irvenoja (1973: 203) stated that it was possible that C. bituberculatus was a local variation of C . annulator; this probable synonymy has been accepted as a synonymy by subsequent authors. I've examined the larval material Hirvenoja (1973) described, collected by Thienemann in Garmisch-Partenkirchen, G ermany. Thismaterial consists of whole mounted larvae, not larval exuviae; the material is not reared and thus not directly associated with pupae or adults. There appears to be more than one species on these slides; most slides have several larvae with moderately rugose, dark-based mandibles, but one slide also has one larva with a smoothly margined, light-based mandible. H irvenoja's (1973: 206) description of the mandible stated that the "back" of the mandible had small grooves and was almost smooth. I've also examined reared material of C. annulator from Scotland; in this material the larval mandibles are not dark at the base and possess mostly smooth outer margins. Schmid (1993) also described the larva of C. annulator without a darkened base on the mandible. Cricotopus annulator may occur in the SE US; it is recorded from O ntario, C anada by LeSage \& H arrison (1980), who based their records on adult males and females; they were not successful in obtaining immature stages and did not includethem in their keys. Sublette et al. (1998) recorded C. annulator from the G rand C anyon and redescribed the adult male and pupa; in assigning their specimens to C. annulator they recognized some variation in the pupa and adults. M ost adult males of C. sossonae and C. varipes possess a minute anal point, absent in C. annulator. Separating C. annulator larvae from those of C. sossonae and C. varipes without associated adult males is not possible; larvae of all three species should be referred to as "C. annulator complex sp.". [C/O sp. 6]
C. (C.) bicinctus - The most common and widespread species of Cricotopus in the SE US, perhaps in the entire US. Larvae are usually easily identified by the serrate inner margin of the mandible, but these serrations (or thin spines) are sometimes worn off or can not be seen if the mandible is not oriented correctly; such specimens can be confused with C. vierriensis(q.v.) H owever, the abdomi-
nal setal tufts of C . bicinctus are very small $(<30 \mu \mathrm{~m})$. Cricotopus bicinctus larvae are tolerant of organic and other forms of pollution. Note that a closely related species, C. mackenzi ensisO liver, has been described from western C anada (Oliver 1977); it probably does not occur in the SE US. I have seen apparently aberrant C . bicinctus larvae from Louisiana and the Suwannee River in northern Florida that possess a narrow u-shaped notch in the middle of the median tooth. [C/O sp. 1]

aberrant mentum of C . bicinctusgroup larva from Louisiana
C. (C.) coronatus H irvenoja - This species was recorded for the C arolinas by H udson et al. (1990) and C aldwell et al. (1997), apparently based on a single specimen from NC. I have examined this specimen and believe it to be C. politus. Cricotopus coronatus is otherwise only known from Finland (H irvenoja 1973) and northern Canada (Oliver et al. 1990). I have not included it on the check list for the C arolinas.
C. (C.) cf. cylindraceus - I've examined larvae from North C arolina that appear to be this species, but without associated pupae or adults, identification remains tentative. [C/O sp. 14]
C. (I.) elegans - A distinctive larva with reduced antennae. Hirvenoja (1973) suspected that this species was a junior synonym of the Palaearctic C. obnixus (Walker), but had insufficient material. [C/O sp. 42]
C. (C.) festivelus - Thelarva of C. festivelluswas not described by H irvenoja (1973); Schmid (1993) figured the larva and gave a brief diagnosis for a taxon he called "C. cf. festivellusgrp.". I've seen adults that closely match C. festivellusfrom the C arolinas and Alabama; larvae remain unknown for this taxon in North America.
C. (C.) fugax - The head capsule of C. fugax is usually very dark; the larva lacks setal tufts and may be mistaken for Orthocladius (Eudactylocladius) dubitatus. The two species can be separated by the simple premandible of C . fugax; the premandible of 0 . dubitatus has a simple apex but also bears a broad inner tooth; and by the $3^{\text {rd }}$ and $4^{\text {th }}$ antennal segments: in C . fugax these segments are about twice as long as wide, in 0 . dubitatusthey are about as long as wide. In addition, the molar area of 0 . dubitatus is usually truncate; that of C . fugax is usually more rounded (the mandible must be oriented correctly to observe this) but may appear truncate. See figures under 0 . (Eud.) dubitatus. Also, C. fugax has long (at least $1 / 2$ length of the segment) setae on the abdominal segments; 0 . dubitatus has only short setae on the abdomen. Larvae of C. fugax were reared from water flowing over rock surfaces at the Coweeta H ydrologic Laboratory, N orth Carolina. This material was originally misdetermined as C. luciae and erroneously reported in Caldwell et al. (1997). Note that C . tremulus and C . luciae are also very similar to C . fugax, but bear a weak brush on the premandible. [C/0 sp. 20]
C. (C.) fuscus - I've examined an adult from Great Smoky M ountains N ational Park that appears to bethis species; I have not seen larvae from the SE US.
C. (C.) infuscatus - This species was collected in Ontario and the immature stages described by LeSage \& H arrison (1980); they described the larva with a dark base to the mandible. H owever, I have examined a single reared male from 0 hio in which the larval mandible is not darkened at the base. Such larvae are apparently inseparable from C. triannulatus; pupal or adult characters must be used to identify the species. If you're fortunate enough to have a larva with a well developed pupa within, note that the median spine patches on abdominal tergites III-VI of C. triannulatus are somewhat bean-shaped and about twice as wide as long; in C . infuscatus these patches are more transverse and about $3 X$ as wide as long. I've seen larvae that appear to beC. infuscatusfrom N C. [someC/O sp. 5] C. (I.) intersectus (Staeger) - I've examined reared larvae of this species from NY and have seen larvae that fit this species from Jackson and Stokes C ounties in N C. It appears as C/0 sp. 44 in Lenat's key;
however specimens from his collection I've examined from NC identified as C/0 sp. 44 are not C. intersectus because they possess an apically bifid premandible and appear to be typical C. sylvestris group members; the premandible of C . intersectus is apically simple.
C. (I.) lebetis - N ot recorded from the Carolinas, but known from Louisiana and Florida. In Florida, larvae have been found living within the stems of the aquatic nuisance weed hydrilla. The species had been considered a synonym of C. tricinctus, but recent work in which the larva and pupa were described for the first time (Epler et al. 2000) demonstrated that thetaxon is a valid species. Larvae and pupae appear to only occur within the stems of hydrilla, where the larvae can cause sufficient damage to preclude further growth of the plant, thus preventing it from reaching the water surface. A major complaint against hydrilla in the South is that the plant forms large mats on the surface, impeding the passage of boats and thus making it a nuisance. This may be the first instance of a chironomid being a potential biological control agent (some African Polypedilum species may also be potential biocontrol agents for hydrilla). Close examination of hydrilla in other parts of the US may give a better idea of the range of C. lebetis.
C. (C.) Iuciae - Cricotopus luciae, originally described from O ntario, was recorded for North and South C arolina by H udson et al. (1990) and Caldwell et al. (1997). H owever, my examination of N orth C arolina specimens identifed as C. luciae showed them to be C. fugax (q.v.). O ther adult male specimens of C. luciae reported in H udson et al. (1990) could not belocated for verification; those records should be disregarded at this time. I have seen adult specimens and reared material from Alabama and O hio of trueC. luciae. Note that although LeSage \& H arrison (1980) described the inferior volsella of C. luciae as bare, the volsellae actually have a series of 4-6 sensillae ventrally and may bear a strong seta on the "neck" or near the base. I have examined the holotype and two paratypes of C. Iuciae to confirm this. See also C. tremulus.
C. (N.) nostocicola - This distinctive larva is restricted to living within colonies of the blue-green alga N ostoc. [C/O sp. 55]
C. (C.) cf. patens - I've seen larvae from NC and SC that fit this species, but without associated pupae or adults the identification remains tentative. A member of H irvenoja's cylindraceus group, it strongly resembles C. (C.) flavocinctus (Kieffer), a member of the festivellus group. The two can apparently only be separated as larvae by the number of rows of pectinate lamellae on the galea: three in flavocinctusand at most two in patens. Reared material is necessary to elucidatethetrue identity of these larvae. [C/O sp. 31]
C. (C.) politus - A relatively common but often overlooked or misidentified species, difficult to identify without an associated pupa or adult. It is easily confused with 0 . carlatus or 0 . rubucundus but is usually separable by the more medial position of the setae submenti in C. politus. It can also be confused with 0 . nigritus; identifications of C. politus larvae must be confirmed with pupae or adults! I've seen no associated material of C. politus from the C arolinas (only pupal exuviae from N C , adults from NC and SC). Given its distribution in northern Florida (where it is the second most common Cricotopusspecies in theSuwannee River basin), it is probably most common on the Piedmont and C oastal Plain. The abdominal setal tufts of C. politus may be very small (LeSage \& H arrison (1980) give a 23-45 $\mu \mathrm{m}$ size range), but in associated material from northern Florida and O hio, setal tufts are absent; in their place are single, long setae. [some C/O spp. 8, 54]
C. (I.) reversus group - Larvae that fit this group have been found in N C; accurate identification is not possible without associated pupae and/or adults. [C/0 sp. 45]
C. (C.) sossonae - As a larva, not separablefrom C. varipes and someC. annulator (q.v.); the species may be the same, but variable as adults. See LeSage \& H arrison (1980). U nassociated larvae should be referred to as "C. annulator complex sp." [C/0 sp. 6]
C. (I.) sylvestris - Common and widespread throughout the eastern US, but difficult to separatefrom other members of what can be called the "C. sylvestris group" (C. lebetis, C. sylvestris, C. tricinctus, C.
trifasciatus); pupae may provide the best characters for species level separation. See H irvenoja (1973), Simpson et al. (1983) and Epler et al. (2000) for pupal identification. In most cases with isolated larvae of all these species (except perhaps C. lebetis), an identification of "C. sylvestris group sp." will be the best one can do. M ost C. sylvestris group members are found in lakes and ponds; some mine in aquatic vegetation. [C/0 spp. 9, 41, 44?]
C. (C.) tibialis (M eigen) - N ot recorded from the Carolinas or the SE US; included only because of its similarity to C . fuscus.
C. (C.) tremulus - I've examined an adult from Great Smoky M ountains N ational Park and several Iarvae from N orth Carolina that appear to be this species. H irvenoja's (1973) tremulus group would includethefollowing N orth American species: C. annulator, C. Iuciae, C. infuscatus, C. sossonae, C. tremulus, C. triannulatus and C. varipes. Larvae of C. tremulus may be most easily confused with those of C . luciae, but note that the larva of C . tremulus has a darker base to the mandible. This difference may be difficult to discern; adults must be used to confirm identity! The body setae of C. tremulus and C. Iuciae are long (sometimes as long as the segment bearing them) and sometimes forked. [some C/O 20]
C. (C.) triannulatus - This species is apparently more abundant in the mountains and piedmont, but has been found on the coastal plain. Listed as "C. infuscatus group" in Lenat (1993b), it is considered tolerant. [C/O sp. 5]
C. (I.) tricinctus - A member of the C. sylvestris group, not recorded from the C arolinas. See C. sylvestris.
C. (C.) trifascia - A species with a very distinctive mentum, apparently most common in the mountains. [C/O sp. 36]
C. (I.) trifasciatus - A member of the C. sylvestris group, not recorded from the C arolinas. See C. sylvestris.
C. (C.) varipes - As a larva, not separable from C. sossonae and someC. annulator (q.v.); the species may be the same, but variable as adults. See LeSage \& H arrison (1980) for more information. Unassociated larvae should be referred to as "C. annulator complex sp." [C/O sp. 6]
C. (C.) vierriensis - Very similar to C. albiforceps, C. politus and C. bicinctus, see the key for characters to separate them. Adults strongly resemble C. bicinctus, but have a longer, thinner inferior volsella. Larvae can be confused with C . bicinctusif the distinctive serrations of the mandible of C . bicinctus are not visible. H owever, the abdominal setal tufts of C. vierriensis are very long (about 80-100 $\mu \mathrm{m}$) compared to the very short ones of C. bicinctus $(<30 \mu \mathrm{~m})$. I have seen samples from the Suwannee River in northern Florida in which larvae and pupae of C. bicinctus, C. politus and C. vierriensis were all present on one H ester-D endy sampler. [C/O sp. 46]
C. (I.) sp. "O zarks" - I first saw material of this taxon from the 0 zarks, hence the name. I have since examined more material from the K entucky River in Kentucky; thistaxon has not yet been found in the C arolinas, but might beexpected to occur there. It shares thecharacteristic premandible and mandible with C. absurdus and C. sp. "Santa Fe", and has long ($125-160 \mu \mathrm{~m}$) setal tufts. Two prepupae of C. sp. "O zarks", one from the O zarks, the other from K entucky, were also examined. U nusual for Cricotopus, the pupa has two long, thick, spine-like macrosetae on each anal lobe. The pupal thoracic horn is similar to some other I socladius species: long, club-like and smooth; it resembles a baseball bat. I have examined larvae from O hio that have a mentum that is intermediate between C. sp. "O zarks" and C. sp. "Santa Fe". In the O hio specimens the median tooth and first three pairs of lateral teeth are similar to those of C. sp. "Santa Fe", but the 4th and 5th pairs of lateral teeth are low and rounded. This might indicate that three species are present or that C. sp. "O zarks" and C. sp. "Santa Fe" represent the extreme ends of a single variable species.
C. (I.) sp. "Santa Fe" - This taxon is based upon several unassociated larvae from the Santa Fe River in north Florida; I have not seen material from the Carolinas. This larva has a premandible and mandible similar to those of C. sp. "Flint" and C. sp. "O zarks", and also has long (up to $200 \mu \mathrm{~m}$) setal tufts. A similar premandible is found in the European species C. (I.) brevi palpis K ieffer.

Genus

Diplocladius

DIAGN O SIS: Distinguished by the plumose SI; apically pectinate labral lamellae; apically bifid premandible; 5 segmented antennae; well developed ventromental beard; and mandible with 4 inner teeth.

N OTES: O ne H olarctic species, D. cultriger, is known from the eastern United States. Cranston et al. (1983) noted that there is variation in N earctic larvae that may indicate that more than one species is present, but to date no such variation or new species have been described.

Diplocladiuslarvae are usually found in springs and cool streams; in N orth C arolina they arefound mainly in winter.

AD DITIO N AL REFEREN CES: Johannsen 1937a; Schmid 1993.

labrum

mandible

mentum

Genus D oithrix

DIAGN O SIS: Distinguished by theSI with weak lateral serrations; apically bifid premandible; mandible with seta interna and 3 inner teeth; vestigial procerci;; long anal tubules with several constrictions; and normal sized anal setae.

N OTES: Three species are recorded from the mountain and piedmont areas of the C arolinas (C aldwell et al. 1997). The presence of a third species in the C arolinas renders the key to D oithrix larvae in Sæether \& Sublette (1983) obsolete. In that key, D. parcivillosa has a distinctly bifid median tooth on the mentum, postmentum length of $90-94 \mu \mathrm{~m}$ and supranal/anal seta ratio of about 0.43 ; D. villosa has indistinctly bifid median tooth, postmentum length of $105-113 \mu \mathrm{~m}$ and supranal/anal seta ratio of about 0.30 . Thelarva of the third species, D. dilloni, is undescribed. Larvae can not realistically be identified to species without associated pupae or adults.

The mandible may appear to have 4 inner teeth.
Larvae may be considered semi-terrestrial; the larvae described by Sather \& Sublette (1983) were reared from the vicinity of small streams and seeps.

ADDITION AL REFEREN CES: Cranston \& Oliver 1998a; Sæther \& Sublette 1983.

D. villosa antenna

D. villosa mentum

D. villosa mandible

D. parcivillosa
posterior portion of body
(all figs. adapted from Sæther \& Sublette 1983)

DIAGN OSIS: The distinctive mentum and mandible; long, thick body setae; single pair of anal tubules and symphoretic or parasitic life style will identify this genus.

N OTES: O nly one named species, E. flavens, is recorded from the Southeast. Jacobsen (1992) described the larvae of three other species from the eastern US. At least one of them, E. sp. \#3, occurs in the C arolinas. H is E. sp. \#4 is E. flavens, which is also found in the C arolinas.

C ontrary to the diagnosis in Cranston et al. (1983), the SI setae may besimple or coarsely plumose and the S II may be simple. N ote that the S II setae are mounted on tubercles.

Epoicocladius larvae live commensally or as parasites on larvae of the mayfly family Ephemeridae.
The key and the excellent figures below are adapted from Jacobsen (1992)
ADDITION AL REFEREN CES: Jacobsen 1992.

K ey to Epoicocladius larvae of the eastern United States

1 M entum reduced, with median group of teeth dark; SI and S II setae of labrum simple E.sp. \#1

1' M entum normal, with median teeth paler than lateral teeth; S I coarsely plumose; S II spatulate, apically pectinate

2(1') M entum with 7-8 median teeth, middle5-6 pale; middle abdominal segments each with about 4045 setae \qquad E. sp. \#2

2' M entum with 6 median teeth, middle 4 pale or light brown; middle abdominal segments each with <30 setae

3(2') Posteroventral margin of head capsule strongly arched; posterior parapods $<300 \mu \mathrm{~m}$ long, with stout claws amber colored
E. sp. \#3

3' Posteroventral margin of head capsule not strongly arched; posterior parapods $>300 \mu \mathrm{~m}$ long, with stout claws dark
E. flavens

N otes on species

E. flavens - Larvae of this species live among the gills of the ephemerid mayfly H exagenia where they apparently graze on fine particulates. K nown from the C arolinas; Jacobsen (1992) referred to this taxon as E. sp. \#4. N ote that Sæther's (1969) synonymy of this species with E. ephemerae (K ieffer) is incorrect; both are distinct species (Jacobsen 1992). The mentum of E. flavens is similar to that of E . sp.\#3, but the 4 median teeth are paler; this color difference is sometimes difficult to discern; rely on the shape of the posteroventral margin of the head capsule.
E. sp. \#1 Jacobsen - Recorded from Pennsy/vania and West Virginia, wherelarvae are parasitic on larvae of Ephemera guttulata Pictet.
E. sp. \#2 Jacobsen - Recorded from M assachusetts, Pennsylvania and Vermont, where larvae are commensal on larvae of Litobrancha recurvata (M orgen).
E. sp. \#3 Jacobsen - Recorded from M aryland, Pennsylvania and West Virginia. Jacobsen (1992) found larvae living symphoretically on larvae of Ephemera guttulata, E. simulans Walker and E. varia Eaton. I've also examined larvae from Great Smoky M ountains National Park and other areas in N orth C arolina.

Genus Eukiefferiella

DIAGN O SIS: The simple, thin SI; distinctly serrate labral chaetae; weak/vestigial ventromental plates; seta interna of mandible divided almost to base (except in E. devonica group); inner margin of mandible with spines/serrations; 4 or 5 segmented antennae; well developed procerci; and body with simple setae that are usually $<1 / 2$ the length of the body segment bearing them (exception: E. devonica group sp. B) will distinguish this genus.

NOTES: The taxonomy of Eukiefferiela in North America remains unclear. Because relationships be tween Nearctic and Palaearctic taxa are uncertain, Bode (1983) used species groups for larval taxa; these species groups are used in the key that follows. Some of these groups may consist of several species. N ote that these species group names are based on European species; some of these taxa maybe the same as their Palaearctic counterparts, but until a revision is completed for the N earctic, with all larval forms associated with pupae and adults and compared with European taxa, most identifications of Eukiefferiella larvae will have to remain at the species group level.

Some earlier records of Eukiefferiella may pertain to Cardiocladius, Tvetenia or Tokunagaia.
Eukiefferiella larvae are usually found in running water, where they are often encountered in moss and algae; some taxa are pollution tolerant. Preserved larvae may be green, blue or red.

ADDIT IO N AL REFEREN CES: Bode 1983; Lehmann 1972; Sæher \& H alvorsen 1981; Sublette et al. 1998.

E. devonica group mandible

E. claripennis group mandible

E. claripennis group mentum

E. brevicalcar group sp. A E. brevicalcar group sp. B antenna

0
E. grace group mentum

Key to Eukiefferiella larvae of the southeastern United States

1 M entum with 4 pairs of lateral teeth \qquad E. devonica group 2

O worn (?) mentum
-

1' M entum with 5 pairs of lateral teeth \qquad 3

2(1) H ead capsule yellow-brown to light brown; middle body segments with setae less than half as long as segment length E. devonica group sp. A

2' H ead capsule dark brown to reddish brown; middle body segments with setae more than half as long as segment length \qquad E. devonica group sp. B

3(1') Antenna with 4 segments \qquad 4

4 segments

5 segments

4(3) D istal setal mark of basal antennal segment located at mid point or closer to base; mentum as figured \qquad E. coerulescensgroup

5(4') M edian teeth of mentum large, barely divided medially; subbasal seta of posterior parapod weak, $<25 \mu \mathrm{~m}$ long; AR 1.40-1.80; ventromental plates relatively large \qquad E. pseudomontana group

5' M edian teeth not as wide (if wide then ventromental plates small); subbasal seta usually $>40 \mu \mathrm{~m}$ long; AR usually > 1.80; ventromental plates smaller (if larger then median teeth well divided)

6(5') 1st lateral tooth of mentum subequal in width to either of median teeth \qquad E. claripennisgroup

6' 1st lateral tooth about $1 / 2$ as wide as either median tooth
\qquad E. brevicalcar group sp. A

0
$7\left(3^{\prime}\right)$ Antennal blade subequal to segment 2 \qquad E. tirolensis

E. tirolensis menta

7' Antennal blade extends past segment 2 to segment 4 or beyond \qquad 8

8(7') M entum with 2 median teeth; AR 1.14-1.50 \qquad E. brehmi group

8' M entum with single median tooth; AR 1.50 or higher \qquad

N otes on species

E. brehmi group - N ote the long body setae of this taxon, approaching $1 / 2$ the length of the segment bearing them. The mentum has angulate "shoulders" posterolaterally. In specimens with a worn mentum (so that the bifid median tooth is not apparent), the lower AR of this taxon will separate it from E. gracei group specimens.
E. brevicalcar group - There are at least two species in this group in the C arolinas; E. brevicalcar group sp. A has four segmented antennae and two median teeth. Also see E. tirolensis below.
E. claripennisgroup - M embers of this group appear to be the most commonly encountered species of the genus in the Southeast. Bode(1983) noted that this group includes themost tolerant Eukiefferiella in N orth America.
E. coerulescens group - I have not seen larval material of this group from the Southeast, but it is recorded from SC by C aldwell et al. (1997). I've also seen a male from Pen Branch in the Savannah River Plant area in SC that apparently belongs in this group; it has pubescent eyes but has 2 setae on the squama. It is very difficult to separate larvae from the similar E. brevicalcar group sp. A. Although illustrated by Bode (1983) and Schmid (1993) with two median teeth, Cranston et al. (1983) figure a mentum with a single median tooth.
E. devonica group - There are apparently at least two species in this group in the C arolinas. In Europe, the group consists of E. devonica and E. ilkleyensis; both species have been recorded as adults or pupae from the Carolinas, but larvae have not yet been associated for them. N ote the longer inner "spines" of the mandible in members of this group, and that the seta interna is not deeply divided, thus resembling that of Cardiocladius. Also note that E. devonica group sp. B has the longest body setae of the genus in the Southeast, with some equaling the length of the segment which bears them. This may causethem to be keyed as T vetenia in somekeys, but notethat the SI of T vetenia is weakly branched to plumose, not simple as in Eukiefferiella.
E. grace group - LiketheE. brehmi group, the mentum is angulate posteriorly and body setae are relatively long. ARs are higher, >1.50, than in the brehmi group (AR 1.14-1.50); use caution because E. brehmi group specimens with a worn mentum can be easily confused with E. gracei group larvae.
E. pseudomontana group - Larvae resemble the European species E. clypeata, but associated pupae from $N Y$ indicate that this species is E. pseudomontana or an undescribed species closely related to it. This species group appears to be uncommon in the Southeast.
E. tirolensis - A member of the brevicalcar group. Identification of this species is based on reared material, in particular the distinctive pupa, from a creek in SC. The single adult male examined differs slightly from Lehmann's (1972) description in having an AR of 0.51 (0.30-0.40 in Lehmann) and wing length of $1.35 \mu \mathrm{~m}$ (about 1.50 in Lehmann). The larvae has five segmented antennae and a single median tooth. Thismay be the sametaxon recorded asE. lobifera, another European species, from SC by Caldwell et al. (1997).

Genus

Euryhapsis

DIAGN OSIS: The broad, pectinate labral lamellae; plumose SI; 4 segmented antennae (with 2nd segment entire) with antennal blade longer than flagellum; very short ventromental beard; posteriorly displaced setae submenti; and well developed procerci and anal tubules will distinguish this genus.

N OTES: Three species of Euryhapsis are described from western North America; only the immature stages of one species, E. cilium Oliver, are described. The larval diagnosis above is based on this species; additional material of other species may alter the diagnosis. I have examined adult males of an apparently undescribed speciesfrom theG reat Smoky M ountainsN ational Park; I havenot seen any immatureEuryhapsis material from the Southeast. Larvae are very similar to those of Brillia, except the second antennal segment is entire, not subdivided as in Brillia, and a minute beard is present in Euryhapsis.

Little is known of the ecology of the immature stages except that they inhabit medium sized bodies of flowing water.

ADDITION AL REFEREN CES: Oliver 1981c.

antenna

labrum

larval structures of E. cilium
(adapted from O liver 1981c)

Genus G eorthocladius

DIAGN O SIS: The weakly serrateSI (may appear simple); mandible with setainterna; procerci absent or vestigial; and long anal tubules with numerous constrictions identify this genus. The mentum may have 1 or 2 median teeth, the mandible 2 or 3 inner teeth.

N OTES: Sæther (1982) established a new subgenus, G. (Atelopodella), which is distinguished in the larval stage from the nominate subgenus by its double median tooth; 3 inner mandibular teeth; normal seta subdentalis; lack of posterior parapods and the presence of 2 small dorsal plates (which are probably vestigial procerci) bearing small setae. In G . (Georthocladius) the mentum has a single median tooth, there are only 2 inner teeth on the mandible, the seta subdentalis is broad, small posterior parapods with small or vestigial claws are present and at least 1 large anal seta is present (there are no procerci).

I've examined specimens referable to G. (Atedopodella) from the C arolinas and Tennessee (figured below) that have an apically bifid premandible, not mentioned in the description of the only known larva of the subgenus, G. (A.) curticornus. I have also examined a Florida larva that apparently fits the subgenus Atelopodella except that its mentum bears a single median tooth. N one of these larvae were associated with pupae or adults and their identity remains tentative; they do not appear to be G. (A.) curticornus.

Larvae are recorded from bogs, seeps and lotic habitats.
ADDITION AL REFEREN CES: Sæher 1982; Sæther \& Sublette 1983.

posterior end
Georthocladius (Georthocladius) fimbriatus larval structures
(adapted from Sæther \& Sublette 1983)

premandible

antenna

mentum

posterior end

Genus Gymnometriocnemus

DIAGNOSIS: Distinguished by the simple S I; mandible without seta interna; posterior parapods at right angle to body axis and divided, with claws on the anterior portion; and lack of procerci.

NOTES: Both of the described species known from North America (G. (G.) subnudus and G. (Raphidocladius) brumalis) occur in theC arolinas. H owever, no larvae have been positively associated with adults; Iarvae are thus not identifiable to species. I've also seen adults of an apparently undescribed species from the N orth C arolina portion of G reat Smoky M ountains N ational Park.

Gymnometriocnemus larvae are difficult to separate from those of Bryophaenocladius, differing only in the weakly divided posterior parapods of Gymnometriocnemus, those of Bryophaenocladius are undivided.

Pupae and adults of the subgenus G. (Raphidocladius) have been collected from seeps and springs; larvae may be aquatic or semi-aquatic. Larvae of G . (Gymnometriocnemus) may be exclusively terrestrial.

ADDITION AL REFEREN CES: Sæher 1983d.

mentum

anal end, lateral

antenna

anal end, ventral

Genus

Heleniella

DIAGNOSIS: Distinguished by the coarsely serrate SI ; stout S II; apically bifid premandible; 5 segmented antennae with the second segment divided near its base and third segment very small; long antennal blade; mentum with 2 broad median teeth separated by a U -shaped or broad V-shaped gap and with a distinct tooth or notch near the base of the mentum.

N OTES: Two species of Heleniella occur in the Carolinas, where they are found mainly in mountain streams. Larvae have not been associated with adults and can not be identified to species.

ADDITION AL REFEREN CES: Sæther 1969, 1985g.

labrum

antenna

Genus Heterotrissocladius

DIAGN OSIS: Larvae are distinguished by the plumose SI; pecten epipharyngis of 3 serrated spines; 7 segmented antenna with the 3rd segment $1 / 3$ or less the length of the 4th and with the 7th segment hairlike; and well developed ventromental plates that extend beyond the lateral margin of the mentum.

N OTES: Two described species are known from the Southeast, although one, H. sp. C Sæther, known only as a larva, does not have a formal name. At least one additional undescribed species has been found in Georgia.

The following key includes an O hio species, H. boltoni, that may eventually be found in theC arolinas. At least two other species (H. changi and H. sp. E Sæther) are known from the northeastern and north central U nited States; see Sæther (1975a).

In the Southeast, most larvae are found in rivers, streams, seeps and pools. The majority of other northern species are found most often in lakes.

ADDITION AL REFEREN CES: Sæther 1975a, 1992b.

Key to Heterotrissocladius larvae of the southeastern United States

1 M entum with single median tooth; S II broad, plumose; apical tooth of mandible broad
H.sp. C

S I

1' M entum with 2 median teeth; S II thinner, simple; mandible with smaller apical tooth

2(1') Postmentum darker than remainder of head capsule; 1st antennal segment $75-95 \mu \mathrm{~m}$ long; AR 1.05-1.14 \qquad H. marcidus

2' Postmentum as most slightly darker than remainder of head capsule; 1st antennal segment 43-58 $\mu \mathrm{m}$ long; AR 0.80-1.00 H. sp. "C aldwell" and H. boltoni

N otes on species

H. boltoni - N ot known from theC arolinas, H . boltoni was recently (Sæther 1992b) described from vernal pools and streams in Ohio. To date it has been found only in Ohio, but could possibly occur elsewhere in the eastern US. The larva is indistinguishable from H. sp. "C aldwell" (see below); adult males are needed for identification of both species.
H. marcidus - The only named species of Heterotrissocladius found in the Southeast and the most commonly encountered. G enerally recognized by its darkened postmentum and longer basal antennal segment. N ewly molted individuals may not have the darkened postmentum.
H. sp. C Sæther - The larva's distinctive mentum, broad apical tooth of the mandible, long seta subdentalis (the figure in Epler (1995) was of a mandible with a broken seta subdentalis), broad plumose S II, and a premandibular brush, make H. sp. C unusual for a H eterotrissocladius; this taxon may deserve a separate genus but until the larva is associated with an adult it is best kept in Heterotrissocladius. Known from N orth Carolina and Florida.
H. sp. "Caldwell" - This undescribed taxon has been reared from Georgia by B.A. Caldwell; it is not known from the Carolinas. I have been unable to find characters to separate the larva of this species from H . boltoni. The larvae of both species have a lightly pigmented postmental area, different from the normally darkly pigmented postmentum of H . marcidus. The adult male of H . sp. "Caldwel" is unlike that of any other described H olarctic Heterotrissocladius; the gonostylus is broadly triangular.

I have also seen a single larva from N orth Carolina with a pale postmentum that is similar to H . sp. "Caldwell" and H . boltoni, but appears to have a pecten epipharyngis composed of flattened, smooth scales instead of the finely serrated scales of other southeastern Heterotrissocladius species. H owever, it is not possible to accurately observe the pecten epipharyngis of this specimen; the apparent pecten epipharyngis may be displaced chaetulae laterales.

Genus Hydrobaenus

DIAGNOSIS: Distinguished by the smooth outer margins of the chaetulæe laterales; mentum with single or double median tooth; well developed ventromental plates; absence of a beard; apically bifid pre mandible, without brush; maxilla with well developed pecten galearis; and 6 segmented antenna, with 6th segment vestigial, threadlike.

N OTES: At least five species of H ydrobaenus occur in theSoutheast; two described species, H. johannseni and H . pilipes, are recorded from the C arolinas. An undescribed species (H. sp. "Georgia") is known from several streams in Georgia and H . pili podex is recorded from Alabama; either two may eventually be found in the C arolinas. A more unusual undescribed species, H. sp. O, is known from streams of the mountains and Piedmont of N orth C arolina and from O hio; this species is unusual in having a single median tooth instead of the normal doublemedian tooth of H ydrobaenus. Hydrobaenussp. O was referred to as "O liveridia" in Caldwell et al. (1997). It appears that H . pilipes may be the most common species in the Southeast. Although Sæther (1976) offered a key to larvae, in reality it is impossible to separate most larvae to species without an associated pupa or adult; there is considerable variation and overlap in characters. N otethat H . sp. "G eorgia" will key to H. johannseni or H. pilipes in Sæther's (1976) key.

H ydrobaenus larvae are most common in streams in the Southeast, occurring most often in the winter or early spring.
ADDITIO N AL REFEREN CES: Sæther 1976, 1989b; Tuiskunen \& Lindeberg 1986.

Genus Krenosmittia

DIAGNOSIS: The small size (body <3.5 mm); apically bifid premandible; distinctive mentum; elongate maxillary palp; and the very elongate anal setae will distinguish this genus.

N OTES: No named species are known from the Southeast; although H udson et al. (1990) and Caldwell et al. (1997) list two "undescribed species", I haveseen larval material of only oneapparent taxon. Krenosmittia is know to occur at least as far south as northwestern Florida.

Cranston et al. (1983) stated that the antenna of Krenosmittia was 4 segmented. H owever, material from the Southeast appears to be 5 segmented, with the apical segment a thread-like extension. In addition the second antennal segment appears to be weakly divided near the base, somewhat similar to the antennae of Brillia and H eleniella. Krenosmittia antennae are difficult to observe clearly because of their small size and they usually have detritus stuck to them.

Larvae are found in sandy substrata of springs and streams; they are apparently hyporheic.
AD DITION AL REFEREN CES: Ferrington 1984; Sæther 1969; Tuiskunen \& Lindeberg 1986.

Genus Limnophyes

DIAGN O SIS: Larvae are distinguished by the absence of labral lamellae; serrate SI (but serrations some times reduced); 5 segmented antennae with antennal blade as long as or slightly longer than the flagellum; mentum with 2 median teeth and 5 lateral teeth; ventromental plates weak, with posterolateral portion appearing as a rounded basal tooth; mandible with 3 inner teeth, with mola not tooth-like; body setae shorter than $1 / 2$ length of segment, simple (occasionally bifid); and supraanal setae about as long as anal setae.

N OTES: Based on adult males, nine species of Limnophyes are known from the Carolinas. Although Sather (1990) offered a key to some larvae, only a few are associated with adults; it is not realistically possible to identify Limnophyes larvae to species without associated adult males.

The only described larvae of the genus Compterosmittia, described from H ong K ong and Tasmanian larvae (see C ranston \& Kitching (1995)), are very similar to those of Limnophyes, differing only in the tooth-like mola and the shorter supraanal setae of Compterosmittia (and perhaps the shorter antennal blade of C ompterosmittia). N ote that C . nerius occurs in the C arolinas and that its larva is undescribed; it may very well be masquerading as a Limnophyes in some samples.

Limnophyes larvae are found in rivers, streams, springs, seeps, in moss on rock surfaces, stream margins and other semi-aquatic habitats, as well as in terrestrial habitats.

ADDITIONAL REFERENCES: Cranston \& Oliver 1988a; Sæther 1975d, 1990; Sublette \& Sasa 1994.

antenna

labrum

premandible

mentum

mandible

posterior body segments

Genus Lopescladius
DIAGNOSIS: The small size ($<4 \mathrm{~mm}$ long); simple, apically pointed premandible; antennae longer than head capsule; 2nd antennal segment with median weakly sclerotized area and minute Lauterborn organs at apex; and last antennal segment (4th) long and whip-like will distinguish this genus.

N OTES: One described, named species, L. hyporhécus, is recorded from South C arolina by H udson et al. (1990) and Caldwell et al. (1997); I have not seen material of this taxon from the Southeast. Lopeccladius sp. 1, another species, described but unnamed by Coffman \& Roback (1984), is known from South C arolina. All larvae I've examined from the Southeast appear to be L. sp. 1; I've also examined Roback's L. sp. 1 material from the Savannah River Plant area in South C arolina. It is possible that L. sp. 1 is based on smaller specimens of L. hyporheicus with an unworn mentum, but until L. sp. 1 is associated with an adult male it is best to retain the two as separate taxa. Two additional species, based on adults, are known from K ansas and Illinois (Sæther 1983b).

Lopescladius larvae are found in sandy substrata of streams and rivers.
ADDITIO N AL REFEREN CES: C offman \& Roback 1984; Sæther 1983 b .

L. hyporheicus mentum

L. sp 1 mentum with hypopharyngeal scales

L. sp. 1 premandible

L. sp. 1 antenna

DIAGNOSIS: Distinguished by the bifid SI; antennal bladelonger than the flagellum; absence of labral lamellae; two median teeth of the mentum; maxilla with pecten galearis; and mandible with 4 inner teeth (proximal 4th tooth sometimes difficult to observe).

N OTES: O ne described N earctic species, M . loticus, is known from Georgia and O hio (C aldwell 1996). I have also seen an adult male of an undescribed species from Great Smoky M ountains N ational Park in N orth C arolina.

Larvae of M. Ioticus were found in 2nd and 3rd order streams. The undescribed mal efrom N orth C arolina was collected at a light trap near a mountain stream. This contrasts with the littoral to profundal lakezones known as habitats for the H olarctic species M . thienemanni.

Although Cranston et al. (1983) described the S setae of the labrum as "normal", their illustration (Fig. 9.40E) shows the S III as large and displaced laterad to S I. In M. loticus, the S III are small and located between the SI setae.

ADDITIONAL REFERENCES: Caldwell 1996.

labrum

mandible

maxilla, dorsal

mentum

antenna

DIAGN OSIS: The simple labral setae; lack of seta interna on the mandible, distinctive mentum; and lack of procerci, anal setae and anal tubules will distinguish this genus.

N OTES: Earlier texts (e.g., C ranston et al. (1983)) referred to N earctic M esomittia as M . flexuella. H owever, Sæther (1985c) showed that M. flexuella is apparently not present in the N earctic and described several new Nearctic species, three of which are recorded from the Southeast (C aldwell et al. 1997). Judging by adult specimens I've seen, M. patrihortae appears to be the most common species in the Southeast.

M esomittia larvae appear to be mostly terrestrial, although they may be found in aquatic habitats. The larvae illustrated by Epler (1995: 6.51) as "M esosmittia sp." is probably a Bryophaenocladius (or G ymnomerriocnemus); its identity will remain a mystery until it is reared and adults are examined.

ADDITIO N AL REFEREN CES: Sæther 1985c; Strenzke 1950b.

antenna

posterior body segments

mentum

mandible

DIAGNOSIS: Distinguished by the usually plumose S I (simple in M. fuscipes); well developed labral lamellae (reduced in M. fuscipes); lack of ventromental beard; well developed procerci; and short anal and supraanal setae.

N OTES: Three species are known from the Carolinas, all identifiable to species as larvae. The larvae identified by Epler (1995: 6.52-6.54) as M. sp. B do not belong with M etriocnemus. N ewly reared material indicates that they probably represent a new genus, Orthocladiinae genus H Epler, perhaps closely related to Compterosmittia.

Larvae are known from a variety of aquatic habitats, including water held by the pitcher plant Sarracenia, marine intertidal pools, sewage treatment beds, moss, tree holes, in damp soil, madicolous habitats (water flowing in a thin film), and in seeps, springs, streams, rivers and lakes.

ADDITION AL REFERENCES: Cranston \& Judd 1987; Oliver \& Sinclair 1989; Sæther 1989a.

K ey to M etriocnemus larvae of the southeastern United States

1 Abdominal segments with long setae (at least $1 / 2$ as long as segment bearing them); known only from bromeliads in southern Florida M. sp. A

1' Abdominal segments with short setae; widespread

2(1') M entum with 4 median teeth; restricted to water held by pitcher plant Sarracenia \qquad M. knabi

2' \quad M entum with 2 median teeth; not restricted to Sarracenia phytotelmata

3(2') M edian teeth of mentum deeply sunken; antenna squat; S I simple \qquad M. fuscipes

3' M edian teeth of mentum slightly lower than first lateral teeth; antenna normal; SI plumose \qquad M . eurynotus

labral setae

N otes on species

M. eurynotus - Formerly known as M. hygropetricus and M. obscuripes. The two median teeth of the mentum may be worn down to appear as one rounded tooth or as a semicircular depression. Larvae are usually found in madicolous habitats, such as water flowing in thin sheets over rocks. They may occur in organically enriched habitats, especially sewage treatment beds.
M . fuscipes - According to Sæether (1989a) the second most common and widespread species of M etriocnemus, following M. eurynotus. M ost of the larva's body segments are banded with purple; Bill Beck used to call this larva "Bungarus" (a genus of banded snakes, the kraits). Larvae occur in springs, seeps and streams; de la Rosa and N astase (1987) reported a "small larva of M etriocnemus cf. fuscipes" found among larvae of M. knabi in the pitcher plant Sarracenia purpurea L.
M. knabi - Larvae are restricted to the water held by the pitcher plant Sarracenia, most often (exclusively?) S. purpurea. N ote that the larval procerci are huge, as large as the posterior parapods.
M.sp. A - This species is known only from bromeliad phytotelmata (water held by plants) in south-central Florida; it is not expected to occur in the C arolinas. The procerci are more than twice as long as wide. An unusual larva for a M etriocnemus (if indeed it belongs here), for it has long abdominal setae. These setae should easily separate this species from M. eurynotus, which has a similar mentum, SI and labral lamellae. All characters other than the long body setae seem to place it in M etriocnemus; until pupae and adults are discovered, I am keeping it in M etriocnemus. Another phytotelmatic species placed as M etriocnemus sp. B in Epler (1995) has been moved to Orthocladiinae genus H (q.v.).

M etriocnemus abdominoflavatusPicado has been reported from N orth C arolina and Florida by C aldwell et al. (1997). It is very doubtful that this poorly described C osta Rican species (see Picado (1913)) occurs in the U nited States; these records may refer to M. fusci pes.

Genus N anocladius

DIAGN OSIS: The simple labral setae (a single Japanese species with apically pectinate S II); large ventromental plates which extend past the lateral margin of the mentum; lack of cardinal beard; and distinctive mentum with wide median area, usually with two small central teeth, distinguish the genus in our area.

N OTES: A common and widespread genus, Nanocladius is divided into two subgenera: N anocladius (Plecopteracoluthus) is phoretic or parasitic on aquatic insects; Nanocladius (N anocladius) species are freeliving. Larvae are found in lakes, rivers and streams; at least one species, N. distinctus, is tolerant of high levels of organic nutrients.

Identification of some N anocladius species is difficult; many determinations based on larvae alone are suspect. A pupal association is often necessary for accurate identification. I have seen numerous misidentifications, especially of early instar larvae, in which the ventromental plates are not developed as in the 4th instar; this is especially true for larvae identifed as species of N. (Plecopteracoluthus). Sæther (1977a) provided keys for larvae, pupae and adults, but the keys and descriptions are ambiguous and contain numerous errors; some species descriptions include measurements, etc., from morethan one species. There are several undescribed species in the eastern United States.

ADDIT IO N AL REFEREN CES: D endy 1973; Dendy \& Sublette1959; D osdall \& M ason 1981; Fittkau \& Lehman 1970; Epler 1986; Sæther 1977a; Simpson \& Bode 1980; Steffan 1965.

K ey to N anocladius larvae of the southeastern United States

1 Ventromental plates short, scarcely extending past the posterolateral margin of the mentum .. 2

1' Ventromental plates long, extending at least more than $1 / 2$ their length beyond the posterolateral margin of the mentum

2(1) Anterior parapods with most claws smooth, although some present with internal teeth; freeliving, usually on aquatic macrophytes, usually in lentic habitats \qquad N. (N.) alternantherae

anterior parapod claws of N . alternantherae

strongly pectinate claws

mentum of N . alternantherae

2' Anterior parapods with most medium-sized claws strongly pectinate/serrated; phoretic or parasitic on aquatic macroinvertebrates, usually in lotic habitats

3(2') Apical tooth of mandible stout; antennae reduced; premandible with 4-5 apical teeth; setae submenti displaced posteriad; obligate parasite on Ephemera guttulata \qquad N. (P.) sp. \# 1

3' Apical tooth of mandible longer, thinner; antennae not as reduced; premandible simple or at most weakly bifid; setae submenti not displaced as far posteriad; not parasitic on E. guttulata 4

4(3') Setae submenti just posterior to ventromental plates .. 5

4' Setae submenti even with ventromental plates \qquad 6

5(4) Antennal blade shorter than flagellum; central cusps of mentum sharp, distinct \qquad
\qquad N. (P.) branchicolus

5' Antennal blade longer than flagellum; central cusps of mentum weaker, lower
N. (P.) sp. \#3

6(4') M edian tooth of mentum constricted at base; postmentum usually dark near posterior margin of head capsule N. (P.) downesi

central teeth of N . downesi mentum

7(1') Ventromental plates extremely wide; teeth of mentum not distinct; premandible with 3-5 apical teeth 8

7' Ventromental plates not as wide; lateral teeth of mentum usually distinct; premandible simple or apically bifid

8(7) Antennae elongate, with 2nd segment longer than basal segment N. (N.) sp. D

8' Antennae reduced, with 2nd segment at most subequal to basal segment 9

N. sp. D

N. balticus

9(8') $A R \leq 1.00$; postmentum length $>130 \mu \mathrm{~m}$; ventromental plates with horizontal ridges near anterior margin; some anterior parapod claws pectinate \qquad N. (N.) balticus

9' AR 1.00-1.12; postmentum length $<120 \mu$ m; ventromental plates apparently smooth; most anterior parapod claws smooth \qquad N. (N.) incomptus
$10\left(7^{\prime}\right)$ Ventromental plates elongate, without ridges or with horizontal ridges \qquad 11

10' Ventromental plates tear-drop shaped, with vertical ridges N . (N.) crassicornus, N . (N .) cf. rectinervis 13

11(10) Anterior parapod claws strongly pectinate; AR 1.2-1.5; ventromental plates smooth \qquad

11' Anterior parapod claws smooth; $A R \geq 1.5$; ventromental plates with horizontal ridges 12

N. distinctusmentum
$12\left(11^{\prime}\right)$ Ventromental plates with strong, distinct horizontal ridges; AR 1.7-2.0; basal antennal segment length 53-60 $\mu \mathrm{m}$
\qquad N. (N.) distinctus

12' Ventromental plates with weak horizontal
 ridges; AR 1.5-1.8; basal antennal segment length $40-53 \mu \mathrm{~m}$ \qquad N. (N.) minimus

The larvae of the following two species are inseparable. H owever, if you have a late 4th instar larva, the developing pupal thoracic horns may be visible. If they are, the larvae may be identified to species by the following:

13(10') Pupal thoracic horn ovoid \qquad N. (N.) crassicornus

13' Pupal thoracic horn elongate N. (N.) cf. rectinervis

N otes on species

Larvae of many N anocladius are difficult to identify to species; pupae often provide the best characters for species separation. Larvae of the subgenusPlecopteracoluthushave been the most misidentified members of the genus; this has led to numerous papers with misinformation concerning macroinvertebrate hosts of N anocladius. N ote that N. (Plecopteracoluthus) species may be phoretic or parasitic. M uch of the information in this manual concerning N. (Plecopteracoluthus) species has been graciously provided by Dr. Rick Jacobsen.
N. (N .) alternantherae - A common species usually associated with plants in lentic conditions. The short ventromental plates easily confuse this taxon with members of the subgenus Plecopteracoluthus. H owever, N. alternantherae is free-living; all known members of Plecopteracoluthus are phoretic or parasitic on aquatic macroinvertebrates, and most of the claws of the anterior parapods of N . alternantherae are simple; those of Plecopteracoluthus species are strongly pectinate. N ote that some of the parapod claws of N. alternantherae will have inner teeth, but the majority of the mediumsized claws will be smooth. This species can be easily confused with N. cf. rectinervis(as used in this manual); N. alternantheraeis usually found associated with plants in lentic conditions; N. cf. rectinervis is usually lotic. Pupae of alternantherae strongly resemble those of N. cf. rectinervis but differ in having one of the dorsal antepronotal setae much thinner and shorter than the other; these setae are subequal in N. cf. rectinervis. N ote that the original description (D endy \& Sublette 1959) of N. alternantherae is in error; the pupal thoracic horn does have small spines.
N. (N .) balticus - I have examined a reared specimen from Florida that appears to bethis species. It occurs in both the C arolinas and has been found as far south as the O rlando, Florida, area. This species is difficult to separate from N. incomptus; unless $4^{\text {th }}$ instar larvae are present and can provide accurate measurements, larvae should be identified as "N . balticus group sp.".
N. (P.) branchicolus - A parasitic species found on the perlid stoneflies Acroneuria spp., Paragnetina media (Walker) and P. immarginata (Say). N anocladius branchicolus and N. downes have been frequently misidentified and confused in the literature. Jacobsen (pers. comm.) notes that N. branchicolus is not found on the coenagrionid damselfly Argia as reported by D osdall \& Parker (1998); these specimens were N. downesi. K nown from M ichigan, N ew York, N orth Carolina (Great Smoky M ountains N ational Park), Pennsylvania, W isconsin, Wyoming, O ntario and Saskatchewan.
N. (N.) crassicornus - A common species in northern Florida, where I have been able to confirm its identity with associated pupae. At this time, characters have not been found that will separate larvae of N. crassicornus from those of N. cf. rectinervis. Although Simpson \& Bode (1980) used antennal characters to separate the two species, these characters do not hold up when a larger range of material is examined.
N . (N.) distinctus - A species with large ventromental plates bearing distinct horizontal ridges, N. distinctus often occurs in water with high organic loading, such as below pulp mill discharges. It can be confused with N. minimus, which usually has weaker ridges on the ventromental plates and is smaller.
N. (P.) downse - A phoretic (not parasitic) species found on a wide variety of aquatic macroinvertebrates: Plecoptera: Perlidae; M egaloptera: C orydalidae: C orydalus, Chauliodes, Nigronia; H emiptera: Belostomatidae: Belosoma; O donata: C oenagrionidae: Argia. It has been found in Georgia, M aryland, M ichigan, M issouri, N ew H ampshire, N orth Carolina, Pennsylvania, Tennessee, Vermont, Wisconsin and Quebec. Although recorded from the Carolinas by Hudson et al. (1990) and Caldwell et al. (1997), with the exception of one specimen from N orth Carolina, their specimens have not been reexamined for positive identification. Almost without exception, all records of this species and N. branchicolus in the "gray literature" must be viewed with considerable skepticism.
N. (N.) incomptus - A member of the balticus group; in general, only $4^{\text {th }}$ instar larvae are identifiable because of the similarity between this species and N . balticus.
N. (N.) minimus - As a larva and adult male, very difficult to identify; according to Sæther (1977a) only the female and pupa are easily identified. This species may be a variant of N. anderseni (Sæther 1977a). Records of this species from throughout the Southeast, such as those in Hudson et al. (1990) and Caldwell et al. (1997), must be viewed with skepticism. O riginally described from South C arolina.
N. (N.) cf. rectinervis - N ote that what has been called N. rectinervis in N orth America may not be that species, originally described from the Palaearctic. See figures of N. rectinervis in Cranston et al. (1983: fig. 9.44B); the ventromental plates are apparently much longer than those of specimens identified as N . rectinervis from the $\mathrm{Nearctic} .\mathrm{The} \mathrm{material} \mathrm{described} \mathrm{by} \mathrm{Sæther} \mathrm{(1977a)} \mathrm{as} \mathrm{N}$. rectinervis and N . alternantherae was mixed (Sæther, in ms.). I have not examined any associated material of thistaxon from the Palaearctic. For the time being, it would bebest to call this taxon N. cf. rectinervis until its identity can be settled through examination of reared material from both sides of the Atlantic. This species is apparently inseparable from N . crassicornusas a larva. Although Simpson \& Bode (1980) suggested that lengths of the first antennal segment might separate the two species, these measurements overlap and are unusable. Epler (1995) confused N. rectinervis with N. alternantherae; most of what he called rettinervis was actually alternantherae (also see alternantherae above). Records of N . rectinervis as a phoretic organism on N orth American macroinvertebrates are in error and in most cases refer to species, some undescribed, of N . (Plecopteracoluthus) (R. Jacobsen, pers. comm.). These include the record of N. rectinervis on Nigronia serricornis (Say) in G otceitas \& M ackay (1980) (referable to N. (P.) sp. \#5) and probably those of D osdall et al. (1986) on the stonefly Pteronarcys dorsata.
N. (N.) spiniplenus - Records of this species by D osdall et al. (1986) as a phoretic organism on the stonefly Pteronarcys dorsata are probably in error. Fourth instar larvae and pupae are necessary for accurate identification.
N. (N.) sp. D - Epler $(1992,1995)$ called this taxon "O rthocladiinae genus D" and suggested that it was a N anocladius Several colleagues (Caldwell, Cranston, Sæther, all pers. comm.) agree that it is best placed in Nanocladius. It is not known to me from the Carolinas; it is known from Georgia (Caldwell et al. 1997) and western Florida.
N. (P.) sp. \#1 Jacobsen - This distinctive species is an obligate parasite on the mayfly Ephemera guttulata Pictet. No other species of N . (Plecopteracoluthus) has such short antennae, a stout apical tooth of the mandible and the short, stout, apically dissected body setae. This N anocladius has not been found in the C arolinas but its host has been recorded from N orth and South C arolina (Pescador et al. 1999), leading one to believe that it will probably be found in the Carolinas. Known from Kentucky, M aryland, Pennsylvania, Virginia and West Virginia.
N. (P.) sp. \#3 Jacobsen - Larvae are parasitic on the stoneflies Pteronarcys biloba N ewman, Pt. proteus N ewman and Pt. scotti Ricker. B. A. C aldwell has collected N. (P.) sp. \#3 from Pt. scotti in Georgia. It is the species reported from Pt. biloba as "N anocladius (Plecopteracoluthus) undescribed sp., nr. branchicolus" in Giberson et al. (1996). It is also probably the species referred to as N . branchicolus on Pt. dorsata (Say) by D osdall et al (1986), but no material exists (R. Jacobsen, pers. comm.). Distributed from N ew Brunswick to Georgia, but not yet recorded from the Carolinas.
N. (P.) sp. \#5 Jacobsen - Larvae are phoretic on Nigronia sericornis (Say) and the damselfly Argia. Larvae of N. (P.) sp \#5 were referred to as N . rectinervisin G otceitas \& M ackay (1986); some of H ilsenhoff's (1968) N . downesi on Nigronia serricornis were also this species, and it is the N. (P.) sp. of Pennuto (1997, 1998). Known from Connecticut, M aine, M aryland, North Carolina, Pennsylvania and W isconsin.

Genus Orthocladius

DIAGN OSIS: Difficult to diagnose because of the wide range of character variation; some larvae are difficult to distinguish from Cricotopus(Cricotopus) and Paratrichocladiuslarvae. M ost O rthocladiuspossess a bifid SI (secondarily split in one undescribed species) or, less commonly, the SI is simple; pecten epipharyngis always of three scales; premandible simple or apically bifid; weak to moderately developed ventromental plates; weak or vestigial beard; mentum with odd number of teeth (ranging from 5 to 21); and body usually without setal tufts (but tufts present in at least 3 species in the United States).

N OTES: Four of the five subgenera of O rthocladiusoccur in theC arolinas: Eudactylocladius, Euorthodadius, Orthocladius and Symposiocladius. Although the various subgenera have recently been revised, it is still very difficult to identify larvae, making associations with pupae or adult males imperative for accurate species level identification; pupae are often the best stage for species identification. The discovery of setal tufts on O. annectens (Fagnani \& Soponis 1988) negates the use of that character in separating some 0 rthocladius larvae from those of Cricotopus that also bear setal tufts.

The distinction between some 0 . (0 rthocladius) species (frigidus, vaillanti and sp. "Jacobsen") and 0. (Euorthocladius) is unclear; much more work is necessary. A worldwide revision of O rthocladius(including all its subgenera) and Cricotopus are needed. Note that several N earctic O rthocladius species are probably synonyms of Palaearctic taxa (See N otes on species)

Orthocladius larvae inhabit a wide variety of habitats, although most are usually found in running water. It is not unusual to find more than one species at a single site. Orthocladius (S.) lignicola larvae mine in submerged soft or decomposing hardwoods. The larvae and pupae of many (all?) 0. (Euorthocladius) live in gelatinous tubes.

ADDITION AL REFERENCES: C aldwell 1999; Cranston 1999; Cranston \& Oliver 1988b; Fagnani \& Soponis 1988; Langton \& Cranston 1991; Sæther 1969; Soponis 1977, 1987, 1990; Sublette et al.

1009

O. (S.) lignicola mentum

O. (Euo.) rivulorum mentum

0. (Eud.) dubitatus mentum

0. (0.) rubicundus mentum

0 . (0.) dorenus mandible

O. (S.) annectens antenna

0 . (0.) nigritus antenna

K ey to O rthocladius larvae of the southeastern United States

(You should have a pupal association that confirms that your specimen is an Orthocladius before attempting this key. M ost identifications should be considered tentative unless backed by a pupal or adult association)

1 M entum with huge median tooth and <11 lateral teeth (caution - a worn mentum may have less than the usual number of teeth visible!); abdominal segments with posterolateral setal tufts \qquad

1' M entum with more normal median tooth and 11 or more lateral teeth; abdominal segments usually without posterolateral setal tufts (present in one species, couplet 12)

2(1') M entum with more than 13 teeth \qquad

2' M entum with 13 teeth
4

3(2) M entum with 17-21 teeth; basal segment of antenna short; premandible simple
\qquad O. (Euo.) rivulorum

3' M entum with 15 teeth; basal segment of antenna long; premandible apically bifid
\qquad O. (0.) sp. "Jacobsen"

4(2') M andible without seta interna \qquad

4' M andiblewith seta interna \qquad

with seta interna

5(4) O uter margin of mandible rugose \qquad 0. (0.) frigidus

5' O uter margin of mandible mostly smooth O. (0.) vaillanti (see N otes; if premandible bifid represents a different, undescribed, species)

6(4') H ead capsule light brown to dark brown or dark reddish-brown; mandibles usually darkly colored to base (base may be paler than apex, but overall the mandible is dark) \qquad 7

6' H ead capsule yellow to light yellow-brown; mandibles with dark apex and teeth and light colored base, never darkly colored to base

11

7(6) 2nd lateral tooth of mentum reduced and partially fused to 1st lateral tooth .. $\mathbf{0}$. (Eud.) dubitatus

7' 2nd lateral tooth not reduced or fused to 1st lateral tooth
\qquad

8(7') M entum with median tooth $>1.5 \mathrm{X}$ width of 1st lateral
tooth .. 9

9(8) $\quad A R>1.85$ \qquad O. (Euo.) thienemanni

9' $\quad A R<1.85$ \qquad 0 . (Euo.) luteipes

10(8') AR <1.80 \qquad O. (Euo.) rivicola

10' $\quad A R>1.80$ O. (Euo.) saxosus

11(6') Premandibleapically bifid
0. (0.) oliveri

O. oliveri

apically bifid premandible

11' Premandible apically simple (may be slightly notched apically) .. 12

12(11') M entum with 1st lateral teeth small and partially fused to median tooth, median tooth and 1st lateral teeth projecting far beyond remaining mental teeth; Lauterborn organs large, appearing circular; abdominal segments with posterolateral setal tufts \qquad O. (S.) annectens

\circ
0

variation in menta due to wear
12' 1st lateral teeth of mentum not small and partially fused to median tooth; Lauterborn organs not as above(may belargebut rarely appear circular); abdomen without setal tufts

13(12') M entum more triangular in outline; median tooth, 1st and 2nd lateral teeth often project above remaining lateral teeth

13' M entum more convex in outline, without teeth projecting far beyond their neighbors 17

14(13) M edian tooth of mentum about 3 X width of 1st lateral tooth 15

0
\circ

15(14) M andible moderately rugose on outer margin \qquad 0. (0.) nigritus

15' M andible smooth on outer margin
0.(0.) carlatus (and perhaps some 0. (0.) rubicundus)
$16\left(14^{\prime}\right) \mathrm{M}$ andible with outer margin rugose (see 15 above); mentum as figured 0 (0.) dentifer

17(13') Ventromental plates apparently extended posteriorly, far exceeding line drawn through setae submenti

17. Ventromental plates not extended as far posteriorly, barely exceedingline drawn through setae submenti 20

18(17) M andible rugose on outer margin; median tooth of mentum $<1.5 \mathrm{X}$ width of 1st lateral tooth ..
\qquad O. (0.) mallochi

18 M andible smooth to slightly rugose on outer margin; median tooth of mentum about 2-3X width of 1 st lateral tooth

19

19(18') Ventromental "plate" extension longer; median tooth of mentum more than 3.3 X as wide as 1 st lateral tooth
\qquad 0. (0.) darkei

19' Ventromental "plate" extension shorter; median tooth of mentum about 2.5-3.3 X as wide as 1 st lateral tooth O. (0.) obumbratus

$20\left(17^{\prime}\right)$ M edian tooth and 1st lateral tooth of mentum lighter in color than remaining lateral teeth; outer margin of mandible smooth to weakly rugose .. O. (O.) robacki (and perhaps some 0. (0.) obumbratus)

20' M edian tooth similar in color to lateral teeth; outer margin of mandible strongly rugose 0. (0.) dorenus

N otes on Species

Species level (and even accurate generic level) identifications of 0 rthocladius larvae are difficult. Perceived differences in larvae are often only variants of the same species; associated pupae and/or adults are usually needed for accurate species level identification - as with Cricotopus, pupae usually provide the best means of species identification. Dave Lenat (NC DEN R) has written a laboratory key for combined Cricotopus and O rthocladi usspecies; the taxa weregiven C/O numbers, some of which werealso used in Lenat (1993b). I have attempted to reconcile his system of numbers with the names listed below; his number is listed in brackets at the end of each species summary when applicable. N ote that some of the numbers may apply to several species and that some species may have several numbers associated with them.

M any O rthocladius larvae have sclerotized extensions at the posterior corner of the mentum, which appear as elongated, posteriorly directed ventromental plates. H owever, these extensions appear to be more heavily sclerotized areas of the cuticle that are extensions of the mentum and not true ventromental plates. They may prove to be useful in separating some species, but more reared material is needed to realistically assess their utility. N ote that the ability to observe the rugosity (or amount of wrinkles) on the outer margin of the mandible is dependent upon the orientation of the mandible. If the outer edge is not lined up correctly, rugosity may only appear as a series of thin lines on the surface of the mandible. And to further confuse matters, it appears that mandibular rugosity may vary within a species - some specimens may be smooth when most other specimens of that species ordinarily have rugose mandibles.

Again, unless larval material is somehow associated with a pupa or adult (often through pharate pupae within very late $4^{\text {th }}$ instar larvae, or pupae with attached larval exuviae - sometimes such pupae may have almost completely developed adults within, thus giving a complete larval-pupal-adult association), species Ievel identifications can only be considered tentative! If you are serious about species-leve identification of Orthocladiuslarvae, you must use the keys and descriptions found in Soponis (1977, 1987, 1990), Langton \& Cranston (1991), Cranston (1999) and C aldwell (1999) to identify associated pupae and/or adults.
O. (S.) annectens - A common species of the coastal plain; mature larvae are most abundant during late Winter/early Spring. The distinctive mentum, with the median tooth projecting forward and small first lateral tooth placed well forward of the second lateral tooth, well developed Lauterborn organs that usually appear as circles at the apex of the second antennal segment, and the abdominal setal tufts distinguish this taxon. The median teeth of the mentum are often worn down; rely on the circular appearance of the Lauterborn organs and the setal tufts to identify such specimens. Recently transferred from 0. (Orthocladius) to 0. (Symposiocladius). [C/0 sp. 52]
O. (0.) carlatus - The smooth outer edge of the mandible and perhaps smaller size (Soponis (1977) gives a mentum width of less than $125 \mu \mathrm{~m}$ for carlatus, note that this is for $4^{\text {th }}$ instar larvae) separate this species from 0 . nigritus. H owever, some uncertainty exists about the characters of the larva of 0 . carlatus. In Roback's material at the Academy of Natural Sciences of Philadelphia are two slides from 1953 (from the time period and area when the type material of O. carlatus was collected); each has apparently associated pupal and larval exuviae of 0 . carlatus. On one, the mandible is smooth; on the other it is rugose. Also, Roback's original description (1957: 77) stated that the Lauterborn organs were weak; Soponis' (1977: 32) redescription stated the same. H owever, below her description she wrote "Roback (1957a) described and figured (fig. 161) the Lauterborn organs of the larva of carlatusas weak. H owever, I find them to be robust (Fig. 110a)." On the two above mentioned Roback specimens, one has antennae with weak Lauterborn organs; the other is missing the apical segments of the antennae. Larvae with pharate pupae from N orth C arolina that appear to be 0 . carlatus have smooth mandibles and moderately developed Lauterborn organs. Associ-
ated material is needed for more positive identification; the pupa is the only stage that will definitely confirm the identify of this species. [someC/O sp. 8?, many C/0 sp. 54]
0 (0.) clarkei Soponis- N ot definitely known from the Southeast. I have seen somelarvae from N C that may fit this species. H owever it is morelikely that they are 0 .(0.) obumbratus, whose ventromental plates may also appear to be extended posteriorly. Associated material is needed before 0. clarke can be said to occur in the southeastern US. [some C/O sp. 54?]
O. (0.) dentifer - In the Southeast, recorded from SC; I've also examined material from the N C portion of Great Smoky M ountains N ational Park. There is also a reared specimen from extreme western FL in the collection at Florida A\& M University. Larvae of this species (especially those with a worn mentum) may resemble 0 . annectens but lack the large Lauterborn organs and abdominal setal tufts of that species.
O. (0.) dorenus - Possibly the same species as the Pal aearctic 0. (0.) pedestris K ieffer. [C/O sp. 7]

0 . (Eud.) dubitatus - H ead capsule color of this relatively common species is variable, running from medium to dark brown to dark reddish-brown. C ranston (1999) noted that O. dubitatus was one of the most variable species in the subgenus Eudactylocladius, in all life stages. This species is easily confused with Cricotopusfugax. T he two species can be separated by the simple premandible of C. fugax; the premandible of 0 . dubitatus has a simple apex but also bears a broad inner tooth; by the $3^{\text {rd }}$ and $4^{\text {th }}$ antennal segments: in C. fugax these segments are about twice as long as wide, in 0 . dubitatus they are about as long as wide; the molar area of 0 . dubitatus is usually truncate, that of C. fugax is usually more rounded (the mandible must be oriented correctly to observethis); and the abdominal setae of 0 . dubitatus are short; those of C. fugax are long (at least $1 / 2$ length of the segment). I have seen specimens of 0 . dubitatusfrom N orth C arolina misidentified as 0 . carlatus and 0 . wiensi and from South Carolina misidentified as 0 . nigritus. [C/O spp. 3, 29, 40]

C. fugax antenna

C. fugax premandible

0. dubitatus antenna

0. dubitatus premandible

C. fugax mandible

0. dubitatus mandible
O. (0.) frigidus - This species and 0 . vaillanti are the only O rthocladius species in the SE US that lack a seta interna on the mandible. Orthocladius (Eou.) roussellae Soponis, known only from Alaska,

Wyoming, the Yukon and N orthwest Territories, also lacks a seta interna; 0 . roussellae has 15 teeth on the mentum. Orthocladiusfrigidushad been placed in thesubgenus Euorthocladius, but Soponis (1987) redescribed the species and placed it in 0 . (Orthocladius). Orthocladius frigidus larvae are difficult to separate from those of 0 . vaillanti; it appears the only separating character is the rugose outer margin of the mandible of frigidus (which is smooth in vaillanti). Soponis (1990: fig. 13) shows the SI of frigidusas being unevenly bifid; Schmid (1993: fig. 87D) illustrates them as evenly bifid. The S I of vaillanti are evenly bifid. Both species have a similar mentum, although that of frigidus may be more convex; more material is needed. As with so many species of Orthocladius, associated pupae are needed for accurate identification. [C/0 sp. 2, some C/O sp. 60]
0. (0.) hellanthali - I've seen a single adult male of this species from the Tennessee portion of G reat Smoky M ountains N ational Park; the immature stages are unknown.
O. (S.) lignicola - The distinctive mentum of this wood-mining species distinguishes it from all other Orthocladius. This species was referred to as O. tryoni in Soponis (1977); she did not have associated larvae available. Orthocladiuslignicola was later (C ranston 1982) elevated to generic status as Symposiocladius, but Symposi odadiuswas eventually relegated to subgeneric status under Orthocladius. [C/O 48]
0. (Euo.) luteipes - Difficult to distinguish from 0 . thienemanni as a larva; only the AR will separate most specimens. Both species have very large L auterborn organs. These two species have been confused often in the literature(see Soponis 1990); pupae are needed for accurate identification. [someC/0 sp. 13]
0. (0.) mallochi - The larva of this species is usually easily recognized by the posteriorly extended ventromental plates and relatively narrow median tooth of thementum. It is recorded for SC by Caldwell et al. (1990) but I have not seen material of this species from the SE US. N ote that 0. (0.) wiens Soponis, known from M innesota and M anitoba, will also key to this species in the key above; see Soponis (1977).
0. (0.) nigritus - Somewhat similar to 0 . carlatus, but 0 . nigritus has a rugose outer edge to its mandible (but see the notes under 0 . carlatus). Also similar to 0 . dorenus, but the median tooth of the mentum of nigritus extends farther ahead of the lateral teeth than that of dorenus. [C/O sp. 8]
0. (0.) obumbratus - A common, widespread but variable species, best identified in the pupal or adult stage. The color of the mentum is apparently variable, as is the width of the median tooth and the amount of rugosity on the outer edge of the mandible. N ote that contrary to Soponis (1977), the ventromental plates appear to be extended posteriorly, but not as far or as well developed, as in 0. clarkei, 0 . mallochi and 0 . oliveri. M ost 0 . obumbratus larvae have a pair of single, simple setae that are about $70 \mu \mathrm{~m}$ long, located caudolaterally on the abdominal segments; note that this may not be a specific character because I have been unable to examine associated larvae of many other Orthocladiusspecies. Some0. obumbratuslarvae can be easily mistaken for Paratrichocladius. [C/O spp. 10, some 54; some C/0 sp. 10 larvae are Paratrichocladius]
0.(0.) oliveri - The only 0 . (Orthocladius) in the Southeast with an apically bifid premandible except for the distinctive 0 . sp. "Jacobsen", an undescribed species with a 15 -toothed mentum (q.v.; see also 0 . vaillanti). N ote that some 0 . (Euorthocladius) may have a bifid premandible, and that many O rthocladius may have premandibles that are apically notched. The outer margin of the mandible of 0 . oliveri is weakly to moderately rugose. N ote also the posteriorly directed, narrow sclerotized area posterior to the ventromental plates, similar to that of 0 . clarke and 0 . mallochi (but not as well developed), and to a lesser extent, that of 0 . obumbratus. [C/O sp. 35]
O. (Euo.) rivicola - Soponis (1990: 28, 30) noted considerable variation in larval material of 0. (Euo.) rivicola, which can easily be confused with 0 . (Euo.) saxosus. Associated pupae are needed for
accurate identification. [C/0 sp. 13, 13A]
0. (Euo.) rivulorum - The distinctive mentum, which may bear from 17-21 teeth, simple premandibles and the short basal segment of the antenna will identify this species. N ote that the mentum is not al ways symmetrical; sometimes there are more teeth on one side of the mentum than the other. A rare species of clean mountain streams and rivers; also recorded from the sandhills region. [C/0 sp. 37, 61]
0. (0.) robacki - This may bethe sameas the Palaearctic species 0 .(0.) oblidens(Walker). Soponis (1977) could not find characters to separate the larvae of 0 . robacki from 0 . obumbratus. H owever, on material I've examined, the ventromental plates of obumbratus appear to extend farther posteriorly than those of robacki. It is possible that both species may have the median tooth of the mentum lighter in color than the lateral teeth, so caution must be used (although I have not seen any associated obumbratus larvae with a lighter median tooth). Larval material should be associated with a pupa or an adult male for accurate identification! [C/O sp. 12]
0. (0.) rubicundus - Formerly known as 0 . curtiseta in North America; known from as far south as northern FL. [some C/O sp. 54?]
O. (Euo.) saxosus - This species is apparently rare in the mountain and piedmont regions. N ote the narrower median tooth of the mentum, the large Lauterborn organs, higher AR (>1.85) and perhaps the long body setae (greater than $1 / 2$ length of segment on the more posterior body segments). H owever, Soponis (1990) described O. rivicola, O. saxosus, and O. thienemanni all with some long body setae. Soponis (1990: 28,30) noted considerable variation in larval material of 0. (Euo.) rivicola, some of which may key to this species. She also noted (1990: 38) that in 0 . saxosus larvae may have 4 or 5 inner teeth on the mandibleand that the usually simple premandible may bebifid. [some C/O sp. 60]
0. (0.) subletti - Recorded from SC by C aldwell et al. (1990); I have not seen material of this species from the C arolinas. The record might be considered doubtful considering that 0 . subletti was described from the western US. H owever, 0 . hellanthali was al so described from the western N earctic (Alaska, California, N orthwest Territories) but has been found in the Smoky M ountains. The immature stages of both species are undescribed.
O. (Euo.) thienemanni - As a larva, difficult to separate from 0 . lutei pes(q.v.) or sometimes 0 . saxosus, due to variation in the width of the median tooth of the mentum (see Soponis 1990: 42); pupae provide the best means of identification. [C/O sp. 51?]
O. (0.) vaillanti - Caldwell (1999) recently described the larva and adult male of this species, known previously only from the Palaearctic as a pupa (Langton \& Cranston 1991). Very similar to 0. frigidus, but apparently separable by the more rugose outer margin of the mandible of 0 . frigidus (smooth in vaillanti). See also 0. frigidus above. I have also examined associations of an undescribed O rthocladius species from O hio that will run to 0 . vallainti in the key above; however, this larva has bifid premandibles and the pupa has a "normal" O rthocladiusthoracic horn, not the type seen in 0 . vaillanti or 0 . frigidus. Refer to this undescribed species as 0 . sp. "O hio". [C/O sp. 64]
O. (0.) sp. "Jacobsen" - Larvae of this undescribed species resemble 0. (Euo.) rivulorum because of the 7 pairs of lateral teeth on the mentum; 0. rivulorum usually has at least 8 pairs of lateral teeth. H owever, this taxon has been reared and is being described by Rick Jacobsen; the pupa and adult are typical 0 . (Orthocladius) (my examination of O hio material and Jacobsen, pers. comm.) N ote that this new species has bifid SI setae that are secondarily split, the premandibles are apically bifid and the basal antennal segment is much longer than that of 0 . rivulorum. I've seen associated material from O hio and larvae from Indiana and N orth C arolina.

Genus Parachaetocladius

DIAGNOSIS: Larvae aredistinguished by the distinctive mentum, with broad median tooth (sometimes weakly divided or notched medially); simple premandible without brush; mandible with 1-2 inner teeth; and each procercus with one very long seta, at least 1/4 as long as the body length.

N OTES: O ne named species, P. abnobaeus, is known from the Southeast; it occurs as far south as northern Florida. In addition, SæAher \& Sublette(1983) illustrated the larva of an apparently different taxon, P. sp. B. This taxon differs in having only one inner tooth on the mandible(figure below). This "species" is only known from one stream, H oward C reek, in O coneeC ounty, South C arolina; it may be an aberrant or deformed P. abnobaeus. N ote: do not mistake the darkened molar area (proximal to the inner teeth) of the mandible of Parachaetocladius species for an additional inner tooth.

Parachaetocladius larvae are found in lotic conditions and are often associated with spring-fed streams.
AD DITIO N AL REFEREN CES: Cranston \& Oliver 1988a; Sæther \& Sublette 1983.

P. abnobaeus mandible

P. sp. B mandible (adapted from Sæther \& Sublette 1983)

posterior segments

DIAGNOSIS: Distinguished by the SI with weak apical serrations or SI appears to be simple; smooth inner margin of the mandible (proximal to inner teeth); reduced ventromental plates, without a beard; long (at least $1 / 2$ as long as segment), simple abdominal setae; and well developed procerci with spurs.

N OTES: Three species are recorded from the Southeast; all but P. mozleyi (known only from Georgia) have been found in the Carolinas. It is probable that P. mozleyi is a junior synonym of P. glaber, but P. millrockensis appears to be a distinct species. Because of the paucity of associated material and uncertain variation in larval characters, it is not possible to reliably separate Paracricotopus larvae to species.

Larvae are denizens of mosses, liverworts and algae in seeps, bogs, springs and low order streams.
AD DITIO N AL REFEREN CES: Caldwell 1985; Sæther 1980b; Steiner 1983.

P. sp. antenna

P. sp. labrum

P. sp. mandible

P. millrockensis mentum

P. millrockensis procerci (anal setae abbreviated)

Genus Parakiefferiella

DIAGN OSIS: Larvae may be distinguished by the 6 (7 in some?) segmented antennae, with the last segment hairlike; SI most often pectinate-plumose, but may be bifid (simple to bifid in one species tentatively assigned to the genus); premandible simple, apically notched or weakly bifid; mentum with an odd number of teeth in known southeastern US taxa; ventromental plates usually well developed and may extend beyond lateral margin of the mentum, usually without a beard (but a weak beard present in one species tentatively assigned to this genus)

N OTES: Based on larvae, at least five species, perhaps seven, of Parakiefferiella are found in the Southeast. A problem is that most of the larvae have not been associated with adults; thus no names can be placed on them, with the exception of P. coronata. I have tentatively assigned two enigmatic taxa to Paraki efferiella: P. sp. D and P. sp. F; see N otes on species. The genus requires revision in North America; the paper by Tuiskunen (1986b) is the best source avail able, but does not cover larvae.

Parakiefferiella larvae are commonly encountered in lentic and lotic habitats.
ADDITIO N AL REFERENCES: Sæther 1969; Sublette et al. 1998; Tuiskunen 1986b; Walker et al. 1992.

P. sp. A labrum

P. sp. A antenna

P. sp. B antenna

P. coronata antenna

P. sp. E mandible

P. sp. B mentum

P. coronata mentum

K ey to Parakiefferiella Iarvae of the southeastern United States

1 A weak beard present near ventromental plates; SI bifid \qquad P. sp. F

1' Beard not present near ventromental plates; S I bifid, simple or pectinate/plumose

2(1) M entum with large, pale dome-shaped median tooth; ventromental plates cover most of lateral teeth of mentum; SI apically plumose \qquad P. sp. A

2' M edian tooth of mentum dark, if palethen not as large and not dome-shaped; ventromental plates usually smaller, not covering all of lateral teeth; SI variable

3(2') 4th antennal segment two or more times the length of segment 3; S I bifid \qquad P. coronata

3' 4th antennal segment subequal to 3rd; if S I bifid, then thinner, longer 4

4(3') SI simple or bifid; 2nd antennal segment shorter than to slightly longer than 3rd; apical tooth of mandible very long; procerci darkly sclerotized P. sp. D

4' SI pectinate; 2nd antennal segment 2 or moretimes longer than 3rd; apical tooth of mandible not as long and thin; procerci not darkly scelrotized

pectinate SI

5(4') M edian tooth of mentum projects far anterior to lateral teeth P. sp . G

5' M edian tooth not projecting as far \qquad 6

6(5') M edian tooth of mentum paler than first lateral tooth
P. sp. E

6' M edian tooth of mentum approximately same color as first lateral tooth \qquad P. sp. B

central teeth of unworn mentum

N otes on species

P. coronata - This species' identity is confirmed with associated pupae and adults. It occurs as far south as the northern Everglades in Florida. This taxon was called "Parakiefferiella sp. C" in Epler (1995). The SI 's are bifid.
P. sp. A - This species has a distinctive mentum with large ventromental plates. I've seen material from Florida and the Carolinas. This taxon is very similar to P. triquetra (Pankratova). N ote that Chernovskij's (1949) "description" of thistaxon as "O rthocladiinae gen. ? triquetra" was not valid; Pankratova (1970) validated the name.
P. sp. B - A common species in the Southeast; this is probably P. bathophila, but there is insufficient reared material available to be certain. It is possible that P. subaterrima is the same species as P. bathophila; again, there is insufficient reared material available; bathophila would have priority over subaterrima.
P. sp. D - I've examined larvae of this taxon with developing pupae within them; the anal lobes indicate it can be placed in Parakiefferiella although there are some peculiarities in the spine patch on tergite II. The S I's are long and simple, although two specimens examined, one from Florida, the other from N orth C arolina, had one S I that was bifid (see figure in key). In addition, the procerci are darkly sclerotized. Thisisthetaxon called "genusnr. N anocladiusB" by M ozley (1980) and C aldwell et al. (1997).
P. sp. E - The pale median tooth is distinctive for this species. Also, in most larvae the apical tooth of the mandible is lighter than the inner teeth; this may help separate some larvae from the similar P. sp. B, in which the entire apex of the mandible is usually darkened. I've seen material from N orth and South C arolina. Thisis apparently thelarva called "Parakiefferiella sp." in Simpson \& Bode(1980).
P. sp. F - Thistaxon may not belong in Parakiefferiella because it has a cardinal beard; however, C ranston et al. (1983) note that some unreared larvae tentatively assigned to Parakiefferiella have a beard. This is the taxon called "Stilocladius? sp." in Epler (1995). TheSI is bifid. I've seen material from northern Florida; it probably also occurs on at least the Coastal Plain in the C arolinas.
P. sp. G - This taxon was figured by Dr. S.C. M ozley in an unpublished, undated manuscript; the figure in the key is adapted from his illustration. I have not seen material of this species, recorded by M ozley from Wake C ounty, NC. The SI is pectinate.

Genus Parametriocnemus

DIAGN OSIS: Distinguished by the plumose S I; antenna 5 or 6 segmented (if 6 , last segment vestigial, hairlike); antennal blade shorter than flagellum; AR more than 1.25; mentum with double median tooth; ventromental plates extending beyond lateral margin of mentum; setae submenti located high on mentum, about $1 / 2$ distance of length of ventromental plates; maxilla with or without pecten galearis; and procerci well sclerotized, with long anal setae ($>300 \mu \mathrm{~m}$).

N OTES: Based on adult males, 3 described species are known from theC arolinas. At least onetentatively new species is known from Florida and N orth Carolina, and I have reared another undescribed species from northern Georgia. At present it is not possible to construct a larval key for species identification; larvae should be identified as "Parameriocnemus sp.". The larva of P. sp. F is unique in the N earctic fauna for its vestigial 6th antennal segment and presence of pecten galearis (see N otes on species); note that Schmid (1993) described and figured the larvae of the Palaearctic species P. boreoalpinus (G owin \& Thienemann) and P. tylatus (K ieffer) with a pecten galearis on the maxilla, contrary to the diagnosis in C ranston et al. (1983).

Parametriocnemus larvae are often misidentified as Paraphaenocladius, but note the longer basal antennal segment (and corresponding higher AR of more than 1.25) and anal setae of Parametriocnemus. Parametriocnemus larvae are found in springs and lotic habitats.

ADDITIONAL REFERENCES: Sæther 1969.

P. sp. mentum

P. sp. antenna

P. sp. F mentum

P. sp. F S I

P. sp. F antenna

P. sp. F maxilla

N otes on species

P. eoclivus - B.A. Caldwell (pers. comm.) has identified an adult of this species, originally described from Quebec, from the Tennessee portion of Great Smoky M ountains N ational Park; it probably also occurs in N orth Carolina. Sæther (1969) described the larva, but not in enough detail to allow consistent separation from other species.
P. hamatus - I've seen adults from the N orth C arolina portion of Great Smoky M ountains N ational Park; the immature stages are unknown.
P. lundbeckii - Based on adult male specimens, the most common and ubiquitous member of the genusin the eastern US. H owever, larvae of other Parametriocnemus species are insufficiently known to allow identification of any species as a larva without an associated pupa or male. Unassociated larvae should be identified as "Parametriocnemus sp. ".
P. cf. vespertinus - Recorded from N orth Carolina by Caldwell et al. (1997); the immature stages are unknown.
P. sp. F - An unusual species in that the larva has a 6 segmented antenna and a pecten galearis on the maxilla. H owever, I have associated material from C osta Rica of two undescribed Parametriocnemus species that have larvae with similar 6 segmented antennae. O ne of these species, P. sp. CR-1 Epler, has adult male genitalia very similar to P. Iundbeckii but the adult male has a low AR (0.72-0.78); the AR of P. lundbeckii is usually above 1.00. It is probable that P. $s p$. F is the larva of my adult species P. sp. 1 that I have identified from G reat Smoky M ountains N ational Park; this species has genitalia similar to those of P. Iundbeckii but has an AR of about 0.40.

Genus Paraphaenocladius

DIAGNOSIS: Distinguished by theplumoseSI; 5 segmented antennae; antennal bladeusually subequal to or longer than flagellum; AR 0.5-1.0; mentum with single or weakly divided median tooth; ventromental plates large and extending beyond lateral margin of mentum; setae submenti located high on mentum, about $1 / 2$ distance of length of ventromental plates; maxilla without pecten galearis; and weakly sclerotized procerci with short anal setae ($<200 \mu \mathrm{~m}$).

N OTES: Sæther \& Wang (1995) recently revised the genus and recorded 5 species from the C arolinas; the key below is adapted from that work. N OTE that larvae must be 4th instar to key correctly and you should confirm your identifications with associated pupae or adults (see Sæther \& Wang (1995) for pupal and adult keys). Because of considerable variation, Sæther and Wang (1995) ettablished subspecies for several species. Southeastern US subspecies are: P. exagitansexagitans, P. irrituslongiocostatus and P. pseudi rritus nearcticus.

M any larvae that I've examined from the Southeast identified as Paraphaenocladius have been Parametriocnemus or Chaetocladius Much of the problem with identifying Paraphaenocladius larvae has probably been the body characters used in keys such as C ranston et al. (1983) - the preanal segment being extended over the anal segment so that the anal setae are directed posteriorly. Unfortunately, when slide mounted many larvae are distorted enough that almost any specimen will fit such adiagnosis. In addition, several other taxa also fit this diagnosis(someC ardiocladi usand Chaetocladius). All known Paraphaenocladius larvae have a short basal antennal segment, resulting in alow AR of <1.0; the antennæe of Paramedriocnemus have longer basal segments and higher ARs, >1.25. Paraphaenocladius larvae have weakly sclerotized procerci bearing short anal setae (<200 $\mu \mathrm{m}$); those of Parametriocnemus are more sclerotized and have long anal setae (>300 $\mu \mathrm{m}$) (4th instar measurement!!). The setae submenti of C haetocladius are near the poste rior margin of the ventromental plates, not about half way down along the mentum as in Paraphaenocladius and Paramerriocnemus.

Larvae occur in semi-terrestrial or semiaquatic habitats (moss lined banks of springs and streams, moist soil in seeps, periphyton at the margin of water bodies) or in true aquatic habitats such as springs, streams and standing water bodies.

ADDITION AL REFEREN CES: Sæther \& Wang 1995.

K ey to Paraphaenocladiuslarvae of the southeastern U nited States

(the larva of P. irritus is unknown)

1 M edian tooth of mentum single; procercus 19-32 $\mu \mathrm{m}$ long, $15-17 \mu \mathrm{~m}$ wide; basal antennal segment 26-31 $\mu \mathrm{m}$ long \qquad P. pseudirritus

1' M edian tooth of mentum double(may be worn to appear as single tooth); procercus $9-15 \mu \mathrm{~m}$ long, 8-11 $\mu \mathrm{m}$ wide; basal antennal segment $12-20 \mu \mathrm{~m}$ long

2(1') Postmentum (distance from mentum to posterior margin of head capsule) and mandible about $79 \mu \mathrm{~m}$ long \qquad P. pusillus

2' Postmentum 86-124 $\mu \mathrm{m}$ long; mandible 86-109 $\mu \mathrm{m}$ long \qquad 3

3(2') Longer anal tubules much longer than posterior parapods; median teeth of mentum weakly divided, often appearing single when worn; postmentum 86-111 $\mu \mathrm{m}$ long \qquad P. exagitans

P. exagitansmentum with "fresh" median teeth

P. exagitans mentum with worn median tooth

3' Longer anal tubules at most slightly longer than posterior parapods; median teeth of mentum always appear divided; postmentum >113 $\mu \mathrm{m}$ long \qquad P. innasus

Genus Parasmittia

DIAGNOSIS: The multilobed SI; pecten epipharyngis of 3 small scales; short, 4 segmented antennae with blade much longer than the flagellum; lack of procerci and posterior parpaods; and the terrestrial habitat distinguish this genus.

N OTES: Thegenus appears to be monotypic, with the species P. carinata having a H olarctic distribution. I've seen adults from Great Smoky M ountains N ational Park that appear to be this species, previously known only from N ova Scotia in N orth America.

Larvae are terrestrial.
ADDITIO N AL REFEREN CES: Strenzke 1950a.

labrum and premandibles

mandible

antenna

posterior end

DIAGN OSIS: Difficult to distinguish from some Cricotopus and Orthocladius, but larvae can usually be identified by the bifid SI; pecten epipharyngis of 3 subequal scales; premandible simple or apically bifid, without brush; 1st lateral teeth of mentum constricted at base so that broader in the middle than at the bottom; lack of cardinal beard; small rounded posterolateral margin of the mentum; mostly smooth outer margin of the mandible; seta interna with minute spines at base (sometimes very difficult to observe); and simple, moderately short ($<1 / 2$ length of segment) abdominal setae.

N OTES: One species, P. rufiventris, is known from the Southeast (North and South Carolina); other species may occur also. Oliver et al. (1990) recorded 3 species for N orth America; P. nitidus (M alloch), known from M anitoba, Illinois, Iowa, N ew York and Utah, may the same species as P. skirwithensis (Edwards), recorded from New Brunswick, N ova Scotia. H owever, the larva of P. nitidus is undescribed. The Iarva of P. skirwithensis has dark brown to black mentum, mandible and hind margin of the head capsule, compared to the light to medium brown color of those structures in P. rufiventris, and its setae submenti are not displaced posteriad.

This genus can be very difficult to identify - it may appear very similar to some Cricotopus and 0 rthocladius species, especially C. triannulatus and 0. obumbratus. Larvae of P. rufiventris can usually be "easily" identified by the setae submenti that are displaced posteriad to the ventromental plates; however, note that several Cricotopus species have setae submenti that are displaced posteriad. Note also the small rounded posterol ateral margin of the mentum and an area of slightly more heavily sclerotized cuticlethat runs along the anterior margin of the head capsule lateral to the mentum (see figure below).

Larvae are recorded from many aquatic habitats, including brackish water.
ADDITIONAL REFERENCES: Rossaro 1979, 1990.

DIAGNOSIS: D istinguished by the bifid-serrated SI; pecten epipharyngis of 3 slender scales; 6 segmented antennae, with 6th segment hairlike and blade longer than flagellum; maxilla with pecten galearis; mentum with 2 median teeth and 5 pairs of lateral teeth, 4th smaller than 5th; and setae submenti located just posterior to a line drawn between the bases of the ventromental plates.

N OTES: Two species are known from the Nearctic; one, P. fimbriata, is recorded from the Southeast (Tennessee and N orth C arolina). The second species, P. bilyji, is known from Pennsylvania and M aryland in addition to M anitoba; it may eventually be found in the C arolinas. Larvae of the two species can be separated by the longer 4th antennal segment of P. bilyji.

Platysmittia larvae have been collected from small intermittent streams.
ADDITIO N AL REFEREN CES: Jacobsen 1998; Sæther 1982, 1985j.

P. fimbriata mentum

DIAGN O SIS: The bifid/trifid (uncommon) to palmate (typical) SI; apically simple premandible without abrush; well developed ventromental plates and cardinal beard; and procercus with 1 to several spurs, which may vary from minute to large, will distinguish the genus.

N OTES: Psectrocladius is divided into four subgenera, all of which have been recorded from the Southeast. C aldwell et al. (1997) record Ps. (M esopsectrocladius) from Georgia, but I have not seen any material of this subgenus and none are included in the key below. The taxonomy of the genus in the N earctic is confused and is in need of revision on a H olartic basis; several N earctic species are probably synonyms of Palaearctic species.

The SI is usually large and palmate in most Psectrocladius species, but differs from that in at least threetaxa in the Southeast; most different is a Ps (M onopsectrocladius) species commonly found in the Southeast in which the SI is trifid or occasionally bifid.

Larvae are found in lentic and lotic habitats and seem to prefer acidic conditions.
AD DITION AL REFEREN CES: Cranston 1982; Langton 1980, 1985; Sæther 1969; Sublette 1967.

Ps. (M onopsectrodadius) sp. SI's of two specimens

K ey to Psectrocladius larvae of the southeastern United States

1 M entum with single nipple like median tooth; S I with ≤ 5 teeth, may be deeply bifid or trifid Ps. (M onopsectrocladius) sp.

1' M entum with single broad tooth or 2 median teeth (see all figures below); S I variable, with 3 or moreteeth

2(1') M entum with 2 median teeth, each at least as wide as lateral teeth

2' \quad M entum with singlebroad tooth or 2 nipple-like median teeth that are smaller than the first lateral teeth

3(2) M edian teeth apically pointed; mandible almost completely dark brown-black .. Ps. (Ps.) sordidellusgrp sp.

3' M edian teeth rounded; mandible with only apical and 3 inner teeth darkened \qquad Ps. (Ps.) vernalis

4(2') Procercus with large bifid or double spurs; S I broadly trifid \qquad 5

trifid S I

multi-toothed SI's

large bifid spur

4' \quad Procercuswith 1 to several small spurs; SI with 4 or more teeth or rays \qquad 6

5(4) M andible with seta interna Ps. (Allopsectrocladius) pilosus

5' $\quad \mathrm{M}$ andible without seta interna .. Ps. (Allops.) flavu:

6(4') M edian tooth/teeth project strongly ahead of lateral teeth; ventromental plates broadly triangular \qquad Ps. (Ps.) cf. octomaculatus

6' M edian tooth/teeth do not project as strongly forward; ventromental plates smaller, generally more rounded Ps. (Ps.) psilopterusgroup 7

Ps. psilopterus grp. sp. 3

7(6') Apical tooth of mandible approximately as long as width of 3 median teeth; mentum as figured above \qquad Ps. (Ps.) psilopterus group sp. 3

7' Apical tooth of mandible longer than width of 3 inner teeth \qquad 8

8(7') SI with 4 narrow teeth or rays \qquad Ps. (Ps.) psilopterus grp. sp. 2

Ps. (Ps.) psilopterus grp. sp. 2 mentum

8' SI with 5 or more stouter teeth/rays \qquad 9

$9\left(8^{\prime}\right) \quad$ M edian tooth of mentum broad, with relatively straight anterior margin and usually "square-shouldered" outer margin; premandible apically wider and darker \qquad Ps. (Ps.) elatus

9' M edian tooth of mentum rounded or if laterally angulate then with nipple-like central teeth; premandible apically narrow and not as darkened 10

10(9') M edian tooth of mentum rounded; ventromental plates wider \qquad Ps. (Ps.) simulans

N otes on species

N ote that the mentum can often be worn in many specimens; median teeth may be worn almost smooth and the normally angulate lateral margin of the median tooth of some species may be rounded.

Ps. (Ps.) datus - Found throughout the Southeast; very similar to Ps. simulans. Roback (1957) described Ps. elatus as a new species and stated that it was very similar to Ps. simulans. In some larval specimens of Ps. elatus, including material in the Academy of N atural Sciences of Philadelphia collection identified by Roback, the outer margins of the median tooth are rounded, not squared off as originally described and figured by Roback. In such instances the broader and darker premandible will usually identify such larvae. Roback (1957) also examined type material of Ps. simulans and apparently used that material to find characters to separate his Ps. elatus from Ps. simulans. Pupae are separated by having more spines on the medial patch on T IV: 25 in Ps. simulans, 6-12 in Ps. elatus, although Sæher (1969: 85) noted that because of considerable variation in the genus this character might not work to separate the two taxa. Adult males are separated by the more quadrate inferior volsella and the more angulate terminus of the gonostylus of Ps. simulans (also see fig. 42 in Sæether (1969) for an illustration of the male genitalia of what Sæher called Ps. simulans). N ote that although the mentum of Ps. elatus resembles that illustrated for Ps. (M esopsectrocladius) in C ranston et al. (1983: fig. 61B), pupae indicate that Ps. elatus is a member of the nominate subgenus and should be placed in the psilopterus group.
Ps. (Allopsectrocladius) flavus - N ot recorded from the Southeast, but I have examined pupal exuviae of putative Ps. flavus from northern Georgia. Some aspects of this species' identity are unclear. The Iarva is similar to Ps. simulans(and the Palaearctic Ps. platypus) except that it lacks a seta interna on the mandible. It is very similar to, and may be inseparable from, the larvae of Ps. nigrus and Ps. obvius (Walker). H owever, Ps. obvius and Ps. nigrus are darker as adults and are probably distinct species; these two species are probably synonymous; obvius is the older name and would have
priority. Johannsen's (1937: 66) description of Ps. flavuswith four inner mandibular teeth is probably in error (the darkened molar area was probably mistaken for a tooth), but Johannsen's associated larval material of Ps. flavus could not be located in the C ornell U niversity collection. Roback (1957) used Johannsen's 4 inner toothed mandible character in his key and also stated that the S I setae ("Iabral bristle") of Ps. flavus were not "compound", which I interpret as not palmate (similar to what R oback stated about the SI of another Johannsen species, Ps. simulans). H owever, a larvalprepupal association of an apparent Ps. flavusfrom N ew York, identified by pupal and adult (color) characters, has three inner mandibular teeth and a trifid SI, similar to that of Ps. pilosus. I have also examined pupal exuviae of apparent Ps. flavus from northern G eorgia; these exuviae have thoracic horns longer than 0.5 mm and over 120 taeniaeon the anal lobes. It is obvious that all of Johannsen's type material of Psectrocladius species must be reexamined, if it can be located in the Cornell University collection.
Ps. (Allopsectrocladius) nigrus - O riginally described from Pennsylvania, this species has not been recorded from the Carolinas. It is not included in the key but would key to Ps. flavus. Although I've examined some of thetype material of Ps. nigrus(theholotypemaleisin alcohol and lacksits hypopygium, not yet found on a separate slide), type material of Ps. flavuswas not available, making an accurate distinction between the two species in the larval stage impossible (Johannsen's description of the larva of Ps. flavus with 4 inner teeth on the mandible is probably in error). Roback (1957) separated the adults of Ps. flavus and Ps. nigrus by the dark color of Ps. nigrus; the pupa were separated by the higher count of anal fin taeniae in Ps. flavus ($125+$ in flavus; $90+$ in nigrus) and the larger thoracic horn of flavus(0.6 mm in flavus; 0.35 in nigrus). Is coloration a valid means of separating the two taxa and are the pupal measurements significant to separate the two species? An in depth study of all type material, if it can be located, is necessary. These two species may both be junior synonyms of Ps. obvius (Walker), a species originally described from the Palaearctic. See Ps. flavus above.
Ps. (Ps.) cf. octomaculatus - I've examined a larva from Georgia and a pupal exuviae from N orth Carolina that probably represent Ps. octomaculatus, but without reared material from both sides of the Atlantic the determination remains uncertain. This species is a member of the Ps. (Ps.) limbatellus group; this group and Ps cf. octomaculatus were recorded for N orth Carolina by C aldwell et al. (1997).
Ps. (Allopsectrocladius) pilosus - Reared material from Florida, Georgia and M ainefitsthe description of this species except there are two spurs (one considerably smaller than the other) on the mid tibiae of the adults; Ps. pilosus was described with only one spur on the mid tibiae (although Roback (1957: 89) apparently misstated it as "tarsi with one spur"). Sublette(1967: 531) used thecharacter of one tibial spur for Ps. pilosus in his key to Psectrocladius adults. H owever, I have examined the holotype female of Ps. pilosus; there are two spurs on the mid and hind tibiae, although one is considerably smaller than the other (the smaller is about $1 / 4$ the length of the larger). The holotype is in alcohol; also in the microvial with the type is a partially decomposed female pupa. This pupa does not belong with the holotype because it is a separate, different animal. It appears the holtype's pupal and larval exuviae are each mounted on separate slides; I matched them following Roback's collection numbers and have labeled them accordingly. The associated exuviae from Georgia compare well with these exuviae and other material determined by Roback; I've al so seen unassociated Iarvae from N orth C arolina. This species may the same as the Palaearctic Ps. platypus (Edwards), except that Ps. platypuswas described as being almost wholly black (Edwards 1929: 333); Ps. pilosus was described as being brown and yellow (Roback 1957). The immature stages of the two taxa are morphologically similar and appear to be inseparable.
Ps. (Ps.) psilopterus group - At least five species in this group are present in the eastern U nited States; this includes Ps. elatus, Ps. simulans and the three taxa discussed here. Similar material from the South-
east, including larvae from South Carolina and reared material from northwestern Florida and southern Georgia, I've placed as Ps. psilopterus group sp. 1. It is unclear whether Ps. psilopterus group sp. 1 represents the same taxon as the Palaearctic Ps. psilopterus, but it strongly resembles it. Psectrocladius psilopterus grp. sp. 2 is represented by an unusual species based on one reared male and a larva from Georgia and adults from the Savannah River Site in South Carolina. Thelarva of this species has very finely dissected semi-palmate SI setae (with only 4 rays) and very fine, short beard setae. The mentum resembles that of Ps. psilopterus grp. sp. 1; the larva also has a narrow premandible apex and the apical tooth of the mandible is longer than the width of the three inner teeth, similar to that of Ps. psilopterus grp. sp. 1 and Ps. simulans. The pupa does not fit well into any defined species group; it may be an aberrant member of the psilopterus group. The adult re sembles other members of the Ps. psilopterus group; it has microtrichia on the anal point, apparently lacking in other members of this group. I've reared an additional species from peat bogs in M ainethat I'm calling Ps. psilopterusgroup sp. 3; thistaxon may be Ps. semicirculatusSæther. Some of these specimens were reared from larvae collected in the jelly of an amphibian egg mass. It is included in the key because it may eventually be found in boggy areas of the C arolinas.
Ps (Ps.) simulans - Very similar to Ps. elatus (see above). Roback (1957: 87) stated in hiskey that the larva of Ps. simulans, based on examination of type material, lacked "compound labral bristles", referring to the S I setae. I was unsuccesful in obtaining any material of Ps. simulans from the Cornell University collection to confirm this. Sæther (1969) described a reared Ps. simulans with the "seta anteriores [SI] 5-rayed". I have seen one larva from N orth C arolina (with thenormal Psectrocladius palmate SI) and larvae and a single male from the Savannah River Site in South C arolina that appear to be Ps. simulans.
Ps (Ps) sordidellus group - I've examined a larva that is probably true Ps. sordidel us that was collected in N orth Carolina; this larva resembles a Rheocricotopus and might be mistaken for that genus (but note the palmate SI).
Ps (Ps) vernalis - A distinctive species in the larval and adult stage, found throughout the eastern US and west to the Rocky M ountain states.
Ps. (M onopsectrocladius) sp. - There may be two species of the subgenus M onopsectrocladius present in the Southeast. I've examined a male from Alabama that is almost certainly the Palaearctic Ps. (M .) calcaratus (Edwards). Two reared males from Georgia appear to represent a different species, with a more rounded inferior volsella and more inflated gonostylus. M ore reared material from the Ne arctic and Palaearctic is necessary to resolve the identity of these taxa; larvae should be identified as "Ps. (M onopsectrocladius) sp.". N ote that in larvae from the southeastern U.S. the S I setae are usually bifid or trifid, in contrast to the palmate S I setae usually found in most Psectrocladius larvae. Al so note that this larva resembles Rheorricotopustuberculatus but lacks the ventral tubercles on the head capsule of that species in addition to other characters.
Ps. (Ps.) sp. 1 Epler - An undescribed species, known only from an adult male from Pen Branch at the Savannah River Site in South C arolina.

Genus Pseudorthocladius

DIAGNOSIS: Distinguished by the mentum with well to weakly divided paired median teeth and 4 pairs of lateral teeth; mandible with 3 inner teeth; simple premandible; and 2-3 very long anal setae.

N OTES: Pseudorthocladius is a species-rich genus, with at least 11 species recorded from the Carolinas. H owever, larvae can not be identified to species.

Larvae are similar to Parachaetocladius; that genus has only 2 inner teeth on the mandible and one anal seta per procercus. Although C ranston et al. (1983) stated that Pseudorthocladiushas 2-3 anal setae, I have seen apparent Pseudorthocladiuslarvae with only one seta and 3 inner teeth on the mandible. Given the number of species in the genus and the paucity of known larvae, there may be more variation in Pseudorthocladius larvae than is recorded in the literature.

Larvae are found in mosses, bogs, springs and streams
AD DITIO N AL REFEREN CES: Cranston \& Oliver 1988a; Sæther \& Sublette 1983; Schnell 1991; Soponis 1980b.

antenna

menta

Genus Pseudosmittia

DIAGN OSIS: Identified by the bifid SI and SII; premandible with brush; antennae 3 or 4 segmented, with antennal blade greatly exceeding the flagellum and with ultimate segment longer than penultimate; lack of procerci, but 1-3 weak anal setae prersent; and posterior parapods weakly developed and with claws, or posterior parapods vestigial and anal claws absent.

N OTES: Pseudosmittia is currently being revised on a world wide basis by Drs. L.C. Ferrington, Jr. and O.A. Sæther. Several species occur in the Southeast; it is not possible to identify the larvae to species.

Larvae are found in terrestrial or semi-terrestrial habitats, but are also sometimes encountered in vegetated marshy areas, pond and stream borders, and in streams and rivers.

ADDITION AL REFEREN CES: Cranston \& Oliver 1988a.

antenna

mentum

posterior end

DIAGN OSIS: Distinguished by the apically dissected S I; 6 segmented antennae with 6th segment hairlike, vestigial; antennal blade subequal to flagellum; pecten epipharyngis of 3 slender scales; apically bifid premandible; maxilla with pecten galearis; mentum with 2 median teeth and 5 pairs of lateral teeth, 4th and 5th teeth subequal; and setae submenti well posterior to a line drawn between the bases of the ventromental plates.

N OTES: O ne species, Ps. triannulatus, is known from the C arolinas, Georgia, K ansas, New H ampshire, Tennessee, New Brunswick, N ova Scotia, O ntario and Q uebec. Larvae may be confused with Platymittia, but that genus has the setae submenti placed more anteriorly and the antennal blade is markedly longer than the flagellum.

Larvae are found in damp soil, seeps, springs and small streams.
ADDITION AL REFEREN CES: Cranston \& Oliver 1988a; Sæther 1969, 1982.

SI from 2 different specimens

mandible

antenna

mentum

Genus Rheocricotopus

DIAGNOSIS: Larvae are distinguished by the bifid or apically multi-toothed S I; premandible apically simple, without brush; mandible with relatively short apical tooth; mentum with median tooth simple, medially notched or bifid (or with two teeth), with well developed ventromental plates and cardinal beard; and procerci usually with a distinct spur.

N OTES: N ine species are known from the Carolinas; the immature stages are undescribed for two of the species, and an additional larval type is known from Virginia.

Rheocricotopus robacki is the most common and widespread member of the genus in the eastern United States, often abundant in many lotic systems.

ADDITIO N AL REFEREN CES: Caldwell 1984; Sæther 1985b; Sæher \& Schnell 1988.

Key to Rheocricotopuslarvae of the southeastern U nited States

(larvae of Rh. amplicristatus and Rh. conflusirus are unknown)

1 H ead capsule with a pair of ventrolateral tubercles; ventromental plates large and triangular Rh. tuberculatus

1' H ead capsule without tubercles; ventromental plates not as broad, usually posteriorly rounded (see figuresbelow)

2(1') M edian tooth dome-like, with 2 small central teeth Rh. sp. VA

2' M edian tooth simple or bifid (see below) .. 3

3(2') M entum with single median tooth
\qquad Rh. unidentatus

3' M entum with bifid median tooth (or 2 median teeth) \qquad 4

4' M edian teeth simple \qquad 6

5(4) Longest body setae > $100 \mu \mathrm{~m}$ long and relatively stout; last antennal segment 6-8 $\mu \mathrm{m}$ long; very common Rh. robacki

5' Longest body setae $<100 \mu \mathrm{~m}$ long and thin, hairlike; last antennal segment $10 \mu \mathrm{~m}$ long; uncommon

Rh. pauciseta

6(4') SI apically split into 4 or moreteeth \qquad Rh. glabricollis

6' SI bifid \qquad 7

Rh. glabricollis

bifid SI of Rh. effusus

7(6^{\prime}) Beard beneath ventromental plate with 1015 setae Rh. eminellobus

7' Beard beneath ventromental plate with 2531 setae \qquad Rh. effusus

N otes on species

Rh. amplicristatus - The immature stages are undescribed; this species is known from adult males collected at the Savannah River Site in South C arolina and a record from Georgia in C aldwell et al. (1997). Rh. conflusiris - The immature stages are undescribed; known only from the holotype, an adult male collected at the Jocassee Reservoir in South C arolina.
Rh. effusus - This H olarctic species is distinguishable from the similar Rh. eminellobus (q.v.) by the greater number of cardinal beard setae (25-31) and thehigher AR (1.5-1.8). Another similar species is Rh. effusoides, described from South D akota (Sæ丸her 1985b: 98) and not recorded from the Southeast. It has 32-33 beard setae and an AR of 1.8-2.1. N ote that Sæ̈her (1985b: 71, couplet 7) keys the pupa of Rh. effusus with 4 taeniae (as "lamelliform setae") on T V-VI, but in his description for the pupa, he stated 3-4 taeniae for those tergites; pupal exuviae associated with reared N orth Carolina larvae bear only 3 taeniae on T V-VI. See al so Rh. pauciseta below.
Rh. eminellobus - Similar to Rh. effusus but separable by the lower number of beard setae (fewer than 15) and lower AR (1.1-1.3). Both species are recorded from N orth and South Carolina.
Rh. glabricollis - In the highly stylized original figure of the larval mentum in Gouin (1936: fig. 18; as TrichocladiusGouini G oetghebuer, a junior synonym), the median teeth of the mentum were illustrated as being lighter in color than the lateral teeth; Cranston (1982) used this character in his key to Rheocri cotopus. H owever, Sæher (1985b: 92) noted that the majority of thelarvae he examined had dark median teeth. Sæher (1985b) described the S I as being split into 6-7 apical teeth but illustrated them (fig. 14B) with only four apical divisions. I have not seen associated larval material of this species but have seen a single larva from Virginia; its placement in the key is based on Saether's (1985b) description.
Rh. pauciseta - An apparently rare species; the larval description of this species is apparently from two larval exuviae described in SæAher (1969). I have not seen larval material of this species. Some reared larvae of Rh. effusus from N orth C arolina that I've examined might be mistakenly identified as Rh. pauciseta because there is a slight "shelf" on the outer margin of the median teeth that could be taken for a worn accessory tooth; this Rh. effusus material is apparently some of the same material Sæher (1985b) used in his description of the larva of Rh. effusus.
Rh. robacki - The most common and widespread member of the genus in the Southeast, usually easily identified by the accessory lateral tooth on the median teeth and the longer (at least $100 \mu \mathrm{~m}$ in fourth instar larvae), thicker body setae. These larger setae are usually more easily found on the more posterior body segments.
Rh. tuberculatus - An unmistakable species, easily identified by the ventral tubercles on the head capsule and the large, triangular ventromental plates. Caldwell (1984) described the larva with a single median tooth, but the majority of larvae I've assigned to this taxon have the median tooth slightly notched in the center of the anterior margin. Epler (1995) also noted that pupae associated with larvae with a notched median tooth had 4 taeniae on T VII, while type material he examined had only 3 taeniae on T VI. While this could certainly fall within a range of variation (e.g., see Rh. effusus above), a small possibility exists that a cryptic species may be involved.
Rh. unidentatus - O riginally described from Ohio (Sæether and Schnell 1988), I've seen larvae from two sites in N orth C arolina. The small lateral notches on the median tooth may be worn down; I've seen material from one site in which larvae were present with such worn and unworn menta.
Rh. sp. VA Epler - This larva is known only from a single specimen from Virginia. It is not known whether it represents one of the two Southeastern Rheocricotopus species with undescribed immature stages, a new taxon or an aberrant specimen.

D IAGN O SIS: Distinguished by the distinctive antennae, which are at least $1 / 2$ the length of head capsule, and have the second segment (and sometimes the first segment) unevenly sclerotized; and the strongly arched mentum, with 2 large hypopharyngeal scales dorsal to it.

N OTES: It appears that at least two species of Rheosmittia occur in the Southeast; only Rh. arcuata is described. The majority of unassociated larvael've examined from the Southeast appear to be Rh. arcuata or a species very similar to it; I have only seen Rheosmittia sp. A from northern Florida. The two taxa can be separated by the longer apical mandible tooth of Rh. sp. A and the higher number of apical teeth on its hypopharyngeal scales: more than 10 in Rh. sp A; 5-8 in Rh. arcuata (Caldwell (1996) described the larva of Rh. arcuata with 5-6 teeth on the hypopharyngeal scales). Caldwell (1996) and Cranston \& Sæther (1986) noted that the Lauterborn organs of antennal segment 2 are absent and suggested that structures reported as Lauterborn organs were probably extruded intersegmental membranes or the style.

Larvae inhabit shifting sand substrata of streams and rivers.
ADDITIO N AL REFEREN CES: Caldwell 1996; Cranston \& Sæther 1986.

antenna

Rh. sp. A

Rh. arcuata paratype

Genus Smittia

DIAGNOSIS: Distinguished by the plumose SI; apically bifid premandible; antenna with 4 (possibly 5?) segments, with antennal blade less than or equal to flagellum; mandible with 3 inner teeth; and lack of procerci and anal setae.

N OTES: At least four species of Smittia are known from the Southeast; one described species and two undescribed species (based on adult males) are known from the Carolinas. The genus requires revision in the N earctic. It is not possible to identify larvae to the species level.

Smittia larvae are generally considered terrestrial, but larvae are often found in water. Webb (1982) found S. Iasiops larvae in soil in corn fields. I have illustrated two types of Smittia larvae below; both have been found in terrestrial leaf litter in hardwood forests and in streams. Smittia sp. B is unusual for the genus because of its trifid median tooth (or 3 median teeth). N ote that S . sp . A is not a "worn mentum version" of S. sp. B.

ADDITION AL REFERENCES: Webb 1982.

Smittia sp. A mentum
Smittia sp. A antenna
Smittia sp. A premandible

Smittia sp. B mentum

Stilocladius

DIAGNOSIS: Distinguished by the simple or apically toothed SI; elongate ventromental plates with sparse beard beneath them; and 6 segmented antennae, with the last segment hairlike.

NOTES: O ne species, S. clinopecten, is known from the Southeast; an additional undescribed species is known from streams in M aryland and Pennsylvania. M aterial of the undescribed species, S. sp. A, was collected by Dr . Rick Jacobsen and will be described in a future publication; it can be distinguished from S . clinopecten by the right-angled outer margin of the first lateral tooth of the mentum and higher antennal ratio (1.3-1.6 for S. sp. A; 0.8-0.9 for S. dinopecten). Stilocladius sp. A appears similar to but is apparently not S. montanus of Rossaro (1984). The larva included as "Stilocladius? sp." by Epler (1995) is placed in Parakiefferiella in this manual.
N ote that the ventromentum of Stilocladius often covers the mental teeth, especially in specimens that have not been firmly pressed with the cover slip.

Stilocladiuslarvae are found most often in small streams.
ADDITION AL REFEREN CES: Rossaro 1984; Sæther 1982.

S. sp. A

Genus
 Symbiocladius

DIAGNOSIS: The distinctive mentum, without median teeth and sharply pointed, almost spinelike lateral teeth; reduced antennae; vestigial procerci; and ectoparasitic habit will distinguish this genus.

N OTES: Two species are recorded from the Southeast; S. chattahoocheensis is known only from Georgia, S. equitans is recorded from North C arolina. Species level records of Symbiocladius based only on immature stages must be viewed with skepticism; immature stages of the two species known from eastern N orth America can not be distinguished at the species level.

Symbiocladiuslarvae are obligate parasites on mayfly nymphs; S. chattahoocheensis was described from specimens collected from the heptageniid Epeorus nr. vitreus (Walker); Roback (1966b) reported Epeorus sp. as a host from North C arolina.

ADDITION AL REFERENCES: Caldwell 1984.

S. chattahoocheensis

Genus
 Synorthocladius

DIAGNOSIS: Distinguished by the simpleSI; distinctive mentum with well developed ventromental beard with apically branched filaments; mandible without seta interna but bearing a large spine on the inner margin; large seta subdentalis; and abdominal segments with alternating simple and plumose setae.

N OTES: O ne described species, S. semivirens, is recorded from the Southeast. H owever, based on adult males, at least one additional species is known from N orth C arolina (Great Smoky M ountains N ational Park) and South C arolina (Savannah River Plant area). The larvae of the undescribed species is unknown; unassociated larvae from the Southeast should be identified as "Synorthocladius sp. ". Synorthocladius larvae were misidentified as Parorthocladius by Beck $(1976,1979)$.

The extent of sclerotization of the third antennal segment is variable; antennae may appear to be four or five segmented. Larvae are usually blue-green in life and before slide mounting; this coloration is often carried through to the adult stage.

Larvae are most often found in running water, but may also occur in springs and other lentic situations.
ADDITIONAL REFERENCES: None.

mentum

mandible

antenna

abdominal segment

Genus Thienemannia

DIAGN O SIS: The plumose SI; pair of serrated labral lamellae (in one Palaearctic species); 5 segmented antenna; premandible apically bifid, with brush; mentum with 2 median teeth; narrow ventromental plates; maxilla without pecten galearis; short, weakly sclerotized procerci; and the long supraanal setae distinguish this genus.

N OTES: O ne species, Th. pilinucha, is known from the eastern US. It was described from eastern Tennessee; it has not been reported from the C arolinas but can be expected in the mountainous western portions. Theimmature stages of T . pilinucha are unknown; figures below are of a Palaearctic species, T . gracilis. Larvae are similar to M etriocnemus and Limnophyes; note that figures 9.76B, D, G, H and J in Cranston et al. (1983) and figures 9, 11, 14, 16 and 17 in Sæther (1985h) are not Thienemannia, but Limnophyes (Sæther 1990). N ote that although the key in C ranston et al. (1983) and Sæther et al. (2000) stated "labral lamellae apparently absent", a pair of apically serrated labral lamellae are illustrated for Th. gracilis in Cranston et al. (1983:fig. 9.76F) and Sæther (1985h:fig. 13).

Larvae have been found in springs and are considered hygropetric in streams.
ADDITIO N AL REFEREN CES: Sæher 1985h.

Genus Thienemanniella

DIAGN O SIS: Larvae are distinguished by their small size ($<4 \mathrm{~mm}$); long (> half the length of the head capsule), well sclerotized 5 segmented antennae; and simple subbasal setae of the posterior parapods.

NOTES: Seven species of Thienemanniella are known from the Southeast, five of which have been re corded from the C arolinas. The genus was recently reviewed by Hestenes \& Sæther (2000); three new species were described, all of which have since been found in the C arolinas. Thienemanniella xena is by far the most commonly encountered species, but many older records of Th. xena must be viewed with skepticism because of previous inadequacies in identification materials.

Larvae which have lost their antennæe may be confused with C orynoneura; most C orynoneura have subbasal setae on the posterior parapods with spinose bases or sides; some C orynoneura species have scul ptured head capsules. All Thienemanniella larvae known to me from the Southeast have thick, simple subbasal setae and none have head sculpturing.

Larvae occur in running and standing water, but are usually found in streams and rivers, and can be encountered in clean or enriched habitats. It is not unusual for several speciesto befound within one sample. Larvae are eaten by a variety of aquatic macroinvertebrates, and are often found in the guts of many tanypod species; I've also seen them in the gut of the naidid worm Chaetogaster diaphanus (Gruithusen).

ADDITIO NAL REFEREN CES: Boesel \& Winner 1980; H estenes \& Sæther 2000; Schlee 1968.

Th. xena mentum

Th. similismentum

Th. xena antenna

Th. similis antenna

K ey to Thienemanniella larvae of the southeastern U nited States

1 M entum with 3 large median teeth, the central tooth at least $2 / 3$ length of the outer median teeth 2

1' \quad entum with 2 large median teeth, if central tooth is present it is vestigial or at most $1 / 2$ length of outer median teeth

2(1) Antennal segment 3 0.5-0.7 as long as segment 2 , segment 2 pale; mentum with first lateral tooth partially fused to outer median tooth \qquad Th. similis

2' Antennal segment 3 equal to or slightly shorter than segment 2, segment 2 light to dark brown; mentum with first lateral tooth free or partially fused to outer median tooth 3

3(2') M entum with central tooth equal to or slightly shorter than outer median teeth; first lateral tooth not partially fused to outer median tooth; antennal segment 2 dark brown

Th. xena

3' M entum with central tooth clearly shorter than outer median teeth; first lateral tooth partially fused to outer median tooth; antennal segment 2 pale brown \qquad Th. taurocapita

4(1') M entum with first lateral tooth free, not partially fused to median tooth 5

4' M entum with first lateral tooth partially fused to median tooth

5(4) M entum without a central tooth; second antennal segment brown; third antennal segment about aslong as segment 2

Th. boltoni

5' M entum with a small central tooth; second antennal segment pale; third antennal segment about 0.8 as long as segment 2

Th. sp. C

$6\left(4^{\prime}\right) \quad$ Central median tooth of mentum absent (worn away) or minute; third antennal segment 0.5-0.9 length of second; second antennal segment pale; venter of head capsule usually with granular appearance ending anteriorly in a semicircle

Th. lobapodema

6' Central median tooth small but distinctive; third antennal segment equal to second; second antennal segment light brown; venter of head capsule without granular appearance \qquad Th. sp. B

N otes on species

Th. boltoni - Described from and previously known only from O hio. In addition to the holotype and two paratypes, I've examined a male and Iarvae from North C arolina. The species is apparently re stricted to springs and small spring fed streams.
Th. lobapodema - This taxon is apparently the same as those called "T hienemanniella sp. A" and "T h. sp. D" in Epler (1995); it is also the same taxon as "Thienemanniella nr. fusca (K ieffer)" of Simpson \& Bode(1980); note that Th. fusca is a junior synonym of Th. acuticornis (K ieffer) and is an entirely different species from Th. Iobapodema - the mentum is different (with three equal median teeth) and the third antennal segment is very short, similar to that of Th. sp. A of H estenes \& Sæther (2000). Epler (1995) noted that two species might have been present in his Th. sp. A due to the range in third antennal segment lengths. H estenes \& Sæther (2000) gave lengths of antennal segment 3 being 0.5-0.7 the length of segment 2. I examined four paratypes of Th . lobapodema, all collected in O hio at the same place and date(notethat H estenes \& Sæther (2000: 117) list only the reared female from this series as a paratype, although all four specimens are marked as paratypes). O nly one of the paratypelarvae had an easily discernable semi-circular postmental mark; this specimen had an antennal segment $3 / 2$ ratio of 0.7 and longest body setae of $130 \mu \mathrm{~m}$. The other three specimens had ratios of 0.5-0.6 and longest body setae of 86-106 $\mu \mathrm{m}$. In other, unreared, material I've examined, third antennal segment lengths run a continuum from 0.5 to 0.9 of the length of the second segment; usually those specimens with longer antennae have longer body setae. The semi-circular clear area (not granulose like the remainder of the head capsule) posterior of the mentum is usually distinctive in most fourth instar specimens mounted in CM C ; it can bedifficult to discern in very old material (hence the Th. sp. D of Epler (1995)) and in some larvae and larval exuviae mounted in other media. It appears that most larvae with a clearly defined semi-circle on the mentum also sport longer antennae and body setae (up to $180+\mu \mathrm{m}$), but there are exceptions. D o these specimens represent another species? H owever, none of the longer antennal variety have been reared and it may be wise to set aside those specimens with long (more than 0.75 the length of segment 2) third antennal segments and longer (over $125 \mu \mathrm{~m}$) body setae; such specimens may prove to be a different species. If so, this would mean that the type series is mixed; I have not seen the holotype (a mature male pupa). In the Southeast, Th. lobapodema is known from Alabama, Florida, G eorgia, North and South C arolina, where it can be common in streams and rivers, and often occurs with other members of the genus.
Th. similis - A relatively common species throughout the Southeast, usually not as common as Th. xena, often occurring with it and Th. Iobapodema. Epler (1995) called this taxon "Th. cf. similis". I've also seen some earlier instar (probably third) larvae from South C arolina that appear to be Th. similis but have shorter third antennal segments. Since these are not fourth instar larvae, it might be possible that the antennal segments do not attain their full respective lengths until the fourth instar. It is also possible they may represent an undescribed species, but until fourth instar larvae are found and associated with pupae and adults, their status remains unclear.
Th. taurocapita - Previously known only from type material from O hio. It has been collected from headwater streams to rivers, but is most common in streams. I've examined a male captured at a light trap near a creek in G reat Smoky M ountains N ational Park in N orth C arolina.
Th. xena - The most common and abundant species of the genus in the Southeast, usually easily recognized by the three median teeth that are subequal in length, first lateral teeth not partially fused to the outer median tooth, dark brown second antennal segment and long third antennal segment (subequal to second). I've seen what may be a variant from the Savannah River Plant area in South C arolina in which the median tooth is narrower than the outers and the second antennal segment
is not as dark brown. I've examined the type series, originally described from Pennsylvania.
Th. sp. B - This species has a very long third antennal segment, as long as the brown second antennal segment, and an almost always distinguishable central median tooth, at most about 1/3 the height of the outer median teeth. K nown from northern Florida and northern Georgia. This taxon may be a variant of $T h$. taurocapita but I have not seen any Th . sp. B larvae with a central median tooth as long as those of Th. taurocapita specimensl've examined; its true identity will remain unknown until it is reared. In north Florida it often occurs with Th . Iobapodema, Th . similis and Th . xena.
Th. sp. C - Thistaxon is known only from southern Florida.
Thienemanniella obscura Brundin and Th. partita Schlee are recorded from South Carolina by H udson et al. (1990) and C aldwell et al. (1997). I have no idea where their records are from and have not seen any material that could be remotely associated with those taxa; these records should be considered dubious.

Genus Tokunagaia

DIAGNOSIS: Distinguished by the dark brown to blackish head capsule; simple, thick S I; simple or weakly serrate labral chaetae and chaetulae laterales; simple, blunt premandible; elongate, well sclerotized basal sclerite; 5 segmented antenna with 4th segment about twice as long as third, with antennal blade extending at least to or past 4th segment; mentum with 5 pairs of lateral teeth and a pair of median teeth; inner margin of mandible with long spines (or spines reduced to points); seta interna of mandible with branches split to near base; procerci not reduced; and supraanal setae shorter than anal tubules.

N OTES: H alvorsen \& Sæせer (1987) expanded Tokunagaia by theinclusion of theEukiefferiella rectangularis group, thus the larval diagnosis in Cranston et al. (1983) is incomplete. The taxonomy of Tokunagaia, Cardiocladius and Eukiefferiella remains unclear.

At least one unnamed species is known from mountainous western North Carolina. A pupal exuviae collected from a pool at Coweeta Hydrologic Lab is similar to that figured as "Adactylocladius sp." by Sæther (1969:fig. 28A). O ther N orth C arolina material includes a larva with developing pupal characters that match it with the C oweeta pupal exuviae, and several unassociated larvae. I've also seen a larva from O conee Co., SC, that appears to be a Tokunagaia, but the mentum is badly worn. I've also examined additional specimens of what might be two additional undescribed species from O hio.

Tokunagaia larvae are found in moss or algal mats on stones in streams and can also be hygropetric. The central portion of the mentum is often badly worn or broken.

ADDITIO N AL REFEREN CES: Bode 1983; H alvorsen \& Sæther 1973; Sæther 1969.

DIAGN O SIS: Distinguished by the simpleSI; reduced antennae, apparently 3 segmented; premandible with multiple large apically serrated branches; ventromentum without teeth and extending below lateral plates of dorsomental teeth; mandible with long apical tooth and only a slight indication of inner teeth (a series of low serrations is apparent on most specimens), without seta subdentalis and seta interna; procerci developed, with anal setae; large, ovoid anal tubules that are larger than the posterior parapods; and by the apparently parasitic habit of the larvae within unionid mussels.

N OTES: The genus Trichochilus was established by Sæther (1985i) for a peculiar female originally de scribed as Trichocladiuslactei pennis Johannsen. Recent associated material from Pennsylvania (R. Jacobsen, pers. comm.) shows that the immature stages of Trichochilus live within unionid molluscs. In the collection at FloridaA \& M university, I found pupal specimens with associated larval exuvize misidentified as Baeoctenus (another taxon whose larvae live within unionid clams) that are identical to the Pennsylvania material. Unfortunately, these specimens bear only the data " 27 M arch 1965, found asstd with E. buckleji" on their labels; it is unknown where the specimens were collected. Trichochilus larvae are similar to the specimens from Louisiana unionids briefly described by Roback (1979b) as "genus nr. Phycoidella", but lack the "comblike row of preapical setae" on the mandible. Roback noted that the Louisiana specimens were the same as larvae from New Brunswick mentioned in a paper by G ordon et al. (1978) and earlier by Sæther (1977b). Roback's specimens were presumed to be instar 1 larvae; it is possible that the row of setae on the mandible might not be present in later instars. Specimens from the locality Roback (1979b) cited could not be located in the collection at the Philadelphia Academy of N atural Sciences; however a single early instar larva from another site in Louisiana, collected from "between the demibranchs of Lampsilishydriana", was found in the collection and examined. It has a mandible similar to that illustrated by Roback, but the specimen is not in good enough condition to determine if it isTrichochilus. The existence of Trichochilusin the C arolinas is a definite possibility.

AD DITIO N AL REFEREN CES: Roback 1979b; Sæther 1985i.

$0 \quad 0$
mentum

Genus Tvetenia

DIAGN O SIS: The coarsely toothed to plumose SI; mandible with 1-3 inner spines or serrations; seta interna divided to near base; narrow ventromental plates; lack of beard; and the long, strong body setae that are at least $1 / 2$ the length of body segment that bears them will distinguish this genus.

N OTES: At least four species are known from the Southeast; there may be as many as six. Species in the genus wereformerly placed in Eukiefferiella; Sæther \& H alvorsen (1981) transferred these speciesto T vetenia. N ote that some Eukiefferiella species may have long body setae and can be confused with T vetenia; their simpleSI setae and, in some cases dark brown head capsules, will separate them M any previous records of various T vetenia species in the eastern US should be treated with skepticism.

T vetenia larvae are found in running water; T. vitracies can be tolerant of high organic nutrient levels.
ADDITIO N AL REFEREN CES: Bode 1983; M ason 1985c; Sæther 1969; Sæther \& H alvorsen 1981.

T. vitracies mentum

T. vitracies mandible

-
T. paucunca mentum

T. vitracies SI
.sp. GA S

T. vitracies antenna

T. paucunca antenna

K ey to T vetenia larvae of the southeastern United States

1 M entum with single median tooth; setae submenti placed close to mentum; SI plumose T. vitracies
 ?

1' M entum with bifid median tooth; setae submenti placed more posteriorly; S I coarsely branched \qquad
setae submenti

2(1') Postoccipital margin pale, about same color as rest of head capsule; basal segment of antenna 45-60 $\mu \mathrm{m}$ long \qquad 3

2' Postoccipital margin much darker than rest of head capsule; basal segment of antenna $>65 \mu \mathrm{~m}$ \qquad 4

3(2) 4th antennal segment about 2 X as long as 3rd \qquad T. paucunca

3' 4th antennal segment about 4-6X as long as 3rd \qquad T. bavarica (see N otes on species)

T. paucunca antenna

4(2') Basal antennal segment about 66-78 $\mu \mathrm{m}$ long; premandible apically notched; longest abdominal seta $200-225 \mu \mathrm{~m}$ long \qquad T. sp. GA

N otes on species

T. bavarica - Recorded from the C arolinas by H udson et al. (1990) and C aldwell et al. (1997), but I have not seen material of T. bavarica from the Southeast. All larvae I've examined that were previously identified as T. bavarica were assignable to T. paucunca. Following Schmid (1993), the $4^{\text {th }}$ antennal segment of T . bavarica is $4-6 \mathrm{X}$ longer than the $3^{\text {rd }}$; in all material I examined the $4^{\text {th }}$ antennal segment was about 2 X as long as the $3^{\text {rd }}$. The pupa of T. bavarica is distinctive, bearing a band of tiny spines around the apex of the wing sheath rather than the more usual single row found in other members of the genus.
T. calvescens - Recorded for Georgia by H udson et al. (1990) and Caldwell et al. (1997); all material I've seen identified as this taxon I've referred to T. paucunca; see below.
T. paucunca - Relatively common in the Carolinas; more common in the mountains and coastal plain regions. This species may be the same as the Palaearctic species T. calveccens; however, until more work is donel feel it is best to retain the name paucunca for this taxon. It is also possible that both are valid species and both may occur in the Nearctic; if so, all associated material (especially the pupal stage) I've examined would still be referable to T. paucunca. The reared material I examined was from G eorgia and N orth Carolina and produced measurements lower than those given by Sather (1969) for T . paucunca (as a Eukiefferiella); the first antennal segment of southeastern speci-
mens ranged from 45-50 $\mu \mathrm{m}$, mean 47, while Sæther's material was $54-60$, mean 57 ; AR's of southeastern material ranged from 1.36-1.48, mean 1.43, while those of Sæher's material were 1.54-1.75, mean 1.64. N ote that the median teeth can be worn to appear as a single broad tooth; the 3-4 branched S I setae, more posteriorly placed setae submenti and pale postocciput will help separate this species from T. vitracies, which has a more plumose SI and darkened postocciput. T vetenia paucunca would belong with the "T. bavarica group" of Bode(1983) and is probably the species illustrated in his work.
T. verralli - I have not seen material of this species, recorded for N orth C arolina by H udson et al. (1990) and C aldwell et al. (1997). It is not included in the key, but if it did occur here it would key to T. sp. GA (which it definitely is not) or T. sp. NC.
T. vitracies - This is the species referred to as "T. discoloripes group" by Bode (1983). It is common and widespread throughout the Southeast, occurring as far south as Florida. In the Carolinas, this species appearsto be more common on theC oastal Plain than in the mountains, whereT. paucunca is more common.
T. sp. GA - An undescribed species similar to the Palaearctic T. duodenaria Kieffer. Pupae are similar in that they lack the recurved hooklets on the posterior margins of the abdominal tergites; adult males are similar except they lack the seta-bearing "plate" on tergum IX. I've examined associated material from the northern portion of the C oastal Plain in southern Georgia (Crisp C ounty).
T. sp. N C - A large species I've seen only as unassociated larvae from N orth Carolina. It may be undescribed or perhaps T. discoloripes or T. verralli, but associated material would be necessary for accurate identification.

Genus Unniella

DIAGNOSIS: Distinguished by the plumose S I; apically bifid premandible; 5 segmented antennae; mentum with median tooth lower than second lateral teeth, with first lateral tooth reduced and fused to the second; well developed ventromental plates which extend beyond the lateral margin of the mentum; and mandible with 4 inner teeth.

N OTES: One species, U. multivirga, is found in the southeastern United States. Larvae were called "Trissoladius" in Beck $(1976,1979)$. The antennae are apparently 5 segmented, but in many specimens it is difficult to distinguish the 4th and 5th segments; thus the antennae may appear 4 segmented.

Larvae occur in streams and rivers; U. multivirga can be abundant in streams from northern Florida to South Carolina in late W inter to early Spring.

ADDITIONAL REFERENCES: Caldwell 1986.

antenna

mandible

mentum

Genus Xylotopus
DIAGNOSIS: Distinguished by the heavily sclerotized, dark head capsule; distinctive mentum with 2 large, elongate median teeth; and the lateral fringe of setal tufts on the abdominal segments.

N OTES: O ne species, X. par, is known from N orth America. The species was formerly placed in Brillia.
Larvae mine in submerged, partially decomposed wood.
AD DITIO N AL REFEREN CES: Oliver 1982; 1985.

mandible

antenna

abdominal setal tufts

Genus Zalutschia

DIAGNOSIS: The plumose to coarsely pectinate S I; mentum with first lateral tooth reduced; well developed ventromental plates with weak beard; and mandible with 3 inner teeth distinguish this genus.

N OTES: At least three species, one undescribed, occur in the Southeast. All three taxa usually have a mentum with the median and first lateral teeth lighter in color than the remaining lateral teeth, and the three inner teeth of the mandible are usually darker than the apical tooth.

Larvae are found in lakes, streams and rivers.
ADDITIO N AL REFEREN CES: D owling \& M urray 1980; Sæther 1976; Soponis 1979.

K ey to Zalutschia larvae of the southeastern United States

1 M entum with 2-4 median teeth and reduced 6th lateral tooth; antennal blademuch longer than flagellum
Z. cf. zalutschicola

center of mentum with 4 median teeth

1' M entum with 2 median teeth (figures below); antennal blade subequal to or shorter than flagellum 2

2(1') Premandible simple \qquad Z. sp. A

2^{\prime}
Premandible apically bifid \qquad Z. briani

N otes on species

Z. briani - O riginally described from northern Florida. Although H udson et al. (1990) and Caldwell et al. (1997) record this species from N orth and South C arolina, I've seen only one larva from South C arolina that appears to be this species. Soponis (1979) found Z. briani larvae on aquatic vegetation in lakes. Zalutschia obsepta (Webb), described from O ntario and also known from Quebec, will key to Z. briani in the key above. Following the description of Sæther (1976), Z. obsepta lacks pectinate lamellae on the maxilla which are present in Z. briani.
Z. cf. zalutschicola - Larvae of this taxon appear very similar to those of Z. zalutschicola Lipina, and adult males (from Georgia) are similar in having ocelli and similar genitalia. H owever, based on associated material from Georgia, the pupa differs from those described for Z. zalutschicola: the frontal setae are shorter ($<200 \mu \mathrm{~m}$), the thoracic horn has only a small apical extension, not the long tooth of typical zalutschicola, and tergite VI has four taeniate setae, not the single one as described for zalutschicola by Sæther (1976: 190, 215). M ore N earctic and Palaearctic material must be examined to determine the variability of Z. zalutschicola, and to ascertain if this taxon represents an undescribed species.
Z. sp. A - An undescribed species that appears to be widespread throughout the Southeast; I have reared it from northern Florida and B.A. C aldwell has reared it from G eorgia. I've also examined unassociated larvae from N orth and South C arolina. N ote that this species is not the same as the Z. sp. A of Sæther (1976). Larvae do not fit the diagnosis in Sæher (1976) and Cranston et al. (1983) in that they have a simple premandible. The adult has a gonostylus similar to that of Z. humphriesiae D owling \& M urray from Ireland (D owling \& M urray 1980), but the immature stages differ.

Orthocladiinae species C

DIAGNOSIS: D istinguished by the "mop-like" SI; premandible with simple apex; mandible with small inner teeth, inflated base and no seta interna; partially weakly sclerotized antennal flagellar segments; and distinctive mentum with large ventromental plates covering most of the mental teeth.

N OTES: Briefly described by Sæether (1982), the adult of this taxon remains unknown. I have examined associated pupae, but they are in poor condition, resembling A camptocladius and Parakiefferiella pupae.

L arvae are found in sand-bottomed streams and rivers.
ADDITIO N AL REFEREN CES: Sæher 1982.

Orthocladiinae genus E

DIAGNOSIS: Thecoarsely plumoseSI; mentum with 4 median teeth; reduced ventromental plates and lack of beard; pecten epipharyngis with more than 12 teeth; well developed posterior parapods with well developed claws; and the presence of procerci and anal tubules distinguish this taxon.

N OTES: I have only seen this taxon from northern Florida; most specimens have come from hardwood forest litter run through a Berlese funnel, indicating that the larva is terrestrial. I have also seen one specimen from the Santa Fe River in northern Florida, where it was probably washed in. Although not known from the Carolinas, in general most chironomid taxa found in northern Florida should also occur at least on the C oastal Plain in the Carolinas.

The multi-toothed pecten epipharyngis is distinctive. Another at least partially terrestrial orthoclad, Antillocladius, also has a multi-toothed pecten epipharyngis but lacks procerci and anal tubules, which are present in O rthocladiinae genus E .

ADDITION AL REFERENCES: None.

mentum

antenna

labrum

mandible

O rthocladiinae genus H

DIAGNOSIS: Distinguished by the plumose S I, with other S setae simple; lack of labral lamellae; antenna 5 segmented, with blade longer than flagellum; apically bifid premandible, without brush; mandible with 4 inner teeth; maxilla without pecten galearis; abdominal setae relatively short, less than half as long as segment bearing them; weakly developed procerci; and well developed supraanal setae.

N OTES: N ot known from the Carolinas; known only from bromeliad phytotelmata (plant-held water) in southern Florida.

Larvae of this taxon, collected from the arboreal bromeliad Tillandsia, were treated as M etriocnemus sp. B by Epler (1995: 6.52-6.54). I have recently reared Iarvae of this species from phytotelmata in terrestrial bromeliads near Lorida, FL; pupae indicate that establishment of a new genus is necessary. The taxon shows similarities to C ompterosmittia, Limnophyes, Paralimnophyes and T hienemannia. O nly female pupae and adults were obtained by rearing, indicating that perhaps this species is parthenogenetic.

ADDITION AL REFERENCES: None.

0
mentum
S setae and pecten epipharyngis

antenna

mandible

Orthocladiinae genus I

DIAGNOSIS: Distinguished by the apparently plumose SI; antenna with 6 segments, 6th segment hairlike; premandible with 3 large apical teeth, brush absent; maxilla apparently without a pecten galearis; well developed ventromental plates, without a beard; mandible with inflated apical tooth and long seta subdentalis; and normal procerci.

N OTES: This taxon is known from a single larval specimen from N orth Carolina. U nfortunately, some structures, such as the S I and pecten epipharyngis, are obscured, but the structures that are visibleindicate that this specimen can not be placed in any known genus. The mandible, with its inflated apical tooth and long seta subdental is, is similar to that of Heterotrissocladius sp. C of Sæther (1975a). H owever, the pre mandible lacks a brush (present in H.sp. C) and the antennae are entirely different. The larva is also somewhat similar to Oliveridia, but apparently lacks a pecten galearis and the mandible and premandible are different. Reared material will be necessary to elucidate this taxon's true identity.

ADDITIONAL REFEREN CES: None.

SU BFAM ILY

CHIRONOMINAE

DIAGN O SIS: Antennae 4-8 segmented, rarely reduced. Labrum with SI simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. M entum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa.

N OTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). M ost larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are freeliving; some build transportable cases. M any larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions.

W ith only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known. There are several unplaceable larvae whose adult stages are unknown; these taxa are placed at the end of this chapter.

Key to the genera of larval Chironominae of the southeastern United States (larva unknown for Skutzia)

1 Ventromental plates fused to maxillae and without well defined striae so that the plates are inconspicuous; mentum concave; larvae mining in dead submerged wood and/or submerged leaves; may be common in H ester-D endy samplers contructed of plant materials 2

1' Ventromental plates well developed, usually with numerous striae; mentum variable; larvae in a variety of habitats (that may include mining in leaves, plant stems or dead submerged wood) .. 3

2(1) M entum with 10-12 teeth; antennal blade extends to apex of segment 2; anal tubules with $0-2$ constrictions \qquad Stenochironomus

2' M entum with 8-10 teeth; antennal blade extends past apex of segment 2; anal tubules with $4-5$ constrictions \qquad Xestochironomus

3(1') Bases of S I fused; S II on elongate pedestal; antennae with 5 segments, mounted on distinct elongate base (base squat in one marine genus, Pontomyia); Lauterborn organs usually well developed and often mounted on short to long pedicels \qquad Tribe Tanytarsini 4

3' Bases of S I usually separate and S II usually not on pedestal (if SI fused and/or S II on pedestal, then antennae with 6 segments and alternate Lauterborn organs at apices of segments 2 and 3); antennae with 4-8 segments, Lauterborn organs not on long pedicels

6 segmented antenna with alternate Lauterborn organs on segments 2 and 3

4(3) Ventromental plates squat, separated by at least the width of the 3 median teeth; larvae in transportablecases

4' Ventromental plates wide, touching or almost touching medially; if larvaein cases, the cases are not transportable

5(4) Antennal segment 2 with one Lauterborn organ arising apically, the other near the base

5' Antennal segment 2 with both Lauterborn organs arising apically 8

6(5) Clypeal (S 3) setae apically divided

6' Clypeal setae simple
7

7(6') Premandible with 3 apical teeth \qquad Stempellinella (in part)

7' Premandible with 4 apical teeth \qquad Zavrelia

8(5') Antennal base with apical spur only; clypeal (S 3) setae with numerous branches \qquad Constempellina

Stempellinella

Zavrelia

8' Antennal base with multispined process; clypeal setae simple or apically bifid (figures below) .. 9

9(8') Antennal base with spur and multispined process; clypeal setae simple \qquad N eostempellina

9' Antennal base with multispined process only; clypeal setae apically bifid \qquad Stempellina

S 3

10(4') M entum with 4 pairs of lateral teeth (some N eozavrelia may have a minute 5th pair)

Neozavrelia

Pontomyia

10' M entum with 5 (or apparently more) pairs of lateral teeth

11(10) Antennae with Lauterborn organs on moderately long pedicels; premandible apically bifid; mandible with 2 inner teeth; found in freshwater \qquad Neozavrelia

11 Antennae with sessile Lauterborn organs; premandible with numerous apical teeth; mandible with 3 inner teeth; exclusively marine, in theSoutheast known only from Florida \qquad Pontomyia

3 or more apical teeth

apically bifid

14(13) Claws of posterior parapods simple; pedicels of Lauterborn organs usually long

Tanytarsus

14. Claws of posterior parapods with one or more claws pectinate or with inner spines (figures below); pedicels of Lauterborn organs long or short

15(14') Some claws of posterior parapods with single row of inner teeth; pedi cels of Lauterborn organs usually short (moderately long in one species); common

Cladotanytarsus

15' Some claws of posterior parapods with multiple rows of inner teeth; pedicels of Lauterborn organs long; rare

Virgatanytarsus

16(13') Pecten epipharyngis a 3-5 lobed plate 17

16' Pecten epipharyngis a single multitoothed comb or of 3 platelets with numerous apical teeth 18

17(16) Lauterborn organs on pedicels that extend to or beyond antennal apex; mandible with pronounced outer hump; 3 central teeth of mentum usually projecting strongly abovelateral teeth \qquad Sublettea

17' Lauterborn organs sessile or on very short pedicels; mandible without pronounced outer hump; 3 central teeth of mentum not projecting as above

Paratanytarsus

18(16') Lauterborn organs on short pedicelsthat are shorter than or subequal to length of flagellum; pecten epipharyngis a single multitoothed comb; ventromental plates with striae often appearing block-like \qquad Rheotanytarsus

18' Lauterborn organs on long pedicels that extend beyond flagellum; pecten epipharyngis 3 multi-toothed platelets; ventromental plates with striae not appearing block-like

M icropsectra

19(3') Ventromental plates touching or almost touching medially

19' Ventromental plates separated medially by at least the width of the median tooth/teeth of the mentum Tribe Chironomini (in part) 27

20(19) Ventromental plates bar-like; seta subdentalis dorsal, on same side of mandible as seta interna ... TribePseudochironomini

20' Ventromental plates crescent- or wedge-shaped or extremely broad; seta subdentalis ventral, on opposite side of mandible from seta interna (seta interna may be absent) \qquad
.. TribeChironomini (in part)

21(20) Procerci arising from separate bases; basal segment of antenna longer, AR about or more than 1.0; mentum with 2nd lateral tooth small, sometimes partially fused to 1st lateral tooth; S I arising from separate bases; common and widespread \qquad Pseudochironomus

21' Procerci fused at base; basal segment of antenna shorter, $A R<1.0$; mentum with 2 nd lateral tooth minute and fused to 1st lateral tooth; SI setae arising from a common base; in the U S known only from theEverglades in south Florida

M anoa

procerci

$22\left(20^{\prime}\right)$ Ventromental plates wedgeshaped; antennae 6 segmented with alternate Lauterborn organs at apices of segments 2 and 3 ; larvae in transportable silken cases

22. Ventromental plates wider; antennae 5 segmented, Lauterborn organs at apex of sgement 2 only; larvae not in transportable silken cases

24

23(22) Setae submenti simple; frontoclypeal apotome present, with one medial labral sclerite anterior to it; anteriorly directed hump on body segment 11 \qquad Zavreliella

seta submenti

23' Setae submenti plumose; frontal apotome present, with 2 medial labral sclerites anterior to it; posteriorly directed hump on body segment 11 Lauterborniella

24(22') Premandibles with 3 or more apical/subapical teeth
\qquad
24 Premandibles apically bifid 27

25(24) M andible without dorsal tooth; inner teeth of mandible flattened (sometimes worn so that it appears no inner teeth are present) Axarus

25 M andible with dorsal tooth; inner teeth of mandible well defined
$26\left(25^{\prime}\right) \mathrm{M}$ andible with outer posterior hump; ventromental plates extremely broad; apotome with 1 me dial labral sclerite anterior to it, without frontal pit; antenna with dark tubercle near base; not confined to south Florida

Lipiniella

26' $\quad \mathrm{M}$ andible without outer posterior hump; ventromental plates not as broad; apotome with frontal pit and 2 medial labral sclerites anterior to it; antenna without tubercle near base; known only from south Florida \qquad Kiefferulus(in part)

27(19', 24') Antennae with 6 well defined segments, with large L auterborn organs at the apices of segments 2 and 3 28

27' Antennae with 4-7 segments, if 6 segments present then without alternateL auterborn organs on segments 2 and 3 35

28(27) M entum strongly arched, resembling a circular saw blade; mid-anterior margin of ventromental plate with notch
\qquad H arnischia complex genus A

28 M entum and ventromental plate not as above
29

29(28') M entum with single pale median tooth 30

29' M entum with 2 or more pale or dark median teeth

30(29) M edian tooth of mentum lower than first lateral teeth; mandible with dorsal tooth \qquad
\qquad Beardius(in part)

30' M edian tooth of mentum higher than first lateral teeth; mandible without dorsal tooth \qquad Paralauterborniella

31' M entum with dark median teeth or with 4 pale median teeth that are lower than 2nd lateral teeth
\qquad

32(31) M entum with 2 pale median teeth; maxillary plate strize well developed and more noticeable than ventromental plate striae; frontoclypeal apotome present; bases of S I fused

32' M entum with 3 pale median teeth (central median tooth may be minute); ventromental plate striae coarse and distinct, maxillary plate striae difficult to discern; frontal apotome separated from clypeus by a straight suture; bases of SI separate or contiguous \qquad M icrotendipes

$33\left(31^{\prime}\right) 4$ median teeth of mentum dark and at least outer pair higher than remaining lateral teeth ..
\qquad Stictochironomus

33' M edian teeth of mentum pale or dark, lower than or subequal to 2nd lateral teeth 34

$34\left(33^{\prime}\right)$ C entral pair of the 4 median teeth lower and more slender than outer median teeth; bases of S I separate; mandible with 2 dorsal teeth 0 misus

34' Central pair of the 4 median teeth equal to or higher than outer median teeth; bases of S I fused or located on common triangular plate; mandible with 1 dorsal tooth \qquad Paratendipes

$35\left(27^{\prime}\right)$ S I simple (with small accessory branches in some species of Parachironomus, but never plumose); S II often large and bladelike; mandible without dorsal tooth/teeth; labral lamella usually absent; pecten epipharyngis rounded or subtriangular, consisting of a single plate or scale that may be simple, serrated, notched or toothed \qquad theH arnischia complex (in part) \qquad 36

35' SI plumose or fringed on at least one margin; S II usually not large and blade like; labral lamella present; mandible usually with dorsal tooth/teeth; pecten epipharyngis a wide multitoothed comb or of 3 platelets that are usually apically toothed (but may be smooth)

comb-like pecten epipharyngis

36(35) M entum toothless, with about 15 anteriorly directed seta-like projections; mandible with dense fringe of setae on outer margin \qquad Harnischia complex genus B

37(36') M entum concave, with broad pale median tooth flanked by dark well sclerotized teeth that point inward; ventromental plates at least 3X wider than long 38

37' M entum convex (arched) or linear; or if concave than mentum completely pale; ventromental plates less than 2X as wide as long

convex

linear

concave but pale

38(37) Antennae with 7 segments; mentum with 7 pairs of usually dark lateral teeth \qquad D emicryptochironomus

39(38')Antennal segment 3 weakly sclerotized; mandible with weak pecten mandibularis; ventromental plate about 3X as wide as long; known only from south Florida H arnischia complex genus D

39' Antennal segment 3 well sclerotized; mandible without pecten mandibularis; ventromental plate frequently more than 3X as wide as long; widespread

$40\left(39^{\prime}\right)$ Pecten epipharyngis a deeply trilobed scale; SI well developed, at least $1 / 2$ as long as SII ; premandible with weak brush \qquad Cryptochironomus

40 Pecten epipharyngis a weakly trilobed scale; SI minute, less than $1 / 5$ length of S II; premandible without brush \qquad Gillotia

41(37') M andible without inner teeth (rarely with 1 inner tooth); mentum concave, with pale lateral teeth; antennae as long as head capsule, weakly sclerotized, with 8 difficult to distinguish segments \qquad Chernovskiia

41' $\quad M$ andible with at least 2 inner teeth or notches indicating teeth; mentum convex or linear; antennae with 5-7 variably sclerotized segments 42

42(41) Antennae with 5 segments \qquad 43

42' Antennae with 6-7 segments \qquad 48

5

5

43(42) Pecten epipharyngis a wide plate with numerous apical teeth (deeply trifid in P. alatus); premandible with 2-4 teeth, without brush

Parachironomus

7

\qquad

P. alatus

43' Pecten epipharyngis a simple plate with or without weak distal lobes; premandible apically bifid, with brush OR pecten epipharyngis a shallowly trifid triangular scale (if deeply trifid then basal segment of maxillary palp almost as long as first antennal segment) and premandible with several small inner teeth and with or without brush 44

44' Premandible with 3 or more teeth 47

bifid

3 or more teeth

45(44) O utline of mentum nearly linear, median tooth trifid; antennal blade as long as or longer than flagellum (segments 2-5)

M icrochironomus

45' O utline of mentum convex (arched), with median tooth single (may be laterally notched and appear trifid), medially notched, or double; antennal blade shorter than flagellum (figures below)

46(45') M edian tooth of mentum broadly rounded or laterally notched to appear trifid, set well forward of lateral teeth so that outline of central mentum slopes sharply; basal segment of antenna about 2-2.5X Ionger than wide and subequal to length of flagellum Cryptotendipes

46' M edian tooth of mentum usually doubleor notched medially, may be broadly rounded but not extending far forward of lateral teeth, thus mentum not appearing sharply sloped; basal segment of antenna about 2.8-4.0X Ionger than wide and longer than length of flagellum \qquad Cladopelma

47(44') Antennal segments 2 and 3 subequal; ventromental plates weakly striated Harnischia

47' Antennal segment 2 much longer than 3; ventromental plates coarsely striated Paracladopelma

49
48(42') Antenna with 6 segments; mandible with seta interna

49(48) Each procercus with one very long anal seta that is about 4-5X as long as supraanal setae; anterior parapods with large claws that are about $2 / 3$ length of head capsule; mentum with moderately broad median tooth and 5 pairs of lateral teeth

H arnischia complex genus C

49' Anal setae not as long, slightly longer than supraanal setae; anterior parapod claws at most 0.4 length of head capsule; if mentum with broad median tooth, then with 6 or more pairs of lateral teeth 50

50(49') Ventromental plates with most striae complete to anterior margin; mentum as figured below
\qquad Saetheria

50' Ventromental plates with striae not reaching anterior margin, a separate row of short striae present near anterior margin of plate; mentum asfigured below Kloosia

$51\left(48^{\prime}\right) \mathrm{M}$ entum with an even number (14) of teeth \qquad

51' M entum with odd number of teeth, median tooth trifid (if worn may appear simple) Beckidia

52(35') Penultimate body segment with 1-2 pairs of ventral tubules 53

52' Penultimate body segment without ventral tubules, although rudimentary knob-likeswellings may be present

53(52) M andible with a row of radially arranged striae near base

53' M andible without a row of radially arranged striae near base

54(53) M entum with median tooth projecting far beyond lateral teeth and 5th lateral tooth larger than 4th or 6th; pecten epipharyngis of 3 scales covered with minute spinules; 1 pair of ventral tubules
\qquad

(4) (4)

54 M edian tooth of mentum not projecting far beyond lateral teeth; pecten epipharyngis a broad multitoothed comb; 1 or 2 pairs of ventral tubules \qquad Chironomus(in part)

55(53') Premandible with 5 or more apical/subapical teeth .. Kiefferulus(in part)

55' Premandibleapically bifid 56

Kiefferulus

56(55) Seta subdentalis with toothed or fringed ventral margin
\qquad G oeldichironomus(in part)

Seta subdentalis simple

Goeldichironomus

57(56') M andible with 2 inner teeth; larvae mining in sponges, bryozoans or plants \qquad D emeijerea

57' M andible with 3 inner teeth; larvae freeliving or mining in decaying wood or plants

58(57') W idth of ventromental plate less than width of mentum; pecten epipharyngis with fewer than 10 usually blunt lobes \qquad D icrotendipes (in part)

58' Width of ventromental plate greater than or subequal to width of mentum; pecten epipharyngis a comb with 10 or more teeth or weakly tripartite and covered with minute spinules

59(58') D orsum of head with 1 medial labral sclerite anterior to frontoclypeal apotome; apotome with large apotomal fenestra \qquad Einfeldia (in part)

59' D orsum of head with 2 medial labral sclerites anterior to frontal apotome; apotome without apotomal fenestra \qquad Glyptotendipes(in part)

$60\left(52^{\prime}\right)$ M entum with median tooth or teeth sunken, lower than 1st or 2nd lateral teeth
61

60' M entum with median teeth higher than or subequal to 1st or 2nd lateral teeth
67

61(60) M edian tooth pale; antennae with large Lauterborn organs at apices of segments 2 and 3 \qquad Beardius(in part)

61' M edian tooth dark; antennae with Lauterborn organs at apex of segment 2 only

62(61) Antennae 6 segmented (with minute 4th segment); ventromental plates very broad; mandible with enlarged seta subdentalis and without seta interna and pecten mandibularis \qquad Fissimentum

62' Antennae 5 segmented; mentum and mandible not as above
$63\left(62^{\prime}\right)$ M entum with 2 median teeth or teeth worn so that mentum has broad U -shaped median gap .. 6

63' M entum with single median tooth

64(63) Anterior of frontal apotome narrowed, with 2 medial labral sclerites anterior to it; S 3 not placed on apotome \qquad H yporhygma

S 3

64' Anterior of frontoclypeal apotome broadened, with 1 labral sclerite anterior to it; S 3 placed anterolaterally on apotome

Polypedilum (in part)

65(63') Labrum with large brush of setae on each side; frontoclypeal apotomewith 3 medial sclerites anterior to it; mining in sponges
\qquad Xenochironomus

setal brush

65' Labrum without large anterolateral setal brushes; apotome with 1 or 2 medial labral sclerites ante rior to it; not mining in sponges

66

66(65') H ead capsule rectangular; mentum with median tooth deeply sunken; mandible without seta interna or pecten mandibularis; frontal apotomewith 1 medial labral scleriteanterior to it \qquad Stelechomyia

66' H ead capsule more rounded; mentum with medial tooth not as deeply sunken; mandible with seta interna and pecten mandibularis; frontal apotome with 2 medial labral sclerites anterior to it
\qquad
67 ($60^{\prime}, 66^{\prime}$) M entum (or at least median tooth) and mandibular teeth pale; mandible with 4 or more inner teeth and 1-2 dorsal teeth

67' M entum and mandibular teeth brown to black; mandible with 2-3 inner teeth and 1 dorsal tooth

68(67) Inner mandibular teeth grouped closely together; basal antennal segment shorter than segments 2-5(6); setae submenti placed posterior to ventromental plates; labral sclerite 5 simple \qquad Nilothauma

base of seta submenti

68' Inner mandibular teeth spread along inner margin; basal antennal segment longer than segments $2-5$; setae submenti placed on ventromental plates; labral sclerite 5 toothed apically .. Pagastiella
69(67') M entum with an odd number of teeth70
69' M entum with an even number of teeth or median tooth bifid 77
70(69) Pecten epipharyngis a single plate with multiple lobes or teeth

\qquad

70' Pecten epipharyngis comprised of 3 apically toothed platelets 75

71(70) Seta subdentalis with toothed or fringed ventral margin ... G oeldichironomus(in part)
$72\left(71^{\prime}\right) \mathrm{M}$ andible with basal row of radially arranged striae; frontoclypeal apotome with 1 medial labral sclerite anterior to it \qquad Chironomus(in part)

frontoclypeal apotome with 1medial labral sclerite

frontal apotome with 2 medial labral sclerites

72' Mandible without basal row of radially arranged striae; apotome with 2 medial labral sclerites anterior to it \qquad 73

73(72') M andible with proximal inner tooth reduced and distal inner tooth appressed to apical tooth \qquad Glyptotendipes (in part)

73' Mandible with inner teeth fully developed \qquad 74

$74\left(73^{\prime}\right)$ Width of ventromental plate less than width of mentum; pecten epipharyngis with fewer than 10 usually blunt lobes; frontal apotome usually with frontal pit (absent in 1 species) or semiquadrate apotomal fenestra

apotomal fenestra

74' Width of ventromental plate greater than width of mentum; pecten epipharyngis with 10 or more pointed teeth; frontal apotome without frontal pit (posterior margin of labral sclerite 1 may have a small pit); if apotomal fenestra present it is elongate-oval

Glyptotendipes (in part)

$75\left(70^{\prime}\right)$ M andible with deeply incised area at base of inner teeth; mentum strongly arched, with 11-13 teeth \qquad Endotribelos

75' M andible without incised area; mentum not strongly arched, with 15 teeth

77(69') M entum distinctive, with 1st lateral teeth much lower than median and 2nd lateral teeth
Polypedilum (in part)
77' M entum not as above \qquad 78

78(77') M entum with teeth mostly equal in size, gradually smaller laterally Polypedilum (in part)

78' M entum not as above 79

79(78') M entum rounded in outline; ventromental plates teardrop shaped, with setae submenti placed on plates Polypedilum (in part)

79' M entum and ventromental plates more linear; setae submenti placed posterior to ventromental plates

80(79') Ventromental plate with several strong crenulations on anterior margin; mentum with 14 teeth \qquad Chironomini genus IV

80' Ventromental plate with finely crenulated or smooth anterior margin; mentum with 14 or 16 teeth 81

81(80') M entum with 4 median teeth not separated by a linethan runs posteriorly to the anteromedian corner of the ventromental plates; dorsum of head with a frontoclypeal apotome with a straight anterior margin; S 3 setae placed on anterolateral lobes \qquad Polypedilum (in part)

81' M entum with 4 median teeth separated by a line than runs posteriorly to the anteromedian corner of the ventromental plates; dorsum of head with a frontal apotomewith straight anterior margin or a frontoclypeal apotome with a convex anterior margin; S 3 setae not placed on anterolateral lobes

$82\left(81^{\prime}\right)$ Ventromental plates 3 or more times wider than long, with posterolateral margin generally rounded; central 2 teeth of mentum may appear partially fused \qquad Endochironomus(in part)

82' Ventromental plates not as long and narrow, with posterolateral margins pointed 83
$83\left(82^{\prime}\right)$ Anterior margin of frontoclypeal apotome convex, with 1 medial labral sclerite anterior to it; distance from basal notch of inner mandibular teeth to insertion of seta subdentalis (a) at least $3 / 4$ distance from basal notch to apical notch (b), or mandible with deep incision proximal to basal inner tooth .. Phaenopsectra

83' Anterior margin of frontal apotome straight, with 2 medial labral sclerites anterior to it; distance from basal notch of inner mandibular teeth to insertion of seta subdentali s usually less than $3 / 4$ distance from basal notch to apical notch \qquad Tribelos

Genus Apedilum

DIAGN O SIS: Distinguished by the frontoclypeal apotome; SI with bases fused medially; SII with short basal segment; pecten epipharyngis a single plate; 6 segmented antenna, with alternate Lauterborn organs; mentum with pale bifid median tooth, and first lateral teeth reduced and appressed to larger second lateral teeth; well developed maxillary plate striations; and mandible with dorsal teeth.

N OTES: Two species are described from the N earctic; both are to be expected throughout eastern N orth America. Both species were formerly included in Paralauterborniella but were shown to be generically distinct by Epler (1988a). Larvae may be separated by maxillary plate striae counts. The maxillary plate lies dorsal to the ventromental plate; striae of the maxillary plate are particularly well developed in Apedilum larvae and are more noticeable than the striae of the ventromental plate. There are 90-105 striae in each plate in 4th instar A. elachistum larvae; 110-125 in A. subcinctum.

Larvae are found on submerged vegetation in ponds, canals and lakes, and the slowly moving portions of rivers; they can also be found in brackish water. Magy et al. (1970) reported A. subcinctum (as a Paralauterborniella) as a pest species due to mass emergences.

ADDIT IO N AL REFEREN CES: Epler 1988a; N olte 1995.

mandible

A. elachistum mentum

premandible

apotome and labral sclerites

antenna

DIAGN OSIS: Distinguished by the 2 anteromedial labral sclerites and frontal apotome; wide ventromental plates that touch medially; mandible with 4 flattened inner teeth, no dorsal tooth and an apically serrated seta subdentalis; and the premandible with brush and 6 teeth.

N OTES: Axarus is currently being revised by D an H ansen (University of M innesota). Three species of Axarus are recorded from the C arolinas by Caldwell et al. (1997). Although Roback (1963) offered a key for larvae (as Xenochironomus (Anceus)), it was based partially on unassociated specimens and relies mainly on antennal characters; in reality it is not possibleto identify the larvae to species without associated reared adult males. The larva figured by Roback (1963) as "Xenochironomus(Anceus) scopula ?Townes" is probably a Lipiniella. N ote that because larvae burrow through coarse sediments, the inner teeth of the mandible and the seta subdentalis are often worn; finding a larva with 4 inner teeth is an uncommon occurrence. It is more usual to find larvae with only 3 teeth (as figured below), 2 teeth or with no visible teeth. Larvae of the closely related Lipiniella almost always have 3 well defined, triangular inner teeth on the mandible, in addition to other characters, that make them easily separable from A xarus. All Axaruslarvae I've examined have a dense brush of setae on the anterolateral margin of the maxilla, laterad of the maxillary palp.

Larvae are found in the bottom sediments of lakes and rivers. Ferrington (1992) found the larvae of A. festivus living in burrows in shale/clay sediments.

ADDITIO N AL REFEREN CES: Roback 1963; Ferrington 1992.

apotome and labral sclerites

mentum

premandible

mandible

Beardius

DIAGNOSIS: Distinguished by the 5-6 (7 in described Neotropical species) segmented antennae, with alternate Lauterborn organs; mentum with pale median tooth that is lower than first lateral teeth; and mandible with 2 inner teeth and a dorsal tooth.

N OTES: Beardius has not been recorded from the C arolinas, but its presence in northern Florida indicates that it should eventually be found on the C oastal Plain. Three species are known from Florida, but apparently only B. truncatus Reiss \& Sublette occurs in the northern portion of the state and is thus the most likely candidate to occur in the Carolinas. The antennae of B. truncatus are 5 segmented and its apotome has more extensive granulation; the antennae of B. reissi Jacobsen (B. sp. A in Epler 1995) have 6 segments and its apotome has less extensive granulation. The pupal B. sp. B of Jacobsen \& Perry (2000) is B. breviculus Reiss \& Sublette; tentatively associated Iarvae of this species appear to be identical to B. truncatus, but may be smaller (Jacobsen, pers. comm.). Thus, any Beardius larva from southern Florida with 5 segmented antennae may be either B. truncatus or B. breviculus, pupae or adult males are needed for accurate identification.

Beardiuslarvae occur in seasonally inundated wet prai rie habitats and other intermittent wetlands, solution holes (Everglades), marshes, streams and rivers.

ADDITIO N AL REFEREN CES: Reiss \& Sublette 1985; Jacobsen \& Perry 2000.

B. truncatus mentum

B. truncatus premandible

B. reissi

B. truncatus

B. truncatus mandible
B. reissi

B. truncatus
antenna
apotome and labral sclerites

Genus Beckidia

DIAGNOSIS: The small, thin SI and large, bladelike S II; 7 segmented antennae; mandible with 2 inner teeth and long seta subdentalis but without seta interna; and the mentum with an odd number of similarly colored brown teeth, with median tooth trifid, distinguish this genus.

N OTES: Although this genus has been reported from the Southeast (H udson et al. 1990; C aldwell et al. 1997), I have not been able to examine those specimens or seen any other Beckidia material from this area. All putative Beckidia larvae I've seen from the Southeast have proven, upon my examination, to belong to other genera.

Because of weak sclerotization, the seven antennal segments are difficult to discern.
Larvae are recorded from the sandy bottoms of large rivers.
ADDITIO N AL REFERENCES: Sæher 1977a.

mentum

Genus Chernovskiia

DIAGNOSIS: Distinguished by the 8 segmented, weakly sclerotized antennae, concave mentum with pale teeth; small, coarsely striated ventromental plates; mandible with single large apical tooth and thin dorsal spine (tooth or modified pecten mandibularis?); and some body segments with apparent subdivisions.

N OTES: Oliver et al. (1990) record two species from the N orth and South C arolina, but C aldwell et al. (1997) questioned the records of Ch. amphitrite (Townes) for the Carolinas. Sather (1977a) listed Ch. orbicusfor South Carolina based on an unassociated larva. Because thelarva of Ch. amphitrite is unknown, no Chernovskiia larvae can realistically be identified at the species level without associated adults or pupae; unassociated larvae should be identified as "Chernovskiia sp.". Although Pinder \& Reiss (1983) stated that the mandible lacked a seta interna, this structure is present in most larvae with clearly visible mandibles that I've examined from Florida and the C arolinas.

Larvae are found in sandy substrata in running water.
ADDITIO N AL REFEREN CES: Sæther 1977a.

antenna

mentum
mandible

body segments

Genus Chironomus

DIAGN O SIS: Larvae are distinguished by the presence of a frontoclypeal apotome and one medial labral sclerite; pecten epipharyngis a single multi-toothed comb; mandible with basal radially arranged grooves and simple seta subdentalis; $0-1$ pairs of caudolateral tubules and 0,1 or 2 pairs of ventral tubules.

N OTES: At least 8 species of Chironomus in three subgenera (the subgenus Camptochironomus is not known from the Southeast) are known from the Carolinas, but are often difficult to identify to species as larvae; it may be necessary to utilize chromosomes or biomolecular data to accurately identify taxa.

Larvae are usually found in sediments, and can occur in highly polluted conditions or in relatively clean water. Larvae subjected to environmental pollutants may display deformities, especially of the mentum, mandibles and antennae. Larvae of the Ch . decorus group, Ch . riparius and Ch . stigmaterus are most often associated with high nutrient/low oxygen conditions. Chironomus larvae are frequently grown in lab cultures; the common lab culture species previously referred to as Ch . tentans in the N earctic has recently been described as a new species, Ch. dilutus(Shobanov et al. 1999); this taxon is not known from the C arolinas.

ADDIT IO N AL REFEREN CES: Lenat 1993a; Lindeberg \& W iederholm 1979; Ryser et al. 1985; Sublette \& Sasa 1994; Sublette \& Sublette 1974a, 1974b; Shobanov et al. 1999; Townes 1945; Webb \& Scholl 1985; W ülker \& Butler 1983; Wülker \& M orath 1989; W ülker et al. 1989; Wülker et al. 1971.

Key to Chironomuslarvae of the southeastern United States

1 A pair of caudolateral tubules present on the abdominal segment anterior to the segment bearing the ventral tubules (best seen on larvae before slide mounting) 4
ventral tubules

1' C audolateral tubules not present; ventral tubules present or absent
\qquad
$2^{\prime} \quad$ Length of antennal segment $1 /$ segment $2>3.5$ 3

3(2') M andible with 2 dark inner teeth; ventral tubules absent; last instar larvae huge, total length 30$55+\mathrm{mm}$; in lakes

Ch. major
3' M andible with 3 dark inner teeth; 2 pairs of ventral tubules present; last instar larvae smaller, total length much less than 30 mm ; in sewage treatment plants and streams downstream from them

Ch. riparius

4(1) M entum with simple median tooth and 14 lateral teeth; premandible with numerous teeth; known only from peninsular Florida

Ch. sp. "Florida"

0

4' M entum with trifid median tooth and 12 lateral teeth; premandible apically bifid with at most one additional small tooth near center; widespread 5

5(4') Anteromedial margin of ventromental plate with fine teeth 6

5' Anteromedian margin of ventromental plate smooth (minute teeth may be present beneath plate, but margin is smooth; or outer (lateral) margin of plate may be faintly crenulate)

6(5) M andible with 3 dark inner teeth \qquad Ch. plumosus

6' \quad M andible with 2 dark inner teeth (if 3rd inner tooth present, it is light in color) 7

7(6') Inner apex of ventromental plate directed medially
Ch. staegeri

7' Inner apex of ventromental plate directed caudad .. Ch. crassicaudatus

8(5') H ead usually with central dark dorsal stripe (often not present on 2nd and 3rd instars); central tooth of mentum usually basally constricted

Ch. stigmaterus

8' H ead without central dark dorsal stripe; median tooth of mentum straight at base or slightly constricted

9(8') Pecten epipharyngis with several thinner teeth interspersed among normal teeth; antenna appearing somewhat elongate, AR ≤ 1.5

9' Pecten epipharyngis with central teeth approximately equal, gradually becoming smaller laterally; antennae usually not appearing elongate, AR >1.5 \qquad 11

10(9) M entum with 1st and 2nd lateral teeth mostly separate \qquad Ch. cf. longipes (see N otes!)

M entum with 1st and 2nd lateral teeth mostly fused
\qquad Ch. austini (see N otes!)

11(9') M andible with one light and 2 dark inner teeth; AR 1.6-2.0 \qquad Ch. decorus group

11' M andible with 2-3 inner teeth which are variably colored; AR variable \qquad Chironomus sp. (may include other specimens of Ch . decorus group as well as other species of Chironomus)

N otes on species

Ch. (Lobochironomus) austini - This species was described from Florida as an Einfeldia, but I am now moving it to Chironomus(Lobochironomus) based on adult and larval characters. This species is very similar to Ch . cf. Iongi pes. I have examined a single larva of Ch . austini from N orth C arolina, where it was collected from an acidic (pH 3.8-4.3) stream in Juniper Swamp, O nslow Co.; thisistheonly specimen I've seen of this taxon other than the type series from Florida. Adults of Ch. austini are brown; those of Ch . cf. Iongipespalegreen. The pupa of Ch . austini is darker, theabdominal tergites marked with a pair of brown longitudinal lateral stripes not found on the pupa of Ch. cf. Iongi pes. Larvae of the two taxa are very similar. The mentum tooth character used for separation from Ch. cf. longi pes may not work on additional material; your most accurate identification of unassociated larvae may be simply "C hironomus(L obochironomus) sp.". M ore work is needed to determine the apparent differences between these two taxa.
Ch. (Ch.) crassicaudatus - A large species of lakes and ponds, closely related to Ch. staegeri. In addition to the ventromental plate character used in the key, the pecten epipharyngis of Ch. crassicaudatus has numerous smaller teeth among the large teeth; in Ch. staegeri the teeth are more similarly sized. C onsidered a nuisance species due to large emergences by Beck \& Beck (1969a).
$\mathrm{Ch} .(\mathrm{Ch}$.$) decorus group - Probably the most widespread and common member of the genus in the eastern$ United States. Several species may beincluded in the group, apparently separable only by chromosomes or biomolecular means; specimens may key out to either part of couplet 11 in the key above. 0 ften found in lotic situations as well as lentic habitats and usually indicative of low water quality. In older literature, this taxon was referred to as Chironomus (or Tendipes) attenuatus.
Ch. (L.) cf. Iongipes - The identity of thistaxon remains unclear; it probably is Ch. Iongipes but more work is needed. This taxon has been called Einfeldia dorsalis but the application of that name to this taxon is incorrect; the true dorsalisM eigen is a different species, an Einfeldia. A H olarctic species, Ch. longipeshas been recorded from the C arolinas by C aldwell et al. (1997) as well as from O ntario by O liver et al. (1990), and I have examined reared material from Florida and Georgia. The pupae of this species and Ch. austini do not appear to have the median gap in the hooklet row of tergite II as described for pupae of other Lobochironomus. See also Ch. austini above.
Ch. (Ch.) major - O riginally described only as a larva from Georgia. I have seen larvae from lakes in Georgia, K entucky and Tennessee. Adults and pupae aresimilar to Ch. plumosus. A member of the salinarius group, it lacks caudolateral and ventral tubules. It is the largest chironomid larva in the Southeast (perhaps all of N orth America), reaching lengths of 55 mm or more (although lengths of about 30 mm may be more the norm). N ote that the name Chironomus major is a junior homonym and will have to be replaced by an available name.
Ch. (Chaetolabis) ochreatus - The only member of the subgenus Chaetolabis known from the Southeast. I've examined specimens reared from a roadside pond in Georgia. Epler (1995) noted that some specimens in collections identified as Chaetolabis were D icrotendi pes simpsoni.
Ch. (Ch.) plumosus - A large species of lakes, apparently not common.
Ch . (Ch.) riparius - A species usually found in lotic, organically polluted conditions, such as streams below sewage treatment plants.
Ch. (Ch.) staegeri - This close relative of Ch. crassi caudatus is recorded from several localities throughout the Southeast but is apparently never common. See also Ch. crassicaudatus above.
Ch. (Ch.) stigmaterus - U sually easily recognized by the dark dorsal stripe on the head capsule and the basally constricted center tooth of the trifid median tooth; early instars may not have the dorsal stripe. It is tolerant of poor water conditions; I have reared it from sulfurous springs and small pools of water with mucky bottoms in Florida.

Ch. (Ch.) tuxis - Listed for Florida and South C arolina by C aldwell et al. (1997); I have not seen material of this taxon from the Southeast; the immature stages are undescribed.
Ch.(Ch.) sp. "Florida" - Known only from peninsular Florida, where the larvae inhabit the burrows made in Nuphar by the aquatic moth Bellura (Pyralidae)(Bob Rutter, pers. comm.); I've examined specimens from two localities. The species is unusual in that the median tooth is not trifid; it appears that the lateral teeth which are normally reduced and appressed to the median tooth to form the characteristic trifid median tooth of most Chironomus larvae have been separated and appear as normal lateral teeth. N ote also the numerous smaller teeth on the premandible; aChironomuslarva (pupal and adult stages unknown) with a similar premandible has been described the Amazon (Reiss 1974b).

At least three additional Chironomusspecies areknown from the Southeast. ChironomuscalligraphusG oeldi is known from Florida (Spies \& Reiss 1996), along with two additional undescribed species, based on chromosomal analysis (W ülker \& M orath 1989). Although not recorded from the Southeast, Ch. anonymus Williston might occur in Florida; it and Ch . calligraphus are very similar to Ch . decorus.

Genus Cladopelma

DIAGN OSIS: Distinguished by the mentum with the outer teeth enlarged and with the median tooth simple, or more usually notched or bifid, and not projecting strongly forward from the remainder of the mentum; pecten epipharyngis a simple plate; premandible with brush; mandible without pecten mandibularis; and antennae with basal segment length about 2.8 X to $>4 \mathrm{X}$ its width.

N OTES: All seven species described from the N earctic have been collected in the C arolinas. Adults of C . spectabile have been collected recently in South Carolina at the Savannah River Plant site; note that this species may be a junior synonym of the Palaearctic C. Iateralis (G oetghebuer). The descriptions of Beck \& Beck (1969b) are inadequate to identify the larvae. I have examined rearings of four species and could not find characters to separate them. Note that C. boydi (Beck) is now considered a junior synonym of C. forcipis (Rempel). Also see Parachironomus alatus, a species whose larva closely resembles a Cladopedma.

Larvae are usually found on or in bottom sediments in lakes and rivers; some species are tolerant of low oxygen conditions.

ADDITION AL REFERENCES: Beck \& Beck 1969b; Sæther 1977a; Townes 1945.

mentum

antenna

mandible

Genus Cladotanytarsus

DIAGN O SIS: D istinguished by the pecten epipharyngis of 3 apically serrated scales; premandible with more than 3 apical teeth; ventromental plates touching or almost touching medially; antennae usually with 2nd segment short, wedge-shaped, with large Lauterborn organs on short pedicels (but at least one species with long pedicels); and some claws of posterior parapods with inner teeth.

N OTES: Based on the larval taxa I've examined, at least eleven species occur in the Southeast. Bilyj \& D avies (1989) described seven new species from C anada, but included only adults and pupae. They found pupaeto provide the best characters for species separation and provided identification keys for the pupae of 20 H olarctic species.

Because of the similarity of male genitalia among Cladotanytarsus species (see Bilyj \& D avies 1989), all records of the supposedly widespread C . viridi ventris must be treated with skepticism. The genus is currently being revised by Dr. J.E. Sublette.

Larvae are found in many types of water bodies, including brackish water and hot springs. Bilyj \& Davies (1989) found that some species were intolerant to acidification, but noted that C. ae parthenus was apparently acidophilic.

ADDITIO NAL REFERENCES: Bilyj \& Davies 1989.

C. cf. davies mentum

C. sp. A mentum

C. sp. F mentum

C. sp. A antenna

C. sp. G antenna

Key to Cladotanytarsuslarvae of the southeastern United States

1 M entum with large, domed median tooth that extends anteriorly far past lateral teeth ...
C. sp. I

1' M edian tooth of mentum not domelike (see figures below) 2

2(1') M entum with broad median tooth \qquad

0

2' M entum with 3 subequal central teeth or trifid median tooth

0

3(2) M entum with 4th-6th lateral teeth displaced dorsally
C. sp. D

3' M entum without displaced lateral teeth

C. aeiparthenus

C. sp. G

0

4(3') \quad M entum width about $75 \mu \mathrm{~m}$; postmentum length about $130 \mu \mathrm{~m}$ C. aeiparthenus

4' \quad M entum width about $45 \mu \mathrm{~m}$; postmentum length about $85 \mu \mathrm{~m}$.. C. Sp. G

5(2') M entum with trifid median tooth \qquad

5' M entum with 3 teeth at center subequal

6(5) M entum with large 1st lateral tooth

6' M entum with reduced 1st lateral tooth 8

7(6) M entum with 2nd lateral tooth subequal to 3rd
\qquad

0

7' Mentum with $2 n d$ lateral tooth reduced C. sp. B

-
8(6') Apical tooth of mandible rounded \qquad C. sp. E

8' Apical tooth of mandible pointed
\circ
\qquad C. sp. F

9(5') Lauterborn organs on long pedicels, organs extending beyond last antennal segment \qquad C. sp. C

9' Lauterborn organs on short pedicels

10(9') M entum with 2nd lateral tooth subequal to 1st
\qquad

10 M entum with 2nd lateral tooth smaller, thinner than 1st C. sp. H

N ote that most of the taxa below are represented by larvae only. Associated pupae may demonstrate that several of these taxa may be synonyms. N ote also that wear on the median teeth of the mentum may alter their appearance!
C. aeiparthenus - I have reared this species, originally described from O ntario, Canada, from peninsular Florida. It is apparently parthenogenetic; only females and female pupae are known.
C. cf. davies - I have reared larvae from Florida which appear to be C. daviesi, but some pupae differ in having a higher number of taeniate setae on the anal lobes (20-21, instead of the $16-19$ noted in the original description). Dr. Sublette (pers. comm.) considers this taxon to be an undescribed species. I've seen material from Florida (reared), N orth C arolina and South Carolina. The apical tooth of the mandible is broadly rounded.
C. sp. A - Usually a lentic species, usually with a darkened postmentum. I've seen material from Florida, N orth C arolina and South C arolina. The apical tooth of the mandible is pointed.
C. sp. B - The trifid median tooth and reduced second lateral tooth are distinctive for this species. I've examined reared material from a small pond in N orth C arolina and a river discharge into a lake in South C arolina. Also known from Alabama and Florida. The apical tooth of themandible ispointed.
C. sp. C - This species is unusual in that the Lauterborn organs are placed on long pedicels; otherwise it appears to be a typical Cladotanytarsus. I've seen material only from Alabama streams. The apical tooth of the mandible is broadly rounded.
C. sp. D - The displaced 4th, 5th and 6th lateral teeth of the mentum are distinctive, but may represent a deformity, although I've seen material from three sites in N orth Carolina and the taxon is also known from Florida. The apical tooth of the mandible is broadly rounded.
C. sp. E - I've examined material of this taxon from N orth and South Carolina.
C. sp. F - I've seen material from K entucky and N orth C arolina; also known from Florida.
C. sp. G - This taxon is known from a single larval-pupal association from a stream in northern Florida. Although the larva strongly resembles that of C . ae parthenus, and apparently differs from it only in size, the pupa is entirely different from C . aeiparthenus and definitely represents another species.
C. sp. H - Very similar to C. cf. davies, but with a smaller, thinner second lateral tooth on the mentum; it may represent a variant of that species. I've seen material from N orth and South C arolina.
C. sp.I - Thedistinctive domed median tooth of thementum will identify thistaxon, known from Florida and N orth C arolina. The apical tooth of the mandible is rounded.

DIAGN O SIS: Distinguished by the simple or plumose frontoclypeal setae; coarsely granulate frontoclypeal apotome, without tubercles; antennal base with simple spur; Lauterborn organs on pedicels arising from apex of antennal segment 2; widely separated, squat ventromental plates; procerci without spurs; and portable sand case.

N OTES: O nly oneN earctic species, C. brevicosta, islisted for thegenus by O liver et al. (1990). Stempelina ranota Webb, described from O ntario (Webb 1969), is a junior synonym of C. brevicosta (Sublette, pers. comm.). The taxonomy of Constempellina, Neostempellina and Stempellina in North America remains confused. Based on larval characters, two larval taxa from the eastern US can be tentatively placed in C onstempellina; C. sp. A isknown from N orth C arolina. It is characterized by thick, plumose frontoclypeal setae. C onstempellina sp. B, known to me only from reared material from Ohio and a single larva from Alabama, has thinner plumose frontoclypeal setae, similar to those illustrated for C. sp. 2 in Oliver et al. (1978: fig. 97). H owever, the pupa of C. sp. B does not fit any described H olarctic genus (it appears closest to N eostempellina or Zavrelia) and the adult appears to be closest to Stempel inella! A revision of H olarctic C onstempellina, N eostempellina and Stempellina, utilizing all life stages, is necessary to solve the problems of thetaxonomy of this group. Larvae identified as C onstempellina from Florida by Epler (1995) belong with Stempel lina sp. C; the mesal palmate processes on the antennal bases were obscured by detritus. See Stempellina for information on this enigmatic taxon.

Larvae are stream dwellers; they construct portable sand cases similar to those of Stempellina.
ADDITIO N AL REFEREN CES: Brundin 1948; Ferrington 1995; Webb 1969.

Genus Cryptochironomus

DIAGN O SIS: Distinguished by the 5 segmented antennae; well developed SI; trifid pecten epipharyngis; premandible with weak to moderatebrush and several apical teeth; mandiblewithout pecten mandibularis; mentum with clear rounded median tooth flanked by dark, pointed lateral teeth that are angled inward; and wide, laterally tapered ventromental plates.

N OTES: The genus is badly in need of a revision utilizing all life stages. It is not possible to identify Cryptochironomus larvae to species without an associated pupa or adult male; thus any records based solely on larvae must be regarded with skepticism. Curry (1958) offered a key to larvae, but some of his material was misidentified and more species are present than were keyed; Roback's (1957) key to larvae is also not reliable. Caldwell et al. (1997) list 11 described species for the Southeast, six of which are recorded for the Carolinas. With the exception of identifications based upon pupae, many of those records should be discounted. Identifications of "C. fulvus" mean little; M ason (1985b) found four species, based mainly on pupal characters, within the C. fulvus complex (or group) of species. Larvae of several species (blarina, eminentia, ponderosus) have a very long apical tooth on the mandible. Larvae from the Carolinas I've examined identified as C . blarina are most likely C . ponderosus, but pupae are required for verification; it is easy to mistake scales of the hypopharynx for the small "teeth" supposedly located on the median tooth of the mentum as described by Curry (1958).

Two other taxa referred to as "Cryptochironomus" by Caldwell et al. (1997) do not belong there: "Cryptochironomus" Pagast is Kloosia and "C. nr. macropodusLyakhov" is H arnischia complex genusC. See also H arni schia complex genus D .

Cryptochironomus larvae are mostly benthic and seem to prefer sandy substrata.
ADDITIO N AL REFERENCES: Curry 1958; M ason 1985b; Sublette 1964; Townes 1945.

Genus Cryptotendipes

DIAGNOSIS: Distinguished by the distinctive mentum, with outer lateral teeth enlarged and with median tooth simple or notched laterally and projecting strongly forward from remainder of mentum; pecten epipharyngis a plate with 3 shallow rounded lobes; premandible with brush; mandible without pecten mandibularis; and antenna with length of basal segment about 2-2.5X its width.

N OTES: Three species are recorded for the Southeast and from the C arolinas. In addition, I have reared an undescribed species from Lake 0 keechobee, Florida, in which the male resembles C. emorsus but the pupa is radically different, bearing huge setae on the abdominal tergites and sternites. Confusion exists over separating C . casuarius from C . emorsus in the adult stage; the material described as C . casuarius by Beck \& Beck (1969b) appears to beC. emorsus. Sæther (1977) offered a key to known H olarctic adults but his Fig. 34B of the genitalia of C. emorsus appears to be inaccurate or the specimen illustrated is misidentified. Cryptotendipes larvae are not identifiable at the species level.

Cryptotendi peslarvae are found in lentic and lotic situations; they are usually benthic and appear to tolerate organically enriched habitats.

AD DITION AL REFEREN CES: Sæther 1977a; Townes 1945.

mentum

mandible

antenna

Genus Demeijerea

DIAGN OSIS: Distinguished by the frontoclypeal apotome with apotomal fenestra; pecten epipharyngis a single plate with multiple teeth; bifid premandible; mandible with 2 inner teeth, without basal strize; and a single pair of ventral tubules.

N OTES: Of the four species placed in the genus in the Nearctic, three species are recorded for the Southeast and from the Carolinas. Heyn (1992) noted that of the four species placed in the genus by Townes (1945) (as a subgenus of Glyptotendi pes), only two, D. brachiali sand D. atrimana aretrueD emeijerea; the other two species, D. abrupta (Townes) and D. obrepta (Townes), do not appear to belong to D emejjerea or Glyptotendi pes.

Larvae are not often encountered because they mine in freshwater sponges, bryozoans and plants such as Bur-reed, Sparganium americanum (Nuttall), habitats not usually collected by benthologists. N ote that mouthparts may be quite worn due to mining activities. At present it is not possible to identify larvae to species.

ADDITIONAL REFEREN CES: H eyn 1992; Townes 1945.

mandible

frontoclypeal apotome

Genus Demicryptochironomus

DIAGNOSIS: Distinguished by the small, thin SI; 7 segmented antennae; premandible without a brush; mentum with mostly clear, apically round median tooth flanked by 7 pairs of usually dark, pointed lateral teeth that are angled inward; wide, laterally tapered ventromental plates; and mandible with pecten mandibularis.

N OTES: Two described species are known from North America; D. cuneatus is recorded from the C arolinas. I have examined what appear to be four larval types from the eastern US; they are keyed below.

Larvae are recorded as predators on oligochaetes; most guts I've examined were filled with sandy detritus. L arvae occur in sandy substrata in lakes, rivers and streams.

AD DITIO N AL REFEREN CES: Reiss 1988a; Sæther 1977a; Townes 1945.

K ey to D emicryptochironomus larvae of the southeastern United States

1 M andible with apical tooth and inner teeth long and thin \qquad D. sp. C

1' M andible with apical tooth and inner teeth shorter and squatter .. 2

2(1') Antennal segment 2-2.25 times as long as wide \qquad D. sp. A

2' Antennal segment 2 as long as wide or wider than long \qquad 3

D. sp. A

3(2') Antennal segment 2 as long as wide \qquad D. sp. B

3' Antennal segment 2 wider than long \qquad D. cuneatus

N otes on species

D. cuneatus - The only described species known from the Southeast, but because it was the only species described as a larva (Sæether 1977a), many records may apply to one or several of the other taxa keyed here. H udson et al. (1990) posited that this was the only species of Demicryptochironomusto occur in lakes; all material I've examined has come from rivers and streams. I've examined larval material from N orth Carolina and Pennsylvania, and have adults from Alabama.
D. sp. A - I've examined larvae of this taxon from streams in N orth C arolina.
D. sp. B - This taxon may be a variant of D. cuneatus; reared material is necessary to determine its true status. I've seen material from streams in Florida, N orth C arolina and Pennsylvania.
D. sp. C - This taxon is easily recognizable by its distinctive mandible, with its long, thin and sharply pointed apical and inner teeth. A river and stream species, I've examined material from Georgia, N orth C arolina and O hio.

Genus D icrotendipes

DIAG N O SIS: Southeastern larvae are distinguished by the frontal apotome which usually has a frontal pit (sometimes absent) or an apotomal fenestra (one species), with 2 median labral sclerites anterior to the apotome (an extralimital species, D. Iobiger (Kieffer), has a frontoclypeal apotome); pecten epipharyngis with fewer than 12 teeth/lobes (usually 3-6); mentum with an odd number of teeth; ventromental plate width less than width of mentum; and narrow triangulum occipitale. Two southeastern species may have a single pair of ventral tubules.

N OTES: Eleven described species are known from the Southeast (including Tennessee); ten species are recorded from the Carolinas. There are two undescribed species in Florida, one of which, D. sp. A, will probably eventually be found on the Coastal Plain in the Carolinas. Larvae of some D icrotendi pes species have often been misidentified due to incorrect keys (Beck 1976, 1979; Webb \& Brigham 1982); thus older literature records must be veiwed with skepticism. Several species are distinctive as larvae, but others must be associated with pupae or adult males for correct identification.

Larvae are found in brackish and fresh water, in lotic and lentic conditions, in pristine or degraded habitats. Larvae occur in sediments but are most often encountered on vegetation.

ADDITIONAL REFERENCES: Epler 1987, 1988b.

D. modestus mentum

D. simpson mentum

pecten epipharyngis

D. neomodestus antenna
D. neomodestus apotome and labral sclerites

Key to D icrotendipes larvae of the southeastern United States

1 Apotome with large oval-quadrate apotomal fenestra near anterior margin; ventromental plates usually with more than 40 strial ridges
\qquad D. leucoscelis

apotomal
fenestra

1' Apotome without apotomal fenestra, but usually with frontal pit; ventromental plates with less than 40 strial ridges \qquad 2
frontal pit

2' \quad M entum with second lateral tooth not fused or cloesly appressed to first lateral tooth for most of its length 6

3(2) Anterior margin of ventromental plate smooth; antennal blade longer than flagellum; anal tubules reduced; brackish water/estuarine species \qquad D. lobus
 antennal blade subequal to or shorter than flagellum; anal tubules not reduced; mostly freshwater species (but some may occur in brackish water) \qquad 4

4' 6th lateral tooth of mentum distinct, not fused/appressed to 5th lateral tooth
5(4') Large species (4th instar only!): postmentum length $>250 \mu \mathrm{~m}$; mentum width > $150 \mu \mathrm{~m}$; anterior margin of frontal apotome mostly smooth; pecten mandibularis with more than 12 setae (usually 14); head capsule integument appears coarsely granular at 400X; first lateral teeth of mentum turn out slightly; un-
 common
D. fumidus(in part)

5' \quad Smaller species (4th instar only!): postmentum length $<250 \mu \mathrm{~m}$; mentum width $<150 \mu \mathrm{~m}$; pecten mandibularis with 12 or fewer setae (usually 9); anterior margin of frontal apotome tuberculate; head capsule integument usually not coarsely granulate, or if so, then granulation restricted to roughly longitudinal bands/spots; first lateral teeth not directed outward; common in running water

6(2') Anterior margin of ventromental plates coarsely scalloped, plate with < 22 strial ridges; head capsule usually pale yellow with strong reticulation D. thanatogratus

6' Anterior margin of ventromental plates not as scalloped, plate with >22 strial ridges; head capsule color variable, if pale yellow then without strong reticulation \qquad 7

7(6') M andible with giant seta subdentalis; known only from peninsular Florida \qquad D. sp. B

7' $\quad \mathrm{M}$ andible with normal seta subdentalis 8

8(7') Proximal tooth of mandiblesaddle-shaped or with 2 points OR with inner surface of mandible adjacent to proximal tooth with deep semicircular incision \qquad 9

9(8) 6th lateral tooth of mentum rounded and fused/appressed to 5th lateral tooth; inner surfcae of mandible adjacent to proximal tooth with deep semicircular incision
D. simpsoni

9' 6th lateral tooth of mentum distinct, pointed; mandible without deep incision \qquad D. Iucifer

10(8') 6th lateral tooth of mentum rounded and fused/ appressed to 5th lateral tooth D. nervosus (some 3rd instar D. smpsoni will key here)

10' 6th lateral tooth of mentum distinct, pointed, not appressed to 5th lateral tooth 11
$11\left(10^{\prime}\right)$ Large species (4th instar only!): postmentum length $>250 \mu \mathrm{~m}$; mentum width $>150 \mu \mathrm{~m}$; pecten mandibularis with morethan 12 setae(usually 14); head capsuleintegument appearscoarsely granular at 400X; first lateral teeth of mentum turn out slightly; uncommon \qquad D. fumidus(in part) (some D. fumidus will key here; see couplet 5 and N otes)

11' Smaller species (4th instar only!): postmentum length $<250 \mu \mathrm{~m}$; mentum width $<150 \mu \mathrm{~m}$; pecten mandibularis with 12 or fewer setae (usually 9); head capsule integument usually not coarsely granulate, or if so, then granulation restricted to roughly longitudinal bands/spots; first lateral teeth not directed outward; common

12(11') Ventromental plate with 28-36, mean 32, strial ridges; postmentum usually darkened, but occasionally pale
D. modestus

12' Ventromental plate with 23-29, mean 25, strial ridges; postmentum usually pale, occasionally slightly darkened near posterior margin
D. tritomus

N otes on species

D. fumidus - An uncommon species that is sometimes difficult to identify without associated pupae or adult males. This species is keyed twice in the key due to variation of the first and second lateral teeth of the mentum. The head capsule of D. fumidus usually has a yellowish-reddish-brown cast, unlike most other southeastern species which are usually much paler and, with the exception of D. leucoscelis and some members of the D. nervosus group, do not show much reddish-brown. The head capsule integument appears coarsely granular; this is best seen on a phase contrast scope using the lowest power objective lens (on my scope 4X) but with the phase device set to match a higher power objective (on my scope 400X); the granularity "fluoresces". Although Epler (1987) recorded the species from the C arolinas based on adults and pupae, all larvae I've seen identified as D. fumidus in the N CD EN R collection have been either D. modestus or D. neomodestus.
D. leucoscelis - An uncommon species, often found in enriched habitats, most often ditches, ponds, marshes and slow flowing streams. I've also seen a Florida specimen reared from a bromeliad. The head capsule is light reddish brown with a yellowish cast. This is the only known N orth American species with an apotomal fenestra. The larva sometimes has a single pair of ventral tubules. It is not keyed correctly in Beck $(1976,1979)$.
D. lobus - A brackish water/estuarine species, I have found it to be most abundant in salt marshes, coastal swamps and near the mouths of rivers. The second lateral teeth are very small, much smaller than those of D. neomodestus, and the antennal blade is longer than the flagellum. The species is not keyed correctly in Beck $(1976,1979)$. the taxon referred to in that key as D . Iobusis most probably D. thanatogratus.
D. lucifer - A member of the D. nervosusgroup that is usually not common. As with the closely related D. simpsoni, D. lucifer is tolerant of organic wastes. This species was referred to as D. nervosusTypel in Simpson \& Bode (1980).
D. modestus - The most common species of the genus throughout most of N orth America, but sometimes difficult to identify correctly in any life stage. The larval stage can easily be confused with D. neomodestus (with which it may hybridize?) and D. tritomus. M any specimens of D. modestushave dark markings on the dorsum of the head and postmentum, but these markings are often absent.

N ote that several other Dicrotendipes species may have dark markings on the head capsule. Larvae of D. tritomusaredifficult to separatefrom D. modestuslarvae without dark markings; you will have to resort to associated pupaefor accurateidentifications of such specimens. See al so D. neomodestus. Larvae of D. modestus are found in a wide variety of (usually) lentic habitats, including brackish water, and can tolerate moderate levels of organic pollution.
D. neomodestus - A common species of rivers and streams, somewhat tolerant of high nutrients/organic wastes. Although most specimens have a dark dorsal head stripe and darkened postmentum, occasional populations occur without such markings. The roughly tuberculate anterior margin of the frontal apotome is a good character for separation from some other species, especially D. modestus larvae in which the second lateral tooth of the mentum may appear to be fused to the first lateral tooth; some D. modestus may have tubercles on the anterior margin of the apotome, but rarely as large and numerous as those on D. neomodestus.
D. nervosus - An uncommon species in the Southeast, sometimes not clearly separable from D. simpsoni, especially in earlier instar larvae. Records of D. nervosus prior to my revision of the Nearctic D icrotendipes (Epler 1987) must be viewed with skepticism, since at least two other species (D. lucifer and D. simpsoni) have been mistakenly identified as D. nervosus. N ote that second or third instar larvae of D. lucifer and D. simpsoni usually lack the modifications of the proximal inner mandibular teeth and will key to D. nervosus. Fourth instar larvae are necessary for an accurate identification, which should ideally be backed up by associated adult males. H ead capsule coloration of most D . nervosus group members is usually a darker yellow-brown than species such as D . modestus and D. tritomus.
D. smpsoni - A common species normally associated with high nutrient levels or low dissolved oxygen. N ote that second or third instar larvae usually lack the modifications of the proximal inner mandibular teeth and will key to D. nervosus (q.v.). Larvae sometimes have a single pair of ventral tubules. This species was called Einfeddia by M ason (1973) and D. nervosusType II in Simpson \& Bode (1980).
D. thanatogratus - This uncommon species of rivers and streams is recorded from South Carolina by C aldwell et al. (1997), but I have not seen any material of this species from anywhere but Florida. Since it was described from northern Florida (Epler 1987), it probably does occur throughout the Southeast, but all larval specimens I've examined that were identified as D. thanatogratus by benthologists from sites in the Southeast were D. modestus or D. tritomus.
D. tritomus - Epler (1988: 12) considered D. incurvus(Sublette) a junior synonym of D. tritomus. Larvae of D. tritomusare difficult to separate from D. modestuslarvae without dark markings; you will have to resort to associated pupae or adult males for accurate identifications of such specimens.
D. sp. A - An undescribed species that I originally reared from Lake O keechobee in southern Florida, I have since found it in the Suwannee River basin in northern Florida. In general, any midge found in the Suwannee River basin should also occur on the Coastal Plain in the Carolinas, so I expect that D.sp. A will eventually befound there. Adult males are very similar to D. modestus, separable only by the reduced number of dorsocentral and squamal setae. This species will be described in a forthcoming publication.
D. sp. B - Apparently an undescribed species, known only as a larva from peninsular Florida.

Webb \& Brigham (1982) keyed D. aethiops in their key to Dicrotendipes, but this was based on a misidentification of D. fumidus in Webb (1972) (seeEpler (1987). Dicrotendi pesbotauruswas recorded for Tennessee by Epler (1987) based on an adult; the immature stages are undescribed.

Genus Einfeldia

DIAGN O SIS: Southeastern larvae are distinguished by the frontoclypeal apotome, which may have an apotomal fenestra; pecten epipharyngis either a simple comb, 3 separate scales bearing minute spinules, or weakly tripartite and bearing minute spinules; and usually one pair of ventral tubules.

N OTES: Einfeddia is in need of revision; generic limits are unclear. N ote that Einfeddia species groups B and C of Pinder \& Reiss (1983) are now placed in Chironomus. O ne southeastern species formerly placed in Einfeldia, E. austini, is now moved (in this manual) to Chironomus (Lobochironomus). I have seen only two species of Einfeldia from the Southeast; prior records of E. pagana probably refer to E. sp. A.

Larvae are found most often in eutrophic standing water, but can occur in lotic situations.
AD DITION AL REFEREN CES: Oliver 1971; Sublette 1964.

E. natchitocheae mentum

E. sp. A mentum

E. natchitocheae

E. sp. A

K ey to Einfeldia Iarvae of the southeastern United States

1 M edian tooth of mentum projecting far beyond first lateral teeth; 5th lateral tooth of mentum larger than 4th and 6th; dark spot at base of antenna; apotome without fenestra; mandible with 2 inner teeth and wide radial grooves near base; pecten epipharyngis composed of three small scales \qquad E. natchitocheae

1' M edian tooth and 5th lateral tooth of mentum not as above; no dark spot at base of antenna; apotome with fenestra; mandible with 3 inner teeth and without grooves near base; pecten epipharyngis a simple comb or weakly tripartite scales \qquad 2

apotomal fenestra

2(1') Pecten epipharyngis a simple multitoothed comb \qquad E. pagana (see N otes)

2' Pecten epipharyngis weakly tripartite and covered with minute spinules E. sp. A

N otes on species

E. natchitocheae - A common and widespread species of eutrophic lakes and ponds on the C oastal Plain, but it also occurs in streams and rivers. This is a species that is easily identified while still in fluid preservative or alive; the darkened postmentum, spots at the base of the antennae and the single pair of ventral tubules are distinctive.
E. pagana - This species is recorded for North Carolina by Hudson et al. (1990) and Caldwell et al. (1997), apparently based on an adult male with pupal exuviae from a pond, determined by J.E. Sublette. H owever, my examination of this specimen indicates that it is an Einfeldia sp. A; the pupal exuviae and adult are similar to reared material of E. sp. A from Georgia and differ from reared material of E. pagana I've examined. I have not seen any material of E. pagana from the Southeast.
E. sp. A - An undescribed species that I've seen from Florida, G eorgia and N orth C arolina. I've examined material from wetlands, lakes and streams. Broughton C aldwell has provided complete rearings of this taxon from Georgia; it will be described in a forthcoming publication.

Einfeldia brunneipennis and E. chelonia al so occur in the Southeast; their immature stages are undescribed.

Genus Endochironomus

DIAGN O SIS: Distinguished by thementum with the 3 (rare) or 4 (usual) median teeth separated from the lateral portion of the mentum by a distinctive line which runs posteriorly from the median teeth to the anteromedial corner of the ventromental plates; ventromental plates with anterior and posterior margins parallel for most of their length, and lateral apex rounded; and the tuberculate anterior margin of the cardo.

N OTES: Grodhaus (1987a) reviewed the genus for N orth America. Three species of Endochironomus occur in the C arolinas; one, E. nigricans, is common; the other two are uncommon to rare. The three species can be separated by their menta.

A single specimen of E. sp. A has been found in brackish water in North C arolina (Eaton 1994); it is identified by its three median teeth. I havealso examined a specimen of E. sp. A from northeastern Florida. Grodhaus (1987a) described ataxon from O regon with 3 median teeth from larvae only, and noted that it could be placed in the E. signaticornis group, a group established by Lenz (1921), not Grodhaus (1987a) as alluded to in Eaton (1994). Grodhaus's record is the only other record of this formerly Palaearctic group in N orth America. N ote that the name "signaticornis" is now considered a nomen dubium and should not be used.

The other two species are members of Lenz's E. nymphoides group; they are separated by the amount of dark coloring of the mentum: in E. nigricans the coloring is more extensive and extends more posteriorly; in E. subtendens the dark coloring is restricted mostly to the teeth.

Larvae are often associated with moderate eutrophic conditions and occur in lentic and lotic situations.
ADDITIONAL REFERENCES: Grodhaus 1987a.

E. sp. A, mentum and cardo

E. nigricans, mentum and cardo

E. subtendens, mentum and cardo

Genus Endotribelos

DIAGN OSIS: Distinguished by the strongly arched mentum, with 3 large central teeth; with second lateral teeth of mentum very small and mostly fused to first lateral teeth (following Grodhaus's (1987a) terminology for the mental teeth); and the mandible with large incised area at the base of the inner teeth.

N OTES: A single species, E. hesperium, is known from the Southeast. Caldwell et al. (1997) record this species from South Carolina in addition to previous records from Florida. Grodhaus (1987a) ettablished Endotribelos as a new genus and included the previous described Tribelos hesperium in it. It has been assumed (by Grodhaus 1987a and others) that southeastern US larvae are E. hesperium but I have never seen a reared/associated specimen of this taxon from the Southeast. Several other species are known from C entral America (Sublette\& Sasa (1994) and my unpublished data and specimens), including one that has a mentum with an even number of teeth and a mandible that lacks the deep incision of E . hesperium. I have specimens of another undescribed species from C osta Rica that closely resembles E. hesperium.

Larvaeare associated with aquatic macrophytes; G rodhaus (1987a) found larvaeinsidetheleaves of Sagittaria and Typha in California.

ADDITION AL REFEREN CES: Grodhaus 1987a; Sublette \& Sasa 1994.

E. hesperium mentum

E. hesperium antenna

E. hesperium mandible

Genus Fissimentum

DIAGN OSIS: Distinguished by the 6 segmented antenna, with Lauterborn organs at apex of segment 2 only; mentum with deeply sunken pair of median teeth; long setae submenti that extend anteriorly past the mentum; and mandible with large seta subdentalis but without pecten mandibularis and seta interna.

N OTES: Fissimentum was established as a new genus by Cranston \& Nolte (1996) for some South American and Australian taxa. O ne southeastern US larva can be placed in Fissimentum, originally referred to as Tendipedini genus A by Roback (1966c). N ote that Roback's first reference to a Tendipedini sp. A (Roback 1953: 99, 120; fig. 27) refers to Stelechomyia perpulchra; the mentum has a single median tooth. Fissimentum was referred to as Chironominae genus A in Epler (1995); in this manual the taxon is now called Fissimentum sp. A. The pupa and adult of F . sp. A remain unknown. There is nothing similar to the adult described by Cranston \& Nolte (1996) as F. dess catum known from the United States; the identity of F. sp. A remains a mystery.

Larvae are reported from sediments of rivers and lakes; Cranston \& N olte (1996) noted that some larvae were drought tolerant.

ADDITION AL REFERENCES: Cranston \& Nolte 1996.

mentum

antenna
mandible

Genus Gillotia

DIAGN OSIS: Thethin SI; small, weakly trilobed pecten epipharyngis; 5 segmented antenna; premandible with 6 teeth and without brush; mandible without pecten mandibularis; mentum with pale median tooth and obliquely arranged lateral teeth; and extremely wide ventromental plates distinguish this genus.

N OTES: The single southeastern US record of the single Nearctic species, G. alboviridis, is based on a pupal exuviae from South Carolina. The specimen illustrated below was collected in Ohio. N ote that its ventromental plates are much wider than those illustrated for Gillotia in Sæther (1977a) and Pinder \& Reiss (1983); the plates curve around the lateral margin of the head capsule.

N othing is published on the ecology of Gillotia.
ADDITION AL REFERENCES: Sæther 1977a.

mentum with ventromental plates curling around head capsule

antenna

labrum

premandible

Genus Glyptotendipes

DIAGNOSIS: Distinguished by the frontal apotome (thus having two labral sclerites anterior to it); pecten epipharyngis a comb with 10 or more sharp teeth; usually simple seta subdentalis (may be notched or roughly serrated, but never fringed with small teeth as in Goeldichironomus); mentum with 13 teeth, width usually less than width of one ventromental plate, wide triangulum occipitale; and no, rudimentary, or one pair of ventral tubules.

N OTES: Glyptotendi pes is being revised by M ichael H eyn (FDEP, Tallahassee, FL); hopefully his revision will bepublished soon. H ehas graciously provided material and comments regarding this genus. N ote that dueto taxonomic confusion and variation among species, many earlier records of several species (especially G. Iobiferus) must be viewed with skepticism. H eyn (1992) established three subgenera that replaced the subgenera used by Townes (1945) and species groups A-C of Pinder \& Reiss (1983). All three subgenera occur in the Southeast; the majority of southeastern taxa are members of the subgenus G. (Glyptotendipes); one species, G. amplus, is placed in the subgenus G. (Trichotendipes) and two species, G. dreisbachi and G. seminole are placed in the subgenus G. (Caulochi ronomus).

Larvae occur in usually eutrophic standing and slow moving water, where they are found in or on sediments and aquatic plants; several species are miners in plants or decaying wood (or they live in burrows in plant material madeby other organisms). At least one common species, G. paripes, is considered a nuisance in the Southeast because of mass emergences from eutrophic ponds and lakes near human habitations.

ADDITIO N AL REFEREN CES: H eyn 1992; Sublette \& Sublette 1973; Townes 1945.

G. sp. B mentum

G. (Trichotendipes) amplus apotome

G. (Caulochironomus) seminole apotome and labral sclerite 1

G. paripes mentum

G.(Glytptotendipes) sp. B apotome and labral sclerite 1

Key to Glyptotendipes larvae of the southeastern United States

1 Anterior margin of ventromental plate smooth or almost so (tiny points may be visible near margin at high magnification)

2

1' Anterior margin of ventromental plate noticeably crenulated \qquad 4

2(1) M andible with proximal inner tooth reduced/vestigial and distal tooth appressed to apical tooth; apotome with oval apotomal fenestra \qquad G. amplus

2' \quad M andible with 3 well developed inner teeth;

3(2') Ventromental plates separated by less than the width of the median tooth of the mentum; at most rudimentary ventrolateral tubules present; head capsule with dark mark below mandible \qquad
\qquad G. paripes

3' Ventromental plates separated by width of median tooth of mentum (or more); well developed ventrolateral tubules present; head capsule without dark mark below mandible \qquad G. barbipes

4(1') Proximal inner tooth of mandible subequal to middle tooth; pecten epipharyngis with blunt teeth and may appear weakly tripartite; known only from south peninsular Florida G. sp. E

4' Proximal inner tooth of mandible smaller than middle tooth; pecten epipharyngis a comb with irregular or sharp teeth; more widespread distribution 5

$5\left(4^{\prime}\right) 3$ central teeth of mentum project forward from other lateral teeth; posterior margin of labral sclerite 1 deeply concave \qquad G. (Caulochironomus) sp.
(2 species, G. dreisbachi and G. seminole, apparently inseparable as larvae, key here)

5' M entum with teeth in an even arch; posterior margin of labral sclerite 1 with small concave notch

6(5') Well developed ventrolateral tubules present (at least twice as long as wide) \qquad 7

6' Ventrolaterla tubules absent or rudimentary 8

7(6) Subapical lateral outer lateral margin and dorsal surface of mandible smooth; ventrolateral tubules at least 2 X length of anal tubules; mines in decaying wood G. tetaceus

7' Subapical lateral margin and dorsal surface of mandible rugose or adorned with low, mound-like tubercles; ventrolateral tubules subequal to length of anal tubules; not restricted to decaying wood
G. sp. F

8(6') W idth of median tooth of mentum subequal to distance between ventromental plates
G. sp. B

8' W idth of median tooth of mentum about 0.5-0.7 distance between ventromental plates \qquad 9

G. meridionalis

G. sp. G
$9\left(8^{\prime}\right) \quad$ 4th instar only: mentum width $<200 \mu \mathrm{~m}$; postmentum length about $300 \mu \mathrm{~m}$ \qquad G. meridionalis

9' 4th instar only: mentum width $>200 \mu \mathrm{~m}$; postmentum length about $400 \mu \mathrm{~m}$ \qquad G. sp. G

N otes on species

G. amplus - I've seen larvae of G. amplusfrom N orth C arolina (where they were misidentified as Einfeldia sp.), Florida and M ississippi (wherethey weremisidentified as D icrotendipessp.); H eyn (pers. comm.) has seen specimens from South C arolina. This species occurs in rivers and streams as well as the usual lentic habitats of other Glyptotendipes.
G. barbipes - A species of extremely nutrient rich water bodies, such as sewage lagoons. Although recorded for N orth and South Carolina, I have only seen southeastern specimens from Georgia.
G. drei sbachi - Thelarva of this species is apparently inseparable from that of G. seminole; associated adult males would be necessary for species level identification. Townes (1945) noted that the larvae were burrowers in the stems of Potamogeton.
G. Iobiferus - This species has been recorded for the C arolinas by H udson et al. (1990) and C aldwell et al. (1997). H owever, H eyn (pers. comm.) believes G. Iobiferus to be a more northern species that probably does not occur in the Southeast. Records of G. Iobiferus probably refer to G. meridionalis, G. spp. B, F or G.
G. meridionalis - A difficult species to identify; fourth instar larvae are needed because it appears that only size separates it from similar taxa. The larvae described as G . meridionalis by M anual (1976) areG. sp. F.
G. paripes - A common species of lakes and ponds on the Coastal Plain, often abundant enough in eutrophic lakes and ponds near human habitation to be a nuisance when large numbers of adults emerge. The dark spot below the mandible may not be apparent in second or third instar larvae.
G. seminole - The larva of this species is apparently inseparable from that of G. dreisbachi; associated adult males would be necessary for species level identification. Heyn (pers. comm.) noted that the larvae were burrowers in the stems of Bur-reed, Sparganium.
G. testaceus - A large species with elongate ventrolateral tubules. It apparently is an obligate miner of decaying wood (H eyn, pers. comm.).
G. sp. B - A common and widespread species throughout the C oastal Plain of the Southeast; I've seen material from N orth C arolina in addition to Florida. T his species has been confused with G. Iobiferus and G. meridionalis.
G. sp. E - A distinctive undescribed species known only from Lake Annie in Highlands County in southern Florida. I have reared larvae collected from tunnels in decaying submerged wood. Epler (1995) figured the pecten epipharyngis as weakly tripartite. H owever, additional material indicates that such a pecten is probably abnormal or broken; more recently collected specimens have a typical Glyptotendipes single-piece comb-like pecten epipharyngis. The adults of this species have very short palpi compared to other Glyptotendipes.
G. sp. F - This taxon is what M anuel (1976) called G. meridionalis. H eyn (pers. comm.) believes it represents a separate, undescribed species.
G. sp. G - This species was called G. Iobiferus by Beck \& Beck (1969a). H eyn (pers. comm.) believes it represents an undescribed species. It is difficult or impossibleto separate unassociated larvae of this species from unassociated larvae of G. meridionalis.

It is difficult to confirm many of the records of Glyptotendipes species, described or letter-designated, from the Carolinas. With the possible exception of G. sp. E, all the letter designated species above probably occur throughout the Southeast. H eyn's revision, when published, will help immensely in the identification of this common genus.

Genus Goeldichironomus

DIAGN OSIS: Distinguished by the frontoclypeal apotome ($S 3$ setae are on apotome, with 2 median labral sclerites anterior to it); ventromental plates with median (inner) margin angled posteriorly; elongate seta subdentalis with toothed or fringed lower margin; and 0,1 or 2 pairs of ventral tubules.

N OTES: Six species areknown from the Southeast; four species are known to occur in theC arolinas. The genus is mostly N eotropical, but many species now appear to reach their northern limit in Florida or South Carolina. The species most often encountered, usually in eutrophic standing water, are G. carus and the widespread G. holoprasinus.

Larvae are found mostly in lentic habitats, and may occur in sediments, in or on plants and in floating mats of vegetation and wood, under conditions ranging from oligotrophic to hypereutrophic.

ADDITIO NAL REFERENCES: Reiss 1974; Wirth 1979.

K ey to Goeldichironomus larvae of the southeastern United States

1 Ventral tubules absent or rudimentary (length $<5 \mathrm{X}$ width) 2

1' At least one pair of ventral tubules present (length >5X width) 3

2(1) 6th lateral tooth of mentum smaller than 5th; labral sclerites 3 and 4 unconsolidated; anal tubules reduced; usually brackish water/salt marsh/estuarine species \qquad G. devineyae (some G . hol oprasinus may key here; see N otes on species)

2' 6th lateral tooth of mentum larger than 5th; labral sclerite 3 present; anal tubules normal; usually freshwater species (but may occur in estuaries)
G. fluctuans

3(1') Anterior pair of ventral tubulesforked; labral sclerites 3 and 4 unconsolidated
G. holoprasinus

3' Anterior pair of ventral tubules simple; labral sclerite 3 or labral sclerites 3 and 4 present 4

4(3') 4th lateral tooth of mentum smaller than 3rd or 6th 5

4' 4th lateral tooth of mentum subequal to 3rd and 5th \qquad 6

5(4) M entum with 15-17 teeth; labral sclerites 3 and 4 present; postmentum without tubercles; common in organically enriched habitats \qquad G. carus

5' M entum with more than 17 teeth (outer margin of mentum may appear serrated); labral sclerite 3 present but 4 unconsolidated; postmentum with pair of tubercles near hind margin (best seen in lateral view); more common in floating vegetation \qquad G. pictus (not known from the Southeast; see N otes on species)

6(4') Labral sclerite 4 partially consolidated on inner side \qquad G. amazonicus

6' Labral sclerite 4 completely unconsolidated, consisting of rounded granules \qquad G. cf. natans

N otes on species

G. amazonicus - To date, this taxon is only known from Florida in the Southeast. H owever, since it does occur in northern Florida, it will probably eventually be found on the Coastal Plain in South C arolina. This benthic species can be easily confused with G . cf. natans; be sure to observe the labral sclerites. Formerly referred to as Siolimyia amazonica.
G. carus - O nce placed in Chironomus (originally in Tendipes in Townes (1945)), this widespread species was considered a nuisance species by Beck \& Beck (1969a); C aldwell et al. (1997) record it form N orth C arolina and Georgia. The species may be abundant below pulp mills, where it frequently occurs with G. holoprasinus I'veal so collected it from small pools in an estuarine swamp in Florida.
G. devineyae - Originally placed in Nilodorum, this species is usually restricted to salt marshes or estuaries. H owever, Caldwell (pers. comm.) has found an adult in inland Georgia. Larvae can be confused with G . holoprasinus, which also may occur in salt marshes, especially if the posterior body segments have been lost. Both species have labral sclerites 3 and 4 unconsolidated, but note the additional dorsal mandibular tooth on G . hol oprasinus (see below).
G. fluctuans - Formerly known only from Florida in the Southeast, I have seen a series of larvae from the Savannah River Plant area in South C arolina. I've also seen a single larva from near the mouth of the Suwannee River in Florida, indicating some tolerance for brackish water.
G. holoprasinus - A common to abundant, widespread species, especially in organically enriched habitats. It is a pioneer species, often invading temporary water bodies. Specimens with damaged or lost posterior body segments may be confused with G. devineyae. H owever, G. holoprasinus larvae have an additional dorsal tooth near the inner teeth of the mandible. Also, early instar larvae may have only simple ventral tubules; rely on the absence of labral sclerites 3 and 4 and the additional dorsal tooth of the mandible to identify such specimens. It was formerly known as Chironomus fulvipilus Rempel.

G. holoprasinus mandible showing 4th inner tooth
G. cf. natans - I've only seen larvae of this taxon; hence its identity is unclear. Its presence in northern Florida (the Fenholloway and Santa Fe Rivers) indicates that it might be found on the Costal Plain in the Carolinas. It is uncommon in the oligotrophic saw grass (Cladium) stands of the northern Everglades.
G. pictus - This species is not known from the Southeast, but was reported by H udson et al. (1990) for Florida. I have not seen any specimens from Florida.

Several other species of Goddi chi ronomus occur in the N eotropics; some of these may eventually be found in the US, especially in southern Florida. See Reiss (1974) and Strixino and Strixino (1991) for more information.

Genus Harnischia

DIAGN OSIS: Distinguished by the premandible with more than 3 teeth; the scale like, distally trifid pecten epipharyngis; antennal segment 2 subequal to 3 ; outermost lateral teeth of mentum not larger than inner teeth; and the weakly striated ventromental plates.

N OTES: Two species of H arnischia, H. curtilamellata and H. incidata, occur in the Southeast; only the larva of H . curtilamelata is described. Thus, H arnischia larvae can only be identifed as "H arnischia sp.".

H arnischia forms the center of a group of closely related genera known as the H arnischia complex. Several "genera" are known only as larvae and can befound at the end of this chapter. Beck and Beck (1969b) and Sæther (1977) have published synopses on this complex.

Larvae occur in rivers and streams; they may be limited to relatively clean waters (Simpson \& Bode 1980).
AD DITION AL REFEREN CES: Sæher 1977a; Townes 1945.

mentum

premandible

pecten epipharyngis

antenna

Genus H yporhygma

DIAGNOSIS: Distinguished by the frontal apotome, with 2 median labral sclerites anterior to it; pecten epipharyngis of three scales, each with 46 smaller teeth on surface; mentum with 2 median teeth lower and smaller than first lateral teeth; ventromental plates with scalloped anterior margin and strong striae and sculpturing; and leaf-mining habit.

N OTES: O ne species, H. quadripunctatum, is known from N orth America. It was previously placed in Tribelos and Endochironomus until Reiss (1982) placed it in its own genus.

Larvae mine in the leaves and stems of N uphar and N ymphaea.
ADDITIONAL REFERENCES: Reiss 1982.

Genus Kiefferulus

DIAGN O SIS: Distinguished by the frontal apotome (thus with 2 median labral sclerites anterior to it); apotome with small, oval, anteromedian fenestra; premandible with 5 or more teeth; mandible without basal radial striae or grooves; and body with single pair of ventral tubules.

NOTES: Four species are known from the Southeast, two of which are undescribed; Caldwell et al. (1997) record three species from the C arolinas. Note that many records of the common species, K. dux, must be veiwed with skepticism, since it was earlier thought that only this one species of Kiefferulus was present in the eastern United States. Two subgenera are present, K. (Kiefferulus) and K. (Wirthiella), each with two species in the Southeast. These subgenera can only be identified using pupae: K. (Wirthiella) pupae have rows of needle like spines on sternites I-III; K. (Kiefferulus) pupae lack these spines. Characters used to separte the adults of the subgenera used in Cranston et al. (1989) do not appear to work with material from the Southeast.

Larvae are found in or on sediments and vegetation; they can tolerate low dissolved oxygen conditions.
AD DITIO N AL REFEREN CES: Townes 1945.

K. sp. A mentum

apotome and labral sclerites

premandible

K ey to Kiefferulus larvae of the southeastern United States

1 Ventromental plates touching medially or nearly so; anterior margin of ventromental plates smooth; peninsular Florida only (?)
K.sp. A

1' Ventromental plates separated medially; anterior margin of plates finely scalloped; widespread 2

2(1') Ventromental plate with about 100 striae .. K. sp. B

2' Ventromental plate with fewer than 75 striae \qquad 3

3(2') 4th instar larvae only: postmentum length 255-290, mean $270 \mu \mathrm{~m}$; basal antennal segment length 75-98, mean $88 \mu \mathrm{~m}$ \qquad K. pungens

3' 4th instar larvae only: postmentum length 275-380,
 mean $335 \mu \mathrm{~m}$; basal antennal segment length 95-145, mean $113 \mu \mathrm{~m}$
K. dux

N otes on species

K. dux - A common and widespread species, but possibly confused with K. sp. A as an adult and K. pungens and K. sp. B as a larva (see below). I measured larvae of 18 reared K. pungens and 15 reared K. dux to obtain the numbers in the key used for separating the larvae of these two taxa; there is some overlap and the species are best identified with associated pupae. Adults and pupae of K. dux are very similar to those of K. sp. A but larvae are easily separable using the above key.
K. pungens - Formerly placed in Chironomus, reared material indicates that this species belongs with K. (W irthiella). The larva is very similar to K. dux and is separable only by its smaller size (see key); larvae are best identified with associated pupae or adults. Pupae of K. pungens have needle like spines on sternites I-III and a massive caudolateral comb on tergite VIII; pupae of K. dux lack the ventral spines and have a reduced caudolateral comb. Adults of K. pungens are distinctive from other N earctic species of the genus (see Townes 1945).
K. sp. A - In the Southeast known only from peninsular Florida; I have reared this undescribed species from the northern Everglades (description in preparation). This unusual species is similar to larvae of the closely related African genus Acinoretracus (Epler et al. 1999), but differs in the simple ventromental platestriae; those of Acinoretracus are forked. The pupa and adult of K. sp. A are very similar to those of K. dux; more work is needed to ascertain characters that may separate the two taxa.
K. sp. B - Known only from larvae and one pupa; Caldwell et al. (1997) report this species from South C arolina but I have not examined material from there. All material I've seen came from peninsular Florida; adults are unknown. The presence of needle-like spines on sternitesI-III of the pupa place this species in K. (W irthiella).

Genus Kloosia

DIAGN OSIS: Distinguished by the small, thin SI setae, much smaller than large, bladelike S II; 6 segmented antennae; premandible with 3 apical teeth; mandible without dorsal spine; mentum with 6 pairs of lateral teeth; rounded ventromental plates; large claws of anterior parapods at most about 0.4 length of head capsule; body segments appearing subdivided; and anal setae short, slightly longer than supraanal setae.

NOTES: O ne species, K. dorsenna (originally described in the genus Oschia), is known from the Southeast. Larvae are very similar to those of Harnischia complex genus C, but can be differentiated by the characters listed above. The median tooth of the mentum might be considered deeply trifid in Kloosia; if viewed in this manner, the first pair of lateral teeth are partially fused to the second (i.e., the division between the first and second lateral teeth is shallow).

Larvae are found in sandy substrata of running waters.

Genus Lauterborniella

DIAGNOSIS: Distinguished by the frontal apotome, with 2 median sclerites anterior to it (clypeus and labral sclerite 2); 6 segmented antennae with alternate L auterborn organs at the apex of segments 2 and 3; plumose setae submenti placed posteromedially to ventromental plates; short lateral tubules on body segment 10; and body segment 11 with a posteriorly directed hump.

N OTES: O ne species, L. agrayloides, is known from N orth America. O ther N earctic species formerly placed in Lauterborniella are now placed in Stelechomyia or Zavreliella.

Larvae live in transportable cases resembling those of the caddisfly H ydroptila. Larvae are found among vegetation in ponds and slow moving areas of streams.

ADDITION AL REFERENCES: None.

apotome and median labral sclerites

antenna

mentum

posterior end

Genus Lipiniella

DIAGNOSIS: Distinguished by the frontoclypeal apotome with 1 labral sclerite anterior to it; a dark, blunt tubercle present mediad to antennal base; mandible with a dorsal tooth, 3 triangular inner teeth, a short, simple seta subdentalis and an outer, posterior hump; mentum with bifid median tooth; wide ventromental plates that touch medially; premandible with brush and 5-6 teeth; and a pair of short ventral tubules on abdominal segment 8.

N OTES: N o described species are recorded from the N earctic, but at least one species does occur in the Southeast. The larva figured by Roback (1963) as "Xenochironomus(Anceus) scopula ?Townes" is probably a Lipiniella; his figure 14 of the mentum of a "juvenile labial plate" of X. festivus may also be a Lipiniella. The maxillae of Lipiniella larvael've examined have a brush of setae near the base of the maxillary palp, but the setae are not as long as those observed on Axarus larvae maxillae.

Larvae are found in sandy sediments in lotic and lentic habitats.
ADDITIO N AL REFEREN CES: Shilova 1961, 1963; Shilova et al. 1992.

mandible

apotome and labral sclerite

premandible

antenna and tubercle

DIAGN O SIS: Distinguished by the SI setae arising from a common base; antennae not mounted on elongate pedestal; mandible without dorsal tooth and with seta subdentalis on dorsal side; mentum with second lateral tooth reduced and mostly fused with first lateral tooth; large bar-like ventromental plates that touch or almost touch medially; mandible with proximal inner tooth pointed; and procerci that arise from a common base that overhangs the last body segment.

N OTES: Rick Jacobsen (pers. comm.) has recently found an undescribed species of this tropical genus in Everglades N ational Park, Florida. He has graciously sent figures and information from a manuscript describing this new species. M anoa is only the second representative genus of the tribe Pseudochironomini in continental North America (the other genus being Pseudochironomus). M anoa is not known from the C arolinas.

Fittkau (1963) originally described M anoa with one species, M. obscura, from the Amazon. The larva of M . obscura has very long procerci and anal tubules. Jacobsen's new species from the Everglades has normal anal tubules but does have Iong procerci that arise from a common base; the procerci of Pseudochironomus are shorter and arise separately.

Florida M anoa are found in shallow water areas subject to fluctuating water levels and seasonal drying.
ADDITION AL REFEREN CES: Fittkau 1963; Jacobsen \& Perry (in press).

(all figures by R.E. Jacobsen)

Genus M icrochironomus

DIAGNOSIS: Distinguished by the linear mentum (not arched) with outer teeth enlarged and trifid median tooth; pecten epipharyngis a simple plate or with 3 apical lobes; bifid premandible with brush; mandible without dorsal tooth or pecten mandibularis; and antennal blade as long as or longer than the flagellum.

N OTES: A member of the H arnischia complex of genera, M icrochironomus appears to be represented by at least two species in the Southeast; only one, M. nigrovittatus, is described. Any unassociated larva should be indentified as "M icrochironomus sp. ". The genus was formerly referred to as Leptochironomus.

Larvae have been found in lakes, large rivers and ditches; little is known of their ecology.
ADDITIO N AL REFEREN CES: Sæther 1977a.

DIAGN OSIS: T his tanytarsine is distinguished by its pecten epipharyngis with 3 lobes, each lobe with numerous distal teeth/serrations; bifid premandible; ventromental plates touching or almost touching medially; and antenna with Lauterborn organs on pedicels that greatly exceed the antennal flagellum (segments 2-5), and with antennal blade about as long as segment 2.

N OTES: C aldwell et al. (1997) listed two described and morethan four undescribed species of M icropsectra for the C arolinas; the key that follows deals with eight taxa. Like all tanytarsine genera in North America, M icropsectra is in need of revision. The Tanytarsini are being revised by Dr. J.E. Sublette and it is anticipated that revisions of some genera will be published in the future.

M icropsectra and Tanytarsus, as well as other tanytarsine genera, have been confused in the past because it was erroneousely believed that tanytarsines with long Lauterborn organ pedicels, medially touching ventromental plates and a spur on the antennal pedestal were M icropsectra. H owever, many Tanytarsus have such a spur and some Mi icropsectra lack one.

The larva of Parapsectra is known only from a single European species, P. uliginosa Reiss, that has a hump on the outer margin of the mandible, similar to M. sp. B, C and E in the following key. The antennal blade of P. uliginosa is short and squat, not long as in M. sp. B, C and E. The true placement of M. sp. B and C will be unclear until thelarvae are associated with pupae; M . sp. E has been reared and is a true M icropsectra.

Mi cropsectra larvae are found in a wide range of lentic and lotic habitats, but in the C arolinas are usually most abundant in mountain streams; the genus is uncommon to rare on the C oastal Plain.

ADDITION AL REFEREN CES: Oliver \& Dillon 1994a; Säwedal 1982; Webb 1981.

M. sp. B mentum

premandible

M. sp. A mandible, mentum and antenna

Key to M icropsectra Iarvae of the southeastern United States

1 O uter margin of mandible with 1 or 2 small humps

1' O uter margin of mandble smooth or nearly so \qquad 4

2(1) M entum with reduced first lateral tooth; outer margin of mandible with 2 humps; antenna with second segment wider at apex than at base; first antennal segment 4-6X as long as second segment
M.sp. B

2' M entum with first and second lateral teeth subequal (first may appear slightly lower than second); outer margin of mandible with 1 hump; antenna not as above \qquad 3

3(2') First antennal segment 2-2.5X as long as second; second antennal segment wider at apex than at base \qquad M.sp. C

3' First antennal segment about 4 X as long as second; second antennal segment about as wide at apex as at base \qquad M. sp. E

4(1') Each hind parapod with 40 or more claws \qquad 5

4' Each hind parapod with 25 or fewer claws (usually around 15) \qquad 6

5(4) M entum with first lateral tooth lower than or even with second so that mentum appears straight across median and first 2 pairs of lateral teeth
M. divesand M. geminata

(identify larvae that key to here as "M. divergeminata")

5' M entum with teeth more in an even arch M. polita (see N otes on species)

6(4') Antenna pedestal without spur \qquad M.sp. D

6' Antenna pedestal with spur \qquad M. sp. A

N otes on species

M. dives - I've seen adults of this species from the Smoky M ountains in N orth Carolina; it is very similar to the more recently described M. geminata. It is quite possible that some records of M. divesin the literature may refer to M. geminata. See M . geminata below.
M . geminata - Oliver \& Dillon (1994) described this species, which is very similar to M. dives. I have seen adults from North and South Carolina. The mentum width character used by Oliver \& Dillon (1994:204) to separate the larvae of M. dives and M . geminata (that of M. dives > $100 \mu \mathrm{~m}$, of M. geminata $<95 \mu \mathrm{~m}$) will not work, based on reared material of M. geminata from the C anadian N ational Collection in which the mentum widths of two larvae were 124 and $134 \mu \mathrm{~m}$. Unassociated larvae that key to couplet 5 should be identified as "M. dives/geminata".
M . polita - I have not seen this larvae of this species from the Southeast; adults are recorded from South C arolina (J.E. Sublette, pers. comm.). It was redescribed by Webb (1981) and Oliver \& Dillon (1994) but not in sufficient detail. Its placement in the key is based on reared material from N ew York. At least oneother taxon in theC arolinas, M.sp. E, has a pupa similar to that of M. polita, but the adults are decidedly different. Another species, M. nigripila (Johannsen), may occur in the Southeast and will probably key to M. polita in the key above. Following O liver \& Dillon (1994), the larva of M . nigripila has 14-22 bluntly rounded teeth on its labral lamella (M. polita has 24-31 narrower, more pointed teeth), the scales of its pecten epipharyngis have 3-5 teeth, with the middle one usually with 3 teeth (M. polita 4-7 teeth, with middle one usually with 4) and the median mental teeth are usually uniformly dark or with slightly lighter edges (M. polita with definite light medial area). H owever, O liver \& D illon (1994) did not describethe claws of the posterior parapod; I have not seen associated larval material of M. nigripila and thus do not know if the species will actually key with M. polita in my key.
M . recurvata - Listed for N orth and South Carolina by Oliver et al. (1990); I have not seen any material of this species; the larva is undescribed. It is possible that records of this species may actually refer to M. dives or M. geminata.
M . xantha - Listed for the Southeast by Oliver et al. (1990); I have not seen any material of this species; the larva is undescribed. The adult of M. xantha is also similar to M. dives, polita and recurvata.
M.sp. A - The most common and widespread M icropsectra larva in the material avai lableto me; I've seen material from N orth Carolina to northern Florida. Several species may be "lumped" into thistaxon. Differences in thelength of the spur on the antenna pedestal and the distance between the bases of the S 3 (clypeal) setae might be useful characters for separation, but in the material I've examined there were no clear cut boundaries between character states. Without associated pupae or adult males I am reluctant to assign "species" status to any of the "variants" assigned to thistaxon. Steiner et al. (1982) keyed a species with a bulbous base on the second antennal segment (M. sp. 5, figs. 31 and 35); I've seen a similar specimen from N orth C arolina and consider it to be an aberrant M. sp. A.

aberrant second antennal segment of M. sp. A
M.sp. B - I've examined larvae of this taxon from N orth C arolina. The mandible has two small lateral humps, the first lateral teeth of the mentum are much smaller than the second lateral teeth and the apex of the second antennal segment is wider than the base.
M. sp. C - I've seen larvae of this taxon from a seep in the Smoky M ountains in N orth C arolina. It is somewhat similar to M.sp. B but the mandible has only one lateral hump, the first lateral teeth of the mentum are not as small and the ratio of the length of the second antennal segment to the first is lower.
M. sp. D - An unusual larva; it has a trifid pecten epipharyngis with numerous apical toothlets and long pedicels bearing theLauterborn organs, which should place it as aM icropsectra. H owever, a pharate pupa within a larva has an abdominal spine pattern similar to Paratanytarsus penicillatus (G oetghebuer), an arctic/boreal species, except that it lacks the anterior round spine patches on tergiteVI. Paratanytarsus is closely related to M icropsectra; a series of reared specimens of M . sp. D will be necessary to determine its true generic placement. N ote also the long third antennal segment.
M. sp. E - I've examined specimens (reared but in less than satisfactory condition) from a creek in South C arolina. The pupa has an abdominal spinule pattern similar to M. polita, but the adult and larva are quite different. The larva has a small hump on the outer margin of the mandible.
M. sp. 4 - Known from adults and pupae from the Smoky M ountains in N orth Carolina; the pupa is similar to M. polita.
M. sp. 6 - Known only from adults from the Smoky M ountains in N orth C arolina.

DIAGN OSIS: Distinguished by the frontal apotome with straight anterior margin separating it from the clypeus; bases of SI separate or contiguous; 6 segmented antenna with alternate Lauterborn organs at the apices of segments 2 and 3; mentum with 3 pale median teeth (median tooth may be minute); and the coarsely striated ventromental plates.

N OTES: Four described species are known from the Southeast; three of these occur in the Carolinas. There are probably at least two undescribed species present here. Larvae can not be identified to species without associated males and even then the possibility of an identification is low. Correct identification of males requires a revision of the genus utilizing type material from Europe; an attempt at a revision of the N earctic Microtendipes by a graduate student was abandoned several years ago.

Larvae can be separated into two groups, named after European species: 1) the rydalensis group is distinguished by 3 large median teeth on the mentum, premandible with 5 inner teeth and pecten epipharyngis with numerous apical teeth; 2) the pedelus group, with 2 large median teeth and a much smaller (sometimes vestigial or absent) central tooth on the mentum, a 3 toothed premandible (proximal tooth very small) and pecten epipharyngis with $3-4$ coarse teeth. I have associations of M . cadum; it is a member of the rydalensis group. Simpson \& Bode (1980) figured a pedellus group larva but misidentified it as or incorrectly associated it with M. caelum.

Larvae occur in streams, rivers, ponds and lakes.
ADDITIO N AL REFEREN CES: Townes 1945.

antenna

M . pedellus group

apotome and labral sclerites

Genus N eostempellina

DIAGNOSIS: Distinguished by the simple frontoclypeal setae; finely granulate frontoclypeal apotome, without tubercles; antennal base with spur and mesal palmate process; Lauterborn organs on pedicels arising from the apex of antennal segment 2; widely separated, squat ventromental plates; procerci with dark, simple apical spurs; and portable sand case.

N OTES: O ne species, N. reissi C aldwell, has been described from the eastern US (M aine); this species has not been recorded from the Carolinas. B.A. Caldwell (pers. comm.) has collected a N eostempellina adult from a stream near the Apalachicola River in northern Florida. I have not seen any N earctic larvae of N eostempellina; the diagnosis above and figures below are based on a European species, N. thienemanni Reiss. N ote that N. thienemanni is the species whose larvae and pupae were erroneously identified as Stempellina montivaga in many previous works, such as Pinder \& Reiss (1983: figs. 10.71 A,C, E and F); see Reiss (1984) for a full listing of those publications. Also note that the "real" S. montivaga is a junior synonym of S. bause (K ieffer), a species not known to occur in the N earctic. See al so Stempellina.

Larvae of the Palaearctic species N. thienemanni occur in moss in cold springs and spring-fed streams.
ADDITIO N AL REFEREN CES: Caldwell 2000b; Reiss 1984.

N. thienemanni antenna

N. thienemanni mentum

Genus Neozavrelia

DIAGNOSIS: This tanytarsine genus is distinguished by the pecten epipharyngis of 3 scales with numerous fine apical teeth; bifid premandible; antennae with well developed Lauterborn organs on moderately long pedicels; mandible with 1 dorsal tooth and 2 inner teeth; mentum with 4 pairs of lateral teeth (a minute 5th pair is sometimes evident); and ventromental plates almost touching medially.

N OTES: N eozavrelia has only recently been found in North America; I've seen putative unassociated larvae from O hio and N orth C arolina, and C aldwell et al. (1997) recorded a pupal exuviae from Georgia. Larvae are similar to Sublettea but have one less pair of teeth on the mentum, only one dorsal tooth on the mandible and a pecten epipharygnis with numerous fine apical teeth. Pinder \& Reiss (1983) noted that N eozavrelia may have 5 pairs of lateral teeth on the mentum, but I have not seen such material from the Southeast. N orth American larvae I've examined have a distinct hump on the outer margin of the mandible that is not illustrated for European species.

Larvae are recorded from hygropetric habitats as well as streams, rivers and lakes.
AD DITIO N AL REFEREN CES: Thienemann 1942.

pecten epipharyngis

antenna

Genus Nilothauma

DIAGNOSIS: Distinguished by the simple labral sclerite 5; antenna with basal segment shorter than flagellum (segments 2-6; 6th segment is vestigial and usually not apparent); mandible with inner teeth grouped closely together and a single dorsal tooth; mentum with pale, usually rounded median tooth; and setae submenti placed posterior to ventromental plates.

N OTES: Three described species are known from the Southeast; I have specimens of an additional undescribed species, known only as an adult, from Alabama, Florida and N orth Carolina. Although Adam \& Sæther (1999) offered a key to larvae, in reality it is not possible to identify isolated larvae to species. They tentatively associated a larva with N. mirabile, but their measurement of its postmental length ($246 \mu \mathrm{~m}$) is far in excess of a reared specimen of this species in my collection with a postmentum length of only 108 $\mu \mathrm{m}$. Their specimen may belong with the undescribed species, which has a large adult; I have in my collection an unassociated large larva from a lake in north Florida that is probably this same species. In "perfect" larvae, the median tooth is composed of 4-6 tiny teeth; however, these are invariably worn in most specimens so that the mentum appears to have a simple, domelike tooth. The6th antennal segment noted by Adam \& Sæher (1999) is very small and difficult to observe. In lateral view, the head capsule is flattened anteriorly, appearing "bean-like"; note al so that the4th antennal segment is usually slightly curved.

Larvae are found most often in rivers and streams, but also occur in lakes.
ADDITIO N AL REFEREN CES: Adam \& Sæther 1999; Townes 1945 (as Kribioxenus).

Genus 0 misus
DIAGN OSIS: D istinguished by the broad plumose S I setae with separate bases; 6 segmented antenna with Lauterborn organs at the apices of segments 2 and 3; mandible with 2 dorsal teeth; and mentum with central pair of median teeth lower and more slender than outer median teeth.

N OTES: Two species of 0 misus are found in the Southeast; the larvae of the two species are inseparable at thistime. Thelarva figured as 0. sp. A in Epler (1995) was described, along with its adult and pupal stages, as 0 . browni by Caldwell (2000a). He noted that the Beck's (Beck \& Beck 1970) larval material of O . pica was aberrant in having only 14 teeth on the mentum. M ost 0 . pica larvae have a 16 toothed mentum, but the number of mental teeth may be 14,15 or 16 . Because only one species of 0 misus was supposed to occur in the Southeast before Hudson et al. (1990), Epler (1995) and Caldwell (2000a), there is little doubt that some previous records of 0 . pica, in any life stage, refer to 0 . browni. Unassociated larvae of 0 misus must be identified as " 0 misus sp."

Larvae are known from seeps, small streams, ponds, marshes and peat bogs; C aldwell (2000a) also reported 0 misus larvae from soil core samples in cypress domes in Florida.

ADDITIONAL REFEREN CES: Beck \& Beck 1970; Caldwell 2000a.

S I

antenna

Genus Pagastiella

DIAGNOSIS: D istinguished by the apically toothed labral sclerite 5; antenna with basal segment longer than flagellum; mandible 2 dorsal teeth and with inner teeth spread along inner margin; distinctively shaped pale mentum; and setae submenti placed near the posterior margin of the ventromental plates.

N OTES: The status of which species of Pagastiella occur in the Nearctic is uncertain. The species de scribed from the N earctic, P. ostansa (Webb), is probably the same as (and thus a junior synonym of) the European species P. orophila (Edwards). Examination of type material of the two taxa is necessary to determine the true identity of the N earctic species. Hudson et al. (1990) stated that "an undescribed species has been collected in coastal streams", but nothing else is known of this taxon. Pagastiella larvae should be identified as "Pagastiella sp.".

Larvae are found in littoral sediments of ponds, lakes and the slower reaches of streams and rivers.
ADDITIO N AL REFEREN CES: Webb 1969.

mentum
apex of apotome and labral sclerite 5

mandible

antenna

Genus Parachironomus

DIAGNOSIS: Distinguished by the simple SI (with small accessory branches in P. frequens); pecten epipharyngis a wide, transparent plate with 5 or more apical teeth (only 3 in P. alatus); 5 segmented antenna; absence of premandible brush; and mandible without dorsal tooth.

N OTES: At least 16 species of Parachironomusare known from the Southeast; at least one of those species, P. abortivus, may not actually occur in the area. At least eight other species occur in the N earctic that have not been recorded from the Southeast (Spies 2000). Spies (2000) has shown that one commonly recorded species, P. monochromus, does not occur in the Nearctic (in the Southeast the species referred to as P. monochromus is P. hazedriggi). At least two species complexes occur in Nearctic members of the genus, the larvae of which are inseparable (see key). C ontrary to Pinder \& Reiss (1983), the mandible may have two or three inner teeth, and a pecten mandibularis is present in several species as two to three large setae dorsally on the mandible that run from midway to near the apex. The most accurate method for identifying Parachironomus is to rear the larvae and identify the adult males with Spies (2000).

Larvae are found in lentic and lotic water bodies under a wide range of conditions.
AD DITION AL REFEREN CES: Beck \& Beck 1969b; Lehmann 1970a; Spies 2000; Spies et al. 1994; Townes 1945.

P. carinatus mentum

P. frequens mentum

P. hazelriggi mentum

P. hazelriggi
pecten epipharyngis
P. supparilis mandible

P. alatus pecten epipharyngis

P. carinatus antenna

Key to Parachironomus larvae of the southeastern United States

(the larvae of P. digitalis and P. guarani are unknown)

1 M edian tooth of mentum bifid 2

1' M edian tooth of mentum simple \qquad 3

2(1) First lateral tooth of mentum equal to second lateral tooth; premandible with 4 large teeth \qquad P. frequens

2' First lateral tooth of mentum smaller than second lateral tooth; premandible with 3 large teeth ..
\qquad P. pectinatellae

3(1') 5th lateral tooth of mentum distinctly smaller than its neighbors \qquad 4

3' 5th lateral tooth of mentum subequal to 6 th 5

4(3) M entum outline strongly arched; anterior margin of ventromental platesmoothly scalloped \qquad P. alatus

4' M entum not as strongly arched; anterior margin of ventromental plate with blunt points \qquad P. chaetoalus complex (includes P. chaetoalus, P. hirtalatus and some "unresolved" material; see N otes on species)

5(3') $\quad M$ andible with 3 well developed, dark inner teeth 6

5' $\quad \mathrm{M}$ andible with 2 well developed inner teeth or with 3 inner teeth, the proximal tooth smaller and pale \qquad

with 3 dark inner teeth

6(5) 3rd antennal segment longer than or subequal to 4th \qquad
6' 4th antennal segment longer than 3rd \qquad

P. supparilismentum
P. sublettei P. supparilis

P. sublettei

P. supparilis

7(5') Outer margin of mentum serrate (may require observation at 1000X); ventromental plate without recurved striae or transverse ridges posterolaterally 8

7' O uter margin of mentum not serrated (last lateral tooth may be finely dissected or notched); ventromental plate with recurved strize or transverse ridges posterolaterallly 9

8(7) Antennal segments 3 and 4 subequal; anterior margin of ventromental plate smoothly crenulated \qquad P. directus

8' Antennal segment 4 longer than 3; anterior margin of ventromental plate with blunt points \qquad P. carinatus

P. directus

P. carinatus

9(7') M entum with 3 middle teeth subequal; outer tooth of mentum often finely dissected or notched (but may be simple); anterior margin of ventromental plate with sharp points \qquad P. potamogeti

9' M entum with median tooth wider than 1st lateral teeth; outer tooth of mentum simple; anterior margin of ventromental plate with blunt points 10

10(9') Premandible dark; antennal segments 1-3 usually brown; 1st antennal segment about 5X length of 2nd P. schneideri

10' Premandible light; antennal segment 1 may be dark yellow, remaining segments pale; 1st antennal segment about 4X length of 2nd \qquad P. tenuicaudatus complex (includes P. abortivus, P. hazeriggi, P. tenui caudatus; see N otes on species)

N otes on species

P. abortivus - Recorded for the C arolinas by H udson et al. (1990) and Caldwell et al. (1997). H owever, only the adult male can be identified with certainty; larvae are inseparable from P. hazelriggi and P. tenui caudatus. If the records in the two publications above were based only on larvae, they must be considered dubious. N ote that inclusion of P. abortivus in the "tenuicaudatus group" does not indicate a close phylogenetic relationship between it and the other two species.
P. alatus - An unusual species that may deserve separate subgeneric or generic placement, for its larva and pupa are atypical for Parachironomus. This larva of this species may be mistaken for a Cladopelma because of the similar mentum, but note that in P. alatusthe premandible lacks a brush, the pecten epipharyngis is trifid, the antennae have a long fourth segment and there are recurved striae on the posterior portion of the ventromental plates.
P. carinatus - A common species in the eastern US, but often misidentified, probably because the serrated outer margin of the mentum is not noted.
P. chaetoalus - Larvae of P. chaetoalus are inseparable from those of P. hirtalatus and specimens I've examined that, as adults, key to "Unresolved" in Spies (2000). Adult males are necessary for correct identification; larvae are best identified as "P. chaetoalus complex". Although Epler (1995) noted that P. chaetoalus and P. hirtalatus might be synonymous, Spies (2000) treated them as separate species; adult males are separable by thestructure of the superior volsella. Parachi ronomuschaetoalus occurs throughout the Southeast; both species occur in Florida (adults listed as P. sp. C in Epler
(1995) are P. chaetoalus, determined by M artin Spies). See also "U nresolved" below.
P. digitalis - The larva of this species is undescribed; I've seen adult males from the Savannah River Plant area in South Carolina and from Alabama. These records constitute, along with records from Georgia, the first reports of this European species from the N earctic (Spies 2000).
P. directus - This species, described from Alabama, has been reported from North Carolina as well as Florida and Georgia. There appears to be some variation in the anterior points of the ventromental plate; separation of the larvae of this species from P. carinatus can only be done if the antennae are flat, otherwise the difference in length of segments 3 and 4 can not be accurately measured.
P. frequens - Epler (1995) noted that P. frequens may be more common that previously thought because larvaehad been confused with P. pectinatellae. Simpson \& Bode(1980) considered it to be uncommon and noted that it often occurred with P. abortivus. N ote, however, that larvae identified as P. abortivus may actually belong to P. hazelriggi or P. tenuicaudatus. The larva of P. frequens differs from most other Parachironomus in that the SI has small accessory branches ("split ends").
P. guarani Spies, Fittkau \& Reiss - N ot known from the Carolinas; I have an adult from Alabama, identified by M artin Spies, in my collection. The larva is unknown. See Spies et al. (1994) for more information on this N eotropical species.
P. hazelriggi - For many years this species has been misidentified as P. monochromus, a European species that apparently does not occur in theU nited States. SeeSpies (2000) for a detailed account including past erroneous records. The larva is not separable from those of P. abortivus(but see comments under that name), P. tenuicaudatus and the true P. monochromus.
P. hirtalatus - N ot recorded from the Carolinas, but may occur there. I have seen a reared male from 0 hio and O liver et al. (1990) record it from Illinois south to M ississippi and Florida. Larvae are inseparable from those of P. chaetoalus and specimens I've examined that, as adults, key to "Unresolved" in Spies (2000). Adult males are necessary for correct identification; larvae are best identified as " P . chaetoalus complex". See also P. chaetoalus and "U nresolved".
P. pectinatellae - This species was originally described by D endy \& Sublette (1959) from larvaetaken from the freshwater bryozoan Pectinatella magnifica. It has often been confused with P. frequensbut can be separated by the characters given in the key above.
P. potamogeti - Larvael've placed here may have the last lateral tooth of the mentum finely dissected (like a fork), notched or entire. Referred to as P. sp. B in Epler (1995), the identity of P. potamogeti and apparently related taxa is confused. In Spies (2000), adults with potamogeti-like genitalia but without setae in apical wing cells (present on the holotype of P. potamogeti) key to "U nresolved" (see below).
P. schneideri - K nown from Florida, Georgia and N orth Carolina in the Southeast (C aldwell et al. 1997). Oliver et al. (1990) also record it from K entucky, but some of their records from K entucky (such as records of the marinegenera Clunio and Thalassomya) aredubious. Identifications based solely on larvae are suspect; an associated male is necessary for accurate identification. D o not assume that any Parachironomus larva with a darkened premandible is P. schneideri; other species, such as P. supparilis, may have darkened premandibles.
P. sublettei - Not recorded from the Carolinas; to date known only from Florida and Georgia. The mentum and ventromental plates of this species are paler than those of most other Parachironomus species. N ote that although Beck \& Beck (1969b) stated that recurved striae were not present on the ventromental plates, such striae are visible under high magnification. I've reared this species from a tidally influenced, brackish water habitat in peninsular Florida.
P. supparilis - A widespread species in the N eotropics, thistaxon was referred to as P. sp. A in Epler (1992). Spies et al. (1994) considered this taxon to be a superspecies and described four varieties; the form found in the US is the variety centralis. N ot yet found in the Carolinas, it will probably eventually
be found there; known from Florida and Georgia.
P. tenuicaudatus - A species confused with "P. monochromus" by Beck \& Beck (1969b). Their reared male of "P. tenui caudatus" from Lake St. Clair in Polk County, Florida, is a P. hazelriggi, noted in Epler (1995) as a "P. monochromus". The larva of P. tenui caudatusis inseparable from those of P. abortivus (but see comments under that name), P. hazelriggi and the true P. monochromus (a European species; see P. hazelriggi above). Identifications of P. abortivus and P. tenuicaudatus in the literature based on larvae are suspect.
"U nresolved" - Spies (2000: 141) noted a complex of species with partially intergrading character states that includes some specimens with genitalia close to P. potamogeti (q.v.). I have examined one reared specimen from 0 hio with such male genital ia but without wing cell setae; the larva appears to be inseparable from those of P. chaetoalus and P. hirtalatus (species in which the adults have wing cell setae, as does the holotype of P. potamogeti). This may indicate that the presence or absence of wing cell setae is a variable character that may not be useful in phylogenetic analysis or as a character to define and/or identify species in Parachironomus.

Genus Paracladopelma

DIAGNOSIS: Distinguished by the small, seta-like S I and large S II; 5 segmented antennae with second segment much longer than third; mandible without dorsal tooth; premandible with 4 or more teeth, with brush; coarsely striated ventromental plates; and pale mentum or mentum with at least abroad, pale median tooth/teeth.

N OTES: Six species are known from the C arolinas, but only four have described adults and available names; an additional species known only from larvae is included in this manual. Contrary to the diagnosis in Pinder \& Reiss (1983), a brush is present on the premandible, although it is hyaline and easily overlooked.

Larvae are found in sand substrata in lentic and (usually) lotic conditions. Some species may be sensitive to eutrophication (Pinder \& Reiss 1983).

ADDITIO NAL REFEREN CES: Jackson 1977; Sæther 1977a.

P. loganae mentum
P. sp. 1 antenna

Key to Paracladopelma larvae of the southeastern United States

1 Ventromental plate with 25 or fewer full length striae \qquad

1' Ventromental plate with more than 25 full length striae \qquad 4

2(1) Median tooth of mentum bifid (may require observation at 1000X) \qquad P. undine

2' M edian tooth simple (figures below) 3

3(2') M entum strongly arched, with broad median tooth and 7 pairs of lateral teeth \qquad P. sp. 2

3' M entum more linear, with median tooth not as broad, not domelike, and with 3 pairs of poorly defined lateral teeth \qquad P. doris

4(1') M entum with broad, domeshaped median tooth that projects strongly forward
\qquad P. loganae

4' M edian tooth of mentum not projecting strongly forward (figures below) 5

5(4') Ventromental plate squat; median tooth of mentum very broad and bulging forward ..
\qquad P. sp. A

0
5' Ventromental plate wider; median tooth of mentum not as broad and not bulging forward

6(5') Ventromental plate with about 30 full length striae \qquad P. nereis

6' Ventromental plate with about $38-40$ striae
\qquad

N otes on species

P. doris - Known from Florida and both Carolinas. Note the low mental teeth and squat ventromental plates. This species was described as "Cryptochironomus near rolli Kirp." in Sæther (1977).
P. loganae - The broad ventromental plates, with about 30 full length striae, and the strongly projecting median tooth (often difficult to observe unless high power is used) distinguish this larva. C aldwell et al. (1997) record this species from all of the states in the Southeast.
P. nereis - C aldwell et al. (1997) record this species for the entire Southeast, but it appears to be rather uncommon. M any specimensI've seen identified as P. nereis have been P. undine. Following Jackson (1977), the median tooth and first lateral teeth of the mentum are clear. H owever, this character state is often difficult to see because many menta are so translucent overall. The count of full length ventromental plate striae, about 30, is perhaps a better identifying character.
P. undine - The most common species in the Southeast, often misidentified as one of several other species. The broad ventromental plate with only about 25 full length striae is distinctive; it may require observation at 1000X to see the cleft median tooth of the mentum. I've seen some larvae without a cleft in the middle tooth that I'm assigning to this taxon, until reared material proves otherwise.
P. sp. 1 - Known from N orth C arolina and northern Florida (Suwannee River basin). The wide ventromental plates have about 38-40 full length striae, which separates this species from specimens I've assigned to P. undine, which has only about 25 full length striae.
P. sp. 2 - The broad median tooth and the squat ventromental plates, with only about 18-19 full length striae, distinguish this taxon, known from Georgia and N orth C arolina. Jackson (1977) hypothesized that this taxon, based on a single larva from Georgia, might have been a $3^{\text {rd }}$ instar larva. It is possible that P. sp. A below is the $4^{\text {th }}$ instar of this same species.
P. sp. A - I've seen one larva of this taxon from N orth C arolina. It is similar to P. sp. 2, with a broad, bulging median tooth and squat ventromental plates, but thistaxon has about 35 full length striae and is much larger (width of ventromental plate of P. sp. 2 is around $34 \mu \mathrm{~m}$; that of P. sp. A around $53 \mu \mathrm{~m})$. Thistaxon may represent the $4^{\text {th }}$ instar of P. sp. 2. If so, this would mean that the number of ventromental plate striae doubles from instar 3 to instar 4.

Several additional species, including P. galaptera (Townes), P. nais (Townes) and P. winnelli Jackson, occur in the eastern N earctic but have not been recorded from the Southeast. If you have specimens that do not fit in the key above, see Jackson (1977).

Genus Paralauterborniella

DIAGNOSIS: Distinguished by the long basal segment of SII; pecten epipharyngis of 2 plates; 6 segmented antennae, with alternate Lauterborn organs on the apices of segments 2 and 3; distinctive mentum with broad, pale median tooth; wide ventromental plates with coarse striae; and mandible without a dorsal tooth.

N OTES: O ne species, P. nigrohalteralis, is known from N orth America. H udson et al. (1990) noted an undescribed species based on an adult collected from Lake N orman in N orth C arolina, but the specimen was not available for examination. Note that Paralauterborniella in Pinder \& Reiss $(1983,1986)$ includes two species that were returned to Apedilum by Epler (1988a), the genus in which they were originally described by Townes (1945). Although Pinder \& Reiss (1983) described the S II as simple, it is fringed.

Larvae usually occur in streams and rivers, but have been found in lakes.
ADDITIO N AL REFERENCES: Epler 1988a.

Genus Parapsectra

DIAGN OSIS: Distinguished by the pecten epipharyngis of 3 scales with apical teeth; bifid premandible; antennae with Lauterborn organs on long pedicels and short, squat antennal blade; and ventromental plates almost touching medially.

N OTES: Parapsectra is known from the Southeast from a male reported from N orth C arolina by H udson et al. (1990) and from males and pupae I've examined from the Smoky M ountains of N orth Carolina and Tennessee. The diagnosis above and figures below are based on the only described larva of the genus, the European P. uliginosa Reiss.

The larva of P. uliginosa has a hump on the outer margin of the mandible, similar to $M . \operatorname{spp} . B, C$ and E. The antennal blade of P. uliginosa is short and squat, not long as in M. spp. B, C and E. H owever, correct placement of M. spp. B and C will be unclear until the larvae are associated with pupae.

Larvae are reported from cold mountain streams and pools in bogs ("moors").
ADDITION AL REFERENCES: Reiss 1969.

Genus Paratanytarsus

DIAGNOSIS: This tanytarsine genus is distinguished by the single plate pecten epipharyngis with 3-5 apical lobes; bifid premandible; sessile, or nearly so, Lauterborn organs at the apex of antennal segment 2; ventromental plates touching or almost touching medially; and the mandible without a pronounced hump on the outer margin.

N OTES: C aldwell et al. (1997) list four described species for the Southeast, three of which occur in the C arolinas (see checklist); to this can be added P. quadratus and P. cf. laccophilus, both known from N orth C arolina. Paratanytarsus, like most tanytarsine genera, is in need of revision. The key below can only be considered tentative; it is quite possible that some of the taxa keyed may represent more than one species, and it is almost certain that more species are present.

The mandible of most larvae has two inner teeth, although the molar area is darkly sclerotized and is sometimes notched to give the appearance of a small third inner tooth.

Larvae are found in a variety of aquatic habitats, including brackish water.
ADDITIO N AL REFEREN CES: Langton et al. 1988; Reiss and Säwedal 1981.

P. dissimilismentum

P. quadratus antenna
P. dissimilis antenna

P. quadratus mandible

P. dissimilis pecten epipharyngis

Key to the Paratanytarsus larvae of the southeastern United States

1 Second antennal segment longer than combined segments 3-5 \qquad 2

1' Second antennal segment equal to or shorter than combined segments 3-5 3

3(1') Second antennal segment shorter than combined segments 3-5

3' Second antennal segment subequal to combined segments 3-5 P. quadratus, P. grimmii, P. sp. E 5 (these taxa can not be separated as larvae, but can be identified by pupal structures)

4(3') First antennal segment about 65-75 $\mu \mathrm{m}$ long \qquad P. sp. B

4' First antennal segment about $108 \mu \mathrm{~m}$ long P. cf. laccophilus

The larvae of the following 3 species are inseparable. H owever, if you have a late 4th instar larva with developing pupal characters visible, it may be keyed below.

5(3') A well developed thoracic horn present, covered with numerous fine spines \qquad P. quadratus

5' Pupal thoracic horn absent or vestigial \qquad 6

P. quadratus thoracic horn

6(5') Pupal abdominal tergite IV with longitudinal bands of spines; often found in drinking water systems P. grimmii

6' Pupal abdominal tergiteIV without longitudinal bands of spines; found in ponds \qquad P. sp. E

P. grimmii tergite IV

N otes on species

P. dissimilis - This species was recorded from Florida by Epler as P. sp. A.; it has also been recorded from both Carolinas.
P. dubius - The larva of this species is undescribed; records for the Southeast are based on adult males.
P. grimmii - A parthenogenetic species that is sometimes a pest in drinking water supplies; C aldwell et al. (1997) recorded it from Georgia. Thelarva is apparently inseparable from P. quadratusand P. sp. E. See Langton et al. (1988) for more information on this unusual species, found world-wide in drinking water systems.
P. cf. Iaccophilus - The N orth C arolina record for this species is based on a larval exuviae/pupa association from Lake N orman. This may be the same taxon as P. sp. B, the only apparent difference in the larvae being size.
P. quadratus - O riginally described in Tanytarsus(Sublette 1964), this species belongs with Paratanytarsus. It was called P. sp. C in Epler (1995). I have associated material from northern Florida, where it is very common in the Suwannee River basin. C aldwell et al. (1997) record P. quadratusfrom N orth C arolina. The larva is apparently inseparable from those of P. grimmii and P. sp. E
P. recens - As an adult, this species is very similar to P. quadratus and like it, was originally described in Tanytarsus (Sublette 1964). The larva is unknown.
P. sp. B - Known only as a larva from Florida; not known from the Carolinas. Larvae are apparently separable only by size from P. cf. laccophilus; the two taxa may represent the same species.
P. sp. D - K nown from a singlelarva from N orth C arolina that is similar to P. dissimilis, but has a 3 lobed pecten epipharyngis.
P. sp. E - Known from a single reared female from a beaver pond in central Georgia. It is possible that it represents P. recens.

Genus Paratendipes

DIAGN O SIS: Distinguished by the S I setae with bases fused or located on a common triangular plate; 6 segmented antennae, with alternate Lauterborn organs at the apex of segments 2 and 3; mentum with median teeth often lighter in color than remaining lateral teeth and central pair of median teeth equal to or higher than outer median teeth; and mandible with one dorsal tooth.

N OTES: Paratendi pes was recently revised by Barbara H ayford (now at Wayne State C ollege, NE); her revision should be published some time in 2002. Caldwell et al. (1997) reported five species from the Southeast; only the larvae of P. albimanus, P. basidens and P. subaequalis are known. I have not seen any material of the two other species; the C arolinas records of P. duplicatus, based on O liver et al. (1990), might be considered dubious. The threeknown species can be separated by their menta and ventromental plates, although note that the larva of P. thermophilusTownes, not known from the Southeast, is very similar to P . subaequalis It can be separated by its pecten epipharyngis of three apically toothed plateles; that of P. subaequalis appears to be of three simple spines. The larva of P. basidens has been known as "Paratendipes connectens group" (see Epler \& Ferrington 1994).

Larvae occur in a variety of habitats; P. basidens prefers sandy bottoms of streams and rivers.
AD DITIO N AL REFEREN CES: Epler \& Ferrington 1994; Townes 1945.

P. albimanus mentum and antenna

P. basidensmentum and mandible

P. subaequalis mentum and SI

Genus Phaenopsectra

DIAGNOSIS: Distinguished by the frontoclypeal apotome with 1 medial labral sclerite anterior to it (may appear to be a frontal apotome with clypeus and labral sclerite 1 anterior to it); mentum with a distinct line running from the posterior margin of the outer median teeth to the anteromedial margin of the ventromental plate; mandible with 3 inner teeth and with distance from basal notch of proximal inner tooth to insertion of seta subdentalis at least $3 / 4$ distance from the basal notch to apical notch of distal inner tooth.

N OTES: Five species are recorded from the Southeast (but see N otes); four species are recorded from the C arolinas. Phaenopsectra requires revision utilizing all life stages; it is not possible to identify larvae to the species level without an adult male. Larvae can be identifed to species groups: the punctipes group, with a mandible with a large notch at the base of the inner teeth and apparently 14 toothed mentum (subject to wear); and the obediens group, with normal mandible and 16 toothed mentum.

L arvae usually occur in streams; some western US species are resistant to drought and can withstand drying by remaining in silk and silt cocoons.

ADDITION AL REFEREN CES: Grodhaus 1976, 1987b; Townes 1945.

Ph. obediens group mentum, mandible, apotome and antenna
(Ph. obediens)

N otes on species

Ph. dyari - This species was recorded from Florida by Beck \& Beck (1959). I have not seen any material of this speciesfrom the Southeast and consider the Beck \& Beck record dubious. Simpson \& Bode (1980: 78) included a larva they identified as "Phaenopsectra prob. dyari"; I have examined their material and consider it to be Ph. obediens. This would settle G rodhaus's (1987: 144) concern that if Simpson \& Bode's (1980) identification were correct, it would be the first instance in which the larva of a species belonged to the obediens group while the adult belonged to the punctipes group. H udson et al. (1990: 36) speculated that a species with four equal median teeth, known only as a larva (referred to in N CD EN R collections as "Phaenopsectra sp. 4") from M ountain and Piedmont areas appeared to be equival ent to Simpson \& Bode'sPh. prob. dyari (which it is not, the menta are different) and Roback's Tanytarsus sp. 2 (which does appear to be the same taxon); this larva was called Polypedilum sp. C in Epler (1995), and is found on the Coastal Plain as well. It has the distinctive frontoclypeal apotome of a Polypedilum (q.v.) and isidentified asP. Iaetum in this manual.
Ph. flavipes - Townes (1945) recorded this species from South Carolina; I've seen one male reared from a larva from Florida. Theouter lateral teeth of the mentum arefrequently worn so that the mentum appears to have only 14 teeth. The larva is inseparable from that of Ph. punctipes; unassociated larvaeshould bereferred to as "Ph. punctipesgroup sp.". There appear to beno structural characters that separate the adults of Ph. flavipes from Ph. punctipes, the only difference being abdominal coloration (dark brown-blackish in Ph. flavipes; green in Ph. punctipes). Because color in insects can be environmentally influenced, perhaps the two taxa should be synonymized.
Ph. obediens - A common species, and probably the only member of the Ph. obediens group in the Southeast. Grodhaus(1987b) was incorrect in stating that this species had a frontal apotome and clypeus; the larva has a frontoclypeal apotome (S 3 is located at the anterolateral corner of the apotome). On reared specimens from N orth Carolina, the clypeus is fused to the frontal apotome, but is considerably lighter and/or thinner. The clypeus may appear as a separate sclerite, apparently depending on the specimen and the mounting medium used.
Ph. punctipes - Recorded from the same locality in South Carolina as Ph. flavipes by Townes (1945). I've examined associated material from N ew York. The larva is inseparable from that of Ph. flavipes; unassociated larvae should be referred to as "Ph. punctipes group sp.".
Ph. vittata - Thelarva of this species is unknown. Townes (1945) placed the adult in the punctipes group; the larva probably resembles those of Ph . flavi pes and Ph . punctipes.

DIAGN OSIS: The distinctive mentum, with median and second lateral teeth longer than first lateral teeth, will distinguish most members of the genus. O ther larvae may be identified by the frontoclypeal apotome with straight anterior margin expanded laterally into lobes in which the S 3 setae are located (except in P. ontario); 5 segmented antennae (4 segmented in 2 species); and the 4 median teeth of the mentum not separated from the rest of mentum by a distinct line.

N OTES: A speciose genus, with over 30 species in the Southeast, Polypedilum has received attention from several workers recently, the most important being the long overdue publication of M aschwitz \& Cook (2000). Where once there were three subgenera, there are now six (see N otes); the former genus A sheum is now considered a subgenus of Polypedi lum. Thelarvae of many Polypedilum species are known, but it isstill not possible to identify to species larvae of the fallax, halterale, illinoense and scalaenum groups without associated pupae or adult males (see N otes on species); much work remains to be done.

Larvae are found in a wide range of habitats under a variety of environmental conditions, ranging from pristine to heavily degraded.

ADDITION AL REFERENCES: Boesel 1985; Bjørlo et al. 2000; M aschwitz \& Cook 2000; Rossaro 1985; Sæther \& Sundal 1999; Soponis 1983; Soponis \& Russell 1982; Soponis \& Simpson 1992; Townes 1945.

K ey to Polypedilum larvae of the southeastern U nited States

(the larvae of many species are unknown)
1 M entum with median teeth lower than lateral teeth, or teeth subequal, or apparently missing .. 2

1' M entum with median and second lateral teeth much higher than first lateral teeth \qquad 8

2(1) M entum with median teeth lower than lateral teeth, or with 1 apparent broad median tooth, or with deep, wide median notch; pecten epipharyngis with 3 blunt teeth; mining in floating leaves of Brasenia, N ymphaea or other aquatic plants
P. braseniae

mentum from larva in Nymphaea

pecten epipharyngis

menta from larvae in Brasenia

2' M entum with median teeth subequal to or higher than lateral teeth; pecten epipharyngis with 3 scales, with at least the outer 2 scales with apical teeth; usually not mining in Brasenia or N ymphaea leaves (but may be associated with either plant or other aquatic plants) 3

3(2') M entum somewhat rounded in outline; ventromental platesteardrop-shaped, with rounded posterolateral margins; setae submenti placed on ventromental plates; antenna short and squat; Iarvae often found in pupal cases of hydropsychid caddisflies \qquad P. ontario

3' M entum more linear in outline; ventromental plates with pointed posterolateral margins; setae submenti placed adjacent to ventromental plates; antennae normal, slender; usually not found associated with caddisflies (but some P. fallax group larvae have been found with Psilotreta) 4

4(3') Ventromental plate without well developed posterior lobe \qquad 5

4' Ventromental plate with well developed posterior lobe 9

5(4) M entum with central 4 teeth higher than remaining lateral teeth; mentum with 14 teeth or 16 teeth (if 16, outermost tooth may be very small); antenna with 4th segment longer than 3rd \qquad P. laetum

5' M entum with 16 teeth, with 6 central teeth slightly higher or all teeth subequal; antenna with 4th segment subequal to 3rd (figures below) \qquad 6

6(5') Ventromental plates very wide \qquad P. beckae (P. sordens will key here; see N otes)

6' Ventromental plates not as wide \qquad 7

7(6') Antennal segment 2 about as long as combined lengths of segments 3-5; head capsule often dark yellow-brown \qquad P. fallax group

7' Antennal segment 2 shorter than combined lengths of segments 3-5; head capsule yellowish P. sp. A

8(1') Ventromental plate with well developed posterior lobe

9

8' Ventromental plate without well developed posterior lobe 10

9(4', 8) Antennal segment 2 about twice as long as segments 3-5 combined; first lateral tooth of mentum may be slightly shorter than or equal to second lateral; median teeth of mentum not basally constricted \qquad P. aviceps

9' Antennal segment 2 no more than 1.5X segments 3-5 combined; first lateral tooth of mentum al ways shorter than second lateral; median teeth of mentum constricted basally \qquad P. flavum

10(8') M entum with second lateral teeth higher than median teeth \qquad P. bergi

10' M entum with second lateral teeth about as high as median teeth
$11\left(10^{\prime}\right)$ Third antennal segment $1 / 3$ or less the length of the second segment 12

11' Third antennal segment at least $1 / 2$ or more the length of the second segment

13

12(11) Antennal segment 4 about as long as segment 2; antennae always with 5 segments \qquad P. halteralegroup

12' Antennal segment 2 much longer than 4; antennae with 4
P. scalaenum group
 -
\qquad

P. halterale

P. scalaenum

13(11') Width of 1 ventromental platemore than 2.5X the distance between the plates14

13' Width of 1 ventromental plate 2.5 X or less the distance between the plates 15

14(13) M entum usually with 4th lateral tooth lower than 3rd and 5th; antennal segment 2 usually about twice as long as 3; antennal bladelonger than flagellum; Lauterborn organslarge and distinct
\qquad

14 \quad M entum with 4th lateral tooth subequal to 3rd and 5th; antennal segment 2 subequal to 3; antennal blade shorter than flagellum; Lauterborn organsminute \qquad P. tritum (in part)

15(13') Lauterborn organs well developed \qquad P. illinoense group

15' Lauterborn organsminute \qquad P. tritum (in part)

N otes on species

N orth American Polypedilum are now divided into six subgenera, which are abbreviated below as follows: A. =Asheum; C. =Cerobregma; Pent. =Pentapedilum; P. =Polypedilum; T. =Tripodura; U . = U resipedilum. O nly those species recorded from or expected to occur in the Carolinas are listed below; for a more complete listing of Polypedilum species of the Southeast see Caldwell et al. (1997) and M aschwitz \& Cook (2000).
P. (T.) acifer - O riginally described from M ichigan (Townes 1945), this species is known from Florida and Alabama in the Southeast and should eventually be found in the C arolinas. The immature stages are undescribed.
P. (P.) albicorne - The immature stages of this species were described by Rossaro (1985). I have not seen any larvae from the Southeast and the species is not included in the key. It would probably key to P. illinoense group.
P. (T.) albinodus - The immature stages of this species are undescribed.
P. (P.) angulum - In many collections from N orth and South C arolina I've seen this name erroneously applied to P. tritum. A member of the P. illinoense group, P. angulum is not easily separable from P. illinoense as a larva or pupa; adult males are needed for accurate identification. In a series of Florida specimens of P. angulum in the FAM U collection determined by M aschwitz, none of thelarvae had the long $4^{\text {th }}$ antennal segment as illustrated in M aschwitz \& Cook (2000: fig. 45); these larvae are impossible to separate from those of P. illinoense. Unless you have good male specimens associated with your larvae, you can not identify this species as a larva! I've seen adults of this species from the Savannah River Plant area in South C arolina; it is to be expected throughout the Southeast.
P. (P.) artifer - Theimmaturestages of this species are undescribed. I've seen adults from N oland C reek in G reat Smoky M ountains N ational Park, N orth C arolina.
P. (U.) aviceps - A relatively common stream and river species that is easily identified by the posterior lobe on the ventromental plates, large first lateral tooth of the mentum and the short antennal segments 3-5. It has frequently been misidentified as P. convictum (a name that has been incorrectly applied to P. flavum; see P. flavum).
P. (A.) beckae - This species was formerly placed in its own genus, Asheum (a replacement name for Pedionomus), but was placed as a subgenus of Polypedilum by Sæher \& Sundal (1999). See P. sordens.
P. (P.) bergi - I've seen adult males from the Savannah River Plant area of South C arolina and larvae from northern Florida. Larvae have been associated with the leaves of Potamogeton natansin M innesota. The species probably occurs throughout the Southeast.
P. (P.) braseniae - Larvae are usually found mining in the top surface of the floating leaves of the aquatic plants Brasenia schreberi and N ymphaee odorata. The mentum and premandibles are subject to wear. M aschwitz \& Cook (2000) described the premandibles as simple, but many (unassociated) specimensl've seen have two or even three teeth on the premandible. M aschwitz \& Cook (2000) also noted the differences in larvae reared from different plants, especially the mentum, but similar adults came from all their rearings.
P. (P.) calopterus - N ot known from the C arolinas; recorded from G eorgia in the Southeast. This species was considered a synonym of P. fallax by Townes, but recent authors disagree (Boesel 1985; C aldwell et al. 1997). M aschwitz \& Cook (2000) could not find any differences in the immature stages of P. calopterusand P. fallax. Larvae that are not associated with adults are best called "P. fallax group". See also P. fallax and P. walleyi below.
P. (P.) cinctum - The immature stages of this species are undescribed.
P. (T.) digitifer - A member of the P. halteralegroup; larvae are not reliably separated from other members of this group. Soponis \& Simpson (1992) described and compared the larvae, pupae and adult males of P. digitifer and P. griseopunctatum. They found differences in the number of teeth in the outer scale of the pecten epipharyngis (9 teeth for digitifer; 7 for griseopunctatum); however, reared material of P. digitifer from South C arolina had only 6 teeth on the outer scale. Adult males are needed for accurate identification of most species of the P. halterale group.
P. (P.) falciforme - Recorded from Florida in the Southeast, but this species' range extends northward to N ew Jersey and M innesota. A member of the P. illinoense group, it is not reliably separated from the other members as a larva; a pupa or an adult male is needed for accurate identification.
P. (P.) fallax - A common species whose identification as a larva is uncertain; M aschwitz \& C ook (2000) could not find any differences in the immature stages of P. calopterus and P. fallax. Larvae that are not associated with adults are best called "P. fallax group". I've examined larvae from the Smoky M ountains that were collected within the cases of the odontocerid caddisfly Psilotreta; the midge larvae were not associated with pupae or adults so it is not clear to which species they belong. See also P. walleyi below.
P. (U .) flavum - A very common species of streams and rivers, this species was formerly called P. convictum in N orth America. The adults of P. flavum and P. convictum are very similar, leading Townes (1945) to erroneously synonymize the two. The immature stages of the two species are quite different. It is not known if the true P. convictum occurs in N orth America. As used in this manual, P. flavum includes P. obtusum (considered a valid species by M aschwitz \& Cook (2000)).
P. (T.) griseopunctatum - A member of the P. halteralegroup; larvae are not reliably separated from other members of thisgroup. Soponis \& Simpson (1992) described and compared the larvae, pupae and adult males of P. digitifer and P. griseopunctatum; see P. digitifer above.
P. (T.) halterale - Obviously a member of the P. halterale group. This group, as used in the key above, consists of P. digitifer, P. griseopunctatum, P. halterale and P. simulans. Thelarvae of this group can not be identified to species level without an associated adult male. Boesel (1985) considered all these species as synonyms of P. halterale, but his study was limited and did not make use of reared material; his synonymies have been rejected by most workers.
P. (P.) illinoense - O ne of the most common and ubiquitous species of the genus, but basically impossible to identify as a larva without an associated adult male because of the similarities between the larvae of the P. illinoense group. The P. illinoense group, as used in the key above, consists of P. angulum, P. falciforme, P. illinoense, P. nymphaeorum and P. ophioides. M aschwitz \& Cook (2000: 30) offered a key to these larvae with the warning that "The following species are difficult to separate in the larval stage". In the "real world", these larvae are basically impossible to separate unless they have been associated with an adult! N ote that even the adult males of this group are difficult to separate without comparative material and experience. As an example, a rearing of P. falciforme from Georgia (based mostly on pupal morphology) has a larva that keys to P. nymphaeorum, while the adult looks more like a P. angulum. Records in the literature may refer to any of the illinoense group species and in some cases refer to other species altogether. Larvae of P. illinoenseoccur under a wide range of conditions, including the high organic loading and low dissolved oxygen associated with pulp mills.
P. (P.) laetum - The larva of this species has been mistaken for a Phaenopsectra (Phaenopsectra sp. 4 in N CD EN R collections), but has the typical Polypedilum frontoclypeal apotome; Epler (1995) referred to it as P. sp. C. Although I have not seen associated material of this species from the Southeast, it is obviousfrom the description in M aschwitz \& Cook (200) and Rossaro (1985) that this distinctive larva belongs here. Apparently the mentum may have the outermost tooth worn or vestigial, so that many menta appear to have only 14 teeth.
P. (P.) nymphaeorum - A member of the P. illinoense group, and not reliably separated from the other members as a larva; adult males are needed. This species has not yet been recorded from the C arolinas but probably occurs there; it has been recorded from Florida, Illinois, Kentucky, Louisiana, Michigan, M innesota, N ew Jersey and O ntario.
P. (C.) ontario - I've seen larvae of this species from N orth C arolina. Sæher \& Sundal (1998) established a new subgenus, Cerobregma, and included P. ontario, the only N earctic member of the subgenus. Polypedilum ontario is the only species of Polypedilum in N orth America in which the frontoclypeal apotome does not widen apically, apparently a subgeneric character state. It is also the only N earctic Polypedilum known to me in which the setae submenti are placed on the ventromental plates, rather than adjacent to them. Sæther \& Sundal (1998: 354) stated that the pecten epipharyngis consisted of three platelets, the lateral platelets unserrated. On a N orth C arolina larva, the lateral platelets of the pecten epipharyngis have two to three teeth. Bolton (1991) showed that pupal Chironomini genusC of Pinder \& Reiss (1986) is this species; larvae were collected from the pupal retreats of the hydropsychid caddisfly C heumatopsyche.
P. (P.) ophioides - I've seen a male from the Savannah River Plant area of South C arolina. Thelarva is very similar to P. illinoense and probably can not be reliably separated from it. U nless you have good male specimens associated with your larvae, you can not realistically identify this species as a larva!
P. (T.) parascalaenum - Originally described from Florida, but now recorded from Georgia and both C arolinas by H udson et al. (1990). H owever, unless their identifications were based on adults, they must be considered dubious at best. It has been mistakenly assumed that the larval antenna of P. parascalaenum has 4 segments, while that of P. scalaenum has 5 . The antennae of both species may appear to have a vestigial fifth segment; the larvae of the two species are apparently inseparableand should be referred to as "P. scalaenum group sp.". Judging from the numbers of adults I've seen, P. parascalaenum isquiterare, whileP. scalaenum is very common. The adult of P. parascalaenum is unusual for a Tripodura in that it does not have the spine-like lateral processes at the base of the anal point, but other members of the subgenus also lack these spines (Bjørlo et al. 2000).
P. (T.) pardus - The immature stages of this species are undescribed.
P. (U.) pedatum - The immature stages of this species are undescribed.
P. (T.) scalaenum - As a larva, apparently inseparable from P. parascalaenum (see above). Larvae should be identified as "P. scalaenum group sp.". As noted above, the larval antenna usually has 4 segments, but may have a vestigial fifth segment. There is also variation in the length of the fourth segment, some appearing longer than "normal". It will take study of numerous rearings of both species to determine if it is possible to separate the larvae.
P. (T.) simulans - A member of the P. halterale group. The larvae of this group can not be identified to species level without an associated adult male. Judging from pupae and adults I've examined, P. simulans is one of the commoner members of the halterale group in the Southeast.
P. (Pent.) sordens - This species has been recorded from Florida and South C arolina in the Southeast; I have not seen any material of this species from the Southeast. Larvae are very similar to those of P. beckae. Thelarva of P. sordens is not included in the key. Judging from illustrations in other works (e.g. Pinder \& Reiss 1983: fig. 10.63A), it may be separable from P. beckae by the apparently lower first lateral teeth of the mentum.
P. (P.) trigonus - A relatively common species, usually easily recognized by the reduced fourth lateral tooth on the mentum. M ore than one species may be included under this name in the Southeast, but extensive rearings are necessary to elucidate their identities.
P. (Pent.) tritum - A common species in the Southeast, the larvae are often misidentified as P. illinoense or P. angulum. The antenna, with the long segments 3 and 4, and vestigial Lauterborn organs, are distinctive. M ore than one species may be included under this name in the Southeast.
P. (P.) vibex - The immature stages of this species are undescribed. In the Southeast, recorded from Alabama, Florida and both C arolinas.
P. (P.) walleyi - Recorded for South C arolina by H udson et al. (1990), but I've seen no material from the Southeast. I have seen reared specimens of P. trigonus from N orth C arolina misidentified as P. walleyi. The status of P. walleyi is unclear; it has been considered a synonym of P. calopterus, and P. calopterus has been considered a synonym of P. fallax. C aldwell et al. (1997) gave P. calopterus and P. walleyi valid species status. M aschwitz \& Cook (2000) could not find any differences in the immature stages of P. calopterus and P. fallax (adult female P. calopterus have a broad dark band through the middle of the wing not present in P. fallax or P. walleyi). It is best to consider larvae of all three taxa not associated with adults as members of a "P. fallax group".
P. (Pent.) sp. A - First keyed by Epler (1992, 1995), this species has been reared and although it has a mentum very similar to P. fallax, is a member of the subgenus Pentapedilum (the adult has setae on the wing membrane). It is known from the Florida Everglades northward to at least O hio.
P. (T.) sp. B - This taxon is based on a single male pupa with well developed pharate male genitalia from the Perdido River in northwest Florida. The superior volsella issimilar to that of P. griseopunctatum, but has an apical extension (past the point of insertion of the medially directed setae) bearing a large, posteriorly directed seta.

Genus Pontomyia

DIAGNOSIS: This tanytarsine genus is distinguished by the pecten epipharyngis of 3 scales with numerous apical teeth; antennae with sessile Lauterborn organs; premandibles with more than 3 teeth; mandible with 3 inner teeth; mentum with 4 pairs of lateral teeth; ventromental plates touching medially (or almost so); and marine habitat.

N OTES: In N orth America, Pontomyia is known only from Florida. A truly marine insect, larvae have been found at depths of 30 meters (Bretschko 1981). I've recently examined larvae that were collected from the algaeladen backs of sea turtles offshore of Puerto Rico. The Puerto Rican larvae appear to be the same species that is found in Florida, but until associated with adults, their specific identity remains unknown.

C ontrary to the diagnosis in Pinder \& Reiss (1983), some of the claws of the parapods are bifid.
Larvae have been found in sand, coral and algae (including those found on the backs of sea turtles).
ADDITIO N AL REFEREN CES: Bretschko 1981; Soong et al. 1999.

premandible

antenna and base
mandible

posterior parapod claws

Genus Pseudochironomus

DIAGN O SIS: Distinguished by the SI setae arising from separate bases; antenna not mounted on elongate pedestal; mandible without dorsal tooth and with seta subdentali on dorsal side; large bar-like ventromental plates that touch or almost touch medially; and procerci not fused at the base.

N OTES: Although reviewed by Sæther (1977a), the taxonomy of Pseudochironomus is in an unsatisfactory state. Judging from pupae and adults I've examined, Ps. richardsoni is common in the Southeast, but I have not seen larvae similar to that described by Sæer (1977a) for this species. Sæther's (1977a) key depends on dubious literature descriptions and a meager amount of material, and is basically unusable for southeastern larvae. Records of the Palaearctic Ps. prasinatusfrom the US must be considered with extreme skepticism; there is at least one southeastern larva that will key to Ps. prasinatus in Sæther's (1977a) key. H owever, I have a larva/pupa/pharate adult association of this taxon; it is not Ps. prasinatus.

D ue to a paucity of material, it is not possible to construct a species key for larvae. There are two major types of larvae: those with a definite 13 toothed mentum that is basically linear, and those with an 11-13 toothed mentum that is more arcuate, with the last tooth or pair of teeth vestigial or fused. Unless accompanied by associated adults, larvae should be identified as "Pseudochironomus sp.".

Larvae are found in sandy substrata of lakes and rivers; they may also befound in brackish/estuarine water.
AD DITIO N AL REFEREN CES: Sæther 1977a; Sublette 1964; Townes 1945.

Genus Rheotanytarsus

DIAGNOSIS: This tanytarsine is distinguished by the single, broad, multitoothed, comb-like pecten epipharyngis (rarely deeply trisected, but this not seen in southeastern larvae); Lauterborn organs on short pedicels; apically bifid premandible; and ventromental plates touching medially (or almost so), often with apparent block-like strial ridge markings.
NOTES: A common and often abundant midge, but poorly known on the species level. About eight species occur in the Southeast (J.E. Sublette, pers. comm.); two are described but only one, Rh. pellucidus, is identifiableto species as a larva. The genus has been undergoing revison by K yerematen, but no work has been published on the N earctic fauna.

Larvae are usually found in streams and rivers, and are often associated with aquatic plant communities, where they build tubes on leaves and stems. Larvae may also be found in the littoral area of lakes, where wave action simulates flowing water conditions. Larvae attach their cases to a number of surfaces, including plants, rocks, boats and aquatic animals (in Florida, alligators, and I have found a tube on the barbel of a madtom catfish), and insects, such as dragonfly larvae (M acromia and Neurocordulia) and the megalopteran C orydalus.

ADDITIO N AL REFEREN CES: Kyerematen et al. 2000; Kull berg 1988; Lehmann 1971; Simpson \& Bode 1980.

K ey to Rheotanytarsuslarvae of the southeastern United States

1 AR 2.0 or more; head capsule yellow-brown to pale brown; median tooth of mentum usually shallowly trifid; first 3 body segments with long setae \qquad Rh. exiguus group

1' $\quad A R<2.0$; head capsule pale brown to dark red-brown; median tooth of mentum shallowly to deeply trifid; first 3 body segments with long setae OR 3rd body segment with short setae 2

2(1') M edian tooth of mentum deeply trifid; head capsule usually pale brown; 3rd body segment with setae shorter than those on segments 1 and 2

Rh. pellucidus

2' M edian tooth of mentum at most slightly notched; head capsule brown to dark reddish-brown; 3rd body segment with long setae \qquad Rh. sp. A

N otes on species

Rh. exiguus group - A species group that consists of several species, none of which are reliably separated as larvae (except perhaps Rh. sp. A; see below). The most common species of the group is the ubiquitous Rh. exiguus. Larvae of this group construct tubes that are attached to the substrate lengthwise along one side. Although the median tooth of the mentum is usually shallowly trifid, I have seen some larvae with a deeply trifid median tooth. D o these represent a different species or are the differences due to wear? Without associated pupae and adults this will remain a good question! O ther characters that may help separate Rh. exiguus group larvae from those of Rh. pellucidus are the smaller body size (see Rh. pellucidus below), wider ventromental plates in most Rh. exiguus (35 times broader than long; only about 2-3 times as broad as long in Rh. pellucidus); the lighter head capsule color of Rh. exiguus group members; and the longer Lauterborn organ petioles in Rh. exiguusgroup species, in which the organs extend past the apex of antennal segment 4; in most Rh. pellucidus larvae the organs do not extend beyond antennal segment 4 (observation of this depends on how flat the antennae are mounted!). A good pupal character, observable on prepupal larvae with well developed pupa within, is the presence of two small posteromedian groups of spinules on a darker background on tergite II of Rh. pellucidus; in Rh. exiguus group pupae only a single posteromedian group of spinules, not on a darker background, may be present.
Rh. pellucidus - This species was formerly known as Rh. distinctissimus. Like the Rh. exiguus group, a ubiquitous species throughout the eastern US; both often occur together in samples. Larvae are small, somewhat dark headed (but not as dark as Rh. sp. A below), and construct tubes that are attached to the substrate using a long petiole. The short setae on body segment 3 (shorter than those present on segments 1 and 2) will usually separate this taxon easily from the Rh. exiguus group and Rh. sp. A. M ature larvae of Rh. pellucidus are considerably smaller than those of Rh. exiguus group members (length about 3 mm in Rh . pellucidus, over 4 mm in Rh. exiguus group).
Rh. sp. A - A species with a brown to dark reddish-brown head capsule, known from streams in N orth and South Carolina. It is probably a member of the Rh. exiguus group, but without full rearings and a clear definition for this group in North America its placement remains uncertain. There may be two species included in this taxon. In the small sample available to me, I noted one larva with a longest seta on the first segment that was over $230 \mu \mathrm{~m}$ long; on the other specimens, longest setae ranged in length from 105-125 $\mu \mathrm{m}$. A different species, or just a variant? All larvae available to me were not associated with larval tubes, so the manner in which the tubes are attached to a substrate is unknown.

Genus Robackia

DIAGNOSIS: Distinguished by the 7 segmented antennae; mandible with modifed inner teeth and without seta interna; 14 toothed mentum; and coarsely sculptured ventromental plates.

N OTES: Based on adults, three species have been collected in the Southeast, but the third species, R. pilicauda Sæerer, collected in Alabama and Georgia, is probably a junior synonym of R. claviger. Larvae of the other two species, R. claviger and R. demej jerei, are separable by their mandibles and menta (see figures below). The proximal inner mandibular teeth of R. claviger are enlarged and directed backwards, and in most R. claviger the median teeth of the mentum are somewhat truncate and distinctly lower than the lateral teeth; R. demejerei has smaller proximal inner mandibular teeth and the median teeth of the mentum are more pointed and subequal to the lateral teeth. Contrary to the key in Sæather (1977a), the menta of both species have 14 teeth. N ote that the mandibles of early instars may not have the modified inner teeth of 4th instar larvae. Also note that it is easy to mistake the enlarged style for an antennal segment!

Larvae are found in sandy substrata of streams and rivers.
ADDITION AL REFERENCES: Sæther 1977a.

R. demejerei mentum and mandible

Genus Saetheria

DIAGNOSIS: Distinguished by the small seta-like S I and large SII; 6 segmented antennae, with second segment not as long as third and style at apex of segment 3 not exceeding apex of segment 5 ; mandible without dorsal tooth; premandible with 3 large inner teeth and brush present; and the coarsely striated ventromental plates.

NOTES: Three species are known from the Southeast; only two have been formerly described with complete names. Saetheria is very close to Paracladopelma, but can be distinguished by the 6 segmented antenna with the relatively shorter second segment (in Paracladopelma the second antennal segment is longer than the third). Contrary to the diagnoses in Jackson (1977) and Pinder \& Reiss (1983), the premandible does have a brush, although it is hyaline and not easily observed.

Larvae are found in sandy substrata, usually in running water.
ADDITIONAL REFERENCES: Jackson 1977; Sæher 1983a.

S. sp. 1 mandible

S. sp. 1 premandible

S. sp. 1 antenna

S. hirta antenna

S. sp. 1 mentum

K ey to Saetheria larvae of the southeastern U nited States

1 M entum with narrow median tooth .. S. hirta

1' M edian tooth of mentum broader (figures below)
2

2(1') M entum morearched, with lateral teeth straight and pointing forward; ventromental platewith about 15 full length striae \qquad S. tylus

2' M entum more linear, with lateral teeth lower and pointing medially; ventromental plate with about 26 full length striae \qquad S. sp. 1

N otes on species

S. hirta - K nown only from N orth and South C arolina. The adult male is undescribed; Sather (1983a) described the larva and pupa, and the female from a mature pupa. I have seen a male from the Savannah River Plant area in South C arolina that may be the male of this species or S. sp. 1.
S. tylus - The most commonly encountered member of the genus in the Southeast.
S. sp. 1 - O riginally described from larval-pupal association from M ississippi, I have also examined mate rial from Alabama. I have not seen material of thistaxon from theC arolinas, but it probably occurs there.

Genus Stelechomyia

DIAGNOSIS: Distinguished by the frontal apotome, with one median labral sclerite anterior to it (S 3 setae are not placed on the sclerite); distinctive mentum, with deeply sunken single middle tooth; long setae submenti; lack of seta interna and pecten mandibularis on mandible; and rectangular, dark yellow reddish-brown head capsule.

N OTES: O ne species, S. perpulchra, is known. It was formerly placed in Lauterborniella but given full generic status by Reiss (1982). Roback (1953) referred to this species as Tendipedini sp. A.

Larvae occur on dead wood in streams and rivers; they are often found on H ester-D endy samplers produced from wood products.

ADDITIONAL REFERENCES: Reiss 1982.

mentum
frontal apotome and labral sclerite 1

antenna

mandible

Genus Stempellina

DIAGN O SIS: Larvae are distinguished by the apically bifid frontoclypeal setae; granulate frontoclypeal apotome, with none to several pairs of tubercles; antennal base without apical spur but with mesal palmate process; Lauterborn organs on pedicels arising from the apex of antennal segment 2 ; widely separated, squat ventromental plates; procerci with dark, simple or forked apical spurs or without spurs; and portable sand case.

N OTES: Three described species are listed from the C arolinas by C aldwell et al. (1997); I have not seen any material of the three species listed. I have seen material of what appear to be at least 3 species based on larvae (two of these associated with pupae and adults).

Stempellina larvae live in portable cases and may occur in lotic and lentic situations.
AD DITIO NAL REFEREN CES: Brundin 1948; Webb 1969

S. sp. A mentum

S. sp. B
S. sp. A

S. sp. A antenna

S. sp. C
dorsal views of partial head capsules

Key to Stempellina larvae of the southeastern U nited States

1 Procerci large, heavily sclerotized and with numerous spurs; head capsule with large tubercles laterally, none near center of head \qquad S. sp. C

1' Procerci not as large, without spurs or with only a few spurs; head capsule with tubercles near center of head posteriorly (figures below)

2

2' Frontoclypeal setae not originating from large pedicels; head capsule mostly granulatedorsally, with a few tubercles near the side and 1-3 pairs of tubercles near the posterior median portion of frontoclypeal apotome
S. sp. A

N otes on species

S. sp. A - This species is common in northern Florida; I have also seen material from the C arolinas. I have associations of this species, which appears to be undescribed. The number of sharp tubercles on the posteromedial portion of the frontoclypeal apotome varies from one pair to three pairs.
S. sp. B - I've only seen this taxon from N orth C arolina.
S. sp. C - I've examined material of this taxon from Alabama, Florida, N orth Carolina, O hio and South C arolina. It was erroneously assigned to Constempellina by Epler (1995) due to the mesal process of the antennal base being obscured by detritus on the single specimen available at that time. Specimens of thisspecies havebeen identified as "Stempellina montivaga group" or "S. nr. montivaga" by NCDENR biologists, although this taxon bears little resemblance to S. montivaga or, more properly, S. bausei. N ote that the larva identified as S. montivaga in many previous works, such as Pinder \& Reiss (1983: figs. 10.71 A, C, E and F) was misidentified; that species is actually N eostempellina thienemanni. See Reiss (1984) for a full listing of those publications in which S. monti vaga was misidentified. Also note that the "real" S. montivaga is ajunior synonym of S. bause (K ieffer), a species not known to occur in the N earctic. The larva of S. sp. C has procerci similar to those of S. sp. 3 of Oliver et al. (1978). Its placement in Stempellina istentative; this species may be a N eostempellina. The antennal base of the larva varies from being gum drop shaped to pointed (as if it had a short spur). I have examined one larva/pupa/adult female rearing from 0 hio. The pupa fits mostly Stempellina but lacks the characteristic, granulose median mound on the frontal apotome; the thorax is mostly smooth but with some granulation near the anterior mid-dorsal line; abdominal tergites II-VI have a basically quadrangular field of spinules; vortices are present on sternite IV; there are no spines on conjunctiva IV/V; and three lateral taeniae are present on tergite VIII. The associated adult is a female, and lacks a scutal tubercle and pulvilli (the lack of these structures would classify it as a N eostempellina). The Nearctic taxa assigned to Constempellina, N eostempelina and Stempellina arein need of revisionary work utilizing all life stages; generic limits based on European taxa may not be applicable on this side of the Atlantic.

Genus Stempellinella

DIAGNOSIS: This tanytarsine is distinguished by the simple or apically divided S 3 (clypeal) setae; pecten epipharyngis of 3 slender spines; well developed spur on antennal base; 5 segmented antennae with one set of Lauterborn organs arising apically, the other from near the base of segment 2; premandible with 3-4 teeth; squat ventromental plates separated medially by at least the width of the 3 median mental teeth; and its portable sand case.

N OTES: At least 3 species occur in the Southeast. I've examined associations of two species (see N otes) and have seen another undescribed adult and an undescribed larva (that may be the larva of the unde scribed adult).

A great deal of confusion exists concerning the separation of Stempellinella and Zavrelia. Earlier works used antennal differences to separate the genera; these differences were shown to be not valid (Pinder \& Reiss 1983). Pinder \& Reiss (1983) used characters of the pecten epipharyngis and the premandible to separate the genera. H owever, Stempellinella sp. A has a 4 toothed premandible, unlike the 2-3 toothed premandible diagnosed for Stempellinella in Pinder \& Reiss (1983). The larva of an undescribed Zavrelia species from the eastern US differs from the sole described larva of the genus, the European Z. pentatoma, in that the pecten epipharyngis consists of 3 slender spines, rather than the short stubby spines found in Z. pentatoma. At this time, only the heavier shagreen of pupal abdominal tergite II on Zavrelia and the hairy eyes of adult Zavrelia will separate the two genera. The two Nearctic taxa mentioned above blur the differences between Stempellinella and Zavrelia and make it more likely that the two genera should be combined; Zavrelia is the older name and would take precedence.

Stempellinella larvae are found in springs, streams and rivers; they are also recorded from lakes.
ADDITIO NAL REFERENCES: Webb 1969.

K ey to Stempellinella larvae of the southeastern U nited States

1 Antennal base with long curved spur; premandible with 4 inner teeth; clypeal setae apically divided

1' Spur of antennal base not as long; premandible with 3 inner teeth; clypeal setae simple or divided

2(1') Clypeal setae simple; spur on antennal base shorter \qquad S. cf. leptocelloides

2^{\prime}
Clypeal setae apically divided; spur on antennal base longer \qquad S. sp. B

N otes on species

S. cf. leptocelloides - I've seen reared material of this taxon from 0 hio, adults from northern Florida, and larvae from Florida, N orth Carolina and N ew Jersey. The identification is uncertain because the adult male genitalia differ slightly from those figured for S. leptocelloides (Webb 1969: figs. 7, 8); examination of type material will be necessary.
S. sp. A - I've examined reared or associated material from Florida, N orth C arolina and O hio. This taxon appears to be an undescribed species that somewhat resembles the European S. flavidula (Edwards), but does appear to be a different species. Stempellinella sp. A is the most common species of the genus that I've seen from the Southeast; I've seen larvae from Alabama, Arkansas, Florida, N orth Carolina, Ohio, South Carolina and Missouri. There may be more than one species included in this taxon.
S. sp. B - An undescribed species that I've seen from North C arolina, Pennsylvania and Virginia. These larvae may belong with an undescribed adult I have from Alabama.

Genus Stenochironomus

DIAGN OSIS: Distinguished by the dorsoventrally flattened and apically tapered head capsule; antenna with blade extending only to apex of segment 2; concave mentum with 10-12 teeth; ventromental plates with striae vestigial or absent; and anal tubules with $0-2$ constrictions.

N OTES: Eight species are recorded from the Southeast. The genus was revised in an excellent monograph by Borkent (1984), who established two subgenera. H ealso offered a key to species for larvae. If you have perfectly mounted 4th instar larvae that are associated with adults, it may be possible to identify them. H owever, in the real world of benthic sampling, it is basically impossible to identify Stenochironomuslarvae to species. Borkent (1984) noted that the putative differences between the larvae of S. aestivalis and S. cinctus described by Beck \& Beck (1970) were not recognizable; the larvae are inseparable without associated adults.

Larvae mine in dead submerged leaves (subgenus Petalopholeus) or in submerged dead wood (subgenus Stenochironomus).

ADDITION AL REFERENCES: Borkent 1984.

Genus Stictochironomus

DIAGN O SIS: Distinguished by the 6 segmented antennae, with alternateLauterborn organs at the apex of segments 2 and 3 ; mandible either with 2 inner teeth and dark dorsal tooth or with 3 inner teeth and no dorsal tooth; and mentum with 4 dark median teeth, with at least the outer pair higher than the remaining lateral teeth.

N OTES: Caldwell et al. (1997) record four Stictochironomus species for the Southeast. M ason (1985a) offered a key to some larvae of the genus, but it is based largely on literature descriptions (which can be notoriously inaccurate!) and does not include several species that occur here. Records of S. devinctus based solely on larvae should be regarded with skepticism; unless you have an associated male, you can not identify Stictochironomuslarvae to species. The larva described as C hironomini genus B in Pinder \& Reiss (1983) and pupal Chironomini genus F of Pinder \& Reiss (1986) has been shown to be S. caffrarius, a Palaearctic and Afrotropical species not known from the US. A similar larva occurs in the Southeast with a distinctive mentum and the mandible has 3 inner teeth and no dorsal tooth; it may be the larva of S. palliatus. Such specimens can be called "S. caffrarius group sp." until an association is made and the larva identified. Other Stictochironomus species have the more typical mentum and a mandible with 2 inner teeth and a dark dorsal tooth.

Larvae are usually found in sandy sediments of streams, rivers and lakes; larval mouthparts are subject to abrasion from such sediments and often appear quite worn.

ADDITIO N AL REFERENCES: M ason 1985a; Roback 1966d; Townes 1945.

S. devinctus mentum, mandible and antenna

S. caffrarius group sp. mentum and mandible

Genus Sublettea

DIAGN OSIS: This tanytarsine is distinguished by the simple, 3 lobed pecten epipharyngis; bifid premandible; mandible with 2 dorsal teeth and pronounced hump on outer margin; mentum with 11 teeth with 3 central teeth projecting anteriorly; ventromental plates almost touching medially; and well developed Lauterborn organs on moderately long pedicels.

N OTES: O ne species, S. coffmani, is described from the Nearctic; it is recorded from the southeastern states with the exception of Florida. Larvae may be confused with Neozavrelia or Rheotanytarsus. Although Pinder \& Reiss (1983) stated that the Lauterborn organs do not extend beyond the antennal apex, on most of the Sublettea specimens that I've examined the Lauterborn organs clearly extend past the apex.

Larvae are found in lotic habitats.
ADDITION AL REFERENCES: Roback 1975.

mentum

mandible

pecten epipharyngis

antenna

Genus Tanytarsus

DIAGN OSIS: This tanytarsine genus is distinguished by the pecten epipharyngis of 3 apically teethed scales; premandible with 3 apical teeth; antennae with small to moderate Lauterborn organs on (usually) Iong pedicels; and posterior parapods with simple claws.

NOTES: A speciose genus, most common on the Coastal Plain. Jim and M ary Sublette have been working with Tanytarsusfor many years; many species are described, but the descriptions have not yet been published. With Torbjörn Ekrem as a co-author, publications are expected soon on the T. mendax group,

Caldwell et al. (1997) list eleven described species for the Southeast, but only one, T. limneticus, is associated with an identifiable larva; many undescribed species are present. The key below identifies 26 species but must be considered preliminary. Sometaxa, such as T. spp. A, C, G, L and T, may consist of morethan one species.

Larvae are found in a variety of aquatic habitats, including brackish water.
ADDIT ION AL REFEREN CES: Spies 1998a, 1998b; Sublette 1964.

K ey to Tanytarsus larvae of the southeastern United States

1 Antennal segment 2 long and annulated T. sp. F

1' Antennal segment 2 not annulated (although Lauterborn organ pedicels may be annulated) ... 2

2(1') Antennal segment 2 with a narrow ring near its base separated from the remainder of the segment by a narrow unsclerotized area

2' Antennal segment 2 with base solidly sclerotized, or entire segment weakly seclerotized

3(2') Pedicels of Lauterborn organs annulated \qquad T. limneticus

3' Pedicels of Lauterborn organs not annulated 4

4(3') M edian tooth of mentum deeply trifid; clypeal setae thick, bifid or divided, almost coarsely serrate in some, arising from small rounded tubercle T. sp. 0

4' M edian tooth of mentum simple; clypeal setae thin, simple, not arising from small tubercle \qquad
$5\left(2^{\prime}\right)$ Antennal segment 2 for the most part unsclerotized (at most a small section near the base may be weakly sclerotized)

5' Antennal segment 2 for the most part (at least 60%) well sclerotized

6(5) Clypeus (sclerite anterior to bases of antennae) with a pair of simple setae, the 3 setae (setae may have a few finelateral "hairs") 7

6' Clypeus with coarsely branched or plumose setae (figures below) 8

7(6) Mandible with 3 inner teeth \qquad T. sp. L

7' M andible with 2 inner teeth T. sp. V

8(6') Clypeal (S 3) setae plumose, finely dissected \qquad T. sp. A

8' Clypeal setae with coarse, flattened branches \qquad T. sp. S

9(5') M andible with 2 inner teeth 10
9' M andible with 3 inner teeth 18

10(9) Antennal base with long spur T. sp. M

10' Antennal base without long spur \qquad 11

11(10') Clypeal (S 3) setae branched \qquad T. sp. W

11' Clypeal setae simple 12

$12\left(11^{\prime}\right) \mathrm{M}$ edian tooth of mentum with thickened rim ..
13

12' M edian tooth simple or weakly trifid, without thickened rim 14

13(12) Clypeal (S 3) setae arise from pointed pedestals \qquad T. sp. K

13' Clypeal setae do not arise fom pedestals (there may be a raised area near the bases of the setae T. sp. R

T. sp. K S 3 setae

14(12') Supranal setae much longer than anal tubules \qquad 15

14 Supraanal setae shorter than or subequal to anal tubules 17

15(14) Pedicels of Lauterborn organs short \qquad T. sp. H

15' Pedicels of Lauterborn organs long (figures below) \qquad 16

16(15') Antennal segment 3 long \qquad T. sp. I

16' Antennal segment 3 short \qquad

17(14') Posterior parapods each with more than 50 claws arranged in semicircle; sclerotized length of antennal segment 2 divided by length of sgment $1<0.2$ T. sp. X
17. Posterior parapods each with fewer than 20 claws, not arranged as above; sclerotized length of antennal segment 2 divided by
 length of segment $1>0.2$
T. sp. J

18(9') Antennal segment 2 morethan $1 / 2$ length of segment 1; clypeal (S3) setae with thin lateral branches
\qquad T. sp. P

18' Antennal segment 2 less than $1 / 2$ length of segment 1 ; clypeal setae simple or branched 19

19(18') M andible with 1 dorsal tooth and several accessory dorsal
teeth...$~$
20 dorsal
dorsal
20

19' M andible with a single dorsal tooth 22

20(19) Clypeal (S 3) setae simple \qquad T. sp. C
20^{\prime}
Clypeal setae branched 21

T.sp.D

T. sp. N
$21\left(20^{\prime}\right)$ Second and third antennal segments long, second segment $0.41-0.48$, mean 0.45 , length of first; premandible usually apically darkened; mentum with median tooth trifid \qquad T. sp. N

21. Second and third antennal segments shorter, second segment 0.28-0.38, mean 0.34, length of first; premandible not darkened; mentum with 3 median teeth that are slightly fused and somewhat set apart from lateral teeth T. sp. D

$22\left(19^{\prime}\right)$ Supraanal setae much longer than anal tubules 23

22' Supraanal setae shorter than or subequal to anal tubules 25

23(22) Clypeal (S 3) setae branched \qquad T. sp. U

T. sp. U
$24\left(23^{\prime}\right)$ Sclerotized portion of antennal segment 2 less than 0.3 length of segment 1 ; antennal base often with small spur
T. sp. T

24' Sclerotized portion of antennal segment 2 greater than 0.3 length of segment 1 ; antennal base without spur
T.sp. E

T. sp. T

T. sp. E
$25\left(22^{\prime}\right)$ Premandibles usually darkened apically; antennal segment 2 about $1 / 4$ length of segment 1 ; median tooth of mentum shallowly trifid T. sp. G

25' Premandibles not darkened apically; antennal segment 2 about $2 / 5$ length of segment 1 ; median tooth of mentum deeply trifid T. sp. Q

N otes on species

T. limneticus - At this time the only Tanytarsus larva I feel comfortable putting a "real" name on. The distinctive annulated pedicels of the Lauterborn organs easily distinguish this species. M ost larvae I've collected came from bottom sediments of eutrophic ponds or slowly flowing rivers. Isolated larvae were described as N imbocera pinderi by Steiner \& H ulbert (1982), but utilizing reared specimens, Epler (1995) showed that this species was actually Tanytarsus limneticus. Associations of some other Tanytarsusspecies indicate that some of the characters used to delimit N imbocera, originally described from Chile by Reiss (1972), may not hold up, and that these species are best placed in Tanytarsus.
T. sp. A - A common species I've seen from Alabama, Florida, N orth C arolina and South C arolina. This is probably the species keyed as Tanytarsus guerlus group in Simpson \& Bode (1980). There are many species associated with the "guerlusgroup". M aterial identified as "poss. guerla" , "nr. guerla" and "nr. guerla sp. 2" by Roback (who described T. guerlus, as Calopsectra guerla, in 1957) in the AN SP collection was T. spp. C, G, L and S, with the majority being T. sp. L. In Florida material I've examined, the pupa of T. sp. A has anteriorly directed spines in the longitudinal spine rows on T IV, similar to those of "N imbocera", T. limneticus and as figured for T. guerlus by Roback (1957: fig. 523). I have not examined type material of T . guerlus.
T. sp. B - An uncommon species known to me only from Florida specimens.
T. sp. C - M orethan one species may be included in thistaxon, which I have seen from Alabama, Florida (where it can be very common), N orth Carolina and South Carolina. There is variation in the length of the second antennal segment and in how deeply separated the first lateral teeth are from the median tooth, but there appears to be a continuum in these characters. A long series of reared material of all forms will be necessary to distinguish separate species, if such exist. The 3-4 accessory dorsal teeth along with the simple clypeal setae will distinguish this species from the similar T . sp. D.
T. sp. D - I've seen material of this taxon from Florida, N orth Carolina and South Carolina. Because of the similarity in the mentum, it can easily be mistaken for T. sp. C but note the branched S 3 setae and the single dorsal accessory tooth on the mandible of T. sp. D.
T. sp. E - I've seen larvae from Florida and South Carolina. N ote the relatively long second antennal segment and simple clypeal setae.
T. sp. F - An unusual species with a long, annulated second antennal segment, known from Florida, Georgia and both Carolinas. Perhaps this taxon would merit separate generic status but without any associated pupae or adults such a decision would be premature. W ith the exception of the annulated second antennal segment it fits quite well within Tanytarsus. H udson et al. (1990) and C aldwell et al. (1997) listed it as "unknown genus near Nimbocera" and "genus near N imbocera" respectively. H owever, it is the second antennal segment that is annulated, not the Lauterborn pedicelsas in T. Iimneticus("N imbocera"). Similar specimenshave been reported from South America as Calopsectra sp. 13 (Roback 1966c: fig. 294) and ""Tanytarsus" (b)" (N olte 1989: figs. 2.2 and 3.2).
T. sp. G - M ore than onetaxon may beincluded here; I've seen larvae from Florida, Georgia, O hio, N orth C arolina, South Carolina and Texas. It seems to favor more eutrophic conditions. I have seen a series of apparently worn and/or deformed T. sp. G larvaefrom Sunshine Lake in southern Florida, where a series has been collected and reared by Bob Rutter. Superficially the larvae resemble those of C orynocera, but the associated pupae and larvae placethis species in Tanytarsus; and they seem to beT. sp. G.
T. sp. H - K nown only from sites near the mouth of the Little M anatee and SuwanneeRivers on the west coast of Florida; note the short pedicels of the Lauterborn organs.
T. sp. I - K nown from a series of reared specimens from a small pond in N orth C arolina and unassociated larvae from a lake in Florida.
T. sp. J - K nown to me only from Florida specimens; it is quite common in the northern Everglades.
T. sp. K - I've only seen this species from Florida, where it occurs at least as far north as the Suwannee River. A general rule of thumb is that many species that occur in the Suwannee River basin will be found on the C oastal Plain of the Carolinas, so this taxon might be expected there.
T. sp. L - Several taxa may be included here; I've seen larvae from Florida, N orth Carolina and South C arolina. The clypeal setae are usually simple, but may have small lateral hair-like branches.
T. sp. M - K nown to mefrom streams in Alabama, Florida, N orth C arolina and South C arolina. The long spur on the antennal base can be difficult to see if it is directed towards or from the observer. This species can also be easily confused with those T. sp. T specimens with a long spur on the antennal base; notethat T. sp. M has only two inner teeth on the mandible, the median tooth of thementum is usually lighter than the remaining teeth; and antennal segment 3 is about as long as 4.
T. sp. N - K nown to me only from streams in northern Florida. The long antennal segments 2 and 3, usually apically darkened premandibles and the large supraanal setae are distinctive.
T. sp. 0 - I've seen material of this species from Alabama, Florida and both Carolinas. The second antennal segment is frequently weakly sclerotized, but the separate little ring-like section near the base is always evident. Note also the deeply trifid median tooth of the mentum and the thick
clypeal setae that aredivided (they may appear to be almost simplewith only a few "split ends") and arise from small rounded bases. The mandible usually has two inner teeth but sometimes may appear to have three.
T. sp. P - N orth C arolina and Alabama specimensl've assigned to this taxon have the posterior third of the head capsulebrown. D o these represent a different species than the more "normal" individualsI'm used to seeing from northern Florida that lack thiscoloration?W ithout associated specimensshowing other differences I am loathe to assign these specimens to a different "species". N ote also that the mandible of T. sp. P has numerous dorsal accessory teeth, similar to that of T. sp. C.
T. sp. Q - Known to me only from specimens in theTampa, Florida, area.
T. sp. R - To date I've only seen this taxon from peninsular Florida.
T. sp. S - This species and T. spp. A and L appear to be closely related; they are separated mainly by the shape of the clypeal setae. I've seen specimens from Florida and both Carolinas.
T. sp. T - I've seen this taxon from Alabama, Florida (where it can be common in rivers) and N orth C arolina. M ore than one species may be included here; the size of the spur on the antennal base is variable. Perhaps those larvae with a reduced spur represent a different species, but without reared material I do not feel confident assigning species status to what merely may be variants.
T. sp. U - I've seen this species from Alabama, Florida and both C arolinas (it has been reared from South C arolina).
T. sp. V - I've seen this species from northern Florida and N orth C arolina
T. sp. W - To date known only from Florida.
T. sp. X - To date known only from Florida. This species has an unusual (for Tanytarsus) arrangement of claws on the posterior parapods. The claws are numerous (about 60 on each parapod) and arranged in a semicircle, very similar to those of some M icropsectra species. The mentum al so has a M icropsectra-like appearance, but the premandible has three well defined apical teeth. Associated specimens will be necessary to determine its true generic identity.
T. sp. Z - I've seen larvae from Georgia and N orth C arolina.

Genus Tribelos

DIAG N O SIS: Distinguished by the frontal apotome with a straight anterior margin, with a clypeus (the S3 setae are on separate, thin plates lateral to it) and a medial labral sclerite anterior to the apotome; mentum with 4 median teeth higher than lateral teeth and with a thin line running from the posterior margin of the outermost median tooth to the anteromedial corner of the ventromental plate (this line usually difficult to discern); mandible with distance from basal notch of proximal inner tooth to insertion of seta subdentalis usually less than $3 / 4$ distance from basal notch of proximal inner tooth to notch of apical tooth; and molar area of mandible with 1 or 2 serrations.

N OTES: Three species are known from the Southeast, all of which occur in the C arolinas. Hudson et al. (1990) noted two undescribed species from South C arolina but I have not seen any material of such taxa. Tribelos is easily confused with Phaenopsectra, especially earlier instar larvae. H owever, all southeastern Tribelos larvae known to me have a frontal apotome with a straight anterior margin, with two medial sclerites anterior to it; all southeastern Phaenopsectra larvae I've seen have a frontoclypeal apotome with a rounded anterior margin and only one medial labral sclerite anterior to it.

Larvae are found most often in streams and rivers, where they occur on vegetation and on marginal sediments; they can be abundant on Hester-D endy samplers. Larvae appear to be tolerant of moderately enriched conditions.

ADDITIO NAL REFERENCES: Grodhaus 1987a.

Key to Tribelos larvae of the southeastern United States

1 Blade of antenna much longer than flagellum (segments 3-5)
. T. jucundum

1' Blade of antenna subequal to flagellum (figures below) \qquad 2

2(1') Ventromental plate striae distinct across face of plate; basal segment of antenna shorter, AR 0.901.20; length of basal segment of maxillary palp 2 or more times width \qquad T. fuscicorne

2' Ventromental plate striae indistinct in middle of plate; basal segment of antenna longer, AR 1.41.6 ; length of basal segment of maxillary palp less than $2 X$ width \qquad T. atrum

N otes on species

T. atrum - The least common of the three southeastern species, early instars of T. atrum could be confused with early instars of Phaenopsectra obediens group species. SeeT. jucundum below.
T. fuscicorne - A common species on the C oastal Plain, often found in association with T. jucundum. W ith its distinct ventromental plate striae, elongate base to the maxillary palp and short basal antennal segment, T . fuscicorne is usually easily identified.
T. jucundum - The mentum of T. jucundum is similar to that of T. atrum, with the ventromental plate striae being indistinct in the middle of the plate. Fourth instar larvae of T . jucundum, with the characteristic short third antennal segment and short flagellum/elongate antennal blade, are usually easily identified. H owever, earlier instars of T. jucundum and T. atrum may be confused with early instars of Phaenopsectra obediens group species. The menta and ventromental plates of the these three taxa are similar and in some Ph. obediens the antennal blade extends beyond the flagellum. N ote that Phaenopsectra has a frontoclypeal apotome, with the clypeus, bearing the S3 setae laterally, fused to the anterior portion of the apotome. On some Phaenopsectra specimens a thin line may be present "between" the clypeus and the apotome but this appears most often to be a fold, probably an artifact of slide mounting, rather than a line of demarcation. In Tribelos, the S3 setae are born on two thinner lateral plates adjacent to the medial labral sclerite 1, an intrepretation followed by Pinder \& Reiss (1983). Grodhaus (1987: 172) disagreed with this interpretation of the clypeus, stating that the thinner lateral plates bearing the 53 setae were thinner portions of the clypeus. A medial labral sclerite 1 is usually not visible in Phaenopsectra as it easily is in Tribel os; in this manual I follow the interpretation of the labral sclerites as in Pinder \& Reiss (1983) and thus disagree with Grodhaus (1987).

Genus Virgatanytarsus

DIAGNOSIS: This tanytarsine genus is distinguished by the pecten epipharyngis of 3 distally serrated scales; Lauterborn organs on moderately long pedicels; premandible with morethan 3 teeth; mentum with 11 teeth; ventromental plates almost touching medially; and posterior parapods with some claws that are pad-like, with numerous small hooklets arranged in multiple rows.

N OTES: Leeper \& Taylor (1998) reported a Virgatanytarsus species (an adult identified by L. Ferrington) from a South C arolina temporary wetland pond, and I've examined a single adult collected from a stream in Georgia by B.A. C aldwell. I have not seen the South C arolina material and do not know if the two taxa are conspecific. I have not seen N earctic larval material; the figures below are based on a European species.

In Europe, Iarvae are found in small rivers and the littoral of lakes, where they live on stony substrata and submerged macrophytes. It appears from the collection sites of the southeastern US adults mentioned above that N earctic larvae live in similar lentic and lotic habitats.

ADDITION AL REFEREN CES: Pinder 1982.

mentum

claws of posterior parapod

antenna

Genus Xenochironomus

DIAGN OSIS: Distinguished by the dorsum of the head with 3 labral sclerites anterior to the apotome; large brush of setae on the labrum; distinctive mentum with broad sunken median tooth; and freshwater sponge mining habit.

N OTES: O ne H olarctic species, X. xenolabis, is known. O ther species formerly placed in the genus are now placed in Axarus or Lipiniella.

Larvae are obligate miners in freshwater sponges. The larva figured below was collected from sponge on the case of the leptocerid caddisfly Ceraclea in northern Florida.

ADDITIONAL REFERENCES: Roback 1963.

mentum

apotome and labral sclerites

Genus Xestochironomus

DIAGN OSIS: Distinguished by the dorsoventrally flattened and apically tapered head capsule; antenna with blade extending past the apex of segment 3 ; concave mentum with 8 teeth; ventromental plates with striae vestigial or absent; and anal tubules with 4-5 constrictions.

N OTES: Borkent (1984) revised the genus and described the larva. O ne species, X. subletti, is known from the Southeast. There aremany N eotropical species and the possibility that more species may occur in the US, especially in southern Florida, must be considered. Unless associated with adult males, larvae should be identified as "Xestochironomus sp.".

Larvae mine in dead submerged wood in lotic habitats.
AD DITIO N AL REFEREN CES: Borkent 1984; Sublette \& Sasa 1994.

Genus Zavrelia

DIAG N O SIS: T he sole known Nearctic representative of this tanytarsine is distinguished by the simpleS 3 setae; pecten epipharyngis of 3 slender spines; short, straight spur on antennal base; 5 segmented antennae with one set of Lauterborn organs arising apically, the other from near the base of segment 2; premandible with 4 teeth; squat ventromental plates separated medially by at least the width of the 3 median mental teeth; and its portable sand case.

NOTES: There are no described species of Zavrelia known from the Nearctic, but at least one unde scribed species occurs in the eastern US; I've seen reared material from Ohio, adults of the same species from the Smoky M ountains of North C arolina, and isolated larvae from Virginia.

A great deal of confusion exists concerning the separation of Zavrdia and Stempellinella. Earlier works used antennal differences to separate the genera; these differences were shown to be not valid (Pinder \& Reiss 1983). Pinder \& Reiss (1983) used characters of the pecten epipharyngis and the premandible to separate the genera. The larva of the undescribed species from the eastern US differs from the sole de scribed larva of the genus, the European Z. pentatoma, in that the pecten epipharyngis consists of 3 slender spines, rather than the short stubby spines found in Z. pentatoma. Also, Stempellinella sp. A has a 4 toothed premandible, unlike the 2-3 toothed premandible diagnosed for Stempellinella in Pinder \& Reiss (1983). At this time, only the heavier shagreen of pupal abdominal tergite II on Zavrlia and the hairy eyes of adult Zavrelia will separate the two genera. The two Nearctic taxa mentioned above blur the differences between Zavrelia and Stempellinella and make it more likely that the two genera should be combined; Zavrelia is the older name and would take precedence.

Zavrelia larvae appear to be inhabitants of springs.
ADDITIONAL REFERENCES: None.

antenna and base

labral lamella and pecten epipharyngis

S 3 (clypeal) setae

Genus Zavreliella

DIAGN O SIS: Distinguished by the frontoclypeal apotome, with 1 medial labral sclerite anterior to it; 6 segmented antennaewith alternate Lauterborn organsat the apex of segments 2 and 3 ; simple setae submenti; a pair of long ventral tubules placed posterolaterally on body segment 10; and body segment 11 with anteriorly directed dorsal hump.

N OTES: O ne species, Z. marmorata, is known from the Nearctic. Reiss (1990) revised the genus; an additional 12 species are known from northern South America. Zavreliela marmorata, formerly known in North America as Lauterborniella varipennis, is found throughout most of the world; some European populations are parthenogenetic.

Larvae are found in marshes, vegetation-choked, eutrophic ponds and lakes, and the sluggish portions of streams and rivers, where they swim around in their hydroptilid caddifly-like silken cases. The case of Zavreliella differs from that of Lauterborniella in that it has a circular opening; that of Lauterborniella has a slit-like opening.

Although the setae submenti of Zavreliella have been described as being on the ventromental plates, on many specimens I've examined they are placed immediately medial to the inner margin.

ADDITIONAL REFERENCES: Reiss 1990.

antenna

mentum

posterior body segments

apotome and labral sclerite

Chironomini genus III

DIAGNOSIS: Distinguished by the frontal apotome with 2 medial labral sclerites anterior to it; plumose SI setae arising from separate bases; 15 toothed mentum with median teeth subequal; apically bifid premandible, with brush; and cardo with smooth anterior margin.

N OTES: A taxon known only as a larva from Florida (several sites throughout the peninsular and northern portions of the state), southern Georgia and N orth C arolina (D unahoe Bay in Robeson C ounty); given this distribution it probably occurs throughout the C oastal Plain of the Southeast. It appears to be closely related to Tribelos, but without associated life stages it is not possible to accurately place this larva.

Larvae have been collected from bayheads, canals and ditches.
ADDITION AL REFERENCES: N one.

Chironomini genus IV

DIAGN OSIS: The frontal apotome apparently with clypeus and 1 medial labral sclerite anterior to it; anterior margins of apotome and clypeus straight; plumose S I on separate bases; 5 segmented antennae; premandible apically bifid, with brush; 4 median teeth of mentum separated from remainder of mentum by a line that runs posterior to the anteromedial angle of the ventromental plates; and ventromental plates with strongly crenulated anteromedian margins will distinguish this taxon.

N OTES: This taxon is known from two specimens, probably third instar, collected from a pond in northern Floridain 0 ctober; it isnot known from the C arolinas. It may belong with Tribelosor Phaenopsectra, or may represent an undescribed genus.

ADDITIONAL REFERENCES: None.

mandible

premandible
pecten epipharyngis
antenna

apotome and labral sclerites

mentum

H arnischia complex genus A

DIAGNOSIS: Distinguished by the simple S I; large, blade-like S II with apical fringe; 6 segmented antenna, with alternate Lauterborn organs on segments 2 and 3; distinctive mentum with equally sized teeth arranged in a semicircle, resembling a circular saw blade; and the distinctive ventromental plates with a notch on the mid-anterior margin.

N OTES: First figured by Roback (1953: fig. 29) as "Unknown gen. \& sp. near M icrotendipes", this taxon was listed by H udson et al. (1990) as "Unknown genus near M icrotendipesA", and by C aldwell et al. (1997) as "genus near M icrotendipes A". Although this taxon has a 6 segmented antenna similar to that of M icrotendipes, the structure of the S I, S II, pecten epipharyngis and mandible indicate that it may be a member of the H arnischia complex. It may also be closely related to Paratendipes, but until associated with its pupal and adult stages, its taxonomic postion will remain unclear.

Larvae are found in sandy substrata.
ADDITIONAL REFERENCES: None.

mandible

antenna

H arnischia complex genus B

DIAGN OSIS: T he 6 segmented antenna; mandible with extensive lateral fringe of setae and poorly sclerotized, lamellar teeth; and mentum with long, setae like teeth distinguish this taxon.

N OTES: This bizarre larva is known only from several sites in the panhandle of Florida; it is not known from the C arolinas. This larva may be an aberrant Paracladopdma. It has been found in core samples of sandy substrata.

ADDITIONAL REFERENCES: N one.

antenna

mandible

H arnischia complex genus C

DIAGNOSIS: Distinguished by thebladelikeS I setae, slightly smaller than SII; 6 segmented antennae; apically bifid premandible; mentum with 5 pairs of lateral teeth; rounded ventromental plates; large claws of anterior parapods about 2/3 length of head capsule; subdivided body segments, giving appearance of about 20 body segments; and each procercus with one very long anal seta, about 4-5X as long as supraanal setae.

N OTES: Thistaxon and Kloosia are very similar as larvae. H arnischia complex genus C is not a Kloosia; there are also pupal and adult differences. Structures figured in Epler (1995) for H arnischia complex genus C werea mixture of K loosia and H arnischia complex genus C body parts; both species may befound in the same sample (which led to the confusion by Epler (1995)). The taxon listed as "Cryptochironomus" nr. macropodus Lyakhov by Caldwell et al. (1997) is H arnischia complex genus C.

Larvae are found in sandy substrata of streams and rivers.
ADDITIO N AL REFERENCES: Epler 1995.

head and anterior parapods

labrum

mentum
premandible

antenna

mandible

posterior end

H arnischia complex genus D

DIAGNOSIS: The5-segmented antennae with segment 3 weakly sclerotized; mandible with weak pecten mandibularis; premandible lacking a brush and with 4 teeth; and concave mentum with clear median tooth and dark lateral teeth with wide outer tooth distinguish this genus.

N OTES: Thistaxon isknown from a singlespecimen from SW Florida; it is not known from theC arolinas. The specimen's S I setae and pecten epipharyngis are obscured. It superficially resembles a Gillotia, but that genus has a premandible with at least 6 teeth and its mandible lacks a pecten mandibularis. This specimen may belong with Cryptochironomus. H owever, antennal segment 3 is weakly sclerotized, it apparently lacks a brush on the premandible and the ventromental plates are not as laterally extended as is usual in Cryptochironomus.

ADDITIONAL REFERENCES: None.

antenna

mandible

premandible

mentum

CHECKLIST OF THE CHIRONOMIDAE OF NORTH AND SOUTH CAROLINA

This checklist registers species known to occur in North and South Carolina, based on literature citations and material examined by the author. It also includes species which may occur in the Carolinas; many of these species occur in the Southeast U.S. but have not been positively identified from North or South Carolina. Note also that some literature records can be considered doubtful; some species recorded in earlier literature but misidentified are not listed. Also note that some larval species group names may also be represented by adult records; i.e., there could be some duplication. Only important synonyms pertaining to Carolinas Chironomidae are listed. Genera and species are arranged in alphabetical order; for tribes and subgenera see Oliver et al. (1990), Caldwell et al. (1997) or text.

KEY: [] = synonym * = may occur in North or South Carolina $i=$ recorded from North or South Carolina, but identification doubtful, not confirmed or incorrect $\quad \mathbf{N}=$ recorded from North Carolina $\quad \mathbf{S}=$ recorded from South Carolina $\mathrm{L}=$ larva known $\quad \mathbf{A}=$ species-level identification only with adult or pupa, or larva unknown $\mathbf{P}=$ species known only as pupa $\mathbf{L U}=$ larva cannot be identified to a described species without associated life stages

```
TELMATOGETONINAE
    Telmatogeton Schiner
        japonicus Tokunaga
PODONOMINAE
    Boreochlus Edwards
        persimilis (Johannsen)
    Paraboreochlus Thienemann
        cf. stahli Coffman
TANYPODINAE
    Ablabesmyia Johannsen
        aspera (Roback)
        cinctipes (Johannsen)
        hauberi Beck & Beck
        idei (Walley)
        ¿illinoensis (Malloch)
        janta (Roback)
        mallochi (Walley)
            [auriensis Roback]
            [ornata Beck & Beck]
            [tarella Roback]
        monilis (Linnaeus)
            [americana Fittkau]
            [basalis Walley]
        parajanta Roback
        peleensis (Walley)
        philosphagnos Beck & Beck
        rhamphe Sublette
        simpsoni Roback
    Alotanypus Roback
        aris Roback
    Apsectrotanypus Fittkau
        johnsoni (Coquillett)
    Bethbilbeckia Fittkau & Murray
        floridensis Fittkau & Murray
    Brundiniella Roback
        eumorpha (Sublette)
    Cantopelopia Roback
        gesta Roback
```

Telmatogeton Schiner
PODONOMINAE
Boreochlus Edwards persimilis (Johannsen)
Paraboreochlus Thienemann cf. stahli Coffman
TANYPODINAE
Ablabesmyia Johannsen annulata (Say) aspera (Roback) cinctipes (Johannsen) hauberi Beck \& Beck ¿ illinoensis (Malloch) janta (Roback) mallochi (Walley)
[auriensis Roback] [ornata Beck \& Beck] [tarella Roback] monilis (Linnaeus) [americana Fittkau] [basalis Walley] parajanta Roback peleensis (Walley) philosphagnos Beck \& Beck simpsoni Roback
Alotanypus Roback aris Roback
Apsectrotanypus Fittkau johnsoni (Coquillett)
Bethbilbeckia Fittkau \& Murray floridensis Fittkau \& Murray
Brundiniella Roback eumorpha (Sublette) gesta Roback
annulata (Say) NS L

| | Clinotanypus Kieffer
 pinguis (Loew)
 [thoracicus (Loew)] | | | NS |
| :--- | :--- | :---: | :--- | :--- | LU

maculata Roback	N	L	* sp. A Epler	*	LU
neopilosella Beck \& Beck	NS	L	Tanypus Meigen		
pilosella (Loew)	NS	L	carinatus Sublette	NS	L
[floridana Beck \& Beck]			clavatus Beck	N	L
virescens Beck \& Beck	N	L	concavus Roback	NS	LU
sp. 3 nr. virescens Roback	NS	LU	neopunctipennis Sublette	NS	L
[sp. 4 Roback]			punctipennis Meigen	NS	L
sp. 6 Roback	N	LU	stellatus Coquillet	NS	L
* sp. A Epler	*	LU	Trissopelopia Kieffer		
* sp. B Epler	*	LU	ogemawi Roback	NS	L
Larsia Fittkau			Zavrelimyia Fittkau		
berneri Beck \& Beck	N	L	bifasciata (Coquillet)	S	L
canadensis Bilyj	S	L	sinuosa (Coquillett) complex	NS	LU
decolorata (Malloch)	NS	L	[carneosa Fittkau]		
[lurida Beck \& Beck]			thryptica (Sublette) complex	S	LU
* indistincta Beck \& Beck	*	L	sp. A Epler	N	L
sp. A Epler	S	L	DIAMESINAE		
sp. B Epler	S	L	Diamesa Meigen		
Macropelopia Thienemann			nivoriunda (Fitch)	NS	LU
decedens (Walker)	N	LU	sp. A Epler	N	LU
Meropelopia Roback			sp. B Epler [prob. nivoriunda]	N	LU
americana (Fittkau)	NS	LU	sp. C Epler	N	LU
flavifrons (Johannsen) [fittkaui Beck \& Beck]	NS	LU	Pagastia Oliver orthogonia Oliver	N	L
Monopelopia Fitkau			Potthastia Kieffer		
boliekae Beck \& Beck	N	L	cf. gaedii (Meigen)	N	LU
*tenuicalcar (Kieffer)		L	longimana Kieffer	NS	L
¡ tillandsia Beck \& Beck	¿N	L	cf. montium (Edwards)	N	LU
Natarsia Fittkau			Sympotthastia Pagast		
baltimorea (Macquart)	NS	L	cf. zavreli Pagast	N	LU
sp. A Roback	NS	L	Diamesinae genus P Doughman	N	LU
Nilotanypus Kieffer			PRODIAMESINAE		
americanus Beck \& Beck	NS	L	Compteromesa Sxther		
fimbriatus (Walker)	NS	L	oconeensis Sxther	S	LU
Paramerina Fittkau			Monodiamesa Kieffer		
anomala Beck \& Beck	N	LU	cf. depectinata Sxther	N	LU
fragilis (Walley)	S	LU	Odontomesa Pagast		
* testa Roback	*	LU	fulva (Kieffer)	NS	L
Pentaneura Philippi			Prodiamesa Kieffer		
inconspicua (Malloch)	NS	L	olivacea (Meigen)	NS	L
[inculta Beck \& Beck]			ORTHOCLADIINAE		
Procladius Skuse			* Acamptocladius Brundin	*	LU
bellus (Loew)	NS	L	Acricotopus Kieffer	NS	LU
[pusillus Loew]			Antillocladius Sxether		
denticulatus Sublette	S	LU	arcuatus Sxther	S	LU
freemani Sublette	NS	LU	pluspilalus Sxther	S	LU
sublettei Roback	NS	LU	* Apometriocnemus Sæther		LU
Psectrotanypus Kieffer			Brillia Kieffer		
dyari (Coquillett)	NS	L	flavifrons (Johannsen)	NS	L
sp. A Epler	NS	LU	parva Johannsen	NS	L
Reomyia Roback			sera Roback	NS	L
sp. A Epler	N	LU	Bryophaenocladius Thienemann		
Rheopelopia Fittkau			digitatus Sxther	NS	LU
acra (Roback)	NS	LU	flavoscutellatus (Malloch)	N	LU
cf. paramaculipennis (Roback)	N	LU	fuminosus (Curran)	S	LU
* perda (Roback)	*	LU	impectinus Sxther	NS	LU
sp. 3 Roback	N	LU	psilacrus Sxther	S	LU

sp. 1 Epler	N	A	varipes Coquillett	NS	LU
sp. 2 Epler	N	A	vierriensis Goetghebuer	NS	L
sp. 3 Epler	S	A	sp. 2 Epler	N	A
* Camptocladius Wulp			* sp. "Ozarks" Epler	*	LU
*stercorarius (De Geer)	*	L	* sp. "Santa Fe" Epler	*	LU
Cardiocladius Kieffer			Diplocladius Kieffer		
albiplumus Sxther	NS	L	cultriger Kieffer	NS	L
obscurus (Johannsen)	NS	L	* Diplosmittia Sxther	*	A
Chaetocladius Kieffer			Doithrix Sxther \& Sublette		
ligni Cranston \& Oliver	N	L	dillonae Cranston \& Oliver	N	LU
piger (Goetghebuer)	NS	LU	parcivillosa Sxther \& Sublette	NS	LU
Chasmatonotus Loew			villosa Sxther \& Sublette	NS	LU
* bicolor Rempel	*	LU	Epoicocladius Zavrel		
* bimaculatus Osten Sacken	*	LU	flavens (Malloch)	N	L
unimaculatus Loew	NS	LU	sp. \#3 Jacobsen	N	L
Clunio Haliday			Eukiefferiella Thienemann		
marshalli Stone \& Wirth	N	L	brehmi Gowin group	NS	LU
Compterosmittia Sxther			brevicalcar (Kieffer) group	NS	LU
nerius (Curran)	NS	LU	brevinervis (Malloch)	NS	LU
Corynoneura Winnertz			claripennis (Lundbeck) group	NS	LU
: fittkaui Schlee	NS	LU	coerulescens (Kieffer)	S	LU
¿ lacustris Edwards	S	LU	devonica (Edwards) group sp. A Epler	NS	LU
lobata Edwards	NS	L	devonica (Edwards) group sp. B Epler	N	LU
[taris Roback]			gracei (Edwards) group	N	LU
cf. oxfordana Boesel \& Winner	S	A	ilkleyensis (Edwards)	NS	LU
sp. B Epler	S	LU	¿ lobifera Goetghebuer	S	LU
* sp. C Epler	*	LU	pseudomontana Goetghebuer group	N	LU
* sp. D Epler	*	LU	tirolensis (Goetghebuer)	NS	L
sp. E Epler	S	LU	Euryhapsis Oliver		
Cricotopus Wulp			sp. 1 Epler	N	A
* absurdus Johannsen	*	L	Georthocladius Strenzke		
albiforceps (Kieffer)	N	LU	curticornus Sxther	NS	LU
< annulator Goetghebuer	S	LU	fimbriosus Sxther \& Sublette	NS	LU
* belkini Sublette		A	triquetrus Sxther \& Sublette	S	LU
bicinctus Meigen	NS	L	Gymnometriocnemus Goetghebuer		
cf. cylindraceus (Kieffer)	N	LU	brumalis (Edwards)	NS	LU
elegans Johannsen	N	L	subrudus (Edwards)	N	LU
festivellus (Kieffer)	NS	LU	sp. 1 Epler	N	A
fugax (Johannsen)	N	LU	Heleniella Gowin		
cf. fuscus (Kieffer)	N	LU	birta Sxther	N	LU
* infuscatus (Malloch)	*	L	parva Sxther	NS	LU
intersectus (Staeger)	N	L	Heterotrissocladius Spärck		
* lebetis Sublette	*	L	marcidus (Walker)	NS	LU
luciae LeSage \& Harrison	NS	L	sp. C Sxther	N	LU
nostocicola Wirth	NS	L	* sp. "Caldwell" Epler	*	LU
cf. patens Hirvenoja	N	LU	Hydrobaenus Fries		
politus (Coquillet)	NS	LU	jobannseni (Sublette)	NS	L
slossonae Malloch	NS	LU	pilipes (Malloch)	NS	L
sylvestris (Fabricius)	NS	L	Krenosmittia Thienemann \& Krüger	N	LU
tremulus (Linnaeus)	N	LU	Limnophyes Eaton		
triannulatus (Macquart)	NS	LU	asquamatus (Andersen)	S	LU
[exilis Johannsen]			brachytomus (Kieffer)	NS	LU
* tricinctus (Meigen)	*	LU	carolinensis Sxther	NS	LU
trifascia Edwards	N	L	fumosus (Johannsen)	NS	LU
* trifasciatus Meigen	*	L	minimus (Meigen)	NS	LU
[remus Sublette]			natalensis (Kieffer)	N	LU

cf. pilicistulus Sæther	N	LU	sp. "Jacobsen"	N	L
pumilio (Holmgren)	N	LU	Parachaetocladius Wülker		
sp. 1 Epler	N	A	abnobaeus (Wülker)	NS	L
Lipurometriocnemus Sæther			sp. B Sæther \& Sublette	S	LU
vixlobatus Sæther	NS	A	Paracricotopus Thienemann \& Harnisch		
Lopescladius Oliveira			glaber Sæther	NS	LU
¿ hyporheicus Coffman \& Roback	S	LU	millrockensis Caldwell	NS	LU
sp. 1 Coffman \& Roback	S	LU	* mozleyi Steiner	*	LU
Mesocricotopus Brundin			Parakiefferiella Thienemann		
loticus Caldwell	S	L	cf. bathophila (Goetghebuer)	S	A
sp. 1 Epler	N	A	coronata (Edwards)	NS	L
Mesosmittia Brundin			sp. A Epler	N	LU
* mina Sæther	*	A	sp. B Epler	N	LU
patrihortae Sæther	S	A	sp. C Epler	N	LU
* prolixa Sæther	*	A	sp. D Epler	N	LU
Metriocnemus Wulp			sp. E Epler	N	LU
eurynotus (Holmgren)	NS	L	* sp. F Epler	*	LU
fuscipes (Meigen)	NS	L	sp. G Mozley	N	LU
knabi Coquillet	N	L	Parametriocnemus Goetghebuer		
Nanocladius Kieffer			eoclivus Sæther	N	LU
alternantherae Dendy \& Sublette	NS	L	hamatus (Johannsen)	NS	A
balticus (Palmén)	NS	L	lundbeckii (Johannsen)	NS	LU
branchicolus Sæther	N	L	cf. vespertinus Sæther	N	A
crassicornus Sæther	S	LU	sp. 1 Epler	N	A
distinctus (Malloch)	NS	L	sp. F Epler	N	LU
downesi (Steffan)	N	L	Paraphaenocladius Thienemann		
incomptus Sæther	NS	L	exagitans (Johannsen)	NS	L
minimus Sæther	NS	LU	innasus Sæther \& Wang	S	L
¿ parvulus (Kieffer)	S	LU	pseudirritus Strenzke	S	L
cf. rectinervis (Kieffer)	NS	LU	pusillus Sæther \& Wang	N	L
spiniplenus Sæther	NS	LU	Parasmittia Strenzke		
* sp. D Epler	*	LU	cf. carinata Strenzke	N	A
* sp. \#1 Jacobsen	*	LU	Paratrichocladius Santos Abreu		
* sp. \#3 Jacobsen	*	LU	rufiventris (Meigen)	NS	LU
sp. \#5 Jacobsen	N	LU	Platysmittia Sæther		
Orthocladius Wulp			fimbriata Sæther	N	A
annectens Sæther	NS	L	* Plhudsonia Sæther		
carlatus (Roback)	NS	L	* partita Sæther	*	AP
dentifer Brundin	NS	L	Psectrocladius Kieffer		
dorenus Roback	NS	L	* cf. calcaratus (Edwards)	*	LU
dubitatus Johannsen	NS	L	elatus Roback	NS	L
frigidus (Zetterstedt)	NS	L	* flavus (Johannsen)	*	LU
* hellenthali Soponis	*	LU	limbatellus (Holmgren) group	S	LU
lignicola (Kieffer)	NS	L	cf. octomaculatus Walker	N	LU
luteipes Goetghebuer	N	L	* pilosus Roback	*	LU
mallochi Kieffer	S	L	psilopterus (Kieffer) group sp. 1 Epler	N	LU
nigritus Malloch	NS	L	* psilopterus (Kieffer) group sp. 2 Epler	*	LU
obumbratus Johannsen	NS	L	simulans (Johannsen)	NS	LU
oliveri Soponis	NS	L	sordidellus (Zetterstedt) group	N	LU
rivicola Kieffer	NS	L	vernalis (Malloch)	NS	L
rivulorum Kieffer	NS	L	sp. 1 Epler	S	A
robacki Soponis	N	L	Pseudorthocladius Goetghebuer		
rubicundus (Meigen)	S	L	amplicaudus Sæther \& Sublette	S	A
saxosus (Tokunaga)	N	L	clavatosus Sæther \& Sublette	S	A
subletti Soponis	S	L	curticornus Sæther \& Sublette	S	A
thienemanni Kieffer	S	L	destitutus Sæther \& Sublette	S	A
vaillanti Langton \& Cranston	N	L	dumicaudus Sæther	S	A

macrovirgatus Sæther \& Sublette	S	A	Tvetenia Kieffer		
morsei Sxther \& Sublette	NS	A	; bavarica (Goetghebuer)	NS	LU
rectangilobus Caspars \& Siebert	NS	A	paucunca (Sæther)	NS	LU
rectilobus Sxther \& Sublette	S	A	¿ verralli Edwards	N	LU
tricanthus Sxther \& Sublette	NS	A	vitracies (Sxther)	NS	LU
uniserratus Sæther \& Sublette	S	A	* sp. GA Epler	*	LU
wingoi Sxther \& Sublette	NS	A	sp. NC Epler	N	LU
sp. B Sxther \& Sublette	S	P	Unniella Sxther		
Pseudosmittia Goetghebuer			multivirga Sxther	NS	L
forcipata (Goetghebuer)	NS	A	Xylotopus Oliver		
Psilometriocnemus Sxther			par (Coquillett)	NS	L
triannulatus Sxther	NS	LU	Zalutschia Lipina		
Rheocricotopus Thien. \& Harnisch			briani Soponis	NS	LU
amplicristatus Sxether	S	A	cf. zalutschicola Lipina	NS	LU
conflusirus Sxther	S	A	sp. A Epler	NS	LU
effusus (Walker)	NS	L	Orthocladiinae sp. A Sxther	S	P
eminellobus Sxther	NS	L	Orthocladiinae sp. B Sxther	S	P
glabricollis (Meigen)	NS	L	Orthocladiinae sp. C Sxther	NS	LU
¿ pauciseta Sxther	N	L	* Orthocladiinae genus E Epler		LU
robacki (Beck \& Beck)	NS	L	Orthocladiinae genus I Epler	N	LU
tuberculatus Caldwell	NS	L	Orthocladiinae genus 2 Epler	N	A
unidentatus Sxther \& Schnell	N	L	CHIRONOMINAE		
* sp. VA Epler	*	LU	Apedilum Townes		
Rheosmittia Brundin			elachistum Townes	N	L
arcuata Caldwell	NS	LU	subcinctum Townes	N	L
* Saetheriella Halvorsen			Axarus Roback		
* amplicristata Halvorsen	*	LU	festivus (Say)	NS	LU
Smittia Holmgren			rogersi (Beck \& Beck)	NS	LU
aterrima (Meigen)	NS	LU	taenionotus (Say)	S	LU
* lasiops (Malloch)	*	LU	* Beardius Reiss \& Sublette		
sp. 1 Epler	N	A	* truncatus Reiss \& Sublette	*	L
sp. 2 Epler	S	A	Beckidia Sxther	S	LU
Stilocladius Rossaro clinopecten Sxther	NS	L	Chernovskiia Sæther orbicus (Townes)	NS	LU
Sublettiella Sxther			Chironomus Meigen		
calvata Sxther	S	A	austini Beck \& Beck	N	L
Symbiocladius Kieffer			crassicaudatus Malloch	NS	L
¿ equitans (Claassen)	N	LU	decorus Johannsen	NS	LU
Synorthocladius Thienemann			[attenuatus Walker]		
semivirens (Kieffer)	NS	LU	longipes Staeger	NS	LU
sp. 1 Epler	S	A	[dorsalis auct.]		
Tavastia Tuiskunen			* major Wülker \& Butler	*	L
cristicauda Sxther	N	A	ochreatus (Townes)	S	L
* Thienemannia Kieffer			plumosus (Linnaeus)	N	L
* pilinucha Sxther	*	LU	riparius Meigen	NS	L
Thienemanniella Kieffer			staegeri Lundbeck	NS	L
boltoni Hestenes \& Sxther	N	L	stigmaterus Say	N	L
lobapodema Hestenes \& Sxether	NS	L	tuxis Curran	S	A
- obscura Brundin	S	LU	Cladopelma Kieffer		
¿ partita Schlee	S	L	amachaerum (Townes)	S	LU
similis (Malloch)	NS	L	collator (Townes)	NS	LU
taurocapita Hestenes \& Sæther	N	L	edwardsi (Kruseman)	NS	LU
xena (Roback)	NS	L	forcipis (Rempel)	NS	LU
* sp. B Epler	,	LU	[boydi Beck]		
Tokunagaia Sxther	N	LU	galeator (Townes)	NS	LU
* Trichochilus Sxther			spectabile (Townes)	S	LU
* lacteipennis (Johannsen)	*	L	virudulum (Linnaeus)	NS	LU

Cladotanytarsus Kieffer		
* aeiparthenus Bilyj	*	LU
cf. daviesi Bilyj	NS	LU
viridiventris (Malloch)	NS	LU
sp. A Epler	NS	LU
sp. B Epler	NS	LU
sp. D Epler	N	LU
sp. E Epler	NS	LU
sp. F Epler	N	LU
sp. H Epler	NS	LU
sp. I Epler	N	LU
Constempellina Brundin		
brevicosta (Edwards)	NS	LU
[ranota Webb]		
sp. A Epler	N	LU
Cryptochironomus Kieffer		
argus Roback	N	LU
blarina Townes	NS	LU
* digitatus (Malloch)	*	LU
fulvus (Johannsen)	NS	LU
*parafulvus (Beck \& Beck)	*	LU
ponderosus (Sublette)	NS	LU
* psittacinus (Meigen)	*	A
[styliferus (Johannsen)]		
scimitarus Townes	NS	A
sorex Townes	NS	LU
Cryptotendipes Beck \& Beck		
casuarius (Townes)	N	LU
emorsus (Townes)	NS	LU
pseudotener (Goetghebuer)	S	LU
Demeijerea Kruseman		
atrimana (Coquillett)	NS	A
brachialis (Coquillett)	N	A
obrepta (Townes)	NS	A
Demicryptochironomus Lenz		
cuneatus (Townes)	NS	LU
sp. A Epler	N	LU
sp. B Epler	N	LU
sp. C Epler	N	LU
Dicrotendipes Kieffer		
fumidus (Johannsen)	NS	L
leucoscelis (Townes)	NS	L
lobus (Beck)	NS	L
lucifer (Johannsen)	NS	L
modestus (Say)	NS	L
neomodestus (Malloch)	NS	L
nervosus (Staeger)	NS	L
simpsoni Epler	NS	L
thanatogratus Epler	S	L
tritomus (Kieffer)	NS	L
[incurvus Sublette]		
* sp. A Epler	*	L
Einfeldia Kieffer		
brunneipennis (Johannsen)	N	A
natchitocheae (Sublette)	NS	L
pagana (Meigen)	N	LU
sp. A Epler	N	LU

Endochironomus Kieffer

nigricans (Johannsen) subtendens (Townes) sp. A Epler	NS	L
Endotribelos Grodhaus hesperium (Sublette)	S	L
Fissimentum Cranston \& Nolte sp. A Epler	N	LU
Gillotia Kieffer alboviridis (Malloch)	S	L
Glyptotendipes Kieffer amplus Townes	S	L
barbipes (Staeger)	S	A
idreisbachi Townes		
ilobiferus (Say)	N	L
meridionalis Dendy \& Sublette	SS	L
paripes Edwards	NS	LU
* seminole Townes	NS	LU
testaceus	$*$	L
* sp. B Epler	NS	L
* sp. F Epler	$*$	LU
*	$*$	LU

* sp. G Epler * LU

Goeldichironomus Fittkau
\quad amazonicus (Fittkau)
carus (Townes) N L
devineyae (Beck \& Beck) N L
fluctuans Reiss S L
holoprasinus (Goeldi) NS L
[fulvipilus (Rempel)]
natans Reiss $\quad * \quad$ LU
Harnischia Kieffer
$\begin{array}{lll}\text { curtilamellata (Malloch) NS LU } \\ \text { * incidata Townes } & * & \text { LU }\end{array}$
Hyporhygma Reiss
quadripunctatum (Malloch) N L
Kiefferulus Goetghebuer
$d u x$ (Johannsen) NS LU
pungens (Townes) N LU

* sp. B Epler $\quad *$ LU

Kloosia Kruseman dorsenna (Sæther) NS L
Lauterborniella Thienemann \& Bause
agrayloides (Kieffer) NS L
Lipiniella Shilova NS LU
Microchironomus Kieffer
nigrovittatus (Malloch) N LU
Micropsectra Kieffer
dives (Johannsen) N NU
$\begin{array}{lll}\text { geminata Oliver \& Dillon } & \text { NS } & \text { LU } \\ \text { polita } \text { (Malloch) } & \text { S } & \text { L }\end{array}$
recurvata Goetghebuer \quad NS LU
$\begin{array}{lll}\text { xantha (Roback) } & \text { N } & \text { LU } \\ \text { sp. A Epler } & \text { N } & \text { LU }\end{array}$
sp. B Epler N LU
sp. C Epler N LU
sp. D Epler N LU

sp. E Epler	S	LU	quadratus (Sublette)	N	LU
sp. 1 Epler	N	A	[sp. C Epler]		
sp. 6 Epler	N	A	recens (Sublette)	NS	A
sp. 7 Epler	S	A	sp. 2 Epler	S	A
Microtendipes Kieffer			sp. D Epler	N	LU
caducus Townes	N	LU	Paratendipes Kieffer		
caelum Townes	NS	LU	albimanus (Meigen)	NS	L
pedellus (De Geer)	NS	LU	basidens Townes	N	L
sp. 1 Epler	N	A	¿duplicatus (Johannsen)	NS	LU
* Neostempellina Reiss	*	LU	nitidulus (Coquillett)	S	LU
Neozavrelia Goetghebuer	N	LU	subaequalis (Malloch)	N	L
Nilothauma Kieffer			Phaenopsectra Kieffer		
babiyi (Rempel)	S	LU	flavipes (Meigen)	NS	LU
bicorne (Townes)	NS	LU	obediens (Johannsen)	NS	LU
mirabile (Townes)	S	LU	punctipes (Wiedemann)	NS	LU
sp. A Epler	N	A	vittata (Townes)	NS	A
Omisus Townes			Polypedilum Kieffer		
browni Caldwell	S	LU	* acifer Townes	*	A
pica Townes	NS	LU	albicorne (Meigen)	NS	A
Pagastiella Brundin			albinodus Townes	NS	A
orophila (Edwards)?	S	LU	angulum Maschwitz	S	LU
ostansa (Webb)	NS	LU	angustum Townes	S	A
Parachironomus Lenz			artifer (Curran)	N	A
¿abortivus (Malloch)	NS	LU	aviceps Townes	NS	L
alatus (Beck)	NS	L	beckae (Sublette)	NS	L
carinatus (Townes)	NS	L	bergi Maschwitz	S	L
chaetoalus (Sublette)	NS	LU	braseniae (Leathers)	NS	L
digitalus (Edwards)	S	A	* calopterus (Mitchell	*	LU
directus (Dendy \& Sublette)	N	L	cinctum Townes	NS	A
frequens (Johannsen)	NS	L	digitifer Townes	NS	LU
hazelriggi Spies	NS	LU	* falciforme Maschwitz	*	LU
* hirtalatus (Beck \& Beck)	*	LU	fallax (Johannsen)	NS	L
pectinatellae (Dendy \& Sublette)	NS	L	flavum (Johannsen)	NS	L
potamogeti (Townes) [sp. B Epler]	NS	L	[convictum auct.] [obtusum Townes]		
schneideri Beck \& Beck	N	L	gomphus Townes	NS	A
* sublettei (Beck)	*	L	griseopunctatum (Malloch)	NS	LU
* supparilis (Edwards)	*	L	halterale (Coquillett)	NS	LU
[sp. A Epler]			illinoense (Malloch)	NS	LU
tenuicaudatus (Malloch) Paracladopelma Harnisch	NS	LU	latum (Meigen)	NS	L
Paracladopelma Harnisch doris (Townes)		L	* nymphaeorum Maschwitz	*	LU
loganae Beck \& Beck	NS	L	ontario (Walley)	N	L
nereis (Townes)	NS	L	ophioides Townes	S	LU
undine (Townes)	NS	L	¿parascalaenum Beck	NS	LU
sp. 1 Jackson	N	LU	pardus Townes	S	LU
sp. 2 Jackson	N	LU	* parvum Townes	*	A
sp. A Epler	N	LU	pedatum Townes	S	A
Paralauterborniella Lenz			scalaenum (Schrank)	NS	LU
nigrohalteralis (Malloch)	NS	L	simulans Townes	NS	LU
Parapsectra Reiss			¿ sordens (Wulp)	S	LU
sp. 1 Epler	N	A	¿ sulaceps Townes	S	A
Paratanytarsus Thienemann \& Bause			trigonus Townes	N	L
dissimilis (Johannsen)	NS	L	tritum (Walker)	NS	L
[sp. A Epler]			vibex Townes	NS	A
dubius (Malloch)	N	A	¿ walleyi Townes	S	A
cf. laccophilus (Edwards)	N	LU	* sp. A Epler	*	LU

Pseudochironomus Malloch		
fulviventris (Johannsen)	NS	LU
julia (Curran)	NS	A
* middlekaufi Townes	*	A
rex (Hauber)	N	A
richardsoni Malloch	N	LU
Rheotanytarsus Thienemann \& Bause		
exiguus (Johannsen)	NS	LU
pellucidus (Walker)	NS	L
sp. 4 Epler	S	A
sp. A Epler	N	LU
Robackia Sæther		
claviger (Townes)	NS	L
demeijerei (Kruseman)	NS	L
Saetheria Jackson		
hirta Sæther	NS	L
tylus (Townes)	NS	L
Skutzia Reiss		
sp. 1 Epler	N	A
Stelechomyia Reiss		
perpulchra (Mitchell)	NS	L
Stempellina Thienemann \& Bause		
almi Brundin	NS	A
rodesta Webb	S	A
subglabripennis (Brundin)	N	A
sp. B Epler	N	LU
sp. C Epler	NS	LU
Stempellinella Brundin		
brevis Edwards	S	A
leptocelloides (Webb)	S	A
sp. A Epler	NS	LU
sp. B Epler	N	LU
Stenochironomus Kieffer		
aestivalis Townes	NS	LU
cinctus Townes	NS	LU
hilaris (Walker)	NS	LU
macateei (Malloch)	NS	LU
poecilopterus (Mitchell)	NS	LU
unictus Townes	NS	LU
Stictochironomus Kieffer		
annulicris (Townes)	N	A
caffrarius group sp.	NS	LU
[Chironomini genus B Pinder \& Reiss]		
devinctus (Say)	NS	LU
palliatus (Coquillett)	N	A
Sublettea Roback		
coffmani (Roback)	NS	L
Tanytarsus Wulp		
cf. allicis Sublette	S	A
cf. brundini Lindeberg	NS	A
buckleyi Sublette	NS	A
confusus Malloch	NS	A
debilis (Meigen)	N	A
dendyi Sublette	NS	A
guerlus (Roback)	S	A
limneticus Sublette	NS	L

mendax Kieffer [xanthus Sublette]	NS	A
neoflavellus Malloch	NS	A
recurvatus Brundin	NS	A
tibialis Webb	S	A
sp. 3 Epler	S	A
sp. 7 Epler	N	A
sp. 8 Epler	S	A
sp. 9 Epler	S	A
sp. 10 Epler	S	A
sp. 11 Epler	S	A
sp. 13 Epler	S	A
sp. 14 Epler	S	A
sp. A Epler	NS	LU
sp. C Epler	NS	LU
sp. D Epler	NS	LU
sp. E Epler	S	LU
sp. F Epler	NS	LU
sp. G Epler	NS	LU
sp. I Epler	N	LU
sp. L Epler	NS	LU
sp. M Epler	NS	LU
sp. O Epler	NS	LU
sp. P Epler	N	LU
sp. S Epler	NS	LU
sp. T Epler	N	LU
sp. U Epler	NS	LU
sp. V Epler	N	LU
sp. Z Epler	N	LU
Tribelos Townes		
atrum (Townes)	NS	L
fuscicorne (Malloch)	NS	L
jucundum (Walker)	NS	L
Virgatanytarsus Pinder	S	A
Xenochironomus Kieffer xenolabis (Kieffer)	NS	L
Xestochironomus Sublette \& Wirth subletti Borkent	NS	L
Zavrelia Kieffer sp. 1 Epler	N	A
Zavreliella Kieffer marmorata (Wulp) [varipennis Coquillet]	NS	L
Chironomini genus III Epler	N	LU
* Chironomini genus IV Epler	*	LU
Harnischia complex genus A Epler	NS	LU
* Harnischia complex genus B Epler	*	LU
Harnischia complex genus C Epler	N	LU

Adam, J.I \& O .A. Sæther. 1999. Revision of the genus N ilothauma K ieffer, 1921 (D iptera: Chironomidae). Ent. scand. Suppl. 56: 1107.

Ali, A. 1991. Perspectives on management of pestiferous C hironomidae (D iptera), an emerging global problem. J. Am. M osq. Control Assoc. 7: 260-281.
Armitage, P., P.S. Cranston \& L.C.V. Pinder (eds). 1995. The Chironomidae. Biology and ecology of non-biting midges. Chapman \& Hall, London. 572 pp.
Ashe, P. 1983. A catalogue of chironomid genera and subgenera of the world including synonyms (Diptera: Chironomidae). Ent. scand. Suppl. 17: 1-68.
Barton, D.R., D.R. Oliver \& M.E. Dillon. 1993. The first N earctic record of Stackelbergina Shilova and Zelentsov (D iptera: Chironomidae): Taxonomic and ecological observations. Aquatic Insects 15: 57-63.
Beck, E.C \& W.M. Beck, Jr. 1959. A checklist of the Chironomidae (Insecta) of Florida (Diptera: Chironomidae). Bull. FI. St. M us. Biol. Sci. 4: 85-96.
Beck, E.C. \& W.M. Beck, Jr. 1969a. The Chironomidae of Florida II. Thenuisance species. Fla. Ent. 52:1-11.
Beck, E.C. \& W.M. Beck, Jr. 1969b. Chironomidae (D iptera) of FloridallI. TheH arnischia complex (Chironominae). Bull. Fla. St. M us. Biol. Sci. 13:277-313.
Beck, W.M ., Jr. 1976. Biology of the larval chironomids. Fla. State Dept. Environ. Reg. Tech. Ser. 2:1-58
Beck, W.M ., Jr. 1977. Environmental requirements and pollution tolerance of common freshwater Chironomidae. U.S. Environmental Protection Agency, EPA 600/4-77-024. 260 pp.
Beck, W.M ., Jr. 1979. Biology of the larval chironomids. Revised edition. Fla. State Dept. Environ. Reg. Tech. Ser. 2:1-58
Beck, W.M., Jr. 1980. Interesting new chironomid
records for the southern United States (Diptera: Chironomidae). J. Ga. Ent. Soc. 15:69-73.
Beck, W.M ., Jr. \& E.C. Beck. 1966. Chironomidae (Diptera) of Florida - I. Pentaneurini (Tanypodinae). Bull. Fla. St. Mus. Biol. Sci. 10:305-379.
Beck, W.M., Jr., \& E.C. Beck. 1970. The immature stages of some Chironomini (Chironomidae). Q.J. Fla. Acad. Sci. 33:29-42.
Bilyj, B. 1984. Descriptions of two new species of Tanypodinae(D iptera: Chironomidae) from Southern Indian Lake, C anada. C an. J. Fish. Aquat. Sci. 41: 659-671.
Bilyj, B. 1985. New placement of Tanypus pallens C oquillett, 1902 nec Larsia pallens (Coq.) sensu Roback 1971 (Diptera: Chironomidae) and redescription of theholotype. Can. Ent. 117: 39-42.
Bilyj, B. 1988. A taxonomic review of Guttipelopia (Diptera: Chironomidae). Ent. scand. 19:126.

Bilyj, B. \& D avies, I.J. 1989. Descriptions and ecological notes on seven new species of Cladotanytarsus (Chironomidae: Diptera) collected from an experimentally acidified lake. Can. J. Zool. 67:948-962.
Bjørlo, A., H . Vårdal \& O A. Sæther. 2000. A preliminary phylogenetic analysis of the subgenus Tripodura Townes of the genus Polypedilum Kieffer (Diptera: Chironomidae). pp 35-50 in H offrichter, 0 . (ed.) Late20th C entury Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany.
Bode, R.W. 1983. Larvae of North American Eukiefferiella and T vetenia (Diptera: Chironomidae). Bull. N.Y. St. M us. N o. 452:140.

Boesel, M.W. 1974. Observations on the C oelotanypodini of the northeastern states, with keys to the known stages. (Diptera: Chironomidae: Tanypodinae). J. K ans. Ent.

Soc. 47: 417-432.
Boesel, M .W. 1983. A review of thegenusCricotopus in Ohio, with a key to the adults of the northeastern U nited States (Diptera, C hironomidae). O hio J. Sci. 83: 74-90.
Boesel, M.W. 1985. A brief review of the genus Polypedilum in O hio, with keysto theknown stages of species occurring in northeastern United States (Diptera: Chironomidae). Ohio J. Sci. 85:245-262.
Boesel, M.W. \& R.W. W inner. 1980. Corynoneurinae of northeastern United States, with a key to adults and observations on their occurrence in Ohio (Diptera: Chironomidae). J. Kans. Ent. Soc. 53: 501-508.
Bolton, M.J. 1991. The identity of Chironomini GenusC (D iptera: Chironomidae) in Pinder and Reiss (1986). Ent. N ews 102: 125-126.
Bolton, M.J. 1992. Chironomidae (Diptera) of Cedar Bog, Champaign County, Ohio. O hio J. Sci. 92: 147-152.
Borkent, A. 1984. The systematics and phylogeny of the Stenochironomus complex (Xestochironomus, Harrisius, and Stenochironomus). (D iptera: Chironomidae). M em. ent. Soc. C anada 128:1-269.
Bretschko, G. 1981. Pontomyia Edwards (Diptera: Chironomidae), a member of the coral reef community at Carrie Bow Cay, Belize, pp. 381-385 in Rätzler, K. \& I.G. M acintyre (eds.): The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, 1: Structure and Communities. Smithsonian C ontr. M ar. Sci. 12: 539 pp .
Brundin, L. 1948. U ber die M etamorphose der Sectio Tanytarsariae connectentes (Dipt. Chironomidae). Ark. Zool. 41A: 1-22 + 7 plates.
Brundin, L. 1966. Transantarctic relationships and their significance, as evidenced by chironomid midges. W ith a monograph of the subfamilies Podonominae and Aphroteniinae and the austral H eptagyiae. K. svenska VetenskAkad. H andl. 11: 1-472.
Caldwell, B.A. 1984. Two new species and records of other chironomidsfrom G eorgia (D iptera: Chironomidae) with some observations on
ecology. Georgia J. Sci. 42: 81-96.
C aldwell, B.A. 1985. Paracricotopus millrockensis, a new species of Orthocladiinae (Diptera: Chironomidae) from the southeastern United States. Brimleyana 11:161-168.
Caldwell, B.A. 1986. Description of the immature stages and adult female of Unniella multivirga Sæ̈her (D iptera: Chironomidae) with comments on phylogeny. Aquatic Insects 8: 217-222.
Caldwell, B.A. 1993. The immature stages of Ablabermyia cinctipes(Johannsen) with comments on ecology (Insecta, D iptera, C hironomidae). Spixiana 16: 49-52.
Caldwell, B.A. 1996. Two new Nearctic species of small Orthocladiinae (Diptera: C hironomidae) with notes on ecology. H ydrobiol. 328: 1-7.
Caldwell, B.A. 1997. The American Chaetocladius stamfordi (Johannsen), a synonym of C. piger (G oetghebuer) from the Palaearctic (D iptera: Chironomidae). Aquatic Insects 19: 117122.

Caldwell, B.A. 1999. Description of theadult male and Iarva of Orthocladius (Orthocladius) vaillanti (D iptera: Chironomidae). J. K ans. Ent. Soc. 71: 234-240.
Caldwell, B.A. 2000a. A new species of 0 misus Townesfrom Georgia, USA (Diptera: Chironomidae). pp 59-67 in H offrichter, 0 . (ed.) Late20th C entury Research on C hironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany.
Caldwell, B.A. 2000b. First Nearctic record of Neostempellina Reiss, with description of a new species (Insecta, Diptera, Chironomidae). Spixiana 23: 163-166.
Caldwell, B.A., P.L. Hudson, D.R. Lenat \& D.R. Smith. 1997. A revised annotated checklist of the Chironomidae (Insecta: Diptera) of the Southeastern United States. Trans. Am. ent. Soc. 123: 1-53.
Caldwell, B.A. \& A.R. Soponis. 1982. H udsonimyia parrishi, a new species of Tanypodinae (D iptera: Chironomidae) from Georgia. Fla. Ent. 65: 506-513.

Chernovskij, A.A. 1949. O predelitel lichinok komarov semeistva Tendipedidae. O pred. po Faune SSSR 31: 1-189.
Coffman, W.P. \& L.C. Ferrington, Jr. 1996. Chironomidae. Pp. 635-754 in M erritt, R.W. \& K.W. Cummins (eds.). An introduction to the aquatic insects of North America. Third Edition. Kendall/H unt Publishing Co., Dubuque, IA.
Coffman, W.P., L.C. Ferrington, Jr. \& R.M. Seward. 1988. Paraboreochlustahli sp. n., anew species of Podonominæe (Diptera: Chironomidae) from the N earctic. Aquatic Insects 10: 189-200.
Coffman, W.P. \& S.S. Roback. 1984. Lopescladius (Cordiella) hyporheicus, a new subgenus and species (Diptera: Chironomidae: Orthocladiinae). Proc. Acad. Nat. Sci. Philad. 136: 130-144.
Colbo, M.H. 1996. Chironomidae from marine coastal environments near St. John's, N ewfoundland, Canada. Hydrobiol. 318: 117122.

Contreras-Lichtenberg, R. 1982. Ein Beitrag zur Kenntnis von Goedichironomus (Chironomus) carus (Townes) 1945. Spixiana5: 175180.

Cranston, P.S. 1982. A key to the larvae of the British 0 rthocladiinae (Chironomidae). Scient. Publs Freshwat. biol. Ass. 45: 1-152.
Cranston, P.S. 1985. Eretmoptera murphyi Schaeffer (Diptera: Chironomidae), an apparently parthenogenetic antarctic midge. Br . Antarct. Surv. Bull. 66: 35-45.
Cranston, P.S. 1987. A non-biting midge (D iptera: Chironomidae) of horticultural significance. Bull. Ent. Res. 77: 661-667.
Cranston, P.S. 1999. Nearctic Orthocladius subge nus Eudadylocladiusrevised (Diptera: Chironomidae). J. K ansas Ent.Soc. 71: 272-295.
Cranston, P.S., M.E. Dillon, L.C.V. Pinder \& F. Reiss. 1989. The adult males of the Chironominze (Diptera: Chironomidae) of the H olarctic region - Keys and diagnoses. Ent. scand. Suppl. 34: 353-502.
Cranston, P.S. \& D.D. Judd. 1987. Metriocnemus (Diptera: Chironomidae) - an ecological
survey and description of a new species. J. New York Ent. Soc. 95: 534-546.
Cranston, P.S. \& R. Kitching. 1995. The Chironomidae of Austro-O riental phytotelmata (plant-held waters): Richea pandanafolia H ook.f., pp. 225-231 in Cranston, P.S. (ed.). Chironomids - from Genes to Ecosystems. CSIRO Publications, East M elbourne, Australia.
Cranston, P.S. \& U. Nolte. 1996. Fissimentum, a new genus of drought-tolerant Chironomini (Diptera: Chironomidae) from the Americas and Australia. Ent. N ews 107: 1-15.
Cranston, P.S. \& D.R. O liver. 1988a. Additions and corrections to the Nearctic O rthocladiinae (Diptera: Chironomidae). Can. Ent. 120: 425-462.
Cranston, P.S. \& D.R. O liver. 1988b. Aquatic xylophagous 0 rthocladiinae - systematics and ecology. Spixiana Suppl. 14:143-154.
Cranston, P.S., D.R. O liver, \& O.A. Sæther. 1983. The larvae of Orthocladiinae (D iptera: Chironomidae) of the H olarctic region. Keys and diagnoses. Ent. scand. Suppl. 19:149291.

Cranston, P.S. \& O.A. Sæther. 1982. A redefinition of Acamptocladius Brundin, 1956 (syn. Phycoidella Sæther, 1971, n. syn.) (Diptera: Chironomidæ), with the description of A. reissi n. sp. Ent. scand. 13: 25-32.
Cranston, P.S. \& O.A. Sæther. 1986. Rheosmittia (Diptera: Chironomidae): a generic validation and revision of the western Palaearctic species. J. nat. Hist. 20:31-51.
Curry, L.L. 1958. Larvae and pupae of the species of Cryptochironomus (Diptera) in M ichigan. Limnol. 0 ceanogr. 3:427-442.
D arby, R.E. 1962. M idges associated with C alifornia ricefields, with special reference to their ecology (Diptera: Chironomidae). Hilgardia 32: 1-206.
D avis, J.R. 1992. O ccurrence of Fittkauimyia (Diptera: Chironomidae: Tanypodinae) in Texas. Ent. News 103: 78-80.
de la Rosa, C.L. \& A.J. N astase. 1987. Larvae of M eriocnemus cf. fuscipes, Limnophyes sp., Pentaneurini (Diptera: Chironomidae) and

Culicoides (Diptera: C eratopogonidae) from pitcher plants, Sarracenia purpurea. J. Kans. Ent. Soc. 60: 339-341.
D endy, J.S. 1973. Predation on chironomid eggs and larvae by Nanocladius alternantherae D endy and Sublette (Diptera: Chironomidae, Orthocladiinae). Ent. News 84: 91-95.
D endy, J.S. \& J.E. Sublette. 1959. TheChironomidae (=Tendipedidae: Diptera) of Alabama with descriptions of six new species. Ann. Ent. Soc. Am. 52: 506-519.
D onley, S., L.C. Ferrington, Jr. \& D. Strayer. 1999. The habitat of Paraboreochluslarvae (Chironomidae: Podonominae). J. K ans. Ent. Soc. 71: 501-504.
Dosdall, L.M. \& P.G. M ason. 1981. A chironomid (N anocladius (Plecopteracoluthus) branchicolus: Diptera) phoretic on a stonefly (Acroneuria lycorias: Plecoptera) in Saskatchewan. Can. Ent. 113: 141-147.
D osdall, L.M., P.G. M ason \& D.M . Lehmkuhl. 1986. First records of phoretic Chironomidae (Diptera) associated with nymphs of Pteronarcys dorsata (Say) (Plecoptera: Pteronarcyiidae). Can. Ent. 118: 511-515.
D osdall, L.M \& D.W. Parker. 1998. First report of a symphoretic association between N anocladius branchicolus Sæther (Diptera: Chironomidae) and Argia moesta (H agen) (O donata: C oenagrionidae). Am. M idl. Nat. 139: 181-185.
D oughman, J.S. 1983. A guide to the larvae of the Nearctic Diamesinae (Diptera: Chironomidae). The genera Boreoheptagyia, Protanypus, Diamesa and Pseudokiefferiella. U.S. Geological Survey, Water-Resources Investigations Report 83-4006: 1-58.
D oughman, J.S. 1985a. Annotated keys to the genera of the tribe D iamesini (Diptera: Chironomidae), descriptions of the female and immatures of Potthastia iberica Tosio, and keysto the known species of Potthasia. Univ. Alsk. IW R (Inst. Water Resour.) Ser. IW R107. 49 pp.

Doughman, J.S. 1985b. Sympotthastia Pagast (Diptera: Chironomidae), an update based
on larvae from N orth C arolina, S. diastena (Sublette) comb. n., and other N earctic species. Brimleyana 11: 39-53.
Dowling, C. \& D. M urray. 1980. Zalutschia humphriesae sp. n., a new species of 0 rthocladiinae(D iptera, C hironomidae) from Ireland. Acta Univ. Carol. Biol. 1978: 49-58.
Eaton, L. 1994. A preliminary survey of benthic macroinvertebrates of Currituck Sound, N orth C arolina. J. Elisha M itchell Sci. Soc. 110: 121-129.
Epler, J.H. 1986a. A novel new Neotropical N anocladius (D iptera: Chironomidae), symphoretic on Traverella (Ephemeroptera: Leptophlebiidae). Fla. Ent. 69: 319-327.
Epler, J.H. 1986b. The larva of Radotanypus submarginella (Sublette) (Diptera, Chironomidae). Spixiana 9: 285-287.
Epler, J.H. 1987. Revision of the Nearctic DicrotendipesKieffer, 1913 (Diptera: Chironomidae). Evol. M onogr. 9: $102 \mathrm{pp}+37$ plates.
Epler, J.H. 1988a. A reconsideration of the genus Apedilum Townes, 1945 (Diptera: Chironomidae: Chironominae). Spixiana Suppl. 14: 105-116.
Epler, J.H. 1988b. Biosystematics of the genus Dicrotendi pesKieffer, 1913 (Diptera: Chironomidae: Chironominae) of the world. M em. Am. Ent. Soc. 36: 1-214.
Epler, J.H . 1992. Identification M anual for theLarval Chironomidae (Diptera) of Florida. FL Dept. Environ. Reg., Orlando, FL. 302 pp.
Epler, J.H . 1995. Identification M anual for theL arval Chironomidae (Diptera) of Florida. Revised edition. FL D ept. Environ. Protection, Tallahassee, FL. 317 pp .
Epler, J.H., J.P. Cuda \& T.D. Center. 2000. Rede scription of Cricotopus lebetis (D iptera: Chironomidae), a potential biocontrol agent of the aquatic weed hydrilla (Hydrocharitaceae). Fla. Ent. 83: 171-180.
Epler, J.H. \& L.C. Ferrington, Jr. 1994. The immaturestages of Paratendi pes basidensTownes (Diptera: Chironomidae: Chironominae). J. Kans. Ent. Soc. 67: 311-317.
Epler, J.H., A.D. H arrison \& L. H are. 1999. Acinoretracus, a new Afrotropical genus for
some species previously placed in D icrotendipes (Diptera: C hironomidae: Chironominae). Tijd. voor Ent. 141: 209220.

Epler, J.H . \& W.J. Janetzky. 1999. A new species of M onopelopia (Diptera: Chironomidae) from phytotelmata in Jamaica, with preliminary ecological notes. J. K ans. Ent. Soc. 71: 216225.

Fagnani, J.P. , \& A.R. Soponis. 1988. The occurrence of setal tufts on larvae of Orthocladius (Orthocladius) annectens Sæther. Spixiana Suppl. 14: 139-142.
Ferrington, L.C., Jr. 1984. Evidence for the hyporheic zone as a microhabitat of Krenosmittia spp. Iarvae (D iptera: Chironomidae). J. Freshwater Ecol. 2: 353-358.
Ferrington, L.C., Jr. 1987. M icrohabitat preferences of larvae of three 0 rthocladiinae species (Diptera: Chironomidae) in Big Springs, a sandbottom spring in the high plains of western K ansas. Ent. scand. Suppl. 29: 361368.

Ferrington, L.C., Jr. 1992. H abitat and sediment preferences of Axarus festivus larvae. N eth. J. Aquat. Ecol. 26: 347-354.

Ferrington, L.C., Jr. 1995. Utilization of anterior headcapsulestructures in locomotion by larvae of C onstempellina sp. (Diptera: Chironomidae). Pp. 305-315 in Cranston, P.S. (ed.). Chironomids - from Genes to Ecosystems. CSIRO Publications, East M elbourne, Australia. 482 pp .
Ferrington, L.C., Jr. \& O.A. Sæther. 1987. M ale, female, pupa and biology of Oliveridia hugginsi n. sp. (Chironomidae: Diptera) from Kansas. J. Kans. Ent. Soc. 60: 451461.

Fittkau, E.J. 1962. D ie Tanypodinae (D iptera: Chironomidae). (Die Tribus Anatopyniini, M acropelopiini und Pentaneurini). Abh. Larval-syst. Insekten 6: 1-453.
Fiottkau, E.J. 1963. M anoa, eine neue G attung der Chironomidae (Diptera) aus Zentralamazonien. Arch. H ydrobiol. 59: 373-390.
Fittkau, E.J. \& J. Lehmann. 1970. Revision der Gattung M icrocricotopus Thien. u. Harn.
(Dipt., Chironomidae). Int. Rev. ges. H ydrobiol. 55: 391-402.
Fittkau, E.J. \& D.A. M urray. 1985. Radotanypusa new genus of Tanypodinae from the N earctic (Diptera, Chironomidae). Spixiana Suppl. 11: 209-213.
Fittkau, E.J., \& D.A. M urray. 1986. The pupae of Tanypodinae (Diptera: Chironomidae) of the H olarctic region: K eys and Diagnoses. Ent. scand. Suppl. 28: 31-113.
Fittkau, E.J. \& D.A. M urray. 1988. Bethbilbeckia floridensis: a new genus and species of M acropelopiini from the South Eastern N earctic. Spixiana Suppl. 14: 253-259.
Fittkau, E.J., F. Reiss\& O. H offrichter. 1976. A bibliography of the Chironomidae. Gunneria 26: 1-177.
Fittkau, E.J. \& S.S. Roback. 1983. The larvae of Tanypodinae (Diptera: Chironomidae) of the H olarctic region: Keys and diagnoses. Ent. scand. Suppl. 19:33-110.
Giberson, D.J., A.J. M aclnnes \& M. Blanchard. 1996. Seasonal frequency and positioning of parasitic midges (Chironomidae) on Pteronarcys biloba nymphs (Plecoptera: Pteronarcyidae). J. N. Am. Benth. Soc. 15: 529-536.
Gonser, T. \& M . Spies. 1997. Southern H emisphere Symbiocladius(Diptera, Chironomidae) and their mayfly hosts (Ephemeroptera, Leptophlebiidae). Pp. 455-466 in Landolt, P. \& M. Sartori (eds.). Ephemeroptera \& Plecoptera: Biology-Ecology-Systematics. M TL, Fribourg.
Gordon, M.J., B.K. Swan \& C.G. Paterson. 1978. Baeoctenusbicolor (D iptera: Chironomidae) parasitic in unionid bivalve molluscs, and notes on other chironomid-bivalve associations. J. Fish. Res. Bd. Can. 35: 154-157.
Gotceitas, V. \& R.J. M acK ay. 1980. The phoretic association of N anocladius (N anocladius) rectinervis(K ieffer) (D iptera: C hironomidae) on Nigronia serricornis Say (M egaloptera: C orydalidae). Can. J. Zool. 58: 2260-2263.
Gouin, F. 1936. M étamorphosis de quelques Chironomides d"Alsace et de Lorraine avec la description de trois espèces nouvelles par
M. G oetghebuer. Rev. Fr. Ent. 3: 151-173. Grodhaus, G. 1976. Two species of Phaenopsectra with drought-resistant larvae (D iptera: C hiro nomidae). J. Kans. Ent. Soc. 49: 405-418. Grodhaus, G. 1987a. Endochironomus Kieffer, TribelosTownes, Synendotendipes, n. gen., and Endotribelos, n. gen. (Diptera: Chironomidae) of the N earctic region. J. K ansas Ent. Soc. 60:167-247.
Grodhaus, G. 1987b. Phaenopsectra mortensoni n. sp. and its relationship to other Chironomidae (Diptera) of temporary pools. Ent. scand. Suppl. 29:137-145.
H alvorsen, G.A. 1982. Saetheriella amplicristata gen. n., sp. n., a new Orthocladiinae (Diptera: Chironomidae) from Tennessee. Aquatic Insects 4: 131-136.
Halvorsen, G.A. \& O.A. Sæther. 1987. Redefinition and revision of the genus Tokunagaia Sæther, 1973 (D iptera: Chironomidae). Ent. scand. Suppl. 29: 173-188.
H amilton, A.L. 1965. An analysis of a freshwater benthic community with special reference to the Chironomidae. Ph.D. thesis, Univ. of British Columbia. $94+216 \mathrm{pp}$.
H ansen, D.C. \& E.F. C ook. 1976. The systematics and morphology of the N earctic species of Diamesa M eigen, 1835 (Diptera: Chironomidae). M em. Am. Ent. Soc. 30:1-203.
H ashimoto, H. 1976. N on-biting midges of marine habitats (D iptera: C hironomidae), pp. 377414 in Cheng, L. M arine Insects. N orthH olland Pub.C o., Amsterdam. 581 pp.
H auber, U.A. 1944. Life histories and ecology of Iowa midges (Tendipedidae). I. The genus Tanytarsus. Proc. Iowa Acad. Sci. 51:451461.

H estenes, T.C. \& O.A. Sæther. 2000. Three new N earctic Thienemanniella K ieffer species with a review of the N earctic species, $p p$. 103-127 in H offrichter, O. (ed.) Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany.
H eyn, M.W. 1992. A review of the systematic position of the North American species of the
genus Glyptotendipes. Neth. J. Aquat. Ecol. 26: 129-137.
Hirvenoja, M. 1973. Revision der G attung Cricotopus van der Wulp und ihrer Verwandten (Diptera, Chironomidae). Ann. Zool. Fennici 10:1-363.
H irvenoja, M. \& E. Hirvenoja. 1988. Corynoneura brundini spec. nov. Ein Beitrag zur Systematik der Gattung Corynoneura. Spixiana Suppl. 14:213-238.
H offrichter, O. \& F. Reiss. 1981. Supplement 1 to a Bibliography of the Chironomidae. Gunneria 37: 1-68.
Hudson, P.L., D.R. Lenat, B.A. Caldwell \& D. Smith. 1990. Chironomidae of the Southeastern U nited States: A checklist of species and notes on biology, distribution, and habitat. U.S. Fish Wildl. Ser., Fish. W ildl. Res. 7:1-46.
International Commission on Zoological Nomenclature. 1999. International C ode of Zoological Nomenclature. Fourth edition adopted by the International Union of Biological Sciences. International Trust for Zoological N omenclature, London. 306 pp.
Jackson, G.A. 1977. N earctic and Palaearctic Paracladopelma H arnisch and Saetheria n. gen. (D iptera: Chironomidae). J. Fish. Res. Bd. C anada 34:1321-1359.
Jacobsen, R.E. 1992. Descriptions of the larvae of four N earctic species of Epoicocladius (Diptera: Chironomidae) with a redescription of Epoicocladius ephemerae (Kieffer). N eth. J. Aquat. Ecol. 26: 145-155.
Jacobsen, R.E. 1998. Taxonomy of the genus Platysmittia (Diptera: Chironomidae), with comments on its ecology and phylogenetic position. Aquatic Insects 20 (4): 239-256.
Jacobsen, R.E. \& S.A. Perry. 2000. A review of Beardius Reiss \& Sublette, with description of a new species from Everglades N ational Park, Florida. Spixiana 23: 129-144.
Jacobsen, R.E. \& S.A. Perry (in press). A new species of M anoa (Diptera: Chironomidae) from Everglades National Park. J. N. Am. Benth. Soc.
Johannsen, O.A. 1937a. Aquatic Diptera. Part III.

Chironomidae: Subfamilies Tanypodinae, Diamesinae, and Orthocladiinae. Mem. Cornell Univ. Agric. Exp. Stn. 205: 3-84 + plates I-XVIII.
Johannsen, O.A. 1937b. Aquatic Diptera. Part IV. Chironomidae: Subfamily Chironominae. M em. Cornell Univ. Agric. Exp. Stn. 210: 3-56 + plates I-IX.
Kyerematen, R.A.K., O.A. Sæther \& T. Andersen. 2000. A revision of the Rheotanytarsus pellucidus group (Diptera: Chironomidae). pp 147-170 in H offrichter, O. (ed.) Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany.
Kullberg, A. 1988. The case, mouthparts, silk and silk formation of Rheotanytarsus muscicola Kieffer (Chironomidae: Tanytarsini). Aquatic Insects 10: 249-255.
Langton, P.H . 1980. The genusPsectrocladiusK ieffer (D iptera: Chironomidae) in Britain. Ent. Gaz. 31: 75-88.
Langton, P.H . 1985. Review of type specimens of the limbatel lusgroup, with a provisional key to known females of Psectrocladius Kieffer (Diptera: Chironomidae). Ent. scand. 15: 477-485.
Langton, P.H . 1991. A key to pupal exuviae of West Palaearctic Chironomidae. P.H. Langton, H untington, Cambridgeshire, England. 386 pp.
Langton, P.H . \& P.S. Cranston. 1991. Pupae in nomenclature and identification: West Palaearctic Orthocladius s.str. (Diptera: Chironomidae) revised. Sys. Ent. 16: 239-252.
Langton, P.H ., P.S. Cranston \& P. Armitage. 1988. The parthenogenetic midge of water supply systems, Paratanytarsus grimmii (Schneider) (Diptera: Chironomidae). Bull. Ent. Res. 78: 317-328.
Langton, P.H \& \& Z. M oubayed. 1990. Redescription of the pupal exuviae of Potthastia montium Edwards (=iberica Serra-Tosio syn. nov.) (D iptera; Chironomidae). Br. J. Nat. Hist. 3: 135-137.
Lehmann, J. 1970a. Revision der europäischen

Arten (Imagines 8 z) der Gattung ParachironomusLenz (Diptera, Chironomidae). Hydrobiol. 33: 129-158.
Lehmann, J. 1970b. Revision der europäischen Arten (Imagines $\delta \delta$ und Puppen $\delta \delta$) der Gattung Rheotanytarsus Bause (D iptera, Chironomidae). Zool. Anz. 185: 344-378.
Lehmann, J. 1972. Revision der europäischen Arten
 Eukiefferiella Thienemann. Beitr. Ent. 22: 347-405.
Lehman, J. 1973. Systematische und phylogenetische Studie über die Gattungen Thienemanniola Kieffer und Corynocera Z etterstedt (Diptera, Chironomidae). H ydrobiologia 43: 381-414.
Lenat, D.R. 1993a. Using mentum deformities of Chironomus larvae to evaluate the effects of toxicity and organic loading in streams. J.N . Am. Benth. Soc. 12: 265-269.
Lenat, D.R. 1993b. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benth. Soc. 12: 279-290.
Lenat, D.R. \& D.R. Folley. 1983. Lotic chironomids of the North Carolina mountains. Mem. Am. Ent. Soc. 34: 145-164.
Lenz, F. 1921. Chironomidenpuppen und -larven. Bestimmungstabellen. Dt. ent. Zt. 3: 148162.

LeSage, L. \& A.D. H arrison. 1980. Taxonomy of Cricotopus species (Diptera: Chironomidae) from Salem Creek, O ntario. Proc. Ent. Soc. Ont. 111:57-114.
Lindeberg, B. \& T. Wiederholm. 1979. Notes on the taxonomy of European species of Chironomus(Diptera: Chironomidae). Ent. scand. Suppl. 10:99-116.
M agy, H.I., G. Grodhaus, J.D. Gates \& J.M ontez. 1970. Pondweed - a substrate for chironomids, especially Paralauterborniel la subdincta. Calif. M osq. C ontrol. Assoc. 37: 115-119.
M akarchenko, E.A. 1986. D iamesa subletti sp. n., a new species of chironomid (Diptera, Chironomidae) from Canada. Aquatic Insects 8 : 155-157.

Makarchenko, E.A. 1995. New species of Lappodiamesa Serra-Tosio and Arctodiamesa M akartshenko (Diptera, Chironomidae) from theeast Palaearctic. Aquatic Insects 17: 83-93.
M akarchenko, E.A \& M.A. M akarchenko. 2000. Revision of Pagatia Oliver, 1959 (Diptera, Chironomidae) of the H olartcic region. pp 171-176 in H offrichter, O. (ed.) Late 20th C entury Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen, Germany.
M alloch, J.R. 1915. TheChironomidae, or midges, of Illinois, with particular reference to the species occurring in the Illinois River. Bull. Illinois St. Lab. Nat. Hist. 10: 275-543.
M anuel, K.L. 1976. Description of immaturestages of Glyptotendi pes(Phytotendipes) meridionalis Dendy and Sublette (Diptera: Chironomidae). Unpublished M .S. thesis, Auburn Univ., Auburn, AL. 37 pp.
M aschwitz, D.E. \& E.F. Cook. 2000. Revision of theN earctic species of thegenus Polypedilum Kieffer (Diptera: Chironomidae) in the subgenera P. (Polypedilum) Kieffer and P. (Uresipedilum) O yewo and Sæther. Ohio Biological Survey Bulletin New Series Volume 12 Number 3. vii +135 pp.
M ason, P.G. 1985a. The larvae and pupae of Stictochironomus marmoreus and S. quagga (D iptera: Chironomidae). Can. Ent. 117: 43-48.
M ason, P.G. 1985b. Four new species of the Cryptochironomusfulvus(Johannsen) species complex (D iptera: Chironomidae). Ent. scand. 16: 399-413.
M ason, P.G. 1985c. Thelarva of Tvetenia vitracies (Sæther) (Diptera: Chironomidae). Proc. Ent. Soc. Wash. 87: 418-420.
M ason, W.T., Jr. 1973. An introduction to theidentification of chironomid larvae (revised edition). Analytical Quality C ontrol Lab., Na tional Environmental Research Center, U.S.E.P.A., Cincinnati, OH, 90 pp.

M orley, R.L. \& R.A. Ring. 1972a. The intertidal Chironomidae (Diptera) of British Colum-
bia. I. Keysto their lifestages. C an. Ent. 104: 1093-1098.
M orley, R.L. \& R.A. Ring. 1972b. The intertidal Chironomidae (Diptera) of British C olumbia. II. Life history and population dynamics. Can. Ent. 104: 1099-1121.
M ozley, S.C. 1980. Biological indicators of water quality in N orth C arolina. I. Guideto identification of orthocladiine Chironomidae (Diptera). Unpublished report, North C arolina Department of N atural Resources and Community D evelopment, Division of Environmental M anagement. (with minor revisions added N ovember 1981.)
M urray, D.A. \& E.J. Fittkau. 1985. Hayesomyia, a new genus of Tanypodinae from the H olarctic (D iptera: Chironomidae). Spixiana Suppl. 11: 195-207.
Niitsuma, H. 1985. A new species of the genus Nilothauma (D iptera: Chironomidae) from Japan. K ontyu 53: 229-232.
Niitsuma, H. \& E.A. M akarchenko. 1997. Thefirst record of Compteromesa Sæther (Diptera, Chironomidae) from the Palaearctic region, with description of a new species. Jap. J. Ent. 65: 612-620.
Nolte, U. 1989. O bservations on Neotropical rainpools (Bolivia) with emphasis on Chironomidae (Diptera). Stud. Neotrop. Fauna and Environ. 24: 105-120.
Nolte, U. 1993. Egg masses of Chironomidae (Diptera). A review, including new observations and a preliminary key. Ent. scand. Suppl. 43: 1-75.
Nolte, U. 1995. From egg to imago in less than seven days: Apedilum elachistus (Chironomidae). Pp. 177-184 in Cranston, P.S. (ed.). Chironomids - from Genes to Ecosystems. CSIRO Publications, East M elbourne, Australia.
Oliver, D.R. 1959. Some Diamesini (Chironomidae) from the N earctic and Palaearctic. Ent. Tidskr. 90: 48-64.
Oliver, D.R. 1971. Description of Einfeldia synchrona n. sp. (Diptera: Chironomidae). Can. Ent. 103: 1591-1595.
Oliver, D.R. 1976. Chironomidae (Diptera) of

Char Lake, Cornwallis sland, N.W.T., with descriptions of two new species. Can. Ent. 108: 1053-1064.
Oliver, D.R. 1977. Bicinctusgroup of the genus Cricotopus van der Wulp (Diptera: Chironomidae) in the N earctic with a description of a new species. J. Fish. Res. Bd. Can. 34: 98-104.
Oliver, D.R. 1981a. Chironomidae. Pp 423-458 in M cAlpine, J.F., et. al. (coordinators): M anual of Nearctic Diptera, Vol. 1. Agric. Can. M onogr. 27, 674 pp .
Oliver, D.R. 1981b. Redescription and systematic placement of 0 readomyia albertae K evan and Cutten-AI-K han (Diptera: Chironomidae). Q uaest. ent. 17: 121-128.
Oliver, D.R. 1981c. Description of Euryhapsis new genus including three new species (Diptera; Chironomidæe). Can. Ent. 113: 711-722.
Oliver, D.R. 1982. Xylotopus, a new genus of Orthocladiinae (Diptera: Chironomidae). Can. Ent. 114:167-168.
Oliver, D.R. 1983. The larvae of Diamesinae (Diptera: Chironomidae) of the H olarctic region. Keys and diagnoses. Ent. scand. Suppl. 19:115-138.
Oliver, D.R. 1984. Description of a new species of Cricotopus van der Wulp (Diptera: Chironomidae) associated with M yriophyllum spicatum. Can. Ent. 116: 1287-1292.
Oliver, D.R. 1985. Review of Xylotopus Oliver and description of Irisobrillia n. gen. (Diptera: Chironomidae). Can. Ent. 117:1093-1110.
Oliver, D.R. \& R.W. Bode. 1985. Description of the larva and pupa of Cardiocladius albiplumusSæther (Diptera: Chironomidae). Can. Ent. 117:803-809.
Oliver, D.R. \& M.E. Dillon. 1988. Review of Cricotopus (Diptera: Chironomidae) of the Nearctic Arctic zone with description of two new species. Can. Ent. 120: 463-496.
Oliver, D.R. \& M.E. Dillon. 1994a. Systematics of some species of Micropsectra (Diptera: Chironomidae) living in low-order streams in southern O ntario, C anada. Can. Ent. 126: 199-217.
Oliver, D.R. \& M.E. Dillon. 1994b. Corrections
and additions to "A catalog of N earctic Chironomida". Proc. Ent. Soc. Wash. 96: 8-10.
Oliver, D.R., M.E. Dillon \& P.S. Cranston. 1990. A catalog of Nearctic Chironomidae. Re search Branch Agriculture C an. Pub. 1857/ B. 89 pp .

Oliver, D.R., D. M cClymont \& M.E. Roussel. 1978. A key to some larvae of Chironomidae (Diptera) from the Mackenzie and Porcupine River watersheds. Fish. M ar. Serv. Tch. Report No. 791: 1-73.
Oliver, D.R. \& M.E. Roussel. 1982. The larvae of Pagastia Oliver (Diptera: Chironomidae) with descriptions of three N earctic species. Can. Ent. 114:849-854.
Oliver, D.R. \& M.E. Roussel. 1983a. Redescription of Brillia Kieffer (Diptera: Chironomidae) with descriptions of N earctic species. Can. Ent. 115:257-279.
Oliver, D .R \& M.E. Roussel. 1983b. Thegenera of larval midges of Canada (Diptera: Chironomidae). Part 11. The insects and arachnids of C anada. Biosys. Res. Inst., O ttawa. 263 pp.
Oliver, D.R. \& B.J. Sinclair. 1989. Madicolous Chironomidae (Diptera), with a review of M etriocnemus hygropetricus K ieffer. Acta Biol. Debricina Oecol. Hung. 2: 285-293.
0 yewo, E.A. \& O.A. Sæther. 1998. Revision of Afrotropical Polypedilum Kieffer subgen. U reipedilum Sasa et Kikuchi, 1995 (Diptera: Chironomidae), with a review of the subgenus. Annls. Limnol. 34: 315-362.
Pankratova, V. Ya. 1970. Lichinki i kukolki komarov podsemeistva Orthocladiinae fauny SSSR (Diptera, Chironomidae =Tendipedidae). O pred. po. Faune SSSR 31: 1-344.
Pennuto, C.M. 1997. Incidence of chironomid phoretics on hellgrammites in streams of southern M aine. N ortheastern N aturalist 4: 285-292.
Pennuto, C.M. 1998. Seasonal position patterns and fate of a commensal chironomid on fishfly host. J. Freshw. Ecol. 13: 323-332.
Picado, C. 1913. Les Broméliacées épiphytes considerées comme milieu biologique. Bull.

Sci. Fr. Belg. (Ser. 7) 47:215-360 +24 plates. Parker, C.R. \& J.R. Voshell, Jr. 1979. Cardiocladius (D iptera: Chironomidae) larvazectoparasitic on pupae of H ydropsychidae (Trichoptera). Environ. Ent. 8: 808-809.
Pescador, M .L., D.R.Lenat \& M.L. H ubbard. 1999. M ayflies (Ephemeroptera) of N orth Carolina and South C arolina: an update. Fla. Ent. 82: 316-332.
Pinder, L.C.V. 1976. M orphology of the adult and juvenile stages of Microtendipes rydalensis (Edw.) comb. nov. (D iptera: Chironomidae). Hydrobiologia 48: 179-184.
Pinder, L.C.V. 1978. A key to the adult males of the British Chironomidae (Diptera). Scient. PublsFreshwat. biol. Ass. 37:1-169, 189 figs.
Pinder, L.C.V. 1982. Virgatanytarsus new genus for the "triangularis" group of the genus Tanytarsus van der Wulp. Spixiana 5:31-34. Pinder, L.C.V., \& F. Reiss. 1983. The larvae of Chironominae (Diptera: Chironomidae) of the H olarctic region. Keys and diagnoses. Ent. scand. Suppl. 19:293-435.
Pinder, L.C.V. \& F. Reiss. 1986. The pupae of Chironominae (Diptera: Chironomidae) of the H olarctic region. Keys and diagnoses. Ent. scand. Suppl. 28:299-456.
Reiss, F. 1969. Die neue, europäisch verbreitete Chironomidengattung Parapsectra mit einem brachypteren Artvertreter aus M ooren (D iptera). Arch. Hydrobiol. 66: 192-211.
Reiss, F. 1972. Die Tanytarsini (Chironomidae, Diptera) Südchiles und Westpatagoniens. M it H inweisen auf dieTanytarsini-Fauna der Neotropis. Stud. Neotrop. Fauna 7: 49-94.
Reiss, F. 1974. Die in stehenden Gewässern der N eotropisverbreiteteChironomidengattung GoeddichironomusFittkau (Diptera, Insecta). Stud. neotrop. Fauna 9:95-122.
Reiss, F. 1982. Hyporhygma n. gen. und Stelechomyia n. gen. aus N ordamerika (Diptera, Chironomidae). Spixiana 5:289-302.
Reiss, F. 1984. Neostempellina thienemanni n . gen., n. Sp., eine europäische Chironomide mit gehäusetragenden Larven (Diptera, Insecta). Spixiana 7: 203-210.
Reiss, F. 1985. Die panamerikanisch verbreitete

Tanytarsini-Gattung Skutzia gen. nov. (Diptera, Chironomidæe). Spixiana Suppl. 11: 173-178.
Reiss, F. 1988a. Irmakia, ein neues Subgenus von Demicryptochironomus Lenz, 1941, mit der Beschreibung von vier neuen Arten. Spixiana 11: 1-12.
Reiss, F. 1988b. Die Gattung Kloosia Kruseman, 1933 mit der Neubeschreibung zweier Arten. Spixiana Suppl. 14:35-44.
Reiss, F. 1990. Revision der Gattung Zavrdiella Kieffer, 1920. (Diptera, Chironomidae). Spixiana 13: 83-115.
Reiss, F. \& E.J. Fittkau. 1971. Taxonomie und Ö kologie europäische verbreiteter Tanytarsus-Arten (Chironomidae, Diptera). Arch. Hydrobiol. Suppl. 40: 75-200.
Reiss, F. \& L. Säwedal. 1981. Keys to males and pupae of the Palaearctic (excl. Japan) ParatanytarsusT hienemann \& Bause, 1913, n. comb., with descriptions of three new species (Diptera: Chironomidae). Ent. scand. Suppl. 15: 73-104.
Reiss, F. \& J.E. Sublette. 1985. Beardius new genus with notes on additional Pan-American taxa. (Diptera: Chironomidae). Spixiana Suppl. 11:179-193.
Rempel, J.G. 1937. Notes on the genus Chasmatonotus with descriptions of three new species (Diptera, Chironomidae). Can. Ent. 69: 250-255.
Roback, S.S. 1953. Savannah River tendipedid larvae (Diptera: Tendipedidae ($=$ Chironomidae)). Proc. Acad. Nat. Sci. Philad. 105:91-132.
Roback, S.S. 1957. The immature tendipedids of the Philadelphia area (Diptera: Tendipedidae). M onogr. Acad. nat. Sci. Philad. 9:1-152.
Roback, S.S. 1963. The genus Xenochironomus (D iptera: Tendipedidae) Kieffer, taxonomy and immature stages. Trans. Am. ent. Soc. 88: 235-245.
Roback, S.S. 1966a. A new Procladius species with description of the immature stages. Ent. News 77: 177-184.
Roback, S.S. 1966b. A new record of Symbiocladius
equitans(Claassen) (D iptera: Tendipedidae, Orthocladiinae). Ent. N ews 77: 254.
Roback, S.S. 1966c. The Catherwood Foundation Peruvian-Amazon Expedition. XII. D iptera, with some observations on the salivary glands of theTendipedidae. M onogr. Acad. N at. Sci. Philad. 14: 305-375.
Roback, S.S. 1969. The immature stages of the ge nus Tanypus M eigen (Diptera: Chironomidae: Tanypodinae). Trans. Am. Ent. Soc. 94: 407-428.
Roback, S.S. 1971. Theadults of the subfamilyTanypodinae (= Pelopiinae) in North America (Diptera: Chironomidae). M onogr. Acad. N at. Sci. Philad. 17:1-410.
Roback, S.S. 1972. The immature stages of Paramerina smithae (Sublette) (Diptera: Chironomidae: Tanypodinae). Proc. Acad. N at. Sci. Philad. 124: 11-15.
Roback, S.S. 1974a. The immature stages of the genus Codotanypus(C hironomidae: Tanypodinae: C oelotanypodinae) in N orth America. Proc. Acad. N at. Sci. Philad. 126: 9-19.
Roback, S.S. 1974b. Insects (Arthropoda: Insecta). Pp 313-376 in H art, C.W. \& S.L.H . Fuller (eds.): Pollution Ecology of Freshwater Invertebrates. Academic Press, N ew York.
Roback, S.S. 1975. A new subgenus and species of the genus Tanytarsus Chironomidae: Chironominae: Tanytarsini). Proc. Acad. N at. Sci. Philad. 127:71-80.
Roback, S.S. 1976. The immature chironomids of the eastern United States I. Introduction and Tanypodinae-C oelotanypodinae. Proc. Acad. N at. Sci. Philad. 127:147-201.
Roback, S.S. 1977. The immature chironomids of the eastern United States II. Tanypodinae Tanypodini. Proc. Acad. N at. Sci. Philad. 128:55-87.
Roback, S.S. 1978a. The immature chironomids of the eastern United States III. TanypodinaeAnatopyniini, M acropelopiini, and N atarsiini. Proc. Acad. N at. Sci. Philad. 129:151-202.
Roback, S.S. 1978b. N ew name for Brundinia Roback nec Brundinia Tottenham. Ent. N ews 89: 141.

Roback, S.S. 1979a. Hudsonimyia kardena, a new genus and species of Tanypodinae, Pentaneurini. Proc. Acad. Nat. Sci. Philad. 131: 1-8.
Roback, S.S. 1979b. New record and hosts for genus nr. Phycoidella Sæther (Diptera: Chironomidae: Orthocladiinae). Ent. N ews 90: 239-240.
Roback, S.S. 1980. The immature chironomids of the eastern U nited States IV. Tanypodinae Procladiini. Proc. Acad. N at. Sci. Philad. 132:1-63.
Roback, S.S. 1981. The immature chironomids of the eastern United States V. PentaneuriniThienemannimyia group. Proc. Acad. Nat. Sci. Philad. 133:73-128.
Roback, S.S. 1982a. Identity of Ablabesmyia sp., Roback, Bereza and Vidrine(1980) (D iptera: Chironomidae). Ent. N ews 93:13-15.
Roback, S.S. 1982b. The Tanypodinae (D iptera: Chironomidae) of Australiall. Proc. Acad. N at. Sci. Philad. 134: 80-112.
Roback, S.S. 1983. K renopelopia hudsoni: a new species from the eastern U nited States (D iptera: Chironomidae: Tanypodinae). Proc. Acad. N at. Sci. Philad. 135:254-260.
Roback, S.S. 1984. Tanypodinae (Diptera: Chironomidae) from Afognak and K odiak Islands, Alaska. Proc. Acad. N at. Sci. Philad. 136: 12-23.
Roback, S.S. 1985. The immature chironomids of the eastern U nited States VI. PentaneuriniGenus Ablabesmyia. Proc. Acad. Nat. Sci. Philad. 137:153-212.
Roback, S.S. 1986a. The immature chironomids of the eastern United States VII. PentaneuriniGenus M onopelopia, with redescription of the male adults and description of some Neotropical material. Proc. Acad. N at. Sci. Philad. 138:350-365.
Roback, S.S. 1986b. The immature chironomids of the eastern U nited StatesVIII. PentaneuriniGenus N ilotanypus, with the description of a new species from K ansas. Proc. Acad. N at. Sci. Philad. 138:443-465.
Roback, S.S. 1986c. Reomyia a new genus of Tany-podinae-Pentaneurini (Diptera, C hironomi-
dae). Spixiana 9: 283-284.
Roback, S.S. 1987a. The immature chironomids of the eastern U nited States.IX. Pentaneurini - Genus Labrundinia with the description of some Neotropical material. Proc. Acad. N at. Sci. Philad. 139: 159-209.
Roback, S.S. 1966d. The immature stages of Stictochironomus annulicrus(Townes) (D iptera, Tendipedidae). Ent. N ews. 77: 169-173.
Roback, S.S. 1987b. The immature stages and female adult of Alotanypus aris Roback with a redescription of the male adult (Diptera: Chironomidae: M acropelopiini). N ot. N at. 466: 1-8.
Roback, S.S. 1987c. Thelarval stage of M onopelopia tillandsia Beck and Beck (Diptera: Chironomidae: Tanypodinae). N ot. Nat. 467: 1-3.
Roback, S.S. 1989. The larval development of D jalmabatista pulcher (Joh.) (Diptera: Chironomidae: Tanypodinae). Proc. Acad. Nat. Sci. Philad. 141: 73-74.
Roback, S.S., D.J. Bereza \& M .F. Vidrine. 1980. D escription of an Ablabesmyia [Diptera: Chironomidae: Tanypodinae] symbiont of unionid fresh-water mussels [M ollusca: Bival via: Unionacea], with notes on its biology and zoogeography. Trans. Am. Ent. Soc. 105: 577-619.
Roback, S.S. \& W.P. Coffman. 1977. N ew records of probableD jalmabatista species from eastern North America and Venezuela (Chironomidae: Tanypodinae). Proc. Acad. Nat. Sci. Philad. 128: 49-54.
Roback, S.S. \& L.C. Ferrington, Jr. 1983. The immature stages of Thienemannimyia barberi (C oquillett) (D iptera: C hironomidae: Tanypodinae). Freshwat. Invertebr. Biol. 2: 107111.

Roback, S.S. \& R.P. Rutter. 1988. Denopelopia atria, a new genus and species of Pentaneurini (D iptera: Chironomidae: Tanypodinae) from Florida. Spixiana Suppl. 14:117-127.
Roback, S.S. \& K.J. Tennessen. 1978. Theimma ture stages of Djalmabatista pulcher [= Procladius (Calotanypus) pulcher (Joh.)]. Proc. Acad. N at. Sci. Philad. 130: 11-20.

Rosenberg, D .M ., A.P. W iens \& O .A. Sæther. 1977. Responses to crude oil contamination by Cricotopus(Cricotopus) bicinctus and C. (C.) mackenziensis (D iptera: Chironomidae) in the Fort Simpson area, N orthwest Territories. J. Fish. Res. Bd. Can. 34: 254-261.
Rossaro, B. 1979. Description of the larva of Paratrichocladiusrufiventris(Diptera: Chironomidae). N ot. Ent. 59: 75-78.
Rossaro, B. 1984. Stilocladius Rossaro, 1979 re considered, with descriptions of the female and larva of S. montanus Rossaro (D iptera: Chironomidae, O rthocladiinae). Ent. scand. 15: 185-191.
Rossaro, B. 1985. Revision of thegenusPolypedilum Kieffer, 1912. I. Key to adults, pupae and larvae of the species known to occur in Italy (Diptera, Chironomidae). M em. Soc. Ent. Ital. 62/63: 3-23.
Rossaro, B. 1990. Revision of the genus Paratrichocladius Santos-Abreu. 2nd N ote: Description of 4 new species (Diptera Chironomidae Orthocladiinae). Boll. Soc. Ent. Ital., Gen., 122: 58-66.
Ryser, H .M ., W. W ülker \& A. Scholl. Revision der Gattung Chironomus M eigen (Diptera). X. Lobochironomusn. subg. (C. montuosusn. sp., C. storai G oetgh., C. mendax Storå). Rev. Suisse Zool. 92: 385-404.
Sæther, O.A. 1969. Some N earctic Podonominae, Diamesinae, and Orthocladiinae (D iptera: Chironomidae). Bull. Fish. Res. Bd. Can. 170: 1-154.
Sæther, O.A. 1971. Four new and unusual Chironomidae (D iptera). C an Ent. 103: 17991827.

Sæther, O.A. 1973a. Four species of Bryophaenocladius Thien., with notes on other Orthocladiinae(Diptera: Chironomidae). Can. Ent. 105: 51-60.
Sæther, O.A. 1973b. Taxonomy and ecology of three new species of M onodiamesa Kieffer, with keys to N earctic and Palaearctic species of the genus (D iptera: Chironomidae). J. Fish. Res. Bd. Can. 30: 665-679.
Sæther, O.A. 1975a. N earctic and Palaearctic H eterotrissodadius (D iptera: Chironomidae).

Bull. Fish. Res. Bd. Can. 193: 1-67.
Sæher, O.A. 1975b. Two new species of Protanypus K ieffer, with keys to N earctic and Palaearctic species of thegenus (D iptera: Chironomidae). J. Fish. Res. Bd. Can. 32: 367-388.
Sæther, O.A. 1975c. Two new species of H eterotanytarsusSpärck, with keysto N earctic and Palaearctic males and pupae of the genus(D iptera: Chironomidae). J. Fish. Res. Bd. Can. 32: 259-270.
Sæther, O.A. 1975d. Twelve new species of Limnophyes Eaton, with keys to N earctic males of the genus (D iptera: Chironomidae). Can. Ent. 107: 1029-1056.
Sæther, O.A. 1976. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera. Bull. Fish. Res. Bd. Can. 195:1-287.
Sæther, O.A. 1977a. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and theH arnischia complex. Bull. Fish. Res. Bd. Can. 196:1-143.
Sæther, O.A. 1977b. Habrobaenus hudsoni n. gen., n. sp. and the immatures of Baeoctenus bicolor Sæther (D iptera: Chironomidae). J. Fish. Res. Bd. Can. 34: 2354-2361.
Sæther, O.A. 1980a. Glossary of chironomid morphology terminology (D iptera: Chironomidae). Ent. scand. Suppl. 14:1-51.
Sæher, O.A. 1980b. The females and immatures of ParacricotopusT hienemann and H arnisch, 1932, with the description of a new species. Aquatic Insects 2: 129-145.
Sæther, 0 .A. 1980c. N ew namefor Oliveria Sæther, 1976 (D iptera: Chironomidae) nec Oliveria Sutherland, 1965 (\dagger C nidaria: Anthozoa), with a first record for the European continent. Ent. scand. 11: 399-400.
Sæther, O.A. 1981a. D oncricotopus bicaudatus n. gen., n. sp. (D iptera: Chironomidae, O rthocladiinae) from the N orthwest Territories, C anada. Ent. scand. 12:223-229.
Sæther, O.A. 1981b. Orthocladiinae (Chironomidae: Diptera) from the British West Indies with descriptions of Antillocladius n. gen., Lipurometriocnemusn. gen., Compterosmittia n. gen. and Diplosmittia n. gen. Ent. scand.

Suppl. 16: 1-46.
Sæther, O.A. 1981c. Compteromesa oconeensis gen. n., sp.n., a new Prodiamesinae (Diptera: Chironomidae) from South Carolina. Aquatic Insects 3: 193-198.
Sather, O .A. 1982. O rthocladiinae(D iptera: C hironomidae) from SE U.S.A., with descriptions of PIhudsonia, U nniella and Platysmittia n. genera and Atelopodella n. subgen. Ent. scand. 13: 465-510.
Sæther, O.A. 1983a. O schia dorsenna n. gen. n. sp. and Saetheria hirta n. sp., two members of the Harnischia complex (D iptera: Chironomidae). Ent. scand. 14: 395-404.
Sæther, O.A. 1983b. Three new species of Lopescladius Oliveira, 1967 (syn. "Cordites" Brundin, 1966, n. syn.), with a phylogeny of the Parakiefferiella group. M em. Am. Ent. Soc. 34: 279-298.
Sæther, O.A. 1983c. The larvae of Prodiamesinae (Diptera: Chironomidae) of the H olarctic region - Keys and diagnoses. Ent. scand. Suppl. 19: 141-147.
Sæther, O.A. 1983d. A review of H olarctic Gymnometriocnemus G oetghebuer, 1932, with the description of Rhaphidocladius subgen. n. and Sublettiella gen. n. (D iptera: Chironomidae). Aquatic Insects 5: 209-226.
Sæther, O.A. 1984. T heimmatures of Antillocladius Sæther, 1981 (D iptera: Chironomidae). Aquatic Insects 6:1-6.
Sæther, 0 .A. 1985a. A review of 0 dontomesa Pagast, 1947 (Diptera, Chironomidae, Prodiamesinae). Spixiana Suppl. 11:15-29.
Sæther, O.A. 1985b. A review of the genus Rheocricotopus Thienemann \& H arnisch, 1932, with the description of threenew species (Diptera, C hironomidae). Spixiana Suppl. 11:59-108.
Sæther, O A. 1985c. The imagines of M esosmittia Brundin, 1956, with description of seven new species. Spixiana 11:37-54.
Sæther, O.A. 1985d. The females of C ompteromesa oconeensis Sæther, 1981, and Prodiamesa olivacea (M eigen, 1818) (syn. Trichodiamesa autumnalis G oetghebuer, 1926, n. syn.) (Diptera, Chironomidae, Prodiamesinae).

Spixiana Suppl. 11: 7-13.
Sæther, O.A. 1985e. Apometriocnemus fontinalis n. gen., n. sp. (Diptera: Chironomidae) from Tennessee. Ent. scand. 15: 536-539.
Sæther, O.A. 1985f. Diplosmittia carinata sp. n. (Diptera: Chironomidae) from M innesota. Spixiana Suppl. 11: 55-57.
Sather, O.A. 1985g. Hedeniella parva n. sp. (Diptera: Chironomidae) from South Carolina. Ent. scand. 15: 532-535.
Sæther, O.A. 1985h. A redefinition of Thienemannia Kieffer, 1909 (Diptera: Chironomidae), with the description of T. pilinucha sp. n. Aquatic Insects 7: 111-131.
Sæther, O.A. 1985i. Trichochilus, a new genus of Orthocladiinae (Diptera: Chironomidae). Spixiana Suppl. 11: 31-36.
Sæther, O.A. 1985j. M ale and female eimagines of Platymittia bilyji sp. n. (Diptera: Chironomidae) from Manitoba, Canada. Ent. scand. 15: 527-531.
Sæther, O.A. 1989a. Metriocnemus van der Wulp: a new species and revision of species described by M eigen, Zetterstedt, Stæger, Holmgren, Lundström and Strenzke (Diptera: Chironomidae). Ent. scand. 19: 393-430.
Sæther, O .A. 1989b. Two new species of H ydrobaenus Fries from M assachusetts, U. S.A., and Japan (Diptera: Chironomidae). Ent. scand. 20: 55-63.
Sæther, O.A. 1990. A review of the genus Limnophyes Eaton from the Holarctic and Afrotropical regions (Diptera: Chironomidae, Orthocladiinae). Ent. scand. Suppl. 35:1-139.
Sæther, O.A. 1992a. First N earctic record of the orthoclad genus Tavastia Tuiskunen (Diptera: Chironomidae). Ent. scand. 22: 385-388.
Sæther, O.A. 1992b. Heterotrissoladius boltoni sp. n., a new orthoclad from vernal pools and streams in Ohio, U.S.A. (Diptera: Chironomidae). Neth. J. Aquat. Ecol. 26: 191196.

Sæther, O.A. 1997. First description of the imagines and pupa of Propsilocerus jacuticus
(Zvereva) (Diptera: Chironomidae). Acta Zool. Hung. 43: 241-249.
Sather, O.A., P. Ashe \& D.A. M urray. 2000. Family Chironomidae. pp 113-334 in Papp, L. \& B. Darvas (eds.) Contributions to a M anual of Palaearctic D iptera (with special reference to flies of economic importance). Appendix. Science H erald, Budapest. 604 pp.
Sæther, O.A. \& G.A. H alvorsen. 1981. Diagnoses of T vetenia K ieff. emend., D ratnalia n. gen., and Eukiefferiella Thien. emend., with a phylogeny of the Cardiocladius group (Diptera: Chironomidae). Ent. scand. Suppl. 15: 269285.

Sæther, O.A. \& Ø. Schnell. 1988. Two new species of the Rheocricotopus (R.) effusus group (Diptera, Chironomidae). Spixiana Suppl. 14: 65-74.
Sæther, O.A. \& J.E. Sublette. 1983. A review of the genera D oithrix n. gen., Georthocladius Strenzke, Parachaetocladius Wülker, and Pseudorthocladius G oetghebuer (D iptera: Chironomidae, O rthocladiinae). Ent. scand. Suppl. 20:1-100.
Sæther, O.A. \& A. Sundal. 1999. Cerobregma, a new subgenus of Polypedi lum Kieffer, with a tentative phylogeny of subgenera and species groups within Polypedilum Diptera: Chironomidae). J. KansasEnt. Soc. 71:315382.

Szther, O.A. \& X. Wang. 1995. Revision of the genus ParaphaenocladiusT hienemann, 1924 of the world (Diptera: Chironomidae, Orthocladiinae). Ent. scand. Suppl. 48: 3-69.
Sæther, O.A. \& X. Wang. 1996. Revision of the orthoclad genus Propsilocerus Kieffer (=Tokunagayusurika Sasa) (Diptera: Chironomidəe). Ent. scand. 27:441-479.
Sæther, O.A. \& E. Willassen. 1985. Thefirst record of Protanypus pseudomorio M akarchenko (D iptera: Chironomidae) from the $\mathrm{Nearc-}$ tic, with description of the female and are vised key to males of the genus. Aquatic Insects 7: 141-148.
Sæther, O.A. \& E. Willassen. 1988. A review of Lappodiamesa SerraTosio, with the descrip-
tion of L . boltoni spec. nov. from O hio, U SA (Diptera, Chironomidae). Spixiana Suppl. 14: 75-84.
Säwedal, L. 1981. Amazonian Tanytarsini II. Caladomyia n . gen. and eight new species (Diptera: Chironomidae). Ent. scand. 12: 123-143.
Säwedal, L. 1982. Taxonomy, morphology, phylogenetic relationships and distribution of M icropsectra K ieffer, 1909 (D iptera: Chironomidae). Ent. scand. 13: 371-400.
Sasa, M. \& M. Kikuchi. 1995. Chironomidae (D iptera) of Japan. University of Tokyo Press. 333 pp.
Schlee, D. 1968. Vergleichende M erkmal sanalyze zur M orphologie und Phylogenie der Corynoneura -G ruppe(D iptera: Chironomidae). Zugleich eineallgemeine M orphologie der Chironomiden-Imago. Stuttg. Beitr. N aturk. 180:1-150.
Schmid, P.E. 1993. A key to the larval Chironomidae and their instars from Austrian D anube region streams and rivers with particular reference to a numerical taxonomic approach. Part I. Diamesinae, Prodiamesinae and O rthocladiinae. Wasser und Abwasser Suppl. 3: 1-514.
Schnell, Ø. 1991. N ew records of Chironomidae (D iptera) from N orway (II), with two new species synonyms. Fauna N orv., Ser. B: 38: 5-10.
Schnell, Ø. \& O.A. Sæᆲher. 1988. Vivacricotopus, a new genus of Orthocladiinae (Diptera, Chironomidae) from Norway. Spixiana Suppl. 14: 49-55.
Serra-Tosio, B. 1989. Révision des espècies ouestpaléarctiques et néarctiques de Boreoheptagyia Brundin avec des clés pour leslarves, les nymphes et lesimagos(D iptera, Chironomidae). Spixiana 11: 133-173.
Shilova, A.I. 1961. Novyi rod i vid tendipedid (Diptera, Tendipedidae) Lipiniella Shilova, gen. n. (A new genus and species of tendipedid (Diptera, Tendipedidae) Lipiniella Shilova, gen. n.). Byull. Inst. Biol. Vodokhran. 11: 19-23.
Shilova, A.I. 1963. M etamorfoz Lipiniella arenicola

Shilova (D iptera, Tendipedidae). (Themetamorphosis of Lipiniella arenicola Shilova (D iptera, Tendipedidae)). Trudy Inst. Biol. Vodokhran. 5: 71-80.
Shilova, A.I. 1966. Lichinka O dontomesa fulva K ieff. (Diptera, Chironomidae, Orthocladiinae) [The larva of 0 dontomesa fulva Kieff. (Diptera, Chironomidae, O rthocladiinae)]. Trudy Inst. Biol. vnutrenn. Vod 12:239-250.
Shilova, A.I., I.E. Kerkis \& I.I. Kiknadze. 1992. Lipinialla prima sp. nov. (Diptera, Chironomidae), Iarva and karyotype. Neth. J. Aquat. Ecol. 26: 197-201.
Shobanov, N .A., I.I. Kiknadze\& M .G. Butler. 1999. Palaearctic and Nearctic Chironomus (Camptochironomus) tentans (Fabricius) are different species (D iptera: Chironomidae). Ent. scand. 30: 311-322.
Simpson, K.W. 1982. A guide to basic chironomid literature for the genera of N orth American Chironomidae(Diptera) - adults, pupae, and larvae. Bull. N.Y. State M us. No. 447.
Simpson, K.W. \& R.W. Bode. 1980. Common larvae of Chironomidae (Diptera) from New York State streams and rivers with particular reference to thefauna of artificial substrates. Bull. N.Y. St. M us. No. 439:1-105 pp.
Simpson, K.W., R.W. Bode \& P. Albu. 1982. Keys for the genus Cricotopus adapted from "Revision der Gattung Cricotopusvan der Wulp und ihrer Verwandten (Diptera, Chironomidae)" by M. H irvenoja. Bull. N.Y. St. M us. 450:1-133.
Soong, K., G-F. Chen \& J-R. C ao. 1999. Life history studies of the flightless marine midges Pontomyia spp. (Diptera: Chironomidae). Zool. Stud. 38: 466-473.
Soponis, A.R. 1977. A revision of the N earctic species of O rthocladius (Orthocladius) van der Wulp (D iptera: Chironomidae). M em. Ent. Soc. C anada 102:1-187.
Soponis, A.R. 1979. Zalutschia briani n. sp. from Florida (Diptera: Chironomidae). Ent. scand. Suppl. 10:125-131.
Soponis, A.R. 1980a. Taxonomic composition of Chironomidae(D iptera) in a sand-bottomed stream of northern Florida. Pp 163-169 in

M urray, D.A. (ed.): Chironomidae - Ecology, Systematics, Cytology and Physiology. Pergamon Press, O xford \& N ew York.
Soponis, A.R. 1980b. Pseudorthocladius macrostomus, a new species of chironomid (Diptera) with a long proboscis. Fla. Ent. 63:486-490.
Soponis, A.R. 1983. Emergence of Polypedilum (Chironomidae) in a sand-bottomed stream of northern Florida. Mem. Am. Ent. Soc. 34:309-313.
Soponis, A.R. 1987. Notes on Orthocladius (O rthocladius) frigidus (Zetterstedt) with a redescription of the species (Diptera: Chironomidae). Ent. scand. Suppl. 29: 123-131.
Soponis, A.R. 1990. A revision of theH olarctic spe cies of 0 rthocladius (Euorthocladius) (Diptera: Chironomidae). Spixiana Suppl. 13:1-56.
Soponis, A.R.\& C.L. Russell. 1982. Identification of instars and species in some larval Polypedilum (Polypedilum) (Diptera: Chironomidae). H ydrobiol. 94: 25-32.
Soponis, A.R.\& C.L. Russell. 1984. Larval drift of Chironomidae (Diptera) in a North Florida stream. Aquatic Insects 6: 191-199.
Soponis, A.R. \& K.W. Simpson. 1992. Polypedilum digitifer Townes and Polypedilum griscopunctatum (M alloch) (Diptera: Chironomidae): redescription of adult males with a description and separation of the imma ture stages. Neth. J. Aquat. Ecol. 26: 203213.

Spies, M . 1998a. Three species of Tanytarsusinvolved in California midge nuisance problems: de scriptions, ecology, and faunal relations (Insecta, Diptera, Chironomidae). Spixiana21: 253-270.
Spies, M. 1998b. Resolution of Tanytarsus mendax Kieffer, 1925, T. dibranchius Kieffer in Zavrel, 1926, and associated names (D iptera: Chironomidae). Studia dipterologica5: 195210.

Spies, M. 1999. Cricotopus(II socladius) subletteorum, a new species of Chironomidae (Diptera) from the southwestern United States. J. Kans. Ent. Soc. 71: 199-207.

Spies, M. 2000. A contribution to the knowledge of H olarctic Parachironomus Lenz (Diptera: Chironomidae), with two new species and a provisional key to N earctic adult males. Tijd. voor Ent. 143: 125-143.
Spies, M., E.J Fittkau \& F. Reiss. 1994. The adult males of Parachironomus Lenz, 1921, from the Neotropical faunal region (Insecta, Diptera, Chironomidae). Spixiana Suppl. 20: 61-98.
Spies, M. \& F. Reiss. 1996. C atalog and bibliography of N eotropical and M exican Chironomidae. Spixiana Suppl. 22: 61-119.
Steffan, A.W. 1965. Plecopteracoluthusdownes gen. et sp. nov. (Diptera: Chironomidae), a species whose larvae live phoretically on larvae of Plecoptera. Can. Ent. 97: 1323-1344.
Steiner, B. 1983. Paracricotopus mozleyi n . sp. from Georgia (Diptera: Chironomidæe). Mem. Am. Ent. Soc. 34:329-335.
Steiner, J.W., J.S. D oughman \& C.R. M oore. 1982. A generic guideto the larvae of the Nearctic Tanytarsini. U.S. Geological Survey 0 pen File Report 82-768. 40 pp.
Steiner, J.W. \& J.L. Hulbert. 1982. Nimbocera pinderi, a new species (Diptera: Chironomidae) from the southeastern United States. Fla. Ent. 65: 228-233.
Stone, A. \& W.W. Wirth. 1947. On the marine midges of the genus Clunio Haliday (Diptera, Tendipedidae). Proc. Ent. Soc. Wash. 49: 201-224.
Strenzke, K. 1940. Terrestrische C hironomiden V. Camptocladius stercorarius D e Geer. Zool. Anz. 132: 115-123.
Strenzke, K. 1950a. Systematik, M orphologie und Ö kologie der terrestrischen Chironomiden. Arch. Hydrobiol. Suppl. 18:207-414.
Strenzke, K. 1950b. Terrestrische Chironomiden XIV. "Limnophyes" flexuellus Edw. Zool. Anz. 145:101-111.
Strenzke, K. 1960. M etamorphose und Verwandtschaftsbeziehungen der G attung Clunio H al. (Dipt.) (TerrestrischeChironomiden XXIV). Suol. elän-ja kasvit. Seur. Van. kasvit. Julk. 22: 1-30.
Strixino, S.T. \& G. Strixino. 1991. N ova espéciede

Goeldichironomus Fittkau (Diptera, Chironomidae) do Brasil. Rev. Bras. Ent. 35: 593602.

Sublette, J.E. 1960. Chironomid midges of California. I. Chironominae, exclusive of Tanytarsini ($=$ Calopsectrini). Proc. U.S. Nat. M us. 112: 197-226.
Sublette, J.E. 1964. Chironomidae (D iptera) of Louisiana. I. Systematics and immature stages of some lentic chironomids of westcentral Louisiana. Tulane Stud. Zool. 11:109-150.
Sublette, J.E. 1967. Type specimens of Chironomidae (Diptera) in the Cornell University collection. J. Kans. Ent. Soc. 4: 477-564.
Sublette, J.E. \& M . Sasa. 1994. Chironomidae collected in Onchocerciasis endemic areas of Guatemala (Insecta, Diptera). Spixiana Suppl. 20: 1-60.
Sublette, J.E., L.E. Stevens \& J.P. Shannon. 1998. Chironomidae (Diptera) of the C olorado River, Grand C anyon, Arizona, USA, I: Systematics and ecology. Great Basin N aturalist 58: 97-146.
Sublette, J.S. \& M.F. Sublette. 1973. The morphology of Glyptotendi pes barbipes (Staeger) (Diptera: Chironomidae). Stud. Nat. Sci. 6: 1-80.
Sublette, J.E. \& M.F. Sublette. 1974a. A review of the genus Chironomus (Diptera: Chironomidae) V. The maturuscomplex. Stud. Nat. Sci. 8: 1-41.
Sublette, J.E. \& M.F. Sublette. 1974b. A review of the genus Chironomus (Diptera: Chironomidae) VII. The morphology of Chironomustigmaterus Say. Stud. Nat. Sci. 10: 1-65.
Sublette, J.E. \& M. Sublette. 1979. A synopsis of the Chironomidae of N ew M exico. Pp. 53128 in Sublette, J.E (P.I.): Evaluation of long term effects of thermal effluents on stream biota. Technical Report: "Utilization of Chironomidae (Diptera) as a water quality indicator group in New M exico". New M exico Energy Institute 32, 172 pp .
Sublette, J.E. \& W.W. Wirth. 1972. New genera and species of West Indian Chironomidae
(Diptera). Fla. Ent. 55: 1-17.
Tennessen, K.J. \& P.K. G ottfried. 1983. Variation in structure of ligula of Tanypodinae larvae (Diptera: Chironomidae). Ent. N ews 94: 109-116.
Thienemann, A. 1942. Larve und systematische Stellung von N eozavrelia luteola G oetgh. Chironomiden aus dem Lunzer Seengebiet II. Arch. H ydrobiol. 38: 581-585.

Thienemann, A. 1949. Die M etamorphose von Stempellina montivaga Goetgh. (Chironomiden aus dem Lunzer Seengebiet IX.) Ent. Tidskr. 70: 12-18.
Tokunaga, M. 1935. Chironomidae from Japan (D iptera). IV. T he early stages of a marine midge, Telmatogeton japonicus Tokunaga. Philipp. J. Sci. 57: 491-511.
Townes, H.K. 1945. The nearctic species of Tendipedini (Diptera: Tendipedidae (=Chironomidae)). Am. Midl. Nat. 34:1206.

Trivinho-Strixino, S. \& G. Strixino. 1991. Duas novas espécies de Nimbocera Reiss (Diptera, Chironomidae) do Estado de São Paulo, Brasil. Rev. Bras. Ent. 35: 173-178.
Tuiskunen, J. 1983. A description of Corynocera gynocera sp. n. (Diptera, Chironomidae) from Finland. Ant. Ent. Fenn. 49: 100-102.
Tuiskunen, J. 1986a. A new northern species of Sympotthastia (Diptera, Chironomide, Diamesinae). Ann. Ent. Fenn. 52: 78-80.
Tuiskunen, J. 1986b. The Fennoscandian species of Parakiefferiella Thienemann (Diptera, Chironomidae, Orthocladiinae). Ann. Zool. Fenn. 23: 175-196.
Tuiskunen, J. \& B. Lindeberg. 1986. Chironomidae (Diptera) from Fennoscandia north of $68^{\circ} \mathrm{N}$, with a description of ten new species and two new genera. Ann. Zool. Fenn. 23: 361-393.
Walker, I.R., D.R. Oliver \& M .E. Dillon. 1992. The larva and habitat of Parakiefferiella nigra Brundin (Diptera: Chironomidae). Neth. J. Aquat. Ecol. 26: 527-531.

Warwick, W.F. 1989. M orphological deformities in larvae of Procladius Skuse (Diptera: Chironomidae) and their biomonitoring poten-
tial. C an. J. Fish. Aquat. Sci. 46: 1255-1270. Warwick, W.F. 1990. M orphological deformities in Chironomidae (Diptera) larvaefrom the Lac St. Louise and Laprairie basins of the St. Lawrence River. J. Great Lakes Res. 16: 185-208.
Watson, C. 1999. Description of the larva of A psectrotanypus algens (Coquillett) with a review of the generic placement of the species (D iptera: Chironomidae). J. K ans. Ent. Soc. 71: 241-246.
Webb, C. J. \& A. Scholl. 1985. Identification of larvae of European species of Chironomus M eigen (Diptera: Chironomidae) by morphological characters. Sys. Ent. 10: 353-372.
Webb, D.W. 1969. N ew species of chironomidsfrom C ostello Lake, O ntario (Diptera: Chironomidae). J. Kans. Ent. Soc. 42:91-108.
Webb, D.W. 1972. The immature stages of Chironomus aethiops (Townes) with keys to the species of the known immature stages of the subgenus Dicrotendipes (Diptera: Chironomidae). Trans. Illinois St. Acad. Sci. 65: 74-76.
Webb, D.W. 1981. Redescription of M icropsectra polita (Diptera: Chironomidae) with the female and immature stages. Great Lakes Ent. 14:185-190.
Webb, D.W. 1982. Smittia lasiops (M alloch): a re description of the adults with a description of the immaturestages (Diptera: C hironomidae). Proc. Ent. Soc. Wash. 84: 468-474.
Webb, D.W. \& W.U. Brigham. 1982. Aquatic Diptera. Pp. 11.1-11.111 in Brigham, A.R., W.U. Brigham \& A. G nilka (eds.). Aquatic Insects and O ligochaetes of N orth and South Carolina. M idwest Aquatic Enterprises, M ahomet, IL. 837 pp.
Wiederholm, T. (ed.) 1983. Chironomidae of the H olarctic region. Keys and diagnoses. Part 1. Larvae. Ent. scand. Suppl. 19:1-457.

Wiederholm, T. (ed.) 1986. Chironomidae of the H olarctic region. Keys and diagnoses. Part 2. Pupae. Ent. scand. Suppl. 28:1-482.

Wiederholm, T. (ed.) 1989. C hironomidae of the H olarctic region. Keys and diagnoses. Part 3. Adult males. Ent. scand. Suppl. 34:1-524.

Wirth, W.W. 1949. A revision of the clunionine midges with descriptions of a new genus and four new species (Diptera: Tendipedidae). Univ. Calif. Publs. Ent. 8:151-182.
W irth, W.W. 1952. N otes on marine midges from the eastern United States (Diptera, Tendipedidae[=Chironomidae]). Bull. M ar. Sci. Gulf C aribb. 2:307-312.
Wirth, W.W. 1979. Siolimyia amazonica Fittkau, an aquatic midge new to Florida with nuisance potential. Fla. Ent. 62: 134-135.
Wülker, W.F. \& M.G. Butler. 1983. K aryosystematics and morphology of northern Chironomus (Diptera: Chironomidae): Freshwater species with larvae of the salinariustype. Ent. scand. 14: 121-136.
W ülker, W.F. \& E. M orath. 1989. South American Chironomus (Dipt.) - Karyotypes and their relationsto North America. ActaBiol. D ebr. 0 ecol. Hung. 2: 389-397.
W ülker, W.F., J.E. Sublette, E. M orath \& J. M artin. 1989. Chironomus columbiensis n.sp. in South America and Chironomus anonymus Williston in N orth America - closely related species. Stud. Neotrop. Fauna Environ. 3: 121-136.
W ülker, W.F., J.E. Sublette, M .F. Sublette\& J. M artin. 1971. A review of the genus Chironomus (Diptera: Chironomidae) I. The staegeri group. Stud. Nat. Sci. 1: 1-89.
Yamamoto, M. 1980. Discovery of the N earctic ge nus Chasmatonotus Loew (Diptera, Chironomidae) from Japan, with descriptions of three new species. Esakia 15: 79-96.
Yamamoto. M. 1985. Two new species of the genus Chasmatonotusfrom Japan (Diptera, Chironomidae). Esakia 23: 93-98.

[^0]: 2(1) O bject triangular
 Phil
 2' 0 bject circular
 Jerry

[^1]: 4' Subbasal seta of posterior parapod simple \qquad Rh. sp. 2
 (not recorded from theC arolinas)

