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EXECUTIVE SUMMARY 

The St. Johns River Water Management District (District) is engaged in hydrologic 

modeling and data analysis in support of ongoing Minimum Flows and Levels (MFLs) and 

Water Supply Development projects. MFLs define the frequency and duration of high, average, 

and low water events necessary to prevent significant ecological harm to aquatic habitats and 

wetlands from permitted water withdrawals.  An integral component of the District’s MFL 

program is the development of long-term daily discharge predictions at various springs in the 

District.  This report describes the development of statistical models for predicting daily spring 

discharge time series for Rock and Wekiva springs from an assortment of auxiliary data 

including:  (a) previously recorded spring discharge rates at the spring of interest and at adjacent 

springs, (b) groundwater level measurements from adjacent monitoring wells, and (c) rainfall 

data from nearby gauging stations. 

The presented regression models are based on the statistical correlation between the 

explanatory and response variables.  For example, spring discharge is correlated with aquifer 

water levels, perhaps with a lead time.  This correlation explains some of the variability in the 

observed spring discharge rates.  Further, the correlation is improved using the average water 

level values rather than the individual measurements which are known to display higher 

variances. 

Stepwise regression analysis was used to build multivariate linear input-output models 

between the response variable (spring discharge) and the independent variables (spring discharge 

from nearby springs, water level measurements, lake levels and precipitation) at the springs of 

interest.  Piecewise multiple regression models that incorporated linear temporal trends were 

constructed due to the relationship between spring discharge and the independent variables 

changing with time and significant temporal trends in spring discharge.  The period of interest 

(1959-2005) was broken into two time periods, each with a different regression model: 

• The period 1959-1997 for Rock Springs, or 1959-2003 for Wekiva Springs, used the 

water levels in a nearby well (USGS well 283253081283401, Orlo Vista), the moving 

average discharge at Rock Springs, the rainfall at Orlando, and the year as independent 

variables.  The year was used as an independent variable because there was a linear trend 

with time that was not accounted for by the other model variables. 
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• The period 1998-2005 for Rock Springs used two nearby wells (283253081283401 Orlo 

Vista and 283204081544902 Mascotte Shallow Well).   

• Gaps in the Wekiva Springs discharge record over 2003-2005 were filled using linear 

interpolation for gaps less than 30 days.  Gaps in Wekiva Springs discharge larger than 

30 days were filled using linear regression on Rock Springs discharge. 

The observed daily time-series of Rock Springs from 1998-2002 was used to quantify the 

error associated with filling data gaps with linear interpolation or regression.  For gaps less than 

30 days, linear interpolation gave lower errors than regression.  Accordingly, gaps less than 

30 days were filled with linear interpolation, while for gaps larger than 30 days, the regression 

was used.   

The flow duration curves at both Rock and Wekiva springs changed over the two 

calibration periods, and were generally lower for the more recent time-period.  Though no 

mechanism is identified for this decrease, it highlights the potential for future flow duration 

curves to be significantly different from the historically observed flow duration curve. 

This report incorporates comments provided by peer review of the first report in this 

Statistical Modeling of Spring Discharge series.  The peer review comments and their resolution 

as they apply to this report are in Appendix B. 
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1.0 INTRODUCTION 

The Minimum Flows and Levels (MFLs) Program of the St. Johns River Water 

Management District (District), mandated by state water policy (section 373.042, F.S.), 

establishes MFLs for lakes, streams and rivers, wetlands, and groundwater aquifers. MFLs define 

the frequency and duration of high, average, and low water events necessary to prevent 

significant ecological harm to aquatic habitats and wetlands from permitted water withdrawals.  

The MFLs Program is subject to rule (Chapter 40C-8, F.A.C.) and provides technical support to 

the District’s regional water supply planning process and the consumptive use permitting (CUP) 

program.  

MFLs designate hydrologic conditions that prevent significant harm and above which 

water is available for reasonable beneficial use.  The determinations of MFLs consider the 

protection of non-consumptive uses of water, including navigation, recreation, fish and wildlife 

habitat, and other natural resources.  MFLs take into account the ability of wetlands and aquatic 

communities to adjust to changes in hydrologic conditions.  Therefore, MFLs allow for an 

acceptable level of change to occur relative to the existing hydrologic conditions.  However, 

when use of water resources shifts the hydrologic conditions below those defined by the MFLs, 

significant ecological harm occurs.  As it applies to wetland and aquatic communities, significant 

harm is a function of changes in the frequencies and durations of water level and/or flow events, 

causing impairment or destruction of ecological structures and functions.  

Currently, the District is engaged in hydrologic modeling and hydrologic data analysis in 

support of the ongoing MFLs and Water Supply Development projects.  An integral component 

of the District’s MFL program is the development of long-term daily discharge models at various 

springs in the District (Osburn et al., 2002).  MFLs for two springs in Orange County, Florida, 

namely, Rock and Wekiva springs, are currently needed.  Though both springs have long 

historical records, there are significant gaps ranging from several days to several years.  This 

study evaluates data availability and applies statistical models to fill in the data gaps and to 

generate long-term daily discharge simulations and flow duration curves for these two springs. 



Final Report  2  

2.0 OBJECTIVE OF STUDY 

The objective of this study is to develop a historic daily spring discharge time series for 

Rock and Wekiva springs from an assortment of auxiliary data such as:  (a) previously recorded 

spring discharge at the spring of interest and at adjacent springs, (b) groundwater level 

measurements from adjacent monitoring wells, (c) lake levels from nearby lake-level gages and 

(c) rainfall data from nearby gauging stations.  The study will investigate the correlation 

structure between various data types and test the applicability of simple multivariate linear 

models to generate daily discharge records based on these other variables for the common period 

of record. 

This report presents the results of data screening and preliminary statistical analysis for 

rainfall, groundwater level, and spring discharge data for Rock and Wekiva springs.  It also 

explores the use of empirical models to provide estimates of daily discharge at these springs.  

These statistical models will take advantage of all available data to try to provide the most 

accurate estimates.  In general, early time records are sparse and often not available for a number 

of locations.  This will require the use of different models ranging in sophistication from simple 

correlation based models to multivariate regression models which can only be constructed when 

enough supporting data (e.g., rainfall and groundwater levels) are available at a sufficient 

number of nearby locations.  These models will be used to run a continuous simulation model 

covering the period of record referenced by the constituent data.  From the results of statistical 

modeling, standard flow-duration analysis for the system (discharge versus percent exceedance 

for the long-term simulation) will be conducted and standard high- and low flow frequency 

analyses for the system (frequency of spring discharge for set durations) will be carried out. 

This report is organized as follows: Data screening and preliminary statistical analysis are 

described in Section 3.  Section 4 contains the regression modeling methodology and the 

regression models developed for Rock and Wekiva springs.  In section 5, daily discharge 

predictions are presented along with flow duration curves and frequency analyses for each of 

these springs. Section 6 contains conclusions and recommendations from this study. 
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3.0 DATA SCREENING AND PRELIMINARY ANALYSIS 

This section summarizes the available data and shows the results of data screening and 

preliminary statistical analyses conducted for the available time series.  The objective of these 

analyses is to identify the correlation structure between the spring discharge at the springs of 

interest and the other time series.  Results from these analyses will be used to guide the 

construction of explanatory models which will predict daily discharge values at each spring. 

3.1 Data sources 

Figure 1 shows a map of the study area and highlights the location of various data 

sources.  Although the map shows numerous groundwater wells around the springs of interest, 

very few wells have data records with consistent frequency and a long enough period of record to 

be considered for statistical modeling.  The selected groundwater wells with a reasonable data 

frequency and period of record have been highlighted in the map.  Also, one long term NOAA 

rainfall gage has been selected which is discussed below.  The following data sources were used 

in estimating daily flow duration curves for each spring (Figure 1): 

• Measured discharge at Rock and Wekiva springs 

• Groundwater level measurements at monitoring wells: 

o 283250381283401, USGS W. 0R47 at Orlo Vista (hereafter w283401) 

o 283204081544902, USGS shallow well near Mascotte (hereafter w544902) 

• Precipitation measurements at rain gages: 

o Orlando Rainfall 

The above list of data sources includes only the data used in the final regression models.  Other 

water level data from nearby monitoring wells were used to fill in gaps (via regression) in the 

water levels at wells w283401 and w544902.  Those locations were: 

• Groundwater level measurements at monitoring wells: 

o 283249081053201, OR-0007 Bithlo 1 Well at Bithlo, FL (hereafter w053201) 

o 283204081544901, USGS deep well near Mascotte (hereafter w544901) 



Figure 1

Filename:  SJRWMD_Location.mxd
Last Update:  September 14, 2006
For:  St. Johns River Water Management District
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Variables were selected from the large initial dataset by performing a correlation analysis 

on all variables versus discharge for each spring.  The variable with the highest correlation 

coefficient was included in the model; other variables were added in a step-wise fashion and only 

those that increased the R2 the most were included in the final model (see Section 4.0 below).  In 

order to conduct exploratory data analysis and select the final model variables, a database was 

compiled of spring discharge (response variable), groundwater levels (explanatory variable) and 

precipitation (explanatory variable) with a common time basis.  Table 1 shows summary 

statistics (i.e., minimum, maximum, average and standard deviation) for these various data types 

as well as data for Rock and Wekiva springs.   

With respect to the selection of the rainfall station to be used in the analysis, both the 

Orlando and Sanford rainfall stations were considered.  However, the Orlando rainfall station 

yielded a higher R2 and more statistically significant regression parameters than the other rainfall 

stations when included in the final multiple regressions.  While the Sanford Rainfall station is 

closer to the springs of interest, the Orlando station was selected because it falls within the 

watershed boundary of the springs and gave a slightly higher R2 than the Sanford rainfall station. 

The frequency of observation for each data type was subsequently calculated.  This is 

useful for determining appropriate lag and moving average windows.  Moving averages were 

calculated for recorded water levels, precipitation and spring discharge at adjacent springs at 

selected lag times:  1, 2, 3, 4, 6, 8, 12, 24, 48, and 52 weeks for use in the regression modeling 

discussed below.  These moving averages act as independent variables and carry useful 

information regarding the physical state of the system prior to the time of interest. 

Table 1 Basic statistics for data at Rock and Wekiva springs, 1931-2005. 

Data type Date Range N obs Min Max Average Std Dev 

Rock Springs (cfs) 2/5/1931 - 9/30/2005 2426 34.1 83.2 53.4 8.0 
Wekiva Springs (cfs) 3/8/1932 - 9/30/2005 666 38.6 91.7 66.8 5.8 
Orlando Rainfall (in) 1/1/1942 - 12/31/2004 22643 0 8.4 0.1 0.4 
w283401 (ft) 8/1/1943 - 9/30/2005 19963 48.3 80.8 61.8 5.2 
w544902 (ft) 1/28/1959 - 9/30/2005 15546 94.9 103.5 100.4 1.4 
w544901 (ft) 1/27/1959 - 9/30/2005 15828 93.9 102.7 99.8 1.4 
w053201 (ft) 6/2/1961 - 9/30/2005 15892 28.7 43.2 35.9 2.0 
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3.2 Frequency analysis 

Table 2 shows the mean, minimum, and maximum of frequency of observation for each 

data type for Rock and Wekiva springs.  Rock Springs had three periods with different 

frequencies:  from 1931-1959, one to three measurements were made per year in 15 different 

years.  From 1960-1997, average measurement frequency was once every 75 days, and daily 

measurements were made from 10/1/1998 to 9/30/2005.  Wekiva Springs also had three periods 

with different measurement frequencies:  from 1932-1959, one or two measurements were made 

per year in 10 different years; from 1960-2003, average measurement frequency was once every 

74 days, and daily measurements began from 4/30/2003, but with frequent data gaps. 

Table 2 Data frequency and gap analysis. 

 

Daily data were available for the wells for most of the period of record but with several 

gaps ranging from a day to several months or a year (Table 2).  For gaps less than 15 days, linear 

interpolation between observed points was used.  For well w544902 and gaps longer than 

15 days, a regression of the water level in well w544902 on the water level in well w544901 was 

calculated for data 30 days prior to and after the data gap, and the regression used to interpolate 

values at w544902 (average R2 = 0.84).  Both wells w544901 and w544902 were missing data 

for 10/1/2003 to 11/22/2004; a linear regression of well 544902 on well w053201 for 2000-2005 

(w544902 = 0.6641*w053201+77.096, R2 =0.71) was used to predict the levels for w544902 for 

that time period. 

Data type Observation 
frequency (days) N gaps Gap length (days) Isolated 

measurements 

 Mean Min  Mean Min Max  

Rock Springs (cfs) 143 Daily 250 99 1 3639 1931-1962 
Wekiva Springs (cfs) 129 Daily 364 77 1 3641 1931-1967 
Orlando Rainfall  Daily Daily 0 - - - - 
WL @ w283401 (ft) Daily Daily 203 15 1 101 None 
WL @ w544902 (ft) Daily Daily 61 26 1 420 None 
WL @ w544901 Daily Daily 34 36 1 419 None 
WL @ w053201 Daily Daily 40 16 1 110 None 
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 3.3 Analysis of overlap 

Periods of overlap between different data types were analyzed for each of the springs of 

interest (Figure 2).  This is useful for determining how the period of record can be split up into 

sub-periods with common sets of explanatory variables.  The frequency of observation for each 

data type was subsequently calculated.  Moving averages were calculated for recorded water 

levels, precipitation and spring discharge at adjacent springs at selected lag times: 1, 2, 3, 4, 6, 8, 

12, 24, 48, and 52 weeks for use in the regression modeling discussed below. 

Figure 2 shows the overlap between various data types for the Rock and Wekiva springs.  

Shown here are the periods of record for:  (a) Rock and Wekiva spring-discharge, 

(b) groundwater levels at monitoring wells w283401 and w544902 and (c) precipitation 

measurement at Orlando.  Also indicated therein is the average frequency of observation for each 

data type (as was discussed in detail in the previous section).  As previously mentioned, Rock 

Springs had three periods with different frequencies:  from 1931-1959, one to three 

measurements were made per year in 15 different years.  From 1960-1997, average measurement 

frequency was once every 75 days, and daily measurements were made from 10/1/1998 to 

9/30/2005.  Wekiva Springs also had three periods with different measurement frequencies:  

from 1932-1959, one or two measurements were made per year in 10 different years; from 

1960-2003, average measurement frequency was once every 74 days, and daily measurements 

began from 4/30/2003, but with frequent data gaps. 

For the regression modeling, the time-period 1959-2006 was divided into two periods 

according to the temporal frequency of the measurements of spring discharge, and due to a linear 

trend in discharge over 1959-1998 (Rock Springs) or 1959-2003 (Wekiva Springs).  Using only 

one time period resulted in poor regression predictions, since the high density of data points over 

1998-2005 (Rock Springs) or 2003-2005 (Wekiva Springs) resulted in biased regression 

parameters.  

From 1959, several time series are available which could be used to estimate daily 

discharge at Rock and Wekiva springs.  Several USGS observation wells (N = 19) had daily data 

for some period over 1959-2005, but only three wells (w283401, w544901, w544901 and 

w183401) had data from 1959.  Data for most of the other wells started in the 1960s.  Rainfall 

 



Date: August 21, 2006

File:  Fig 2.pdf

Figure  2

   Data Coverage and Frequency for Rock and Wekiva Springs.

St. Johns River Water Management District
Palatka, Florida     

Data Range and Frequency:  Rock and Wekiva springs

1/1/1926 1/2/1936 1/2/1946 1/3/1956 1/3/1966 1/4/1976 1/4/1986 1/5/1996 1/5/2006

Rock - Isolated measurements
Rock - 75 days
Rock - Daily
Orlando Rainfall - Daily
283253081283401 - Daily
283204081544902 - Daily
Wekiva - Isolated measurements
Wekiva - 74 days
Wekiva - Weekly
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was available at four rain gage stations; only two stations close to the springs (Orlando and 

Sanford) showed statistical significance in the regression modeling. 

Based on the above discussion of overlap analysis for Rock and Wekiva springs, the 

following two datasets are used for Partial Correlation Coefficient and Stepwise Analysis to 

build a regression model: 

• Dataset for Rock Springs regression model to predict pre-1998 Rock Springs discharge 

values: 

o Dependent variable: Rock Springs (203 discharge values from 11/24/1959-

12/31/1997) 

o Independent variables:  

  4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Rock Springs 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w283401 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w544901 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w544902 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of rainfall at Orlando 

 Year 

• Dataset for Rock Springs regression model to predict post-1997 Rock Springs discharge 

values: 

o Dependent variable: Rock Springs (2213 discharge values from 1/1/1998) 

o Independent variables:  

 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Rock Springs 
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 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w283401 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w544901 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w544902 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of rainfall at Orlando 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of rainfall at Sanford 

• Dataset for Wekiva Springs regression model to predict 1959-2002 Wekiva Springs 

discharge values: 

o Dependent variable: Wekiva Springs (251 discharge values from 11/25/1959) 

o Independent variables:  

 Daily discharge predictions and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week 

moving averages of Rock Springs 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w283401 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of w544902 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48- and 52-week moving 

averages of w544901 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of rainfall at Orlando 

 Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving 

averages of rainfall at Sanford 
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• Dataset for Wekiva Springs regression model to predict 2003-2005 Wekiva Springs 

discharge values: 

o Dependent variable: Wekiva Springs (409 discharge values from 1/15/2003) 

o Independent variables:  

 Daily discharge at Rock Springs, 30-day window on either side of gaps. 

3.4 Partial correlation coefficient and stepwise analysis 

Partial Correlation Coefficient (PCC) is the degree of correlation between any two 

variables, all others being kept constant.  PCCs can be used to find which variables are 

responsible for multicollinearity.  Thus PCCs can be used to drop the explanatory variable(s) 

which causes multicollinearity.  Another option is to include all the variables in the stepwise 

regression analysis, where variables are added or removed one at a time until no additional 

variables can be found that improve the goodness-of-fit of the input output model.  Stepwise 

procedures select the most correlated independent variable first, remove the variance in the 

dependent, then select the second independent which most correlates with the remaining variance 

in the dependent, and so on until selection of an additional independent does not increase the 

R-squared by a significant amount (significance = .05).  In other words, stepwise regression 

chooses the variables with the highest partial correlations and includes variables until the partial 

correlation of all remaining excluded variables with the dependent variable is below some limit.  

This selection process in a way ensures that no variables with high multicollinearity are picked in 

the regression model using stepwise regression. 

The PCCs and Pearson correlation coefficients for Rock springs is presented in Tables 3 

and 4 for the time periods 1959 to 1997 and from 1998 to 2005.  For both datasets, some 

variables had high Pearson correlation coefficients but low PCCs, and vice-versa.  This can 

happen if the independent variable correlates strongly with the other variables in the dataset, 

which is likely given the number of variables tested (45).  In order to obtain a regression with the 

fewest independent variables and highest adjusted R2, the variable with the highest Pearson r was 

selected first for the stepwise analysis.  This may result in some variables with a low PCC in the 

context of the entire dataset being included in the final variable selection, for example the Rock  
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Table 3 PCCs, Pearson correlation coefficients (r), and variables selected in stepwise 
regression for the Rock Springs dataset for predicting discharge from 
1959-1997. 

Variable  PCC r 
Year -0.32 0.00 
W544901 -0.17 0.30 
W544902 0.18 0.26 
W283401 0.11 0.65 
W384601 -0.05 0.51 
W384602 0.13 0.43 
W040101 0.15 0.51 
Apopka Rainfall 0.05 0.11 
Deland Rainfall 0.09 -0.05 
Leesburg Rainfall 0.21 0.13 
Lisbon Rainfall -0.23 0.02 
Orlando Rainfall -0.28 -0.09 
Sanford Rainfall 0.14 0.04 
RockSpring.48wk 0.27 0.57 
W283401.1wk -0.09 0.63 
W283401.2wk -0.13 0.63 
W283401.4wk -0.13 0.63 
W283401.6wk 0.05 0.62 
W283401.8wk -0.08 0.61 
W283401.12wk 0.05 0.59 
W283401.24wk 0.15 0.50 
W283401.48wk -0.20 0.34 
W544902.1wk -0.06 0.28 
W544902.2wk 0.04 0.25 
W544902.4wk -0.09 0.23 
W544902.6wk 0.11 0.24 
W544902.8wk 0.01 0.25 
W544902.12wk -0.12 0.22 
W544902.24wk 0.00 0.22 
W544902.48wk -0.07 0.08 
SANFORD.1wk 0.19 0.27 
SANFORD.2wk -0.03 0.28 
SANFORD.4wk -0.05 0.25 
SANFORD.6wk 0.08 0.28 
SANFORD.8wk -0.08 0.34 
SANFORD.12wk 0.12 0.39 
SANFORD.24wk 0.09 0.45 
SANFORD.48wk 0.10 0.59 
ORLANDO.1wk -0.08 0.14 
ORLANDO.2wk 0.06 0.14 
ORLANDO.4wk 0.02 0.16 Rock Springs 1959-1997  Selected variables 
ORLANDO.6wk -0.12 0.11 Variable PCC 
ORLANDO.8wk 0.13 0.21 Year -0.13 
ORLANDO.12wk -0.11 0.29 RockSpring.48wk 0.57 
ORLANDO.24wk 0.16 0.41 W283401.1wk 0.36 
ORLANDO.48wk 0.04 0.59 ORLANDO.48wk 0.57 
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Table 4 PCCs, Pearson correlation coefficients (r), and variables selected in stepwise 
regression for the Rock Springs dataset for predicting discharge from 
1998-2005. 

 

Variable  PCC r 
Year -0.17 -0.23 
W544901 0.00 0.69 
W544902 0.02 0.65 
W283401 0.04 0.86 
W384601 0.22 0.81 
W384602 -0.22 0.78 
W040101 -0.10 0.83 
Apopka Rainfall 0.03 0.00 
Deland Rainfall 0.00 -0.06 
Lisbon Rainfall -0.02 -0.04 
Orlando Rainfall -0.06 -0.10 
Sanford Rainfall 0.03 -0.05 
RS.48wk Rainfall 0.16 0.40 
W283401.1wk 0.03 0.87 
W283401.2wk 0.03 0.87 
W283401.4wk 0.11 0.87 
W283401.6wk 0.01 0.86 
W283401.8wk -0.11 0.84 
W283401.12wk 0.02 0.80 
W283401.24wk -0.18 0.59 
W283401.48wk -0.24 0.34 
W544902.1wk -0.06 0.66 
W544902.2wk -0.05 0.66 
W544902.4wk 0.02 0.66 
W544902.6wk -0.12 0.65 
W544902.8wk 0.02 0.65 
W544902.12wk -0.12 0.62 
W544902.24wk 0.23 0.50 
W544902.48wk -0.08 0.44 
SANFORD.1wk -0.01 -0.08 
SANFORD.2wk 0.02 -0.05 
SANFORD.4wk 0.13 -0.01 
SANFORD.6wk -0.07 0.04 
SANFORD.8wk -0.04 0.09 
SANFORD.12wk -0.14 0.20 
SANFORD.24wk 0.04 0.52 
SANFORD.48wk -0.08 0.35 
ORLANDO.1wk 0.04 -0.13 
ORLANDO.2wk 0.04 -0.09 
ORLANDO.4wk -0.11 -0.05 
ORLANDO.6wk -0.01 0.01 
ORLANDO.8wk -0.19 0.05 Rock Springs 1998-2005  Selected variables 
ORLANDO.12wk 0.07 0.19 Variable PCC 
ORLANDO.24wk 0.08 0.57 W283401.1wk 0.74 
ORLANDO.48wk 0.19 0.67 W544902.1wk 0.23 
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Springs regression for 1998-2005 (Table 4).  However, such variables have high and statistically 

significant PCCs in the final variable dataset (see "Selected Variables" sub-table in Tables 3 

and 4).  After selection of the first variable, each variable in the list of variables was then added 

one at a time to test for the PCC of the new variable.  At each step, only the variable with the 

largest PCC value was retained, and variables were added until none had statistically significant 

PCCs.  The PCCs and Pearson correlation coefficients for Wekiva Springs is presented in 

Table 5 for the time period 1959 to 2003.  As with the Rock Springs datasets, Wekiva Springs 

has some variables had high Pearson correlation coefficients but low PCCs, and vice-versa. 

Table 5 PCCs, Pearson correlation coefficients (r), and variables selected in stepwise 
regression for the Wekiva Springs dataset for predicting discharge from 
1959-2003. 

Variable PCC r 
Year -0.16 0.01 

W544901 0.17 0.51 
W544902 -0.07 0.46 
W283401 -0.07 0.64 
W384601 0.36 0.56 
W384602 -0.42 0.50 
W040101 -0.24 0.52 

Apopka Rainfall 0.08 -0.02 
Deland Rainfall -0.02 -0.17 

Leesburg Rainfall -0.26 -0.08 
Lisbon Rainfall -0.07 -0.12 
Orlando Rainfall 0.28 0.03 
Sanford Rainfall -0.31 -0.03 

Rock.spring 0.44 0.68 
RS.48wk -0.18 0.30 

W283401.1wk -0.17 0.64 
W283401.2wk 0.24 0.65 
W283401.4wk 0.04 0.64 
W283401.6wk -0.16 0.63 
W283401.8wk 0.11 0.62 

W283401.12wk -0.13 0.61 
continued on following page 
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Table 5 (cont.) 

 

Variable  PCC r 
W283401.24wk 0.17 0.57 
W283401.48wk -0.05 0.37 
W544902.1wk 0.13 0.52 
W544902.2wk -0.22 0.48 
W544902.4wk 0.09 0.47 
W544902.6wk -0.14 0.48 
W544902.8wk -0.01 0.46 
W544902.12wk 0.17 0.42 
W544902.24wk -0.22 0.48 
W544902.48wk 0.24 0.38 
SANFORD.1wk 0.30 0.33 
SANFORD.2wk -0.02 0.32 
SANFORD.4wk 0.08 0.33 
SANFORD.6wk -0.27 0.27 
SANFORD.8wk 0.35 0.31 
SANFORD.12wk -0.06 0.27 
SANFORD.24wk 0.07 0.44 
SANFORD.48wk -0.25 0.55 
ORLANDO.1wk -0.26 0.00 
ORLANDO.2wk 0.23 0.03 
ORLANDO.4wk -0.38 0.03 Wekiva Springs 1959-2003  Selected variables 
ORLANDO.6wk 0.24 0.03 Variable PCC 
ORLANDO.8wk 0.02 0.05 Rock.springs 0.49 
ORLANDO.12wk -0.22 0.07 W283401.8wk 0.10 
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4.0 REGRESSION MODELING 

4.1 Methodology 

The objective of regression modeling is to build a multivariate linear input-output model 

between the response variable (spring discharge) and the surrogate predictor variables (measured 

values and moving averages of spring discharge, groundwater and precipitation) at the spring of 

interest (Montgomery and Peck, 1992).  Such a relationship can be expressed by: 

 qt = β0 + β1 qt-i + β2 ht-j+ β3 rt-k+ ε  (1) 

where q is spring discharge; h is groundwater level; r is precipitation; ε is a random error term; 

β0, β1, β2, and β3 are regression coefficients; t is time, and i, j, and k denote lags that maximize 

the correlation between the response and predictor variable pair of interest.  Since spring 

discharge may depend on the average groundwater condition or precipitation over some time 

window, moving averages may also be included in the regression model: 

 [Spring discharge] = f {[same spring MA] + [groundwater level MA] +  

 [precipitation MA] + [adjacent spring MA]} (2) 

Depending on the information available for the spring of interest, the regression model can 

contain all four terms in Eq. (2).  This is especially true for periods when detailed measurements 

of groundwater levels are available. 

As described earlier, the model building process can be carried out using stepwise 

regression, where variables are added or removed one at a time until no additional variables can 

be found that improve the goodness-of-fit of the input-output model.  At each successive step in 

the regression modeling process, the variable that explains the largest fraction of unexplained 

variance is included. 

The model generated at every step is tested to ensure that the each of the regression 

coefficients is significantly different from zero.  A partial F-test, or, an equivalent t-test, is used 

to reject the hypothesis that a regression coefficient is zero, at a 100(1 - α)% confidence level 

(Montgomery and Peck 1992).  The stepwise regression process continues until the input-output 

model contains all of the input variables that explain statistically significant amounts of variance 
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in the output, i.e., no more variables can be found with a statistically significant regression 

coefficient. 

Even when all variables have statistically significant regression parameters, 

multicollinearity may inflate the variance of the regression parameter values, causing uncertainty 

in model predictions, particularly outside the calibration domain.  The variance inflation factor 

quantifies the degree of multicollinearity for each independent variable, and is calculated as: 

 21
1
R

VIFj
−

=  (3) 

where the VIFj is the variance inflation factor for independent variable j, and R2 is the R2 of the 

multiple regression of variable j on all other independent variables (Montgomery and Peck 

1992).  A VIF larger than 10 indicates severe multicollinearity problems. 

The workflow for modeling the spring discharge can be summarized as follows: 

• Split the period of record into a late-time period, where spring discharge measurements 

are available, and an early time period where only limited spring discharge measurements 

are available. 

• For each period, organize the spring discharge data (response variable) and the 

corresponding daily and moving averages of groundwater levels, precipitation, discharge 

at same spring and discharge at adjacent springs (predictors). 

• Retain only those predictor variables for which the number of data points is at least 80% 

of the number of spring discharge measurements.  This threshold has been applied to 

ensure that the characteristics of the spring discharge time series can be captured as much 

as possible by the regression model. 

• Build a stepwise regression model between spring discharge (response) and some or all 

of the following predictors:  discharge at same spring, discharge at adjacent springs, 

precipitation, and groundwater levels. 

An important point to note here is that these regression models are being built with the 

“best available data.”  The quality of the model therefore depends on data coverage, presence of 

groundwater monitoring wells and lake levels in the immediate vicinity, and availability of 

discharge measurements at nearby springs that can be used as ancillary data sources. 
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4.2 Regression models for Rock Springs 

High data frequency from 1998-2005 complicated the use of a single regression equation 

(2) to predict daily flow at Rock Springs.  Calibration of a linear model to the entire time-series 

gave strong weighting to the 1998-2005 period which yielded poor predictions in earlier periods.  

In order to reduce prediction errors, piecewise regression was used, including two time-periods 

that reflected data availability:  1959-1997 and 1998-2005. 

Step-wise regression was used to identify the optimal model.  The first variable added 

was the one with the highest correlation coefficient with Rock Springs discharge.  Additional 

variables were added one at a time, and only variables with statistically significant regression 

parameters (p<0.01) were included in the final regression.  Variance inflation factors (VIFs) were 

computed for each independent variable; a value greater than 10 indicates potentially severe 

multicollinearity.  All of the independent variables in the Rock and Wekiva springs models had 

VIFs below 10 (1.8-5.0) indicating minimal multicollinearity.   

The resulting regression model for 1959-1997 is shown in Table 6 and a plot of predicted 

versus observed 1959-1997 is shown in Figure 3.  The residuals were normally distributed but 

with some evidence of heavy-tails (Figure 4) which may generate outliers that influence the 

regression parameters (Montgomery and Peck 1992).  The departure from normality is relatively 

minor, and the regression model is assumed to give unbiased estimates of regression parameters 

and spring discharge.  The resulting regression model for 1998-2005 is shown in Table 7, and the 

fit and normality of residuals are shown in Figures 5 and 6. 

Table 6 Rock Springs - 1959-1997 – Regression Statistics. 

Regression Summary for Rock Springs 1959-1997: 
R2 = 0.758.  F statistic 145.5 on 4 and 186 degrees of freedom.  p-value <1E-15.  Residual standard error:  3.501 cfs).  

β is the regression slope for each variable as in Equation 1, and the p-value is the statistical significance of β. 
N = 190 Β Std dev of β p-value VIFj 
Intercept 210.8 67.7 0.0022 - 
Orlando.48wk 46.47 14.9 0.0022 1.8 
RS.48wk 0.505 0.070 10-10 2.6 
w283401.1wk 0.627 0.102 10-8 2.8 
Year -0.114 0.033 0.0008 2.0 
 



Final Report  19  

Table 7 Rock Springs - 1998-2005 – Regression Statistics. 

Regression Summary for Rock Springs 1998-2005:  
R2 = 0.9105.  F statistic 8882 on 2 and 1803 degrees of freedom.  p-value <1E-15.   

Residual standard error:  2.578 cfs).   
N = 1805 β Std dev of β p-value VIFj 
Intercept -101.9 3.6 10-15 - 
w283401.1wk 1.489 0.023 10-15 2.9 
w544902.1wk 0.714 0.046 10-15 2.9 
 

To compare observed versus predicted discharges, it is also useful to consider the 

variance values for the two records.  The F-test for variance equality is often employed for this 

purpose.  This test makes a statistical comparison between the variances of two data sets through 

the calculation of three values (Ott, 2006): 

• Calculated F-value: depends on the variance values for the observed and predicted 

discharge values and the two sample sizes, 

• Critical F-value: depends on the two sample sizes and the desired significance level for 

the test, and 

• P-value: calculated based on the difference between the calculated and critical F-values. 

If the Calculated F-value is greater than the Critical F-value then, reject H0 (the null 

hypothesis which states that the standard deviations of two normally distributed populations are 

equal, and thus that they have similar spreads) at the chosen level of confidence (alpha = 0.05).  

If this is the case then look at the P-value to evaluate the chances of observing an F-value that is 

greater than the calculated value. 

In general, it is expected that regression-predicted values are generally smoother than 

actual observed discharge values.  To quantify the effects of this smoothing on the generated 

period of record, two tools are used, a quantitative evaluation and visual comparison.  The 

quantitative evaluation is the Kolmogorov-Smirnov (K-S) test which evaluates the differences 

between the empirical distribution functions for the observed and predicted time-series 

(D'Agostino and Stephens, 1986).  Under the null hypothesis that the two cumulative distribution 

functions are identical, the test statistic D for this test is the greatest absolute vertical distance 

between the two empirical distribution functions.  This test statistic is not dependent on the two 
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underlying distributions.  Therefore the p-value for this test is only dependent on the two sample 

sizes, which can be different. 

The K-S D statistic can be used to evaluate if the two cumulative distributions functions 

(CDFs) are statistically similar.  Another qualitative tool often employed to compare two data 

sets is the box-whisker plot (also known in the literature as the box plot, Ott, 2006).  This plot is 

a convenient way of graphically depicting the location and spread of the two (or more) data sets.  

The plot shows the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and 

largest observation.  Furthermore, the plots show which observations, if any, are considered to be 

outliers.  These plots visually show different types of populations, without any assumptions of 

the statistical distribution or requirements about the sample sizes.  The box size (difference 

between Q3 and Q1) helps indicate variance.  Skew is also graphically shown through (1) the 

location of the median in relation to Q1 and Q3, (2) the maximum and minimum values, and 

(3) the number of value of outliers. 

Table 8 shows the F-test and K-S test between observed Rock spring time-series and 

predicted Rock Springs time-series on days corresponding to observed data.  Results for the 

F-test indicate that there is no significant difference between the two variances; with a 22% 

chance of observing the calculated F-value under the equal variance hypothesis for this sample 

size.  However, the K-S D statistic shows a significant difference between the two empirical 

CDFs. 

Figure 7 shows the box-whisker plots for three data sets: 

(1) observed discharge values at Rock Springs for the time period 1959-2005, 

(2) regression-predicted values for the same dates at which observed discharge value are 

available.  These predicted values come from two different regression models as 

described above, and 

(3) regression-predicted values from the two regression models for each day in the time 

period 1959-2005.  

The plots show that the observed discharge values at Rock Springs show slightly higher 

variability than the regression-predicted values (data sets 1 and 2).  However, data set 3 (which 

shows a complete record of pooled model predictions) shows slightly higher variability than data 
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set 2.  This shows that the regression predictions show slightly higher variability than the 

observed values.  It is expected, however, that more variance would have been observed if more 

observations had been made in the same time period.  In conclusion, the regression-predicted 

values show a similar range of variability as the observed discharge values with the complete 

daily predicted record showing plausible variability. 

Table 8 Rock Springs - 1959-2005 – Observed and Regression-Predicted Variance 
Statistics. 

  Rock (predicted) Rock (observed) 
Mean 53.95 53.37 

Variance 66.00 63.99 
Observations 2411 2411 

df* 2410 2410 
F 1.03  

P(F<=f) one-tail 0.22  
F Critical one-tail 1.07  

K-S D statistic 0.07  
p-value for K-S test 0.00  

* df are the degrees of freedom which are equal to the sample size 
minus 1 for the F-test. 
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Figure  3

   Predicted versus Observed Discharge (cfs) for
                 Rock Springs, 1959-1997.

St. Johns River Water Management District
Palatka, Florida     
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Solid Lines are the Pointwise Confidence Interval (95%) and Dashed Lines
                  Indicate 95% Confidence Intervals for Predictions.
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Figure  4

   Normal Probability Plot of Residuals for the 
       Rock Springs Regression, 1959-1997.

St. Johns River Water Management District
Palatka, Florida     
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Figure  5

 Predicted versus Observed Discharge (cfs) for 
               Rock Springs, 1998-2005.

St. Johns River Water Management District
Palatka, Florida     
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Solid Lines are the Pointwise Confidence Band (95%), and Dashed Lines
                Indicate 95% Confidence Intervals for predictions.
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Figure  6

   Normal Probability Plot of Residuals for the 
        Rock Springs Regression, 1998-2005.

St. Johns River Water Management District
Palatka, Florida     
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 Figure 7   Box-Whisker Plots for Observed and Regression-Predicted Discharge 
                  Value for Rock Springs Regression, 1959-2005. 
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4.3 Regression models for Wekiva Springs 

Wekiva Springs had much less data than Rock Springs, so Rock Springs was used as an 

independent variable in the regression.  Wekiva Springs discharge correlated well with Rock 

Springs discharge (R2 = 0.65) until 2003-2005 (Figure 8).  The time series of Wekiva Springs 

was divided into two periods, 1959-2002 and 2003-2005, since daily data with gaps was 

available from 2003-2005 and monthly or tri-monthly data was available from 1959-2002.  As 

with Rock Springs, separating the data was important for preventing dominance of the period 

with daily records, which reduces model fit and predictive capability in the earlier period with 

less data.  Table 9 lists the resulting regression model and the fit and normality of residuals are 

shown in Figure 9 and Figure 10, respectively. 

Starting in April, 2003, Wekiva Springs had a near daily time-series with gaps of less 

than 15 days, so the small gaps were filled using linear interpolation.  For the 2003-2005 period, 

gaps larger than 30 days were filled using linear regression on Rock Springs discharge.  The 

linear regression was computed using observed discharge at Wekiva Springs as the dependent 

variable and observed discharge at Rock Springs as the independent variable over a moving 

window 30 days before and after the gap. 

Table 9 Wekiva Springs - 1959-2002 – Regression Statistics. 

Regression Summary for Wekiva Springs 1959-2002:  
R2 = 0.6849.  F statistic 207.6 on 4 and 146 degrees of freedom.  p-value <1E-15.   

Residual standard error:  4.107 cfs 
N = 148 β Std dev of β p-value VIFj 
Intercept 2.727 5.304 0.608 - 
Rock_spring_daily 0.60443 0.07448 10-13 5.0 
w283401.8wk 0.50994 0.14112 0.0004 5.0 
 

To compare observed versus predicted discharges, the same methods described before for 

Rock Springs are used for Wekiva Springs.  Results for the F-test and K-S D statistic are shown 

in Table 10.  Results for the F-test indicate that there is a statistically significant difference 

between the two variances; with values of 32.26 and 21.63 for the observed and regression-

predicted values, respectively.  The K-S D statistic shows a similar significant difference 

between the two empirical CDFs. 
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As mentioned before for Rock Springs, the F-test and the K-S D statistic do not show the 

nature of the difference between the two time series.  To provide some insight into these 

differences, Figure 11 shows the box-whisker plots for the observed and regression-predicted 

discharge values (along with the complete regression-predicted period of record).  The plots 

show that the differences between the observed and predicted values are largely due to the 

existence of more outliers and extreme values in the observed time series.  The non-outlier range 

is almost identical for the two time series.  As with Rock Springs, data set 3 (which shows a 

complete record of pooled model predictions) shows much more variability than data set 2, with 

an overall variability that is slightly higher for the observed record.  It is expected, however, that 

more variance would have been observed if more observations had been made in the same time 

period.  In conclusion, the regression-predicted values show a reasonably similar range of 

variability as the observed discharge values with the complete daily predicted record showing 

plausible variability. 

 

Table 10 Wekiva Springs - 1959-2005 – Observed and Regression-Predicted Variance 
Statistics. 

  Wekiva(observed) Wekiva(predicted) 
Mean 66.54 65.30 

Variance 32.26 21.63 
Observations 633 633 

df 632 632 
F 1.49   

P(F<=f) one-tail 0.00  
F Critical one-tail 1.14  

K-S D statistic 0.20  
p-value for K-S test 0.00  
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Figure  8

   Wekiva Springs Discharge versus Rock Springs Discharge over
              1931-2002 (+) and from 2003-2005 (red dots).

St. Johns River Water Management District
Palatka, Florida     
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Figure  9

 Wekiva Springs Regression Model, Predicted 
            versus Observed, 1959-2002.

St. Johns River Water Management District
Palatka, Florida     
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Figure  10

   Normal Probability Plot for Residuals for the Wekiva Springs 
                         Regression, 1959-2002.

St. Johns River Water Management District
Palatka, Florida     
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 Figure 11   Box-Whisker Plots for Observed and Regression-Predicted Discharge 
                    Value for Wekiva Springs Regression, 1959-2005. 
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5.0 PREDICTION OF DAILY DISCHARGE AND FLOW 
DURATION 

5.1 Methodology:  Regression models and linear gap filling 

The objective of regression modeling and gap filling is to provide a historic daily time 

series of spring discharge, using both observed discharge data and other observed data such as 

well levels and rainfall.  The Rock and Wekiva springs had several years of daily data from 

1998-2005 and several years with data observation frequencies of 45 days or better.  In order to 

not discard observed data, the final data series included the observed data points, and gaps filled 

using one of two methods 1) multiple regressions, which predicted the discharge on unmeasured 

days given the well levels and rainfall and 2) linear interpolation between observed discharge 

points.  Linear interpolation was most valid for small data gaps (1-30 days) and regression was 

more valid for longer gaps, where the discharge between two observed days may not be linear.  

The daily time-series for Rock Springs from 10/1/1998-9/30/2002 had no gaps, and was used to 

calculate the errors generated by using either linear interpolation or regression.  For example, 

Figure 12 shows how linear interpolation fits the observed time series better for 20-day gaps, but 

regression performs better for 90-day gaps. 

Whether regression or linear interpolation is used to fill gaps depends on the gap length 

and the R2 of the regression model, with longer gaps requiring regression.  In order to determine 

the threshold gap length where linear interpolation will be used instead of regression, the daily 

time-series for Rock Springs from 10/1/1998-9/30/2002 was used to generate synthetic daily 

discharge time series using linear interpolation for a range of gaps (10-120 days).  Flow duration 

curves (FDC) were then generated for the observed data (the “true” FDC), the linearly 

interpolated data, and the regression time-series (Figure 13).  The root mean square error 

(RMSE) between the observed flow duration curve and the FDCs generated using either linear 

interpolation or regression for different gap lengths (10–120 days) were calculated by summing 

the squared difference in fraction exceedance for each discharge amount, and taking the square 

root of the sum after dividing by the number of discharge values.   
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Figure  12St. Johns River Water Management District
Palatka, Florida     
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Figure  13St. Johns River Water Management District
Palatka, Florida     

       Flow-Duration Curves for Rock Springs, 10/1/1998 to 9/13/2002 using
          Observed Data (black dots), Linear Interpolation (green line) and 
                        Regression, for 20-day Gap and 90-day Gap.
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The plot of RMSE for the flow duration curve versus gap length (Figure 14) suggests that below 

a 30-50 day gap length, linear interpolation gives lower error than regression.  This is a minimum 

threshold for the gap length for linear interpolation, since the R2 of the regression over 1998-2005 was 

high (R2 = 0.91).  For a lower R2, a higher gap threshold may provide more accurate flow duration 

curves.  Here we generate two daily discharge time-series and flow duration curves:  one set with a gap 

threshold of 30 days, and another with gap threshold of 60 days.  This will provide an estimate of the 

effects of using each threshold gap length for the overall flow duration curve. 

5.2 Daily discharge and flow duration curves for Rock Springs 

The Rock Springs daily discharge series was calculated using the estimate from the linear 

regression model on gaps larger than 30 days, and linear interpolation on gaps smaller than 30 days.  

The time-series of observed and modeled discharge shows generally good agreement for 1959-1997 

(Figure 15) and 1998-2005 (Figure 16).  The time-series from 1959-1997 had few gaps smaller than 

30 days, so the regression model was used to predict discharge for most days during that time period.  

The 1998-2005 period, by contrast, had many small gaps that were filled using linear interpolation.  In 

Figure 16, the blue line is the regression prediction; the yellow line is produced using linear 

interpolation between points for gaps less than 30 days and the regression model for gaps longer than 

30 days. 

Daily flow duration curves (FDCs) over 1998-2005 for Rock Springs based on the daily 

discharge time-series are shown in Figure 17.  In Figure 17, the red line is the regression prediction, the 

blue line is the gap-filled time series with a gap threshold of 30 days and the green line is the gap-filled 

time series with a gap threshold of 90 days.  Overall, the linear interpolation over gaps 30 days or 

smaller predicted the observed time series better than regression alone. 

The FDC for Rock Springs changed over time.  Discharge at all frequencies decreased from the 1960s 

through the 1990s, so that the FDC for 1998-2005 is significantly lower than the FDC for 1959-1997 

(Figure 18).  FDCs may change temporarily and reversibly in response to climate shifts, such as changes 

in precipitation, or they may change permanently due to groundwater pumping or land use change.  The 

mechanism for the change in the FDC at Rock Springs is not known and is beyond the scope of this 

current work.  The high and low flow frequency analyses for Rock Springs are shown in Figures 19a 

and 19b. 
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Figure  14

The Root Mean Square Error of the Flow Duration Curve versus 
gap Length for the Regression Model and Linear Interpolation on 
                             Rock Springs, 1998-2002
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Figure  15

Time Series of Predicted and Observed Discharge for 
                      Rock Springs 1959-1997.
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Figure  16

Time Series of Rock Springs Discharge, with the Best-Fit 
          Piecewise Regression Model,1998-2005.
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Figure  17St. Johns River Water Management District
Palatka, Florida     

Flow Duration Curves for Rock Springs, 1998-2005.
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Figure  18St. Johns River Water Management District
Palatka, Florida     

Flow Duration Curves for Rock Springs over
            1959-1997 and 1998-2005.
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Figure  19a

High Flow Frequency Plots, Rock Springs
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Figure  19b

Low Flow Frequency Plots, Rock Springs

St. Johns River Water Management District
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5.3 Daily discharge and flow duration curves for Wekiva Springs 

The daily discharge time-series for Wekiva matches the observed time series well, though 

some highs and lows were missed as expected in regression predictions (Figure 20).  In 

Figure 20, the black line is the regression prediction; the yellow line is produced using linear 

interpolation between points for gaps less than 30 days and the regression model for gaps longer 

than 30 days.  Linear interpolation and regression on the 60-day moving window gave good 

matches between observed and predicted flow over 2003-2005 (Figure 21).  Daily FDCs for 

Wekiva Springs show good fit to the observed FDC for 2003-2005 (Figure 22 top).  As with 

Rock Springs, the FDC for Wekiva Springs was significantly lower in 2003-05 compared with 

1959-2002 (Figure 22 bottom).  As with Rock Springs, the reasons for this decline are not 

documented in this report.  High and low flow frequency analyses are presented in Figure 23 and 

Figure 24. 
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Figure  20St. Johns River Water Management District
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Figure  21
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Figure  22St. Johns River Water Management District
Palatka, Florida     

Flow Duration Curves for Wekiva Springs, showing Observed 
     and Predicted Curves for 2003-2005 and 1959-2002.
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Figure  23St. Johns River Water Management District
Palatka, Florida     
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Figure  24St. Johns River Water Management District
Palatka, Florida     

Low Flow Frequency Plots, Wekiva Springs
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6.0 CONCLUSION AND RECOMMENDATIONS 

This document presents an evaluation of the spring discharge data for Rock and Wekiva 

springs; groundwater levels at adjacent monitoring wells, and precipitation measurements at 

nearby rain gage stations.  Based on this evaluation, a regression modeling methodology is 

developed and applied for generating historic daily spring discharge records at Rock and Wekiva 

springs.  Flow duration curves are also generated along with high- and low-frequency analyses 

for set durations from the simulated daily spring discharge.  The following general conclusions 

can be made based on this study. 

• Measurements of well levels were available at a daily time step for the wells used for 

flow prediction. 

• Two regression models were required for each spring:  one where daily discharge 

measurements were available with some gaps, and a second where discharge 

measurements were at longer intervals.  Separation into two time periods was required 

in order to get representative regression parameters for each time period, and to avoid 

giving too much weight to recent periods with high data frequency. 

• The flow duration curves for both Rock and Wekiva springs changed over the study 

period: discharge decreased at all probability levels.  Flow duration curves based on the 

historical time-series may not correctly represent current or future flow duration curves 

due to changes in the relationships between precipitation, groundwater levels, and 

spring discharge. 

• The statistical modeling could be complemented by a more process-based approach that 

includes the effects of pumping and land use change on spring discharge.  Such an 

exercise would help explain the causes of the decreased spring discharge over 

1960-1990, and project whether such decreases are temporary and due to random 

climate fluctuations, or permanent and due to land use change or groundwater pumping. 

The daily period of record generated by the multiple regression models provides an 

estimate for the historic time series of spring discharge values.  These estimated discharge values 

are developed for uses where such a time series is required, such as a frequency analysis of 

historic flows for MFL determinations.  It must be explicitly stated that the presented multiple 
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regression models are not physical and should not be used for predictive purposes or to interpret 

the relationships between spring discharge values and explanatory variables such as groundwater 

levels, recorded rainfall, or recorded discharges at nearby springs.  A specific caution is made 

that predictions achieved by altering the explanatory variables from their observed values and re-

generating the spring discharge time series entail assumptions not supported here.  
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Model Usage Notes 
 
This Appendix describes the structure and operation of an ACCESS database created to facilitate 
predictive applications of the statistical spring discharge models described earlier in Section 4.  
An example using Rock Springs data is also presented. 
 
1. Folder: springdailypredictions –  

 
The folder springdailypredictions has two files as shown below: 

• St.Johns.mdb 
• Predictions.xls 

 

 
 
After building the statistical models, St.Johns.mdb – an ACCESS database was built for 
applying the statistical models to generate daily predictions for the two springs. A screenshot of 
the database is shown below. 
 

 
On the left, are the different tables present in the database and on the right is a prediction 
toolbox. The prediction toolbox executes ACCESS queries and/or VISUAL BASIC 
APPLICATION Modules, on the click of different buttons. Predictions.xls – EXCEL file is 
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used to graphically display the daily predictions and frequency analysis generated in 
St.Johns.mdb. The next few pages will walk the user through using the toolbox for generating 
daily predictions and frequency analysis with the help of an example. It will also guide the user 
on how to save the results for different cases.  
 
In the example below, our primary task would be to get Rock Springs daily predictions from 
1/1/1959 to 9/30/2005. 
 
2. Open St.Johns.mdb 
 
Open St.Johns.mdb (highlighted below) by double clicking the file. 
 

 
 
The original spring discharge, groundwater elevation and precipitation data reside in the 
“Original_Data” ACCESS data table. The screenshot below indicates the Original Data table 
within the database. 
 

 
 
Double-clicking this table would open the Original Data table as shown below. 
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The table has 17440 records for dates ranging from 1/1/1958 to 9/30/2005. If the user wants to 
change a particular data time series, pasting the new time series (with dates from 1/1/1958 to 
9/30/2005) over the old one is one of the ways to do it.  
 
If the user has another ACCESS database with new time series data, it can be added to the 
Original Data table using an Append Query. Append Query allows the user to append one or 
more columns to the Original Data table. For example, if a new time series for w283401 
becomes available, append the new data column as w283401 (new) using the Append Query. 
Then delete the old w283401 column from Original Data table and rename w283401 (new) as 
w283401. If data is not available for a particular date, the user can leave it blank as seen in 
Original Data table for different variables. 
 
3. Data Gap Filling to create “Modified Data” Table  
 
Gaps in the data which are less than 30 days are filled by linear interpolation. The need to fill 
data gaps for wells arises during the calculation of moving averages. Also, as indicated in the 
report, spring predictions for Rock and Wekiva, for gaps less than 30 days, perform better than 
predictions for Rock and Wekiva from regression. 
 
Therefore the next step is clicking the “Filling in data gaps” button on the prediction toolbox. 
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Clicking this button creates a Modified_data table as highlighted below: 
 

 
 
Open the Modified_data table by double-clicking on it. Below is the screenshot: 
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The user would notice linear interpolation values (for data gaps less than 30 days) in the 
Modified_Table. For example, we see two Rock Springs observed values highlighted in 
Original_data. The Modified_Table shows linearly interpolated values for Rock Springs 
between dates 5/20/1976 and 6/1/1976 
 
4. Calculating moving average variables for each spring 
 
The statistical models in the report show the use of moving averages of different variables 
(spring, groundwater level and rainfall data) for predicting daily discharge for each spring. 
Computation of these variables, for each spring, is then performed by clicking the button 
highlighted below.  
 

 
 
For example clicking on Calculate Moving Average/Rock and Wekiva would fill the table 
RockWekiva_MovingAverages present in the database. The screenshot below shows the table: 
 

 
 
The highlighted columns in the table above show some of the calculated moving averages to be 
used in the Rock statistical model for daily discharge predictions.  
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5. Calculate Spring discharge predictions and frequency analysis 
 
Spring discharge daily predictions are limited by a range of lower and upper date. This is due to 
limited date range coverage for explanatory variables in the statistical model for a particular 
spring. The following are the dates for the two springs for which daily discharge predictions can 
be computed: 
 

Spring Date Range for discharge predictions 
Rock 1/1/1959 to 9/30/2005 

Wekiva 1/1/1959 to 9/30/2005 
 
Clicking the buttons highlighted below give daily discharge predictions and maximum and 
minimum frequencies for date ranges specified by the user.  Note that these date ranges have to 
fall within the ranges mentioned above for a particular spring. Also, since Rock discharge 
predictions are used in the regression model for predicting Wekiva discharge, it is necessary to 
first predict Rock discharge values prior to Wekiva predictions 
 

 
 
For example, on clicking Predict Spring Discharge – Rock Springs, we see a pop-up window 
asking for the date from which predictions are needed. For our example enter 1/1/1959. As noted 
earlier, the date entered should be greater than 12/31/1958, since Rock Springs predictions are 
only available since that date. 
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Press OK. Another window asking for the date till which predictions are needed. For our 
example enter 9/30/2005. Again the date entered should be less than 10/1/2005, since Rock 
Springs predictions are only available till 9/30/2005. 
 

 
 
On pressing OK, tables called Rock-predictions, Rock-Frequency-district and Rock 
Frequency table-District are added to the ACCESS database as shown below: 
 

 
 
Double click Rock-predictions table to view. The screenshot shows the observed Rock discharge 
data and the predicted Rock discharge data, between the lower and upper date ranges we entered. 
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Double-click table Rock-Frequency-district to view. The table has continuously-exceeded and 
average values for 1-day, 30-day, 90-day, 183-day, 273-day and 365-day periods for each year 
starting on June 1 of a year and ending on May 31 of the next year. The table also has 
continuously-not-exceeded and average values for 1-day, 30-day, 90-day, 183-day, 273-day and 
365-day periods for each year starting on October 1 of a year and ending on September 30 of the 
next year. It is important to note that each year range for picking maximums and minimums is 
assumed to be independent of other years. The screenshot below shows some of the columns 
present in the table. 
 

 
 
Double-click table Rock Frequency Table-district to view. The table contains the maximums 
from 1-day, 30-day, 90-day, 183-day, 273-day and 365-day continuously-exceeded and average 
time-series for each year. The table also contains the minimums from 1-day, 30-day, 90-day, 
183-day, 273-day and 365-day continuously-not-exceeded and average time-series for each year. 
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The screenshot below shows a few columns from the table 
 

 
Similarly predictions and, maximum and minimum frequencies, for Wekiva Springs can be 
obtained for any specified upper and lower date ranges. Tables Wekiva-predictions, Wekiva-
Frequency-District, Wekiva Frequency Table-district (shown below) are added to the 
database on clicking Predict Spring Discharge – Wekiva and following all the above steps as for 
Rock Springs.  
 

  
 
6. Viewing prediction plots and maximum and minimum frequencies 
 
Plots of observed and predicted daily discharge data can be viewed in the EXCEL file 
predictions.xls which is linked to the prediction tables in ACCESS. The file already has been 
run to include daily predictions and frequencies for Rock and Wekiva springs for the complete 
date ranges associated with the two springs. 

 
For our example, open predictions.xls. The screenshot below shows this file. By default, the 
Rock worksheet opens up; this contains the predictions for the complete range for which daily 
discharge values can be computed for Rock (1/1/1959 to 9/30/2005?) 
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The next step is pressing the red exclamation button to refresh the predictions for the date range 
which the user requested for this example, i.e. 1/1/1959 to 9/30/2005. The exclamation mark is 
highlighted by a red ellipse in the above figure. 

 
To view the plots for the above data, click on worksheet Rock (pre12-31-97) for predictions 
before 12/31/1997 and worksheet Rock (post1-1-98) for predictions from 1/1/1998. The 
screenshot below shows worksheet Rock (pre12-31-97): 

 

 
 
Also, the screenshot below shows worksheet Rock (post1-1-98): 
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The procedure to view maximum and minimum frequencies is similar to viewing predictions. 
Click worksheet Rock-FrequencyAnalysis as shown below. We see the maximum and minimum 
frequencies for Rock for the year range 1959-2004 
 

 
 
The next step is pressing the red exclamation button to refresh the frequencies for the date range 
which the user requested for this example, i.e. 1/1/1959 to 9/30/2005. The exclamation mark is 
highlighted by a red ellipse in the above figure. 
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The table above only shows the maximum and minimum frequencies for the years they can be 
computed. 
 
7.  Saving results for different cases 
 
To save the daily discharge predictions and frequencies for a particular set of well or spring data 
in Original Data table, make another copy of the prediction tables in ACCESS and give them a 
different name. This step is crucial since for a new set of data, the prediction and frequency 
tables are overwritten. In our example for instance, copy-paste the Rock-predictions table as 
shown below: 

 

 
ACCESS prompts for a new name as shown below: 
 

 
 
Enter a table name and press OK. The prediction table for our example is created. Similarly 
create new tables for the Rock-frequency-district and Rock Frequency Table-district.  
 
It is also necessary to save the predictions and frequencies in predictions.xls in a different file 
before the prediction worksheets in EXCEL are refreshed to get predictions for a different case. 
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APPENDIX B: Resolution of Peer Review Comments. 

Appendix B contains the comments provided by peer review of the first report in this Statistical 

Modeling of Spring Discharge series and the author’s resolution of these comments. This peer 

review and the subsequent resolution pertain to application of statistical methodology and are, 

therefore, included in this report as well.  The report modifications included some comments on 

potential use of the presented models as well as a clear statement of the models objectives.  
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Memorandum 

 

TO:  Bob Epting, St. Johns River Water Management District 

FROM: Shahrokh Rouhani, Ph.D., P.E., NewFields 

SUBJECT: Peer review of “Statistical Modeling of Spring Discharge at Ponce de Leon, 

Green, and Gemini Springs in Volusia County Florida” by Intera (2005) and 

“Statistical Modeling of Spring Discharge at Apopka and Bugg Springs in Lake 

County Florida” by Intera (2006) 

DATE:  July 16, 2006 

********************* 

INTRODUCTION 

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows 

and Levels (MFLs) and Water Supply Development projects.  Such projects require daily 

discharge time series at a number of springs of interest.  Most of these springs suffer from 

sporadic discharge measurements.  Intera (2005 and 2006) utilizes multiple regression models to 

estimate (hindcast) daily discharges at a number of springs of interest based on a variety of 

available nearby moving averages of measured spring discharges, groundwater levels, lake 

levels, and precipitation rates.  The estimated daily discharge time series at each spring are then 

used to generate frequency, duration, discharge curves. 

GENERAL COMMENT 

In general, I must note that the reports are well written, and easy to follow.  Furthermore, from a 

conceptual point of view, multiple regression of nearby hydrologic data to fill the gaps in times 

series of daily spring discharges is quite acceptable.  The resulting estimated time series and 

frequency curves also display reasonable patterns consistent with existing, albeit limited, 

discharge measurements at the investigated springs.  However, the review of the reports raises a 

number of fundamental questions that may warrant further considerations by the authors.  These 

mainly statistical questions are the focus of this memorandum.    
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SPECIFIC COMMENTS  

1. The above reports use multiple regression models that relate moving averages (MA) of 

nearby hydrologic data to estimate daily spring discharges.  Intera (2005) presents the general 

form of such a model as 

[Spring discharge] = f {[same spring MA] + [water level MA]  
 + [precipitation MA] + [adjacent spring MA] } 

The authors state that “the use of moving-average-based independent variables is 

necessitated by the fact that most independent variables are not measured on a daily basis.”  

Although, statistical methods, including multiple regression analysis, are not bound by 

hydrological principals, it is always desirable to use independent variables that are 

hydrologically consistent with the dependent variable. 

 

The independent variable in the above reports is daily spring discharge, i.e. a non-integrated 

or differentiated flow variable.  Daily precipitation is also a flow variable, while water levels 

(either groundwater or lake levels) are storage variables.  Within the context of mass balance, 

the net sum of flows is equal to the rate of change of storage variables.  In other words, in a 

linear model, daily spring discharge is expected to be related to (a) daily values of other flow 

variables (e.g. precipitation or nearby spring discharges), and (b) daily rates of changes in 

storage variables (e.g. water levels).  This implies that under ideal conditions, non-integrated 

flow variables and differentiated storage variables should be used in a regression model. 

 

While I recognize that absence of continuous data may make some of the above 

differentiations impossible, I am still puzzled about the fact that all dependent variables are 

uniformly integrated.  Integration is the exact opposite of what mass balance suggests.  In 

fact, in cases that continuous daily time series of storage variables (e.g. groundwater or lake 

levels) are available; their difference values should be explored as an alternative to the 

current moving averages.  For this purpose, continuous or augmented groundwater level time 

series, such as L-0054 and L-0703, along with other complete daily time series appear to be 

suitable candidates.  I encourage the authors to consider this alternative approach, which is 

more consistent with the mass balance concept.  
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of partial 

correlation coefficients (PCC) and stepwise analysis somehow solves this problem.  While 

the use of PCC and stepwise analysis are commendable, they do not address the issue of 

multicolinearity.   

 

Multiple regression analysis is based on the fundamental assumption that the variables on the 

right hand side of the equation are statistically independent, i.e. uncorrelated.  

Multicolinearity exists when independent variables are highly correlated.  Unfortunately, the 

reports do not contain any systematic information on cross correlations among independent 

variables.  However, statements made in Intera (2006) concerning high correlations among 

certain groundwater levels (which were used to justify the filling of data gaps in some of the 

monitoring wells) clearly indicate that at least some of the independent variables are highly 

correlated.  This is especially true for moving averages of the same variables, which are used 

concurrently as independent variables in the same model.  So one can assume that some, if 

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. 

 

A high degree of multicolinearity produces unacceptable uncertainty (large variance) in 

regression coefficient estimates.  Specifically, the coefficients can change drastically 

depending on which terms are in or out of the model and also the order they are placed in the 

model.  In fact, a typical consequence of multicolinearity is a high regression coefficient, 

when a number of independent variables have regression coefficients that are deemed as 

insignificant.  For example, Table 8 in Intera (2006) indicates that of the 13 independent 

variables used to estimate Apopka (post-1990) five variables have statistically insignificant 

coefficient (i.e. their p values are greater than or equal to 0.05), while R2 of the same model is 

nearly 0.80.  In other words, the regression results indicate that the collection of selected 

independent variables has explanatory power but we cannot tell which variable or to what 

degree the individual variable is explaining the variations of the dependent variable.  

Generally, such ‘black-box’ models are viewed as undesirable.  

 

I encourage the authors to consider computing the variance inflation factor (VIF) of each 

independent variable.  VIF associated with the ith independent variable is equal to 
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2
iR1

1
−

where iR is the regression coefficient of the ith independent variable on all of the other 

independent variables.  A rule of thumb is to treat any VIF in excess of 10 as evidence of 

multicolinearity.  Elimination of collinear independent variables should continue until all VIF 

are below 10.  This approach along with the stepwise analysis would lead to much more 

defensible models.  Other remedies are also discussed in Gujarati (Basic Econometrics, 4th 

Edition, McGraw Hill, 2002, Chapter 10).  

 

3. The results of predicted versus observed time series are visually satisfactory (e.g. Figure 18 

in Intera, 2006); however, their corresponding observed versus predicted plots (e.g. Figure 12 

in Intera 2006) display poor fits.  An explanation of this visual discrepancy would be helpful.  

I also noticed that the updated frequency curves for Apopka and Bugg springs are much 

closer to the pattern exhibited by the observed data.  However, the addendum dated July 11, 

2006 does not describe the reason for this improvement. 

 

4. To compare observed versus predicted discharges, the authors should also consider the 

comparison of their variances.  Results like Figure 12 (Intera, 2006) imply that the predicted 

values are much less variable that measured discharges.  Although, such results are not 

unexpected (estimated values are generally smoother than actual data), the impacts of such 

smoothings on the frequency curves must be discussed.  Specifically, are extreme discharges 

adequately estimated?   

 

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 7/11/06).  

While observed discharges in the central portion of the curve match their estimated values, 

extreme values deviate systematically, i.e. biased results.  Similar patterns are present in 

almost all the generated frequency curves.  The authors should address this issue, and if 

deemed significant, appropriate remedies should be considered. 
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T E C H N I C A L  M E M O R A N D U M    
 
PREPARED FOR: Bob Epting, St. Johns River Water Management District 
PREPARED BY: Alaa Aly and Srikanta Mishra, INTERA Incorporated 
SUBJECT: Resolution of peer review comments of “Statistical Modeling of 

Spring Discharge at Ponce de Leon, Green, and Gemini Springs in 
Volusia County Florida” by Intera (2005) and “Statistical Modeling 
of Spring Discharge at Apopka and Bugg Springs in Lake County 
Florida” by Shahrokh Rouhani, NewFields 

DATE: August 8, 2007 

 

INTRODUCTION 

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows 

and Levels (MFLs) and Water Supply Development projects.  Such projects require daily 

discharge time series at a number of springs of interest.  Most of these springs suffer from 

sporadic discharge measurements.  Intera (2005 and 2006) utilizes multiple regression models to 

estimate (hindcast) daily discharges at a number of springs of interest based on a variety of 

available nearby moving averages of measured spring discharges, groundwater levels, lake 

levels, and precipitation rates.  The estimated daily discharge time series at each spring are then 

used to generate frequency, duration, discharge curves. 

 

GENERAL COMMENT 

We appreciate the comments from Dr. Rouhani about the validity of the approach and the 

clarity of the presentation in the report. The following sections address the specific comments in 

the peer review memorandum. 
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SPECIFIC COMMENTS 
 

1. …… Within the context of mass balance, the net sum of flows is equal to the rate of 

change of storage variables.  …….  This implies that under ideal conditions, non-

integrated flow variables and differentiated storage variables should be used in a 

regression model. While I recognize that absence of continuous data may make some 

of the above differentiations impossible, I am still puzzled about the fact that all 

dependent variables are uniformly integrated.  Integration is the exact opposite of 

what mass balance suggests.  …….   I encourage the authors to consider this 

alternative approach, which is more consistent with the mass balance concept.  

 

While mass balance would suggest exactly what the reviewer points out, the presented models 

are statistical, not physical. Therefore, they are not intended to be used as mass balance models. 

The models are based on exploitation of the statistical correlation between the explanatory and 

response variables. For example, spring discharge is correlated with aquifer water levels, perhaps 

with a lead time. This correlation explains some of the variability in the observed spring 

discharge rates. Further, the correlation is improved using the average water level values rather 

than the individual measurements which always have higher variances. However, as the reviewer 

notes, spring discharge can also be expected to be correlated to the change in water levels over 

time. These changes are a function of the “net” change of fluxes to and from the aquifer. In the 

absence of other significant fluxes such as recharge and pumping, these changes will be closely 

correlated to the observed spring discharge rates. Unobserved (e.g., pumping) and unobservable 

(e.g., aquifer recharge) fluxes will complicate this correlation. Further, as noted, this difference is 

typically very difficult to obtain from real data as data gaps can be a major obstacle for such 

calculation. 
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of 

partial correlation coefficients (PCC) and stepwise analysis somehow solves this 

problem.  …… Multiple regression analysis is based on the fundamental assumption 

that the variables on the right hand side of the equation are statistically independent, 

i.e. uncorrelated.  …..  However, statements made in Intera (2006) concerning high 

correlations among certain groundwater levels (which were used to justify the filling 

of data gaps in some of the monitoring wells) clearly indicate that at least some of the 

independent variables are highly correlated.  ......  So one can assume that some, if 

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. ….. 

I encourage the authors to consider computing the variance inflation factor (VIF) of 

each independent variable.  

 

First, multicolinearity is mainly a problem for the uniqueness and variances for the regression 

coefficients. That is, when correlated variables are used as explanatory variables, the fitted 

regression coefficients will not be meaningful and might have very high variances. However, the 

predicted values from such regression model are still acceptable with the only issue that needs to 

be addressed is whether adding the correlated variable(s) have resulted in unnecessary inflation 

of the prediction variance. This variance inflation resulting from adding more variables to the 

regression equation is exactly what is considered in the stepwise regression algorithm. As 

detailed below, a variable is only added to the regression equation if it will improve the 

prediction capability of the final regression equation without adding significantly to the 

prediction variance. Our experience in applying stepwise regression to outputs of probabilistic 

risk assessment models confirms this. We have also computed variance inflation factors for the 

discharge models for Rock and Wekiva springs, and these also indicate that the stepwise 

regression process has minimized multicolinearity issues. The following description of stepwise 

regression provides the background information for the procedure showing how multicolinearity 

is formally dealt with. 

 

In the utilized stepwise approach, a sequence of regression models is constructed starting with 

the input variable that explains the largest amount of variance in the output, i.e., the variable that 

has the highest Pearson correlation coefficient with the output. At each successive step in the 



Final Report  B-9  

regression modeling process, the variable that explains the largest fraction of unexplained 

variance from the previous step is included.  This is the variable with the largest absolute value 

of the partial correlation coefficient.  The model generated at every step is tested to ensure that 

the each of the regression coefficients is significantly different from zero.  The test is 

implemented in two stages.  First, a variable selected for entry via the PCC criterion is tested for 

its significance before it is admitted into the model.  Second, after the model is built at that step, 

each of the variables in the model is tested for significance.  If some variables are found to be 

insignificant, then the “most insignificant” variable is dropped and the model is built again.  The 

sequential dropping of the variables judged to be not significant and rebuilding the model 

continues until all the variables in the model become significant at the prescribed levels.  The 

significance levels are prescribed separately for the entering and departing variables to avoid 

possible looping where the same variable can enter and depart from the model with the 

significance level for the departing variables generally set larger than that for the entering 

variable.  Note that the need for dropping a variable generally arises only in the cases when the 

input variables are strongly correlated (strong multicolinearity).  This step ensures that no 

significant multicolinearity will be present in the final multiple regression model. The stepwise 

regression process continues until the input-output model contains all of the input variables that 

explain statistically significant amounts of variance in the output (i.e., no more variables are 

found with a statistically significant regression coefficient).  

 

 

3. The results of predicted versus observed time series are visually satisfactory (e.g. 

Figure 18 in Intera, 2006); however, their corresponding observed versus predicted 

plots (e.g. Figure 12 in Intera 2006) display poor fits.  An explanation of this visual 

discrepancy would be helpful.  I also noticed that the updated frequency curves for 

Apopka and Bugg springs are much closer to the pattern exhibited by the observed 

data.  However, the addendum dated July 11, 2006 does not describe the reason for 

this improvement. 

 

Figure 18 shows that the general pattern displayed by the observed discharge hydrograph for 

Bugg Spring. While there is significant visual scatter shown in Figure 12, this figure also shows 
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that the vast majority of the predicted discharge values are in agreement with the observed 

values. Figure 12 also shows that there in no general bias in any direction for the entire range of 

observed discharge values, a further affirmation for the validity of predictive model. The 

explanations missing from the July 11, 2006 addendum have been added to the final report. 

 

4. To compare observed versus predicted discharges, the authors should also 

consider the comparison of their variances.  Results like Figure 12 (Intera, 2006) 

imply that the predicted values are much less variable that measured discharges.  

Although, such results are not unexpected (estimated values are generally smoother 

than actual data), the impacts of such smoothings on the frequency curves must be 

discussed.  Specifically, are extreme discharges adequately estimated?   

 

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 

7/11/06).  While observed discharges in the central portion of the curve match their 

estimated values, extreme values deviate systematically, i.e. biased results.  Similar 

patterns are present in almost all the generated frequency curves.  The authors 

should address this issue, and if deemed significant, appropriate remedies should be 

considered. 

 

While it is not anticipated that extreme discharge values will be predicted accurately, it is 

important that no consistent bias is displayed by the predictive models. Figure 12 clearly shows 

that predicted values are not biased at either end of the observed discharge values because high 

and low values are equally spread around the regression line. Further, additional analyses are 

added to the report to examine the differences between the variances of the observed and 

regression-model-generated spring discharge values. 

 




