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EXECUTIVE SUMMARY

The St. Johns River Water Management District (District) is engaged in hydrologic
modeling and data analysis in support of ongoing Minimum Flows and Levels (MFLs) and
Water Supply Development projects. MFLs define the frequency and duration of high, average,
and low water events necessary to prevent significant ecological harm to aquatic habitats and
wetlands from permitted water withdrawals. An integral component of the District's MFL
program is the development of long-term daily discharge predictions at various springs in the
District. This report describes the development of statistical models for predicting daily spring
discharge time series for Rock and Wekiva springs from an assortment of auxiliary data
including: (a) previoudy recorded spring discharge rates at the spring of interest and at adjacent
springs, (b) groundwater level measurements from adjacent monitoring wells, and (c) rainfall

data from nearby gauging stations.

The presented regression models are based on the statistical correlation between the
explanatory and response variables. For example, spring discharge is correlated with aquifer
water levels, perhaps with a lead time. This correlation explains some of the variability in the
observed spring discharge rates. Further, the correlation is improved using the average water
level values rather than the individual measurements which are known to display higher

variances.

Stepwise regression analysis was used to build multivariate linear input-output models
between the response variable (spring discharge) and the independent variables (spring discharge
from nearby springs, water level measurements, lake levels and precipitation) at the springs of
interest. Piecewise multiple regression models that incorporated linear temporal trends were
constructed due to the relationship between spring discharge and the independent variables
changing with time and significant temporal trends in spring discharge. The period of interest

(1959-2005) was broken into two time periods, each with a different regression model:

e The period 1959-1997 for Rock Springs, or 1959-2003 for Wekiva Springs, used the
water levels in a nearby well (USGS well 283253081283401, Orlo Vista), the moving
average discharge at Rock Springs, the rainfall at Orlando, and the year as independent
variables. The year was used as an independent variable because there was a linear trend
with time that was not accounted for by the other model variables.
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e The period 1998-2005 for Rock Springs used two nearby wells (283253081283401 Orlo
Vista and 283204081544902 Mascotte Shallow Well).

e Gaps in the Wekiva Springs discharge record over 2003-2005 were filled using linear
interpolation for gaps less than 30 days. Gaps in Wekiva Springs discharge larger than
30 days werefilled using linear regression on Rock Springs discharge.

The observed daily time-series of Rock Springs from 1998-2002 was used to quantify the
error associated with filling data gaps with linear interpolation or regression. For gaps less than
30 days, linear interpolation gave lower errors than regression. Accordingly, gaps less than
30 days were filled with linear interpolation, while for gaps larger than 30 days, the regression

was used.

The flow duration curves at both Rock and Wekiva springs changed over the two
calibration periods, and were generaly lower for the more recent time-period. Though no
mechanism is identified for this decrease, it highlights the potential for future flow duration

curves to be significantly different from the historically observed flow duration curve.

This report incorporates comments provided by peer review of the first report in this
Statistical Modeling of Spring Discharge series. The peer review comments and their resolution

as they apply to thisreport are in Appendix B.

Final Report v INTE3A



1.0 INTRODUCTION

The Minimum Flows and Levels (MFLs) Program of the St. Johns River Water
Management District (District), mandated by state water policy (section 373.042, F.S.),
establishes MFL s for lakes, streams and rivers, wetlands, and groundwater aquifers. MFLs define
the frequency and duration of high, average, and low water events necessary to prevent
significant ecological harm to aguatic habitats and wetlands from permitted water withdrawals.
The MFLs Program is subject to rule (Chapter 40C-8, F.A.C.) and provides technical support to
the District’s regional water supply planning process and the consumptive use permitting (CUP)

program.

MFLs designate hydrologic conditions that prevent significant harm and above which
water is available for reasonable beneficial use. The determinations of MFLs consider the
protection of non-consumptive uses of water, including navigation, recreation, fish and wildlife
habitat, and other natural resources. MFLs take into account the ability of wetlands and aquatic
communities to adjust to changes in hydrologic conditions. Therefore, MFLs allow for an
acceptable level of change to occur relative to the existing hydrologic conditions. However,
when use of water resources shifts the hydrologic conditions below those defined by the MFLS,
significant ecological harm occurs. Asit appliesto wetland and aguatic communities, significant
harm is a function of changes in the frequencies and durations of water level and/or flow events,

causing impairment or destruction of ecological structures and functions.

Currently, the District is engaged in hydrologic modeling and hydrologic data analysisin
support of the ongoing MFLs and Water Supply Development projects. An integral component
of the District’s MFL program is the development of long-term daily discharge models at various
springs in the District (Osburn et a., 2002). MFLs for two springs in Orange County, Florida,
namely, Rock and Wekiva springs, are currently needed. Though both springs have long
historical records, there are significant gaps ranging from severa days to severa years. This
study evaluates data availability and applies statistical models to fill in the data gaps and to
generate long-term daily discharge simulations and flow duration curves for these two springs.
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2.0 OBJECTIVE OF STUDY

The objective of this study is to develop a historic daily spring discharge time series for
Rock and Wekiva springs from an assortment of auxiliary data such as. (a) previously recorded
spring discharge at the spring of interest and at adjacent springs, (b) groundwater level
measurements from adjacent monitoring wells, (c) lake levels from nearby lake-level gages and
(c) rainfall data from nearby gauging stations. The study will investigate the correlation
structure between various data types and test the applicability of simple multivariate linear
models to generate daily discharge records based on these other variables for the common period

of record.

This report presents the results of data screening and preliminary statistical analysis for
rainfall, groundwater level, and spring discharge data for Rock and Wekiva springs. It also
explores the use of empirical models to provide estimates of daily discharge at these springs.
These statistical models will take advantage of all available data to try to provide the most
accurate estimates. I1n general, early time records are sparse and often not available for a number
of locations. This will require the use of different models ranging in sophistication from simple
correlation based models to multivariate regression models which can only be constructed when
enough supporting data (e.g., rainfall and groundwater levels) are available at a sufficient
number of nearby locations. These models will be used to run a continuous simulation model
covering the period of record referenced by the constituent data. From the results of statistical
modeling, standard flow-duration analysis for the system (discharge versus percent exceedance
for the long-term simulation) will be conducted and standard high- and low flow frequency

analyses for the system (frequency of spring discharge for set durations) will be carried out.

Thisreport is organized as follows. Data screening and preliminary statistical analysis are
described in Section 3. Section 4 contains the regresson modeling methodology and the
regression models developed for Rock and Wekiva springs. In section 5, daily discharge
predictions are presented along with flow duration curves and frequency analyses for each of

these springs. Section 6 contains conclusions and recommendations from this study.
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3.0 DATA SCREENING AND PRELIMINARY ANALYSIS

This section summarizes the available data and shows the results of data screening and
preliminary statistical analyses conducted for the available time series. The objective of these
analyses is to identify the correlation structure between the spring discharge at the springs of
interest and the other time series. Results from these analyses will be used to guide the

construction of explanatory models which will predict daily discharge values at each spring.

3.1 Data sources

Figure 1 shows a map of the study area and highlights the location of various data
sources. Although the map shows numerous groundwater wells around the springs of interest,
very few wells have data records with consistent frequency and along enough period of record to
be considered for statistical modeling. The selected groundwater wells with a reasonable data
frequency and period of record have been highlighted in the map. Also, one long term NOAA
rainfall gage has been selected which is discussed below. The following data sources were used
in estimating daily flow duration curves for each spring (Figure 1):

e Measured discharge at Rock and Wekiva springs
e Groundwater level measurements at monitoring wells:

0 283250381283401, USGS W. OR47 at Orlo Vista (hereafter w283401)

0 283204081544902, USGS shallow well near Mascotte (hereafter w544902)
o Precipitation measurements at rain gages.

0 Orlando Rainfall

The above list of data sources includes only the data used in the final regression models. Other
water level data from nearby monitoring wells were used to fill in gaps (via regression) in the
water levels at wellsw283401 and w544902. Those locations were:

e Groundwater level measurements at monitoring wells:
0 283249081053201, OR-0007 Bithlo 1 Well at Bithlo, FL (hereafter w053201)

0 283204081544901, USGS deep well near Mascotte (hereafter w544901)
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Variables were selected from the large initial dataset by performing a correlation analysis
on all variables versus discharge for each spring. The variable with the highest correlation
coefficient was included in the model; other variables were added in a step-wise fashion and only
those that increased the R? the most were included in the final model (see Section 4.0 below). In
order to conduct exploratory data analysis and select the final model variables, a database was
compiled of spring discharge (response variable), groundwater levels (explanatory variable) and
precipitation (explanatory variable) with a common time basis. Table 1 shows summary
statistics (i.e., minimum, maximum, average and standard deviation) for these various data types

aswell as datafor Rock and Wekiva springs.

With respect to the selection of the rainfall station to be used in the analysis, both the
Orlando and Sanford rainfall stations were considered. However, the Orlando rainfall station
yielded a higher R? and more statistically significant regression parameters than the other rainfall
stations when included in the final multiple regressions. While the Sanford Rainfall station is
closer to the springs of interest, the Orlando station was selected because it falls within the

watershed boundary of the springs and gave a slightly higher R? than the Sanford rainfall station.

The frequency of observation for each data type was subsequently calculated. This is
useful for determining appropriate lag and moving average windows. Moving averages were
calculated for recorded water levels, precipitation and spring discharge at adjacent springs at
selected lag times: 1, 2, 3, 4, 6, 8, 12, 24, 48, and 52 weeks for use in the regression modeling
discussed below. These moving averages act as independent variables and carry useful
information regarding the physical state of the system prior to the time of interest.

Table 1 Basic statistics for data at Rock and Wekiva springs, 1931-2005.
Data type Date Range N obs Min | Max | Average | Std Dev
Rock Springs (cfs) 2/5/1931 - 9/30/2005 2426 | 341 | 832 53.4 8.0
Wekiva Springs (cfs) 3/8/1932 - 9/30/2005 666 386 | 917 66.8 5.8
Orlando Rainfall (in) 1/1/1942 - 12/31/2004 | 22643 0 8.4 0.1 0.4
w283401 (ft) 8/1/1943 - 9/30/2005 19963 | 48.3 | 80.8 61.8 5.2
w544902 (ft) 1/28/1959 - 9/30/2005 | 15546 | 94.9 | 1035 | 100.4 1.4
w544901 (ft) 1/27/1959 - 9/30/2005 | 15828 | 939 | 102.7 | 99.8 1.4
w053201 (ft) 6/2/1961 - 9/30/2005 15892 | 28.7 | 43.2 35.9 2.0
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3.2 Frequency analysis

Table 2 shows the mean, minimum, and maximum of frequency of observation for each
data type for Rock and Wekiva springs. Rock Springs had three periods with different
frequencies. from 1931-1959, one to three measurements were made per year in 15 different
years. From 1960-1997, average measurement frequency was once every 75 days, and daily
measurements were made from 10/1/1998 to 9/30/2005. Wekiva Springs also had three periods
with different measurement frequencies. from 1932-1959, one or two measurements were made
per year in 10 different years; from 1960-2003, average measurement frequency was once every
74 days, and daily measurements began from 4/30/2003, but with frequent data gaps.

Table 2 Data frequency and gap analysis.
Observation Isolated
DEIENES frequency (days) gzl Cefp (g (RS measurements
Mean Min Mean Min Max

Rock Springs (cfs) 143 Daily 250 99 1 3639 1931-1962
Wekiva Springs (cfs) 129 Daily 364 77 1 3641 1931-1967
Orlando Rainfall Daily Daily 0 - - - -

WL @ w283401 (ft) Daily Daily 203 15 1 101 None
WL @ w544902 (ft) Daily Daily 61 26 1 420 None
WL @ w544901 Daily Daily 34 36 1 419 None
WL @ w053201 Daily Daily 40 16 1 110 None

Daily data were available for the wells for most of the period of record but with several
gaps ranging from a day to several months or ayear (Table 2). For gaps less than 15 days, linear
interpolation between observed points was used. For well w544902 and gaps longer than
15 days, aregression of the water level in well w544902 on the water level in well w544901 was
calculated for data 30 days prior to and after the data gap, and the regression used to interpolate
values at w544902 (average R? = 0.84). Both wells w544901 and w544902 were missing data
for 10/1/2003 to 11/22/2004; alinear regression of well 544902 on well w053201 for 2000-2005
(W544902 = 0.6641*w053201+77.096, R? =0.71) was used to predict the levels for w544902 for
that time period.
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3.3 Analysis of overlap

Periods of overlap between different data types were analyzed for each of the springs of
interest (Figure 2). Thisis useful for determining how the period of record can be split up into
sub-periods with common sets of explanatory variables. The frequency of observation for each
data type was subsequently calculated. Moving averages were calculated for recorded water
levels, precipitation and spring discharge at adjacent springs at selected lag times:. 1, 2, 3, 4, 6, 8,
12, 24, 48, and 52 weeks for use in the regression modeling discussed below.

Figure 2 shows the overlap between various data types for the Rock and Wekiva springs.
Shown here are the periods of record for: (a) Rock and Wekiva spring-discharge,
(b) groundwater levels at monitoring wells w283401 and w544902 and (c) precipitation
measurement at Orlando. Also indicated therein is the average frequency of observation for each
data type (as was discussed in detail in the previous section). As previously mentioned, Rock
Springs had three periods with different frequencies: from 1931-1959, one to three
measurements were made per year in 15 different years. From 1960-1997, average measurement
frequency was once every 75days, and daily measurements were made from 10/1/1998 to
9/30/2005. Wekiva Springs also had three periods with different measurement frequencies:
from 1932-1959, one or two measurements were made per year in 10 different years; from
1960-2003, average measurement frequency was once every 74 days, and daily measurements

began from 4/30/2003, but with frequent data gaps.

For the regression modeling, the time-period 1959-2006 was divided into two periods
according to the temporal frequency of the measurements of spring discharge, and due to a linear
trend in discharge over 1959-1998 (Rock Springs) or 1959-2003 (Wekiva Springs). Using only
one time period resulted in poor regression predictions, since the high density of data points over
1998-2005 (Rock Springs) or 2003-2005 (Wekiva Springs) resulted in biased regression
parameters.

From 1959, severa time series are available which could be used to estimate daily
discharge at Rock and Wekiva springs. Several USGS observation wells (N = 19) had daily data

for some period over 1959-2005, but only three wells (w283401, w544901, w544901 and
w183401) had data from 1959. Data for most of the other wells started in the 1960s. Rainfall
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was available at four rain gage stations; only two stations close to the springs (Orlando and
Sanford) showed statistical significance in the regression modeling.

Based on the above discussion of overlap anaysis for Rock and Wekiva springs, the
following two datasets are used for Partial Correlation Coefficient and Stepwise Analysis to

build aregression model:

e Dataset for Rock Springs regression model to predict pre-1998 Rock Springs discharge

values:

0 Dependent variable: Rock Springs (203 discharge values from 11/24/1959-
12/31/1997)

0 Independent variables:

4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Rock Springs

= Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w283401

= Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w544901

= Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w544902

= Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving

averages of rainfall at Orlando
" Year

e Dataset for Rock Springs regression model to predict post-1997 Rock Springs discharge

values:
0 Dependent variable: Rock Springs (2213 discharge values from 1/1/1998)
0 Independent variables:

» 46, 8, 12-, 24-, 48-, and 52-week moving averages of Rock Springs
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Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w283401

Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w544901

Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w544902

Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving

averages of rainfall at Orlando

Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of rainfall at Sanford

o Dataset for Wekiva Springs regression model to predict 1959-2002 Wekiva Springs

discharge values:

0 Dependent variable: Wekiva Springs (251 discharge values from 11/25/1959)

0 Independent variables:

Final Report

Daily discharge predictions and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week

moving averages of Rock Springs

Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w283401

Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of w544902

Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48- and 52-week moving
averages of w544901

Dally observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of rainfall at Orlando

Daily observations and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of rainfall at Sanford



e Dataset for Wekiva Springs regression model to predict 2003-2005 Wekiva Springs

discharge values:
0 Dependent variable: Wekiva Springs (409 discharge values from 1/15/2003)
0 Independent variables:

= Dally discharge at Rock Springs, 30-day window on either side of gaps.

3.4 Partial correlation coefficient and stepwise analysis

Partial Correlation Coefficient (PCC) is the degree of correlation between any two
variables, all others being kept constant. PCCs can be used to find which variables are
responsible for multicollinearity. Thus PCCs can be used to drop the explanatory variable(s)
which causes multicollinearity. Another option is to include all the variables in the stepwise
regression analysis, where variables are added or removed one at a time until no additional
variables can be found that improve the goodness-of-fit of the input output model. Stepwise
procedures select the most correlated independent variable first, remove the variance in the
dependent, then select the second independent which most correl ates with the remaining variance
in the dependent, and so on until selection of an additiona independent does not increase the
R-squared by a significant amount (significance = .05). In other words, stepwise regression
chooses the variables with the highest partial correlations and includes variables until the partial
correlation of all remaining excluded variables with the dependent variable is below some limit.
This selection process in away ensures that no variables with high multicollinearity are picked in

the regression model using stepwise regression.

The PCCs and Pearson correlation coefficients for Rock springsis presented in Tables 3
and 4 for the time periods 1959 to 1997 and from 1998 to 2005. For both datasets, some
variables had high Pearson correlation coefficients but low PCCs, and vice-versa. This can
happen if the independent variable correlates strongly with the other variables in the dataset,
which islikely given the number of variables tested (45). In order to obtain a regression with the
fewest independent variables and highest adjusted R?, the variable with the highest Pearson r was
selected first for the stepwise analysis. This may result in some variables with alow PCC in the
context of the entire dataset being included in the final variable selection, for example the Rock
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Table 3 PCCs, Pearson correlation coefficients (r), and variables selected in stepwise
regression for the Rock Springs dataset for predicting discharge from

1959-1997.
Variable PCC r
Year -0.32 0.00
W544901 -0.17 0.30
W544902 0.18 0.26
W283401 0.11 0.65
W384601 -0.05 0.51
W384602 0.13 0.43
W040101 0.15 0.51
Apopka Rainfall 0.05 0.11
Deland Rainfall 0.09 -0.05
Leesburg Rainfall 0.21 0.13
Lisbon Rainfall -0.23 0.02
Orlando Rainfall -0.28 -0.09
Sanford Rainfall 0.14 0.04
RockSpring.48wk 0.27 0.57
W283401.1wk -0.09 0.63
W283401.2wk -0.13 0.63
W283401.4wk -0.13 0.63
W283401.6wk 0.05 0.62
W283401.8wk -0.08 0.61
W283401.12wk 0.05 0.59
W283401.24wk 0.15 0.50
W283401.48wk -0.20 0.34
W544902.1wk -0.06 0.28
W544902.2wk 0.04 0.25
W544902.4wk -0.09 0.23
W544902.6wk 0.11 0.24
W544902.8wk 0.01 0.25
W544902.12wk -0.12 0.22
W544902.24wk 0.00 0.22
W544902.48wk -0.07 0.08
SANFORD.1wk 0.19 0.27
SANFORD.2wk -0.03 0.28
SANFORD.4wk -0.05 0.25
SANFORD.6wk 0.08 0.28
SANFORD.8wk -0.08 0.34
SANFORD.12wk 0.12 0.39
SANFORD.24wk 0.09 0.45
SANFORD.48wk 0.10 0.59
ORLANDO.1wk -0.08 0.14
ORLANDO.2wk 0.06 0.14
ORLANDO.4wk 0.02 0.16 | Rock Springs 1959-1997 Selected variables
ORLANDO.6wk -0.12 0.11 Variable PCC
ORLANDO.8wk 0.13 0.21 Year -0.13
ORLANDO.12wk -0.11 0.29 RockSpring.48wk 0.57
ORLANDO.24wk 0.16 0.41 W283401.1wk 0.36
ORLANDO.48wk 0.04 0.59 ORLANDO.48wk 0.57
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Table 4 PCCs, Pearson correlation coefficients (r), and variables selected in stepwise
regression for the Rock Springs dataset for predicting discharge from

1998-2005.
Variable PCC r
Year -0.17 -0.23
W544901 0.00 0.69
W544902 0.02 0.65
W283401 0.04 0.86
W384601 0.22 0.81
W384602 -0.22 0.78
W040101 -0.10 0.83
Apopka Rainfall 0.03 0.00
Deland Rainfall 0.00 -0.06
Lisbon Rainfall -0.02 -0.04
Orlando Rainfall -0.06 -0.10
Sanford Rainfall 0.03 -0.05
RS.48wk Rainfall 0.16 0.40
W283401.1wk 0.03 0.87
W283401.2wk 0.03 0.87
W283401.4wk 0.11 0.87
W283401.6wk 0.01 0.86
W283401.8wk -0.11 0.84
W283401.12wk 0.02 0.80
W283401.24wk -0.18 0.59
W283401.48wk -0.24 0.34
W544902.1wk -0.06 0.66
W544902.2wk -0.05 0.66
W544902.4wk 0.02 0.66
W544902.6wk -0.12 0.65
W544902.8wk 0.02 0.65
W544902.12wk -0.12 0.62
W544902.24wk 0.23 0.50
W544902.48wk -0.08 0.44
SANFORD.1wk -0.01 -0.08
SANFORD.2wk 0.02 -0.05
SANFORD.4wk 0.13 -0.01
SANFORD.6wk -0.07 0.04
SANFORD.8wk -0.04 0.09
SANFORD.12wk -0.14 0.20
SANFORD.24wk 0.04 0.52
SANFORD.48wk -0.08 0.35
ORLANDO.1wk 0.04 -0.13
ORLANDO.2wk 0.04 -0.09
ORLANDO.4wk -0.11 -0.05
ORLANDO.6wk -0.01 0.01
ORLANDO.8wk -0.19 0.05 Rock Springs 1998-2005 Selected variables
ORLANDO.12wk 0.07 0.19 Variable PCC
ORLANDO.24wk 0.08 0.57 W283401.1wk 0.74
ORLANDO.48wk 0.19 0.67 W544902.1wk 0.23
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Springs regression for 1998-2005 (Table 4). However, such variables have high and statistically
significant PCCs in the final variable dataset (see "Selected Variables' sub-table in Tables 3
and 4). After selection of the first variable, each variable in the list of variables was then added

one at atime to test for the PCC of the new variable. At each step, only the variable with the
largest PCC value was retained, and variables were added until none had statistically significant
PCCs. The PCCs and Pearson correlation coefficients for Wekiva Springs is presented in
Table5 for the time period 1959 to 2003. As with the Rock Springs datasets, Wekiva Springs

has some variables had high Pearson correlation coefficients but low PCCs, and vice-versa.

PCCs, Pearson correlation coefficients (r), and variables selected in stepwise

regression for the Wekiva Springs dataset for predicting discharge from

Table 5
1959-2003.
Variable PCC r
Y ear -0.16 0.01
W544901 0.17 0.51
W544902 -0.07 0.46
W283401 -0.07 0.64
W384601 0.36 0.56
W384602 -0.42 0.50
W040101 -0.24 0.52
Apopka Rainfall 0.08 -0.02
Deland Rainfall -0.02 -0.17
L eesburg Rainfall -0.26 -0.08
Lisbon Rainfall -0.07 -0.12
Orlando Rainfall 0.28 0.03
Sanford Rainfall -0.31 -0.03
Rock.spring 0.44 0.68
RS.48wk -0.18 0.30
W283401.1wk -0.17 0.64
W283401.2wk 0.24 0.65
W283401.4wk 0.04 0.64
W283401.6wk -0.16 0.63
W283401.8wk 0.11 0.62
W283401.12wk -0.13 0.61

continued on following page
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Table 5 (cont.)

Variable PCC r

W283401.24wk 0.17 0.57

W283401.48wk -0.05 0.37

W544902.1wk 0.13 0.52

W544902.2wk -0.22 0.48

W544902.4wk 0.09 0.47

W544902.6wk -0.14 0.48

W544902.8wk -0.01 0.46

W544902.12wk 0.17 0.42

W544902.24wk -0.22 0.48

W544902.48wk 0.24 0.38

SANFORD.1wk 0.30 0.33

SANFORD.2wk -0.02 0.32

SANFORD.4wk 0.08 0.33

SANFORD.6wk -0.27 0.27

SANFORD.8wk 0.35 0.31

SANFORD.12wk -0.06 0.27

SANFORD.24wk 0.07 0.44

SANFORD.48wk -0.25 0.55

ORLANDO.1wk -0.26 0.00

ORLANDO.2wk 0.23 0.03

ORLANDO.4wk -0.38 0.03 Wekiva Springs 1959-2003 Selected variables
ORLANDO.6wk 0.24 0.03 Variable PCC
ORLANDO.8wk 0.02 0.05 Rock.springs 0.49
ORLANDO.12wk -0.22 0.07 W283401.8wk 0.10
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4.0 REGRESSION MODELING

4.1 Methodology

The objective of regression modeling is to build a multivariate linear input-output model
between the response variable (spring discharge) and the surrogate predictor variables (measured
values and moving averages of spring discharge, groundwater and precipitation) at the spring of
interest (Montgomery and Peck, 1992). Such arelationship can be expressed by:

0t = fo + f10ei + P2 hej+ P Ft € (1)

where g is spring discharge; h is groundwater level; r is precipitation; € is a random error term;
Po, 1, P2, and f3 are regression coefficients; t is time, and i, j, and k denote lags that maximize
the correlation between the response and predictor variable pair of interest. Since spring
discharge may depend on the average groundwater condition or precipitation over some time

window, moving averages may aso be included in the regression model:
[Spring discharge] = f {[same spring MA] + [groundwater level MA] +
[precipitation MA] + [adjacent spring MA]} 2

Depending on the information available for the spring of interest, the regression model can
contain al four termsin Eq. (2). Thisis especialy true for periods when detailed measurements

of groundwater levels are available.

As described earlier, the model building process can be carried out using stepwise
regression, where variables are added or removed one at a time until no additional variables can
be found that improve the goodness-of-fit of the input-output model. At each successive step in
the regression modeling process, the variable that explains the largest fraction of unexplained

varianceisincluded.

The model generated at every step is tested to ensure that the each of the regression
coefficients is significantly different from zero. A partial F-test, or, an equivalent t-test, is used
to reject the hypothesis that a regression coefficient is zero, at a 100(1 - a)% confidence level
(Montgomery and Peck 1992). The stepwise regression process continues until the input-output

model contains al of the input variables that explain statistically significant amounts of variance
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in the output, i.e.,, no more variables can be found with a statistically significant regression
coefficient.

Even when all variables have datistically significant regression parameters,
multicollinearity may inflate the variance of the regression parameter values, causing uncertainty
in model predictions, particularly outside the calibration domain. The variance inflation factor
guantifies the degree of multicollinearity for each independent variable, and is calculated as:

1

VIFj =
J 1-R?

3)

where the VIFj is the variance inflation factor for independent variable j, and R? is the R? of the
multiple regression of variable j on all other independent variables (Montgomery and Peck

1992). A VIF larger than 10 indicates severe multicollinearity problems.
The workflow for modeling the spring discharge can be summarized as follows:

e Split the period of record into a late-time period, where spring discharge measurements
are available, and an early time period where only limited spring discharge measurements

are available.

e For each period, organize the spring discharge data (response variable) and the
corresponding daily and moving averages of groundwater levels, precipitation, discharge

at same spring and discharge at adjacent springs (predictors).

e Retain only those predictor variables for which the number of data pointsis at least 80%
of the number of spring discharge measurements. This threshold has been applied to
ensure that the characteristics of the spring discharge time series can be captured as much
as possible by the regression model.

e Build a stepwise regression model between spring discharge (response) and some or all
of the following predictors. discharge at same spring, discharge at adjacent springs,

precipitation, and groundwater levels.

An important point to note here is that these regression models are being built with the
“best available data.” The quality of the model therefore depends on data coverage, presence of
groundwater monitoring wells and lake levels in the immediate vicinity, and availability of

discharge measurements at nearby springs that can be used as ancillary data sources.

Final Report 17 INTE3A



4.2 Regression models for Rock Springs

High data frequency from 1998-2005 complicated the use of a single regression equation
(2) to predict daily flow at Rock Springs. Calibration of alinear model to the entire time-series
gave strong weighting to the 1998-2005 period which yielded poor predictionsin earlier periods.
In order to reduce prediction errors, piecewise regression was used, including two time-periods
that reflected data availability: 1959-1997 and 1998-2005.

Step-wise regression was used to identify the optimal model. The first variable added
was the one with the highest correlation coefficient with Rock Springs discharge. Additiona
variables were added one at a time, and only variables with statistically significant regression
parameters (p<0.01) were included in the final regression. Variance inflation factors (VIFs) were
computed for each independent variable; a value greater than 10 indicates potentialy severe
multicollinearity. All of the independent variables in the Rock and Wekiva springs models had
VIFs below 10 (1.8-5.0) indicating minimal multicollinearity.

The resulting regression model for 1959-1997 is shown in Table 6 and a plot of predicted
versus observed 1959-1997 is shown in Figure 3. The residuals were normally distributed but
with some evidence of heavy-tails (Figure 4) which may generate outliers that influence the
regression parameters (Montgomery and Peck 1992). The departure from normality is relatively
minor, and the regression model is assumed to give unbiased estimates of regression parameters
and spring discharge. The resulting regression model for 1998-2005 is shown in Table 7, and the
fit and normality of residuals are shown in Figures 5 and 6.

Table 6 Rock Springs - 1959-1997 — Regression Statistics.

Regression Summary for Rock Springs 1959-1997:
R2 =0.758. F statistic 145.5 on 4 and 186 degrees of freedom. p-value <1E-15. Residual standard error: 3.501 cfs).
pistheregression slope for each variable asin Equation 1, and the p-value is the statistical significance of S.

N =190 B Std dev of g p-value VIF;
| ntercept 210.8 67.7 0.0022 -

Orlando.48wk 46.47 14.9 0.0022 1.8
RS.48wk 0.505 0.070 1010 2.6
w283401.1wk 0.627 0.102 108 2.8
Year -0.114 0.033 0.0008 2.0
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Table 7 Rock Springs - 1998-2005 — Regression Statistics.

Regression Summary for Rock Springs 1998-2005:
R2 = 0.9105. F statistic 8882 on 2 and 1803 degrees of freedom. p-value <1E-15.
Residual standard error: 2.578 cfs).

N = 1805 S Std dev of p-value VIF;
I ntercept -101.9 36 107 -

w283401.1wk 1.489 0.023 10" 2.9
W544902.1wk 0.714 0.046 10" 2.9

To compare observed versus predicted discharges, it is aso useful to consider the
variance values for the two records. The F-test for variance equality is often employed for this
purpose. Thistest makes a statistical comparison between the variances of two data sets through
the calculation of three values (Ott, 2006):

e Caculated F-value: depends on the variance values for the observed and predicted

discharge values and the two sample sizes,

e Critical F-value: depends on the two sample sizes and the desired significance level for
the test, and

e P-value: calculated based on the difference between the calculated and critical F-values.

If the Calculated F-value is greater than the Critical F-value then, reject Hy (the null
hypothesis which states that the standard deviations of two normally distributed populations are
equal, and thus that they have similar spreads) at the chosen level of confidence (alpha= 0.05).
If thisis the case then look at the P-value to evaluate the chances of observing an F-value that is
greater than the calculated value.

In general, it is expected that regression-predicted values are generally smoother than
actual observed discharge values. To quantify the effects of this smoothing on the generated
period of record, two tools are used, a quantitative evaluation and visual comparison. The
guantitative evaluation is the Kolmogorov-Smirnov (K-S) test which evaluates the differences
between the empirical distribution functions for the observed and predicted time-series
(D'Agostino and Stephens, 1986). Under the null hypothesis that the two cumulative distribution
functions are identical, the test statistic D for this test is the greatest absolute vertical distance
between the two empirical distribution functions. This test statistic is not dependent on the two
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underlying distributions. Therefore the p-value for thistest is only dependent on the two sample
sizes, which can be different.

The K-S D statistic can be used to evaluate if the two cumulative distributions functions
(CDFs) are statistically similar.  Another qualitative tool often employed to compare two data
sets is the box-whisker plot (also known in the literature as the box plot, Ott, 2006). This plot is
a convenient way of graphically depicting the location and spread of the two (or more) data sets.
The plot shows the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and
largest observation. Furthermore, the plots show which observations, if any, are considered to be
outliers. These plots visually show different types of populations, without any assumptions of
the statistical distribution or requirements about the sample sizes. The box size (difference
between Q3 and Q1) helps indicate variance. Skew is also graphically shown through (1) the
location of the median in relation to Q1 and QS, (2) the maximum and minimum values, and

(3) the number of value of outliers.

Table 8 shows the F-test and K-S test between observed Rock spring time-series and
predicted Rock Springs time-series on days corresponding to observed data. Results for the
F-test indicate that there is no significant difference between the two variances; with a 22%
chance of observing the calculated F-value under the equal variance hypothesis for this sample
size. However, the K-S D dtatistic shows a significant difference between the two empirical
CDFs.

Figure 7 shows the box-whisker plots for three data sets:
(1) observed discharge values at Rock Springs for the time period 1959-2005,

(2) regression-predicted values for the same dates at which observed discharge value are
available. These predicted values come from two different regression models as
described above, and

(3) regression-predicted values from the two regression models for each day in the time
period 1959-2005.

The plots show that the observed discharge values at Rock Springs show dlightly higher
variability than the regression-predicted values (data sets 1 and 2). However, data set 3 (which
shows a complete record of pooled model predictions) shows dightly higher variability than data
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set 2. This shows that the regression predictions show dlightly higher variability than the

observed values. It is expected, however, that more variance would have been observed if more

observations had been made in the same time period. In conclusion, the regression-predicted

values show a similar range of variability as the observed discharge values with the complete

daily predicted record showing plausible variability.

Table 8 Rock Springs - 1959-2005 — Observed and Regression-Predicted Variance
Statistics.
Rock (predicted) Rock (observed)
Mean 53.95 53.37
Variance 66.00 63.99
Observations 2411 2411
df* 2410 2410
F 1.03
P(F<=f) one-tail 0.22
F Critical one-tail 1.07
K-SD statistic 0.07
p-value for K-S test 0.00

* df are the degrees of freedom which are equal to the sample size

minus 1 for the F-test.
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4.3 Regression models for Wekiva Springs

Wekiva Springs had much less data than Rock Springs, so Rock Springs was used as an
independent variable in the regression. Wekiva Springs discharge correlated well with Rock
Springs discharge (R? = 0.65) until 2003-2005 (Figure 8). The time series of Wekiva Springs
was divided into two periods, 1959-2002 and 2003-2005, since daily data with gaps was
available from 2003-2005 and monthly or tri-monthly data was available from 1959-2002. As
with Rock Springs, separating the data was important for preventing dominance of the period
with daily records, which reduces model fit and predictive capability in the earlier period with
less data. Table 9 lists the resulting regression model and the fit and normality of residuals are

shown in Figure 9 and Figure 10, respectively.

Starting in April, 2003, Wekiva Springs had a near daily time-series with gaps of less
than 15 days, so the small gaps were filled using linear interpolation. For the 2003-2005 period,
gaps larger than 30 days were filled using linear regression on Rock Springs discharge. The
linear regression was computed using observed discharge at Wekiva Springs as the dependent
variable and observed discharge at Rock Springs as the independent variable over a moving

window 30 days before and after the gap.

Table 9 Wekiva Springs - 1959-2002 — Regression Statistics.

Regression Summary for Wekiva Springs 1959-2002:
R2 = 0.6849. F statistic 207.6 on 4 and 146 degrees of freedom. p-value <1E-15.
Residual standard error: 4.107 cfs

N =148 S Std dev of g p-value VIF;
I ntercept 2.727 5.304 0.608 -

Rock_spring_daily 0.60443 0.07448 10" 5.0
w283401.8wk 0.50994 0.14112 0.0004 5.0

To compare observed versus predicted discharges, the same methods described before for
Rock Springs are used for Wekiva Springs. Results for the F-test and K-S D statistic are shown
in Table 10. Results for the F-test indicate that there is a statistically significant difference
between the two variances; with values of 32.26 and 21.63 for the observed and regression-
predicted values, respectively. The K-S D satistic shows a similar significant difference
between the two empirical CDFs.
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As mentioned before for Rock Springs, the F-test and the K-S D statistic do not show the
nature of the difference between the two time series. To provide some insight into these
differences, Figure 11 shows the box-whisker plots for the observed and regression-predicted
discharge values (along with the complete regression-predicted period of record). The plots
show that the differences between the observed and predicted values are largely due to the
existence of more outliers and extreme values in the observed time series. The non-outlier range
is amost identical for the two time series. As with Rock Springs, data set 3 (which shows a
complete record of pooled model predictions) shows much more variability than data set 2, with
an overall variability that is dightly higher for the observed record. It is expected, however, that
more variance would have been observed if more observations had been made in the same time
period. In conclusion, the regression-predicted values show a reasonably similar range of
variability as the observed discharge values with the complete daily predicted record showing
plausible variability.

Table 10 Wekiva Springs - 1959-2005 — Observed and Regression-Predicted Variance

Statistics.
Wekiva(observed)  Wekiva(predicted)
Mean 66.54 65.30
Variance 32.26 21.63
Observations 633 633
df 632 632
F 1.49
P(F<=f) one-tail 0.00
F Critical one-tail 1.14
K-S D statistic 0.20
p-value for K-S test 0.00
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5.0 PREDICTION OF DAILY DISCHARGE AND FLOW
DURATION

5.1 Methodology: Regression models and linear gap filling

The objective of regression modeling and gap filling is to provide a historic daily time
series of spring discharge, using both observed discharge data and other observed data such as
well levels and rainfall. The Rock and Wekiva springs had several years of daily data from
1998-2005 and several years with data observation frequencies of 45 days or better. In order to
not discard observed data, the final data series included the observed data points, and gaps filled
using one of two methods 1) multiple regressions, which predicted the discharge on unmeasured
days given the well levels and rainfall and 2) linear interpolation between observed discharge
points. Linear interpolation was most valid for small data gaps (1-30 days) and regression was
more valid for longer gaps, where the discharge between two observed days may not be linear.
The daily time-series for Rock Springs from 10/1/1998-9/30/2002 had no gaps, and was used to
calculate the errors generated by using either linear interpolation or regression. For example,
Figure 12 shows how linear interpolation fits the observed time series better for 20-day gaps, but
regression performs better for 90-day gaps.

Whether regression or linear interpolation is used to fill gaps depends on the gap length
and the R? of the regression model, with longer gaps requiring regression. In order to determine
the threshold gap length where linear interpolation will be used instead of regression, the daily
time-series for Rock Springs from 10/1/1998-9/30/2002 was used to generate synthetic daily
discharge time series using linear interpolation for a range of gaps (10-120 days). Flow duration
curves (FDC) were then generated for the observed data (the “true” FDC), the linearly
interpolated data, and the regression time-series (Figure 13). The root mean sguare error
(RMSE) between the observed flow duration curve and the FDCs generated using either linear
interpolation or regression for different gap lengths (10-120 days) were calculated by summing
the squared difference in fraction exceedance for each discharge amount, and taking the square

root of the sum after dividing by the number of discharge values.
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The plot of RMSE for the flow duration curve versus gap length (Figure 14) suggests that below
a 30-50 day gap length, linear interpolation gives lower error than regression. This is a minimum
threshold for the gap length for linear interpolation, since the R? of the regression over 1998-2005 was
high (R*> = 0.91). For a lower R? a higher gap threshold may provide more accurate flow duration
curves. Here we generate two daily discharge time-series and flow duration curves:. one set with a gap
threshold of 30 days, and another with gap threshold of 60 days. This will provide an estimate of the
effects of using each threshold gap length for the overall flow duration curve.

5.2 Daily discharge and flow duration curves for Rock Springs

The Rock Springs daily discharge series was calculated using the estimate from the linear
regression model on gaps larger than 30 days, and linear interpolation on gaps smaller than 30 days.
The time-series of observed and modeled discharge shows generally good agreement for 1959-1997
(Figure 15) and 1998-2005 (Figure 16). The time-series from 1959-1997 had few gaps smaller than
30 days, so the regression model was used to predict discharge for most days during that time period.
The 1998-2005 period, by contrast, had many small gaps that were filled using linear interpolation. In
Figure 16, the blue line is the regression prediction; the yellow line is produced using linear
interpolation between points for gaps less than 30 days and the regression model for gaps longer than
30 days.

Daily flow duration curves (FDCs) over 1998-2005 for Rock Springs based on the daily
discharge time-series are shown in Figure 17. In Figure 17, the red line is the regression prediction, the
blue line is the gap-filled time series with a gap threshold of 30 days and the green line is the gap-filled
time series with a gap threshold of 90 days. Overall, the linear interpolation over gaps 30 days or

smaller predicted the observed time series better than regression alone.

The FDC for Rock Springs changed over time. Discharge at all frequencies decreased from the 1960s
through the 1990s, so that the FDC for 1998-2005 is significantly lower than the FDC for 1959-1997
(Figure 18). FDCs may change temporarily and reversibly in response to climate shifts, such as changes
in precipitation, or they may change permanently due to groundwater pumping or land use change. The
mechanism for the change in the FDC at Rock Springs is not known and is beyond the scope of this
current work. The high and low flow frequency analyses for Rock Springs are shown in Figures 19a
and 19b.
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5.3 Daily discharge and flow duration curves for Wekiva Springs

The daily discharge time-series for Wekiva matches the observed time series well, though
some highs and lows were missed as expected in regression predictions (Figure 20). In
Figure 20, the black line is the regression prediction; the yellow line is produced using linear
interpolation between points for gaps less than 30 days and the regression model for gaps longer
than 30 days. Linear interpolation and regression on the 60-day moving window gave good
matches between observed and predicted flow over 2003-2005 (Figure 21). Daily FDCs for
Wekiva Springs show good fit to the observed FDC for 2003-2005 (Figure 22 top). As with
Rock Springs, the FDC for Wekiva Springs was significantly lower in 2003-05 compared with
1959-2002 (Figure 22 bottom). As with Rock Springs, the reasons for this decline are not
documented in this report. High and low flow frequency analyses are presented in Figure 23 and
Figure 24.
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6.0 CONCLUSION AND RECOMMENDATIONS

This document presents an evaluation of the spring discharge data for Rock and Wekiva
springs; groundwater levels at adjacent monitoring wells, and precipitation measurements at
nearby rain gage stations. Based on this evaluation, a regression modeling methodology is
developed and applied for generating historic daily spring discharge records at Rock and Wekiva
springs. Flow duration curves are also generated along with high- and low-frequency analyses
for set durations from the simulated daily spring discharge. The following general conclusions
can be made based on this study.

o Measurements of well levels were available at a daily time step for the wells used for

flow prediction.

e Two regression models were required for each spring: one where daily discharge
measurements were available with some gaps, and a second where discharge
measurements were at longer intervals. Separation into two time periods was required
in order to get representative regression parameters for each time period, and to avoid
giving too much weight to recent periods with high data frequency.

e The flow duration curves for both Rock and Wekiva springs changed over the study
period: discharge decreased at all probability levels. Flow duration curves based on the
historical time-series may not correctly represent current or future flow duration curves
due to changes in the relationships between precipitation, groundwater levels, and
spring discharge.

e The statistical modeling could be complemented by a more process-based approach that
includes the effects of pumping and land use change on spring discharge. Such an
exercise would help explain the causes of the decreased spring discharge over
1960-1990, and project whether such decreases are temporary and due to random

climate fluctuations, or permanent and due to land use change or groundwater pumping.

The daily period of record generated by the multiple regression models provides an
estimate for the historic time series of spring discharge values. These estimated discharge values
are developed for uses where such a time series is required, such as a frequency analysis of

historic flows for MFL determinations. It must be explicitly stated that the presented multiple
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regression models are not physical and should not be used for predictive purposes or to interpret
the relationships between spring discharge values and explanatory variables such as groundwater
levels, recorded rainfall, or recorded discharges at nearby springs. A specific caution is made
that predictions achieved by altering the explanatory variables from their observed values and re-

generating the spring discharge time series entail assumptions not supported here.
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Model Usage Notes

This Appendix describes the structure and operation of an ACCESS database created to facilitate
predictive applications of the statistical spring discharge models described earlier in Section 4.
An example using Rock Springs datais also presented.

1. Folder: springdailypredictions —

The folder springdailypredictions has two files as shown below:
e St.Johns.mdb
e Predictions.xls

& springdailypredictions

File Edit ‘iew Favorites Tools  Help

OBack - \_/I lﬁ /_j Search i Folders v

Address |[C3) Chispringdailypredictions

i Predictions. <ls : Stlohns. mdb

File and Folder Tasks e @ H | Microsoft: Excel Worksheet |_:I Microsoft Office Access Applic...
Sl | 5,561 KR 10,9558 KB

= Make a new folder

@ Publish this folder ko the
Web

& share this Folder

After building the statistical models, St.Johns.mdb —an ACCESS database was built for

applying the statistical models to generate daily predictions for the two springs. A screenshot of
the database is shown below.

i= StJohns : Database (Access 2000 file format)
Hopen B2 Desion “Thew | X | 2o _

Filing in data gaps Objerts ] Create table in Design view
] Tables Create table by using wizard
§ Queries Create table by entering data
Modified_data
O Modfied_d
Calculate Moving Average/ = Fams ’
Fock and Wekiva 2 original_Data
8 Reports T Rock Frequency Table-district
*ﬁ Pages = Rock-Frequency-Districk
2 Macros A Rock-predictions
Predict 3pring Discharge - Predict Spring Discharge: - 2 Y —
Rock Spring Wekiva Spring @& Moddes . .
Wekiva Frequency Table-distric
= Gwekiva Fr Table-district:
Groups O Wekiva-Frequency-District
(3] Favorites A Wekiva-predictions

Records (1 ¢ [~ 1 b []rklef o
On the |eft, are the different tables present in the database and on the right is a prediction
toolbox. The prediction toolbox executes ACCESS queries and/or VISUAL BASIC
APPLICATION Modules, on the click of different buttons. Predictions.xls — EXCEL file is

. =
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used to graphically display the daily predictions and frequency analysis generated in
St.Johns.mdb. The next few pages will walk the user through using the toolbox for generating
daily predictions and frequency analysis with the help of an example. It will also guide the user
on how to save the results for different cases.

In the example below, our primary task would be to get Rock Springs daily predictions from
1/1/1959 to 9/30/2005.

2. Open St.Johns.mdb

Open St.Johns.mdb (highlighted below) by double clicking the file.

& springdailypredictions

File Edit Wiew Fawvorites Tools  Help

@Back - \_/l lﬁ j.'_] Search 0= Faolders v

@ Predictions, xls :
H | Microsoft Excel Worksheet
=il | 5,561 KR i

Address |23 C:hspringdailypredictions

StJohns. mdb
Microsoft OFFice Access Applic, . )
10,955 KB

»

File and Folder Tasks

7 Make a new folder

@ Publish this Folder to the
Wieh

ed Share this Folder

The original spring discharge, groundwater elevation and precipitation data reside in the
“Original Data” ACCESS data table. The screenshot below indicates the Original Data table
within the database.

= StJohns : Database [Access 2000 file format)

Objecks
| 1 Tables Zh|  Create table by using wizard
E=:| T Creake table by entering daka
_ EH  modified data
== [FerneE = Coriginal_pata
i Reporks = Rock Frequency Table-diskrick
"g Pages =E Rock-Frequency-Diskrick
=2 e = Rock-predictions
= Rockwekiva_MovingAverages
«&  Modules = wekiva Freguency Table-district
GQroups E Wekiva-Frequency-Diskrick
&1 Fawvorites =  wekiva-predictions

Double-clicking this table would open the Original Data table as shown below.
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B Original_Data : Table

Date Fock Spring [Crando Rainfall]  w283401 whdA902E | Wekiva Spring | #
4 1411958 0.06
17211958 0.0z
17311958 a
1741958 a
1/5/1958 a B5.87
1461958 0.49
17711958 0.86
1/3/1958 a
1/9/1958 a
1/10/1958 a BE.31
1/11/1958 a
111241958 a
1113115958 a7
111471958 a
1/15/1958 0.05 BE.56
1/16/1958 0.01
111771958 a
1/18/1958 a
111941958 a
1/20/1958 a BE.22 -

Record: [E] 1 [I][E af 17440

The table has 17440 records for dates ranging from 1/1/1958 to 9/30/2005. If the user wants to
change a particular data time series, pasting the new time series (with dates from 1/1/1958 to
9/30/2005) over the old one is one of the waysto do it.

If the user has another ACCESS database with new time series data, it can be added to the
Original Data table using an Append Query. Append Query allows the user to append one or
more columns to the Original Data table. For example, if anew time series for w283401
becomes available, append the new data column asw283401 (new) using the Append Query.
Then delete the old w283401 column from Original Data table and rename w283401 (new) as
w283401. If datais not available for a particular date, the user can leave it blank as seen in
Original Data table for different variables.

3. Data Gap Filling to create “Modified Data” Table

Gaps in the datawhich are less than 30 days are filled by linear interpolation. The need to fill
data gaps for wells arises during the calculation of moving averages. Also, asindicated in the
report, spring predictions for Rock and Wekiva, for gaps less than 30 days, perform better than
predictions for Rock and Wekiva from regression.

Therefore the next step is clicking the “Filling in data gaps’ button on the prediction tool box.
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Prediction Toolbox

Fillimg in data gaps

{Calculate Mowing Average]
Rock and Wekiva E

Predict Spring Discharge - Predict Spring Discharge -
Rock Spring wekiva Spring

Record: [147] 1 [»1] of 1

Clicking this button creates a Modified data table as highlighted below:

i StJohns : Database [Access 2000 file format)

Objects !J Create table in Design view
| 1 Tables IZH]  Create table by using wizard
=hble i
ET—‘ Queries =8l by entering data
=
== Forms =
4 Reports &  Rock Frequency Table-district
i Pages 1 Rock-Frequency-District
2 Macros = Rock-predictions
1 Rockwekiva_MovingAverages
<2 Maodul
ues 1 wekiva Frequency Table-district
Groups E Wekiva-Frequency-Districk
%] Fawvorites =1  wekiva-predictions

Open the Modified data table by double-clicking on it. Below is the screenshot:

1 : Table (B3| = Modified_data : Table
Date | Rock Spring | Orlandao Ralnfaﬁl w?B3401 Date Orlando w283401
| SA1/1976 5] 57 .65 5111976 [5] 57 .65
B 5121976 2.66 57 .66 5121976 | 2.66 57 .68
|| 5/13/1976 0.71 57 .62 5/13/1976 0.71 57.62
i 5/14/1976 0.5 57.77 5141976 0.5 57.77
= 5/15/1978 2.12 58.39 5/15/1876 212 58.39
) B S/16/1978 0.04 58.64 5/16/1976 0.04 58.64
[ 217976 0.11 58.77 5171976 o.11 58.77
| 5181976 al 58.72 5181976 o 58.72
3 5/19/1976 [u] 58.6 5/19/1976 5] 58.6
1 5/20/1976 59 o 58.43 5/20/1976 [a] 58.43
] 5/21/1976 0.0z 58.34) 5/21/1976 p.oz 58.34
= 5/22/1978| | 0.15 58.47| 5/22/18976 0.15 58.47
| 5/23/1978 0.65 58.69 5/23/1976 0.65 58.69
[ 5/24/1976 o 58.76 5241976 [a] 58.76
] 5/25/1976 017 58.71 5/25/1976 0.17 58.71
= S5/26/1976 o] 58.67 S/26/1976 5] 58.67
| 5/27 /1976 0.15 58.58 S/27 1976 .15 58.58
[ 5/28/1976 0.96 58.89 5/28/1976 0.96 58.99
| 5/29/1976 0.3 58.97 5/29/1976 0.3 58.97
= S5/30/1976 | 0.05 58.97| 5/30/1976 0.05 58.97
| 5/31/1978 0.06 58.93 5/31/1976 0.06 58.93
] /11976 50.68 0.22 558.68 EAMG7E 0.22 58.88
] E/2/1976 .11 58.78 E/21976 011 58.78
= E/3/1976 1.21 58.92 E/3/1976 1.21 58.92
| E/4/1976 0.15 59.01 E/4/1976 .15 59.01
B/5/1976 o 591 6/5/1976 a 59.1
B/8/1976 o 59.19 E/6/1976 [a] 59.19
B/7 11976 o 59.29 B/7 51976 o 59.29
cmoanTe 1 R i comnTe A £n anl
Record: (14 ]« ] 715 [ _J[P1]3¥] of 17440 <3 Record: ()4 ][ &ris [(®_J[»1]»3K] of 17440 e
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The user would notice linear interpolation values (for data gaps less than 30 days) in the
Modified Table. For example, we see two Rock Springs observed values highlighted in
Original data. The Modified Table shows linearly interpolated values for Rock Springs
between dates 5/20/1976 and 6/1/1976

4. Calculating moving average variables for each spring

The statistical models in the report show the use of moving averages of different variables
(spring, groundwater level and rainfall data) for predicting daily discharge for each spring.
Computation of these variables, for each spring, is then performed by clicking the button
highlighted below.

Prediction Toolbox

Fillimg in data gaps

{Calcllate Moving Average]
i Rock and Wekiva H

Predict Spring Discharge - | Predict Spring Discharge -

Rock Spring wekiva Spring

Record: [147] 1 [»1] of 1

For example clicking on Calculate Moving Average/Rock and Wekiva would fill the table
RockWekiva MovingAverages present in the database. The screenshot below shows the table:

B RockWekiva_MovingAveraoee - Tahla

Date Cl Rock_48week | Orlando_d8weel wE3401_Tweel w283401_Sweel| ws44902R_1we [§ ~

318/1998 e Be O EeEATEE | 66,727 1428571 B5.04375 102.28
341941998 54 B3 0.21785992218 66 7871428571 651101785714 102 414285714
3/20/19958 54 B3 02187109375 66 93585714286 B5. 1848214286 102 527142857
342141998 54,69 021956062745 671028571429 552603571429 102.59

3/22/1998 54 58888858589 0.22043307087 67 2657142857 | B5. 3319642857 102 637142857
3/23/1995 54 55855585559 0.22130434753 B7. 3985714286 654028571429 102 674285714
3/24/1998) 54 5880008809 0.21865079365 67.51142857 14| 654692857143 102.702857143
3/25/1998 54 58855585859 0.21952191235 67 BOS57 14286 65 5366071429 102 6357 14286

S/26/1998 55.67 0.2204) 67 5757142857 | B5.99539258571 102475571429
34271998 55,67 0.21775100402 B7.45 B5.6601785714 102.35
3/28/19958 55 67 02185483871 67 3242857143 65 7266071429 10227
/2941998 55.67| 0.21643724696 67.1857142857 65.7003928571 102.2057 14286
3/30/1998 55 67 021731707317 67 0242857143 B5 545 102.15
3/31/19958 55 67 0215820408163 66 5771428571 B5. 8926755714 102 107142857
411998 55,67 0.21909836066  66.732857 1429 559383928571 102.0642857 14
47201998 56 0777777778 022 BE B2142857 14 B5 9853571429 102 022857143
A/3A1998 56 0777777778 0.220903029091 | 66 5042557 143 B6.0342857143) 101 954285714
441998 SB.07 77777770 0.22170124481| B6.37 42857143 BE6.08125 101.951428571
AE1998 56 0777777778 0. 222625 BB 2742857143 661281071428 101.914285714

AMBMA95 S6.077777777E) 0.22355648536 B6. 1785714286 66.1721428571) 101.87857 1429

47998 S6.0777F777778 0.22449579832) 66.06142857 14 66.2148214286| 101.842857143
A/BA998 56 0777777778 0.22544303797 | B5 9428571429 BB 2546428571 101.81
AMAGon SR NFFFIITIIO N IIGIOOINANT G5 QARTIADOET | GF 2055357143 101 7Roas71 42 Y

|
Record: [14 ] 1 [» J[(»T]r*¥] of 17440

AEINEINENENNENENNENEEN

The highlighted columns in the table above show some of the calculated moving averages to be
used in the Rock statistical model for daily discharge predictions.
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5. Calculate Spring discharge predictions and frequency analysis

Spring discharge daily predictions are limited by a range of lower and upper date. Thisis dueto
limited date range coverage for explanatory variables in the statistical model for a particular
spring. The following are the dates for the two springs for which daily discharge predictions can
be computed:

Spring Date Range for discharge predictions
Rock 1/1/1959 to 9/30/2005
Wekiva 1/1/1959 to 9/30/2005

Clicking the buttons highlighted below give daily discharge predictions and maximum and
minimum frequencies for date ranges specified by the user. Note that these date ranges have to
fall within the ranges mentioned above for a particular spring. Also, since Rock discharge
predictions are used in the regression model for predicting Wekiva discharge, it is necessary to
first predict Rock discharge values prior to Wekiva predictions

Prediction Toolbox

Filling in data gaps

{Eaicdlate Mowving Average) |
H Rock and wiekiva i

Predick Spring Discharge - Predict Spring Discharge -

Rock Spring wiekiva Spring

Record: [147] 1 1] of 1

For example, on clicking Predict Spring Discharge — Rock Springs, we see a pop-up window
asking for the date from which predictions are needed. For our example enter 1/1/1959. As noted
earlier, the date entered should be greater than 12/31/1958, since Rock Springs predictions are
only available since that date.

-

Filling in data gaps |

Calculate Mowing Swerager
Rock and Wekiva

Predict Spring Discharge - Predict Spring Discharge -
Rock Spring wiekiva Spring

Enter lower dake range >12/3171955: oK ]
Cancel

111959
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Press OK. Another window asking for the date till which predictions are needed. For our
example enter 9/30/2005. Again the date entered should be less than 10/1/2005, since Rock
Springs predictions are only available till 9/30/2005.

Fillimg in data gaps

Calculake Mowving average]
Rock and wWekiva

Predick Spring Discharge - Predick Spring Discharge -
Rock Spring wekiva Spring

Microsoft Office Access

Enter upper date range <10)1 /2005

Record: 1] «

|3/20.2004

On pressing OK, tables called Rock-predictions, Rock-Freguency-district and Rock
Freguency table-District are added to the ACCESS database as shown below:

&= StJohns : Database [Access Z000 file format) |'_ ||'I:| ||?|
Hopen B Design EMew | X | 2o - |EER|EE
Ohijects Create table in Design wiew
| 1 Tables Create table by using wizard
.
é:‘ Qusties Create table by entering data
= [ Modified_data
== Foarms s
= -
i Reports Rock Frequency Table-distric]
“& Pages 1 Rock-Freguency-District
= MEErEs NS Rock-predictions g
(=1 i i Fages:
<22 Modul :
ooues = wekiva Frequency Table-diskrick
Groups = wifekiva-Frequency -Diskrick
31 Favorites = weekiva-predictions

Double click Rock-predictions table to view. The screenshot shows the observed Rock discharge
data and the predicted Rock discharge data, between the lower and upper date ranges we entered.
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B Rock-prediction= - Tauile

Date (| Rockiobserved)| Rockipredicted -~
351151997 =]
3121997 [=1=Wc] S5
I 31997 SE. 7333333333
3141997 a7 . 1BEEBEEEEY
3151997 (=T =1
IAB997 S8.0333333333
3T A997 558 ABEEEEEEEY
3181997 55.9
191997 S9. 3333333333
3201997 59 FEEEEEEEE Y
3211997 &0.2 &0.2
221997 S5 1486734175
3231997 551196405914
3241997 SE. 09050775535
251997 S5 0515749392
3261997 S5 0325421131
3271997 SE. 0049005044
3281997 SO . 97580677783
3291997 S5 9458349522
3301997 S5 9559765770
311997 S5, 808320403065
4511997 S5 8541712045
AF251997 55 8251353754
45371997 SO, 7951055523
A5A51997F S5 . TE7TO7 27262 r
Record: [14 ] [ 1 [ J[»1]»=*k] oF 17075

Double-click table Rock-Frequency-district to view. The table has continuously-exceeded and
average values for 1-day, 30-day, 90-day, 183-day, 273-day and 365-day periods for each year
starting on June 1 of ayear and ending on May 31 of the next year. The table also has
continuously-not-exceeded and average values for 1-day, 30-day, 90-day, 183-day, 273-day and
365-day periods for each year starting on October 1 of ayear and ending on September 30 of the
next year. It isimportant to note that each year range for picking maximums and minimumsis
assumed to be independent of other years. The screenshot below shows some of the columns
present in the table.

B Rock-Frequency-District : Table

Date Rock Cont_exceeded 30days |Average_raximur_30days| Cont_not_exceeded 30days|Average_minimum_30days| Cont_exceeded 90days | Average maximm|
13 117261978 57726542 4749366558597 09 67.8303706963217 50.4062134559452 67.8303706963217 57.116769P059025 58.1645661163
|| TA271978 57 7138977 57.4936655859709 57.8002478314793 58.4575505988024 57 8002478314799 57.1167599059025 58.1521783325
L) 1172811978 57 B771734 57 4936655859709 57.7711166184773 56.395496124853 57. 7711166134773 57.1167599059025 58.14045735681
| 1172911978 57 6422405 5749366558597 09 67.7424434165954 60.3172233019675 67.7424434165954 57.1167599059025 58.1346637 268
| 1173011978 57 5963631 57 4936655859709 57.7159613033103 58.1746452609067 57.715596130388109 57.1167599059025 58.1296817451
L] 121171978 575465127 57.4936655859709 57 BY35152309666 53.1316509751925 57 B935152309666 57.1167599059025 58.1262770014
|| 12/211978| 57 5248065 57.40424435414808 67 6719350102652 50.1029581180496 &7 6719350102652 57.1167599059025  58.1216784006
|| 12/3/1978) 57 5094838 57.4119550556031 57 6485005748503 58.0639509751925 57 6483005748503 57.1167599059025 58.1151977395
| 12/4/1978 57 4936656 57.3779179127459 57 B253661394354 53.0268524037639 57 B253661394354 57.1167599059025 58.1083747026
|| 12/5/1978| 57 5178499 57.2104097946963 67.5506513057998 57.91518796407 18 &7 5906513057990 67.1167599059025 58.0990966342
| 12/6/1978| 57 56396828 57.1812513344739 57 5741863314793 57 8748808212147 57 5741868314799 £7.1167599059025 58.0916044779
| 121771978 576183157 57.1463134773311 £7.5493014200171 57.5391565355004 £7 5493014200171 57.1167599059025 55.0832519495
|| 12/8/1978| 57 6529520 47.1167599059025 67 .5250548656972 67.6139722497062 67.5260540656972 57.1167599059025 58.0770200422
|| 12/9/1978| 57 5927623 57.1167599059025 57.5030623113772 57 7486305218135 57 5030623113772 &7.1167599059025 58.07 10966567
] 12/10/1978| &7 5807361 57.1167559059025 £7.4888131650984 57.7265419503849 £7.4323131650984 57.1167599059025 58.0664619326
|| 121111978 57 5816318 47.1167599059025 67 4765106749358 67.71309766467 06 &7 4765106749350 57.1167599059025 58.0639266000
|| 121211978 57 5825275 57.1167599059025 57 4663440419162 57 6771733789564 57 4B63440412162 57.1167599059025 58.0626354326
L] 12/13/1978| 57 5836142 57.1167559059025 57 4535952112917 57.6529528058169 57 4B35952112917 57.1167599059025 58.0622797802
|| 121411978 57 5353001 &7.1167599059025 67 4713107995283 &7.6737081779299 67.4713107995289 57.1167599059025  58.0632217762
|| 121511978 57 5227601 57.1167599059025 57 4835623661243 5797591509837 47 57 4839623661249 57.1167599059025 58.0644428460
| 12/16/1978| 57 5012623 57.1167559059025 57 5002762070145 58.0359279555175 &7 5002762070145 57.1167599059025 58.0859537956
|| 121711978 57 4842444 a7.1167599059025 67 5149765902481 60.0359279555175 67 5145765902481 67 1167599059025 58.0677222444
| 12/18/1978 57 4119551 &7.1167599059025 57.5311304242943 58.0359279555175 57.5311304242943 57.1167599059025 58.0672286165
| 121911978 57 3779179 &7.1167599059025 67.5529415183918 58.1479954088965 67.5529415183918 57.1167599059025 58.0660761320
|| 127201978 57 2104098 a7.1167599059025 67 5744375209581 6016272994867 41 a7 5744375209581 67.1167599059025 58.0644300262
|| 1272171978 57 1812513 57.1167599059025 57.5840873751003 58.1734785201027 57.5940873731009 £7.1167599059025 58.0636239404
|| 1272211978 57 1463185 &7.1167599059025 6761319980667 24 50.1922885201027 6761319980667 24 57.1167599059025 58.0628576621
1207311978 A7 11R7559 £7 11R7AAANAANDE, 57 RA1536R105 755 AR AMANATNR15317 £7 RA1A36A105765 £7 11R7600ONSGN74 &R NR1G511910 ¥
W record: (O[] 7270 [ JP1]0r] of 17075 < 3

Double-click table Rock Frequency Table-district to view. The table contains the maximums
from 1-day, 30-day, 90-day, 183-day, 273-day and 365-day continuously-exceeded and average
time-series for each year. The table also contains the minimums from 1-day, 30-day, 90-day,
183-day, 273-day and 365-day continuously-not-exceeded and average time-series for each year.
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The screenshot below shows afew columns from the table

B Rock Frequency Table-district : Table

Date 1-day(maximum-continuously exceeded)| 30-day(maximum-continuously exceeded) | 20-dayimaximum-continuously exceeded) [1824

i 959 82 6601841317366 81.00025750459 76.6998127031651 76
| 85.48655996593342 85.2463108329875 §3.1038235842601| 61
| 73.59000343025823 72.7160715135159 71.5687363130881 67
| 63.5505891573336 £1.795956843456 60.5633394011976 60
| 62.5634641659535 62.0517235757058 61.0985426742515 59
| 65.6316926176219 64.7060683575706 62.4775543437449 60
o BE. 7407855124038 G5 9579762874252 B4 B315002651839 63
- 71.6862441659538 71.005613994867 4 70.2059197005988 68
] 64.1273499572284 63.4136796227545 62.4763938323354 | 61
| 774 71.506131899059 B8.9481012788708
| 76.9 72.8421664513231 71.8107684225834 70
| 71.4230117764471 70.5043491544832 681
| [ai5} 63.1767141345879 62.4561646877673 60
| 67.7 62.633447 2540633 61.4559859987 165
- B72 B3 5294404191617 B2 5362370055881 60
- B8.3 B2.7666943455945 B1.9061659794656 60
| B5.4 62.2915132563445 51.2395954034787 60
| 61.8073787282575 61.1257665976333 60.5 59
| 58 56.9995235785572 55.4204155175364 55
| 60.1021553293413 59.3341101539777 58.6250818648417 | 57
| [ai5} 62.0545608212147 61.2130338922156 59
- B3 58 2769347390933 55 2881646107785 55
- E1.6 51.6815460547 4765 50.4894486227545 49
| 64.7 £2.605389811805 61.8463550384944 60 .,
Record: E ,—1 E[E of 46 < ¥

Similarly predictions and, maximum and minimum frequencies, for Wekiva Springs can be
obtained for any specified upper and lower date ranges. Tables Wekiva-predictions, Wekiva-
Frequency-District, Wekiva Frequency Table-district (shown below) are added to the
database on clicking Predict Spring Discharge — Wekiva and following all the above steps as for
Rock Springs.

= StJohns : Database (Access 2000 file format) EI@E

open B Design SNew | X | 2o -

Ohjects |Z_=J Create table in Design view
| ] Tahbles E‘_J Create table by using wizard
[ .
E-'j Queries _J Create table by entering data
= =1 Modfied_data
== Farms
=
id  Reports =]
"._‘n] Pages =] Rock-Frequency-District
2  Macros = Rock-predictions
ol 2 .

[l
wt oaules /’ ] wekiva Frequency Table-district

Groups ( =] ‘wekiva-Frequency-Districk
38 Favarites ™ Wekiva-predictions

6. Viewing prediction plots and maximum and minimum frequencies

Plots of observed and predicted daily discharge data can be viewed in the EXCEL file
predictions.xls which islinked to the prediction tablesin ACCESS. The file already has been
run to include daily predictions and frequencies for Rock and Wekiva springs for the complete
date ranges associated with the two springs.

For our example, open predictions.xls. The screenshot below shows thisfile. By default, the
Rock worksheet opens up; this contains the predictions for the complete range for which daily
discharge values can be computed for Rock (1/1/1959 to 9/30/20057)
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ES Microsoft Excel - Predictions.xls

:5] Ele Edt  View Insert  Format  Iools  Data  S-PLUS  indow  Help

P S E S ) (T S| B 2 = -2l ) [E5]ooe - @) [l ana -0 - |[B]zr o
LR T INE RN E NN T H = r=n o Piim it s el Mo | F oo | CBR) E A
A1 e A& Date
| B I & T D E T F | =} T H
1 [o 1 ed) i
2 1711959 63.0782
3 1/2£1959 63.2257
4 1/3/1959 635983
a 1/4/1959 63.8001
B 1/5/1959 B3.9730
7 1/6/1959 64 0854
8 1/7/1959 641965
| 9 | 1/8/1959 B4 2700
| 10 | 1/9/1959 64 2598
11 | 141041959 641632
[12 | 141141959 B4.0405
13| 1/12/1959 639094
| 14 | 1/13/1959 63.8346
| 15 | 1/14/1959 63.7305
| 16 | 1/15/1959 B3 6355
|17 | 14161959 635133
18 | 1/17/1959 635093
19 | 1/18/1959 63 4705
| 20| 141911959 63.4329
| 21 | 1/20/1959 633962
|22 | 1/21/1959 B63.3774
| 23 | 1/221959 63.3613
4 1/23/1959 63 4163
25 1/24/1959 63 4151
26 1/25/1959 | 63 4411
27 1/26/1959 635413
28 14271959 63.3815
|29 | 1/28/1959 633963
| 30 | 1/29/1959 63.4183
| 31| 1/30/1959 63 4153
[ 32| 1/31/1959 63.1541
| 33| 2/1/1959 63.0773
4 2/2/1959 63.0334
35 2/3/1959 62.9922
36 2/4/1959 629531
s 2/5/1959 62.9259
38 2/6/1959 62.9232
28 2/7/11959 628381
40 2/8/1959 62.8372
41 2/9/1959 62.8797
42 2/10/1959 628114
43 2/11/1959 62.7891
44 | 2/12/1959 B2.7756
45 2/13/1959 627684
46 2/14/1959 62.7595
7] onsiesa =
W Ko £ Rackipretz 311697 ,fRD(k(uDstl 1-i98) {wekiva £ ekiva(pred-s0-2003) [ Wekiva(posts-1-2003) £ Rockrequencyanavss £ |< >

The next step is pressing the red exclamation button to refresh the predictions for the date range
which the user requested for this example, i.e. 1/1/1959 to 9/30/2005. The exclamation mark is
highlighted by ared ellipse in the above figure.

To view the plots for the above data, click on worksheet Rock (prel2-31-97) for predictions
before 12/31/1997 and worksheet Rock (post1-1-98) for predictions from 1/1/1998. The
screenshot below shows worksheet Rock (prel2-31-97):

- 3
Rock predictions - 1/1/1959 to 12/31/1997
Q0
h + Rock{observed)
s
80 \:2 -\. — Rock{predicted)
il'f T 4
A 5 'u.l b .
z 70 vf .-\‘ A 1."‘.‘3&. R = - I
% | \ !I'-.".?‘J' ot J.g:’R il TL ﬂ!" I 1 1 ?? 1 | ‘l 1
9 g0 .,L(J"(‘;‘-‘;' UL ¥ "\-,:I | 8. h L — ;\'1 ”\IIPI\"“\ Loy 1 ?;'?: I Hfi
=2 J > * U I.I-{ M I }f’il Iro |} ?-‘o'!' 41
< ! AR W | MY Lasd NN ,d
o ¥ 5‘!"‘1‘7"“‘&1.‘ § 15,:
8 g ',}-f Al * __,‘,; .
<y
40
30 T T T T T T T
1111959 12/611963 11/9M1968  10/14/1973 9181978 81231983 TIZTM288 THIM993
Date e
WA .u\uu m..mnu an mwu Rockfpomtl-1- mm zw"-; 30-2003) J Wek 5-1-2000) { RodF drinn [ Wek 7
Also, the screenshot below shows worksheet Rock (post1-1-98):
. =
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Rock predictions - 1/1/1998 to 9/30/2005

20
‘ +« Rock{observed)
30
‘ — Rockipredicted)
w 70
&
@ i
g 60 W e
= s 7 5“ Wy
o
2
QO so
40
*
30 T T T T T T T T
111998 121171998 12/2/1999 11/16/2000 11/1/2001 10/17/2002 10/2/2003  9/16/2004 9/1/2005

Date

Woa v mlRock | Rockipned2-31-1957) S Rockipost1-1-1998)  Wikia | Wikivafored 302003 [ WiksalpoaS1-200) [ Rock Froquencyanidnn [ Wiokiva Fregancyanays [

The procedure to view maximum and minimum frequenciesis similar to viewing predictions.
Click worksheet Rock-FrequencyAnalysis as shown below. We see the maximum and minimum
frequencies for Rock for the year range 1959-2004

B3 Microsoft Excel

i) Fle  Edit View Insert Format  Iools  Data  SPLUS  Wwindow  Help Type a question for help
PN A SIS ISR & S B F o8 -8 R 1o0% '-aaiﬂv‘a' w10 L Uu|=E===8]8% % 0 w8 e A M
RN N W W] 21, B 3 | reReply withl e  EE R R ET) R e = e e e |

Al - £ Date
Al B | C | D [ E I B

| 1 [Date [1-day(maximum-continuously exceeded) | 30-day(maxi i e led) 90-day(maxi i led)  183-day i i ly led) 273 i
2 1955 8266018413 81.0002575 76.6995137 76.14294293
ERRE: 85.48659969 65.24831083 63.10382358 61.48206801
4 | 1881 73.59000343 7271607161 71.56873631 £7.93896272

5 | 1362 £3.65058919 61.79595684 60.5633394 60.07641556
| 6 | 1963 62 66346417 62.05172358 £1.09854257 £9.90606305

7 | 1964 65 63169262 64.70606836 62.47755434 60.6438595
| 8 | 1965 56.74076951 65.957576249 £4.69150027 £3.83135944
ERRE: 71.68624417 71.00561399 70.2059197 68.265440665
| 10 | 1967 6412734996 5341367562 B2.47639383 61.01317104
[ 11| 1968 774 71.5061819 £8.94510128 681
|12 | 1969 763 7284216645 71.81076423 70.03977861
|13 | 1970 71.42301178 70.60434918 681 528
|14 ] 1871 [ 6317671413 £2.45616459 60.77378593
|15 | 1872 57.7 6269344725 61.455986 60.2
|16 | 1973 B7.2 6352944042 £2.53623701 60.8251308
(17 | 1974 58.3 62.76669435 61.90516598 60.54737404
18| 1975 B5.4 6229151326 61.2395954 60.08946593
19| 1976 6160737873 61.1257669 E05 £59.69469271
|20 | 1977 58 56.99952358 55.42041552 £55.35922652
(211978 60.10915533 59.33411015 58.62508186 57.11675991
|22 | 1979 [e5:] 62.05456082 61.21303389 £9.49199148
|23 1880 63 58.27653474 5526816451 £5.05945521

24 | 1981 E16 51.61546055 50.48944852 49.67475268
|25 | 1982 547 62 60536561 £1.84535504 60.38306679

26 | 1983 £1.45415291 6015807001 59.61330614 58.88530383
|27 | 1984 71.11 56.73964675 56.2693206 £3.34393487
|28 | 1985 54.05 57.39577985 56.25735576 5429
| 25 | 1986 B64.49 57.16511605 54.77622895
|30 1987 BB.31 59.4185124 59.03454853 57.35916129
|31 1988 £9.95296613 8.7 5706685038 56.40281859
|32 | 1989 54.44 5259389999 51.10711718 50.58685713
|33 | 1990 5232 43 47.00473086 4559
(34| 1991 5394 57 36142656 56.595925768 56.030806665
35 | 1992 B354 58,8939898 57.99111153 57.43818347
36 | 1993 58.11 55.64005494 538 53.07047061
|37 | 1994 B8.9 63.94047151 £2.9268803 60.6402774
|38 1985 57 6251307508 E15 60.01896962
|32 | 1996 E6.9 61.56095749 60.28310724 556
40| 1997 71.95435714 £9.63458143 65.22658 54.4881584
|41 | 1998 B5.68 56 545 52
42 | 1999 59 a7 85 49

43 | 2000 4873 44 43 42
44 | 2001 56 55 53 50

45 | 2002 5181 58.91 59.36 53.98044429
| 45 | 2003 66.79413429 6456515714 60.57485571 57.43

AZ L2004 - Z2.13 e — - T R7 A0 Rl 15 >
W 4 v wni\ Rock { Rock(pre12-21-1997) 4 Rock(post1-1-1998) [ Wekiva / wWekival(pred-30-2003) A Wekiva(postS-1-2003) ) Rock-FrequencyAnalysis | € el
freme IVl adachee ey v M iE doe m A el @ A == a

The next step is pressing the red exclamation button to refresh the frequencies for the date range
which the user requested for this example, i.e. 1/1/1959 to 9/30/2005. The exclamation mark is
highlighted by ared ellipse in the above figure.
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The table above only shows the maximum and minimum frequencies for the years they can be
computed.

7. Saving results for different cases

To save the daily discharge predictions and frequencies for a particular set of well or spring data
in Original Data table, make another copy of the prediction tablesin ACCESS and give them a
different name. This step is crucia since for anew set of data, the prediction and frequency
tables are overwritten. In our example for instance, copy-paste the Rock-predictions table as
shown below:

&= StJohns : Database [Access 2000 file format)
L open B8 pesian Soew | 2| 2o e [EE]
Objects (=1 Create table in Dy
| 1  Tables Zh] create ktable by o
B  ouerios Create table by entering data
3 mMedified_data
= F
orms =1 original_Data
(=] Reporks —1 Rock Frequency Table-district
=3 Pages =1 Rock-Frequency-Districe
= Macras o Il P cck-predicrioos
=1  Rockwekiva| LIEH | 2Pen
=2 Modules =1 wekiva Fred B Desian Views
Sroups =1 wekiva-Fred -4 Brine
= Fawari tes = wekiva-pred <X Prink Prewiews
a6 | Cub

5= Copw
Sawe As...
Export...
Send To .

ACCESS prompts for a new name as shown below:

Lalul

jOpen B Design new | 3 | 2a T

Sbjecks I=h]  <Create table in Desian wview
| . aabies Creste bable by Using wizard
=5 ;
B cueries Zh] «<reate table by entering data
= 1 modified_data
==
erms= =1 owiginal_Data
(=]
- d o |
b o E—T—
= Mack e - s
|Rock-predictions(tutarial swampls) |
2 Mol pacre Gprions
e 3 Skruckure Sinlyw
Ca  Fav (&) Struckure and Daks
2 append Data to Existing Table

Enter atable name and press OK. The prediction table for our exampleis created. Similarly
create new tables for the Rock-frequency-district and Rock Frequency Table-district.

It is also necessary to save the predictions and frequenciesin predictions.xls in adifferent file
before the prediction worksheets in EXCEL are refreshed to get predictions for adifferent case.

Final Report A-12 INTElA



APPENDIX B
Resolution of Peer Review Comments
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APPENDIX B: Resolution of Peer Review Comments.

Appendix B contains the comments provided by peer review of the first report in this Statistical
Modeling of Spring Discharge series and the author’ s resolution of these comments. This peer
review and the subsequent resolution pertain to application of statistical methodology and are,
therefore, included in this report aswell. The report modifications included some comments on

potential use of the presented models as well as a clear statement of the models objectives.
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| NEWFIELDS

Memorandum
TO: Bob Epting, St. Johns River Water Management District
FROM: Shahrokh Rouhani, Ph.D., P.E., NewFields

SUBJECT:  Peer review of “Statistical Modeling of Spring Discharge at Ponce de Leon,
Green, and Gemini Springsin Volusia County Florida’ by Intera (2005) and
“Statistical Modeling of Spring Discharge at Apopka and Bugg Springsin Lake
County Florida’ by Intera (2006)

DATE: July 16, 2006
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INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.
GENERAL COMMENT

In general, | must note that the reports are well written, and easy to follow. Furthermore, from a
conceptua point of view, multiple regression of nearby hydrologic datato fill the gapsin times
series of daily spring dischargesis quite acceptable. The resulting estimated time series and
frequency curves also display reasonable patterns consistent with existing, albeit limited,
discharge measurements at the investigated springs. However, the review of the reports raises a
number of fundamental questions that may warrant further considerations by the authors. These

mainly statistical questions are the focus of this memorandum.
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SPECIFIC COMMENTS

1. The above reports use multiple regression models that relate moving averages (MA) of
nearby hydrologic datato estimate daily spring discharges. Intera (2005) presents the general
form of such amodel as

[Spring discharge] = f {[same spring MA] + [water level MA]
+ [precipitation MA] + [adjacent spring MA] }

The authors state that “the use of moving-average-based independent variablesis
necessitated by the fact that most independent variables are not measured on adaily basis.”
Although, statistical methods, including multiple regression analysis, are not bound by
hydrological principas, it is always desirable to use independent variables that are
hydrologically consistent with the dependent variable.

The independent variable in the above reports is daily spring discharge, i.e. a non-integrated
or differentiated flow variable. Daily precipitation is also aflow variable, while water levels
(either groundwater or lake levels) are storage variables. Within the context of mass balance,
the net sum of flowsis equal to the rate of change of storage variables. In other words, in a
linear model, daily spring discharge is expected to be related to (a) daily values of other flow
variables (e.g. precipitation or nearby spring discharges), and (b) daily rates of changesin
storage variables (e.g. water levels). Thisimpliesthat under ideal conditions, non-integrated
flow variables and differentiated storage variables should be used in a regression model.

While | recognize that absence of continuous data may make some of the above
differentiations impossible, | am still puzzled about the fact that all dependent variables are
uniformly integrated. Integration isthe exact opposite of what mass balance suggests. In
fact, in cases that continuous daily time series of storage variables (e.g. groundwater or lake
levels) are available; their difference values should be explored as an aternative to the
current moving averages. For this purpose, continuous or augmented groundwater level time
series, such as L-0054 and L-0703, along with other complete daily time series appear to be
suitable candidates. | encourage the authors to consider this alternative approach, whichis

more consistent with the mass balance concept.
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2.

Intera (2006) notes the issue of multicolinearity, but suggests that computation of partial
correlation coefficients (PCC) and stepwise analysis somehow solves this problem. While
the use of PCC and stepwise analysis are commendable, they do not address the issue of

multicolinearity.

Multiple regression analysis is based on the fundamental assumption that the variables on the
right hand side of the equation are statistically independent, i.e. uncorrel ated.
Multicolinearity exists when independent variables are highly correlated. Unfortunately, the
reports do not contain any systematic information on cross correl ations among independent
variables. However, statements made in Intera (2006) concerning high correlations among
certain groundwater levels (which were used to justify the filling of data gapsin some of the
monitoring wells) clearly indicate that at least some of the independent variables are highly
correlated. Thisisespecially true for moving averages of the same variables, which are used
concurrently as independent variables in the same model. So one can assume that some, if
not all of the models used in Intera (2005 and 2006), suffer from multicolinearity.

A high degree of multicolinearity produces unacceptable uncertainty (large variance) in
regression coefficient estimates. Specifically, the coefficients can change drastically
depending on which terms are in or out of the model and also the order they are placed in the
model. In fact, atypica consequence of multicolinearity is ahigh regression coefficient,
when a number of independent variables have regression coefficients that are deemed as
insignificant. For example, Table 8 in Intera (2006) indicates that of the 13 independent
variables used to estimate Apopka (post-1990) five variables have statistically insignificant
coefficient (i.e. their p values are greater than or equal to 0.05), while R? of the same model is
nearly 0.80. In other words, the regression results indicate that the collection of selected
independent variables has explanatory power but we cannot tell which variable or to what
degree the individual variable is explaining the variations of the dependent variable.

Generally, such ‘black-box’ models are viewed as undesirable.

| encourage the authors to consider computing the variance inflation factor (VIF) of each
independent variable. VIF associated with the i™ independent variableis equal to
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where R, isthe regression coefficient of the i™ independent variable on all of the other

1-R?
independent variables. A rule of thumb isto treat any VIF in excess of 10 as evidence of
multicolinearity. Elimination of collinear independent variables should continue until al VIF
are below 10. This approach along with the stepwise analysis would lead to much more
defensible models. Other remedies are also discussed in Gujarati (Basic Econometrics, 4™

Edition, McGraw Hill, 2002, Chapter 10).

3. Theresults of predicted versus observed time series are visually satisfactory (e.g. Figure 18
in Intera, 2006); however, their corresponding observed versus predicted plots (e.g. Figure 12
in Intera 2006) display poor fits. An explanation of this visual discrepancy would be helpful.
| al'so noticed that the updated frequency curves for Apopka and Bugg springs are much
closer to the pattern exhibited by the observed data. However, the addendum dated July 11,

2006 does not describe the reason for thisimprovement.

4. To compare observed versus predicted discharges, the authors should also consider the
comparison of their variances. Results like Figure 12 (Intera, 2006) imply that the predicted
values are much less variable that measured discharges. Although, such results are not
unexpected (estimated values are generally smoother than actual data), the impacts of such
smoothings on the frequency curves must be discussed. Specifically, are extreme discharges
adequately estimated?

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 7/11/06).
While observed discharges in the central portion of the curve match their estimated values,
extreme values deviate systematically, i.e. biased results. Similar patterns are present in
amost all the generated frequency curves. The authors should address thisissue, and if

deemed significant, appropriate remedies should be considered.
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IN<=ExA

TECHNICAL MEMORANDUM

PREPARED FOR: Bob Epting, St. Johns River Water Management District
PREPARED BY: Alaa Aly and Srikanta Mishra, INTERA Incorporated
SUBJECT: Resolution of peer review comments of “Statistical Modeling of

Spring Discharge at Ponce de Leon, Green, and Gemini Springs in
Volusia County Florida” by Intera (2005) and “Statistical Modeling
of Spring Discharge at Apopka and Bugg Springs in Lake County
Florida” by Shahrokh Rouhani, NewFields

DATE: August 8, 2007

INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.

GENERAL COMMENT

We appreciate the comments from Dr. Rouhani about the validity of the approach and the
clarity of the presentation in the report. The following sections address the specific comments in

the peer review memorandum.
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SPECIFIC COMMENTS

1. ...... Within the context of mass balance, the net sum of flows is equal to the rate of
change of storage variables. ....... This implies that under ideal conditions, non-
integrated flow variables and differentiated storage variables should be used in a
regression model. While | recognize that absence of continuous data may make some
of the above differentiations impossible, I am still puzzled about the fact that all
dependent variables are uniformly integrated. Integration is the exact opposite of
what mass balance suggests. ....... | encourage the authors to consider this
alternative approach, which is more consistent with the mass balance concept.

While mass balance would suggest exactly what the reviewer points out, the presented models
are statistical, not physical. Therefore, they are not intended to be used as mass balance models.
The models are based on exploitation of the statistical correlation between the explanatory and
response variables. For example, spring discharge is correlated with aquifer water levels, perhaps
with alead time. This correlation explains some of the variability in the observed spring
discharge rates. Further, the correlation isimproved using the average water level values rather
than the individual measurements which always have higher variances. However, as the reviewer
notes, spring discharge can aso be expected to be correlated to the change in water levels over
time. These changes are afunction of the “net” change of fluxesto and from the aquifer. In the
absence of other significant fluxes such as recharge and pumping, these changes will be closely
correlated to the observed spring discharge rates. Unobserved (e.g., pumping) and unobservable
(e.g., aquifer recharge) fluxes will complicate this correlation. Further, as noted, this differenceis
typically very difficult to obtain from real data as data gaps can be a major obstacle for such
calculation.
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of
partial correlation coefficients (PCC) and stepwise analysis somehow solves this
problem. ...... Multiple regression analysis is based on the fundamental assumption
that the variables on the right hand side of the equation are statistically independent,
i.e. uncorrelated. ..... However, statements made in Intera (2006) concerning high
correlations among certain groundwater levels (which were used to justify the filling
of data gaps in some of the monitoring wells) clearly indicate that at least some of the
independent variables are highly correlated. ...... So one can assume that some, if
not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. .....
| encourage the authors to consider computing the variance inflation factor (VIF) of

each independent variable.

First, multicolinearity is mainly a problem for the uniqueness and variances for the regression
coefficients. That is, when correlated variables are used as explanatory variables, the fitted
regression coefficients will not be meaningful and might have very high variances. However, the
predicted values from such regression model are still acceptable with the only issue that needs to
be addressed is whether adding the correlated variable(s) have resulted in unnecessary inflation
of the prediction variance. This variance inflation resulting from adding more variables to the
regression equation is exactly what is considered in the stepwise regression algorithm. As
detailed below, avariable is only added to the regression equation if it will improve the
prediction capability of the final regression equation without adding significantly to the
prediction variance. Our experience in applying stepwise regression to outputs of probabilistic
risk assessment models confirms this. We have also computed variance inflation factors for the
discharge models for Rock and Wekiva springs, and these also indicate that the stepwise
regression process has minimized multicolinearity issues. The following description of stepwise
regression provides the background information for the procedure showing how multicolinearity
isformally dealt with.

In the utilized stepwise approach, a sequence of regression models is constructed starting with

the input variable that explains the largest amount of variance in the output, i.e., the variable that
has the highest Pearson correlation coefficient with the output. At each successive step in the
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regression modeling process, the variable that explains the largest fraction of unexplained
variance from the previous step isincluded. Thisisthe variable with the largest absolute value
of the partial correlation coefficient. The model generated at every step istested to ensure that
the each of the regression coefficientsis significantly different from zero. Thetestis
implemented in two stages. First, avariable selected for entry viathe PCC criterion is tested for
its significance before it is admitted into the model. Second, after the model! is built at that step,
each of the variablesin the model istested for significance. If some variables are found to be
insignificant, then the “most insignificant” variable is dropped and the model isbuilt again. The
sequential dropping of the variables judged to be not significant and rebuilding the model
continues until all the variablesin the model become significant at the prescribed levels. The
significance levels are prescribed separately for the entering and departing variables to avoid
possible looping where the same variable can enter and depart from the model with the
significance level for the departing variables generally set larger than that for the entering
variable. Note that the need for dropping a variable generally arises only in the cases when the
input variables are strongly correlated (strong multicolinearity). This step ensures that no
significant multicolinearity will be present in the final multiple regression model. The stepwise
regression process continues until the input-output model contains all of the input variables that
explain statistically significant amounts of variance in the output (i.e., no more variables are
found with a statistically significant regression coefficient).

3. The results of predicted versus observed time series are visually satisfactory (e.g.
Figure 18 in Intera, 2006); however, their corresponding observed versus predicted
plots (e.g. Figure 12 in Intera 2006) display poor fits. An explanation of this visual
discrepancy would be helpful. I also noticed that the updated frequency curves for
Apopka and Bugg springs are much closer to the pattern exhibited by the observed
data. However, the addendum dated July 11, 2006 does not describe the reason for

this improvement.

Figure 18 shows that the general pattern displayed by the observed discharge hydrograph for
Bugg Spring. While there is significant visual scatter shown in Figure 12, this figure also shows
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that the vast majority of the predicted discharge values are in agreement with the observed
values. Figure 12 aso shows that there in no general biasin any direction for the entire range of
observed discharge values, a further affirmation for the validity of predictive model. The
explanations missing from the July 11, 2006 addendum have been added to the final report.

4. To compare observed versus predicted discharges, the authors should also
consider the comparison of their variances. Results like Figure 12 (Intera, 2006)
imply that the predicted values are much less variable that measured discharges.
Although, such results are not unexpected (estimated values are generally smoother
than actual data), the impacts of such smoothings on the frequency curves must be

discussed. Specifically, are extreme discharges adequately estimated?

Consider the updated frequency curve for Bugg Spring (Intera addendum dated
7/11/06). While observed discharges in the central portion of the curve match their
estimated values, extreme values deviate systematically, i.e. biased results. Similar
patterns are present in almost all the generated frequency curves. The authors
should address this issue, and if deemed significant, appropriate remedies should be

considered.

Whileit is not anticipated that extreme discharge values will be predicted accurately, it is
important that no consistent bias is displayed by the predictive models. Figure 12 clearly shows
that predicted values are not biased at either end of the observed discharge val ues because high
and low values are equally spread around the regression line. Further, additional analyses are
added to the report to examine the differences between the variances of the observed and

regression-model-generated spring discharge values.
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