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EXECUTIVE SUMMARY

Currently, the St. Johns River Water Management District (District) is engaged in
hydrologic modeling and data analysis in support of the ongoing Minimum Flows and Levels
(MFLs) and Water Supply Development projects. MFLs define the frequency and duration of
high, average, and low water events necessary to prevent significant ecological harm to aquatic
habitats and wetlands from permitted water withdrawals. An integral component of the District’s
MFL program is the development of long-term daily discharge predictions at various streams in
the District. This report describes the development of statistical models for predicting daily
spring discharge time series for Apopka and Bugg springs from an assortment of auxiliary data
such as: (a) previously recorded spring discharge rates at the spring of interest and at adjacent
springs, (b) groundwater level measurements from adjacent monitoring wells, (c) lake level

measurements from nearby lake gages and (d) rainfall data from nearby gauging stations.

The presented regression models are based on the statistical correlation between the
explanatory and response variables. For example, spring discharge is correlated with aquifer
water levels, perhaps with a lead time. This correlation explains some of the variability in the
observed spring discharge rates. Further, the correlation is improved using the average water
level values rather than the individual measurements which are known to display higher

variances.

Data screening indicates that most measurements of spring discharge and groundwater
level are at a frequency of ~30 days or greater — necessitating the generation of moving averages
with commensurate lags to be used as independent variables for predicting spring daily
discharge. Also, Bugg Spring discharge values have an average data frequency of 14 days.
Hence, independent variables generated by moving averages of Bugg Spring discharge have
been utilized to help estimate discharge for Apopka Spring. Analysis of data overlap is helpful
in determining how to partition the period of record into sub-periods where a common set of

variables can be defined.

Stepwise regression analysis is used to build multivariate linear input-output models
between the response variable (spring discharge) and the independent variables (moving

averages of spring discharge, water level measurements, lake levels and precipitation) at the
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springs of interest. Typically, two regression models of spring discharge are needed: (a) one for

the period when spring discharge, groundwater levels, lake levels and rainfall data are available,

and (b) one for the period when rainfall data are supplemented with lake levels and perhaps

groundwater levels from one or two long-term monitoring wells.

The following regression models are developed for Apopka Spring:

Apopka discharge as a function of water level measurements from Floridian aquifer well
(FAW) L-0199 (2- and 6-week moving average) and L-0062 (52-week moving average),
3-, 8-, 24-, and 48-week moving averages of Lake Apopka water level, 48-week moving
average of Bugg discharge and 2-, 3-, 24- and 48-week moving averages of rainfall at
Clermont 9 S (R*=0.7934). This model is used to predict post-1990 daily spring
discharge for Apopka Spring.

Apopka discharge as a function of 3-, 4-, 48- and 52-week moving averages of Lake
Apopka water level and 48-week moving average of rainfall at Clermont 9 S
(R*=0.6152). This model is used to predict pre-1990 daily spring discharge for Apopka

Spring when no measurements are available at the spring.

For Bugg Spring, the regression models developed are as follows:

Bugg discharge as a function of water level measurements from Floridian aquifer well
(FAW) L-0096 (3-, 4-, and 24-week moving average), L-0703 (8-, 12-, 24-, and 48-week
moving average) and L-0062 (52-week moving average), 3-, 8-, 24- and 48-week moving
averages of Lake Apopka water level, 6-, 8-, and 12-week moving averages of Bugg
discharge and 6- and 52-week moving averages of rainfall at Bushnell 2 E (R*=0.7128).
This model is used to predict post-1990 daily spring discharge for Bugg Spring.

Bugg discharge as a function of water level measurements from Floridian aquifer well
(FAW) L-0054 (24- and 52-week moving average) and 3-, 4-, 12-, 24- and 48-week
moving averages of rainfall at Bushnell 2 E (R*=0.5651). This model is used to predict
pre-1990 daily spring discharge for Bugg Spring when no measurements are available at

the spring.

Using these models, daily discharge predictions are made for Apopka and Bugg springs

as far as 1949 and 1973 respectively, with reasonable accuracy. Flow duration curves are
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also generated for the two springs along with high- and low-frequency analyses for set

durations (1-, 2-, 3-, 4-, 6-, and 12-months) from the simulated daily spring discharge.

This report incorporates comments provided by peer review of the first report in this
Statistical Modeling of Spring Discharge series. The peer review comments and their resolution

as they apply to this report are in Appendix B.
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1.0 INTRODUCTION

The Minimum Flows and Levels (MFLs) Program of the St. Johns River Water
Management District (District), mandated by state water policy (section 373.042, F.S)),
establishes MFLs for lakes, streams and rivers, wetlands, and groundwater aquifers. MFLs
define the frequency and duration of high, average, and low water events necessary to prevent
significant ecological harm to aquatic habitats and wetlands from permitted water withdrawals.
The MFLs Program is subject to chapter 40C-8, F.A.C. and provides technical support to the
District’s regional water supply planning process and the consumptive use-permitting (CUP)

program.

MFLs designate hydrologic conditions that prevent significant harm and above which
water is available for reasonable beneficial use. The determinations of MFLs consider the
protection of non-consumptive uses of water, including navigation, recreation, fish and wildlife
habitat, and other natural resources. MFLs take into account the ability of wetlands and aquatic
communities to adjust to changes in hydrologic conditions. Therefore, MFLs allow for an
acceptable level of change to occur relative to the existing hydrologic conditions. However,
when use of water resources shifts the hydrologic conditions below those defined by the MFLs,
significant ecological harm occurs. As it applies to wetland and aquatic communities, significant
harm is a function of changes in the frequencies and durations of water level and/or flow events,

causing impairment or destruction of ecological structures and functions.

Currently, the District is engaged in hydrologic modeling and hydrologic data analysis in
support of the ongoing MFLs and Water Supply Development projects. An integral component
of the District’s MFL program is the development of long-term daily discharge models at various
streams in the District. MFLs for two springs in Lake County, Florida, namely, Apopka and
Bugg springs, are currently needed. As discussed in the following sections, while the Bugg
Spring has more data than Apopka Spring, each of these springs has limited spring flow
measurements (Osburn et al., 2002). This study evaluates the application of statistical models to

generate long-term daily discharge simulations for each of these two springs.
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2.0 OBJECTIVE

The objective of this study is the development of daily spring discharge time series for
Apopka and Bugg springs from an assortment of auxiliary data such as: (a) previously recorded
spring discharge rates at the spring of interest and at adjacent springs, (b) groundwater level
measurements from adjacent monitoring wells, (¢) lake levels from nearby lake level gages and
(c) rainfall data from nearby gauging stations. The study investigates and tests the applicability
of the correlation structure between various data types, and test the applicability of simple
multivariate linear models to generate daily discharge records based on these other variables for

the common period of record.

This report presents the results of data screening and preliminary statistical analysis for
rainfall, groundwater and lake water level and spring discharge data for Apopka and Bugg
springs. It also explores the use of empirical models to provide estimates of daily discharge at
these springs. These statistical models will take advantage of all available data to try to provide
the most accurate estimates. In general, early time records are sparse and often not available for
a number of locations. This will require the use of different models ranging in sophistication
from simple correlation based models to multivariate regression models which can only be
constructed when enough supporting data (e.g., rainfall and groundwater levels) are available at a
sufficient number of nearby locations. These models will be used to run a continuous simulation
model covering the period of record referenced by the constituent data. From the results of
statistical modeling, standard flow-duration analysis for the system (discharge versus percent
exceedance for the long-term simulation) will be conducted and standard high- and low-flow
frequency analyses for the system (frequency of spring discharge for set durations) will be

carried out.

This report is organized as follows. Data screening and preliminary statistical analysis is
described in Section 3. Section 4 contains the regression modeling methodology and the
regression models developed for Apopka and Bugg springs. In section 5, daily discharge
predictions are presented along with flow duration curves and frequency analyses for each of

these springs. Section 6 contains conclusions and recommendations from this study.
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3.0 DATA SCREENING AND PRELIMINARY ANALYSIS

This section summarizes the available data and shows the results of data screening and
preliminary statistical analyses conducted for the available time series. The objective of these
analyses is to identify the correlation structure between the spring discharge at the three springs
of interest and the other time series. Results from these analyses will be used to guide the

construction of explanatory models which will predict daily discharge values at each spring.

3.1 Data Sources

Figure 1 shows a map of the study area and highlights the location of various data
sources. Although the map shows numerous groundwater wells and lake gages around the
springs of interest, very few wells and lake gages have data records with consistent frequency
and a long enough period of record to be considered for statistical modeling. The selected
groundwater wells and lake gages with a reasonable data frequency and period of record have
been highlighted in the map. Also, one long term NOAA rainfall gage has been selected for each
spring of interest, since the rainfall gages around the springs do not show significant difference

in daily rainfall values. The following are the various data sources to be used with each spring:
o Spring discharge measurements at Apopka and Bugg springs.

Groundwater level measurements at monitoring wells:

L-0199 and L-0062 for Apopka Spring

L-0054, L-0703, and L-0096 for Bugg Spring

Lake level measurements at lake level gages

Lake Apopka at Oakland WL gage for Apopka Spring

Precipitation measurements at rain gages:
Clermont 9 S for Apopka Spring
Bushnell 2 E for Bugg Spring

In order to conduct exploratory data analysis, a database was compiled of spring
discharge (response variable), groundwater levels (explanatory variable), lake levels

(explanatory variable) and precipitation (explanatory variable) with a common time basis.
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Table 1 shows summary statistics (i.e., minimum, maximum, average and standard deviation) for

these various data types at Apopka and Bugg springs.

The frequency of observation for each data type was subsequently calculated. This is
useful for determining appropriate lag and moving average windows. Moving averages were
calculated for recorded groundwater and lake levels, precipitation and spring discharge at the
spring of interest as well as at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12,
24, 48 and 52 weeks. These moving averages act as independent variables and carry useful

information regarding the physical state of the system prior to the time of interest.

Table 1 Basic statistics for various data types at Apopka and Bugg springs.

Data Type Range Min Max Average Std Dev Variable Type
Apopka Spring 5/14/1997 - 9/26/2005 9.58 36.49 26.41 4.88 Discharge (cfs)
L-0199 1/26/1990 - 1/30/2006 67.51 76.03 73.03 2.16 Water-level (ft)
L-0062 5/6/1976 - 10/7/2005 93.91 102.31 99.78 1.42 Water-level (ft)
Lake Apopka 9/1/1942 - 12/31/2005 62.59 69.09 66.66 0.87 Lake-level (ft)

CLERMONT 9 S 7/1/1948 - 12/31/2005 0.00 7.29 0.14 0.41 Rainfall (in)
Bugg Spring 3/11/1990 - 10/18/2005 3.80 19.80 11.47 2.31 Discharge (cfs)
Bugg Spring 3/11/1990 - 10/18/2005 3.80 19.80 11.47 2.31 Discharge (cfs)
L-0096 8/22/1989 - 1/30/2006 74.93 87.15 81.72 2.46 Water-level (ft)
L-0703 4/27/1999 - 1/30/2006 53.67 60.49 57.64 1.56 Water-level (ft)
L-0054 10/25/1973 - 10/5/2005 56.70 68.97 64.14 2.20 Water-level (ft)

BUSHNELL 2 E 10/11/1936 - 11/30/2005 0.00 9.08 0.14 0.41 Rainfall (in)

3.2 Frequency of Observation

Table 2 shows the mean and standard deviation of frequency of observation for each data
type for Apopka and Bugg springs. For Apopka Spring, the spring discharge had a period of
record dating back to May 1997 at an average frequency of 75 days — although a few isolated
observations extend back to May 1971. All the Apopka discharge data recorded prior to
7/18/1997 were collected by the USGS. It was found that including the USGS Apopka discharge
data in the model did not yield a good statistical model for Apopka Spring. This is primarily due
to the large measurement errors in USGS data as pointed out in German (2004). Hence, all the
Apopka discharge data prior to 7/18/1997 were ignored for the purpose of statistical modeling of
Apopka Spring. At well L-0199, groundwater levels are available daily from January 1990. At
well L-0062, groundwater levels are available from May 1976 at a frequency of 32 days. For
Lake Apopka lake level gage, daily water level observations are available from September 1942.
For the Clermont 9 S rain gage, daily precipitation observations are available from July 1948.

Finally, the moving averages of discharge for Bugg Spring are included as explanatory variables
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for Apopka Spring. For Bugg Spring, discharge values are available from March 1990 at an

average frequency of 14 days — although a few isolated observations extend back to 1943.

Table 2 Frequency of observation of various data types at Apopka and Bugg springs.
Data Type Range Mean obs freq | Std Dev | Outlier Data Points
Apopka Spring 5/14/1997 - 9/26/2005 75 75 5/4/1971 - 12/8/1992
L-0199 1/26/1990 - 1/30/2006 Daily 8 N/A
L-0062 5/6/1976 - 10/7/2005 32 36 N/A
Lake Apopka 9/1/1942 - 12/31/2005 Daily 1 N/A
CLERMONT 9 S 7/1/1948 - 12/31/2005 Daily N/A N/A
Bugg Spring 3/11/1990 - 10/18/2005 16 14 3/16/1943 - 2/7/1985
Bugg Spring 3/11/1990 - 10/18/2005 16 14 3/16/1943 - 2/7/1985
L-0096 8/22/1989 - 1/30/2006 Daily 3 N/A
L-0703 4/27/1999 - 1/30/2006 Daily 15 N/A
L-0054 10/25/1973 - 10/5/2005 59 97 N/A
BUSHNELL2E | 10/11/1936 - 11/30/2005 Daily 11 4/1/1918 - 9/30/1918

As described earlier, for Bugg Spring, discharge values are available from March 1990 at
an average frequency of 14 days — although a few isolated observations extend back to 1943. At
well L-0096, groundwater levels are available daily from August 1989. At well L-0703,
groundwater levels are available daily from April 1999. Since, L-0703 has data only starting in
April 1999, it is essential to backfill L-0703 data using linear regression with another adjacent
well having a good period of record, for moving average variables of L-0703 to be useful in
statistical modeling of Apopka Spring. A linear regression between L-0703 and L-0096 results
in an R? of 0.9027. Figure 2 shows the regression plot and the equation used to backfill L-0703
till August 1989. This new backfilled L-0703 variable will be further addressed as L-0703R in
this report. At well L-0054, groundwater levels are available from October 1973 at an average
frequency of 59 days. Investigating further on the data frequencies for this well, it is found that
L-0054 has no water level data from August 2000 to October 2003. For that reason, it is
essential to fill this data gap using linear regression with another adjacent well having a good
period of record, for moving average variables of L-0054 to be useful in statistical modeling of

Apopka Spring. A linear regression between L-0054 and L-0096 results in an R* of 0.8319.

Figure 3 shows the regression plot and the equation used to fill L-0054 between
August 2000 and October 2003. This new regressed L-0054 variable will be further addressed as
L-0054R in this report. For the Bushnell 2 E rain gage, daily precipitation observations are

available from October 1936 - although a few isolated observations are present in the year 1918.
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3.3 Analysis of Overlap

Periods of overlap between different data types were analyzed for each of the springs of
interest. This is useful for determining how the period of record can be split up into sub-periods
with common sets of explanatory variables. The frequency of observation for each data type was
subsequently calculated. This is useful for determining appropriate lag and moving average
windows. Moving averages were calculated for recorded water levels, precipitation and spring
discharge at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12, 24, 48, and
52 weeks. The moving averages act as independent variables and carry useful information

regarding the physical state of the system prior to the time of interest.

Figure 4 shows the overlap between various data types for the Apopka Spring. Shown
here are the periods of record for (a) Apopka and Bugg springs discharge, (b) groundwater levels
at monitoring wells L-0199 and L-0062, (c¢) Water level measurements at Lake Apopka gage and
(d) precipitation measurement at Clermont 9 S. Also indicated therein is the average frequency
of observation for each data type (as was discussed in detail in the previous section). From 1990,
several time series are available which could be used to estimate daily discharge at Apopka
Spring. Prior to that, lake levels for Lake Apopka gage, precipitation and groundwater level data
at well L-0062 are available. L-0062 has an average data frequency of 32 days but it also has
huge data gaps between years 2001 and 2003. For that reason, it is likely that a moving average
window of 48 weeks or greater will be used to take advantage of this water level measurement.
Also, moving average window of 1 week or greater, 6 weeks or greater, and 2 weeks or greater
will be used for Clermont 9 S, Bugg Spring and L-0199 respectively, due to the presence of data
gaps. Choosing the right moving average variables becomes particularly important for Apopka
Spring since it has only 39 good discharge measurements starting from 7/18/1997. All the
39 measurement dates need to have corresponding values for the explanatory variables which in

turn restricts selection of smaller moving average variables due to data gaps.

Based on the above discussion of overlap analysis for Apopka Spring, the following two
datasets are used for Partial Correlation Coefficient and Stepwise Analysis to build a regression

model:
e Dataset for Apopka regression model to predict pre-1990 Apopka discharge values:

0 Dependent variable: Apopka Spring (39 discharge values from 7/18/1997)
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0 Independent variables:
= Lake Apopka and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of Lake Apopka

= 1,2, 3-, 4~ 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Clermont
98

= 48- and 52-week moving averages of L-0062
e Dataset for Apopka regression model to predict post-1990 Apopka discharge values:
0 Dependent variable: Apopka Spring (39 discharge values from 7/18/1997)
0 Independent variables:

= Lake Apopka and 1-, 2-, 3-, 4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving
averages of Lake Apopka

= 1,2, 3-, 4-, 6-, 8, 12-, 24-, 48-, and 52-week moving averages of Clermont
9S8

= 48- and 52-week moving averages of L-0062
= 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Bugg Spring
= 2-,3-,4- 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of L-0199

Figure 5 shows the overlap between various data types for Bugg Spring. Shown here are
the periods of record for (a) Bugg Spring discharge, (b) groundwater levels at monitoring wells
L-0096, L-0703 and L-0054, and (c) precipitation measurement at Bushnell 2 E. Also indicated
therein is the average frequency of observation for each data type (as was discussed in detail in
the previous section). From 1990, several time series are available which could be used to
estimate daily discharge at Apopka Spring. L-0703 is available from April 1999 and hence is
backfilled using linear regression with L-0199 as described earlier. The new backfilled time
series is L-0703R which goes back till 1989. Prior to 1990, groundwater level data at well
L-0054 and precipitation at Bushnell 2 E are available. As described earlier, L-0054 has a data
gap between 2000 and 2003 and this data gap is filled using linear regression with L-0096. The
new variable is L-0054R which now has an average frequency of 9 days as compared to 59 days

for L-0054.
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Based on the above discussion of overlap analysis for Bugg Spring, the following two
datasets are used for Partial Correlation Coefficient and Stepwise Analysis to build a regression

model:
e Dataset for Bugg regression model to predict pre-1990 Bugg discharge values:
0 Dependent variable: Bugg Spring (337 discharge values from 4/7/1990)
0 Independent variables:
= 3-,4-, 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Bushnell 2 E
= 12-,24-, 48-, and 52-week moving averages of L-0054R
e Dataset for Bugg regression model to predict post-1990 Bugg discharge values:
0 Dependent variable: Bugg Spring (337 discharge values from 4/7/1990)
0 Independent variables:
= 3-4- 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of Bushnell 2 E
= 12-,24-, 48-, and 52-week moving averages of L-0054R
= 6, 8-, 12-, 24-, 48-, and 52-week moving averages of Bugg Spring
= 3-,4-,6-, 8-, 12-, 24-, 48-, and 52-week moving averages of L-0096

= 3-4- 6-, 8-, 12-, 24-, 48-, and 52-week moving averages of L-0703R

3.4 Partial Correlation Coefficient (PCC) and Stepwise Analysis

Partial Correlation Coefficient (PCC) is the degree of correlation between any two
variables, all others being kept constant. PCCs can be used to find which variables are
responsible for multicollinearity. Thus, PCCs can be used to drop the explanatory variable(s)
which causes multicollinearity. Another option is to include all the variables in the stepwise
regression analysis, where variables are added or removed one at a time until no additional
variables can be found that improve the goodness-of-fit of the input-output model. Stepwise
procedures select the most correlated independent variable first, remove the variance in the
dependent, then select the second independent which most correlates with the remaining variance

in the dependent, and so on until selection of an additional independent does not increase the
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R-squared by a significant amount (significance = .05). In other words, stepwise regression
chooses the variables with the highest partial correlations and includes variables until the partial
correlation of all remaining excluded variables with the dependent variable is below some limit.
This selection process in a way ensures that no variables with high multicollinearity are picked in

the regression model using stepwise regression.

Table 3 shows the PCCs and the variables selected in stepwise regression for the Apopka
Spring dataset for predicting pre-1990 discharge values. The variables with p-value<0.1 are
highlighted in red, indicating a significant partial correlation for that variable. 3-, 4-, 48-, and
52-week moving averages for Lake Apopka and 48-week moving average for Clermont 9 S are

selected in stepwise regression.

Table 3 PCCs and variables selected in stepwise regression for the Apopka dataset
for predicting pre-1990 discharge values.
Apopka Spring PCC p-value
LakeApopka -0.15 0.57
LakeApopka-1-week -0.20 0.45
LakeApopka-2-week 0.39 0.13
LakeApopka-3-week -0.49 0.05
LakeApopka-4-week 0.34 0.20
LakeApopka-6-week -0.14 0.61
LakeApopka-8-week -0.01 0.97
LakeApopka-12-week 0.01 0.96
LakeApopka-24-week 0.11 0.67
LakeApopka-48-week -0.38 0.15
LakeApopka-52-week 0.43 0.10
CLERMONT 9 S-1-week 0.39 0.14
CLERMONT 9 S-2-week -0.18 0.51
CLERMONT 9 S-3-week -0.17 0.54
CLERMONT 9 S-4-week 0.14 0.61
CLERMONT 9 S-6-week 0.08 0.77
CLERMONT 9 S-8-week -0.18 0.51 Apopka-pre1990
CLERMONT 9 S-12-week 0.23 0.40 Selected variables-stepwise
CLERMONT 9 S-24-week 0.34 0.19 LakeApopka.3.week
CLERMONT 9 S-48-week 0.34 0.20 LakeApopka.4.week
CLERMONT 9 S-52-week -0.30 0.26 LakeApopka.48.week
L-0062-48-week 0.29 0.28 LakeApopka.52.week
L-0062-52-week -0.24 0.37 CLERMONT.9.S.48.week

Table 4 shows the PCCs for the Apopka Spring dataset for predicting post-1990
discharge values. The variables with p-value<0.1 are highlighted in red, indicating a significant
partial correlation for that variable. The variables were prescreened using PCCs since the dataset

had only 39 data points and including all the variables for stepwise regression led to an over-
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parameterization of the final regression model. Three-, 4-, and 8-week moving averages for
L-0199, 1-, 2-, 4-, 6- 12-, and 52-week moving averages for Lake Apopka, 8-, 12-, and 52-week
moving averages for Bugg Spring and 48-week moving average for L-0062 are not included in

stepwise regression analysis from the variable list.

Table 4 PCCs and variables selected in stepwise regression for the Apopka dataset
for predicting post-1990 discharge values.

Apopka Spring PCC p-value
L-0199-2-week 0.98 0.02
L-0199-3-week -0.97 0.03
L-0199-4-week 0.89 0.12
L-0199-6-week 0.26 0.74
L-0199-8-week -0.44 0.56
L-0199-12-week 0.97 0.03
LakeApopka -0.92 0.08
LakeApopka-1-week -0.73 0.27
LakeApopka-2-week -0.98 0.02
LakeApopka-3-week 0.97 0.03
LakeApopka-4-week -0.95 0.05
LakeApopka-6-week 0.81 0.19
LakeApopka-8-week 0.78 0.22
LakeApopka-12-week 0.48 0.52
LakeApopka-24-week -0.98 0.02
LakeApopka-48-week 0.96 0.04
LakeApopka-52-week -0.95 0.05
CLERMONT 9 S-1-week 0.96 0.04
CLERMONT 9 S-2-week 0.95 0.05
CLERMONT 9 S-3-week -0.98 0.02
CLERMONT 9 S-4-week -0.51 0.49 Apopka-post1990
CLERMONT 9 S-6-week 0.96 0.04 Selected variables-stepwise
CLERMONT 9 S-8-week -0.85 0.15 L.0199.2.week
CLERMONT 9 S-12-week 0.96 0.04 L.0199.6.week
CLERMONT 9 S-24-week -0.98 0.02 LakeApopka
CLERMONT 9 S-48-week -0.91 0.09 LakeApopka.3.week
CLERMONT 9 S-52-week 0.94 0.06 LakeApopka.8.week
Bugg Spring-6-week 0.37 0.63 LakeApopka.24.week
Bugg Spring-8-week -0.23 0.77 LakeApopka.48.week
Bugg Spring-12-week -0.02 0.99 CLERMONT.9.S.2.week
Bugg Spring-24-week 0.76 0.24 CLERMONT.9.S.3.week
Bugg Spring-48-week -0.97 0.04 CLERMONT.9.S.24.week
Bugg Spring-52-week 0.96 0.04 CLERMONT.9.S.48.week
L-0062-48-week -0.71 0.29 Bugg.Spring.48.week
L-0062-52-week -0.73 0.27 L.0062.52.week

Table 5 shows the PCCs and the variables selected in stepwise regression for the Bugg
Spring dataset for predicting pre-1990 discharge values. The variables with p-value<0.1 are

highlighted in red, indicating a significant partial correlation for that variable. Three-, 4-, 12-,

Final Report 10 INTE3A



24-, and 48-week moving averages for Bushnell 2 E and 24- and 52-week moving averages for

L-0054R are selected in stepwise regression.

Table 5 PCCs and variables selected in stepwise regression for the Bugg dataset for
predicting pre-1990 discharge values.

Bugg Spring PCC p-value
BUSHNELL 2 E-3-week -0.07 0.23
BUSHNELL 2 E-4-week 0.08 0.15
BUSHNELL 2 E-6-week 0.03 0.53
BUSHNELL 2 E-8-week -0.02 0.73_||Bu9g-pre1390
BUSHNELL 2 E-12-week 0.13 0.02 Selected variables-stepwise
BUSHNELL 2 E-24-week 0.11 0.05 |[BUSHNELL.2.E.3.week
BUSHNELL 2 E-48-week 0.11 0.05 |[BUSHNELL.2.E.4.week
BUSHNELL 2 E-52-week 0.05 0.32 |[BUSHNELL.2.E.12.week
L-0054R-12-week -0.04 0.44 |[BUSHNELL.2.E.24.week
L-0054R-24-week 0.27 0.00 |{BUSHNELL.2.E.48.week
L-0054R-48-week -0.01 0.91 |[L.0054R.24.week
L-0054R-52-week -0.07 0.23 |[|L.0054R.52.week

Table 6 shows the PCCs and the variables selected in stepwise regression for the Bugg
Spring dataset for predicting post-1990 discharge values. The variables with p-value<0.1 are
highlighted in red, indicating a significant partial correlation for that variable. Six-, 8-, and
12-week moving averages for Bugg Spring, 3-, 4-, and 24-week moving averages for L.-0096, 6-,
and 52-week moving averages for Bushnell 2 E , 8-, 12-, 24-, and 48-week moving averages for

L-0703R and 24- and 52-week moving averages for L-0054R are selected in stepwise regression.
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Table 6

PCCs and variables selected in stepwise regression for the Bugg dataset for
predicting post-1990 discharge values.

Final Report

Bugg Spring PCC p-value
Bugg Spring-6-week 0.12 0.04
Bugg Spring-8-week -0.08 0.19
Bugg Spring-12-week 0.10 0.07
Bugg Spring-24-week -0.02 0.70
Bugg Spring-48-week -0.01 0.85
Bugg Spring-52-week 0.19 0.74
L-0096-3-week 0.05 0.34
L-0096-4-week -0.05 0.34
L-0096-6-week -0.02 0.70
L-0096-8-week 0.04 0.53
L-0096-12-week 0.00 0.99
L-0096-24-week 0.11 0.05
L-0096-48-week -0.07 0.24
L-0096-52-week 0.07 0.23
BUSHNELL 2 E-3-week -0.03 0.63
BUSHNELL 2 E-4-week 0.00 0.95
BUSHNELL 2 E-6-week 0.08 0.19
BUSHNELL 2 E-8-week 0.03 0.66
BUSHNELL 2 E-12-week -0.03 0.64 |[Bugg-post1990
BUSHNELL 2 E-24-week 0.01 0.84 Selected variables-stepwise
BUSHNELL 2 E-48-week -0.03 0.56 Bugg.Spring.6.week
BUSHNELL 2 E-52-week 0.09 0.13 Bugg.Spring.8.week
L-0703R-3-week 0.03 0.64 Bugg.Spring.12.week
L-0703R-4-week 0.01 0.90 L.0096.3.week
L-0703R-6-week -0.04 0.53 L.0096.4.week
L-0703R-8-week 0.07 0.20 L.0096.24.week
L-0703R-12-week -0.06 0.30 BUSHNELL.2.E.6.week
L-0703R-24-week -0.18 0.00 BUSHNELL.2.E.52.week
L-0703R-48-week 0.08 0.17 L.0703R.8.week
L-0703R-52-week -0.07 0.20 L.0703R.12.week
L-0054R-12-week -0.04 0.54 L.0703R.24.week
L-0054R-24-week 0.18 0.00 L.0703R.48.week
L-0054R-48-week -0.02 0.69 L.0054R.24.week
L-0054R-52-week -0.03 0.60 L.0054R.52.week
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4.0 REGRESSION MODELING

4.1 Methodology

The objective of regression modeling is to build a multivariate linear input-output model
between the response variable (spring discharge) and the surrogate predictor variables (moving
averages of spring discharge, groundwater and lake water level measurements, and precipitation)
at the spring of interest. Such a relationship can be expressed by:

Oi=ao+ aifui + .... T & ht aspuct sl + € (1)
where q is spring discharge; h is groundwater level; p is the lake level; r is precipitation; € is a
random error term; a0, al, a2, a3 and a4 are regression coefficients; t is time, and i, j, k and |
denote lags that maximize the correlation between the response and predictor variable pair of
interest. Here, the use of surrogate predictors is necessitated by the fact that most predictor
variables are not measured on a daily basis. Generation of daily discharge thus requires the use
of predictor variables for which daily values can be generated, e.g., on the basis of averaging

over some moving time window.
Eq. (1) can be symbolically re-stated as follows, where MA denotes moving average:

[Spring discharge] = f { [same spring MA] + [groundwater level MA] +
[lake water level MA] + [precipitation MA] +
[adjacent spring MA] } (2)

Depending on the information available for the spring of interest, the regression model
can contain all five terms in Eq. (2). This is especially true for the recent period since 1990s,
when detailed measurements of groundwater levels are available. For Apopka Spring, good
discharge measurements are not available prior to 1997. Thus, for Apopka Spring regression
models, the variables comprising the first term in Eq. (2); i.e., Apopka Spring moving averages,
are not included. For Bugg Spring, discharge measurements start from 1990. Thus, Bugg
regression model for discharge predictions prior to 1990 will have to rely on rainfall, discharge at
adjacent springs, lake levels and, water levels from monitoring wells and Bugg regression model

for discharge predictions post-1990 can include all the five terms in Eq. (2).

As described earlier, the model building process can be carried out using stepwise

regression, where variables are added or removed one at a time until no additional variables can
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be found that improve the goodness-of-fit of the input-output model. At each successive step in
the regression modeling process, the variable that explains the largest fraction of unexplained
variance is included. This is the variable with the largest absolute value of the partial correlation
coefficient (PCC), which measures the correlation between the output and the selected input

variable after the linear influence of the other variables have been eliminated.

The model generated at every step is tested to ensure that the each of the regression
coefficients is significantly different from zero. A partial F-test, or, an equivalent t-test, is used
to reject the hypothesis that a regression coefficient is zero, at a 100(1 - o) % confidence level.
The stepwise regression process continues until the input-output model contains all of the input
variables that explain statistically significant amounts of variance in the output, i.e., no more

variables can be found with a statistically significant regression coefficient.

Note that the number of potential explanatory variables can be quite high, given that
moving averages from multiple lags are considered for each of the terms in Eq. (1). It is
therefore necessary to ensure that the regression model includes only those independent variables
that have the highest correlation with the response variable, while taking into account any
variable-variable correlations. However, the selection of the most relevant independent variables
is carried out automatically as part of the stepwise regression process — thus, eliminating this
onerous pre-processing step. However, as indicated in the earlier section, a pre-processing step
to select variables for stepwise regression becomes necessary for the Apopka regression model
for post-1990 discharge predictions, due to only 39 Apopka discharge values and a large number
of independent variables. The preprocessing is done by selecting variables having significant
p-values for partial correlation coefficients and low correlation coefficients amongst each other.
On the other hand, application of standard multivariate linear regression would require that the
variables to be included in the model be specified a priori. A careful examination of correlation
and partial correlation coefficients is warranted in such cases to assist in the parsimonious
selection of predictor variables and to avoid over-parameterization of the model. An alternative
would be to use a data reduction technique such as principal component analysis (PCA) to
combine the independent variables into principal components and then apply regression to the

principal components.

The workflow for modeling the spring discharge can be summarized as follows:
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o Split the period of record into a late-time period, where detailed groundwater level
measurements are available, and an early time period where only limited or no

groundwater level measurements are available.

o For each period, organize the spring discharge data (response variable) and the
corresponding moving averages of groundwater levels, lake levels, precipitation,

discharge at same spring and discharge at adjacent springs (predictors).

« Retain only those predictor variables for which the number of data points is at least 80%
of the number of spring discharge measurements. This threshold has been applied to
ensure that the characteristics of the spring discharge time series can be captured as much

as possible by the regression model.

o Build a stepwise regression model between spring discharge (response) and some or all
of the following predictors: discharge at same spring, discharge at adjacent springs,

precipitation, lake levels and groundwater levels.

An important point to note here is that these regression models are being built with the
“best available data.” The quality of the model therefore depends on data coverage, presence of
groundwater monitoring wells and lake levels in the immediate vicinity, and availability of

discharge measurements at nearby springs that can be used as ancillary data sources.
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4.2 Regression Models for Apopka Spring
Two distinct prediction periods can be identified for Apopka Spring:

o post-1990 period, when water level measurements from groundwater wells L-0062,

L-0199 and Lake Apopka are available, along with precipitation measurements from

Clermont 9 S and discharge from Bugg Spring, and

o pre-1990 period, when water level measurements are available from groundwater well

L-0062 and Lake Apopka; along with precipitation measurements from Clermont 9 S.

Stepwise regression analyses were performed on separate datasets for both of these
prediction periods and the results are presented below. The stepwise regression analysis of the

dataset for pre-1990 Apopka discharge predictions produced the following model:

Apopka = LakeApopka.3.week + LakeApopka.4.week + LakeApopka.48.week +

LakeApopka.52.week + Clermont.9.S.48. week 3)

The multiple R* for this regression model was 0.6151. The standard error of estimate was
2.2015. Estimated regression

coefficients and their statistics are given below in Table 7.

The F-statistic was 10.231, and the p-value was <0.00001.

In Table 7, the “B” column contains the regression coefficients in actual units. The

“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if
the predictor variables had been normalized to zero mean and unit standard deviation. The
absolute value of the SRCs can be used as an indicator of variable importance (Draper and Smith,
1981). Thus, the most important predictor variables can be identified as [LakeApopka 4-week],

[LakeApopka 3-week] and [LakeApopka 52-week].

Table 7 Apopka — pre-1990 period — regression coefficient statistics.
Regression Summary for Dependent Variable: Apopka Spring (pre1990 in Apopkadata.stw)
R=.78433780 R2=.61518579 Adjusted R2= .55505857
F(5,32)=10.231 p<.00001 Std.Error of estimate: 2.2015
N=38 Beta Std.Err. B Std.Err. t(32) p-level
Intercept -98.2321 | 21.70211 | -4.52638 | 0.000078
LakeApopka-3-week -10.0701 | 3.464880 | -25.0754 | 8.62781 | -2.90635 | 0.006587
LakeApopka-4-week 10.0943 | 3.546184 | 25.1735 | 8.84354 | 2.84653 | 0.007653
LakeApopka-48-week -8.1174 | 3.181231 | -21.7349 | 8.51796 | -2.55165 | 0.015700
LakeApopka-52-week 8.6785 | 3.116300 | 23.4354 | 8.41527 | 2.78487 | 0.008920
CLERMONT 9 S-48-week 0.6839 | 0.151492 | 48.6956 | 10.78737 | 4.51413 | 0.000081
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Figure 6 shows a comparison between the observed and fitted values of the regression
model for pre-1990 Apopka discharge predictions. The scatter in the data is consistent with a
final R? of 0.6151. Note also the resulting under prediction of some high discharge values and
over prediction of some low discharge values (i.e., the outliers in Figure 6). Also shown in
Figure 6 are the confidence bands associated with the regression line. These bands, which are a
function of the standard error of estimate and the number of data points, depict the uncertainty in

placing the best-fit line through the data cloud.

Figure 7 shows a normal probability plot of the residuals of the Apopka regression model
for pre-1990 Apopka discharge predictions. The plot shows deviations from linearity at some
residuals. This is primarily due to the low number of data points available from Apopka

discharge for statistical modeling.

The stepwise regression analysis of the dataset for post-1990 Apopka discharge

predictions produced the following model:

Apopka =10199.2.week + L0199.6.week + LakeApopka + LakeApopka.3.week +
LakeApopka.8.week + LakeApopka.24.week + LakeApopka.48.week + Clermont.9.S.2. week +
Clermont.9.S.3.week + Clermont.9.S.24.week + Clermont.9.S.48.week + BuggSpring.48.week

+ L0062.52.week (4)

The multiple R* for this regression model was 0.7933. The standard error of estimate was
1.8627. The F-statistic was 7.0886, and the p-value was <0.00002. Estimated regression

coefficients and their statistics are given in Table 8.

In Table 8, the “B” column contains the regression coefficients in actual units. The
“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if
the predictor variables had been normalized to zero mean and unit standard deviation. The most
important predictor variables, identified on the basis of the absolute value of SRC, are [L-0199
2-week], [LakeApopka 8-week] and [L-0199 6-week].
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Table 8

Apopka — post-1990 period — regression coefficient statistics.

Regression Summary for Dependent Variable: Apopka Spring (post1990 in Apopkadata.stw)

R=.89071554 R2=.79337418 Adjusted R2= .68145186

F(13,24)=7.0886 p<.00002 Std.Error of estimate: 1.8627
N=38 Beta Std.Err. B Std.Err. t(24) p-level
Intercept -107.819 | 52.47515 | -2.05467 | 0.050953
L-0199-2-week 6.15084 | 2.465612 | 9.217 3.69456 | 2.49465 | 0.019890
L-0199-6-week -4.93606 | 2.609948 | -7.369 3.89629 | -1.89125 | 0.070721
LakeApopka -1.52663 | 0.882302 | -3.987 2.30406 | -1.73028 | 0.096420
LakeApopka-3-week -3.48564 | 2.029968 | -8.680 5.05477 | -1.71709 | 0.098842
LakeApopka-8-week 5.01358 | 2.081273| 12.612 | 5.23546 [ 2.40890 | 0.024036
LakeApopka-24-week -2.76293 | 1.223492( -7.030 3.11305 | -2.25824 | 0.033299
LakeApopka-48-week 1.05970 [ 0.641911| 2.837 1.71876 | 1.65085 | 0.111795
CLERMONT 9 S-2-week 0.62843 | 0.296336 | 9.414 4.43916 | 2.12067 | 0.044478
CLERMONT 9 S-3-week -0.71610 | 0.332911 | -14.661 | 6.81564 | -2.15102 | 0.041755
CLERMONT 9 S-24-week -0.33733 | 0.194718 | -15.305 | 8.83471 | -1.73242 | 0.096034
CLERMONT 9 S-48-week 0.69695 | 0.225189 | 49.628 | 16.03518 | 3.09495 | 0.004947
Bugg Spring-48-week -1.23644 | 0.254254 | -2.372 0.48782 | -4.86301 | 0.000059
L-0062-52-week 1.38363 | 0.405271] 3.055 0.89476 | 3.41409 | 0.002277

Figure 8 shows a comparison between the observed and fitted values of the regression
model for post-1990 Apopka discharge predictions. The scatter in the data is consistent with a
final R* of 0.7933. Note also the resulting under prediction of some high discharge values and
over prediction of some low discharge values (i.e., the outliers in Figure 8). Also shown in
Figure 8 are the confidence bands associated with the regression line. These bands, which are a
function of the standard error of estimate and the number of data points, depict the uncertainty in

placing the best-fit line through the data cloud.

Figure 9 shows a normal probability plot of the residuals of the Apopka regression model
for post-1990 Apopka discharge predictions. The linearity of the data suggests that standard
assumptions for normally distributed errors in a multivariate linear regression model have been
satisfied and the model is properly parameterized. The presence of moving averages of Bugg

Spring and L-0199 as variables in the model helps improve the residual plot.

To compare observed versus predicted discharges, it is also useful to consider the variance
values for the two records. The F-test for variance equality is often employed for this purpose.
This test makes a statistical comparison between the variances of two data sets through the

calculation of three values (Ott, 2006):
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e Calculated F-value: depends on the variance values for the observed and predicted

discharge values and the two sample sizes,

e Critical F-value: depends on the two sample sizes and the desired significance level for

the test, and
e P-value: calculated based on the difference between the calculated and critical F-values.

If the Calculated F-value is greater than the Critical F-value then, reject Hy (the null hypothesis
which states that the standard deviations of two normally distributed populations are equal, and
thus that they have similar spreads) at the chosen level of confidence (alpha = 0.05). If this is the
case then look at the P-value to evaluate the chances of observing an F-value that is greater than

the calculated value.

In general, it is expected that regression-predicted values are generally smoother than
actual observed discharge values. To quantify the effects of this smoothing on the generated
period of record, two tools are used, a quantitative evaluation and visual comparison. The
quantitative evaluation is the Kolmogorov-Smirnov (K-S) test which evaluates the differences
between the empirical distribution functions for the observed and predicted time-series
(D'Agostino and Stephens, 1986). Under the null hypothesis that the two cumulative distribution
functions are identical, the test statistic D for this test is the greatest absolute vertical distance
between the two empirical distribution functions. This test statistic is not dependent on the two
underlying distributions. Therefore the p-value for this test is only dependent on the two sample

sizes, which can be different.

The K-S D statistic can be used to evaluate if the two cumulative distributions functions
(CDFs) are statistically similar. Another qualitative tool often employed to compare two data
sets is the box-whisker plot (also known in the literature as the box plot, Ott, 2006). This plot is
a convenient way of graphically depicting the location and spread of the two (or more) data sets.
The plot shows the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and
largest observation. Furthermore, the plots show which observations, if any, are considered to be
outliers. These plots visually show different types of populations, without any assumptions of
the statistical distribution or requirements about the sample sizes. The box size (difference

between Q3 and Q1) helps indicate variance. Skew is also graphically shown through (1) the
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location of the median in relation to Q1 and Q3, (2) the maximum and minimum values, and

(3) the number of value of outliers.

Table 9 shows the F-test and K-S test between observed Apopka Spring time-series and
predicted Apopka Spring time-series on days corresponding to observed data. Results for the
F-test indicate that there is no significant difference between the two variances; with a 28%
chance of observing the calculated F-value under the equal variance hypothesis for this sample
size. Similar results are indicated by the K-S D statistic which shows a p-value of about 1.0,

indicating a probability of almost 100% that the two empirical CDFs are identical.
Figure 10 shows the box-whisker plots for three data sets:
(1) observed discharge values at Apopka Spring,

(2) regression-predicted values for the same dates at which observed discharge value are
available. These predicted values come from two different regression models as

described above, and

(3) regression-predicted values from the two regression models for each day in the period

of record.

The plots show that the observed discharge values at Apopka Spring show slightly higher
variability than the regression-predicted values (data sets 1 and 2). However, data set 3, which
shows a complete record of pooled model predictions, shows higher variability than data set 2.
This shows that the regression predictions show higher variability than the observed values. It is
expected, however, that more variance would have been observed if more observations had been
made in the same time period. In conclusion, the regression-predicted values show a similar
range of variability as the observed discharge values with the complete daily predicted record

showing plausible variability.
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Table 9 Apopka Spring - 1959-2005 — Observed and Regression-Predicted Variance

Statistics.
Apopka(observed) Apopka(predicted)
Mean 27.29 27.26
Variance 11.16 9.24
Observations 39 39
df 38 38
F 1.21
P(F<=f) one-tail 0.28
F Critical one-tail 1.72
K-S D statistic 0.08
p-value for K-S test 1.00

* df are the degrees of freedom which are equal to the sample size
minus 1 for the F-test.
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4.3 Regression Models for Bugg Spring
Two distinct prediction periods can be identified for Bugg Spring:

e post-1990 period, when water level measurements from groundwater wells L-0096,

L-0703R, and L-0054R are available, along with precipitation measurements from

Bushnell 2 E and discharge from Bugg Spring, and

o pre-1990 period, when water level measurements are available from groundwater well

L-0054R; along with precipitation measurements from Bushnell 2 E.

Stepwise regression analyses were performed on separate datasets for both of these
prediction periods and the results are presented below. The stepwise regression analysis of the

dataset for pre-1990 Bugg discharge predictions produced the following model:

Bugg = Bushnell.2.E.3.week + Bushnell.2.E.4.week + Bushnell.2.E.12.week +
Bushnell.2.E.24.week + Bushnell.2.E.48.week +
L0054R.24.week + L0054R.52.week (5)

The multiple R* for this regression model was 0.5651. The standard error of estimate was
1.5132. The F-statistic was 61.083, and the p-value was <0.0000. Estimated regression

coefficients and their statistics are given below in Table 10.

In Table 10, the “B” column contains the regression coefficients in actual units. The
“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if
the predictor variables had been normalized to zero mean and unit standard deviation. The most
important predictor variables can be identified as [L0O054R 24-week], [LO054R 52-week] and
[Bushnell 2 E 48-week].
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Table 10 Bugg — pre-1990 period - regression coefficient statistics.

Regression Summary for Dependent Variable: Bugg Spring (pre1990 in Buggdata.stw)
R=.75176316 R2= .56514785 Adjusted R?= .55589568
F(7,329)=61.083 p<0.0000 Std.Error of estimate: 1.5132

N=337 Beta Std.Err. B Std.Err. 1(329) p-level

Intercept -3.62809 | 2.866350 | -1.26575 | 0.206498
BUSHNELL 2 E-3-week -0.145905( 0.089522 | -2.46223 | 1.510735 | -1.62982 | 0.104096
BUSHNELL 2 E-4-week 0.227605 | 0.096028 | 4.19801 | 1.771167 | 2.37019 | 0.018355

BUSHNELL 2 E-12-week 0.233836 | 0.065313 | 6.02972 | 1.684167 | 3.58024 | 0.000395
BUSHNELL 2 E-24-week 0.107880 | 0.056050 | 4.20063 | 2.182466 | 1.92472 | 0.055127
BUSHNELL 2 E-48-week 0.328875] 0.059642 | 27.22634 | 4.937551 [ 5.51414 | 0.000000
L-0054R-24-week 0.796893 | 0.127261 | 0.83664 | 0.133608 [ 6.26190 | 0.000000
L-0054R-52-week -0.624932| 0.123536 | -0.69533 | 0.137452 | -5.05872 | 0.000001

Figure 11 shows a comparison between the observed and fitted values of the regression
model for pre-1990 Bugg discharge predictions. The scatter in the data is consistent with a final
R? of 0.5651. Note also the resulting under prediction of some high discharge values and over
prediction of some low discharge values (i.e., the outliers in Figure 11). Also shown in
Figure 11 are the confidence bands associated with the regression line. These bands, which are a
function of the standard error of estimate and the number of data points, depict the uncertainty in

placing the best-fit line through the data cloud.

Figure 12 shows a normal probability plot of the residuals of the Bugg regression model
for pre-1990 Bugg discharge predictions. The linearity of the data suggests that standard
assumptions for normally distributed errors in a multivariate linear regression model have been
satisfied and the model is properly parameterized. There are, however, minor deviations from

linearity at high and low values of residuals.

The stepwise regression analysis of the dataset for post-1990 Bugg discharge predictions

produced the following model:

Bugg = Bugg.6.week + Bugg.8.week + Bugg.12.week + L0096.3.week + L0096.4.week +
L0096.24.week + Bushnell.2.E.6.week + Bushnell.2.E.52.week + LO703R.8.week +
L0703R.12.week + LO703R.24.week + LO703R.48.week + L0054R.24.week + LO054R.52.week

(6)
The multiple R* for this regression model was 0.7128. The standard error of estimate was
1.2431. The F-statistic was 57.085, and the p-value was <0.0000. Estimated regression

coefficients and their statistics are given below in Table 11.
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In Table 11, the “B” column contains the regression coefficients in actual units. The
“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if
the predictor variables had been normalized to zero mean and unit standard deviation. The most
important predictor variables, identified on the basis of the absolute value of SRC, are

[L-0096 4-week], [L-0096 3-week], and [L-0703R 24-week].

Table 11 Bugg — post-1990 period — regression coefficient statistics.

Regression Summary for Dependent Variable: Bugg Spring (post1990 in Buggdata.stw)
R=.84427728 R?= 71280413 Adjusted R2=.70031735
F(14,322)=57.085 p<0.0000 Std.Error of estimate: 1.2431

N=337 Beta Std.Err. B Std.Err. 1(322) p-level

Intercept 1.06677 | 3.675098 [ 0.29027 | 0.771796
|Bugg Spring-6-week 0.64300 | 0.263460| 0.64494 | 0.264256 [ 2.44059 | 0.015202
|Bugg Spring-8-week -0.45500 | 0.279802 ] -0.45811 | 0.281719 | -1.62614 | 0.104899
|Bugg Spring-12-week 0.26122 | 0.109948 ] 0.28035 | 0.118002 | 2.37584 | 0.018094
L-0096-3-week 3.29820 | 0.826582 | 3.32278 | 0.832741 | 3.99017 | 0.000082
L-0096-4-week -3.84600 | 0.889112] -3.87478 | 0.895764 | -4.32567 | 0.000020
L-0096-24-week 1.61700 | 0.353867 ] 1.68726 | 0.369244 | 4.56951 | 0.000007
BUSHNELL 2 E-6-week 0.18444 | 0.062005| 3.69360 | 1.241708 | 2.97461 | 0.003155
BUSHNELL 2 E-52-week 0.15927 | 0.055409 | 13.56703 | 4.719741 | 2.87453 | 0.004316
L-0703R-8-week 1.57264 | 0.358054 ] 2.37961 | 0.541783 | 4.39219 | 0.000015
L-0703R-12-week -0.69301 | 0.319806 ] -1.05489 | 0.486803 | -2.16698 | 0.030970
L-0703R-24-week -2.44829 | 0.428952 | -3.75926 | 0.658640 | -5.70761 | 0.000000
L-0703R-48-week 0.33394 | 0.181604 | 0.51255 | 0.278736( 1.83883 | 0.066860
L-0054R-24-week 0.63725 | 0.173788] 0.66904 | 0.182456 | 3.66685 | 0.000287
L-0054R-52-week -0.32187 | 0.152233] -0.35812 | 0.169382 | -2.11430 | 0.035258

Figure 13 shows a comparison between the observed and fitted values of the regression
model for post-1990 Bugg discharge predictions. The scatter in the data is consistent with a final
R* of 0.7128. Note also the resulting under prediction of some high discharge values and over
prediction of some low discharge values (i.e., the outliers in Figure 13). Also shown in
Figure 13 are the confidence bands associated with the regression line. These bands, which are a
function of the standard error of estimate and the number of data points, depict the uncertainty in

placing the best-fit line through the data cloud.

Figure 14 shows a normal probability plot of the residuals of the Apopka regression
model for post-1990 Bugg discharge predictions. The linearity of the data, except at high and
low residuals, suggests that standard assumptions for normally distributed errors in a multivariate

linear regression model have been satisfied and the model is properly parameterized.
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To compare observed versus predicted discharges, the same methods described before for
Apopka Spring are used for Bugg Spring. Results for the F-test and K-S D statistic are shown in
Table 12. Results for the F-test indicate that there is a statistically significant difference between
the two variances; with values of 5.33 and 3.40 for the observed and regression-predicted values,
respectively. The K-S D statistic shows a similar significant difference between the two

empirical CDFs.

As mentioned before for Apopka Spring, the F-test and the K-S D statistic do not show
the nature of the difference between the two time series. To provide some insight into these
differences, Figure 15 shows the box-whisker plots for the observed and regression-predicted
discharge values (along with the complete regression-predicted period of record). The plots
show that the differences between the observed and predicted values are largely due to the
existence of more outliers and extreme values in the observed time series. The interquartile
range (25%-75% box in Figure 15) is very similar for the data sets 1 and 2 (observed and
regression-model-predicted values), with a difference of less than 0.2 cfs at the lower and upper
levels. The 95% non-outlier range in Figure 15 also shows that the two data sets are similar at
the upper level but the regression models display less value at the lower range of observed spring
discharge values. The largest difference between the data sets appears to be due to 3 outliers in

the observed Apopka Spring discharge values.

As with Apopka Spring, data set 3, which shows a complete record of pooled model
predictions, shows much more variability than data set 2, with an overall variability that is
slightly lower than the observed record? Most of the difference however is at the lower range of
observed discharge values. It is expected, however, that more variance would have been
observed if more observations had been made in the same time period. In conclusion, the
regression-predicted values show a reasonably similar range of variability as the observed

discharge values with the complete daily predicted record showing plausible variability.
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Table 12 Bugg Spring - Observed and Regression-Predicted Variance Statistics.

Bugg(observed) Bugg(predicted)

Mean 11.46 10.41

Variance 5.33 3.40

Observations 349 11721

df 348 11720
F 1.57
P(F<=f) one-tail 0.00
F Critical one-tail 1.13
K-S D statistic 0.32
p-value for K-S test 0.00
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5.0 PREDICTION OF DAILY DISCHARGE AND FLOW
DURATION

5.1 Daily Discharge Predictions and Flow Duration Curves for
Apopka Spring
Predictions of daily discharge and flow duration curves for Apopka are carried out with
the help of Eq. (3) for the pre-1990 period and Eq. (4) for the post-1990 period. Figures 16
and 17 show these daily predictions juxtaposed with actual measurements of Apopka discharge
(at an average frequency of 75 days). The agreement between both the time series in Figure 16
is quite good and the absence of any significant divergent trends indicates that the linear model is

able to capture the general trend of the spring discharge.

The absence of actual observations of Apopka Spring discharge during the 1949-1990
period preclude a meaningful evaluation of the reliability of the daily predictions shown in

Figure 17, generated using Eq. (3).

Figure 18(a) shows the Apopka (7/18/1997 to 12/31/2005) flow duration curve showing
comparison between observed data and the model daily discharge predictions. The observed and
simulated discharge flow duration curves, for the period of record of Apopka Spring data, match
well except at extreme low and high discharge values. Figure 18(b) shows the flow duration
curve, i.e., discharge versus percent exceedance for the long-term simulation, for a period from
6/2/1949 to 12/31/2005, generated from the results of the statistical modeling. The confidence
intervals on the predicted daily discharge are calculated based on the standard error of estimate
from the corresponding regression models (Eq. 3 and Eq. 4). As such, they reflect only the
uncertainty on the mean predictions, and do not include the effects of any additional sources of

uncertainty such as measurement errors.

The corresponding high- and low-flow frequency analyses for the system (frequency of
spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months and 1 year)

are shown in Figure 19.
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5.2 Daily Discharge Predictions and Flow Duration Curves for Bugg
Spring
Predictions of daily discharge and flow duration curves for Bugg are carried out with the
help of Eq. (5) for the pre-1990 period and Eq. (6) for the post-1990 period. Figures 20 and 21
show these daily predictions juxtaposed with actual measurements of Bugg discharge (at an
average frequency of 15 days). The agreement between both the time series in Figure 20 is quite
good and the absence of any significant divergent trends, except between 2004 and 2005,

indicates that the linear model is able to capture the general trend of the spring discharge.

The absence of actual observations of Bugg Spring discharge during the 1973-1990
period preclude a meaningful evaluation of the reliability of the daily predictions shown in

Figure 21, generated using Eq. (5).

Figure 22(a) shows the Bugg (6/1/2000 to 11/28/2005) flow duration curve showing
comparison between observed data and the model daily discharge predictions. This plot
compares the observed and the simulated daily discharge flow duration curves, for the period of
record where Bugg data has the highest data frequency (refer Figure 20). Figure 22(b) shows the
flow duration curve, i.e., discharge versus percent exceedance for the long-term simulation
generated from the results of the statistical modeling. The confidence intervals on the predicted
daily discharge are calculated based on the standard error of estimate from the corresponding
regression models (Eq. 5 and Eq. 6). As such, they reflect only the uncertainty on the mean
predictions, and do not include the effects of any additional sources of uncertainty such as

measurement errors.

The corresponding high- and low-flow frequency analyses for the system (frequency of
spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months and 1 year)

are shown in Figure 23.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

This document presents an evaluation of the spring discharge data for Apopka and Bugg
springs; groundwater levels at adjacent monitoring wells, lake levels at nearby lakes and
precipitation measurements at nearby rain gage stations. Based on this evaluation, a regression
modeling methodology is developed and applied for generating daily spring discharge records at
Apopka and Bugg springs. Usage notes for the regression models are provided in Appendix A.
Flow duration curves are also generated along with high- and low-frequency analyses for set
durations from the simulated daily spring discharge. The following general conclusions can be

made based on this study.

e Most measurements of spring discharge and groundwater level are at a frequency of
~30 days greater — necessitating the generation of moving averages with commensurate

lags to be used as surrogate predictor variables.

e Typically, two regression models of spring discharge are needed: (a) one for the period
when daily groundwater levels, lake levels and rainfall data are available, and (b) one for
the period when rainfall data are supplemented with lake levels and perhaps low data

frequency groundwater levels from one or two long-term monitoring wells.

e Stepwise regression is a good starting point for regression modeling — as indicated by the
linearity of the residuals in a probability plot and the reasonable nature of daily discharge

predictions compared to actual observations recorded at less frequent intervals.

e Daily discharge predictions can be made for Apopka as far back in time as 1949.
Comparable predictions can be made until 1973 for Bugg Spring primarily due to the
inclusion of long-term monitoring well L-0054R which goes back only till 1973.

Based on the data evaluation, regression model building and discharge prediction exercises
undertaken during this study, the following recommendations are offered with respect to the

applicability of the modeling tool.

e The model of spring discharge conditioned on groundwater levels, lake levels, rainfall
and spring discharge is of a higher reliability, and should be used as the primary model

for setting criteria and/or thresholds in the MFL program.
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e The model of spring discharge based only on rainfall, lake levels and groundwater levels
(when available) is of lower reliability and should be used only as a secondary model for

estimating long-term average behavior and any associated uncertainty.

e The generation of daily spring discharge based only on rainfall records and perhaps the
discharge at an adjacent spring does not appear to a feasible proposition be of limited
usefulness. It is recommended that daily spring discharge prediction exercises be limited
to situations used cautiously where ancillary groundwater level measurements are not

available.

In summary, we note that reasonable predictions of daily discharge have been made for both
springs of interest using the best available data, with the corresponding periods of record being

~55 years for Apopka Spring and ~30 years for Bugg Spring.

The daily period of record generated by the multiple regression models provides an
estimate for the historic time series of spring discharge values. These estimated discharge values
are developed for uses where such a time series is required, such as a frequency analysis of
historic flows for Minimum Flows and Levels (MFL) determinations. It must be explicitly stated
that the presented multiple regression models are not physical and should not be used for
predictive purposes or to interpret the relationships between spring discharge values and
explanatory variables such as groundwater levels, recorded rainfall, or recorded discharges at
nearby springs. A specific caution is made that predictions achieved by altering the explanatory
variables from their observed values and re-generating the spring discharge time series entail

assumptions not supported here.
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(a) Apopka (7/18/1997 to 12/31/2005) flow duration curve showing comparison between
observed data and model predictions

40.00

35.00

30.00

25.00

Discharge(cfs)

20.00

15.00

Apopka-flow duration curve - 7/18/1997 to 12/31/2005

T —— Apopka(post-1997)

¢ Apopka(observed)

L BRI

3 ¢ ¢ o+ o

10 20 30 40 50 60 70 80 ) 100
Percent of time exceeded

(b) Apopka (6/2/1949 to 12/31/2005) flow duration curve for the entire period of record
based on model predictions

40.00

35.00

w
o
o
S

Discharge(cfs)
g

20.00

15.00

Apopka-flow duration curve - 6/2/1949 to 12/31/2005

— Apopka(predicted)

Apopka(predicted)+95%Cl

Apopka(predicted)-95%CI

S

\

0 10 20 30 40 50 60 70 80 920 100

Percent of time exceeded

Date: June 26, 2006

File: Fig 18.pdf

Flow duration curves for Apopka Spring.

IN<elA

St. Johns River Water Management District
Palatka, Florida

Figure 18




(a) High-flow frequency analysis
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Bugg-prediction - 3/13/1990 - 11/28/2005
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Bugg-prediction - 10/27/1973 to 3/12/1990
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(a) Bugg (6/1/2000 to 11/28/2005) flow duration curve showing comparison between
observed data and model predictions
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(b) Bugg (10/27/1973 to 11/28/2005)) flow duration curve for the entire period of record
based on model predictions
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(a) High-flow frequency analysis
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APPENDIX A: Model Usage Notes

This Appendix describes the structure and operation of an ACCESS database created to facilitate
predictive applications of the statistical spring discharge models described earlier in Section 4.
An example using Bugg spring data is also presented.

1. Folder: Spring Daily Predictions —

The folder Spring Daily Predictions has two files as shown below:
e St.Johns.mdb
e Predictions.xls

File Edit Wisg Fawoarites Tool= Help V'.JB
= ‘ﬁ" ) = =
@ EBack = | =2 o Search | = Folders
[ - > P
address |1 Crispring daily predictions b | =0

Predictions
Microsoft Excel Workshest
9,881 KB

G?I = Bidohns
= | Microsoft Office Access Applic.
= S3,.I05 EB

File and Folder Tasks

Make a new Folder

Publish this Folder to
the wieh

Share this Folder

Dther Places

g Local Disk (C:)
Ij_j My Docurnenks

- al

After building the statistical models in STATISTICA, St.Johns.mdb — an ACCESS database
was built for applying the statistical models to generate daily predictions for both springs. A
screenshot of the database is shown below.

!lE Prediction Toolbox

Johns cess 2000 f

sign = new | X | 2o T

B open B
Objects @:J Create table in Design view Filling in data gaps
| =1 Tables E'_=J Create kable by using wizard
@ Trares @:J Create table by entering data
= |3 T
8 Reports [ Lake Location
“E Pages =1 Rain Station Location Calculate M;:‘lgngg Averagef Predict Spanuggglscharge -
2  Macros [ Missing dates
3 Modified_data
& Modules =2 apopka
Groups 3 Buag
% Favorites =2 Bugg-Frequency-districk
=1 Bugg Frequency Table-district
= Bugg-predictions
=1 Apopka-Frequency-district
[F  Apopka Frequency Table-district
= original Data
[ Apopka-predictions

record: (] 4 ([ 1 b [Pk of 1
On the left, are the different tables present in the database and on the right is a prediction

toolbox. The prediction toolbox executes ACCESS queries and/or VISUAL BASIC
APPLICATION Modules, on the click of different buttons. Predictions.xls — EXCEL file is
used to graphically display the daily predictions and frequency analysis generated in
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St.Johns.mdb. The next few pages will walk the user through using the toolbox for generating
daily predictions and frequency analysis with the help of an example. It will also guide the user

on how to save the results for different cases.

In the example below, our primary task would be to get Bugg spring daily predictions from

10/27/1973 to 11/28/2005.
2. Open St.Johns.mdb

Open St.Johns.mdb (highlighted below) by double clicking the file.

& spring daily predictions [ [5(
o

Fil= Edikt e Fawvorites Tools Help

- -ﬁ- =y =, =
@ Back J =2 - Search [ Folders
=
Address I Ciyspring daily predictions tpe | S
A =
= Predictions
File and Folder Tasks ig =4 | Microsoft Excel Wwarksheet

—# Make a new Folder

&® Publish this Folder ko
the web

k? Share this Folder

=]

Ty

; StJahns
= | Microsoft OFfice Access Applic. ..}
— | 55,708 KB 5

Other Places

e Local Disk (i)
'r_‘ j My Documenkts
= . o

The original spring discharge, groundwater elevation, lake level and precipitation data reside in
the “Original Data” ACCESS data table. The screenshot below indicates the Original Data

table within the database.

&= StJohns : Database {Access 2000 file format)

Hopen B Design T Enew | K | 2o Te-|E2E
Obhjecks =] Create table in Design views
| 1 Tables %J Create table by using wizard
E:J Ciieries %J Zreate table by enktering data
— =E Sprimgs-Locaktion
= Forms =  wwell Location
agl Reports = Lake Location
'_ﬁg Pages = F.ain Station Locakion
= e ErEs =E Missing dates
= Modified_data
w2 Modules =  apopka
Groups = Bugg
| % Fawoarites =] Bugg-Frequency-diskrict
= Bugg Frequency Table-diskrick
=] Bugg-predictions
= Aapoplka-Frequency -districk
=E equency Table-districk
E = -i'ctinns

Final Report A-2



Date Apopka Spring | ApopkaSpringfl]  Bugg Spring L-00%6 L0189 L-0703 L-0596 L-0062 L-0041 L-0054 LakeApopka |[Ball
1/1/1900

1/2/1900

14341900

1/4/1900

1/5/1900

1/6/1900

14701900

1/8/1900

1/5/1900
1/10/1900
141171900 —
17121900
1/13/1900
14141500
171511900
1/16/1900
1A7A1800
1/18/1900
1/19/1900
1/20/1900
172141900
14221800
172371900
172471800
1/26/1900
1/26/1900
14271500 &l
1/28/1900
1/25/1900
1/30/1900
1/31/1900

211500

2/2/1900

2/3/1900

2/41900

2/5/1900

2/8/1900°

2/7/1900

2/8/1900

2/31800
21101800 o

ard: [14] T (2 (M) of 38747 < >

S e

The table has 38747 records for dates ranging from 1/1/1900 to 1/31/2006. If the user wants to
change a particular data time series, pasting the new time series (with dates from 1/1/1900 to
1/31/2006) over the old one is one of the ways to do it.

If the user has another ACCESS database with new time series data, it can be added to the
Original Data table using an Append Query. Append Query allows the user to append one or
more columns to the Original Data table. For example, if a new time series for L-0096 becomes
available, append the new data column as L-0096(new) using the Append Query. Then delete the
old L-0096 column from Original Data table and rename L-0096(new) as L-0096. If data is not
available for a particular date, the user can leave it blank as seen in Original Data table for
different variables.

3. Data Gap Filling to create “Modified Data” Table

Gaps in the data (over continuous periods) are filled by regressing against more frequently
observed data for a related variable. The need to fill data gaps for some wells arises during the
calculation of moving averages. For example, groundwater elevations at L-0703 can be
predicted from water levels at L-0096 using a simple linear regression model. Such
relationships, developed for well pairs L-0703/L-0096 and L-0054/L-0096 have been pre-
programmed, and are invoked to fill in the gaps in the Original Data table.

Therefore the next step is clicking the “Filling in data gaps” button on the prediction toolbox.
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Prediction Toolbox

Filling in data gaps ‘

alculake Mowving Average) Predict Spring Discharge -
Spopka apopka
Calculate Moving Average) Predict Spring Discharge -
Euag Eugg

Record: E A 1 »> [Eb* of 1

Clicking this button creates a Modified data table as highlighted below:

&= StJohns : Database [Access 2000 file format)

o open B pesion Enew | 2K | 2o

Cbiecks Create kable in Design wiew
| == Tables @J —reakte table by using wizard
= @msmes Create table by entering data
_ = Springs-Location
==l Forms 1 well Location
i3l Reporks =  Lake Location
= Paages = Rain Station Location
= Macros = Missing dates
= rModules ok
Groups
21 Faworites EBugg-Frequency -disktrick

Eugg Freguency Table-districk
EBugg-predictions
Apopka-Frequency-districk
Apopka Frequency Table-diskrick
criginal Daka

HOOooooao

Apopka-predictions

Open the Modified data table by double-clicking on it. Below is the screenshot:
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B Modified_data : Table
Date Apopka Spring | Bugg Spring L-0095 L0199 L0703 9 L-703-R [ L0sgB L-0052 L-0041 L-0054 LakeApopka [B~

14141900
1271900
1/3/1900
1/4/1900
1/5/1900
1/6/1900
14711900
1/3/1900
1/3/1900
11041900
1114900
141241900
1/13/1900
171471900
14151900
141641900
14171900
1/18/1900
1/18/1900
1/20/1900
1/2141900
1/22/1900
1/231900
1/24/1900
1/25/1900
1/26/1900
1/271900
1/28/1900
1/29/1900
1/30/1900
1/31/1900
2/1/1900
2/2/1900
2/3/1900
2411900
2/5/1900
2/8/1900
2/7/1900
2/8/1900
2/8/1900
2f10/1900
211141900 oA

Record: [14] T D JrRH] of 3s747 < >

I A

The user would notice some new variables present in the Modified Table. For example, we see
L-703-R highlighted in the above screenshot. L-703-R has all the original well-data for L-0703
and some regressed data values from L-0096 using a simple linear regression model. Similarly,
Modified Table will also have L0054-R as new variable. Modified Table also has additional
columns called L-703-code and L-54-code, which flag the water-level data values filled by
regression with letter “R”. This is highlighted in screenshot below:

B Modified data : Table

L0041 L-OOs54 Lakefpopka |BUSHMELL 2 E|CLERMOMNT 9 —F0S-code L54-R =y

| — el
[=] 59 00852 R
(=]} 59 262755 R
o 59.413235 R
0.09 59 A58

59 47907 R
59.385502 R
59.25335 R
58.736075 R
59.30978 R
59.394425 R
59.3474 R
59.413235 R
53.44145 R
59.40383 R
59.32859 R
59112275 R
59.04644 R

0 0f0 e

(=} Q
= [u}]
00 &

a

0oo0do0oDR0D00000000000020000000000

59.05406 R
58.924175 R
59.262755 R
59.36621 R
59.403683 R
59.40383 R
59.30978 R
532.131085 R
58.924175 R
58.950605 R
58.999415 R
58.999415 R
59.02763 R
59102687 R
59.06525 R
58.848935 R
58.999415 R
58.980605 R
58.95239 R
58.95233 R
59.037035 R
59.02763 R
59.02763 R
59.055845 R
59.02763 R

a
o 00
Q_|=0

[=}

I
o
1]

]
[u]

HERNANARRRNNNARRRRNANARRRNAAARRRNANAREN
~0000A000000000000OKONMMOOOOOOO0OO0O0OWOOO
I0J20000D0DD0AI0AD0ID0D00A00A00D00A00A0DA

a
[}

A

Record: (4] < [ i [ J(FTJEH] of ss747

=
As INgE3a
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4. Calculating moving average variables for each spring

The statistical models in the report show the use of moving averages of different variables
(spring, groundwater level, lake level, and rainfall data) for predicting daily discharge for each
spring. Computation of these variables, for each spring, is then performed by clicking the two
buttons highlighted below.

Prediction Toolbox

Filling in data gaps

iCalculate Moving Average/ | Predict Spring Discharge -

apopka g apopka

Zalculate Moving Average) > Predict Spring Discharge -
Eugg Eugg

Record: [E 1 @ of 1

For example clicking on Calculate Moving Average/Bugg would fill the table Bugg present in
the database. The screenshot below shows table Bugq:

B Bugg : Table

Dats L0096 _3week | LOO9E_dweek
| 971471992 55 8.3 7.93393333333 286457045455 B.06E66656667 60.325 79.7711111111) 79.1043478261 7
- 91151992 8.85 8.85 6.3 793333333333 7.85454545455 8 .0GEGEEEREET 80.37 79.8325) 79.1468181813
| 9/16/1922 3.85 3.85 8.3 7.33333333333 7.35454545455 5.06666RE6EE7 505116796375 80443125 79.3871428571 79.1933333333| 7
| 911771992 8.85 8.85 8.3 793333333333 7.05454545455 B.06666666667 B0.4774023435 79.935 79.2445 7
- 9£18/1992 8.85 8.85 8.3 793333333333 7.85454545455 8 .0GEGEREREET 80.4774023438 79.99) 79.2984210526
- 91191922 3.88 3.88 8.3 7.93333333333 7.85454545455 8.06666666667 80.4774023435 80.0975) 793461111111
| 9720/1992 8.85 8.85 8.3 793333333333 7.05454545455 B.06666666667 B0.4774023435 80.22 79.39) 7
- 92171992 8.85 8.85 8.3 793333333333 7.85454545455 B.06EEEEEEERY 80.4774023438 80.325 789.429375
- 9221992 8.85 8.85 8.3 793333333333 7.85454545455 8.0GEGEREERERT 80.4774023438 80.37| 79 4BBEEGEGET 7
| 92311992 8.85 8.85 8.3 793333333333 7.05454545455 B.06666666667 804774023430 80.4774023438 79.5085714206 7
- 92471992 8.85 8.85 8.3 793333333333 7.85454545455 B .06EEEEEEERY 80.4774023438 80.4774023438) 79.5507692308
- 92511992 8.85 8.85 8.3 793333333333 7.85454545455 8.0GEGEREERERT 804774023438 80.4774023438 795958333333 7
| 972611992 8.85 8.85 8.3 793333333333 7.05454545455 B.06666666667 B0.4774023430 ) 80.4774023430) 79.64727 27273
- 9£2771992 93 8.85 8.3 793333333333 7.85454545455 B.06E6EEEEREEY B0.5759497070 80.5116796875 80.4774023438 79708 7
- 9/28/1992 9.3 8.85 8.3 7.88 7.85454545455 8 0GEGEEEGEET 80.5438146973 805102514648 797711111111 7
| 9729/1992 9.3 8.85 8.3 7.00 7.05454545455 B.06666666667 B0.5438146973 805102514648 79.8325 7
- 9730/1992 (E L] 8.85 8.3 7.06 7.05454545455 806666666667 80.5438146973 80.5102514648) 79.8871428571 7
- 10/1/1932 9.3 8.85 8.3 7.88 7.85454545455 8 .0GEGEREREET 80.5438146973 805102514648 79.935
| 10721992 9.3 8.85 8.3 7.00 7.05454545455 B.06666666667 B0.5438146973 805102514648 79.99 7
- 10731992 9.3 8.85 8.3 7.00 7.05454545455 806666666667 80.5438146973 805102514648 80.0875 7
- 10/4/1932 83 8.85 8.3 7.88 7.85454545455 8 .0GEGEEEEGERT 80.5438146973 805435146573 80.22
| 1051932 3.3 8.85 8.85 7.86 7.85454545455 8.0BBEEEEEEET 805438146573 80.5435146373 80.325
- 10/6/1992 9.3 8.85 8.85 7.00 7.05454545455 B.06666666667 B0.5438146973 805435146973 80.37 7
- 10711932 9.3 8.85 8.85 7.88 7.85454545455 8 .0GEGEEEGERT 80.5438145973 805435146573 80.5102514648 7
- 10/8/1932 8.3 8.85 8.85 7.86 7.85454545455 B.06REGEEEEET 80.5759497070 805433146373 80.5102514648 7
- 10/2/1992 ] 8.85 8.85 7.00 7.05454545455 B.06666666667 B0.6759497070 805436146973 80.5102514648 7
- 10/10/1932 9.3 8.85 8.85 7.88 7.85454545455 8 0GEGEEEGEET 80.5759497070 805435146573 80.5102514648 7
| 10/11/1932 3.3 3.3 4.8 7.88 7.85454545455 8.0BREGEEEEET 805759497070 805435146973 805102514643
| 101271992 9.3 9.3 8.85 7.00 7.00454545455 7.05404545455 B0.57569497070 805435146973 80.5102514648 7
- 10/13/1992 10.8 9.3 93 8.85 7.88 7.85454545455 7 85454545455 80.5759497070 80.54358146573) 80.5102514643
- 10/14/1932 10.05 10.08 9.5 536666666667 8.1 8.1 805759497070 805433146973 80.5102514648 7
| 10/15/1992 10.08 10.08 9.5 8 36666666667 8.1 8.1 B0.6759497070 80.5759497070) 80.5102514648
- 10/16/1992 10.05 10.05 9.5 8 366EREEEEGT 8.1 8.1 80.6964559937 B0.5759497070 805759497070 80.5102514648
| 10/17/1932 10.05 10.05 9.5 536666666667 8.1 8.1 80.6362023503 806362028503 80.5563025370
- 10/18/1992 10.05 10.05 9.5 8 36666666667 5] 8.1 80.63620268503 | 806362028503 50.5946951294
m 10/18/1992 10.05 10.05 9.5 8 3666REEEERT g 8.1 80.6964559937 | 806352023503 80.5546951294
- 10/20/1932 10.08 10.08 9.5 8 36666666667 g 8.1 806964559937 806362028503 80.5346251204
| 1072171992 10.08 10.08 9.5 8 36666666667 g 8.1 B0.6964559937 806362020503 50.5946951294 £
- 10/22/1992 10.05 10.05 9.5 8 36EEREEEEET 8 8.1 80.6964559937 | 80 6362028503 80.59465951294 £
- 10/23/1932 10.05 10.05 9.5 8 3666REREERT g 8.1 80.6964559937 806362023503 80.5946951294 £
| 1072471992 10.08 10.08 9.5 8 36666666667 5] 8.1 B0.6964559937 806362020503 £0.5946951294 £
10/25/1992 10.8 10.05 9.5 8 36EEREEEEET 8 8.1 806564559937 80 6362028503 B0.5846951294 £V
Record: (4] < [ 1 [0 J(PTJ0E] of 3a747 < >
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The highlighted columns in the Bugq table above show some of the calculated moving averages
to be used in the Bugg statistical model for daily discharge predictions. One extra piece of
information generated on clicking Calculate Moving Average/Bugg is in the table Missing Dates
shown below:

R

cord:

1 [» J(e1]*] of =83

B Missing dates : Table
=UELE] startdate startvalue enddate endvalue dateint Interpolate

; Bugg SF2/2002 1.9 4132002 12.2 42 3/23/2002 HJ‘IEZJE‘EM
| [Orstmebe 12741944 066796034828 9/19/1946 2 083958017414 B51 10/28/M1 845 1. 3759
| __|Bushnell 128 T T o Al T 15945 073399056965 Int
| |Bushnell 12/18/1944 0 69008565506 3/9/1945 086570530443 a1 1/28/M 845 0777589548124 Int
| _|Bushnell 12/18/1944 0 69008565806 S5/28/1945 1.04132495080 161 3/9/1945 0.86570530443 Int
| __|Bushnell 12/18/1944 0 69008565806 11461945 1 39266424354 323 5/28/1945 1.04132495080 Int
| |Bushnell 12/18/1944 0 69008565506 9/25/1946 2 095042829035 =F.1=] 11/6/M1845 139256424354 Int
| |Bushnell 12/18/1944 0 69008565806 74201948 35 1292 89/25/1 946 2.09504282903 Int
| |Bushnell 12771944 0.BE79E034528 12/28/1944 071221086754 21 1241841844 0.89008S65508  Int
| |Bushnell 12/7/1944 0. BB7965034828 1/M7/1945 075646158739 a1 12/28/M844 071221096784 Int
| |Bushnell 12/7/1944 0. 66796034828 2/26/1945 0 84496282651 a1 141771845 075646158733 Int
| |Bushnell 2161945 0.81958688313 1272171945 1. 48969016235 308 F20M1245 1.15463852274 Int
| |Bushnell 12/7/1944 0. 66796034828 10/28/1945 1 37597026121 325 51941945 1.02196530474 Int
| __|Bushnell 12/29/1944 071203811385 10411946 2 10601905693 B41 1141541845 1 40902858539 Int
| |Bushnell 12771944 0.BE79E8034528 721948 3.5 1303 S191946 2.08393017414 Int
| |Bushnell 11/26/M944 0 BASEEOS2346 12/17/1944 069025957309 21 12/7/41844 066796034828 Int
| __|Bushnell 11/26/1944 0 BASEEOS2346 1461945 073485892273 41 1241741844 0. 690259587309 Int
| |Bushnell 11/26/1944 0 6GA566052346 271945 0.824057022 83 1/46/1 945 0.73485892273 Int
| |Bushnell 11/26/1944 0 BASEE052346 S5A10/1945 1 00245322053 165 2711945 0824057022 Int
| __|Bushnell 11/26/1944 0 BASEENS2346 102171945 1.3592456176 329 501245 1.00245322053 Int
| |Bushnell 11/26/1944 0 6A566052346 9/M14/1946 2 07253041173 B57 10/21/1845 1 3592456176 Int
| |Bushnell 11/26/1944 0 BASEE052346 74271948 35 1314 914946 207283041173 Int
| |Bushnell 12771944 0. BE79E034528 5A19/1945 1.0219653047 4 163 2261945 0.84496282651 Int
| |Bushnell 1/9/1945 0.73381906609 671945 1 07959168283 159 342941945 090670537446 Int
| _|Bushnell 117241945 1 38353853005 F/3/1946 1. 91265389754 243 3371946 1.64809621379 Int
| |Bushnell 2/1B6/1945 0.81958688313 721948 3.5 1232 10/2541846 2.158979344157 | Int
| |Bushnell 1/28/M1945 077704064318 34811945 086213312308 39 2MBM 3945 0.81958688313 Int
| __|Bushnell 1/28/Q1945 077704064318 AT 945 094722560295 79 3/8/1245 0.86213312308 Int
| |Bushnell 1/28/M945 077704064315 7945 1 11741056278 157 ANTMB45 0.94722560298 Int
| |Bushnell 1/28/M945 077704064318 12/7/1945 1 45778045239 13| 74945 1 11741056278 Int
|__|Bushnell 1/28/1945 077704064318 1041571946 2 13852032159 625 127771845 1. 45778048235 Int
| |Bushnell 1/28M945 077704064315 721945 35 1251 104151846 2 13852032158 Int
| _|Bushnell 12/18/1944 0 69008565806 1/8/1945 0 73399056965 21 122941844 071203811385 Int
| __|Bushnell 181945 0.73381906609 S29/1945 090670537446 79 271945 0.82026222027  Int
| |Bushnell 12/29/1944 071203811385 721948 35 1281 1011846 2 10601905693 Int
| |Bushnell 1/9/1945 0.73381906609 1172271945 1 42536429957 317 B£741945 1.07959168283 Int
| |[Bushnell 181945 0.73351906609 10481946 211690953304 B35 112241845 1.42536429957  Int
| |Bushnell 1/9/1945 0.73381906609 721948 3.5 1270 1061846 211690953304 | Int
| |Bushnell 12/29/1944 071203811385 11191945 0. 75560001832 21 1/9/13945 0.73381806602 Int
| |Bushnell 12/29/1944 0.71203811385 2/8/1945  0.7991619228 41 141941845 0.75560001532 Int
| |Bushnell 12/29/1944 0. 71203811385 320/1945 0 88628573174 81 2/8/M945 07991619228 Int

Bushnell 12/29/4944 071203811385 B/8/1945 1. 06053334962 161 3£20/1245 0.88628573174 Int

The table above informs the user about interpolated values added to a particular data time-series
to facilitate calculation of certain moving average variables. For example, in the first row, a
linear interpolated value (12.05) is added on 3/23/2002 to fill a 42 day gap between 3/2/2002 and
4/13/2002. Values in columns startvalue (11.9) and endvalue (12.2) are the data associated with
3/2/2002 and 4/13/2002 respectively. This interpolation would then help in calculation of Bugg-
6-week moving average variable.

Similarly, clicking Calculate Moving Average/Apopka, would fill the table Apopka with
required moving average variables. Also, the Missing Dates table is updated for each spring.
The following screenshot indicates the two tables being filled with moving average variables.

&= StJohns : Database (Access 2000

le format)

k

Fawvorites

Spen B Desion TNew | 2K | 2o
Cbjecks Create table in Design wisws =1 apopka-predictions
[ vables Create table by using wizard
_Eﬁ Sueries Creake table by entering daka
Springs-Location
—=1 Feorms well Location
i3 Reports Lake Location
“=  Paages Lt ocation
= Macros
rodul
L peues apopka
Sroups Bugg

Bugg-Frequency-district

Buag Frequency Table-districk
Bugg-predictions
Apopka-Frequency-diskrick
Apopka Frequency Table-diskrick
original Data

' joEpoefdogEoEEoBEl
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5. Calculate Spring discharge predictions and frequency analysis

Spring discharge daily predictions are limited by a range of lower and upper date. This is due to
limited date range coverage for explanatory variables in the statistical model for a particular
spring. The following are the dates for the two springs for which daily discharge predictions can
be computed:

Spring Date Range for discharge predictions
Apopka 6/2/1949 to 12/31/2005
Bugg 10/27/1973 to 11/28/2005

Clicking the buttons highlighted below give daily discharge predictions and maximum and
minimum frequencies for date ranges specified by the user. Note that these date ranges have to
fall within the ranges mentioned above for a particular spring

Prediction Toolbox

Filing in data gaps |

Calculate Moving Average)
Bugg

Predict Spring Discharge -
Apopka
Predict Spring Discharge -
Ei

Record:[E 4 I 1P @P{- of 1

For example, on clicking Predict Spring Discharge - Bugg, we see a pop-up window asking for
the date from which predictions are needed. For our example enter 10/27/1973. As noted earlier,
the date entered should be greater than 10/26/1973, since Bugg Spring predictions are only
available since that date.

Prediction Toolbox

Filling in data gaps=

Zalculate Moving Average)
Apopka

Zalculate Moving Average)

Predict Spring Discharge -

Apopka

Predict Spring Discharge -

Buag

Record: E 4

Final Report

Enter Parameter Value

Buag

23]

Enter lower date range=10/26/19373:

[10727i1973

[, Ok ,] I_ Cancel




Press OK. Another window asking for the date till which predictions are needed. For our
example enter 11/28/2005. Again the date entered should be less than 11/29/2005, since Bugg
Spring predictions are only available till 11/28/2005.

Prediction Toolbox

Filling in data gaps

Calculate Moving Awerage/ Fredict Spring Discharge -
apopka Apopka
Calculake Moving Awerage] Predict Spring Discharge -
Bugg Eugg

Enter Parameter Value |'> ||'>< |
Enter upper date range<11/29/2005;

Record: 9] 4 [ 1 & | [11/=8rz008] |

L Ok ,] [ Cancel J

On pressing OK, tables called Bugg-predictions, Bugg-Frequency-district and Bugg
Frequency table-District are added to the ACCESS database as shown below:

¥Es StJohns : Database [Access 2000 file format) |_-_ ||- ||
Horen B pesion Enew | 2K | 2o U= £
Objecks =H] Create table in Design wiews
| ™ Tables Create babls by Using wizard
=L i
=1 @neves “reate table by entering data
— 1 aApopka
= Forms =1 apopka Frequency Table-diskrick
Hal Reporks =1 aApopka-Frequency-diskrick
'llﬁg Pages = Apopka-predictions
2 Macros = E
1  Bugg Freguency Table-disktrick
<22 Modules 1 [Bugg-Frequency-district]
Sroups 1 Bugg-predictions
#E8 Favorites

Missing dates
rModified_data
Original Data

Fiain Skation Location

Springs-Locakion

=
=
=
=
=
=

whell Location

Double click Bugg-predictions table to view. The screenshot on next page shows the observed
Bugg discharge data and the predicted Bugg discharge data, between the lower and upper date
ranges we entered.
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B Bupg-predictions : Table

Date [ Bugglobsered) Bugg(predicted) | Buggipredicted)+35%CI
| 8710/ BNBEMEEE?N 1 9.32463166372112
- 8/11/1992 [ e Tgmien oin) oS HEERERE
- 8/12/1992 8.1076344533216 9.35063445332164
- 8/131992 8.2093645757811 9.45236457578103
- B/14/1992 8.2558475155946 9.4598534751559459
- B/15/1992 8.4 5.4900082960060 9.7330058959600602
- B/16/1992 8.93307 23692668 10.17607 23692665
| 81771992 9.1215769644779 10.3645769644779
| 81871992 9.1304387857 480 10.37343687857 480
- 8/19/1992 9.1597081554837 10.4027091554837
- 8/20/1992 9.4718030333623 10.7148030333623
- B/21/1992 9.5491268570233 10.7921268370233
- B/221992 9Q.2724214194874 10.5154214194674
- B/231992 9.3370510430571 10.580051048057 1
- B/24/1992 9.8563664807932 11.0993664507932
- B/25/1992 9.9934181725486 11.23641817 28486
| 812671992 10.5086676583859 11.7516676833586
| 872771992 106261797 24629 11.8691797 246253 9.3031797 2462931
- B/28/1992 10.724255170452 11.8672551704523 5.48125517045229
- B/29/1992 10.7517 26586587 11.9947 26586587 9.5087 2655656996
RiENMG07 1M ANNAIRRATRAR 17 N439IRAATRAT Q ARTORRARATRARNL
Record: [14] [ L[ T of 11721

The highlighted columns above show Observed Bugg Discharge data, Bugg discharge
predictions, Bugg discharge predictions upper (+) and lower (-) 95% confidence interval.

Double-click table Bugg-Frequency-district to view. The table has continuously-exceeded and
average values for 1-day, 30-day, 90-day, 183-day, 273-day and 365-day periods for each year
starting on June 1 of a year and ending on May 31 of the next year. The table also has
continuously-not-exceeded and average values for 1-day, 30-day, 90-day, 183-day, 273-day and
365-day periods for each year starting on October 1 of a year and ending on September 30 of the
next year. It is important to note that each year range for picking maximums and minimums is
assumed to be independent of other years. The screenshot below shows some of the columns
present in the table.

Bugg-Frequen g@
Date Bugg Cont_exceeded_30days | Average_maximum_30days | Cont_not_exceeded_30days | Average_minimum_30days Cont_exceeded 90days Average_maxim| «
|| 1/268/1974) 9 78132326625 96057787 1765705 9.8771075537415 10.1628741573129 9.6771075537415 5.66758917772108 2.85663210341
|| 1/29/1974 9. 78132326626 96057797 1765705 9.8585377390673 10.0638001113246 9.8585377390873 6.86758917772108 9.8461921686837
| | 173041974 977907294685 9.60127907452993 9.84312037120182 10.0630500042517 9.84312037120182 B.B6758917772108 9.83564495386
| | 173141974 977607251828 9.60127507452993 9.82772000808776 10.0520131960034 9.82772800608776 B8.86758917772108  9.82340014288
|| 2/1/1974 979739540349 960127507 452993 9.8130607 4614512 10.0520131960034 9.8130607 4614512 B8.86758917772108 9.81188535318
| | 2/2/1974 9.80859470961 9.57534926530612 9.8007 2122101757 10.0520131960034 9.800721221101757 8.86758917772108 9.80040715198
| | 2/3/1974 9.80859470961 9.57359501530612 9784774081661 10.0520131960034 9.78477 4081661 8.86758917772108 5.78900870871
| | 2/4/1974 981562956675 9.56309751530612 9.7B847685230442 10.012887 2257653 9.76847689230442 8.86758917772108 8.77563312765
| | 2/5/1974 981400895366 9560347 12244898 9.75339222219388 9.99668 109451293 9.75339222215388 5.85208395453197 9.76114974591
| | 2/8/1974 981150859651 9560347 12244898 9.74778564105726 9.981178880527 22 9.74778564105726 5.80581220238084 3.74615223358
|| 2741974 980400752509 9 560347 12244598 9. 7425618777778 9 98117858052722 9.7428R182777778 5.80581220238084 9.734160323858
| | 2841974 9 79575691794 9. 560347 12244596 89.7375385467 9705 9 BE664504379252 9.73753585467 9705 8.80581220238094 972791702245
|| 2/9/1974 977926026061 9560347 122445895 9.736244685915837 9.64802951743188 9.73624469591837 5.60561220235084 9.722123689123
|| 2A10/1974) 9.77601905442 9.560347 122445895 9.73799316569955 9.64802951743158 9.73799316965855 5.60561220235084 9.7 1675659563
|| 21141974 9. 77087864626 9560347 122445895 9.7345211117347 £.64802951743188 9.7345211117347 6.60561220235084  9.71007766724
|| 2A12/1974 960577971769 9660347 12244595 5.73076234800794 £.64802951743188 9.73075234900754 5.60561220235084  9.70141634433
|| 2/13/1974) 9. 60677971769 9660347 12244595 5.727043586261158 £.64802951743188 9.72704358628118 5.60561220235084  9.69052063475
|| 21441974 9.60127207483 9.560347 12244595 9.7219307 2440476 9.648029517431598 9.72193072440476 6.60561220235094  9.67920661709
|| 2/15/1974 960127207483 953037 44659664 9.71374078932623 9.64802951743158 9.71374078932823 5.60561220235094  9.66858551405
|| 2A6/1974 9.60127907483 9.41451464455783 9.700978057 36395 9.848029517431598 9.700978097 36395 B8.80581220235094  9.65806812054
| | 2741974 957534926531 9.37905082312926 9.68665906701463 9.84802951743198 9.66665996701463 8.80581220238094  9.64754672703
| | 2/18/1974 9.57358801531 9.37905082312926 9.67234183826531 9.84802951743158 9.67234183826531 8.80581220238084  3.63715860335
| | 2/19/1974 956309751531 9.2915377 1598639 9.65487 210990647 9.84802951743158 9.65487 210990847 5.80581220238084  3.62712338355
|| 2/20/1974 956034712245 9.28505526360545 9.6372403202381 9.84802951743158 9.6372403202381 5.80581220238084  3.61891056098
|| 2/21/1974 9.82848366071 9.12137334098639 9.61423581172052 9.84802951743198 9.61423581172052 5.80581220238054  3.60980153104
| | 2/22/1974 9.82446445214 91003717 1343537 9.590758128466554 9.84802951743198 9.59078128466554 5.80581220238084 3.59953531578
| | 2/23/1974 9.83048045111 91003717 1343537 9.56746544451531 9.848029517431598 9.567 46844451531 5.80581220238054  3.58926354417
| | 2r24/1974 9 84802951743 8.84505757057522 9.53966168751417 9.84802951743198 9.539BR165751417 5.80581220238084 857899177256
| | 2/25/1974 9 83477762457 8.57183978466394 9.60952237852891 9 84802951743198 9 .50952237852691 8.80581220238094 9. 56631484768
|| 2/26/1974) 9.67816167219 B8.86758217772108 9.47941272857766 9.64802951743158 9.47941272957766 5.60561220235084  9.55506519335
|| 2/27/1974 9.66916035645 B8.86758217772106 9.46214687 1554705 9.64802951743188 9.4621487 1554705 6.60561220235054  9.54356140809
|| 2/2B8/1974 9 66216035645 B8.86758217772108 9.44459288316311 £.64802951743188 9.44459299316311 5.60561220235084  9.53639651934
|| 3/1/1974) 9 626566709056 B.86758217772108 94267302827 2392 £.64802951743188 9.42673025272352 5.60561220235084  9.6337 25259460
|| 3/2/1974 9 53037446599 B5.86758217772108 9.4093365627 4093 £.64802951743188 9.4093365627 40583 6.60561220238094 2.53130614141
|| 3/3/1974 9. 41451464456 B8.86758217772108 9.39194284275794 9.64802951743158 9.39194284275754 5.60561220235094 9.52893561789
|| 3/4/1974) 9 37905052313 B8.86758217772108 9.37541344575907 9.64802951743158 9.37541344975807 5.605681220235094  9.52763711523
| | 3/5/1974) 9 37905082313 B.86758217772108 9.35894239842687 9.848029517431598 9.35894239842687 B8.80581220235094  9.52508484553
| | 3/6/1974 9.29153771599 8.86758917772108 9.33739541070011 9.84802951743198 9.33739541070011 8.80581220238094 9.52224609759
| | 371974 928505526361 8.85208355493197 9.31378663844955 9.84802951743158 9.31378663844555 5.80581220238084  3.51801618198
|| 3/8/1974 912137334099 8.80581220235094 9.279B9758583843 9.84802951743158 9.27969758983843 5.80581220238084 3.51125244129
3/9/1974 910037171344 8.80581220238094 9.25475532200963 9.84802951743158 9.25475932200963 5.80581220238094 9 .50466094743
Record: [14 ] T [ 1)K of 11721 < >
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Double-click table Bugg Frequency Table-district to view. The table contains the maximums
from 1-day, 30-day, 90-day, 183-day, 273-day and 365-day continuously-exceeded and average
time-series for each year. The table also contains the minimums from 1-day, 30-day, 90-day,
183-day, 273-day and 365-day continuously-not-exceeded and average time-series for each year.
The screenshot below shows a few columns from the table

B Bugg Frequency Table-district : Table

Date 1-day(maximum-continuously exceeded)| 30-day(maxirmum-continuously exceeded) | 90-day{maximum-continuously exceeded)|  183-dayimaximurn-continuously exceeded) |273-daa

i 12.9873364863012 12.3652778051795 11.8311125152135 9.94466894035592 5 6248
L 1974 10.71200291527 49 10.1612351151147 9.94229505320644 9.00918633340136 7 4744
L 1976 10.01367 16011305 9.58554862244599 9.220287 48062222 9.00318701408851 8.530:
| | 1977 11.9180735141203 11.3157542946425 10.9227317431497 10.5572319982593 9 .6040
L 1978 11.1105931755352 10.3908821934524 9.9007 1007780613 9.20334366581636 B 765!
L 1979 123007552437 474 11.7474281160618 10.6985174306863 10.172534217395 8323
L 1980 10.103917 1568043 9.62974553554593 8.7724348105578 8.66650139635999 7 B4at
L 1981 14.3486929610825 13.6237109440856 11.23649295086 16 9.24437599458074 B.824E
L 1952 17 6716803210104 16.0964043531814 15.2071350085633 14.102095820262 12,797
L 1953 12.1726254076264 11.3983779511963 10.9084224481763 10.690535228025 10.21%
L 1984 12.5956319230442 11.9858310885605 11.02297 24466005 10.0915477776709 8 536E
L 1965 12.2847095163452 11.6099247 569445 11.626411017432 10.7926601763039 10.05€
L 1986 11.2544365566482 10.304444856379 9.2227712334084 B.61968711143257 8.4520
L 1987 12.9394700100485 12.2414858252008 11.3441930247947 10.635926662433 97987
L 1988 12.6829755146687 11.4807 3765677578 11.07407 19604846 10.6026912446445 9 5578
L 1989 11.7341274373808 11. 2406368693614 10.8427 464563316 10.4493726370055 95831
L 1990 15.7114734327155 10.41829315794 8.47312120334373 7 AT213468258883 7273
L 1991 17.222739577347 15.3567437312282 11.6217714817397 B8.25038339453007 ©.349¢
L 1992 12.79096507 40452 11.44559321267437 10.67461991416869 §.5500830670308045 7 4206
L 1993 10.7 204862323749 10.02935627 34609 8.92299226315057 7.89284465540725 7 414;
L 1994 12.2624149553076 11.4227181230237 10.7130685479875 9.8952567115406 5 BEG:
L 1995 13.443148567 5054 12 6736026674404 11.6364602062652 10.0167220542725 97268
L 1996 13. 2433622643062 11.8574045416544 10522227307 1597 9.56635064640005 6.8347
L 1997 15.7561586173118 14.3802465375186 12.3180731934123 9.45395905423563 8 639t
L 1998 12.8465324134203 11.4167215790398 10.4790164732541 9.430521477459397 5.070F
L 1999 15.8911193037663 11.4269843082354 9.936514582860102 8.00782841761008 8.007¢
L 2000 10.054455420627 9.15003720999122 8.46412095723674 7.B2797353962955 7 B2VC
| | 2001 16.2579424298705 14 2278324966622 12.35910557 21087 11.4316338712025 10.57€
L 2002 14.8092655167825 14. 4220108344657 13.2539204404961 10.6644473201178 10 .86<
L 2003 13.8550043070343 13.3321649824161 1246039287 63464 12.3609805281801 12211
L 2004 13.7842598567331 12.5182789635149 12.1744373523952 11.9420363266607  8.388

Record: (] < [ 1 (P JDIJpH of 21 L3 >

Similarly predictions and, maximum and minimum frequencies, for Apopka Spring can be
obtained for any specified upper and lower date ranges. Tables Apopka-predictions, Apopka-
Freqguency-District, Apopka Frequency Table-district (shown below) are added to the
database on clicking Predict Spring Discharge — Apopka and following all the above steps as for
Bugg Spring.

¥ StJohns : Database (Access 2000 fi format) = @
open B Desion SMew | < | o
Obiscts [EL] create table in Design view
| == Tables @ Zreate table by using wizard
=1 i
= cmems Zh] Creats table by sntering data
_ =
E=l Ferms Apopka Frequency Table-district
28l Reports =1 apopka-Frequency-districk
3 Pages Apopka-predictions
= Macras = P .
el 3 iBugg Frequency Table-districk
EE L]
= aeles 1 Bugg-Freguency-diskrict
Groups 1 Bugg-predictions
CEn  Fawvorites =1 Lake Location

1 mMissing dates

=1 modified_data

1  owiginal Data

=1 Rain Stakion Location
1 Springs-Location

=1 wwell Location

Final Report A-11




6. Viewing prediction plots and maximum and minimum freguencies

Plots of observed and predicted daily discharge data can be viewed in the EXCEL file
predictions.xls which is linked to the prediction tables in ACCESS. The file already has been
run to include daily predictions and frequencies for Apopka and Bugg springs for the complete
date ranges associated with the two springs.

For our example, open predictions.xls. The screenshot below shows this file. By default, the
Apopka worksheet opens up, which contains the predictions for the complete range for which
daily discharge values can be computed for Apopka (6/2/1949 to 12/31/2005)

icrosoft Excel - Predictions.xls

@_\] Eile Edit Mew Insert Format  Tools  Data  5-PLUS  Meindow  Help Type a question for help
NSRS GRFE %GR S0 8 s R[] - @ Ji e -0 -|[B]z o =8 % 0 W
e | R | INE R 0= End Bev !53;-“1‘* [ s W ] @ﬁfﬁ!ikbl\m-ﬂpﬁlﬁﬂl 15 8
Al - A& Date
A | B | B [ 5] [ E [ B | G | H [
1 [Date 1apapka(ol ed) Apopkafpredicted) Apopka(predicted)+95%Cl Apopka(predicted)-95%Cl Apopka
2 | E/2/1849 29.83 3203 27 63 29.6309713
3| B/31949 2974 3195 27.54 29744414
4 | E/41849 29.B5 3185 2745 2964620475
5 | EB/m/1849 29.50 31.71 27.30 295042831
| 6 | B/EBA1949 2938 3158 2718 2938106419
| 7| B7r19a3 29.19 3139 26.99  29.19326991
B | EB/m/1949 29.08 31.29 26.89  29.0849786S
9 | B34 2897 31.17 2677 28.97072233
10| B/10/1949 28.85 31.08 2668 28.87712511
11| B/11/1849 25.E9 30.89 26.49 2885713504
12| B/12/1949 26.56 30.76 2636 26.55932198
13| B/13/1949 28.50 3070 26.30 26.5016317
| 14| BA4/1949 28.43 3083 2623 28.42794987
| 15| BA15/1949 28.35 3055 26.15  28.35107763
16 | B/16/1949 28.27 30.47 26.06  28.2657773
17 | 61711849 28.17 3037 2597 28.17178604
18 | B/18/1349 2798 30.18 2577 27.97582863
19| B/19/1949 2777 29.97 2556 27.7B528979
20| Br20/1949 2752 2972 2532 27.51893043
21 | B/21/1349 27.02 2922 2482 2702130113
| 22| B/22/1949 2677 2897 20457 BITOONTZ
| 23| B/2311949 26.58 2678 2438 26.57B90B57
| 24| Br24/1949 26.B5 2885 24.45 26.6484078
| 25| B/25/1949 26,57 26.87 2447 2B.B7035998
| 26 | B/26/1949 2661 2681 24.41 26.61273858
|27 | Br2711949 26.96 29.16 2476 26.96393658
| 28| B/28/1949 26.92 29.12 2472 2B.92014022
| 29| B/29/1349 26.87 20.07 2467  26.87326312
| 30| B£30/1949 26.76 26.96 2456 267631473
31| 7141949 2651 2871 24.31 26.51001133
|32 7721949 26.24 26.44 24.04 26.2433036
|33 7/31949 2576 27.96 2356  25.75655598
|34 741949 2562 2782 23.41 25.61579616
|35 7/5/1949 2548 27 B8 2328 25.48375954
|36 | 7/5/1949 2545 2765 2325  25.45340688
|37 | 7711949 2552 2772 2332  25.52304717
|38 7/m8/1949 2567 2787 23.47 2557240891
|39 7/9/1949 2591 2611 2371 25.90970106
|40 7/10/1949 26.08 2628 23.88  26.08345035
41| 71141949 26.23 28.43 24.03 26.2303099
|42 7121949 26.35 26.55 2415 28.35220078
| 43| 71341949 26.41 2661 24.21 26.40960427
| 44| 711411949 26.15 2835 23.95 2614687897
| 45| 7/15/1949 26.09 26.29 23.89  2B.09358573
|46 | 7/16/1349 26.12 2632 2302 26.12029465
A Fi7HQ4T o = brl= e =] 2308 el Focil==w ] (e
W« v whApopkad Apopkalpre3-13-1900) 4 Apopka(post3-13-90) 4 Bugg / Bugg(pre3-13-00) { Bugg(post3-13-90) 4 Apopka-Frequencysnalysis { 1< >
iDraw- & |Auoshapes- N NL1O M AT EE S-L-A-S=mgddf
Readw MU

Final Report A-12




Click worksheet Bugg as shown below. We see the daily predictions for Bugg:

File  Edit Yiew Insert Format Tools Data  S-PLUS  window  Help Type uestion For help
L5 (3 ) e (D | % G F 9 B o8 R[]0 - o W e w0 - [B]z U : o2 08 BRI e - |
asa s e i L2 B g | X ey noss ndpeven WS o 2y o o WS S W e bl o R R s el o [EEL e
Al - % Date \ j
A F B | c | D | B g F | G | H [ ] I 1
1 _[Date B! b ed) Bugg(predicted gg(predicted)+95%Cl Bugg(predicted)-95%Cl Bugg
| 2 [10/27/1973 10.38 11.80 887 1038294318
| 3 |10/28M1973 10.37 11.88 8665 10.3667 3705
| 4 | 10/28/1973 1010 11.61 859 10.09862313
| 5 |10/30/13973 10.09 11.61 855 10.09295093
| B |10/31/1973 10.08 11.57 854 10.05726502
[ 7 | 11AH1973 10.03 11.54 852 10.03052431
| 8 | 11/21973 10.07 11.58 855 10.06562304
| 9 | 11/31973 10.04 11.56 853 10.04357283
10| 11/4A1373 10.04 11.56 853 10.04357283
| 11| 11/5A1973 10.04 11.55 853 10.04070154
|12 | 11/8M15973 10.04 11.585 853 10.03989124
| 13 | 1171973 10.02 11.54 851 10.02315003
[ 14| 11871973 1001 11.53 850 10.01453617
[15 | 11/9M1973 10.00 11.51 8439 1000017974
16 | 1171041973 10.00 11.51 8.48 8.995317161
MA1M973 .85 11.47 8.44 9.954061268
114121973 9.96 11.47 844 9.9552337 44
| 19 | 11/13/1973 9.96 11.47 844 8.957578697
|20 | 1141441373 205 11.46 544 9950400483
| 21 | 11/15/1873 9.93 11.44 842 9.92886584
[ 22 [ 1171641973 9.90 11.42 8.39 9.902910811
[23 | 117171973 9.90 11.42 839 9.902910911
| 24 | 11/18/1973 9.81 11.33 830 89.812809533
| 25 | 11/18/1973 981 11.32 830 9.8119527398
| 26 | 11/20/1873 1013 11.64 862 10.13058415
| 27 | 11/21/1973 10,13 11.64 862 10.13059415
| 28 | 11/22/1973 1012 11.63 860 10.11767 336
| 29 | 11/23/1973 1015 11.66 863 10.14581279
[ 30 | 11/24/1973 10.01 11.53 850 10.01292252
[ 31 1172511973 1001 11.52 8560 10.00892195
| 32 | 11/26/1973 10.00 11.52 8.40 10.00239698
| 33 | 11/27/1973 (A= 11.49 846 5.972248481
| 34 | 11/28/1973 9.96 11.48 8.45 89.963102267
| 35 | 11/29/1973 9.96 11.48 845 9963102267
| 36 | 11/30/1973 e Gol 11.51 848 89.993725411
| 37 | 127171973 9.97 11.48 8.46 0.971472047
[ 38| 12/2/1973 9.97 11.48 846 9.971472947
[38 | 12/3/1973 g93 11.45 8.42 9.932178233
|40 | 12/4M15973 9.89 11.40 838 59891480161
41 12/5/1973 9.67 11.38 835 9.86563859
42 | 12/6/1973 9.86 11.38 8.35 9.863138233
|43 | 1277115973 9.683 11.534 832 9.831929
44 | 12/8/1873 9.81 11.32 830 9.811176036
| 45 | 12/9/1973 10.00 11.51 849 10000581 1
46 | 12/101973 10.02 = 851 10.01876325
AZ 112/141/1973 1000 11 an /70 10 2804277 b.
M 4 » nmi\ Apopka 4 Apopka(pre3-13-1950) 4 Apopka(post3-1: 0a(pre3-13-90) { Bugoipost3-13-00) / Apopka-Frequencysnalysis [ 1] < >

sa a8

aw~ Li | Autoshapes> N [ o o] 2 [(g] (& | &~ =

The next step is pressing the red exclamation button to refresh the predictions for the date range
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark
is highlighted by a red ellipse in the above figure.

To view the plots for the above data, click on worksheet Bugg (pre3-13-90) for predictions
before 3/13/1990 and worksheet Bugg (post3-13-90) for predictions from 3/13/1990. The
worksheets have been highlighted in the figure above. The screenshot below shows worksheet
Bugg (pre3-13-90):

Final Report A-13




Chart Area | = A
=

Bugg-prediction - 10/27/1973 to 3/12/1990

18 - Eugg(ubs&wad)r
R —— Bugg(predicted)
. i
@ 'V ‘
Z]
B GEJ’ 12 M‘n I ]f M “F' A\ l i
<
DU W (A LY W AW\,
= LM \ W
N I/ }
6 H :
4 ‘ ‘ ‘ . ‘ ‘ .
10/27/1973  11/16/1975  12/511977  12/25/1979  1/13/1982  2/2/1984  2/21/1986  3/12/1988

Date
m -
\ Auuuka £ Apupka(prea 13- 1990) A Apopka(post3-13- QD) £ Eugg \Aaugg(nrea 13-90) { Bugg(pusta 13-90) { Apopka-FrequencyAnalysis { Bugg-FrequencyAnalysis /'
. =R RS NN

Also the screenshot below shows \jvorksheet Bugg (post3-13-990):

Bugg-prediction - 3/13/1990 - 11/28/2005

18 +— Bug: d)

—— Bugg{pradictad) 1‘]

—_— y
] 7Y
s r
<) f 3
*H
E | i 1
S f
o
A | 1
a / l
Red
4 T T T T T T T T T
331983 Ti26M1994 12/8/1995 4/21/1997 ©/3/M1998 1/M16/2000 5/30/2001 10/12/2002 2/24/2004 T7/8/2005
Date
W oa v wi Apcgka f Agopkapre3a131990) [ Aporkalposta1390) J Buga { Bugglpred 13.90) ) Bugg(post3-13-90) { Apogks Yardve [ Bugy s [/

The procedure to view maximum and minimum frequencies is similar to viewing predictions.
Click worksheet Bugg-FrequencyAnalysis as shown below. We see the maximum and minimum
frequencies for Bugg for the year range 1974-2004
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B3 Microsoft Excel - Predictions.xIs BEE]

@_] File Edit Wiew Insert Format Tools Data S-PLUS  window  Help Type a question For help = _ 8 X
= MW= e WEN A cHP el A \gJZvauwgm § Al -0 -[Bls p E==E% % 0 WBIE B
iassa o o i) L2 WA ey i changes, EndRevien 8 2 X 8 )0 -ih N BERGE=] B e NN e R Nes- e = N I e e e |
Al = e Date
2 B | & | D | E [ =
1 [Date J1-day i i ly e led) 30-day(maximum-continuously exceeded) 90-day(maxi i Iy o lod) 183-day(maxi i ly exceeded) 273-day(maxi
| 2 |1974 12.88733649 12.36527781 11.83111252 9.9446E894
| 3 | 1975 10.71200292 1016123512 9942295394 9.009186333
4 | 15976 10.0136716 9.666846622 92202674581 9.008157014
| 5 | 1977 11.81807381 11.31575429 10.92273175 10.587232
| 6 | 1978 11.11059318 10.39088219 9.900710078 9.203343666
| 7 | 1979 12.30075824 11.74742812 10.69851743 10.17263422
& | 1980 10.10331716 9629745389 8772434811 8.666501395
9 1981 14.34869296 13.62371094 11.23649295 9.244375995
10| 1982 17.67168032 16.09640435 15.20713501 14.10209582
111983 12.17262541 11.39837795 10.90842945 10.69053523
|12 | 1984 12.59563192 11.98583109 11.02297245 10.09154778
| 13| 1985 12.28470952 11.80999476 11.52641102 10.79256018
| 14 | 1986 11.25443659 10.30444466 9222771239 8.619687111
| 16 | 1967 12.98947001 12.24146583 11.34419302 10.63592666
|16 | 1988 12.68297551 11.48073757 11.07407196 10.50265124
| 17 | 1989 11.73412744 11.240683687 10.8427465 1044937254
18 | 1590 16.71147343 1041829916 8473121203 74721346583
| 191991 17.22273958 15.356574373 1162177148 8.260383395
20| 1992 12.79098507 11.44593913 10.67461991 8.5950830678
211993 10.72048623 10.02935627 8.922802269 7.892844655
1894 12.26241496 11.42271812 10.71306855 9.895256712
1995 13.44314857 12.67380267 11.63646021 10.01672205
1996 13.24336226 11.85740454 10.52222791 9 566350646
1997 15.75615617 14.38024654 123180732 9.483959064
1998 12.84853241 M. ME72158 10.47901647 9.430521477
1999 15.89111383 11.42638431 9936914329 5.007628418
2000 10.05445542 9.16003721 8.464120857 762797354
2001 16.25734243 14.2278925 12.35810557 11.43163387
2002 14.88926552 14.42201063 13.25392044 10.86444732
2003 13.65500431 13.33216456 12.46039266 12.36098053
2004 13.78428986 12.81827896 1217443738 11.94203633

o e i 00 | 0 00 20 13 1 1 [ 1
|0 = | WM =| O @ || = || | & || R | = | | @] | = || G [ & G|

-~
CRER *|{ Apopka(post3-13-90)  { Bugg { Bugg(pre3-13-90) 4 Bugg(post3-13-90) 4 Apopka-Frequencysnahls ) Bugg-FrequencyAnalysis / |< 3|
Tremne [V L aikachammse N N T AT ol 5T (A (E ] e @ A== oA

The next step is pressing the red exclamation button to refresh the frequencies for the date range
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark
is highlighted by a red ellipse in the above figure.

The table above only shows the maximum and minimum frequencies for the years they can be
computed.

7. Saving results for different cases

To save the daily discharge predictions and frequencies for a particular set of well or spring data
in Original Data table, make another copy of the prediction tables in ACCESS and give them a
different name. This step is crucial since for a new set of data, the prediction and frequency
tables are overwritten. In our example for instance, copy the Bugg-predictions table as shown
below:
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= StJohns : Database {Access 2000 file format)
CEoren BZ Design Jnew | 3 |

Original Dat: Prink Previsw

FLain Station
=1
Springs-Loc e

wiell Locatiof 521 SOPY

Objects Create table in Design views
| 1 Tables Create table by using wizard
5 oueries Create table by entering data
= apopka
Farms [ apopka Frequency Table-district
id  Reports = apopka-Frequency-districk
9= Pages [  apopka-predictions
22 Macros = Buag
[ Bugg Freguency Table-district
o PleEks =] Bugg-Frequency-districk
Groups B
&l Faworites = Lake Locatid L5 Open
[ Missing datg & Design Wiew
£ modified_dd 4 prine
=
=
=
=

Save As...

Export...

Send Ta »
Add ko Group >

Create Shorkcut, ..

Delete

Renams
Broperties

Object Dependencics. ..

Linked Table Manager

&= St lohns : Database [Access 2000 file format) =
EEopen B Desian Snew | XK |
Ohjects Create kable in Design wiew
Tables Create bable by using wizard
P Create bable by entering data
&  apopka
s
orms 1 Apopka Frequency Table-district
F=EeErEd = apopka-Frequency-district
Pages [  apopka-predictions
Macros = Buag
. [ Buagg Frequency Table-district
r
ool [  Bugg-Frequency-district
Groups = iBugg-predictions;
i 5 i >
[ Favorites [ Lake Location wew 0000 » |
[ missing dakes Arrange Icons >
[ Modified_data Line Up Icons
EH  original ata —
[ Rain Station Location P
[ Springs-Lecation
= well Lacation Baste

Relationships.

wisual Basic Editor

ACCESS prompts for a new name as shown below:
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#®= Stlohns : Database (Access 2000 file format)

Hopen B Desion Snew | 2K | 25

Objects Eh]  create table in Design wiew
| =0 Tabies Zh]  Create table by using wizard
E et @ Create table by entering data
- 1 apopka
Bl 1 »Apopka Frequency Table-districk
28l Reports =1 aApopka-Frequency-diskrict
= Pages O aApopka-predictions
2 Macros : Buag
] Buag Frequency Table-districk
s Modilcs 1 Bugg-Frequency-district
Groups 1 Buag-predictions
[l Favorites 1 Lake Location
j i ma sk =
El Paste Table As
= Table Name:
A [Buga-predictionsitutorial examplel |
= E et
=

0 Struckure Only
&3 Structure and Data
) append Data to Existing Table

Enter a table name and press OK. The prediction table for our example is created. Similarly
create new tables for the Bugg-frequency-district and Bugg Frequency Table-district. The
highlighted tables in the screenshot are the new tables created.

£ StJohns : Database ({Access 2000 file format) r—illmllx

Hopen B Desion EMew | 2K | 2o -

Chjecks Create table in Design view
| = Tables Create tabls by Using wizard
B cueries Create kable by entering data
7 Apopka
==l Forms
Apopka Frequency Table-diskrick
i3l Rsporks Aapopka-Frequency-district
= Pages Apopka-predicti
¥ Macros
Eugg Frequency Table-diskrick
2% Modules : — 5
iBugg Frequency Table-districk{tutorial example)
Groups Bugg-Frequency-diskrick
&1 Faworites Bugg-Frequency-district{tuktorial example)

Bugg-predictions

EBugg-predictionsi{tutorial examplel

Missing dates
FModified_data
Criginal Data

F.ain Station Location

Springs-Location

HOBOERD@OBADEYya0E0oEEE

el Locakion

It is also necessary to save the predictions and frequencies in predictions.xIs in a different file
before the prediction worksheets in EXCEL are refreshed to get predictions for a different case.

Final Report A-17 INtE3A



APPENDIX B
Resolution of Peer Review Comments
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APPENDIX B: Resolution of Peer Review Comments.

Appendix B contains the comments provided by peer review of the first report in this Statistical
Modeling of Spring Discharge series and the author’s resolution of these comments. This peer
review and the subsequent resolution pertain to application of statistical methodology and are,
therefore, included in this report as well. The report modifications included some comments on

potential use of the presented models as well as a clear statement of the models objectives.
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| NEWFIELDS

Memorandum
TO: Bob Epting, St. Johns River Water Management District
FROM: Shahrokh Rouhani, Ph.D., P.E., NewFields

SUBJECT:  Peer review of “Statistical Modeling of Spring Discharge at Ponce de Leon,
Green and Gemini Springs in Volusia County Florida” by Intera (2005) and
“Statistical Modeling of Spring Discharge at Apopka and Bugg springs in Lake
County Florida” by Intera (2006)

DATE: July 16, 2006

>k ok o sk ok sk sk s ok s sk sk ook skok skoskosk ko

INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.

GENERAL COMMENT

In general, I must note that the reports are well written, and easy to follow. Furthermore, from a
conceptual point of view, multiple regression of nearby hydrologic data to fill the gaps in times
series of daily spring discharges is quite acceptable. The resulting estimated time series and
frequency curves also display reasonable patterns consistent with existing, albeit limited,
discharge measurements at the investigated springs. However, the review of the reports raises a
number of fundamental questions that may warrant further considerations by the authors. These

mainly statistical questions are the focus of this memorandum.
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SPECIFIC COMMENTS

1.

The above reports use multiple regression models that relate moving averages (MA) of
nearby hydrologic data to estimate daily spring discharges. Intera (2005) presents the general
form of such a model as
[Spring discharge] = f {[same spring MA] + [water level MA]

+ [precipitation MA] + [adjacent spring MA] }
The authors state that “the use of moving-average-based independent variables is
necessitated by the fact that most independent variables are not measured on a daily basis.”
Although, statistical methods, including multiple regression analysis, are not bound by
hydrological principals, it is always desirable to use independent variables that are

hydrologically consistent with the dependent variable.

The independent variable in the above reports is daily spring discharge, i.e. a non-integrated
or differentiated flow variable. Daily precipitation is also a flow variable, while water levels
(either groundwater or lake levels) are storage variables. Within the context of mass balance,
the net sum of flows is equal to the rate of change of storage variables. In other words, in a
linear model, daily spring discharge is expected to be related to (a) daily values of other flow
variables (e.g. precipitation or nearby spring discharges), and (b) daily rates of changes in
storage variables (e.g. water levels). This implies that under ideal conditions, non-integrated

flow variables and differentiated storage variables should be used in a regression model.

While I recognize that absence of continuous data may make some of the above
differentiations impossible, I am still puzzled about the fact that all dependent variables are
uniformly integrated. Integration is the exact opposite of what mass balance suggests. In
fact, in cases that continuous daily time series of storage variables (e.g. groundwater or lake
levels) are available; their difference values should be explored as an alternative to the
current moving averages. For this purpose, continuous or augmented groundwater level time
series, such as L-0054 and L-0703, along with other complete daily time series appear to be
suitable candidates. I encourage the authors to consider this alternative approach, which is

more consistent with the mass balance concept.
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of partial
correlation coefficients (PCC) and stepwise analysis somehow solves this problem. While
the use of PCC and stepwise analysis are commendable, they do not address the issue of

multicolinearity.

Multiple regression analysis is based on the fundamental assumption that the variables on the
right hand side of the equation are statistically independent, i.e. uncorrelated.
Multicolinearity exists when independent variables are highly correlated. Unfortunately, the
reports do not contain any systematic information on cross correlations among independent
variables. However, statements made in Intera (2006) concerning high correlations among
certain groundwater levels (which were used to justify the filling of data gaps in some of the
monitoring wells) clearly indicate that at least some of the independent variables are highly
correlated. This is especially true for moving averages of the same variables, which are used
concurrently as independent variables in the same model. So one can assume that some, if

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity.

A high degree of multicolinearity produces unacceptable uncertainty (large variance) in
regression coefficient estimates. Specifically, the coefficients can change drastically
depending on which terms are in or out of the model and also the order they are placed in the
model. In fact, a typical consequence of multicolinearity is a high regression coefficient,
when a number of independent variables have regression coefficients that are deemed as
insignificant. For example, Table 8 in Intera (2006) indicates that of the 13 independent
variables used to estimate Apopka (post-1990) five variables have statistically insignificant
coefficient (i.e. their p values are greater than or equal to 0.05), while R? of the same model is
nearly 0.80. In other words, the regression results indicate that the collection of selected
independent variables has explanatory power but we cannot tell which variable or to what
degree the individual variable is explaining the variations of the dependent variable.

Generally, such ‘black-box’ models are viewed as undesirable.

I encourage the authors to consider computing the variance inflation factor (VIF) of each

independent variable. VIF associated with the i™ independent variable is equal to

Final Report B-4




where R;is the regression coefficient of the i independent variable on all of the other

R’

independent variables. A rule of thumb is to treat any VIF in excess of 10 as evidence of
multicolinearity. Elimination of collinear independent variables should continue until all VIF
are below 10. This approach along with the stepwise analysis would lead to much more
defensible models. Other remedies are also discussed in Gujarati (Basic Econometrics, 4™
Edition, McGraw Hill, 2002, Chapter 10).

3. The results of predicted versus observed time series are visually satisfactory (e.g. Figure 18
in Intera, 2006); however, their corresponding observed versus predicted plots (e.g. Figure 12
in Intera 2006) display poor fits. An explanation of this visual discrepancy would be helpful.
I also noticed that the updated frequency curves for Apopka and Bugg springs are much
closer to the pattern exhibited by the observed data. However, the addendum dated July 11,

2006 does not describe the reason for this improvement.

4. To compare observed versus predicted discharges, the authors should also consider the
comparison of their variances. Results like Figure 12 (Intera, 2006) imply that the predicted
values are much less variable that measured discharges. Although, such results are not
unexpected (estimated values are generally smoother than actual data), the impacts of such
smoothings on the frequency curves must be discussed. Specifically, are extreme discharges

adequately estimated?

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 7/11/06).
While observed discharges in the central portion of the curve match their estimated values,
extreme values deviate systematically, i.e. biased results. Similar patterns are present in
almost all the generated frequency curves. The authors should address this issue, and if

deemed significant, appropriate remedies should be considered.
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IN<ExA

TECHNICAL MEMORANDUM

PREPARED FOR: Bob Epting, St. Johns River Water Management District
PREPARED BY: Alaa Aly and Srikanta Mishra, INTERA Incorporated
SUBJECT: Resolution of peer review comments of “Statistical Modeling of

Spring Discharge at Ponce de Leon, Green and Gemini Springs in
Volusia County Florida” by Intera (2005) and “Statistical Modeling
of Spring Discharge at Apopka and Bugg springs in Lake County
Florida” by Shahrokh Rouhani, NewFields

DATE: June 19, 2007

INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.

GENERAL COMMENT

We appreciate the comments from Dr. Rouhani about the validity of the approach and the clarity
of the presentation in the report. The following sections address the specific comments in the

peer review memorandum.
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SPECIFIC COMMENTS

1 ... Within the context of mass balance, the net sum of flows is equal to the rate of
change of storage variables. ....... This implies that under ideal conditions, non-
integrated flow variables and differentiated storage variables should be used in a
regression model. While | recognize that absence of continuous data may make some
of the above differentiations impossible, I am still puzzled about the fact that all
dependent variables are uniformly integrated. Integration is the exact opposite of
what mass balance suggests. ....... | encourage the authors to consider this
alternative approach, which is more consistent with the mass balance concept.

While mass balance would suggest exactly what the reviewer points out, the presented models
are statistical, not physical. Therefore, they are not intended to be used as mass balance models.
The models are based on exploitation of the statistical correlation between the explanatory and
response variables. For example, spring discharge is correlated with aquifer water levels, perhaps
with a lead time. This correlation explains some of the variability in the observed spring
discharge rates. Further, the correlation is improved using the average water level values rather
than the individual measurements which always have higher variances. However, as the reviewer
notes, spring discharge can also be expected to be correlated to the change in water levels over
time. These changes are a function of the “net” change of fluxes to and from the aquifer. In the
absence of other significant fluxes such as recharge and pumping, these changes will be closely
correlated to the observed spring discharge rates. Unobserved (e.g., pumping) and unobservable
(e.g., aquifer recharge) fluxes will complicate this correlation. Further, as noted, this difference is
typically very difficult to obtain from real data as data gaps can be a major obstacle for such

calculation.
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of
partial correlation coefficients (PCC) and stepwise analysis somehow solves this
problem. ...... Multiple regression analysis is based on the fundamental assumption
that the variables on the right hand side of the equation are statistically independent,
i.e. uncorrelated. ..... However, statements made in Intera (2006) concerning high
correlations among certain groundwater levels (which were used to justify the filling
of data gaps in some of the monitoring wells) clearly indicate that at least some of the
independent variables are highly correlated. ...... So one can assume that some, if
not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. .....
I encourage the authors to consider computing the variance inflation factor (VIF) of

each independent variable.

First, multicolinearity is mainly a problem for the uniqueness and variances for the regression
coefficients. That is, when correlated variables are used as explanatory variables, the fitted
regression coefficients will not be meaningful and might have very high variances. However, the
predicted values from such regression model are still acceptable with the only issue that needs to
be addressed is whether adding the correlated variable(s) have resulted in unnecessary inflation
of the prediction variance. This variance inflation resulting from adding more variables to the
regression equation is exactly what is considered in the stepwise regression algorithm. As
detailed below, a variable is only added to the regression equation if it will improve the
prediction capability of the final regression equation without adding significantly to the
prediction variance. Our experience in applying stepwise regression to outputs of probabilistic
risk assessment models confirms this. We have also computed variance inflation factors for the
discharge models for Rock and Wekiva springs, and these also indicate that the stepwise
regression process has minimized multicolinearity issues. The following description of stepwise
regression provides the background information for the procedure showing how multicolinearity

is formally dealt with.
In the utilized stepwise approach, a sequence of regression models is constructed starting with

the input variable that explains the largest amount of variance in the output, i.e., the variable that

has the highest Pearson correlation coefficient with the output. At each successive step in the
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regression modeling process, the variable that explains the largest fraction of unexplained
variance from the previous step is included. This is the variable with the largest absolute value
of the partial correlation coefficient. The model generated at every step is tested to ensure that
the each of the regression coefficients is significantly different from zero. The test is
implemented in two stages. First, a variable selected for entry via the PCC criterion is tested for
its significance before it is admitted into the model. Second, after the model is built at that step,
each of the variables in the model is tested for significance. If some variables are found to be
insignificant, then the “most insignificant” variable is dropped and the model is built again. The
sequential dropping of the variables judged to be not significant and rebuilding the model
continues until all the variables in the model become significant at the prescribed levels. The
significance levels are prescribed separately for the entering and departing variables to avoid
possible looping where the same variable can enter and depart from the model with the
significance level for the departing variables generally set larger than that for the entering
variable. Note that the need for dropping a variable generally arises only in the cases when the
input variables are strongly correlated (strong multicolinearity). This step ensures that no
significant multicolinearity will be present in the final multiple regression model. The stepwise
regression process continues until the input-output model contains all of the input variables that
explain statistically significant amounts of variance in the output (i.e., no more variables are

found with a statistically significant regression coefficient).

3. The results of predicted versus observed time series are visually satisfactory (e.g.
Figure 18 in Intera, 2006); however, their corresponding observed versus predicted
plots (e.g. Figure 12 in Intera 2006) display poor fits. An explanation of this visual
discrepancy would be helpful. I also noticed that the updated frequency curves for
Apopka and Bugg springs are much closer to the pattern exhibited by the observed
data. However, the addendum dated July 11, 2006 does not describe the reason for

this improvement.

Figure 18 shows that the general pattern displayed by the observed discharge hydrograph for

Bugg Spring. While there is significant visual scatter shown in Figure 12, this figure also shows
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that the vast majority of the predicted discharge values are in agreement with the observed
values. Figure 12 also shows that there in no general bias in any direction for the entire range of
observed discharge values, a further affirmation for the validity of predictive model. The

explanations missing from the July 11, 2006 addendum have been added to the final report.

4. To compare observed versus predicted discharges, the authors should also
consider the comparison of their variances. Results like Figure 12 (Intera, 2006)
imply that the predicted values are much less variable that measured discharges.
Although, such results are not unexpected (estimated values are generally smoother
than actual data), the impacts of such smoothings on the frequency curves must be

discussed. Specifically, are extreme discharges adequately estimated?

Consider the updated frequency curve for Bugg Spring (Intera addendum dated
7/11/06). While observed discharges in the central portion of the curve match their
estimated values, extreme values deviate systematically, i.e. biased results. Similar
patterns are present in almost all the generated frequency curves. The authors
should address this issue, and if deemed significant, appropriate remedies should be

considered.

While it is not anticipated that extreme discharge values will be predicted accurately, it is
important that no consistent bias is displayed by the predictive models. Figure 12 clearly shows
that predicted values are not biased at either end of the observed discharge values because high
and low values are equally spread around the regression line. Further, additional analyses are
added to the report to examine the differences between the variances of the observed and

regression-model-generated spring discharge values.
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