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— Statistical Modeling of Spring Discharge

EXECUTIVE SUMMARY

Currently, the St. Johns River Water Management District (District) is engaged in
hydrologic modeling and data analysis in support of the ongoing Minimum Flows and Levels
(MFLs) and Water Supply Development projects. MFLs define the frequency and duration of
high, average, and low water events necessary to prevent significant ecological harm to aquatic
habitats and wetlands from permitted water withdrawals. An integral component of the District’s
MFL program is the development of long-term daily discharge predictions at various streams in
the District. This report describes the development of statistical models for predicting daily
spring discharge time series for Ponce de Leon (PDL), Gemini, and Green springs from an
assortment of auxiliary data such as: (a) previously recorded spring discharge rates at the springs
of interest and at adjacent springs, (b) groundwater level measurements from adjacent
monitoring wells, and (c) rainfall data from nearby gauging stations.

The presented regression models are based on the statistical correlation between the
explanatory and response variables. For example, spring discharge is correlated with aquifer
water levels, perhaps with a lead time. This correlation explains some of the variability in the
observed spring discharge rates. Furthermore, the correlation is improved using the average
water level values rather than the individual measurements which are known to display higher
variances.

Data screening indicates that most measurements of spring discharge and groundwater
level are at a frequency of ~30 days or greater — necessitating the generation of moving averages
with commensurate lags to be used as independent variables for predicting spring daily
discharge. Also, the Blue Spring daily discharge values show significant correlation with the
daily discharge values at Gemini Springs and some correlation with PDL. Hence, discharge
from Blue Spring has been utilized to help estimate discharge at Gemini and PDL springs when
groundwater level measurements are scarce. Analysis of data overlap is helpful in determining
how to partition the period of record into sub-periods where a common set of variables can be
defined.

Forward stepwise regression analysis is used to build multivariate linear input-output
models between the response variable (spring discharge) and the independent variables (moving
averages of water level measurements and precipitation) at the springs of interest. Typically, two
regression models of spring discharge are needed: (a) one for the period when groundwater
levels and rainfall data are available, and (b) one for the period when rainfall data are
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supplemented with discharge from adjacent springs and perhaps groundwater levels from one or
two long-term monitoring wells.

The following regression model is developed for PDL Springs:

PDL discharge as a function of water level measurements from Floridian aquifer well
(FAW) L-0045 (8-, 48- and 52-week moving average), 12-, 48-, and 52-week moving
average of PDL discharge and 52-week moving average of the Blue Spring discharge
(R*=0.57).

For Gemini Springs, the regression models developed are as follows:

Gemini 1995-2000 discharge as a function of 12-, 48-, and 52-week moving average of
the Blue Spring discharge, and water levels at FAW S-0257 (12- and 24-week moving
average) — in order to predict the daily Gemini Springs discharge prior to 1995 when no
measurements are available at the springs (R?=0.47).

Gemini 1995-2004 discharge as a function of daily and 4-, 8-, 12-, and 52-week moving
average of rainfall at Sanford, Florida, and water levels at S-1230 (4-, 6-, 8-, and 24-week
moving average) — in order to predict the daily Gemini Springs discharge during the
1995-2004 period (R?=0.79).

Finally, the following regression models are developed for Green Springs:

Green 2000-2004 discharge as a function of water levels at FAW V-0166 (24-, 48-, and
52-week moving average) and 1-, 3-, and 48-week moving average of rainfall at Sanford
— in order to predict discharge at Green Springs in the 1987-1996 period (R2=0.89).

Green 1999-2004 discharge as a function of water levels at FAW V-0810 and FAW
V-0772, and 4-, 8-, and 48-week moving average of rainfall at Stanford, Florida — in
order to predict the daily Green Springs discharge during this period and for 1996-1999
(R*=0.97).

Using these models, daily discharge predictions are made for PDL Springs as far back in time
as 1966 with reasonable accuracy. However, comparable predictions can only be made until
1996 for Gemini Springs and until 1988 for Green Springs. Flow duration curves are also
generated for all three springs along with high- and low-frequency analyses for set durations (1-,
2-, 3-, 4-, 6-, and 12-months) from the simulated daily spring discharge.

This report incorporates comments provided by peer review of an earlier version. The

modifications included some comments on potential use of the presented models as well as a
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clear statement of the models objectives. Further, additional analysis was added to the report to
highlight the differences between the variances of the observed and regression-model-generated
spring discharge values. The peer review comments and their resolution as they apply to this
report are in Appendix B.
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1.0 INTRODUCTION

The Minimum Flows and Levels (MFLs) Program of the St. Johns River Water
Management District (District), mandated by state water policy (section 373.042, F.S.),
establishes MFLs for lakes, streams and rivers, wetlands, and groundwater aquifers. MFLs
define the frequency and duration of high, average, and low water events necessary to prevent
significant ecological harm to aquatic habitats and wetlands from permitted water withdrawals.
The MFLs Program is subject to chapter 40C-8, F.A.C. and provides technical support to the
District’s regional water supply planning process and the consumptive use-permitting (CUP)

program.

MFLs designate hydrologic conditions that prevent significant harm and above which
water is available for reasonable beneficial use. The determinations of MFLs consider the
protection of non-consumptive uses of water, including navigation, recreation, fish and wildlife
habitat, and other natural resources. MFLs take into account the ability of wetlands and aquatic
communities to adjust to changes in hydrologic conditions. Therefore, MFLs allow for an
acceptable level of change to occur relative to the existing hydrologic conditions. However,
when use of water resources shifts the hydrologic conditions below those defined by the MFLs,
significant ecological harm occurs. As it applies to wetland and aquatic communities, significant
harm is a function of changes in the frequencies and durations of water level and/or flow events,

causing impairment or destruction of ecological structures and functions.

Currently, the District is engaged in hydrologic modeling and hydrologic data analysis in
support of the ongoing MFLs and Water Supply Development projects. An integral component
of the District’s MFL program is the development of long-term daily discharge predictions at
various streams in the District. MFLs for three springs in Volusia County, Florida, namely,
Ponce de Leon (PDL), Gemini, and Green springs are currently needed. As discussed in the
following sections, while the PDL Springs has more data than either Green Springs or Gemini
Springs, each of these springs has limited spring flow measurements (Osburn et al., 2002). This
study evaluates the application of statistical models to generate long-term daily discharge

simulations for each of these three springs.
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2.0 OBJECTIVE

The objective of this study is the development of daily spring discharge time series for
PDL, Gemini, and Green springs from an assortment of auxiliary data such as: (a) previously
recorded springs discharge rates at the springs of interest and at adjacent springs, (b)
groundwater level measurements from adjacent monitoring wells, and (c) rainfall data from
nearby gauging stations. The study will investigate the correlation structure between various
data types, and test the applicability of simple multivariate linear models to generate daily

discharge records based on these other variables for the common period of record.

This report presents the results of exploratory data analysis (EDA) for rainfall, water
level and spring discharge data for PDL, Gemini, and Green springs. It also explores the use of
empirical models to provide estimates of daily discharge at these springs. These statistical
models will take advantage of all available data to try to provide the most accurate estimates. In
general, early time records are sparse and often not available for a number of locations. This will
require the use of different models ranging in sophistication from simple correlation based
models to multivariate regression models which can only be constructed when enough
supporting data (e.g., rainfall and groundwater levels) are available at a sufficient number of
nearby locations. These models will be used to run a continuous simulation model covering the
period of record referenced by the constituent data. From the results of statistical modeling,
standard flow-duration analysis for the system (discharge versus percent exceedance for the
long-term simulation) will be conducted and standard high- and low-flow frequency analyses for

the system (frequency of spring discharge for set durations) will be carried out.

This report is organized as follows. Exploratory data analysis is described in Section 3.
Section 4 contains the regression modeling methodology and the regression models developed
for PDL, Gemini, and Green springs. In section 5, daily discharge predictions are presented
along with flow duration curves and frequency analyses for each of these springs. Section 6

contains conclusions and recommendations from this study.

Final Report 2 INTE3A



Statistical Modeling of Spring Discharge

3.0 EXPLORATORY DATAANALYSIS

This section summarizes the available data and shows the results of the statistical
exploratory analyses (EDA) conducted for the available time series. The objective of the EDA is
to identify the correlation structure between the spring discharge at the three springs of interest
and the other time series. Results from the EDA will be used to guide the construction of

explanatory models which will predict daily discharge values at each spring.

3.1 Data Sources

Figure 1 shows a map of the study area and highlights the location of various data

sources.

o Spring discharge measurements at PDL, Gemini, and Green springs; as well as

measurements at Blue Spring.

« Groundwater level measurements at monitoring wells:

V-1030. V-0156, V-0742, L-0045, VV-0095, and V-0096 for PDL

S-1230 and S-0257 for Gemini Springs

V-0810, V-0772, and V-0166 for Green Springs

V-0083, V-1091, V-0196, L-0059, V-0101, and M-0024 for Blue Spring
« Precipitation measurements at rain gages:

SR-40 and SR-11 for PDL

Sanford for Gemini and Green Springs

Deland for Blue Spring.

Blue Spring is located in close proximity to the three primary springs of interest, and is a
potential source of ancillary data because of its extensive period of record. The other wells are
chosen because of their locations vis-a-vis the springs of interest, and also if they provide a long-

term record of groundwater level measurements.
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Figure 1 Location of springs and groundwater monitoring wells in region of interest.

In order to conduct exploratory data analysis, a database was compiled of spring
discharge (response variable), groundwater levels (explanatory variable), and precipitation
(explanatory variable) with a common time basis. For each spring of interest, several
groundwater monitor wells in its vicinity and the nearest rain gage were selected. Table 1 shows
basic statistics (i.e., minimum, maximum, average and standard deviation) for these various data

types at Blue, Green, PDL, and Gemini springs.

The frequency of observation for each data type was subsequently calculated. This is
useful for determining appropriate lag and moving average windows. Moving averages were
calculated for recorded water levels, precipitation and spring discharge at the springs of interest
as well as at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12, 24, 48, and 52
weeks. These moving averages act as surrogate predictor variables and carry useful information

regarding the physical state of the system prior to the time of interest.
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Table 1 Basic statistics for various data types at Blue, Green, PDL, and Gemini
springs.
Data Type Range Min Max Average | Std Dev | Variable type
Blue Spring | 3/7/32-12/18/01 | 63.00 217.73 | 156.25 19.30 | Discharge(cfs)
V-0083 4/20/95-12/1/04 4.42 11.82 7.11 1.37 Water-level(ft)
V-1091 9/25/81-12/01/04 9.44 22.60 19.10 1.67 Water-level(ft)
V-0196 1/7/87-12/22/03 11.75 22.31 16.63 2.87 W ater-level(ft)
L-0059 1/31/84-11/18/04 11.80 20.64 16.36 1.47 W ater-level(ft)
V-0101 5/28/36-11/22/04 24.49 32.10 29.58 1.36 Water-level(ft)
M-0024 11/21/85-11/16/04| 21.56 29.28 24.28 1.54 W ater-level(ft)
Deland 2/17/29-6/30/04 0.00 7.77 0.16 0.43 Rainfall(in)
Green Springs | 1/20/00-11/11/04 0.00 2.92 1.31 0.94 Discharge(cfs)
V-0810 12/26/96-12/15/04 9.76 18.85 14.31 2.03 W ater-level(ft)
V-0772 8/3/95-12/15/04 6.88 17.10 11.66 2.11 Water-level(ft)
V-0166 1/7/87-11/24/03 11.00 18.03 14.22 1.32 Water-level(ft)
Sanford 1/1/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)
Ponce De Leon | 1/14/65-1/13/97 16.67 40.90 27.57 4.52 Discharge(cfs)
V-1030 10/6/94-10/19/04 9.78 23.78 18.72 1.64 W ater-level(ft)
V-0156 8/29/84-8/25/04 1.78 19.51 14.99 2.13 Water-level(ft)
V-0742 11/1/93-10/19/04 | 21.81 39.06 32.52 2.23 Water-level(ft)
L-0045 1/24/50-11/18/04 10.69 18.06 14.31 1.60 Water-level(ft)
V-0095 3/20/36-12/1/04 8.72 27.90 23.16 2.03 Water-level(ft)
V-0096 2/18/36-11/18/04 14.51 22.90 20.26 1.42 Water-level(ft)
SR-40 & SR-11 | 10/1/93-11/17/04 0.00 8.91 0.14 0.44 Rainfall(in)
Gemini Springs| 9/22/95-12/1/04 6.20 13.00 9.96 1.40 Discharge(cfs)
S-1230 2/26/96-11/15/04 16.44 22.67 20.22 1.64 Water-level(ft)
S-0257 11/21/52-9/20/99 16.66 26.45 22.61 1.32 W ater-level(ft)
Sanford 01/01/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)

3.2  Frequency of Observation

Table 2 shows the mean and standard deviation of frequency of observation for each data
type for Blue, Green, PDL, and Gemini springs. For Green Springs, the springs discharge has a
period of record dating back to January 2000 at an average frequency of 57 days — although a
few isolated observations extend back to February 1972. At well VV-0810, groundwater levels are
available daily from December 1996. At well VV-0772, groundwater levels are available daily
from August 1995. At well V-0166, groundwater level measurements are available from January
of 1987 at a frequency of 30 days. Finally, for the Sanford rain gage, daily precipitation

observations are available from January 1948.
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Table 2 Frequency of observation of various data types at Blue, Green, PDL, and
Gemini springs.
Data Type Range Min Max Average | Std Dev | Variable type
Blue Spring | 3/7/32-12/18/01 | 63.00 217.73 | 156.25 19.30 | Discharge(cfs)
V-0083 4/20/95-12/1/04 4.42 11.82 7.11 1.37 Water-level(ft)
V-1091 9/25/81-12/01/04 9.44 22.60 19.10 1.67 Water-level(ft)
V-0196 1/7/87-12/22/03 11.75 22.31 16.63 2.87 W ater-level(ft)
L-0059 1/31/84-11/18/04 11.80 20.64 16.36 1.47 W ater-level(ft)
V-0101 5/28/36-11/22/04 24.49 32.10 29.58 1.36 Water-level(ft)
M-0024 11/21/85-11/16/04| 21.56 29.28 24.28 1.54 W ater-level(ft)
Deland 2/17/29-6/30/04 0.00 7.77 0.16 0.43 Rainfall(in)
Green Springs | 1/20/00-11/11/04 0.00 2.92 1.31 0.94 Discharge(cfs)
V-0810 12/26/96-12/15/04 9.76 18.85 14.31 2.03 W ater-level(ft)
V-0772 8/3/95-12/15/04 6.88 17.10 11.66 2.11 Water-level(ft)
V-0166 1/7/87-11/24/03 11.00 18.03 14.22 1.32 Water-level(ft)
Sanford 1/1/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)
Ponce De Leon | 1/14/65-1/13/97 16.67 40.90 27.57 4.52 Discharge(cfs)
V-1030 10/6/94-10/19/04 9.78 23.78 18.72 1.64 W ater-level(ft)
V-0156 8/29/84-8/25/04 1.78 19.51 14.99 2.13 Water-level(ft)
V-0742 11/1/93-10/19/04 | 21.81 39.06 32.52 2.23 Water-level(ft)
L-0045 1/24/50-11/18/04 10.69 18.06 14.31 1.60 Water-level(ft)
V-0095 3/20/36-12/1/04 8.72 27.90 23.16 2.03 Water-level(ft)
V-0096 2/18/36-11/18/04 14.51 22.90 20.26 1.42 Water-level(ft)
SR-40 & SR-11 | 10/1/93-11/17/04 0.00 8.91 0.14 0.44 Rainfall(in)
Gemini Springs| 9/22/95-12/1/04 6.20 13.00 9.96 1.40 Discharge(cfs)
S-1230 2/26/96-11/15/04 16.44 22.67 20.22 1.64 Water-level(ft)
S-0257 11/21/52-9/20/99 16.66 26.45 22.61 1.32 W ater-level(ft)
Sanford 01/01/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)

For Blue Spring, the spring’s discharge has an extended period of record dating back to
March 1932 at an average frequency of 43 days. At well V-0083, groundwater levels are
available daily from April 1995 — although a few isolated observations extend back to December
1984. At well V-1091, groundwater levels are available at an average frequency of 52 days
between September 1981 and March 2002 and daily thereafter. At well V-0196, groundwater
levels are available at an average frequency of 24 days from January 1987. At well L-0059,
groundwater levels are available at an average frequency of 26 days from January 1984 —
although a few isolated observations extend back to may 1976. At well V-0101, groundwater
levels are available at an average frequency of 31 days from May 1936. At well M-0024,

groundwater levels are available at an average frequency of 30 days from November 1985 —
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although a few isolated observations extend back to September 1980. Finally, for the Deland

rain gage, daily precipitation observations are available from February 1929.

For PDL Springs, the springs’ discharge has a period of record dating back to January
1965 at an average frequency of 55 days — although a few isolated observations extend back to
February 1929. The PDL Springs discharge data, recorded after April 7, 1997, are of
questionable quality because of biased measurements introduced by construction of the pool
weir. Hence, PDL discharge records measured only before April 7, 1997, are used for the
regression model. At well V-1030, groundwater levels are available daily from October 1994.
At well V-0156, groundwater levels are available at an average frequency of 24 days between
from August 1984. At well V-0742, groundwater levels are available daily from November
1993. At well L-0045, groundwater levels are available at an average frequency of 47 days from
January 1950. At wells V-0095 and V-0096, groundwater levels are available from early 1936 at
a frequency of 6 and 36 days, respectively. Finally, for the SR-40/SR-11 rain gage, daily
precipitation observations are available from October 1993.

For Gemini Springs, the springs’ discharge has a period of record dating back to
September 1995 at an average frequency of 56 days — although a few isolated observations
extend back to June 1966. At well S-1230, groundwater levels are available at an average
frequency of 29 days between February 1996 and October 2004 and daily thereafter. At well
S-0257, groundwater levels are available at an average frequency of 6.5 days beginning in
November 1952. Finally, for the Sanford rain gage, daily precipitation observations are available

from January 1966.

3.3 Analysis of Overlap

Periods of overlap between different data types were analyzed for each of the springs of
interest. This is useful for determining how the period of record can be split up into sub-periods
with common sets of explanatory variables. The frequency of observation for each data type was
subsequently calculated. This is useful for determining appropriate lag and moving average
windows. Moving averages were calculated for recorded water levels, precipitation and springs

discharge at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12, 24, 48, and
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52 weeks. The moving averages act as surrogate predictor variables and carry useful information
regarding the physical state of the system prior to the time of interest.

Figure 2 shows the overlap between various data types for the PDL Springs. Shown here
are the periods of record for (a) springs discharge, (b) groundwater levels at monitoring wells V-
1030, V-0156, V-0742, L-0045, V-0095, and V-0096, and (c) precipitation measurement at SR-
40 and SR-11. Also indicated therein is the average frequency of observation for each data type
(as was discussed in detail in the previous section). As mentioned before, PDL data starts from
1965 and is only available through the spring of 1997. Prior to that, groundwater level data at
wells L-0045, V-0095 and V-0096 are available starting in the late 1930s. However, the average
data frequency for these wells is about 7 weeks. It is likely that a moving average window of 8
weeks or greater will be used to take advantage of this water level measurement. From 1995,
several time series are available, but this information cannot be used in the regression model due
to short period of overlap with PDL. Information from another spring (Blue) could also be
added to the explanatory variables set to help provide more accurate estimates for daily discharge
at PDL Springs.

Figure 3 shows the overlap between various data types for the Gemini Springs. Shown
here are the periods of record for (a) springs discharge, (b) groundwater levels at monitoring
wells S-1230 and S-0257, and (c) precipitation measurement at Stanford. Also indicated therein
is the average frequency of observation for each data type (as was discussed in detail in the
previous section). The daily groundwater level at well S-1230 is available only since mid-2004.
Prior to this timeframe, the well has an average recording frequency of about once a month. The
Sanford daily rainfall record has a much longer record starting in the 1940s. It is likely that two
different model sets will be used to estimate daily discharge at Gemini Springs. The first set of
models will cover recent times since groundwater measurements became available. The early
models will use rainfall and water levels at wells S-0257 as supporting explanatory variables.
However, as the report will detail later, information from Blue Spring could also be added to the
explanatory variables set to help provide more accurate estimates for daily discharge at Gemini

Springs.
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Data range and frequency - Ponce De Leon

< fevd < i

—e—Ponce De Leon - avg freq=55 days
—=8—-V-1030 - freq=daily
——V-0156 - avg freq=24 days
V-0742 - freq=daily
—*— SR-40&SR-11 - freq=daily & A
—e—-0045 - avg freq=47 days
¢ outliers-Ponce De Leon
——V-0096 - avg freq=35 days
V-0095 - avg freq=6days

L 4
*

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005
Date

Figure 2 Overlap between various data types, PDL Springs.

Data range and frequency - Gemini

—e— Gemini - avg freq=56 days
—8—S-1230 - avg freq=29 days
—&—S-1230 - freq=daily
—x— Sanford - freq=daily
o outlier-Gemini Spring a4
—e—S-257 - freq=6.5 days
o outlier-S-257

L4 4 ®

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005
Date

Figure 3 Overlap between various data types, Gemini Springs.
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Figure 4 shows the overlap between various data types for the Green Springs. Shown
here are the periods of record for: (a) springs discharge, (b) groundwater levels at monitoring
wells V-0810, V-0772, and V-0166, and (c) precipitation measurement at Sanford. Also
indicated therein is the average frequency of observation for each data type (as was discussed in
detail in the previous section). Data availability issues for Green Springs are similar to Gemini
Springs. The models developed for both these springs are expected to be similar in structure,
i.e., the first set of models will cover recent times since groundwater measurements became
available. The early models will use rainfall and perhaps discharge at Gemini Springs as
supporting explanatory variables. However, as the report will detail later, information from
another spring (Blue) could also be added to the explanatory variables set to help provide more

accurate estimates for daily discharge at Green Springs.

Data range and frequency - Green

—e— Green - avg freq=57 days
—8-V-0810 - avg freq=daily = a
——\/-0772 - avg freq=daily
—— Sanford - avg freq=daily

© outliers-Green spring
—e—\/-0166 - avg freq=30 days

*
*

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005
Date

Figure 4 Overlap between various data types, Green Springs.

Figure 5 shows the overlap between various data types for Blue Spring. Shown here are

the periods of record for: (a) springs discharge, (b) groundwater levels at monitoring wells
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V-0083, V-1091, V-0156, L-0059, V-0101, and M-0024, and (c) precipitation measurement at
Deland 1 SSE. Also indicated therein is the average frequency of observation for each data type
(as was discussed in detail in the previous section). In general, the data records for Blue Spring
could be broken into pre- and post-1984. Late time models can take advantage of all available
data at the majority of the monitoring wells as well as precipitation data from the Deland gauge.
Early time models will only have the water level record at VV-0101 and the Deland rainfall record

as supporting explanatory variables.

Data range and frequency - Blue Spring

L 4
*

—e—Blue Spring - avg freq=43 days
-8 V-0083 - freq=daily n O s
——V/-1091 - avg freq=52 days
——V-1091 - freq=daily & A
—*—V-0196 - avg freq = 24 days
—eo—L-0059 - avg freq=26 days —x
—+— Deland 1 SSE - freq=daily
—=—V-0101 - avg freq=31 days
——M-0024 - avg freq=30 days

O outliers-V-0083

¢ outliers-L-0059 A0 BN o

A outliers-M-0024

*
*

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005
Date

Figure 5 Overlap between various data types, Blue Spring.

3.4 Correlation Analysis — Spring to Spring

The correlation between spring discharge at a given spring, and the 6, 8, 12, 24, 48, and
52-week moving averages of spring discharge at Blue Spring is presented in this section. The
motivation here is to determine if any of the moving-average spring discharge at Blue Spring can
be used as a predictor variable for discharge at PDL, Gemini, or Green springs. The rationale for

selecting Blue Spring as a potential “global” predictor is twofold: (a) Blue Spring has an
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extensive period of record dating back to March 1932, and (b) its location is between PDL and

Gemini/Green springs. This implies that Blue Spring can be of potential value as an auxiliary

source of data for PDL as well as for Gemini and Green springs.

Table 3 suggests that discharge at PDL is maximally correlated to the 48-week (or 52-

week) moving average discharge at Blue Spring. Similarly, as shown in Table 4, the maximum

correlation for Gemini Springs occurs at a lag of 12 weeks. Finally, Table 5 indicates that the

maximum correlation for Green Springs occurs at a lag of 24 weeks — although the low value of

the correlation coefficient and the small sample size make this result of questionable value.

Thus, on the basis of these spring-spring correlation analyses, it seems plausible that

daily Blue Spring discharge may be used as one of the explanatory variables for PDL Springs

and Gemini Springs.

Table 3 Correlation coefficients between discharge at PDL Springs and moving
averages of discharge at Blue Spring.

Ponce de Leon Count
Blue Spring 0.68 13
Blue Spring- 6 week 0.40 150
Blue Spring- 8 weeks 0.43 220
Blue Spring- 12 week 0.47 244
Blue Spring- 24 week 0.49 250
Blue Spring- 48 week 0.55 252
Blue Spring-52week 0.55 253
Table 4 Correlation coefficients between discharge at Gemini Springs and moving
averages of discharge at Blue Spring.
Gemini Count
Blue Spring 0.99 3
Blue Spring- 6 week 0.45 39
Blue Spring- 8 weeks 0.42 52
Blue Spring- 12 week 0.49 54
Blue Spring- 24 week 0.48 58
Blue Spring- 48 week 0.41 59
Blue Spring-52week 0.39 60
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Statistical Modeling of Spring Discharge

Table 5 Correlation coefficients between discharge at Green Springs and moving
averages of discharge at Blue Spring.
Green Count

Blue Spring N/A 2
Blue Spring- 6 week -0.01 10
Blue Spring- 8 weeks 0.11 11
Blue Spring- 12 week 0.14 15
Blue Spring- 24 week 0.23 18
Blue Spring- 48 week 0.18 20
Blue Spring-52week 0.16 21

It should be pointed out that the correlation between Gemini and Green springs was also
evaluated, but not considered for additional analysis because of the limited number of data points

(<10) or the common days at which measurements for both springs were recorded.
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4.0 REGRESSION MODELING

4.1 Methodology

The objective of regression modeling is to build a multivariate linear input-output model
between the response variable (spring discharge) and the surrogate predictor variables (moving
averages of water level measurements and precipitation) at the springs of interest. Such a

relationship can be expressed by:
Gt=bo+ b1qei + b2Qej +.... + bahek+ bare + ¢ (1)

where q is spring discharge; g* is discharge at an adjacent spring, h is groundwater level; r is
precipitation; € is an error term; b, b1, b,, bs and b, are regression coefficients; t is time, and i, |,
k and | denote lags that maximize the correlation between the response and predictor variable
pair of interest. Here, the use of surrogate predictors is necessitated by the fact that most
predictor variables are not measured on a daily basis. Generation of daily discharge thus requires
the use of predictor variables for which daily values can be generated, e.g., on the basis of

averaging over some moving time window.
Eqg. (1) can be symbolically re-stated as follows, where MA denotes moving average:

[Spring discharge] = f { [same spring MA] + [water level MA]
+ [precipitation MA] + [adjacent spring MA] } (2)

Depending on the information available for the spring of interest, the regression model
can contain all four terms in Eq. (2). This is especially true for the recent period since mid-
1990s, when detailed measurements of groundwater levels are available. On the other hand, for
springs such as Gemini and Green, discharge measurements are not available prior to this time.
Thus, early-time regression models for these springs will have to rely only on rainfall, discharge

at adjacent springs and, when possible, water levels from long-term monitoring wells.

The model building process can be carried out using forward stepwise regression, where
variables are added one at a time until no additional variables can be found that improve the
goodness-of-fit of the input-output model. At each successive step in the regression modeling

process, the variable that explains the largest fraction of unexplained variance is included. This
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is the variable with the largest absolute value of the partial correlation coefficient (PCC), which
measures the correlation between the output and the selected input variable after the linear

influence of the other variables have been eliminated.

The model generated at every step is tested to ensure that the each of the regression
coefficients is significantly different from zero. A partial F-test, or, an equivalent t-test, is used
to reject the hypothesis that a regression coefficient is zero, at a 100(1 - o) % confidence level.
The stepwise regression process continues until the input-output model contains all of the input
variables that explain statistically significant amounts of variance in the output, i.e., no more

variables can be found with a statistically significant regression coefficient.

If necessary, piecewise regression or non-parametric regression (e.g., Alternating
Conditional Expectation or ACE) can be used as an alternative to stepwise regression to improve

the linear model goodness of fit.

« In piecewise regression, the algorithm automatically splits the data into two or more
subsets such that model predictions have the highest possible correlation with observed

values of the response variable (daily spring discharge).

« In ACE, the algorithm automatically selects optimal non-parametric transformations for
each of the variables such that the transformed response variable can be expressed as the
sum of all the transformed explanatory variables and the input-output correlation

coefficient is maximized.

Note that the number of potential explanatory variables can be quite high, given that
moving averages from multiple lags are considered for each of the terms in Eqg. (1). It is
therefore necessary to ensure that the regression model includes only those predictor variables
that have the highest correlation with the response variable, while taking into account any
predictor-predictor correlations. However, the selection of the most relevant predictors is carried
out automatically as part of the stepwise regression process — thus, eliminating this onerous pre-
processing step. On the other hand, both piecewise regression and ACE require the variables to
be included in the model be specified a priori. A careful examination of correlation and partial
correlation coefficients is warranted in such cases to assist in the parsimonious selection of

predictor variables and to avoid over-parameterization of the model. An alternative would be to
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use a data reduction technique such as principal component analysis (PCA) to combine the
predictors into surrogate variables and apply principal component regression. However,
exploratory analysis with such an approach using data from Blue Spring did not yield regression

models superior to those generated using stepwise regression.
The workflow for modeling the spring discharge can be summarized as follows:

« Split the period of record into a late-time period, where detailed groundwater level
measurements are available, and an early time period where only limited or no

groundwater level measurements are available.

o For each period, organize the spring discharge data (response variable) and the
corresponding moving averages of groundwater levels, precipitation, discharge at same

spring and discharge at adjacent springs (predictors).

« Retain only those predictor variables for which the number of data points is at least 80%
of the number of spring discharge measurements. This threshold has been applied to
ensure that the characteristics of the spring discharge time series can be captured as much

as possible by the regression model.

« Build a forward stepwise regression model between spring discharge (response) and
some or all of the following predictors: discharge at same spring, discharge at adjacent
springs, precipitation, and groundwater levels.

An important point to note here is that these regression models are being built with the
“best available data”. The quality of the model therefore depends on data coverage, presence of
groundwater monitoring wells in the immediate vicinity, and availability of discharge

measurements at nearby springs that can be used as ancillary data sources.

4.2 Regression Models for PDL Springs

One modeling period can be identified for PDL.:

o 1965-1997 period, when groundwater level measurements are available from L-0045,
V-095, and V-0096; along with discharge data from Blue Spring.
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Stepwise regression analyses were performed for the above mentioned modeling period
and the results are presented below. The stepwise regression analysis for the PDL data produced

the following model:

PDL = PDL..12.week + PDL..48.week + PDL..52.week + Blue-Spring..52.week
+ L.0045..8.week + L.0045..48.week + L.0045..52.week 3

The multiple R? for this regression model was 0.57. The standard error of estimate
was 2.89. The F-statistic was 29.605, and the p-value was 0. Estimated regression coefficients

and their statistics are given below in Table 6.

In Table 6, the “B” column contains the regression coefficients in actual units. The
“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if
the predictor variables had been normalized to zero mean and unit standard deviation. The
absolute value of the SRCs can be used as an indicator of variable importance (Draper and Smith,
1981). Thus, the most important predictor variables can be identified as [L-0045 48-week],
[L-0045 52-week] and [PDL 48-week].

Table 6 PDL- regression coefficient statistics.

Regression Summary for Dependent Variable: Ponce de Leon (PDL_Data_until_1997_Regression.sta)
R=.77142811 R2= .59510133 Adjusted R2=.57499998
F(7,141)=29.605 p<0.0000 Std.Error of estimate: 2.8923

N =149 Beta Std.Err. B Std.Err. {(135) p-level

Intercept -1.67405 | 3.717885 | -0.45027 0.653207
Ponce De Leon- 52 week | -0.43221 | 0.519382 | -0.55553 | 0.667581 [ -0.83216 0.406727
L-0045-8week 0.53170 [ 0.096945 | 1.93914 | 0.353564 | 5.48456 0.000000
L-0045-48week -1.20757 | 0.703044 | -5.14812 | 2.997218 | -1.71763 0.088059

Ponce De Leon- 12 week | 0.17028 0.090858 0.17495 0.093350 1.87414 0.062980
Ponce De Leon- 48 week | 0.87540 0.535413 1.12340 0.687096 1.63499 0.104281
Blue Spring- 52 week 0.10275 0.085744 0.03471 0.028963 1.19828 0.232819
L-0045-52week 0.80951 0.695952 3.45109 2.966979 1.16317 0.246726

Figure 6 shows a comparison between the observed and fitted values of PDL Springs
discharge. The scatter in the data is consistent with a final R? of 0.57. Note also the resulting
under prediction of some high discharge values and over prediction of some low discharge

values (i.e., the outliers in Figure 6).
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Predicted vs. Observed Values
Dependent variable: Ponce de Leon
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Figure 6 PDL — comparison of observed and predicted values.

Figure 7 shows a normal probability plot of the residuals for the PDL regression. The

linearity of the data suggests that standard assumptions for normally distributed errors in a

multivariate linear regression model have been satisfied and the model is properly parameterized.
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To compare observed versus predicted discharges, it is also useful to consider the variance
values for the two records. The F-test for variance equality is often employed for this purpose.
This test makes a statistical comparison between the variances of two data sets through the
calculation of three values (Ott, 2006):

e Calculated F-value: depends on the variance values for the observed and predicted

discharge values and the two sample sizes,

e Critical F-value: depends on the two sample sizes and the desired significance level for
the test, and

e P-value: calculated based on the difference between the calculated and critical F-values.

If the Calculated F-value is greater than the Critical F-value then, reject Hy (the null hypothesis
which states that the standard deviations of two normally distributed populations are equal, and
thus that they have similar spreads) at the chosen level of confidence (alpha = 0.05). If this is the
case then look at the P-value to evaluate the chances of observing an F-value that is greater than

the calculated value.

In general, it is expected that regression-predicted values are generally smoother than
actual observed discharge values. To quantify the effects of this smoothing on the generated
period of record, two tools are used, a quantitative evaluation and visual comparison. The
quantitative evaluation is the Kolmogorov-Smirnov (K-S) test which evaluates the differences
between the empirical distribution functions for the observed and predicted time-series
(D'Agostino and Stephens, 1986). Under the null hypothesis that the two cumulative distribution
functions are identical, the test statistic D for this test is the greatest absolute vertical distance
between the two empirical distribution functions. This test statistic is not dependent on the two
underlying distributions. Therefore the p-value for this test is only dependent on the two sample
sizes, which can be different.

The K-S D statistic can be used to evaluate if the two cumulative distributions functions
(CDFs) are statistically similar. Another qualitative tool often employed to compare two data
sets is the box-whisker plot (also known in the literature as the box plot, Ott, 2006). This plot is
a convenient way of graphically depicting the location and spread of the two (or more) data sets.

The plot shows the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and
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largest observation. Furthermore, the plots show which observations, if any, are considered to be
outliers. These plots visually show different types of populations, without any assumptions of
the statistical distribution or requirements about the sample sizes. The box size (difference
between Q3 and Q1) helps indicate variance. Skew is also graphically shown through (1) the
location of the median in relation to Q1 and Q3, (2) the maximum and minimum values, and

(3) the number of value of outliers.

Table 7 shows the F-test and K-S test between observed PDL Springs time-series and
predicted PDL Springs time-series on days corresponding to observed data. Results for the
F-test indicate that there is a significant difference between the two variances. However, the K-S
D statistic does not show a significant difference between the two empirical CDFs.

Table 7 F-test and K-S test between observed and predicted PDL timeseries.
PDL (observed) PDL (predicted)

Mean 26.64 26.67

Variance 24.44 13.47

Observations 247 247

df 246 246
F 1.81
P(F<=f) one-tall 0.00
F Critical one-tail 1.23
K-S D statistic 0.08
p-value for K-S test 0.35

Figure 8 shows the box-whisker plots for three data sets:
(1) observed discharge values at PDL Springs for the time period 1965-1997,

(2) regression-predicted values for the same dates at which observed discharge value are

available, and

(3) regression-predicted values from the regression model for each day in the time period
1965-1997.

The plots show that the observed discharge values at PDL Springs show slightly higher
variability than the regression-predicted values (data sets 1 and 2). However, data set 3, which
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shows a complete record of predictions, shows slightly higher variability than data set 2. This
shows that the regression predictions show slightly higher variability than the observed values. It
is expected, however, that more variance would have been observed if more observations had
been made in the same time period. In conclusion, the regression-predicted values show a
similar range of variability as the observed discharge values with the complete daily predicted
record showing plausible variability.
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Figure 8 PDL - Box and Whisker plot.

4.3  Regression Models for Gemini Springs

The two modeling cases for Gemini Springs are as follows:

« Gemini 1995-2000, where a relationship is sought between Gemini Springs discharge,

Blue Spring discharge, and water levels at S-0257 in order to predict the daily Gemini
Springs discharge prior to 1995 (when no measurements are available at the spring of

interest itself, and
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o Gemini 1995-2004, where a relationship is sought between Gemini Springs discharge,

Blue Spring discharge, rainfall at Sanford and water levels at S-0257 and S-1230 in order
to predict the daily Green Springs discharge during this period (1995-2004).

Stepwise regression analyses were performed for both of these modeling periods and the

results are presented below.

The stepwise regression analysis of the 1995-2000 Gemini Springs discharge data

produced the following model:

Gemini = Blue.Spring..12.week + Blue.Spring..48.week + Blue.Spring..52.week
+ S.0257..12.week + S.0257..24.week 4)

The multiple R? for this regression model was 0.47. The residual standard error was 0.87. The
F-statistic was 6.9 and the p-value was 0. Estimated regression coefficients and their statistics
are given below in Table 8. The most important variables in the regression model, identified on
the basis of the absolute value of the SRC, are [Blue Spring 52-week], [Blue Spring 48-week],
[S-0257 24-week] and [S-0257 12-week].

An alternative model that included moving averages of rainfall recorded at Stanford
produced a better fit for this data set. However, its application for daily discharge predictions
produced too much noise — indicating that the fluctuations in the rainfall time series were not
being damped by other explanatory variables. It was therefore decided to exclude Sanford as an
explanatory variable in order to retain a reasonable degree of variability in the daily springflow

predictions.

Table 8 Gemini — 1995-2000 — regression coefficient statistics.

Regression Summary for Dependent Variable: Gemini (Rerun2_Gemini_woutGemlangs_1995-2000.sta)
R=.74189587 R2= .55040949 Adjusted R2= .47012547
F(5,28)=6.8558 p<.00027 Std.Error of estimate: .86705

N =34 Beta Std.Err. B Std.Err. 1(28) p-level

Intercept 6.313614 | 7.493850 | 0.84251 0.406644
S-0257-24 week 0.96838 [ 0.403572 [ 1.433453 | 0.597390 | 2.39953 0.023314
Blue Spring-52week -1.38467 | 0.596370 | -0.321406 | 0.138428 | -2.32182 0.027739
Blue Spring-12week 0.12028 [ 0.213227 [ 0.012948 | 0.022954 | 0.56410 0.577174
Blue Spring-48week 1.06485 | 0.611768 | 0.246067 | 0.141369 | 1.74060 0.092734
S-0257-12 week -0.60016 | 0.350785 | -0.809407 | 0.473087 | -1.71090 0.098158
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Figure 9 shows a comparison between the observed and fitted values of the 1995-2000

Gemini Springs discharge indicating agreement that is consistent with the moderate R? value

of 0.47.
Predicted vs. Observed Values
Dependent variable: Gemini
14 T T T
13 F
:
8
8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5
Predicted Values Se_95% confidence
Figure 9 Gemini — 1995-2000 — comparison of observed and predicted values.

Figure 10 shows a normal probability plot of the residuals for the 1995-2000 period of

Gemini Springs discharge, with minor deviations from linearity at low values of residuals.

Expected Normal Value

Normal Probability Plot of Residuals

-1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5

Residuals

Figure 10
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A stepwise regression analysis of the 1995-2004 Gemini Springs discharge data produced
the following model:

Gemini = S.1230..4.week + S.1230..6.week + S.1230..8.week + S.1230..24.week
+ Sanford + Sanford..4.week + Sanford..8.week + Sanford..12.week
+ Sanford..52.week (5)

The multiple R? for this regression model was 0.79. The standard error of estimate was 0.77.
The F-statistic was 16.58, and the p-value was 0. Estimated regression coefficients and their
statistics are given below in Table 9. The most important variables in the regression model,
identified on the basis of the absolute value of the SRC, are [S-1230 4-week], [S-1230 8-week]
and [S-1230 24-week].

Table 9 Gemini — 1995-2004 — regression coefficient statistics.
Regression Summary for Dependent Variable: Gemini (Rerun_Gemini_PCC_STAT _Input_1995-2004)
R=.91500908 R?= .83724162 Adjusted R?= .78673040
F(9,29)=16.575 p<.00000 Std.Error of estimate: .60752
N =39 Beta Std.Err. B Std.Err. 1(29) p-level
Intercept -2.67901 | 3.170252 [ -0.84505 0.405003
S-1230-24 week 1.14099 | 0.221150 | 1.30807 | 0.253533 | 5.15936 0.000016
Sanford- 12 week 0.69916 [ 0.176118 [ 11.43520 | 2.880518 | 3.96984 0.000434
S-1230-8 week -1.58770 | 0.523912 | -1.51468 | 0.499817 | -3.03047 0.005096
Sanford- 8 week -0.34810 | 0.190757 | -4.94203 | 2.708199 | -1.82484 0.078343
S-1230-4 week 1.65641 | 0.665143 | 1.52284 | 0.611504 | 2.49031 0.018740
Sanford -0.16438 | 0.078362 | -0.55164 | 0.262974 | -2.09772 0.044758
Sanford-52 week 0.33889 [ 0.179265 [ 12.16646 | 6.435694 | 1.89047 0.068726
Sanford- 4 week -0.23539 | 0.128170 | -2.68144 | 1.460054 | -1.83653 0.076549
S-1230-6 week -0.86939 | 0.756274 | -0.80867 | 0.703455 | -1.14957 0.259713

Figure 11 shows a comparison between the observed and fitted values of the 1995-2004

Gemini Springs discharge indicating good agreement.
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Predicted vs. Obserned Values
Dependent variable: Gemini

14

Observed Values
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Predicted Values | o _95% confidencel

Figure 11 Gemini — 1995-2004 — comparison of observed and predicted values.

Figure 12 shows a normal probability plot of the residuals for the 1995-2000 period of
Gemini Springs discharge, with minor deviations from linearity at low and high values of

residuals.

Normal Probability Plot of Residuals

Expected Normal Value

-1.2 -10 -08 -06 -04 -02 00 02 04 06 08 10 12 14 16

Residuals

Figure 12 Gemini —1995-2004 — normal probability plot of residuals.
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To compare observed versus predicted discharges, the same methods described before for
PDL Springs are used for Gemini Springs. Results for the F-test and K-S D statistic are shown
in Table 10. Results for the F-test indicate that there is no statistically significant difference
between the two variances; with values of 1.88 and 1.50 for the observed and regression-
predicted values, respectively. Similarly, the K-S D statistic shows no significant difference
between the two empirical CDFs.

As mentioned before for PDL Springs, the F-test and the K-S D statistic do not show the
nature of the difference between the two time series. To provide some insight into these
differences, Figure 13 shows the box-whisker plots for the observed and regression-predicted
discharge values (along with the complete regression-predicted period of record). The plots
show that the differences between the observed and predicted values are largely due to the
existence of one low-value outlier in the observed time series. The non-outlier range is almost
identical for the two time series, with a slight difference at the upper end. Data set 3 (which
shows a complete record of pooled model predictions) shows much more variability than data
set 2, with an overall variability that is higher than the observed record. It is expected, however,
that more variance would have been observed if more observations had been made in the same
time period. In conclusion, the regression-predicted values show a reasonably similar range of
variability as the observed discharge values with the complete daily predicted record showing

plausible variability.

Table 10 Gemini Springs - 1995-2004 Observed and Regression-Predicted Variance

Statistics
Gemini (observed) Gemini (predicted)
Mean 9.93 10.05
Variance 1.88 1.50
Observations 68 68
df 67 67
F 1.25
P(F<=f) one-tall 0.18
F Critical one-tail 1.50
K-S D statistic 0.09
p-value for K-S test 0.96
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Figure 13 Gemini — Box and Whisker plot.

4.4  Regression Models for Green Springs
The two modeling cases for Green Springs are as follows,

« Green pre-1996, where a relationship is sought between Green Springs discharge, water
levels at V-0166 and rainfall at Sanford during the 2000-2004 period in order to predict

discharge at Green Springs in the 1987-1996 period, and

o Green 1999-2004, where a relationship is sought between Green Springs discharge, Blue
Spring discharge, rainfall at Sanford and water levels at V-0810, V-0772, and V-0166 in

order to predict daily Green Springs discharge during this period and also for 1996-1999.

Stepwise regression analyses were performed for both of these modeling periods and the
results are presented below. The stepwise regression analysis of the first dataset (referred to as

Green Springs pre-1996) produced the following model:

Green = V.0166.24.week + V.0166..48.week + V.0166..52 + Sanford..1.week +
+ Sanford..3.week + Sanford..48.week (6)
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The multiple R? for this regression model was 0.89. The standard error of estimate
was 0.28. The F-statistic was 35.1, and the p-value was 0. Estimated regression coefficients and
their statistics are given below in Table 11. The most important variables were

[V-0166 52-week] and [\V-0166 48-week].

Table 11 Green - pre-1996 — regression coefficient statistics.
Regression Summary for Dependent Variable: Green (Green-pre2000_V0166)

R=.95981092 R2=.92123700 Adjusted R2= .89498266

F(7,21)=35.089 p<.00000 Std.Error of estimate: .28398
N =29 Beta Std.Err. B Std.Err. t(21) p-level
Intercept -10.3182 | 1.912913 | -5.39399 0.000024
Sanford 48week 0.371090 | 0.155638 9.9353 4.166933 | 2.38432 0.026621
V-0166 24week 0.450713 | 0.111107 0.5010 0.123506 | 4.05658 0.000568
Sanford 12week 0.372201 | 0.123698 3.8407 1.276435 3.00895 0.006684
Sanford-3week -0.345206 | 0.114099 -2.0444 0.675725 | -3.02550 0.006435
V-0166 52week 1.017014 | 0.415291 1.3844 0.565316 | 2.44892 0.023193
V-0166_48week -0.926160 | 0.435435 | -1.2006 | 0.564475 [ -2.12698 0.045439
Sanford-1week 0.193179 | 0.094735 1.0750 0.527168 2.03915 0.054219

Figure 14 shows a comparison between the observed and fitted values for the Green

Springs pre-1996 data set indicating good agreement. Figure 15 shows a normal probability plot

of the residuals for the Green pre-1996 model, indicating proper linear-type diagnostics.

Observed Values
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o 95% confidence
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Figure 14
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Normal Probability Plot of Residuals

Expected Normal Value
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Figure 15 Green — pre-1996 — normal probability plot of residuals.

The stepwise regression analysis of the second dataset (referred to as Green Springs

1999-2004) produced the following model:

Green =V.0810 + V.0772 + Sanford..4.week + Sanford..8.week
+ Sanford..48.week (7)
The multiple R? for this regression model was 0.97. The standard error of estimate was 0.14.
The F-statistic was 189.3, and the p-value was 0. Estimated regression coefficients and their

statistics are given below in Table 12. The most important variable was [\V-0810].

Table 12 Green — 1999-2004 - regression coefficient statistics.

Regression Summary for Dependent Variable: Green (Green-post2000)

R=.98858006 R2= .97729053 Adjusted R2= .97212929

F(5,22)=189.35 p<.00000 Std.Error of estimate: .14838
N =28 Beta Std.Err. B Std.Err. 1(22) p-level
Intercept -3.79682 | 0.435729 | -8.71371 0.000000
V-0772 -0.056706 | 0.324536 | -0.02285 | 0.130799 | -0.17473 0.862889
Sanford-8week 0.378254 | 0.072825 | 3.67987 | 0.708480 | 5.19404 0.000033
Sanford-4week -0.384526 | 0.074412 | -2.25024 | 0.435461 | -5.16749 0.000035
Sanford-48week 0.271348 | 0.093230 | 7.73961 | 2.659183 | 2.91052 0.008107
V-0810 0.702443 | 0.273103 | 0.28869 | 0.112240 | 2.57208 0.017386
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Figure 16 shows a comparison between the observed and fitted values for the Green

Springs 1999-2004 data set indicating good agreement.

Observed Values
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Predicted vs. Observed Values
Dependent variable: Green

Figure 16

Green — 1999-2004 — comparison of observed and predicted values.

Figure 17 shows a normal probability plot of the residuals for the Green 1999-2004

model, indicating proper linear type diagnostics excepting in the very high residual range.

Normal Probability Plot of Residuals
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Figure 17 Green — 1999-2004 — normal probability plot of residuals.
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To compare observed versus predicted discharges, the same methods described before for
PDL Springs are used for Green Springs. Results for the F-test and K-S D statistic are shown in
Table 13. Results for the F-test indicate that there is no statistically significant difference
between the two variances; with values of 0.73 and 0.75 for the observed and regression-
predicted values, respectively. Similarly, the K-S D statistic shows no significant difference

between the two empirical CDFs.

As mentioned before for PDL Springs, the F-test and the K-S D statistic do not show the
nature of the difference between the two time series. To provide some insight into these
differences, Figure 18 shows the box-whisker plots for the observed and regression-predicted
discharge values (along with the complete regression-predicted period of record). The plots
show that there are slight differences between the observed and predicted values at the upper
end. The lower end is naturally bounded by the zero discharge observations and the physical
constraint used to ensure that regression-generated discharge values are not negative. The non-
outlier range is almost identical for the two time series. Data set 3 (which shows a complete
record of pooled model predictions) shows much more variability than data set 2, with an overall
variability that is higher than the observed record. It is expected, however, that more variance
would have been observed if more observations had been made in the same time period. In
conclusion, the regression-predicted values show a reasonably similar range of variability as the
observed discharge values with the complete daily predicted record showing plausible

variability.

Table 13 Green — 1999-2004 Observed and Regression-Predicted Variance Statistics.

Green (observed) Green (predicted)
Mean 1.28 1.30
Variance 0.73 0.75
Observations 31 31
Df 30 30
F 0.97
P(F<=f) one-tall 0.47
F Critical one-tail 0.54
K-S D statistic 0.10
p-value for K-S test 1.00
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Figure 18 Green — Box and Whisker plot.
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5.0 PREDICTION OF DAILY DISCHARGE AND FLOW
DURATION

5.1 Daily Discharge Predictions and Flow Duration Curves for PDL

Predictions of daily discharge and flow duration curves for PDL are carried out with the
help of Eq. (3). Figure 19 shows these daily predictions juxtaposed with actual measurements of
PDL discharge (at an average frequency of 55 days). The agreement between both the two time
series is quite good and the absence of any significant divergent trends indicates that the linear

model is able to capture the general trend of the spring discharge.

Ponce De Leon predictions - 1/20/1966 to 12/18/2001
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Figure 19 Daily discharge predictions for PDL, 1966-2001.

Figure 20 shows the flow duration curve, i.e., discharge versus percent exceedance for
the long-term simulation generated from the results of the statistical modeling, indicating good

agreement between the statistical characteristics of the observed and predicted spring discharge.
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Flow Duration Curve - Ponce De Leon
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Figure 20 Flow duration curve for PDL Springs.

The corresponding high- and low-flow frequency analyses for the system (frequency of
spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months, and 1 year)
are shown in Figure 21.

5.2 Daily Discharge Predictions and Flow Duration Curves for Gemini
Springs
Predictions of daily discharge and flow duration curves for Gemini Springs are carried
out with the help of Eq. (4) for the pre-1995 period and Eq. (5) for the post-1995 period.
Figures 22 and 23 show these daily predictions juxtaposed with actual measurements of Gemini
Springs discharge (at an average frequency of 56 days). The agreement between both the two
time series is quite good and the absence of any significant divergent trends indicates that the

linear model is able to capture the general trend of the spring discharge.
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Gemini-prediction - 8/12/1996 - 6/30/2004
14
—— Gemini(predicted)
13 . Gemim(observed)\i
12 1
~ ull L Mﬂ 4
g SN
o 10 .
9 * .
g 94 ' o -
3 I
0
o 8 *
7 I L
6 1 }
5 T T T T T
8/16/1996 12/29/1997 5/13/1999 9/24/2000 2/6/2002 6/21/2003
Date
Figure 22 Daily discharge predictions, Gemini Springs, 1996-2004.

The sparsity of actual observations of Gemini Springs discharge during the 1953-1996

period preclude a meaningful evaluation of the reliability of the daily predictions shown in

Figure 23, generated using Eq. (5). However, it should be noted that the few measurements that

are available are generally consistent with the predictions — excepting for the outliers in the 1993

time frame.
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Figure 23 Daily discharge predictions, Gemini Springs, 1953-1996.
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Figure 24 shows the flow duration curve for Gemini Springs, i.e., discharge versus
percent exceedance for the long-term simulation generated from the results of the statistical

modeling, indicating good agreement between the statistical characteristics of the observed and
predicted spring discharge.
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Figure 24 Flow duration curve for Gemini Springs.

The corresponding high- and low-flow frequency analyses for the system (frequency of
spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months and | year)
are shown in Figure 25.
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5.3 Daily Discharge Predictions and Flow Duration Curves for Green
Springs

Predictions of daily discharge and flow duration curves for Green Springs discharge are
carried out with the help of Eq. (6) for the pre-1996 period and Eq. (7) for the post-1996 period.
Figures 26 and 27 show these daily predictions juxtaposed with actual measurements of PDL
discharge (at an average frequency of 57 days). The agreement between both the two time series
for the post-1996 period (Figure 26) is quite good and the absence of any significant divergent
trends indicates that the linear model is able to capture the general trend of the spring discharge.

Green prediction - 12/26/1996 - 7/28/2004
4
35 + Green(observed)
3 w“ —— Green(predicted) ‘h“ ’M N |
T, | 1A
L \*\w ! L Rk “v. i "n[ L ik l,ﬁ
> b h\\ ﬁ‘M\ b ) ‘J N‘J : I i
© | i | / ™
S «1 W ’IW H B M’ M 0 | W WI
D 15 fr )\ i = —h e 'M
o i, \M I | J'v\ | “a,*\ MU U‘f\n ; “u
! \‘MV n* ! ‘v'/“v" W ' L"l 1 T -
" T | \ By
0.5 L f il IW - m | W“ | H“
AT
0 , , , "‘\JJ ﬂ‘".‘.‘h AP L J ,
12/26/1996 1/30/1998 3/6/1999 4/9/2000 5/14/2001 6/18/2002 7/23/2003
Date

Figure 26 Daily discharge predictions, Green Springs, 1996-2004.

The sparsity of actual observations of Green Springs discharge during the pre-1996
period preclude a meaningful evaluation of the reliability of the daily predictions shown in
Figure 27, generated using Eq. (7).
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Figure 27 Daily discharge predictions, Green Springs, 1988 — 1996.

Figure 28 shows the flow duration curve for Green Springs, i.e., discharge versus percent
exceedance for the long-term simulation generated from the results of the statistical modeling,
indicating good agreement between the statistical characteristics of the observed and predicted
spring discharge.
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Figure 28 Flow duration curve for Green Springs.

The corresponding high- and low-flow frequency analyses for the system (frequency of
spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months and 1 year)
are shown in Figure 29.
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Statistical Modeling of Spring Discharge

CONCLUSIONS AND RECOMMENDATIONS

This document presents an evaluation of the spring discharge data for PDL, Gemini,

Green, and Blue springs; groundwater levels at adjacent monitoring wells and precipitation

measurements at nearby rain gage stations. Based on this evaluation, a regression modeling

methodology is developed and applied for generating daily spring discharge records at PDL,

Gemini, and Green springs. Flow duration curves are then generated along with high- and low-

frequency analyses for set durations from the simulated daily spring discharge. The following

general conclusions can be made based on this study.

Most measurements of spring discharge and groundwater level are at a frequency of
~30 days greater — necessitating the generation of moving averages with commensurate

lags to be used as surrogate predictor variables.

The Blue Spring daily discharge values show significant correlation with the daily
discharge values at Gemini Springs and some correlation with PDL. This fact, along with
the fact that more data are available for estimating early time daily discharge at Blue
Spring, has been utilized to help estimate discharge at the PDL and Gemini springs

during the early time period when groundwater level measurements are scarce.

Typically, two regression models of spring discharge are needed: (a) one for the period
when groundwater levels and rainfall data are available, and (b) one for the period when
rainfall data are supplemented with discharge from adjacent springs and perhaps

groundwater levels from one or two long-term monitoring wells.

Stepwise regression is a good starting point for regression modeling — as indicated by the
linearity of the residuals in a probability plot and the reasonable nature of daily discharge

predictions compared to actual observations recorded at less frequent intervals.

Daily discharge predictions can be made for PDL as far back in time as 1966 with
reasonable accuracy. However, comparable predictions can only be made until 1996 for
Gemini Springs and until 1988 for Green Springs.
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Based on the data evaluation, regression model building and discharge prediction exercises
undertaken during this study, the following recommendations are offered to improve the

modeling process in a subsequent phase.

e Given that some of the regression models produced R? values of ~0.50, it might be useful
exploring other regression techniques for these datasets. Hastie et al. (2001) describe
several alternatives to multivariate linear regression such as (a) generalized additive
modeling, (b) tree-based methods, (c) multivariate adaptive regression splines and (d)
neural networks. Such models could potentially improve the accuracy of the daily
predictions by capturing non-linear trends and/or variable interactions between the

response and predictor variables.

e Many of the data sets have an average frequency of 30 days or more. As such, there are
data gaps even after the computation of moving averages with lags as long as 8 and
12 weeks. In this study, such gaps were generally filled using simple linear interpolation.
It is recommended that a more advanced approach such as spline fitting be employed to

fill the data gaps remaining after the computation of moving averages.

e The number of groundwater monitoring wells associated with a spring was limited in this
study to those in its geographical vicinity so as to simplify the regression modeling
process. However, in stepwise regression, the number of potential predictor variables is
not a constraint. As such, it is recommended that groundwater monitoring wells falling

within a larger radius than that used in this study be used as candidate predictor variables.

e The generation of daily spring discharge based only on rainfall records and perhaps the
discharge at an adjacent spring does not appear to a feasible proposition. It is
recommended that daily spring discharge prediction exercises be limited to situations

where ancillary groundwater level measurements are available.

In summary, we note that the although reasonable predictions of daily discharge have
been made for all three springs of interest using the best available data, the corresponding

periods of record are only ~10 years for Gemini Springs and ~20 years for Green Springs.
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The daily period of record generated by the multiple regression models provides an
estimate for the historic time series of spring discharge values. These estimated discharge values
are developed for uses where such a time series is required, such as a frequency analysis of
historic flows for MFL determinations. It must be explicitly stated that the presented multiple
regression models are not physical and should not be used for predictive purposes or to interpret
the relationships between spring discharge values and explanatory variables such as groundwater
levels, recorded rainfall, or recorded discharges at nearby springs. A specific caution is made
that predictions achieved by altering the explanatory variables from their observed values and re-

generating the spring discharge time series entail assumptions not supported here.

Final Report 44 m - :’iA



Statistical Modeling of Spring Discharge

7.0 REFERENCES

D'Agostino, R.B. and M.A. Stephens, 1987. Goodness-of-Fit Techniques, Journal of
Educational Sttistics, Vol. 12, No. 4, pp. 412-416.

Draper, N.R. and H. Smith, 1981. Applied Regression Analysis. John Wiley, New York.

Hastie, T., R. Tibshirani, and J. Friedman, 2001. The Elements of Statistical Learning — Data

Mining, Inference and Prediction, Springer-Verlag, New York.

Montgomery, D.C., and E.A. Peck, 1992. Introduction to Linear Regression Analysis. John
Wiley and Sons, New York.

Osburn, William, D. Toth, and D. Boniol, 2002. Springs of the St. Johns River Water
Management District. ~ Technical Publication SJ2002-5, St. Johns River Water
Management District, Palatka, FL.

Ott, R.L., 2006. Introduction to Statistical Methods and Data Analysis (6" Edition). PWS-Kent
Publishing Company, Boston, MA.

Final Report 45 IﬂEE’M



— Statistical Modeling of Spring Discharge

APPENDIX A
Model Usage Notes

Final Report INcE3A



— Statistical Modeling of Spring Discharge

Appendix A: Model Usage Notes

This Appendix describes the structure and operation of an ACCESS database created to facilitate
predictive applications of the statistical spring discharge models described earlier in Section 4.
An example using Bugg Spring data is also presented.

1. Folder: Spring Daily Predictions —

The folder Spring Daily Predictions has two files as shown below:
e St.Johns.mdb
e Predictions.xls

I spring daily predictions

Fil= Edit Wi Favorites Tools Help ;,l
= Ay = =

@ Eack. -> | =2 - Search I Folder=s

asddress I3 Ciyspring daily predictions | I

 EEE———

- Predictions
File and Folder Tasks e

Microsoft Excel Worksheet
2,551 KB

&,i B EESohns
Microsoft OFfice Access applic. ..

= | 53,700 ER

3 Make a new Folder

@ FPublizsh this Folder to
the web

k=? Share this Folder

Other Places

e Local Disk (0
=) My Documents

o ol

After building the statistical models in STATISTICA, St.Johns.mdb —an ACCESS database
was built for applying the statistical models to generate daily predictions for both springs. A
screenshot of the database is shown below.

HIE'E Prediction Toolbox

Objects

Create table in Design wiew Filling in data gaps

Tables Create table by using wizard

e Create table by entering data
Springs-Locati : :
e Iz onaton iCalculate Moving Average) | Predict Spring Discharge -
well Location apopka Apopka

Reporks

Lake Location

Calculake Moving Average, Predict Spring Discharge -
Eugg Bugg

Pages R.ain Station Location

Missing dates
Modified_data

Apopka

Bugg
Bugg-Frequency-district

Macras

UG E WG

Modules

Groups

|#&1 Favorites
Bugg Frequency Table-district
Bugg-predictions
Apopka-Frequency-diskrick
Apopka Frequency Table-districk
2riginal Data

DONHOOH0NOOHDED D oM

Apopka-predictions

= I mecord: (4] < [ 1 » [P]k nF-1 ] o
On the left, are the different tables present in the database and on the right is a prediction

toolbox. The prediction toolbox executes ACCESS queries and/or VISUAL BASIC
APPLICATION Modules, on the click of different buttons. Predictions.xls — EXCEL file is

Al ==~
INTERAA
_———
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used to graphically display the daily predictions and frequency analysis generated in
St.Johns.mdb. The next few pages will walk the user through using the toolbox for generating
daily predictions and frequency analysis with the help of an example. It will also guide the user
on how to save the results for different cases.

In the example below, our primary task would be to get Bugg Spring daily predictions from
10/27/1973 to 11/28/2005.

2. Open St.Johns.mdb

Open St.Johns.mdb (highlighted below) by double clicking the file.

& =pring daily predictions

File Edit Wises Favorites Tools Help ;,'
@ Back - = ﬁ? /: | Search || . Folders v

Address Ik-:_) CHspring daily predictions o | d G°

Predictions

File and Folder Tasks Microsofk Excel Worksheet

# Maks a news Folder

@ Publish this Folder bo
the Web

E-d Share this Folder

= Eidohins
= | Microsoft Office Access applic. ..
— | 53,703 EE

Oother Places

g Local Disk (i
= _'| My Documenkts
= i -

The original spring discharge, groundwater elevation, lake level and precipitation data reside in
the “Original Data” ACCESS data table. The screenshot below indicates the Original Data
table within the database.

= StJohns : Database [Access 2000 file format)

i open B Desion SMews | X | 2 e

Objecks Zh] Zreate table in Design wview
| BEE | Tables Zreate table by using wizard
E=:| Esriss Zreate table by enkering data
— =] Springs-Location
= Forms =1 well Location
= REFErE 1 Laks Location
“=  Pages 1 FRain Station Location
=2 HlEErEs = Missing dates
== Modified_data
w28 Modules = apopka
Groups = Buaa
| Faworites = Bugg-Frequency-districk
= Eugg Frequency Table-diskrick
=| Bugg-predictions
=3 Apopka-Frequency -diskrick
=
=

Double-clicking this table would open the Original Data table as shown below.
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T - - -
Date Apopka Spring |ApopkaSpringfld Bugg Spring L-0096 L0193 L0703 L-0556 L-0062 L-0041 L-0054 LakeApopka [Ba i
wa 14141900
| 17211900
| 1/3A1900
| 17411900
| 1/541200
|| 1/6£1900
| 171900
| 1/841900 I
| 1/9A1300
] 141041200
| 141141200 =
| 141271900
| 1/13A1300
| 141471900
| 1/15/1900
| 1/16/1900
| 141741900
| 1/18/1300
| 141941200
| 1/20/1200
| 1/21/1900
| 14221900
] 1/23/1900
| 1/24/1900 [
| 1/25/1900
| 1/26/1300
| 14271500 ml
] 1/28/1900
| 1/29/1900
| 1/30/1200
| 1/3141300
| 2171900
| 2f2/1900
| 231900
| 2/1900
| 2/5/1900
| 261900
| 2771900
| 2/8/1300
| 2/9/1900
24101200 A
Record: [ 1 [P JDT)] of 38747 < >

The table has 38747 records for dates ranging from 1/1/1900 to 1/31/2006. If the user wants to
change a particular data time series, pasting the new time series (with dates from 1/1/1900 to
1/31/2006) over the old one is one of the ways to do it.

If the user has another ACCESS database with new time series data, it can be added to the
Original Data table using an Append Query. Append Query allows the user to append one or
more columns to the Original Data table. For example, if a new time series for L-0096 becomes
available, append the new data column as L-0096(new) using the Append Query. Then delete the
old L-0096 column from Original Data table and rename L-0096(new) as L-0096. If data is not
available for a particular date, the user can leave it blank as seen in Original Data table for
different variables.

3. Data Gap Filling to create “Modified Data” Table

Gaps in the data (over continuous periods) are filled by regressing against more frequently
observed data for a related variable. The need to fill data gaps for some wells arises during the
calculation of moving averages. For example, groundwater elevations at L-0703 can be
predicted from water levels at L-0096 using a simple linear regression model. Such
relationships, developed for well pairs L-0703/L-0096 and L-0054/L-0096 have been pre-
programmed, and are invoked to fill in the gaps in the Original Data table.

Therefore the next step is clicking the “Filling in data gaps” button on the prediction toolbox.
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Prediction Toolbox

Filling in data gaps ‘

iCalculabe Mowing Average) | Predict Spring Discharge -

H Apopka apopka

Calculake Mowving Average) Predict Spring Discharge -
Euagg Euag

Record: E A 1 »> [Eb* of 1

Clicking this button creates a Modified data table as highlighted below:

8 StJohns : Database [Access 2000 file format)

i open B Desion SSENew | 2K | 2 T

Cbjecks Creates kable in Design wisw
| 1 Tables Zh]  Create table by using wizard
§ Queries Creake table by enkering daka
= =] Springs-Locaktion
Bl Fevms = wwell Location
i3 Reports = Lake Location
“= Pages [ Rain Station Location
—= Macros 1 M™issing dates
=2 Modules - oy
Eroups £
1  Fawvorites Bugg:Frequency—district

EBugg Frequency Table-districk
Bugg-predictions
Apopka-Frequency-districk
Apopka Frequency Table-diskrick
original Daka

Hobo@oooooo

Apopka-predictions

Open the Modified data table by double-clicking on it. Below is the screenshot:
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B Modified_data : Table
Date Apapka Spring|Bugg Spring L0056 L0199 L3 Q__L703R_|D L05% L0052 L0041 L0054 LakeApopka |Ba

1/1/1800
1/2/1800
1/3/1800
1/4/1800
1/5/1900
1/6/1900
1/7/1800
1/8/1800
1/9/1800
1/10/1900
171141900
14121900
14131900
1/14/1900
1/15/1900
1/16/1900
171741900
1/18/1900
1/1941200
142041900
102141900
172211900
1/231900
1/24/1900
1/25/1900
14261900
172741900
1/28/1900
1/29/1900
1/30/1200
1/3141200
2/1/1900
2721900
2431900
2¢/41900
251900
2161900
2f71900
2/8/1900
2/9/1900
241041900
241141200 ]

Rrecord: [14] T [ 1] of 38747 < k3

[T T T P I PP

The user would notice some new variables present in the Modified Table. For example, we see
L-703-R highlighted in the above screenshot. L-703-R has all the original well-data for L-0703
and some regressed data values from L-0096 using a simple linear regression model. Similarly,
Modified Table will also have L0054-R as new variable. Modified Table also has additional
columns called L-703-code and L-54-code, which flag the water-level data values filled by
regression with letter “R”. This is highlighted in screenshot below:

B pmodified data : Table
LD LOOs4 Lakefpopka |BUSHRMELL 2 E|CLERMOMNT 9 D=-code L54-R L-5a=

[=] R 59.00852 R

o 59.262755 R

[=] 59.413235 R
0.02 EEWI==rrs

o A;o07 R

s59.35502 R
59.25335 R
58.736075 R
s9.30978 R
59.394425 R
59.3474 R
59.413235 R
52.44145 R
59.40383 R
59.32859 R
52112275 R
59.04644 R
59.05406 R
58.924175 R
59.262755 R
59.36621 R

o
a
OeOD
a

o
L

a
O (0|0
O|_[=|D

59.40353 R
59.40353 R
s9.30978 R
592.131085 R
58.924175 R
58.950505 R
58.999415 R
58.999415 R
59.02763 R
592.10287 R
59.06525 R
558.848935 R
58.999415 R
55.980505 R
55.95239 R
58.95232 R
59.037035 R
59.02763 R
59.02763 R
S59.055545 R
59.02753 R

o
iy

o

U

=]
o
000000 0OMOO0OO0OD0O0ODO0O0O000-00000000D0O

N00D0k0D0OO000OOODD0EDNOODOOODO0OD0WO000YD i
palaleabpaliealeapaialeapaes fea feaiea s ieakies s ieuiea lea euiesfeaeaiea s eaiienfeaeaiafeaieniafeaenipafenly o

o
o

RRRRR a4 (0= <« [ (> J>i]E] of ss7a7

A

AS IN<E34
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4. Calculating moving average variables for each spring

The statistical models in the report show the use of moving averages of different variables
(spring, groundwater level, lake level, and rainfall data) for predicting daily discharge for each
spring. Computation of these variables, for each spring, is then performed by clicking the two
buttons highlighted below.

Prediction Toolbox

Fillimg in daka gaps

iCalculate Moving Average/ | Predict Spring Discharge -

apopka g apopka

Calculake Mowing F\m> Predict Spring Discharge -
Bugg Eugg

Record: [E 1 @ of 1

For example clicking on Calculate Moving Average/Bugg would fill the table Bugg present in
the database. The screenshot below shows table Bugg:

= Bugp : Table

Date Bugg Bugy Bpees Bugy Bweek | Bugg 12week | Bugy 24week | Bugg) eek | Bugyg S2week LO096 L0096 Jweek | LODYE d4week | LOOYE Bweek | |4
| | 9/14/1992 W@#@WQGAGE 8 .0BEEEEREE67 80,325 737711111111 79.1043478261 7
- 9/156/1992 8.85 .5 3| 7.91333333333 7.05454545455) 6.06666666667 60.37 ¥9.8320 79.1460181816
- 94161992 8.85 8.85 8.3 7.93333333333 7.85454545455 B OBEGEREEGET | 805116796675 80.443125 79.86871428571 79.1933333333 7
- 3/1741992 8.85 8.85 8.3 7.93333333333 7.85454545455 B.0BGEEEREEET 80.4774023433 79.935 79.2445 7
| 90181992 8.85 8.85 8.3] 7.93333333333 7.05454545455 8 .0BE6EEEEEEE7 60.4774023438 79,99 792984210526
- 9/19/1992 8.85 8.85 8.3 7.93333333333 7.85454545455 B OBEGEREEEET 80.4774023435 80.0975 793461111111
| | 9/20/1992 8.85 8.85 8.3 7.93333333333 7.85454545455 B.0BGEEEREEET 80.4774023433 80.32 7939 7
- 97211992 8.85 8.85 8.3) 7.93333333333 7.05454545455 B .0BE6EEEEE6E7 60.4774023438 80.325 79.429375
| 9/2201992 8.85 8.85 8.3 7.93333333333 7.85454545455 B OBEGEREEEET 80.4774023435 80.37 79.4R36BEEEEET 7
| | 9/2311992 8.85 835 8.3 7.93333333333 7.05454545455 B.0BGGREREEET 80.4774023438 80.4774023435 73.50857142586 7
. 972411992 8.85 8.85 8.3) 7.93333333333 7.65454545455 B 06666666667 60.4774023430 B0.4774023438 79.5507692300
- 9/25/1992 8.85 8.85 8.3 7.93333333333 7.85454545455 B OBEGEREEEET 80.4774023438 B0.4774023438 79.5958333333 7
| | 9/26/1992 8.85 8.35 8.3 7.93333333333 7.05454545455 B.0BGEREREEET 80.4774023438 B0.4774023438 79.6472727273
| 97271992 93 8.85 8.3) 7.93333333333 7.05454545455 806666666667 005759497070 B0.5116796675 60.4774023438 79.706 7
- 9/28/1992 93 8.85 8.3 7.88 765454545455 8 OBRGEGEEEEET 80.5438146973 B0.5102514648 797711111111 7
| | 9/291992 93 835 a3 7.88 7.85454545455 5 BEREEEEEET 80.5438146973 80.5102514645 79.8325 7
| 9/301992 93 8.85 8.3 7.88 7.05454545455) 6.06666666667 60.5438146973 B0.5102514648 79.06714208571 7
- 10141992 93 8.85 8.3 7.88 765454545455 8 OBRGEGEEGEEET 80.5438146973 B0.5102514648 79.935
| | 104241932 93 8.35 a3 7.88 7.85454545455 5 OBEREEEEEET 80.5438146973 80.5102514645 7999 7
- 10731992 93 8.85 8.3 7.8 7.05454545455 6.06666666667 60.5438146973 80.5102514648 80.0975 7
- 10411992 93 8.85 8.3 7.88 765454545455 8 OBREEGEEGEEET 80.5438146973 B0.5438146973 80.22
| | 10/5/1992 9.3 8.35 8.35 7.88 7.85454545455 5 BEREEEEEET 80.5438146073 B0.5435146973 40325
- 1081992 93 8.85 8.85 7.88 7.05454545455) 6.06666666667 60.5438146973 B0.5430146973 60.37 7
- 10741992 93 8.85 8.85 7.88 765454545455 8 0BEGEGEEGEEET 80.5438146973 B0.5438146973 80.51025146458 7
|| 10/8/1992 23 835 835 7.88 7.85454545455 § OBEREEEEEET 80.5753497070 80.5438146973 B0.5102514648 7
| 1081992 93 8.85 8.85 7.88 7.05454545455) 6.06666666667 80.5759497070 B0.5430146973 60.5102514648 7
- 10/10/1892 93 8.85 8.85 7.88 7.65454545455) 8 OBRGEGEEGEEET 80.5758497070 B0.5436146973 80.5102514648 7
|| 10/11/1992 93 23 8.35 7.88 7.85454545455 5 OBEREEEEEET 80.5753497070 80.5438146973 80.5102514645
| 101211992 93 93 8.85 7.00 7.05454545455) 7.85454540455 60.5759497070 B0.5430146973 60.5102514648 7
- 10/13/1892 108 93 93 8.85 7.88 7.85454545455) 7 85454545455 80.575594597070 B0.5438146973 805102514648
- 10/14/1892 10.05 10.05 9.5) B.36R6666E657 8.1 8.1 80.5758497070 B0.5436146973 80.51025146458 7
- 10M15/1992 10.05 10.05 9.5 8.36666666667 8.1 8.1 60.5759497070 B0.5759497070 60.5102514648
- 10/16/1992 10.05 10.05 9.5/ B.3666EEEEEE7 8.1 8.1/ BO.BIE4559937 BO.5753497070 BO.5759497070 805102514648
. 10/17/1892 10.05 10.05 9.5 8.366666E6657 8.1 8.1 80.6362028503 B0.6362028503 80.5568025570)
- 10/16/1992 10.05 10.05 9.5 8.36666666667 8 8.1 60.6362028503 B0.6362028503 60.5946951294
- 10/19/1892 10.05 10.05 9.5) B.3666E6EEEEE7 8 8.1 80.6964559937 B0.63E2028503 805948951294
. 10/20/1992 10.05 10.05 9.5 B.36666666657 8 8.1 80.6964559937 B0.6362028503 80.594R951294
| 1072111992 10.05 10.05 9.5 8.36666666667 8 8.1 60.6964559937 B0.6362028503 60.5946951294 £
- 10/22/1992 10.05 10.05 9.5/ 8.3666EEEEEE7 8 8.1 806964559937 BO.63E2028503 80.5948951294 £
. 10/23/1892 10.05 10.05 9.5 8.36666666657 8 8.1 80.6964559937 B0.6362028503 80.5948951294 £
| 10/24/1992 10.05 10.05 9.5 8.36666666667 8 8.1 60.6964559937 B0.6362028503 60.5946951294 £
10/25/1992 108 10.05 9.5/ 8.36666EEEEET 8 8.1 80.6964559937 B0 .E3E2028503 80.5945951294 ¥
Record: (0] 4 [ 1 [P D)) of 36747 < >
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The highlighted columns in the Bugg table above show some of the calculated moving averages
to be used in the Bugg statistical model for daily discharge predictions. One extra piece of
information generated on clicking Calculate Moving Average/Bugg is in the table Missing Dates
shown below:

B Missing dates : Table
TETTable startdate startvalue enddate endvalue gap dateint Interpolated_van 29 ~
> [Bugg 3/2/2002 11.9 4713/2002 12.2 42 /2372002 uzfagi-:;:/
| | EUotmrebe—_ 12/7/1944 0.BE7OE034528 9/19/1946| 2.08398017414 B51 10/28/1845 1.3759
| |Bushnell TE T e t TETToEs 0.7 33990565965 Int
| |Bushnen 12/18/1944| 0.69008565806 3/5/1945| 0.86570530443 81 1/28/1945| 0.77769548124/ Int
| |Bushnen 12/18/1944 | 0.69003565806 5/28/1945| 1.04132495080 161 3/2/1845 0.86570530443 Int
| |Bushnen 12/18/1944 | 0.69008565806 11/8/1945 | 1.39256424354 323 5/28/1945 1.04132495080 Int
| |Bushnen 12/18/1944 0.69008565806 9/25/1946 2.09504262903 E46 11/6/1945| 1.39256424354  Int
| |Bushnen 12/18/1944| 0.69005565806 7241948 3.8 1292 9/25/1946 2.09504282903 Int
| |Bushnen 12/7/1944 | 0 66796034828 12/268/1944 0.71221096784 21 12/18/1944| 0.69008565806 Int
| |Bushnen 12/7/1944 066796034828 141741945 0.75646158739 41 12/28/1944| 0.71221096784] Int
| |Bushnell 12/7/1944 0 66796034628 2/26/1945 | 0.54495262651 a1 1/17/1945 0.75646158739 Int
| |Bushnen 2/16/1945 0.819586868313 12/2141945 1. 48969016235 308 7i20/1945 1.15463852274 Int
| |Bushnen 12/7/1944 0 66796034828 10/268/1245 1.37597026121 325 5/19/1945 1.0219653047 4 Int
| |Bushnell 12/29/1944 0.71203811385 1014946 210601905693 Gd1 11/15/1945) 1.40902656539 Int
| |Bushnen 12/7/1944 ] 0 66796034828 721948 3.5 1303 9/19/1946 2.08398017414 Int
| |Bushnen 11/26/1944| 0.6A566052346 12/17/1944 069025957 309 21 12/7/1944| 06679034828 Int
| |Bushnen 11/26/1944| 0.64566082346 1/8/1945 | 0.73485892273 41 12/17/1944| 0.69025987309 Int
| |Bushnen 11/26/1944| 0.64566082346 271741945 0.824057022 a3 1/6/1945 0.73485892273 Int
| |Bushnen 11/26/1944 | 0.6A566052346 5/10/1945| 1.00245322053 165 2A17/1945 0824057022 Int
| |Bushneln 11/26/1944| 0.64566082346 10/21/41945  1.3592456176 329 5/10/1945 1.00245322053 Int
| |Bushnen 11/26/1944| 0.64566082346 9/14/1946| 2.07283041173 E57. 10/21/1945  1.3592456176/ Int
| |Bushnell 11/26/1944 0.645660523465 Fi2M945 3.5 1314 9141946 2072683041173 Int
| |Bushneln 12/7/1944 0 66796034828 5715/1945| 1.0219653047 4 163 2/26/1945 0.844596282651 Int
| |Bushnen 1/9/1945 | 0.73381906609 6/17/1945| 1.079521682683 159 3/29/1945 0.90670537 446 Int
| |Bushnell 114271945 1.38353653005 73946 1.91265369754 243 3/3/1946) 1.64809621379 Int
| |Bushnen 2/16/1945 0.815586868313 7121948 3.5 1232 10/25/1946 | 2.15979344157 | Int
|_|Bushnen 1/28/1945 0.77704064315 3/8/1945 0.86213312308 39 2/16/1945 0.51958658313 Int
| |Bushnell 1/28/1945 | 0.77704064318 47171945 0.947 22560296 79 3/5/1945 0.86213312308 Int
| |Bushnen 1/28/1945 0.77704064318 7441945 1.117 41056278 157 47171945 0.947 22560298 Int
| |Bushnen 1/28/1945 0.77704064318 12/741945 | 1.45778045239 13 F/4/1845 1.11741056278 Int
| |Bushneln 1/28/1945 0.77704064318 10/15/1946 2.13852032159 B25 12/7/1945| 1.45778048239 Int
| |Bushnen 1/28/1945 0.77704064318 721948 35 1251 104151946 2.13852032159 Int
| |Bushnen 12/18/1944| 0.69005565806 1/8/1945 | 0.73399056965 21 12/29/1844| 0.71203811385 Int
| |Bushnen 1/9/1945 0.73381908609 3/25/1945| 0.90670537 446 79 2/17/1945 0.82026222027 Int
| |Bushnen 12/29/1944| 0.71203811385 7241948 35 1281 10/1/1946/ 2.10601205693 Int
| |Bushnell 1/9/1945 | 0.73381906609 1142241945 1.42536428857 7 5M17/1945 1.07959168263 Int
| |Bushnen 1/9/1945 0.73381906609 10/8/1946 | 2.11690953304 B35 11/22/1945| 1.42536429957 | Int
| |Bushnen 1/9/1945 0.73381906609 7241948 35 1270 10/6/1946| 2.11690253304/ Int
| |Bushnell 12/29/1944| 0.71203811385 141941945 0.75560001832 21 1871945 0.73381906608 Int
| |Bushnen 12/29/1944| 0.71203811385 2/8/1945  0.7991619228 41 1/19/1945| 0.75560001832) Int
| |Bushnen 12/29/1944| 0.7 1203811385 3/20/1945| 0.88628573174 =1 2/8/1845  0.7991618228 Int
Bushnell 12/29/1944 | 0.71203811385 5/5/1945| 1.06053334962 161 3/20/1945 0.88628573174 Int ~
record: [14] 1 (v J>1)p] of =83

The table above informs the user about interpolated values added to a particular data time-series
to facilitate calculation of certain moving average variables. For example, in the first row, a
linear interpolated value (12.05) is added on 3/23/2002 to fill a 42 day gap between 3/2/2002 and
4/13/2002. Values in columns startvalue (11.9) and endvalue (12.2) are the data associated with
3/2/2002 and 4/13/2002 respectively. This interpolation would then help in calculation of Bugg-
6-week moving average variable.

Similarly, clicking Calculate Moving Average/Apopka, would fill the table Apopka with

required moving average variables. Also, the Missing Dates table is updated for each spring.
The following screenshot indicates the two tables being filled with moving average variables.
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— Statistical Modeling of Spring Discharge

E Stldohns :

Database [(Access 2000 file format)

open B Desion EEMew | 2K | fn T=- |E3E=

=
=5l
=5l
= Springs-Location
= wwell Location
Reports =1  Lake Location
R.ain Station Location

ohiecks Create table in De =

Create kable by using wizard

apopka-predictions

Table=

T Create table by entering data

Forms

Pages =
=

Macros

BN PE

apoplka
Bugg
Bugg-Frequency -district

Sroups

Fawarites =
5  Bugg Frequency Table-districk

I

= Bugg-predictions

E= apopka-Frequency-districk

E=a Apopka Frequency Table-diskrick
= Cviginal Daka

< >

5. Calculate Spring discharge predictions and frequency analysis

Spring discharge daily predictions are limited by a range of lower and upper date. This is due to
limited date range coverage for explanatory variables in the statistical model for a particular
spring. The following are the dates for the two springs for which daily discharge predictions can
be computed:

Spring Date Range for discharge predictions
Apopka 6/2/1949 to 12/31/2005
Bugg 10/27/1973 to 11/28/2005

Clicking the buttons highlighted below give daily discharge predictions and maximum and
minimum frequencies for date ranges specified by the user. Note that these date ranges have to
fall within the ranges mentioned above for a particular spring

Prediction Toolbox

Filing in data gaps ‘

Predict Spring Discharge -
Apopka

Calculate Moving Average)
Buag

Predict Spring Discharge -
Eugg

of 1

Record: E ’71 [E

For example, on clicking Predict Spring Discharge - Bugg, we see a pop-up window asking for
the date from which predictions are needed. For our example enter 10/27/1973. As noted earlier,
the date entered should be greater than 10/26/1973, since Bugg Spring predictions are only
available since that date.

A-8 e
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Prediction Toolbox

Zalculake Moving Average)

apopka

Filling in data gaps=s

Zalculake Moving Average)

Eugg

Predict Spring Discharge -
Apopka

Statistical Modeling of Spring Discharge

Record: [E «

Enter Parameter Value

Enter lower date range =10/26/1973:

Predict Spring Discharge -
Eugg

23]

[10/2771973 |

[ ok

J [

Zancel ]

Press OK. Another window asking for the date till which predictions are needed. For our
example enter 11/28/2005. Again the date entered should be less than 11/29/2005, since Bugg
Spring predictions are only available till 11/28/2005.

Prediction Toolbox

Filling in data gaps

Calculate Mowing Average)
Apopka

Calculate Moving Average)

Bugg

Record: E 4

— 1l»

Predict Spring Discharge
Apopka

Predict Spring Discharge
Bugg

EET

Enter upper date range =<1129/2005:

Enter Parameter Value

|1172872005] |

(

On pressing OK, tables called Bugg-predictions, Bugg-Frequency-district and Bugg
Frequency table-District are added to the ACCESS database as shown below:

Final Report
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Statistical Modeling of Spring Discharge

f= StJohns : Database (Access 2000 file fi = ==
open B Desian =i kews |
Objecks Zh]  create table in Desian views
| ™ Tables Eh] reats bable by using wizard
=1 Enenes Eh] creats bable by entering dats
=] Apopka
= rFerms [ apopka Frequency Table-districk
= Reports =1 apopka-Freguency-disktrick
w5 Pages 1  aApopka-predictions
= Macros = o
Eugg Frequency Table-district
=2  Modules 9 Bugg Freguency diskrick
Sroups Bugg-predictions
=1 Faworites Location

rMissing dates
rodified_daka
original Data

Fain Station Location

Springs-Locakion

gooooo

whell Location

Double click Bugg-predictions table to view. The screenshot on next page shows the observed
Bugg discharge data and the predicted Bugg discharge data, between the lower and upper date
ranges we entered.

B Bugg-predictions : Table

Date [~ Buggiobsered) Buggipredicted)

8/10/199 8.05816316637211

B/11/1992 SRR st TR

Bugg(predicted)+95%C|
9.324B63166372112

82711952 10.6261757 24629 11.8651797246253
872811992 10.724255170452 11. 9672551704523
87291992 10.75172658687 11.9947 2658687

| 0/12/1992 8.1076344833216 9.35063448332164
L 87131952 §.20936457575811 9.45236457575108
L 8/14/1992 §.2658475155946 9.45684751659450
L 8/16/1992 §.4 8.4500089860060 9.733008585600602
L 8/16/1992 §.93307 23852668 10.17607 23692665
L 8171992 9.12157659644779 10.3645709644779
L 8/18/1992 9.1304357857 458 103734387857 456
L 8/19/1992 9.1597091554837 10.4027091654837
| 8/20/1992 9.4718030333623 10.7148030333623
| 8/21/11992 9.5491260070233 10.7921260870233
L 8/22/1952 9.2724214194874 10.5154214194874
L 8/23/1992 9.3370810480571 10.5500510480571
L 8/24/1992 9.8563664807932 11.0993664807932
L 8/26/1992 9.9534151728486 11.23641817 25456
L 8/26/1992 10.508667 663855 11. 751667 6E35556

A3nM997 AN ANNA=RRA7RA 17 NAIAIRRATRA

Record: E 1 E]E of 11721

The highlighted columns above show Observed Bugg Discharge data, Bugg discharge
predictions, Bugg discharge predictions upper (+) and lower (-) 95% confidence interval.

Double-click table Bugg-Frequency-district to view. The table has continuously-exceeded and
average values for 1-day, 30-day, 90-day, 183-day, 273-day and 365-day periods for each year
starting on June 1 of a year and ending on May 31 of the next year. The table also has
continuously-not-exceeded and average values for 1-day, 30-day, 90-day, 183-day, 273-day and
365-day periods for each year starting on October 1 of a year and ending on September 30 of the
next year. It is important to note that each year range for picking maximums and minimums is
assumed to be independent of other years. The screenshot below shows some of the columns
present in the table.
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— Statistical Modeling of Spring Discharge

Date Buggy Cont_exceeded 30days | Average_maximur_30days | Cont_not_exceeded 30days | Average_minimum_30days Cont_exceeded_90days Average_maxim| &
| 1/28/1974 976132326625 9.6057797 1766708 9.6771075537415 10.16268741573129 9.6771075537415 6. 66758917772108) 9.85663210341
| 1/28/1974 976132326626 96057797 1766708 9858537739067 3 10.0638001113846 9.8585377390873 6.86758917772108) 9.84619218837
| 1/30/1974 9 77907284685 9.60127907 452993 9.84312037120182 10.0630500042517 9.84312037120182 6.66758917772108) 9.83564495356
| 173171974 9 776072515828 9.60127907 452993 9.82772800655776 10.0520131960034 9.8277 2800655776 6.86758917772108) 9.82349914255
| 2/1/1974) 979738540349 9.60127907 452993 9.61306074614512 10.0520131960034 9.8130607 4614512 6.86758917772108) 9.81188535316
| 2/2/1974 980855470961 9.57534926530612 9.60072122101757 10.0520131960034 9.80072122101757 6.86758917772108) 9.800407 15196
| 2/3/1974 980859470961 9.57359901530612 9.784774081661 10.0520131960034 9.784774081661 B.86758917772108| 9.7690087087 1
| 2/411974 981562056675 9.56309751530612 9.76647689230442 10.012887 2257653 9.76647689230442 8.86758917772108) 9.77563312765
| 2/5/1974 9.81400895366 9.56034712244898 9.75339222219388 9.99668109481293 9.75339222219388 8.85208395493197| 9.76114974591
| 2/8/1974 9.81150859651 9.560347 12244898 9. 747785641057 26 9.98117888052722 9.747785641057 26 8.80581220238094| 9.74515223358
| 2711974 980400752509 9.560347 12244898 9.74286182777778 9.981178880527 22 9.74206182777778 5.80581220238094| 9.73416032398
| 2/8/1974 979975681794 9.560347 12244898 9.73753854679705 9.58684504379252 9.73753854679705 5.80581220238094| 9.72791702245
| 2/9/1974 977926028061 9.560347 12244898 9.73624469591837 9.84802951743158 9.73624469591837 5.80581220238094| 9.72212389123
| 2M10/1974 977601805442 9.560347 12244898 9.737993 16969955 9.84802951743158 9.73799316969555 5.80581220238094| 9.71675659563
| 21171974 9 77087864626 9.56034712244858 9.7345211117347 9.84802951743198 9.7345211117347 5 80581220235094| 9.7 1007766724
| 211201974 96057797 1769 9.560347 12244895 9 730782349007 94 9.84802951743198 9.73075234900794 8 80581220236094| 9. 70141634433
| 2/13/1974 960577571769 9.560347 12244895 9.72704358626118 9.84802951743188 9.72704358626118 5.60581220238094 | 965052063475
| 2M14/1974 960127807483 9.560347 12244895 9.7219307 2440476 9.84802951743158 9.7219307 2440476 6.605812202358094 | 967920661709
| 2/15/1874 960127807483 9.53037 44655664 9.713740789325623 9.84802951743188 9.71374078932823 5.605812202358094 | 9 66656251405
| 2A6/1974 960127807483 9.41451464455783 9700978097 36395 9.84802951743188 9.700978097363585 5.605812202358094 | 9 65606512054
| 2A7/1974) 967634826531 5.37905052312926 9. 6BEE5296751463 9.84802951743188 9. 6BERS296751463 5.60581220238094 ) 9.6475467 2703
| 2/18/1974) 9 67358801531 9.37905052312926 9.67234183526531 9.84802951743188 9.67234183526531 6.60581220238094 9.637 15860335
| 2/19/1974 956308751531 9.29153771596632 9.65487210990647 9.84802951743158 9.65487210990647 6.60581220238094) 9.627 12338355
| 272011974 956034712245 9.28505526360545 9. 6372403202381 9.84802951743158 9.6372403202381 B8.80581220238094| 9.616891056098
| 2/21/1974 9.82848366071 9.12137334098639 9.61423581172052 9.84802951743198 9.61423581172052 8.80581220238094| 9.60980153104
| 2/22/1974 9.82446448214 9.10037171343537 9.59078128466554 9.84802951743198 9.59078128466554 8.80581220238094| 9.50953531578
| 2/23/1974 9.83048045111 9.10037171343837 9.567 46844451531 9.848029517431598 9.567 46844451531 5.80581220238094| 9.58926354417
| 272411974 984802851743 B8.94505757057822 9.53966168751417 9.84802951743158 9.53966168751417 5.80581220238094| 9.57899177256
| 27251974 983477762457 8.87183978456394 9.50952237852801 9.84802951743158 9.50952237852851 5.80581220238094| 9.56831484768
| 2/268/1974 9B7B16167219 B8.86758917772108 94794127 2957766 9.84802951743158 9.4794127 2957766 5.80581220238094| 9.55508919338
| 272771974 966916035648 B8.86758917772108 9.4621487 1554705 9.84802951743158 9.4821487 1554705 5.80581220238094| 9.54388140809
| 2128/1974 9 BEI1E038645 B8.86758917772108 9.44453299318311 9.84802951743198 9.44459299318311 5.80581220238094| 9 53639651934
| 3141974 9 62566709056 B8.86758917 772108 9 4267302827 2392 9.84802951743198 9 4267302627 2392 8 80581220236094| 9. 53372629460
| 3/2/1974 953037446599 B.86758917772108 9. 4093365627 4093 9.84802951743158 9.4093365627 4093 6.80581220238094 | 9.53130614141
| 37371974 9.41451464456 B.86758917772108 9.39194284275794 9.84802951743158 9.39194284275754 5.605812202358094 ) 952693961759
| 37471974 937905082313 B.86758917772108 9.37541344975907 9.84802951743188 9.37541344975807 5.605812202358094 | 9 52763711523
| 3/5/1974) 9 37905082313 B.86758917772108 9.35694239842687 9.84802951743188 9.356942398426587 5. 60581220238094 9 525058484553
| 3/6/1974) 929153771599 B.86758917772108 9.33732541070011 9.84802951743188 9.33739541070011 5.60581220238094 9 52224699758
| /771974 9 26605526361 B.85205395453197 9.31378663544955 9.84802951743188 9.31378663544855 6.605812202358094) 9.51801618195
| 3/8/1974 912137334099 B.80581220236094 9.279697589535543 9.84802951743158 9.27969758953843 5.60581220238094 ) 9.51125244129
3/9/1974 910037171344 B.80581220236094 9.25475932200963 9.84802951743158 9.254759322005963 B 80581220238094| 9 50466094743 ¥
Record: [14] T (> (1)K of 11721 < >

Double-click table Bugg Frequency Table-district to view. The table contains the maximums

from 1-day, 30-day, 90-day, 183-day, 273-day and 365-day continuously-exceeded and average
time-series for each year. The table also contains the minimums from 1-day, 30-day, 90-day,
183-day, 273-day and 365-day continuously-not-exceeded and average time-series for each year.
The screenshot below shows a few columns from the table

Date 1-day(maximum-continuously exceeded) 30-day(maximum-continuously exceeded) [90-day(maximum-continuously exceeded)]  183-day(maximum-continuously exceeded) |273-da &

il 12.9873364863019 12.3852778051795 11.8311125152135 9.94456394035592 9.624¢
. 10.71200221527439 10.1612351151147 9.94729585355644 9.00918633340136 7.5744
| 10.01367 16011905 9.60504062244099 9220267 40062222 9.00816701406551 5.530:
- 11.9180733141203 11.3157542946428 10.9227317431497 10.5572319982993 | 9.604C
|| 11.11055931755952 10.3508891934524 9.9007 1007780613 9.20334366551636 8.765¢
. 12.3007582437474 11.7474281160618 10.6985174306863 10.172534217395 9.323¢
- 10.103217 1565043 9.6207 4595854503 8.7724348105578 §.66850139635999 7.645¢
- 1434863296 10825 13.6237109440856 11.23649295086 16 9.24437599458574 8.824¢
| 17 6716803210104 16.0964043531814 15.2071350085633 14.102095820252 12.797
| 12.1726264076264 11.3963779611963 10.9084294481763 10.6905635226025 10,212
| 12.5956319230442 11.8558310383606 11.02297 24466008 10.091547 7776709 8.836E
- 12.2847095185492 11.8039947569445 11.626411017432 10.7925601763033 | 10.05€
- 11.2644365866452 10.304444656379 9.2297712334084 8.61968711143257 8.4520
| 12.9834700100465 12. 2414855252008 11.3441930247547 10.635926662433 9.798:
. 12 6829755146657 11.480737567 7578 11.07407 19604846 10.5026512446445) 9.557¢
- 11.7341274373908 11.2406368698614 10.8427464963316 10.44837 25370055 9.5831
- 18.7114734327155 10.41828915794 8.47312120334373 7 AT213465259583 7273
| 17.222738577347 15.3557437312282 11.6217714817397 §.25038339453807 | 6.349¢
- 1279098507 404592 11.4458391267437 10.5746199141869 §.55083067538545 7.420¢
| 10.7204862323749 10.02935627 34609 0.92299226315057 7.09204465549725 7 4142
- 12.2624149559076 11.4227181230237 10.7130685479875 9.8952567 115406 9.666:
. 13.4431485675854 12,57 3802667 4404 11.6364602062692 10.01687220642725) 9.7285
. 13.2433622643062 11.8574045416544 106222275907 1597 9.56635064640005 6.8847
- 156.756156173118 14.3802465375186 12.3180731584123 9.48395206423563 5.659¢
| 12.8465324134203 11.4167215790398 10.4790164732841 9.43052147749397 9.070¢
. 156.8911133037668 11.4269843089354 9.936591492660102 8.00782841761008 8.007¢
| 10.0544554 20627 9.15003720999122 0.46412095723674 7.62757363962955 7.627¢
- 16.2579424295705 14. 2278924966622 1235910557 21087 11.4316338719025 10.57¢8
|| 14 8892055187825 14.4220106344657 13.2639204404561 10.8644473201178) 10.86<
| 13.8550043070948 13.3321642824161 12.4B03928768464. 12.3602805281801) 12.211
- 2004 13.7842858567331 12.8182789635149 12.1744373523952 11.9420363266607 | 8.33¢ &

Record: [I4] 4 ([ 1 [ Jpu]eH] of 31 < ¥
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Statistical Modeling of Spring Discharge

Similarly predictions and, maximum and minimum frequencies, for Apopka Spring can be
obtained for any specified upper and lower date ranges. Tables Apopka-predictions, Apopka-
Frequency-District, Apopka Frequency Table-district (shown below) are added to the
database on clicking Predict Spring Discharge — Apopka and following all the above steps as for
Bugg Spring.

8= StJohns : Database (Access Z000 file format)

Cpen B Desian Sew | 2K | 22 T

Sbijecks [Zh]  create table in Design wiews

= Zreake table by using wizard
Tables

_-f.:-| Sueries @ Zrzakte bable by entering daka
=

= F
orms= Apopka Frequency Table-district

i3l  Reporks =1  aApopka-Frequency-districk
8  Pages \i;s:apjredittinns
Z2  Macros —
=1 iBugg Frequency Table-district}
& Modules 1 Bugg-Freguency-districk
Groups 1 Bugg-predictions
%] Faworites ] Lake Location

Cd Missing dakes

1  modified_data

1 owiginal Data

=1 Rain Skation Location
= Springs-Locaktion

=1 wwell Location

6. Viewing prediction plots and maximum and minimum frequencies

Plots of observed and predicted daily discharge data can be viewed in the EXCEL file
predictions.xls which is linked to the prediction tables in ACCESS. The file already has been
run to include daily predictions and frequencies for Apopka and Bugg springs for the complete
date ranges associated with the two springs.

For our example, open predictions.xls. The screenshot below shows this file. By default, the

Apopka worksheet opens up, which contains the predictions for the complete range for which
daily discharge values can be computed for Apopka (6/2/1949 to 12/31/2005)
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B

B3 Microsoft Exce

Statistical Modeling of Spring Discharge

(0] Ble  Edit View Insert Format  Tooks Data S-PLUS  Mindow  Help Type aquestion For help (=1 & X
R GG T E R (2 = -8l E i % 1 nona - B
Lia A g s i) 21,5 g | e Erdpeen 8 R 2

Al = A& Date
A ] ] ] [ E I F [ & T A i ] ] =

| 1 |Date :" {observed) Apopkalf ] pka(p e(llcletl)fBS“nCI Apopka(predicted)-95%Cl Apopka =
2 | B/21949 29.83 27.63 29.6309713
3 | BA3A1949 2974 3‘1 95 27.54 29744414
4 | EB//1949 2965 3185 27.45 29.64620475
5 | BA1949 29.80 31.71 27.30 29.504268321
| B | BE1949 2938 31.58 2718 29.38106419
| 7 | B7H1849 29.19 31.39 26.99 29.19326991
8 | BE1949 29.08 31.29 26.68 29.08497665
RN ETE] 28.97 3117 26,77 28.97072233
10| BA10/1949 28.88 31.08 26.68 28.87712611
11| B/11/1949 2869 3089 26.49 28.68713504
12| BA12M1949 28 56 3076 26.36  28.560932195
13| B/13/1949 2880 30.70 26.30 28.50168317
| 14| B/14/1849 2843 3063 26.23 28.42794907
| 16| B/156/1949 2835 3055 26.15 28.35107763
16 | BA1E1949 28.27 30.47 26.06  28.26877731
|17 | BA7/1949 2817 3037 2597 28.17178604
18| B/16/1849 2796 3018 877 27 97562863
19| BA19/1949 277 29.97 26,86 2776526979
20| B/20/1949 2752 29.72 2532 27.51893043
21| B/21/1949 27.02 2922 2482 27.02130113
|22 | B/22/1949 2677 2697 24 57 26.77003172
|23 | B/23/1949 26.55 2878 24.38  2B.57B90B97
|24 | B/2471949 2665 2885 2445 26.6484078
|26 | B/26/1949 26 67 2687 24.47 26.67035995
26 | B/26/1949 2651 2881 24.41 26.51273858
| 27 | B/27/1949 26.96 29.18 2476 26.968393658
|26 | B/26/1949 2692 29.12 2472 26.92014022
29| B/29/1949 26.87 29.07 2467 2687326312
| 30 | B/30/1949 2676 2898 24.56 26.76314731
[31]| 7A/13849 2651 2871 2431 26.51001133
32| 721949 2624 26.44 24.04 26.2433036
33| 7/3M1949 2576 27 .95 23.86  25.75B55595
34| 7/471949 2562 2782 23.4 25.61579616
36| 761949 2546 27 68 23.28 25.48375954
36| 7/E1949 2545 27 B5 23.25 2545340688
(37| 7711849 2552 2772 23.32 25.52304717
|36 | 7/8/1949 2567 2787 23.47 2567240691
| 39| 7mr1949 2591 28.11 23.71 2590970106
40| 71041949 26.08 2828 23.88 26.08345035
41| 741141949 2623 28.43 24.03 26.2303099
42 | 71121949 2635 2855 2415 26.35220076
43| 7131949 26.41 2861 24.21 26.40960427
44| 771471949 2615 2835 2395 26.14687897
46 | 74161949 26.09 2629 2389 26.09368573
|46 | 7/16/1949 26.12 28.32 2392 26.12029465

A7 | 7r7p00 15 i 9308 R ARII0ET i
M 4 b WP Apopka{ Apopkalpre3-13-1090) 4 Apopka(post3-13-90) 4 Bugg £ Bugg(pre3-13-00) 4 Bugg{post3-13-90) ¢ Apopka-Frequencyfnalysis f 1] < | £
iDraw- i | Autoshapes~ N\ N OO Al s (8]l @ | & - F-A-==5 @ Ij!

Ready ]

Click worksheet Bugg as shown below. We see the daily predictions for Bugg:
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3 Microsoft Excel - Predictions.xls = =]R<]
File  Edit View Insert Format Tools Data  S5-PLUS  Window  Help Type uestion For help r -8 X
L5 (3 ) e (D | % e F 9 B = o8l 2L )0 - o W e REIR AR AR RN RS- |
L Lol e ppeen Wi o e o o Wi 45 5 B A abl T | Bl e sl s il
Al - % Date \ J
A F B | c [ D | B i F | G | H [ ] I i 1
1 [Date B [ ed) Bugg(predicted| gg(predicted)+35%Cl Bugg(predicted)95%Cl Bugg
2 |10/2771e73 10.38 11.90 867 10.38294318
| 3 |10/28/1973 10.37 11.88 8665 10.3667 3705
| 4 |10/29/1973 1010 11.61 853 10.09862313
| 5 |10/30/1973 10.09 11.61 558 10.09255095
| B |10/31/1973 10.08 11.57 854 10.05726502
7 | 111973 10.03 11.54 852 10.03052491
| 8 | 11/21973 10.07 11.58 855 10.06562304
2 11/3/1973 10.04 11.56 853 10.04357283
117441973 10.04 11.56 553 10.04357283
11/5/1973 10.04 11.55 853 10.04070154
11/8/1973 10.04 11.55 853 10.03983124
171973 10.02 11.54 851 10.02315003
11/8/1973 10,01 11.53 850 10.01453617
11/9/1973 10.00 11.51 5.49 10.00017974
117101973 10.00 11.51 5.48 9.995317161
1141111973 9.95 11.47 8.44 9.954061268
114121973 9.96 11.47 G444 9.9552337 44
117131973 9.96 11.47 844 9.957578697
1141411573 a.95 11.46 5.44 9.950400453
11/18/1973 g3 11.44 842 9.92856584
114161973 9.90 11.42 839 9.902910911
11171973 9.90 11.42 839 9.902910911
11/18/18973 9.81 11.33 830 89.812809533
11/19/1973 a.81 11.32 530 9.811952798
117201873 1013 11.64 862 10.13058415
11/21/1973 10.13 11.64 862 10.13053415
117221973 1012 11.63 860 10.11767 336
11/23/1973 1015 11.66 863 10.14581279
11/24/1973 10.01 11.53 550 10.01252252
11/25/1973 1001 11.52 850 10.00892195
11/26/1973 10.00 11.52 5.49 1000233698
1172711973 9.97 11.49 846 8.972248481
11/28/1973 9.96 11.48 845 9.963102267
114291973 9.95 11.48 545 9.963102267
117301973 2898 11.51 848 8.993725411
12/1/1973 9.97 11.48 8.46 9.971472847
12/21973 9.97 11.48 846 9.971472947
12/3/1973 g93 11.45 8.42 9.932178233
12/4/1973 9.89 11.40 838 9.891480161
12/5/1973 9.687 11.38 835 9.865638558
12/6/1973 9.88 11.38 835 9.863138233
12/71973 9.683 11.34 8632 9.831929
12/8/1973 9.81 11.32 830 9.811176036
|45 | 12/9/1973 10.00 11.51 5.49 10.0005811
124101973 10.02 851 10.01876325
AZ 112/141/1973 1000 11 an /70 10 28042077 b.
M 4 » nmi\ Apopka £/ Apopka(pre3-13-1950) 4 Apopka(post3-1: 0a(pre3-13-90) { Bugoipost3-13-00) { Apopka-Frequencysnalysis [ 1] < >
iDraw~ Lp | Autoshapes~ N [ [ o] 2 (8] & | &~ = = Zsa a8

The next step is pressing the red exclamation button to refresh the predictions for the date range
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark
is highlighted by a red ellipse in the above figure.

To view the plots for the above data, click on worksheet Bugg (pre3-13-90) for predictions
before 3/13/1990 and worksheet Bugg (post3-13-90) for predictions from 3/13/1990. The
worksheets have been highlighted in the figure above. The screenshot below shows worksheet
Bugg (pre3-13-90):

Final Report A-14




— Statistical Modeling of Spring Discharge

Bugg-prediction - 10/27/1973 to 3/12/1990

18 « Bugg(ohserved)
ﬂ‘ —— Bugg(predicted)

16 NM
g 14 f“ M
g ) IMI\ ;\% M' 'NJW\. MMAMK /M\
< w M &k
§ 10 4t g A M\JM le "w‘w T M\l’“’u WMMM
LA AT LR YR

8 } ’ ' \W) V

6 L

4 ‘ ‘ ‘ . ‘ ‘ .

10/27/1973  11/16/1975  12/5M1977  12/25/1979  1/13/1982  2/2/1984  2/21/1986  3/12/1988

Date

\Au uk A #popkalpre3-13-1990) { Apopkalpost3-13-90) ,{E ugg \Aaugg(n 23-13-90) { Bug gg(p 5t3-13-90) { ApopkaFrequencysnalysis { Bugg-FrequencyAnalysis /

Also the screenshot below shows worksheet Bugg (post3-13-990):

- L3
Bugg-prediction - 3/13/1990 - 11/28/2005
18 —— Bugglobsarved)
— Buggipredicted)
16

Discharge (cfs)

4 T T T T T T T T T
3/M13M993 7/26/1994 12/8/1985 4/21/1997 /31998 1/16/2000 5/30/2001 10/12/2002 2/24/2004 T7/8/2005
Date
« v i\ apogka f Apopka(pred13.3990) | Apopkaipont31360) fBuge { Bugglpned 1390) ) Bugoiposta-13-00) { Apogk B [ By pree [

The procedure to view maximum and minimum frequencies is similar to viewing predictions.
Click worksheet Bugg-FrequencyAnalysis as shown below. We see the maximum and minimum
frequencies for Bugg for the year range 1974-2004
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B3 Microsoft Excel - Predictions.xls [BEE]
(0] Fle Edit Wiew Insert Format  Tools Data  S-PLUS  Window  Help Type & question for help = _ @ X
RN W NI WEW [ A< QI s e A \gdzwl,wg@f”\ § il s mimlr o ===m8 %0 sblEn o0 A B
iasmsa o o i) 3,2 ] T Reply i chena: e E 5}:1-\\') -ih N BERGE=] P e NN e R Nes: e = N T e e = |

Al = e Date
A B | & | D | E [ B
|1 [Datel1-day i i ly e led) 30-day(maximum-continuously exceeded) 90-day(maxi i ly e led) [183-day(maxi i ly exceeded) 273-day(maxi

2 1974 12.98733649 12.38527781 11.83111252 9.94488894

3 | 1975 10.71200292 10.16123512 9942295894 5.002186333

4 | 1978 10.0136716 9585848622 9220267461 5.008187014

5 |1977 11.91807381 11.31575429 10.92273175 10.587232

|6 | 1978 11.11059316 1039056919 9.900710078 9.203343656

| 7 | 1979 12.30075324 11.74742812 10.69351743 1017253422

& | 1380 10.10331716 9629745589 5772434811 8.666501396

9 | 1981 14.34869296 13.62371094 11.23649295 8.244375995

10| 1982 17.67168032 16.09640435 15.20713501 1410209582

11| 1383 12.17262541 11.39837795 10.90842345 1069053523

12| 1984 12.59563192 11.98583109 11.02297245 10.09154778
131985 12.28470952 11.80999476 11.52541102 1079256013

|14 | 1986 11.25443659 1030444466 9222771239 8619687111

|15 | 1987 12.98947001 12.24146583 11.34419302 1063592666

16 | 1988 12.68297551 11.48073757 11.07407196 10.50269124

17 | 1389 11.73412744 11.24063687 108427465 10.44937254

18 | 1390 15.71147343 10.41829916 5473121203 7.472134883

19 1991 17.22273956 15.3557 4373 11.62177146 8.250383395

20| 1992 12.79098507 11.44593913 1067461991 8.550830678

21| 1993 10.72048623 10.02935627 5.922992269 7.892844B55

|22 1994 12.26241496 1142271812 10.71306855 9.8952567 12

|23 | 1995 13.44314857 12.57380267 11.53646021 10.01672205

24| 1995 13.24336226 11.85740454 10.52222791 3.566350646

25 | 1997 15.756156717 14.38024654 123180732 5.483959064

26 | 1998 1284853241 11.41672158 1047901647 8.430521477

27 | 1999 15.8911193 11.42698431 9936914929 8.007828418

28 | 2000 10.05445542 9.15003721 8464120957 762797354

29 | 2001 1B.25794243 142278925 1235910557 11.43163357

| 30| 2002 14.88926552 14.42201083 13.25392044 1086444732

|31 | 2003 13.85500431 13.33216498 12.46039266 1236098053

32 | 2004 13.78428986 12.81827896 12.17443738 11.94203633
EE]

34
35
38|
37

126 |

|39
40 |
41 |
42
43 |
44 |
45|
:15

-

S n,( Apopka(post3-13-90)  { Bugg 4 Bugg(pre3-13-90) { Buggipost3-13-90) 4  Apopka-Frequencysnak |< |

P - I asachammme N N FOreniasl d o™ @ (@] fAe . % A === i -all

The next step is pressing the red exclamation button to refresh the frequencies for the date range
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark
is highlighted by a red ellipse in the above figure.

The table above only shows the maximum and minimum frequencies for the years they can be
computed.

7. Saving results for different cases

To save the daily discharge predictions and frequencies for a particular set of well or spring data
in Original Data table, make another copy of the prediction tables in ACCESS and give them a
different name. This step is crucial since for a new set of data, the prediction and frequency
tables are overwritten. In our example for instance, copy the Bugg-predictions table as shown
below:
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EE= Stlohns : Database (Access 2000 file format)

R oren WEpeson e | 3K | 22 T

Obijects Create table in Design view
| 1 Tables Create table by using wizard
@ G @ Create table by entering data
— [ apopka
5 rorms =1 apopka Frequancy Table-district
Reports [  apopka-Frequency-district
2 Pages = apopka-predictions
2  Macros & Bugg
[ Bugg Frequency Table-districk
&L Madules [ Bugg-Freguency-district
Sroups =
GE Favorkes 1 Lake Locatiq L 2pen
3  mMissing date i, Design view
[ Modified_ds g prine
8 original pat & Print Preview
[ Rain Statiory
[ springs-Loc 4 e
= well Locatiof Sopy
Save As...
Export...
Send To »
add to Group >

Create shortout...
V5 Delete

Rename

Properties

Object Dependsencies. ..

Linked Table Manager

= StJohns : Database (Access 2000 file format) = ][>}

Ohijects Create table in Design view
[ Tl Creats table by using wizard

P <reate table by entering data
E  apopka

Forms 1 Apopka Frequency Table-district

Reports [ apopka-Frequency-districk

Pages [  aApopka-predictions

Macros 5= Buaa
[ Buaga Frequency Table-district

mr=Ehdles [  Bugg-Frequency-district

Groups = Bugg-predictions; o

[#1 Favorites 1 Lake Location iew 0+

E  missing dakes arrange Icons »
EH  rModified_data Line Up Icons
EH  original Cata = | rport...
[ Rain Station Locakion M L ebies. .
[ Springs-Lecation
=

well Lacation Paste

Relationships. ..

wisual Basic Editor

ACCESS prompts for a new name as shown below:
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Horen B Design ShNew | 2K | fe U

Paste Table As

Table Marme:

Al |Bugg-predictions(tutarial example| ]
FEEap=—
) Struckure Only
&) Struckure and Data
» Aappend Data to Existing Table

Cbjects [Zh]  Create table in Design view
| 1 Tables @J Creakte table by using wizard
= e Zh]  Creare rable by entering data
=  apopka
E& Forms [ apopka Frequency Table-district
8l Reports O aApopka-Frequency-districk
“&=  Pages [  apopka-predictions
Z2Z  Macros = Buaa
3  Bugg Frequency Table-district
e = Bugg-Frequency-diskrick
Groups [  Bugg-predictions
& Favorites = Laks Location
=] .
=H
=E
=H
=
=H

Enter a table name and press OK. The prediction table for our example is created. Similarly
create new tables for the Bugg-frequency-district and Bugg Frequency Table-district. The
highlighted tables in the screenshot are the new tables created.

¥ SiJohns : Database [(Access 2000 file format) [-— ”-:l ||Z

‘Horen B pesign Enew | K| 22 T

Bugg-predictions

Bugg-predictions{tutorial example)

Missing dates
rModified_data
Original Data

R.ain Station Location

Objects Zh]  create table in Design views
| = Tables IZh]  cCreate table by using wizard
= oueries Fh]  create table by entering dats
_ = apopka
&= Fomms = ~Apopka Frequency Table-districk
i@ Reports [  apopka-Frequency-districk
= Pages 1  apopka-predicti
2  Macros —
Bugn Frequency Table-districk
<& mModules 3 Bugg Frequsncy Tsbls-districk{buborisl exarnple))
Sroups (| 1 Buga-Freguency-district
(%1 Fawvorites [  Bugg-Freguency-districk{butorial example)
Na
=
E
=
=
=E
=
=E

Springs-Location

wwell Location

It is also necessary to save the predictions and frequencies in predictions.xls in a different file

before the prediction worksheets in EXCEL are refreshed to get predictions for a different case.
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APPENDIX B
Resolution of Peer Review Comments

Final Report INTE3A



Statistical Modeling of Spring Discharge

APPENDIX B: Resolution of Peer Review Comments.

Appendix B contains the comments provided by peer review of the first report in this Statistical
Modeling of Spring Discharge series and the author’s resolution of these comments. This peer
review and the subsequent resolution pertain to application of statistical methodology and are,
therefore, included in this report as well. The report modifications included some comments on

potential use of the presented models as well as a clear statement of the models objectives.
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| NEWFIELDS

Memorandum
TO: Bob Epting, St. Johns River Water Management District
FROM: Shahrokh Rouhani, Ph.D., P.E., NewFields

SUBJECT:  Peer review of “Statistical Modeling of Spring Discharge at Ponce de Leon,
Green, and Gemini Springs in Volusia County Florida” by Intera (2005) and
“Statistical Modeling of Spring Discharge at Apopka and Bugg Springs in Lake
County Florida” by Intera (2006)

DATE: July 16, 2006

*hkkkhhkkkhhkkkhhkkkihkhkkiiikkiik

INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.

GENERAL COMMENT

In general, | must note that the reports are well written, and easy to follow. Furthermore, from a
conceptual point of view, multiple regression of nearby hydrologic data to fill the gaps in times
series of daily spring discharges is quite acceptable. The resulting estimated time series and
frequency curves also display reasonable patterns consistent with existing, albeit limited,

discharge measurements at the investigated springs. However, the review of the reports raises a
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number of fundamental questions that may warrant further considerations by the authors. These

mainly statistical questions are the focus of this memorandum.

SPECIFIC COMMENTS

1. The above reports use multiple regression models that relate moving averages (MA) of
nearby hydrologic data to estimate daily spring discharges. Intera (2005) presents the general
form of such a model as

[Spring discharge] = f {[same spring MA] + [water level MA]
+ [precipitation MA] + [adjacent spring MA]}
The authors state that “the use of moving-average-based independent variables is
necessitated by the fact that most independent variables are not measured on a daily basis.”
Although, statistical methods, including multiple regression analysis, are not bound by
hydrological principals, it is always desirable to use independent variables that are

hydrologically consistent with the dependent variable.

The independent variable in the above reports is daily spring discharge, i.e. a non-integrated
or differentiated flow variable. Daily precipitation is also a flow variable, while water levels
(either groundwater or lake levels) are storage variables. Within the context of mass balance,
the net sum of flows is equal to the rate of change of storage variables. In other words, in a
linear model, daily spring discharge is expected to be related to (a) daily values of other flow
variables (e.g. precipitation or nearby spring discharges), and (b) daily rates of changes in
storage variables (e.g. water levels). This implies that under ideal conditions, non-integrated

flow variables and differentiated storage variables should be used in a regression model.

While | recognize that absence of continuous data may make some of the above
differentiations impossible, | am still puzzled about the fact that all dependent variables are
uniformly integrated. Integration is the exact opposite of what mass balance suggests. In
fact, in cases that continuous daily time series of storage variables (e.g. groundwater or lake
levels) are available; their difference values should be explored as an alternative to the
current moving averages. For this purpose, continuous or augmented groundwater level time

series, such as L-0054 and L-0703, along with other complete daily time series appear to be
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suitable candidates. | encourage the authors to consider this alternative approach, which is

more consistent with the mass balance concept.

2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of partial
correlation coefficients (PCC) and stepwise analysis somehow solves this problem. While
the use of PCC and stepwise analysis are commendable, they do not address the issue of

multicolinearity.

Multiple regression analysis is based on the fundamental assumption that the variables on the
right hand side of the equation are statistically independent, i.e. uncorrelated.
Multicolinearity exists when independent variables are highly correlated. Unfortunately, the
reports do not contain any systematic information on cross correlations among independent
variables. However, statements made in Intera (2006) concerning high correlations among
certain groundwater levels (which were used to justify the filling of data gaps in some of the
monitoring wells) clearly indicate that at least some of the independent variables are highly
correlated. This is especially true for moving averages of the same variables, which are used
concurrently as independent variables in the same model. So one can assume that some, if

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity.

A high degree of multicolinearity produces unacceptable uncertainty (large variance) in
regression coefficient estimates. Specifically, the coefficients can change drastically
depending on which terms are in or out of the model and also the order they are placed in the
model. In fact, a typical consequence of multicolinearity is a high regression coefficient,
when a number of independent variables have regression coefficients that are deemed as
insignificant. For example, Table 8 in Intera (2006) indicates that of the 13 independent
variables used to estimate Apopka (post-1990) five variables have statistically insignificant
coefficient (i.e. their p values are greater than or equal to 0.05), while R? of the same model is
nearly 0.80. In other words, the regression results indicate that the collection of selected

independent variables has explanatory power but we cannot tell which variable or to what
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degree the individual variable is explaining the variations of the dependent variable.
Generally, such “black-box” models are viewed as undesirable.

I encourage the authors to consider computing the variance inflation factor (VIF) of each

independent variable. VIF associated with the i independent variable is equal to

where R, is the regression coefficient of the i" independent variable on all of the other

R?

independent variables. A rule of thumb is to treat any VIF in excess of 10 as evidence of
multicolinearity. Elimination of collinear independent variables should continue until all VIF
are below 10. This approach along with the stepwise analysis would lead to much more
defensible models. Other remedies are also discussed in Gujarati (Basic Econometrics, 4™
Edition, McGraw Hill, 2002, Chapter 10).

3. The results of predicted versus observed time series are visually satisfactory (e.g. Figure 18
in Intera, 2006); however, their corresponding observed versus predicted plots (e.g. Figure 12
in Intera 2006) display poor fits. An explanation of this visual discrepancy would be helpful.
I also noticed that the updated frequency curves for Apopka and Bugg springs are much
closer to the pattern exhibited by the observed data. However, the addendum dated July 11,
2006 does not describe the reason for this improvement.

4. To compare observed versus predicted discharges, the authors should also consider the
comparison of their variances. Results like Figure 12 (Intera, 2006) imply that the predicted
values are much less variable that measured discharges. Although, such results are not
unexpected (estimated values are generally smoother than actual data), the impacts of such
smoothings on the frequency curves must be discussed. Specifically, are extreme discharges

adequately estimated?
Consider the updated frequency curve for Bugg Spring (Intera addendum dated 7/11/06).

While observed discharges in the central portion of the curve match their estimated values,

extreme values deviate systematically, i.e. biased results. Similar patterns are present in
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almost all the generated frequency curves. The authors should address this issue, and if
deemed significant, appropriate remedies should be considered.
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INteExA
TECHNICAL MEMORANDUM
PREPARED FOR: Bob Epting, St. Johns River Water Management District
PREPARED BY: Alaa Aly and Srikanta Mishra, INTERA Incorporated
SUBJECT: Resolution of peer review comments of “Statistical Modeling of

Spring Discharge at Ponce de Leon, Green and Gemini Springs in
Volusia County Florida” by Intera (2005) and “Statistical Modeling
of Spring Discharge at Apopka and Bugg Springs in Lake County
Florida” by Shahrokh Rouhani, NewFields

DATE: July 18, 2007

INTRODUCTION

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows
and Levels (MFLs) and Water Supply Development projects. Such projects require daily
discharge time series at a number of springs of interest. Most of these springs suffer from
sporadic discharge measurements. Intera (2005 and 2006) utilizes multiple regression models to
estimate (hindcast) daily discharges at a number of springs of interest based on a variety of
available nearby moving averages of measured spring discharges, groundwater levels, lake
levels, and precipitation rates. The estimated daily discharge time series at each spring are then

used to generate frequency, duration, discharge curves.

GENERAL COMMENT

We appreciate the comments from Dr. Rouhani about the validity of the approach and the clarity
of the presentation in the report. The following sections address the specific comments in the

peer review memorandum.
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SPECIFIC COMMENTS
1 ... Within the context of mass balance, the net sum of flows is equal to the rate of
change of storage variables. ....... This implies that under ideal conditions, non-

integrated flow variables and differentiated storage variables should be used in a
regression model. While I recognize that absence of continuous data may make some
of the above differentiations impossible, | am still puzzled about the fact that all
dependent variables are uniformly integrated. Integration is the exact opposite of
what mass balance suggests. ....... I encourage the authors to consider this
alternative approach, which is more consistent with the mass balance concept.

While mass balance would suggest exactly what the reviewer points out, the presented models
are statistical, not physical. Therefore, they are not intended to be used as mass balance models.
The models are based on exploitation of the statistical correlation between the explanatory and
response variables. For example, spring discharge is correlated with aquifer water levels, perhaps
with a lead time. This correlation explains some of the variability in the observed spring
discharge rates. Further, the correlation is improved using the average water level values rather
than the individual measurements which always have higher variances. However, as the reviewer
notes, spring discharge can also be expected to be correlated to the change in water levels over
time. These changes are a function of the “net” change of fluxes to and from the aquifer. In the
absence of other significant fluxes such as recharge and pumping, these changes will be closely
correlated to the observed spring discharge rates. Unobserved (e.g., pumping) and unobservable
(e.g., aquifer recharge) fluxes will complicate this correlation. Further, as noted, this difference is
typically very difficult to obtain from real data as data gaps can be a major obstacle for such

calculation.
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of
partial correlation coefficients (PCC) and stepwise analysis somehow solves this
problem. ...... Multiple regression analysis is based on the fundamental assumption
that the variables on the right hand side of the equation are statistically independent,
i.e. uncorrelated. ..... However, statements made in Intera (2006) concerning high
correlations among certain groundwater levels (which were used to justify the filling
of data gaps in some of the monitoring wells) clearly indicate that at least some of the
independent variables are highly correlated. ...... So one can assume that some, if
not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. .....
I encourage the authors to consider computing the variance inflation factor (VIF) of

each independent variable.

First, multicolinearity is mainly a problem for the uniqueness and variances for the regression
coefficients. That is, when correlated variables are used as explanatory variables, the fitted
regression coefficients will not be meaningful and might have very high variances. However, the
predicted values from such regression model are still acceptable with the only issue that needs to
be addressed is whether adding the correlated variable(s) have resulted in unnecessary inflation
of the prediction variance. This variance inflation resulting from adding more variables to the
regression equation is exactly what is considered in the stepwise regression algorithm. As
detailed below, a variable is only added to the regression equation if it will improve the
prediction capability of the final regression equation without adding significantly to the
prediction variance. Our experience in applying stepwise regression to outputs of probabilistic
risk assessment models confirms this. We have also computed variance inflation factors for the
discharge models for Rock and Wekiva springs, and these also indicate that the stepwise
regression process has minimized multicolinearity issues. The following description of stepwise
regression provides the background information for the procedure showing how multicolinearity
is formally dealt with.

In the utilized stepwise approach, a sequence of regression models is constructed starting with

the input variable that explains the largest amount of variance in the output, i.e., the variable that
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has the highest Pearson correlation coefficient with the output. At each successive step in the
regression modeling process, the variable that explains the largest fraction of unexplained
variance from the previous step is included. This is the variable with the largest absolute value
of the partial correlation coefficient. The model generated at every step is tested to ensure that
the each of the regression coefficients is significantly different from zero. The test is
implemented in two stages. First, a variable selected for entry via the PCC criterion is tested for
its significance before it is admitted into the model. Second, after the model is built at that step,
each of the variables in the model is tested for significance. If some variables are found to be
insignificant, then the “most insignificant” variable is dropped and the model is built again. The
sequential dropping of the variables judged to be not significant and rebuilding the model
continues until all the variables in the model become significant at the prescribed levels. The
significance levels are prescribed separately for the entering and departing variables to avoid
possible looping where the same variable can enter and depart from the model with the
significance level for the departing variables generally set larger than that for the entering
variable. Note that the need for dropping a variable generally arises only in the cases when the
input variables are strongly correlated (strong multicolinearity). This step ensures that no
significant multicolinearity will be present in the final multiple regression model. The stepwise
regression process continues until the input-output model contains all of the input variables that
explain statistically significant amounts of variance in the output (i.e., no more variables are

found with a statistically significant regression coefficient).

3. The results of predicted versus observed time series are visually satisfactory (e.g.
Figure 18 in Intera, 2006); however, their corresponding observed versus predicted
plots (e.g. Figure 12 in Intera 2006) display poor fits. An explanation of this visual
discrepancy would be helpful. I also noticed that the updated frequency curves for
Apopka and Bugg springs are much closer to the pattern exhibited by the observed
data. However, the addendum dated July 11, 2006 does not describe the reason for

this improvement.
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Figure 18 shows that the general pattern displayed by the observed discharge hydrograph for
Bugg Spring. While there is significant visual scatter shown in Figure 12, this figure also shows
that the vast majority of the predicted discharge values are in agreement with the observed
values. Figure 12 also shows that there in no general bias in any direction for the entire range of
observed discharge values, a further affirmation for the validity of predictive model. The

explanations missing from the July 11, 2006 addendum have been added to the final report.

4. To compare observed versus predicted discharges, the authors should also
consider the comparison of their variances. Results like Figure 12 (Intera, 2006)
imply that the predicted values are much less variable that measured discharges.
Although, such results are not unexpected (estimated values are generally smoother
than actual data), the impacts of such smoothings on the frequency curves must be
discussed. Specifically, are extreme discharges adequately estimated?

Consider the updated frequency curve for Bugg Spring (Intera addendum dated
7/11/06). While observed discharges in the central portion of the curve match their
estimated values, extreme values deviate systematically, i.e. biased results. Similar
patterns are present in almost all the generated frequency curves. The authors
should address this issue, and if deemed significant, appropriate remedies should be

considered.

While it is not anticipated that extreme discharge values will be predicted accurately, it is
important that no consistent bias is displayed by the predictive models. Figure 12 clearly shows
that predicted values are not biased at either end of the observed discharge values because high
and low values are equally spread around the regression line. Further, additional analyses are
added to the report to examine the differences between the variances of the observed and

regression-model-generated spring discharge values.
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