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EXECUTIVE SUMMARY 

Currently, the St. Johns River Water Management District (District) is engaged in 
hydrologic modeling and data analysis in support of the ongoing Minimum Flows and Levels 
(MFLs) and Water Supply Development projects.  MFLs define the frequency and duration of 
high, average, and low water events necessary to prevent significant ecological harm to aquatic 
habitats and wetlands from permitted water withdrawals.  An integral component of the District’s 
MFL program is the development of long-term daily discharge predictions at various streams in 
the District.  This report describes the development of statistical models for predicting daily 
spring discharge time series for Ponce de Leon (PDL), Gemini, and Green springs from an 
assortment of auxiliary data such as:  (a) previously recorded spring discharge rates at the springs 
of interest and at adjacent springs, (b) groundwater level measurements from adjacent 
monitoring wells, and (c) rainfall data from nearby gauging stations.  

The presented regression models are based on the statistical correlation between the 
explanatory and response variables.  For example, spring discharge is correlated with aquifer 
water levels, perhaps with a lead time.  This correlation explains some of the variability in the 
observed spring discharge rates.  Furthermore, the correlation is improved using the average 
water level values rather than the individual measurements which are known to display higher 
variances. 

Data screening indicates that most measurements of spring discharge and groundwater 
level are at a frequency of ~30 days or greater – necessitating the generation of moving averages 
with commensurate lags to be used as independent variables for predicting spring daily 
discharge.  Also, the Blue Spring daily discharge values show significant correlation with the 
daily discharge values at Gemini Springs and some correlation with PDL.  Hence, discharge 
from Blue Spring has been utilized to help estimate discharge at Gemini and PDL springs when 
groundwater level measurements are scarce.  Analysis of data overlap is helpful in determining 
how to partition the period of record into sub-periods where a common set of variables can be 
defined. 

Forward stepwise regression analysis is used to build multivariate linear input-output 
models between the response variable (spring discharge) and the independent variables (moving 
averages of water level measurements and precipitation) at the springs of interest.  Typically, two 
regression models of spring discharge are needed:  (a) one for the period when groundwater 
levels and rainfall data are available, and (b) one for the period when rainfall data are 
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supplemented with discharge from adjacent springs and perhaps groundwater levels from one or 
two long-term monitoring wells.   

The following regression model is developed for PDL Springs: 

• PDL discharge as a function of water level measurements from Floridian aquifer well 
(FAW) L-0045 (8-, 48- and 52-week moving average), 12-, 48-, and 52-week moving 
average of PDL discharge and 52-week moving average of the Blue Spring discharge 
(R2=0.57).  

For Gemini Springs, the regression models developed are as follows:  

• Gemini 1995-2000 discharge as a function of 12-, 48-, and 52-week moving average of 
the Blue Spring discharge, and water levels at FAW S-0257 (12- and 24-week moving 
average) – in order to predict the daily Gemini Springs discharge prior to 1995 when no 
measurements are available at the springs (R2=0.47).  

• Gemini 1995-2004 discharge as a function of daily and 4-, 8-, 12-, and 52-week moving 
average of rainfall at Sanford, Florida, and water levels at S-1230 (4-, 6-, 8-, and 24-week 
moving average) – in order to predict the daily Gemini Springs discharge during the 
1995-2004 period (R2=0.79). 

Finally, the following regression models are developed for Green Springs: 

• Green 2000-2004 discharge as a function of water levels at FAW V-0166 (24-, 48-, and 
52-week moving average) and 1-, 3-, and 48-week moving average of rainfall at Sanford 
– in order to predict discharge at Green Springs in the 1987-1996 period (R2=0.89).  

• Green 1999-2004 discharge as a function of water levels at FAW V-0810 and FAW 
V-0772, and 4-, 8-, and 48-week moving average of rainfall at Stanford, Florida – in 
order to predict the daily Green Springs discharge during this period and for 1996-1999 
(R2=0.97). 

Using these models, daily discharge predictions are made for PDL Springs as far back in time 
as 1966 with reasonable accuracy.  However, comparable predictions can only be made until 
1996 for Gemini Springs and until 1988 for Green Springs.  Flow duration curves are also 
generated for all three springs along with high- and low-frequency analyses for set durations (1-, 
2-, 3-, 4-, 6-, and 12-months) from the simulated daily spring discharge. 

This report incorporates comments provided by peer review of an earlier version.  The 
modifications included some comments on potential use of the presented models as well as a 
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clear statement of the models objectives.  Further, additional analysis was added to the report to 
highlight the differences between the variances of the observed and regression-model-generated 
spring discharge values.  The peer review comments and their resolution as they apply to this 
report are in Appendix B. 
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1.0 INTRODUCTION 

The Minimum Flows and Levels (MFLs) Program of the St. Johns River Water 

Management District (District), mandated by state water policy (section 373.042, F.S.), 

establishes MFLs for lakes, streams and rivers, wetlands, and groundwater aquifers.  MFLs 

define the frequency and duration of high, average, and low water events necessary to prevent 

significant ecological harm to aquatic habitats and wetlands from permitted water withdrawals.  

The MFLs Program is subject to chapter 40C-8, F.A.C. and provides technical support to the 

District’s regional water supply planning process and the consumptive use-permitting (CUP) 

program. 

MFLs designate hydrologic conditions that prevent significant harm and above which 

water is available for reasonable beneficial use.  The determinations of MFLs consider the 

protection of non-consumptive uses of water, including navigation, recreation, fish and wildlife 

habitat, and other natural resources.  MFLs take into account the ability of wetlands and aquatic 

communities to adjust to changes in hydrologic conditions.  Therefore, MFLs allow for an 

acceptable level of change to occur relative to the existing hydrologic conditions.  However, 

when use of water resources shifts the hydrologic conditions below those defined by the MFLs, 

significant ecological harm occurs.  As it applies to wetland and aquatic communities, significant 

harm is a function of changes in the frequencies and durations of water level and/or flow events, 

causing impairment or destruction of ecological structures and functions. 

Currently, the District is engaged in hydrologic modeling and hydrologic data analysis in 

support of the ongoing MFLs and Water Supply Development projects.  An integral component 

of the District’s MFL program is the development of long-term daily discharge predictions at 

various streams in the District.  MFLs for three springs in Volusia County, Florida, namely, 

Ponce de Leon (PDL), Gemini, and Green springs are currently needed.  As discussed in the 

following sections, while the PDL Springs has more data than either Green Springs or Gemini 

Springs, each of these springs has limited spring flow measurements (Osburn et al., 2002).  This 

study evaluates the application of statistical models to generate long-term daily discharge 

simulations for each of these three springs. 
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2.0 OBJECTIVE 

The objective of this study is the development of daily spring discharge time series for 

PDL, Gemini, and Green springs from an assortment of auxiliary data such as:  (a) previously 

recorded springs discharge rates at the springs of interest and at adjacent springs, (b) 

groundwater level measurements from adjacent monitoring wells, and (c) rainfall data from 

nearby gauging stations.  The study will investigate the correlation structure between various 

data types, and test the applicability of simple multivariate linear models to generate daily 

discharge records based on these other variables for the common period of record. 

This report presents the results of exploratory data analysis (EDA) for rainfall, water 

level and spring discharge data for PDL, Gemini, and Green springs.  It also explores the use of 

empirical models to provide estimates of daily discharge at these springs.  These statistical 

models will take advantage of all available data to try to provide the most accurate estimates.  In 

general, early time records are sparse and often not available for a number of locations.  This will 

require the use of different models ranging in sophistication from simple correlation based 

models to multivariate regression models which can only be constructed when enough 

supporting data (e.g., rainfall and groundwater levels) are available at a sufficient number of 

nearby locations.  These models will be used to run a continuous simulation model covering the 

period of record referenced by the constituent data.  From the results of statistical modeling, 

standard flow-duration analysis for the system (discharge versus percent exceedance for the 

long-term simulation) will be conducted and standard high- and low-flow frequency analyses for 

the system (frequency of spring discharge for set durations) will be carried out. 

This report is organized as follows.  Exploratory data analysis is described in Section 3.  

Section 4 contains the regression modeling methodology and the regression models developed 

for PDL, Gemini, and Green springs.  In section 5, daily discharge predictions are presented 

along with flow duration curves and frequency analyses for each of these springs.  Section 6 

contains conclusions and recommendations from this study. 
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3.0 EXPLORATORY DATA ANALYSIS 

This section summarizes the available data and shows the results of the statistical 

exploratory analyses (EDA) conducted for the available time series.  The objective of the EDA is 

to identify the correlation structure between the spring discharge at the three springs of interest 

and the other time series.  Results from the EDA will be used to guide the construction of 

explanatory models which will predict daily discharge values at each spring. 

3.1 Data Sources 

Figure 1 shows a map of the study area and highlights the location of various data 

sources: 

• Spring discharge measurements at PDL, Gemini, and Green springs; as well as 

measurements at Blue Spring.   

• Groundwater level measurements at monitoring wells: 

- V-1030. V-0156, V-0742, L-0045, V-0095, and V-0096 for PDL 

- S-1230 and S-0257 for Gemini Springs 

- V-0810, V-0772, and V-0166 for Green Springs 

- V-0083, V-1091, V-0196, L-0059, V-0101, and M-0024 for Blue Spring 

• Precipitation measurements at rain gages: 

- SR-40 and SR-11 for PDL 

- Sanford for Gemini and Green Springs 

- Deland for Blue Spring. 

Blue Spring is located in close proximity to the three primary springs of interest, and is a 

potential source of ancillary data because of its extensive period of record.  The other wells are 

chosen because of their locations vis-à-vis the springs of interest, and also if they provide a long-

term record of groundwater level measurements. 
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Figure 1 Location of springs and groundwater monitoring wells in region of interest. 
 

In order to conduct exploratory data analysis, a database was compiled of spring 

discharge (response variable), groundwater levels (explanatory variable), and precipitation 

(explanatory variable) with a common time basis.  For each spring of interest, several 

groundwater monitor wells in its vicinity and the nearest rain gage were selected.  Table 1 shows 

basic statistics (i.e., minimum, maximum, average and standard deviation) for these various data 

types at Blue, Green, PDL, and Gemini springs. 

The frequency of observation for each data type was subsequently calculated.  This is 

useful for determining appropriate lag and moving average windows.  Moving averages were 

calculated for recorded water levels, precipitation and spring discharge at the springs of interest 

as well as at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12, 24, 48, and 52 

weeks.  These moving averages act as surrogate predictor variables and carry useful information 

regarding the physical state of the system prior to the time of interest. 
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Table 1 Basic statistics for various data types at Blue, Green, PDL, and Gemini 
springs. 

Data Type Range Min Max Average Std Dev Variable type
Blue Spring 3/7/32-12/18/01 63.00 217.73 156.25 19.30 Discharge(cfs)

V-0083 4/20/95-12/1/04 4.42 11.82 7.11 1.37 Water-level(ft)
V-1091 9/25/81-12/01/04 9.44 22.60 19.10 1.67 Water-level(ft)
V-0196 1/7/87-12/22/03 11.75 22.31 16.63 2.87 Water-level(ft)
L-0059 1/31/84-11/18/04 11.80 20.64 16.36 1.47 Water-level(ft)
V-0101 5/28/36-11/22/04 24.49 32.10 29.58 1.36 Water-level(ft)
M-0024 11/21/85-11/16/04 21.56 29.28 24.28 1.54 Water-level(ft)
Deland 2/17/29-6/30/04 0.00 7.77 0.16 0.43 Rainfall(in)

Green Springs 1/20/00-11/11/04 0.00 2.92 1.31 0.94 Discharge(cfs)
V-0810 12/26/96-12/15/04 9.76 18.85 14.31 2.03 Water-level(ft)
V-0772 8/3/95-12/15/04 6.88 17.10 11.66 2.11 Water-level(ft)
V-0166 1/7/87-11/24/03 11.00 18.03 14.22 1.32 Water-level(ft)
Sanford 1/1/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)

Ponce De Leon 1/14/65-1/13/97 16.67 40.90 27.57 4.52 Discharge(cfs)
V-1030 10/6/94-10/19/04 9.78 23.78 18.72 1.64 Water-level(ft)
V-0156 8/29/84-8/25/04 1.78 19.51 14.99 2.13 Water-level(ft)
V-0742 11/1/93-10/19/04 21.81 39.06 32.52 2.23 Water-level(ft)
L-0045 1/24/50-11/18/04 10.69 18.06 14.31 1.60 Water-level(ft)
V-0095 3/20/36-12/1/04 8.72 27.90 23.16 2.03 Water-level(ft)
V-0096 2/18/36-11/18/04 14.51 22.90 20.26 1.42 Water-level(ft)

SR-40 & SR-11 10/1/93-11/17/04 0.00 8.91 0.14 0.44 Rainfall(in)

Gemini Springs 9/22/95-12/1/04 6.20 13.00 9.96 1.40 Discharge(cfs)
S-1230 2/26/96-11/15/04 16.44 22.67 20.22 1.64 Water-level(ft)
S-0257 11/21/52-9/20/99 16.66 26.45 22.61 1.32 Water-level(ft)
Sanford 01/01/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)  

 

3.2 Frequency of Observation 

Table 2 shows the mean and standard deviation of frequency of observation for each data 

type for Blue, Green, PDL, and Gemini springs.  For Green Springs, the springs discharge has a 

period of record dating back to January 2000 at an average frequency of 57 days – although a 

few isolated observations extend back to February 1972.  At well V-0810, groundwater levels are 

available daily from December 1996.  At well V-0772, groundwater levels are available daily 

from August 1995.  At well V-0166, groundwater level measurements are available from January 

of 1987 at a frequency of 30 days.  Finally, for the Sanford rain gage, daily precipitation 

observations are available from January 1948. 
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Table 2 Frequency of observation of various data types at Blue, Green, PDL, and 
Gemini springs. 

Data Type Range Min Max Average Std Dev Variable type
Blue Spring 3/7/32-12/18/01 63.00 217.73 156.25 19.30 Discharge(cfs)

V-0083 4/20/95-12/1/04 4.42 11.82 7.11 1.37 Water-level(ft)
V-1091 9/25/81-12/01/04 9.44 22.60 19.10 1.67 Water-level(ft)
V-0196 1/7/87-12/22/03 11.75 22.31 16.63 2.87 Water-level(ft)
L-0059 1/31/84-11/18/04 11.80 20.64 16.36 1.47 Water-level(ft)
V-0101 5/28/36-11/22/04 24.49 32.10 29.58 1.36 Water-level(ft)
M-0024 11/21/85-11/16/04 21.56 29.28 24.28 1.54 Water-level(ft)
Deland 2/17/29-6/30/04 0.00 7.77 0.16 0.43 Rainfall(in)

Green Springs 1/20/00-11/11/04 0.00 2.92 1.31 0.94 Discharge(cfs)
V-0810 12/26/96-12/15/04 9.76 18.85 14.31 2.03 Water-level(ft)
V-0772 8/3/95-12/15/04 6.88 17.10 11.66 2.11 Water-level(ft)
V-0166 1/7/87-11/24/03 11.00 18.03 14.22 1.32 Water-level(ft)
Sanford 1/1/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)

Ponce De Leon 1/14/65-1/13/97 16.67 40.90 27.57 4.52 Discharge(cfs)
V-1030 10/6/94-10/19/04 9.78 23.78 18.72 1.64 Water-level(ft)
V-0156 8/29/84-8/25/04 1.78 19.51 14.99 2.13 Water-level(ft)
V-0742 11/1/93-10/19/04 21.81 39.06 32.52 2.23 Water-level(ft)
L-0045 1/24/50-11/18/04 10.69 18.06 14.31 1.60 Water-level(ft)
V-0095 3/20/36-12/1/04 8.72 27.90 23.16 2.03 Water-level(ft)
V-0096 2/18/36-11/18/04 14.51 22.90 20.26 1.42 Water-level(ft)

SR-40 & SR-11 10/1/93-11/17/04 0.00 8.91 0.14 0.44 Rainfall(in)

Gemini Springs 9/22/95-12/1/04 6.20 13.00 9.96 1.40 Discharge(cfs)
S-1230 2/26/96-11/15/04 16.44 22.67 20.22 1.64 Water-level(ft)
S-0257 11/21/52-9/20/99 16.66 26.45 22.61 1.32 Water-level(ft)
Sanford 01/01/48-6/30/04 0.00 6.88 0.14 0.41 Rainfall(in)  

 

For Blue Spring, the spring’s discharge has an extended period of record dating back to 

March 1932 at an average frequency of 43 days.  At well V-0083, groundwater levels are 

available daily from April 1995 – although a few isolated observations extend back to December 

1984.  At well V-1091, groundwater levels are available at an average frequency of 52 days 

between September 1981 and March 2002 and daily thereafter.  At well V-0196, groundwater 

levels are available at an average frequency of 24 days from January 1987.  At well L-0059, 

groundwater levels are available at an average frequency of 26 days from January 1984 – 

although a few isolated observations extend back to may 1976.  At well V-0101, groundwater 

levels are available at an average frequency of 31 days from May 1936.  At well M-0024, 

groundwater levels are available at an average frequency of 30 days from November 1985 – 
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although a few isolated observations extend back to September 1980.  Finally, for the Deland 

rain gage, daily precipitation observations are available from February 1929. 

For PDL Springs, the springs’ discharge has a period of record dating back to January 

1965 at an average frequency of 55 days – although a few isolated observations extend back to 

February 1929.  The PDL Springs discharge data, recorded after April 7, 1997, are of 

questionable quality because of biased measurements introduced by construction of the pool 

weir.  Hence, PDL discharge records measured only before April 7, 1997, are used for the 

regression model. At well V-1030, groundwater levels are available daily from October 1994.  

At well V-0156, groundwater levels are available at an average frequency of 24 days between 

from August 1984.  At well V-0742, groundwater levels are available daily from November 

1993.  At well L-0045, groundwater levels are available at an average frequency of 47 days from 

January 1950.  At wells V-0095 and V-0096, groundwater levels are available from early 1936 at 

a frequency of 6 and 36 days, respectively.  Finally, for the SR-40/SR-11 rain gage, daily 

precipitation observations are available from October 1993. 

For Gemini Springs, the springs’ discharge has a period of record dating back to 

September 1995 at an average frequency of 56 days – although a few isolated observations 

extend back to June 1966.  At well S-1230, groundwater levels are available at an average 

frequency of 29 days between February 1996 and October 2004 and daily thereafter.  At well 

S-0257, groundwater levels are available at an average frequency of 6.5 days beginning in 

November 1952.  Finally, for the Sanford rain gage, daily precipitation observations are available 

from January 1966. 

3.3 Analysis of Overlap 

Periods of overlap between different data types were analyzed for each of the springs of 

interest.  This is useful for determining how the period of record can be split up into sub-periods 

with common sets of explanatory variables.  The frequency of observation for each data type was 

subsequently calculated.  This is useful for determining appropriate lag and moving average 

windows.  Moving averages were calculated for recorded water levels, precipitation and springs 

discharge at adjacent springs at selected lag times such as 1, 2, 3, 4, 6, 8, 12, 24, 48, and 
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52 weeks.  The moving averages act as surrogate predictor variables and carry useful information 

regarding the physical state of the system prior to the time of interest. 

Figure 2 shows the overlap between various data types for the PDL Springs.  Shown here 

are the periods of record for (a) springs discharge, (b) groundwater levels at monitoring wells V-

1030, V-0156, V-0742, L-0045, V-0095, and V-0096, and (c) precipitation measurement at SR-

40 and SR-11.  Also indicated therein is the average frequency of observation for each data type 

(as was discussed in detail in the previous section).  As mentioned before, PDL data starts from 

1965 and is only available through the spring of 1997. Prior to that, groundwater level data at 

wells L-0045, V-0095 and V-0096 are available starting in the late 1930s.  However, the average 

data frequency for these wells is about 7 weeks.  It is likely that a moving average window of 8 

weeks or greater will be used to take advantage of this water level measurement.  From 1995, 

several time series are available, but this information cannot be used in the regression model due 

to short period of overlap with PDL.  Information from another spring (Blue) could also be 

added to the explanatory variables set to help provide more accurate estimates for daily discharge 

at PDL Springs. 

Figure 3 shows the overlap between various data types for the Gemini Springs.  Shown 

here are the periods of record for (a) springs discharge, (b) groundwater levels at monitoring 

wells S-1230 and S-0257, and (c) precipitation measurement at Stanford.  Also indicated therein 

is the average frequency of observation for each data type (as was discussed in detail in the 

previous section).  The daily groundwater level at well S-1230 is available only since mid-2004.  

Prior to this timeframe, the well has an average recording frequency of about once a month.  The 

Sanford daily rainfall record has a much longer record starting in the 1940s.  It is likely that two 

different model sets will be used to estimate daily discharge at Gemini Springs.  The first set of 

models will cover recent times since groundwater measurements became available.  The early 

models will use rainfall and water levels at wells S-0257 as supporting explanatory variables.  

However, as the report will detail later, information from Blue Spring could also be added to the 

explanatory variables set to help provide more accurate estimates for daily discharge at Gemini 

Springs. 
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Data range and frequency - Ponce De Leon

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005

Date

Ponce De Leon - avg freq=55 days
V-1030 - freq=daily
V-0156 - avg freq=24 days
V-0742 - freq=daily
SR-40&SR-11 - freq=daily
L-0045 - avg freq=47 days
outliers-Ponce De Leon
V-0096 - avg freq=35 days
V-0095 - avg freq=6days

 
Figure 2 Overlap between various data types, PDL Springs. 

Data range and frequency - Gemini

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005

Date

Gemini - avg freq=56 days
S-1230 - avg freq=29 days
S-1230 - freq=daily
Sanford - freq=daily
outlier-Gemini Spring
S-257 - freq=6.5 days
outlier-S-257

 
Figure 3 Overlap between various data types, Gemini Springs. 
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Figure 4 shows the overlap between various data types for the Green Springs.  Shown 

here are the periods of record for:  (a) springs discharge, (b) groundwater levels at monitoring 

wells V-0810, V-0772, and V-0166, and (c) precipitation measurement at Sanford.  Also 

indicated therein is the average frequency of observation for each data type (as was discussed in 

detail in the previous section).  Data availability issues for Green Springs are similar to Gemini 

Springs.  The models developed for both these springs are expected to be similar in structure, 

i.e., the first set of models will cover recent times since groundwater measurements became 

available.  The early models will use rainfall and perhaps discharge at Gemini Springs as 

supporting explanatory variables.  However, as the report will detail later, information from 

another spring (Blue) could also be added to the explanatory variables set to help provide more 

accurate estimates for daily discharge at Green Springs. 

Data range and frequency - Green

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005

Date

Green - avg freq=57 days
V-0810 - avg freq=daily
V-0772 - avg freq=daily
Sanford - avg freq=daily
outliers-Green spring
V-0166 - avg freq=30 days

 
Figure 4 Overlap between various data types, Green Springs. 

Figure 5 shows the overlap between various data types for Blue Spring.  Shown here are 

the periods of record for:  (a) springs discharge, (b) groundwater levels at monitoring wells 
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V-0083, V-1091, V-0156, L-0059, V-0101, and M-0024, and (c) precipitation measurement at 

Deland 1 SSE.  Also indicated therein is the average frequency of observation for each data type 

(as was discussed in detail in the previous section).  In general, the data records for Blue Spring 

could be broken into pre- and post-1984.  Late time models can take advantage of all available 

data at the majority of the monitoring wells as well as precipitation data from the Deland gauge.  

Early time models will only have the water level record at V-0101 and the Deland rainfall record 

as supporting explanatory variables. 

Data range and frequency - Blue Spring

1/1/1929 12/15/1939 11/27/1950 11/9/1961 10/22/1972 10/5/1983 9/17/1994 8/30/2005

Date

Blue Spring - avg freq=43 days
V-0083 - freq=daily
V-1091 - avg freq=52 days
V-1091 - freq=daily
V-0196 - avg freq = 24 days
L-0059 - avg freq=26 days
Deland 1 SSE - freq=daily
V-0101 - avg freq=31 days
M-0024 - avg freq=30 days
outliers-V-0083
outliers-L-0059
outliers-M-0024

 
Figure 5 Overlap between various data types, Blue Spring. 

3.4 Correlation Analysis – Spring to Spring 

The correlation between spring discharge at a given spring, and the 6, 8, 12, 24, 48, and 

52-week moving averages of spring discharge at Blue Spring is presented in this section.  The 

motivation here is to determine if any of the moving-average spring discharge at Blue Spring can 

be used as a predictor variable for discharge at PDL, Gemini, or Green springs.  The rationale for 

selecting Blue Spring as a potential “global” predictor is twofold:  (a) Blue Spring has an 
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extensive period of record dating back to March 1932, and (b) its location is between PDL and 

Gemini/Green springs.  This implies that Blue Spring can be of potential value as an auxiliary 

source of data for PDL as well as for Gemini and Green springs. 

Table 3 suggests that discharge at PDL is maximally correlated to the 48-week (or 52-

week) moving average discharge at Blue Spring.  Similarly, as shown in Table 4, the maximum 

correlation for Gemini Springs occurs at a lag of 12 weeks.  Finally, Table 5 indicates that the 

maximum correlation for Green Springs occurs at a lag of 24 weeks – although the low value of 

the correlation coefficient and the small sample size make this result of questionable value.   

Thus, on the basis of these spring-spring correlation analyses, it seems plausible that 

daily Blue Spring discharge may be used as one of the explanatory variables for PDL Springs 

and Gemini Springs.  

Table 3 Correlation coefficients between discharge at PDL Springs and moving 
averages of discharge at Blue Spring. 

Ponce de Leon Count
Blue Spring 0.68 13

Blue Spring- 6 week 0.40 150
Blue Spring- 8 weeks 0.43 220
Blue Spring- 12 week 0.47 244
Blue Spring- 24 week 0.49 250
Blue Spring- 48 week 0.55 252
Blue Spring-52week 0.55 253  

 

Table 4 Correlation coefficients between discharge at Gemini Springs and moving 
averages of discharge at Blue Spring. 

Gemini Count
Blue Spring 0.99 3

Blue Spring- 6 week 0.45 39
Blue Spring- 8 weeks 0.42 52
Blue Spring- 12 week 0.49 54
Blue Spring- 24 week 0.48 58
Blue Spring- 48 week 0.41 59
Blue Spring-52week 0.39 60  
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Table 5 Correlation coefficients between discharge at Green Springs and moving 
averages of discharge at Blue Spring. 

Green Count
Blue Spring N/A 2

Blue Spring- 6 week -0.01 10
Blue Spring- 8 weeks 0.11 11
Blue Spring- 12 week 0.14 15
Blue Spring- 24 week 0.23 18
Blue Spring- 48 week 0.18 20
Blue Spring-52week 0.16 21  

It should be pointed out that the correlation between Gemini and Green springs was also 

evaluated, but not considered for additional analysis because of the limited number of data points 

(<10) or the common days at which measurements for both springs were recorded. 
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4.0 REGRESSION MODELING 

4.1 Methodology 

The objective of regression modeling is to build a multivariate linear input-output model 

between the response variable (spring discharge) and the surrogate predictor variables (moving 

averages of water level measurements and precipitation) at the springs of interest.  Such a 

relationship can be expressed by: 

 qt = b0 + b1 qt-i + b2 qt-j +…. + b3 ht-k + b4 rt-l + ε  (1) 

where q is spring discharge; q* is discharge at an adjacent spring, h is groundwater level; r is 

precipitation; ε is an error term; b0, b1, b2, b3 and b4 are regression coefficients; t is time, and i, j, 

k and l denote lags that maximize the correlation between the response and predictor variable 

pair of interest.  Here, the use of surrogate predictors is necessitated by the fact that most 

predictor variables are not measured on a daily basis.  Generation of daily discharge thus requires 

the use of predictor variables for which daily values can be generated, e.g., on the basis of 

averaging over some moving time window.   

Eq. (1) can be symbolically re-stated as follows, where MA denotes moving average: 

 [Spring discharge] = f { [same spring MA] + [water level MA]  

 + [precipitation MA] + [adjacent spring MA] } (2) 

Depending on the information available for the spring of interest, the regression model 

can contain all four terms in Eq. (2).  This is especially true for the recent period since mid-

1990s, when detailed measurements of groundwater levels are available.  On the other hand, for 

springs such as Gemini and Green, discharge measurements are not available prior to this time.  

Thus, early-time regression models for these springs will have to rely only on rainfall, discharge 

at adjacent springs and, when possible, water levels from long-term monitoring wells. 

The model building process can be carried out using forward stepwise regression, where 

variables are added one at a time until no additional variables can be found that improve the 

goodness-of-fit of the input-output model.  At each successive step in the regression modeling 

process, the variable that explains the largest fraction of unexplained variance is included.  This 
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is the variable with the largest absolute value of the partial correlation coefficient (PCC), which 

measures the correlation between the output and the selected input variable after the linear 

influence of the other variables have been eliminated.   

The model generated at every step is tested to ensure that the each of the regression 

coefficients is significantly different from zero.  A partial F-test, or, an equivalent t-test, is used 

to reject the hypothesis that a regression coefficient is zero, at a 100(1 - α) % confidence level.  

The stepwise regression process continues until the input-output model contains all of the input 

variables that explain statistically significant amounts of variance in the output, i.e., no more 

variables can be found with a statistically significant regression coefficient.  

If necessary, piecewise regression or non-parametric regression (e.g., Alternating 

Conditional Expectation or ACE) can be used as an alternative to stepwise regression to improve 

the linear model goodness of fit.   

• In piecewise regression, the algorithm automatically splits the data into two or more 

subsets such that model predictions have the highest possible correlation with observed 

values of the response variable (daily spring discharge). 

• In ACE, the algorithm automatically selects optimal non-parametric transformations for 

each of the variables such that the transformed response variable can be expressed as the 

sum of all the transformed explanatory variables and the input-output correlation 

coefficient is maximized. 

Note that the number of potential explanatory variables can be quite high, given that 

moving averages from multiple lags are considered for each of the terms in Eq. (1).  It is 

therefore necessary to ensure that the regression model includes only those predictor variables 

that have the highest correlation with the response variable, while taking into account any 

predictor-predictor correlations.  However, the selection of the most relevant predictors is carried 

out automatically as part of the stepwise regression process – thus, eliminating this onerous pre-

processing step.  On the other hand, both piecewise regression and ACE require the variables to 

be included in the model be specified a priori.  A careful examination of correlation and partial 

correlation coefficients is warranted in such cases to assist in the parsimonious selection of 

predictor variables and to avoid over-parameterization of the model.  An alternative would be to 
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use a data reduction technique such as principal component analysis (PCA) to combine the 

predictors into surrogate variables and apply principal component regression.  However, 

exploratory analysis with such an approach using data from Blue Spring did not yield regression 

models superior to those generated using stepwise regression. 

The workflow for modeling the spring discharge can be summarized as follows: 

• Split the period of record into a late-time period, where detailed groundwater level 

measurements are available, and an early time period where only limited or no 

groundwater level measurements are available. 

• For each period, organize the spring discharge data (response variable) and the 

corresponding moving averages of groundwater levels, precipitation, discharge at same 

spring and discharge at adjacent springs (predictors).  

• Retain only those predictor variables for which the number of data points is at least 80% 

of the number of spring discharge measurements.  This threshold has been applied to 

ensure that the characteristics of the spring discharge time series can be captured as much 

as possible by the regression model. 

• Build a forward stepwise regression model between spring discharge (response) and 

some or all of the following predictors:  discharge at same spring, discharge at adjacent 

springs, precipitation, and groundwater levels. 

An important point to note here is that these regression models are being built with the 

“best available data”.  The quality of the model therefore depends on data coverage, presence of 

groundwater monitoring wells in the immediate vicinity, and availability of discharge 

measurements at nearby springs that can be used as ancillary data sources. 

4.2 Regression Models for PDL Springs 

One modeling period can be identified for PDL: 

• 1965-1997 period, when groundwater level measurements are available from L-0045, 

V-095, and V-0096; along with discharge data from Blue Spring.   
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Stepwise regression analyses were performed for the above mentioned modeling period 

and the results are presented below.  The stepwise regression analysis for the PDL data produced 

the following model: 

 PDL = PDL..12.week + PDL..48.week +  PDL..52.week + Blue-Spring..52.week 

  + L.0045..8.week  + L.0045..48.week + L.0045..52.week (3) 

The multiple R2 for this regression model was 0.57.  The standard error of estimate 

was 2.89.  The F-statistic was 29.605, and the p-value was 0.  Estimated regression coefficients 

and their statistics are given below in Table 6.   

In Table 6, the “B” column contains the regression coefficients in actual units.  The 

“beta” column denotes the standardized regression coefficients (SRC) that would have resulted if 

the predictor variables had been normalized to zero mean and unit standard deviation.  The 

absolute value of the SRCs can be used as an indicator of variable importance (Draper and Smith, 

1981).  Thus, the most important predictor variables can be identified as [L-0045 48-week], 

[L-0045 52-week] and [PDL 48-week]. 

Table 6 PDL– regression coefficient statistics. 

N = 149 Beta Std.Err. B Std.Err. t(135) p-level
Intercept -1.67405 3.717885 -0.45027 0.653207
Ponce De Leon- 52 week -0.43221 0.519382 -0.55553 0.667581 -0.83216 0.406727
L-0045-8week 0.53170 0.096945 1.93914 0.353564 5.48456 0.000000
L-0045-48week -1.20757 0.703044 -5.14812 2.997218 -1.71763 0.088059
Ponce De Leon- 12 week 0.17028 0.090858 0.17495 0.093350 1.87414 0.062980
Ponce De Leon- 48 week 0.87540 0.535413 1.12340 0.687096 1.63499 0.104281
Blue Spring- 52 week 0.10275 0.085744 0.03471 0.028963 1.19828 0.232819
L-0045-52week 0.80951 0.695952 3.45109 2.966979 1.16317 0.246726

Regression Summary for Dependent Variable: Ponce de Leon (PDL_Data_until_1997_Regression.sta)
R= .77142811 R²= .59510133 Adjusted R²= .57499998

F(7,141)=29.605 p<0.0000 Std.Error of estimate: 2.8923

 
 

Figure 6 shows a comparison between the observed and fitted values of PDL Springs 

discharge.  The scatter in the data is consistent with a final R2 of 0.57.  Note also the resulting 

under prediction of some high discharge values and over prediction of some low discharge 

values (i.e., the outliers in Figure 6). 
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Figure 6 PDL – comparison of observed and predicted values. 

Figure 7 shows a normal probability plot of the residuals for the PDL regression.  The 

linearity of the data suggests that standard assumptions for normally distributed errors in a 

multivariate linear regression model have been satisfied and the model is properly parameterized. 

 
Figure 7 PDL – normal probability plot of residuals. 
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To compare observed versus predicted discharges, it is also useful to consider the variance 

values for the two records.  The F-test for variance equality is often employed for this purpose.  

This test makes a statistical comparison between the variances of two data sets through the 

calculation of three values (Ott, 2006): 

• Calculated F-value: depends on the variance values for the observed and predicted 

discharge values and the two sample sizes, 

• Critical F-value: depends on the two sample sizes and the desired significance level for 

the test, and 

• P-value: calculated based on the difference between the calculated and critical F-values. 

If the Calculated F-value is greater than the Critical F-value then, reject H0 (the null hypothesis 

which states that the standard deviations of two normally distributed populations are equal, and 

thus that they have similar spreads) at the chosen level of confidence (alpha = 0.05).  If this is the 

case then look at the P-value to evaluate the chances of observing an F-value that is greater than 

the calculated value. 

In general, it is expected that regression-predicted values are generally smoother than 

actual observed discharge values. To quantify the effects of this smoothing on the generated 

period of record, two tools are used, a quantitative evaluation and visual comparison.  The 

quantitative evaluation is the Kolmogorov-Smirnov (K-S) test which evaluates the differences 

between the empirical distribution functions for the observed and predicted time-series 

(D'Agostino and Stephens, 1986).  Under the null hypothesis that the two cumulative distribution 

functions are identical, the test statistic D for this test is the greatest absolute vertical distance 

between the two empirical distribution functions.  This test statistic is not dependent on the two 

underlying distributions.  Therefore the p-value for this test is only dependent on the two sample 

sizes, which can be different. 

The K-S D statistic can be used to evaluate if the two cumulative distributions functions 

(CDFs) are statistically similar.  Another qualitative tool often employed to compare two data 

sets is the box-whisker plot (also known in the literature as the box plot, Ott, 2006).  This plot is 

a convenient way of graphically depicting the location and spread of the two (or more) data sets.  

The plot shows the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and 
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largest observation.  Furthermore, the plots show which observations, if any, are considered to be 

outliers.  These plots visually show different types of populations, without any assumptions of 

the statistical distribution or requirements about the sample sizes.  The box size (difference 

between Q3 and Q1) helps indicate variance.  Skew is also graphically shown through (1) the 

location of the median in relation to Q1 and Q3, (2) the maximum and minimum values, and 

(3) the number of value of outliers. 

Table 7 shows the F-test and K-S test between observed PDL Springs time-series and 

predicted PDL Springs time-series on days corresponding to observed data.  Results for the 

F-test indicate that there is a significant difference between the two variances.  However, the K-S 

D statistic does not show a significant difference between the two empirical CDFs. 

Table 7 F-test and K-S test between observed and predicted PDL timeseries. 
  PDL (observed) PDL (predicted) 

Mean 26.64 26.67 
Variance 24.44 13.47 

Observations 247 247 
df 246 246 
F 1.81 

P(F<=f) one-tail 0.00 
F Critical one-tail 1.23 

K-S D statistic 0.08 
p-value for K-S test 0.35 

 

Figure 8 shows the box-whisker plots for three data sets: 

(1) observed discharge values at PDL Springs for the time period 1965-1997, 

(2) regression-predicted values for the same dates at which observed discharge value are 

available, and 

(3) regression-predicted values from the regression model for each day in the time period 

1965-1997.  

 

The plots show that the observed discharge values at PDL Springs show slightly higher 

variability than the regression-predicted values (data sets 1 and 2).  However, data set 3, which 
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shows a complete record of predictions, shows slightly higher variability than data set 2.  This 

shows that the regression predictions show slightly higher variability than the observed values. It 

is expected, however, that more variance would have been observed if more observations had 

been made in the same time period.  In conclusion, the regression-predicted values show a 

similar range of variability as the observed discharge values with the complete daily predicted 

record showing plausible variability. 

 

 
Figure 8 PDL – Box and Whisker plot. 

 

4.3 Regression Models for Gemini Springs 

The two modeling cases for Gemini Springs are as follows: 

• Gemini 1995-2000, where a relationship is sought between Gemini Springs discharge, 

Blue Spring discharge, and water levels at S-0257 in order to predict the daily Gemini 

Springs discharge prior to 1995 (when no measurements are available at the spring of 

interest itself, and  
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• Gemini 1995-2004, where a relationship is sought between Gemini Springs discharge, 

Blue Spring discharge, rainfall at Sanford and water levels at S-0257 and S-1230 in order 

to predict the daily Green Springs discharge during this period (1995-2004). 

Stepwise regression analyses were performed for both of these modeling periods and the 

results are presented below. 

The stepwise regression analysis of the 1995-2000 Gemini Springs discharge data 

produced the following model: 

 Gemini = Blue.Spring..12.week +  Blue.Spring..48.week + Blue.Spring..52.week 

  + S.0257..12.week + S.0257..24.week (4) 

The multiple R2 for this regression model was 0.47.  The residual standard error was 0.87.  The 

F-statistic was 6.9 and the p-value was 0.  Estimated regression coefficients and their statistics 

are given below in Table 8.  The most important variables in the regression model, identified on 

the basis of the absolute value of the SRC, are [Blue Spring 52-week], [Blue Spring 48-week], 

[S-0257 24-week] and [S-0257 12-week].   

An alternative model that included moving averages of rainfall recorded at Stanford 

produced a better fit for this data set.  However, its application for daily discharge predictions 

produced too much noise – indicating that the fluctuations in the rainfall time series were not 

being damped by other explanatory variables.  It was therefore decided to exclude Sanford as an 

explanatory variable in order to retain a reasonable degree of variability in the daily springflow 

predictions.  

Table 8 Gemini – 1995-2000 – regression coefficient statistics. 

N = 34 Beta Std.Err. B Std.Err. t(28) p-level
Intercept 6.313614 7.493850 0.84251 0.406644
S-0257-24 week 0.96838 0.403572 1.433453 0.597390 2.39953 0.023314
Blue Spring-52week -1.38467 0.596370 -0.321406 0.138428 -2.32182 0.027739
Blue Spring-12week 0.12028 0.213227 0.012948 0.022954 0.56410 0.577174
Blue Spring-48week 1.06485 0.611768 0.246067 0.141369 1.74060 0.092734
S-0257-12 week -0.60016 0.350785 -0.809407 0.473087 -1.71090 0.098158

Regression Summary for Dependent Variable: Gemini (Rerun2_Gemini_woutGemlangs_1995-2000.sta)
R= .74189587 R²= .55040949 Adjusted R²= .47012547
F(5,28)=6.8558 p<.00027 Std.Error of estimate: .86705
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Figure 9 shows a comparison between the observed and fitted values of the 1995-2000 

Gemini Springs discharge indicating agreement that is consistent with the moderate R2 value 

of 0.47. 

Predicted vs. Observed Values
Dependent variable: Gemini
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Figure 9 Gemini – 1995-2000 – comparison of observed and predicted values. 

Figure 10 shows a normal probability plot of the residuals for the 1995-2000 period of 

Gemini Springs discharge, with minor deviations from linearity at low values of residuals. 
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Figure 10 Gemini – 1995-2000 – normal probability plot of residuals. 
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A stepwise regression analysis of the 1995-2004 Gemini Springs discharge data produced 

the following model: 

 Gemini = S.1230..4.week + S.1230..6.week + S.1230..8.week + S.1230..24.week 

 + Sanford + Sanford..4.week + Sanford..8.week + Sanford..12.week 

 + Sanford..52.week (5) 

The multiple R2 for this regression model was 0.79.  The standard error of estimate was 0.77.  

The F-statistic was 16.58, and the p-value was 0.  Estimated regression coefficients and their 

statistics are given below in Table 9.  The most important variables in the regression model, 

identified on the basis of the absolute value of the SRC, are [S-1230 4-week], [S-1230 8-week] 

and [S-1230 24-week].  

 

Table 9 Gemini – 1995-2004 – regression coefficient statistics. 

N = 39 Beta Std.Err. B Std.Err. t(29) p-level
Intercept -2.67901 3.170252 -0.84505 0.405003
S-1230-24 week 1.14099 0.221150 1.30807 0.253533 5.15936 0.000016
Sanford- 12 week 0.69916 0.176118 11.43520 2.880518 3.96984 0.000434
S-1230-8 week -1.58770 0.523912 -1.51468 0.499817 -3.03047 0.005096
Sanford- 8 week -0.34810 0.190757 -4.94203 2.708199 -1.82484 0.078343
S-1230-4 week 1.65641 0.665143 1.52284 0.611504 2.49031 0.018740
Sanford -0.16438 0.078362 -0.55164 0.262974 -2.09772 0.044758
Sanford-52 week 0.33889 0.179265 12.16646 6.435694 1.89047 0.068726
Sanford- 4 week -0.23539 0.128170 -2.68144 1.460054 -1.83653 0.076549
S-1230-6 week -0.86939 0.756274 -0.80867 0.703455 -1.14957 0.259713

Regression Summary for Dependent Variable: Gemini (Rerun_Gemini_PCC_STAT_Input_1995-2004)
R= .91500908 R²= .83724162 Adjusted R²= .78673040
F(9,29)=16.575 p<.00000 Std.Error of estimate: .60752

 
 
 

Figure 11 shows a comparison between the observed and fitted values of the 1995-2004 

Gemini Springs discharge indicating good agreement. 
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Predicted vs. Observed Values
Dependent variable: Gemini
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Figure 11 Gemini – 1995-2004 – comparison of observed and predicted values. 

Figure 12 shows a normal probability plot of the residuals for the 1995-2000 period of 

Gemini Springs discharge, with minor deviations from linearity at low and high values of 

residuals. 
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Figure 12 Gemini – 1995-2004 – normal probability plot of residuals. 
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To compare observed versus predicted discharges, the same methods described before for 

PDL Springs are used for Gemini Springs.  Results for the F-test and K-S D statistic are shown 

in Table 10.  Results for the F-test indicate that there is no statistically significant difference 

between the two variances; with values of 1.88 and 1.50 for the observed and regression-

predicted values, respectively.  Similarly, the K-S D statistic shows no significant difference 

between the two empirical CDFs. 

As mentioned before for PDL Springs, the F-test and the K-S D statistic do not show the 

nature of the difference between the two time series. To provide some insight into these 

differences, Figure 13 shows the box-whisker plots for the observed and regression-predicted 

discharge values (along with the complete regression-predicted period of record).  The plots 

show that the differences between the observed and predicted values are largely due to the 

existence of one low-value outlier in the observed time series.  The non-outlier range is almost 

identical for the two time series, with a slight difference at the upper end.  Data set 3 (which 

shows a complete record of pooled model predictions) shows much more variability than data 

set 2, with an overall variability that is higher than the observed record.  It is expected, however, 

that more variance would have been observed if more observations had been made in the same 

time period.  In conclusion, the regression-predicted values show a reasonably similar range of 

variability as the observed discharge values with the complete daily predicted record showing 

plausible variability. 

 

Table 10 Gemini Springs - 1995-2004 Observed and Regression-Predicted Variance 
Statistics 

 Gemini (observed) Gemini (predicted) 
Mean 9.93 10.05 

Variance 1.88 1.50 
Observations 68 68 

df 67 67 
F 1.25 

P(F<=f) one-tail 0.18 
F Critical one-tail 1.50 

K-S D statistic 0.09 
p-value for K-S test 0.96 
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Figure 13 Gemini – Box and Whisker plot. 

4.4 Regression Models for Green Springs 

The two modeling cases for Green Springs are as follows,  

• Green pre-1996, where a relationship is sought between Green Springs discharge, water 

levels at V-0166 and rainfall at Sanford during the 2000-2004 period in order to predict 

discharge at Green Springs in the 1987-1996 period, and  

• Green 1999-2004, where a relationship is sought between Green Springs discharge, Blue 

Spring discharge, rainfall at Sanford and water levels at V-0810, V-0772, and V-0166 in 

order to predict daily Green Springs discharge during this period and also for 1996-1999. 

Stepwise regression analyses were performed for both of these modeling periods and the 

results are presented below.  The stepwise regression analysis of the first dataset (referred to as 

Green Springs pre-1996) produced the following model: 

 Green = V.0166.24.week + V.0166..48.week + V.0166..52 + Sanford..1.week + 

 + Sanford..3.week + Sanford..48.week (6) 
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The multiple R2 for this regression model was 0.89.  The standard error of estimate 

was 0.28.  The F-statistic was 35.1, and the p-value was 0.  Estimated regression coefficients and 

their statistics are given below in Table 11.  The most important variables were 

[V-0166 52-week] and [V-0166 48-week].   

Table 11 Green - pre-1996 – regression coefficient statistics. 

N = 29 Beta Std.Err. B Std.Err. t(21) p-level
Intercept -10.3182 1.912913 -5.39399 0.000024
Sanford_48week 0.371090 0.155638 9.9353 4.166933 2.38432 0.026621
V-0166_24week 0.450713 0.111107 0.5010 0.123506 4.05658 0.000568
Sanford_12week 0.372201 0.123698 3.8407 1.276435 3.00895 0.006684
Sanford-3week -0.345206 0.114099 -2.0444 0.675725 -3.02550 0.006435
V-0166_52week 1.017014 0.415291 1.3844 0.565316 2.44892 0.023193
V-0166_48week -0.926160 0.435435 -1.2006 0.564475 -2.12698 0.045439
Sanford-1week 0.193179 0.094735 1.0750 0.527168 2.03915 0.054219

Regression Summary for Dependent Variable: Green (Green-pre2000_V0166)
R= .95981092 R²= .92123700 Adjusted R²= .89498266
F(7,21)=35.089 p<.00000 Std.Error of estimate: .28398

 

Figure 14 shows a comparison between the observed and fitted values for the Green 

Springs pre-1996 data set indicating good agreement.  Figure 15 shows a normal probability plot 

of the residuals for the Green pre-1996 model, indicating proper linear-type diagnostics. 

Predicted vs. Observed Values
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Figure 14 Green – pre-1996 – comparison of observed and predicted values. 
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Normal Probability Plot of Residuals
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Figure 15 Green – pre-1996 – normal probability plot of residuals. 

 

The stepwise regression analysis of the second dataset (referred to as Green Springs 

1999-2004) produced the following model: 

 Green = V.0810 + V.0772 + Sanford..4.week + Sanford..8.week  

  + Sanford..48.week (7) 

The multiple R2 for this regression model was 0.97.  The standard error of estimate was 0.14.  

The F-statistic was 189.3, and the p-value was 0.  Estimated regression coefficients and their 

statistics are given below in Table 12.  The most important variable was [V-0810]. 

Table 12 Green – 1999-2004 – regression coefficient statistics. 

N = 28 Beta Std.Err. B Std.Err. t(22) p-level
Intercept -3.79682 0.435729 -8.71371 0.000000
V-0772 -0.056706 0.324536 -0.02285 0.130799 -0.17473 0.862889
Sanford-8week 0.378254 0.072825 3.67987 0.708480 5.19404 0.000033
Sanford-4week -0.384526 0.074412 -2.25024 0.435461 -5.16749 0.000035
Sanford-48week 0.271348 0.093230 7.73961 2.659183 2.91052 0.008107
V-0810 0.702443 0.273103 0.28869 0.112240 2.57208 0.017386

Regression Summary for Dependent Variable: Green (Green-post2000)
R= .98858006 R²= .97729053 Adjusted R²= .97212929
F(5,22)=189.35 p<.00000 Std.Error of estimate: .14838
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Figure 16 shows a comparison between the observed and fitted values for the Green 

Springs 1999-2004 data set indicating good agreement. 

Predicted vs. Observed Values
Dependent variable: Green
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Figure 16 Green – 1999-2004 – comparison of observed and predicted values. 

Figure 17 shows a normal probability plot of the residuals for the Green 1999-2004 

model, indicating proper linear type diagnostics excepting in the very high residual range. 
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Figure 17 Green – 1999-2004 – normal probability plot of residuals. 
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To compare observed versus predicted discharges, the same methods described before for 

PDL Springs are used for Green Springs.  Results for the F-test and K-S D statistic are shown in 

Table 13.  Results for the F-test indicate that there is no statistically significant difference 

between the two variances; with values of 0.73 and 0.75 for the observed and regression-

predicted values, respectively.  Similarly, the K-S D statistic shows no significant difference 

between the two empirical CDFs. 

As mentioned before for PDL Springs, the F-test and the K-S D statistic do not show the 

nature of the difference between the two time series.  To provide some insight into these 

differences, Figure 18 shows the box-whisker plots for the observed and regression-predicted 

discharge values (along with the complete regression-predicted period of record).  The plots 

show that there are slight differences between the observed and predicted values at the upper 

end.  The lower end is naturally bounded by the zero discharge observations and the physical 

constraint used to ensure that regression-generated discharge values are not negative.  The non-

outlier range is almost identical for the two time series.  Data set 3 (which shows a complete 

record of pooled model predictions) shows much more variability than data set 2, with an overall 

variability that is higher than the observed record.  It is expected, however, that more variance 

would have been observed if more observations had been made in the same time period.  In 

conclusion, the regression-predicted values show a reasonably similar range of variability as the 

observed discharge values with the complete daily predicted record showing plausible 

variability. 

Table 13 Green – 1999-2004 Observed and Regression-Predicted Variance Statistics. 
 Green (observed) Green (predicted) 

Mean 1.28 1.30 
Variance 0.73 0.75 

Observations 31 31 
Df 30 30 
F 0.97 

P(F<=f) one-tail 0.47 
F Critical one-tail 0.54 

K-S D statistic 0.10 
p-value for K-S test 1.00 
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Figure 18 Green – Box and Whisker plot. 
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5.0 PREDICTION OF DAILY DISCHARGE AND FLOW 
DURATION  

5.1 Daily Discharge Predictions and Flow Duration Curves for PDL 

Predictions of daily discharge and flow duration curves for PDL are carried out with the 

help of Eq. (3).  Figure 19 shows these daily predictions juxtaposed with actual measurements of 

PDL discharge (at an average frequency of 55 days).  The agreement between both the two time 

series is quite good and the absence of any significant divergent trends indicates that the linear 

model is able to capture the general trend of the spring discharge.   
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Figure 19 Daily discharge predictions for PDL, 1966-2001. 

 

Figure 20 shows the flow duration curve, i.e., discharge versus percent exceedance for 

the long-term simulation generated from the results of the statistical modeling, indicating good 

agreement between the statistical characteristics of the observed and predicted spring discharge. 
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Figure 20 Flow duration curve for PDL Springs. 

 

The corresponding high- and low-flow frequency analyses for the system (frequency of 

spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months, and 1 year) 

are shown in Figure 21. 

5.2 Daily Discharge Predictions and Flow Duration Curves for Gemini 
Springs 

Predictions of daily discharge and flow duration curves for Gemini Springs are carried 

out with the help of Eq. (4) for the pre-1995 period and Eq. (5) for the post-1995 period.  

Figures 22 and 23 show these daily predictions juxtaposed with actual measurements of Gemini 

Springs discharge (at an average frequency of 56 days).  The agreement between both the two 

time series is quite good and the absence of any significant divergent trends indicates that the 

linear model is able to capture the general trend of the spring discharge.   
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Figure 21 High- and low-frequency analysis of discharge for PDL Springs.  

Date:  July 5, 2007 

File:  Fig 21.pdf 

High- and low-frequency analysis of discharge for PDL Springs 

St. Johns River Water Management District 
Palatka, Florida 

Figure 21 

 (a) High-flow frequency analysis

(a) Low-flow frequency analysis
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Figure 22 Daily discharge predictions, Gemini Springs, 1996-2004. 

The sparsity of actual observations of Gemini Springs discharge during the 1953-1996 

period preclude a meaningful evaluation of the reliability of the daily predictions shown in 

Figure 23, generated using Eq. (5).  However, it should be noted that the few measurements that 

are available are generally consistent with the predictions – excepting for the outliers in the 1993 

time frame.   
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Figure 23 Daily discharge predictions, Gemini Springs, 1953-1996. 
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Figure 24 shows the flow duration curve for Gemini Springs, i.e., discharge versus 

percent exceedance for the long-term simulation generated from the results of the statistical 

modeling, indicating good agreement between the statistical characteristics of the observed and 

predicted spring discharge. 
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Figure 24 Flow duration curve for Gemini Springs. 

 
 
 

The corresponding high- and low-flow frequency analyses for the system (frequency of 

spring discharge for  durations of  1 month, 2 months, 3 months, 4 months, 6 months and I year) 

are shown in Figure 25. 
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Figure 25 High- and low-frequency analysis of discharge for Gemini Springs.  

Date:  July 5, 2007 

File:  Fig 25.pdf 

High- and low-frequency analysis of discharge for Gemini Springs 

St. Johns River Water Management District 
Palatka, Florida 

Figure 25 

(a) Low-flow frequency analysis

 (a) High-flow frequency analysis
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5.3 Daily Discharge Predictions and Flow Duration Curves for Green 
Springs 

Predictions of daily discharge and flow duration curves for Green Springs discharge are 

carried out with the help of Eq. (6) for the pre-1996 period and Eq. (7) for the post-1996 period.  

Figures 26 and 27 show these daily predictions juxtaposed with actual measurements of PDL 

discharge (at an average frequency of 57 days).  The agreement between both the two time series 

for the post-1996 period (Figure 26) is quite good and the absence of any significant divergent 

trends indicates that the linear model is able to capture the general trend of the spring discharge.   
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Figure 26 Daily discharge predictions, Green Springs, 1996-2004. 

 
 

The sparsity of actual observations of Green Springs discharge during the pre-1996 

period preclude a meaningful evaluation of the reliability of the daily predictions shown in 

Figure 27, generated using Eq. (7).   
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Green prediction - 1/6/1988 to 12/25/1996
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Figure 27 Daily discharge predictions, Green Springs, 1988 – 1996. 
 

Figure 28 shows the flow duration curve for Green Springs, i.e., discharge versus percent 

exceedance for the long-term simulation generated from the results of the statistical modeling, 

indicating good agreement between the statistical characteristics of the observed and predicted 

spring discharge. 
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Figure 28 Flow duration curve for Green Springs. 

 

The corresponding high- and low-flow frequency analyses for the system (frequency of 

spring discharge for durations of 1 month, 2 months, 3 months, 4 months, 6 months and 1 year) 

are shown in Figure 29.
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Figure 29 High- and low-frequency analysis of discharge for Green Springs.  

Date:  July 5, 2007 

File:  Fig 29.pdf 

High- and low-frequency analysis of discharge for Green Springs 

St. Johns River Water Management District 
Palatka, Florida 

Figure 29 

(a) Low-flow frequency analysis

 (a) High-flow frequency analysis
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

This document presents an evaluation of the spring discharge data for PDL, Gemini, 

Green, and Blue springs; groundwater levels at adjacent monitoring wells and precipitation 

measurements at nearby rain gage stations.  Based on this evaluation, a regression modeling 

methodology is developed and applied for generating daily spring discharge records at PDL, 

Gemini, and Green springs.  Flow duration curves are then generated along with high- and low-

frequency analyses for set durations from the simulated daily spring discharge.  The following 

general conclusions can be made based on this study.  

• Most measurements of spring discharge and groundwater level are at a frequency of 

~30 days greater – necessitating the generation of moving averages with commensurate 

lags to be used as surrogate predictor variables.   

• The Blue Spring daily discharge values show significant correlation with the daily 

discharge values at Gemini Springs and some correlation with PDL.  This fact, along with 

the fact that more data are available for estimating early time daily discharge at Blue 

Spring, has been utilized to help estimate discharge at the PDL and Gemini springs 

during the early time period when groundwater level measurements are scarce. 

• Typically, two regression models of spring discharge are needed: (a) one for the period 

when groundwater levels and rainfall data are available, and (b) one for the period when 

rainfall data are supplemented with discharge from adjacent springs and perhaps 

groundwater levels from one or two long-term monitoring wells. 

• Stepwise regression is a good starting point for regression modeling – as indicated by the 

linearity of the residuals in a probability plot and the reasonable nature of daily discharge 

predictions compared to actual observations recorded at less frequent intervals.   

• Daily discharge predictions can be made for PDL as far back in time as 1966 with 

reasonable accuracy.  However, comparable predictions can only be made until 1996 for 

Gemini Springs and until 1988 for Green Springs. 
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Based on the data evaluation, regression model building and discharge prediction exercises 

undertaken during this study, the following recommendations are offered to improve the 

modeling process in a subsequent phase. 

• Given that some of the regression models produced R2 values of ~0.50, it might be useful 

exploring other regression techniques for these datasets.  Hastie et al. (2001) describe 

several alternatives to multivariate linear regression such as (a) generalized additive 

modeling, (b) tree-based methods, (c) multivariate adaptive regression splines and (d) 

neural networks.  Such models could potentially improve the accuracy of the daily 

predictions by capturing non-linear trends and/or variable interactions between the 

response and predictor variables. 

• Many of the data sets have an average frequency of 30 days or more.  As such, there are 

data gaps even after the computation of moving averages with lags as long as 8 and 

12 weeks.  In this study, such gaps were generally filled using simple linear interpolation.  

It is recommended that a more advanced approach such as spline fitting be employed to 

fill the data gaps remaining after the computation of moving averages. 

• The number of groundwater monitoring wells associated with a spring was limited in this 

study to those in its geographical vicinity so as to simplify the regression modeling 

process.  However, in stepwise regression, the number of potential predictor variables is 

not a constraint.  As such, it is recommended that groundwater monitoring wells falling 

within a larger radius than that used in this study be used as candidate predictor variables. 

• The generation of daily spring discharge based only on rainfall records and perhaps the 

discharge at an adjacent spring does not appear to a feasible proposition.  It is 

recommended that daily spring discharge prediction exercises be limited to situations 

where ancillary groundwater level measurements are available.  

In summary, we note that the although reasonable predictions of daily discharge have 

been made for all three springs of interest using the best available data, the corresponding 

periods of record are only ~10 years for Gemini Springs and ~20 years for Green Springs.  
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The daily period of record generated by the multiple regression models provides an 

estimate for the historic time series of spring discharge values. These estimated discharge values 

are developed for uses where such a time series is required, such as a frequency analysis of 

historic flows for MFL determinations.  It must be explicitly stated that the presented multiple 

regression models are not physical and should not be used for predictive purposes or to interpret 

the relationships between spring discharge values and explanatory variables such as groundwater 

levels, recorded rainfall, or recorded discharges at nearby springs.  A specific caution is made 

that predictions achieved by altering the explanatory variables from their observed values and re-

generating the spring discharge time series entail assumptions not supported here.   
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Appendix A:  Model Usage Notes 

This Appendix describes the structure and operation of an ACCESS database created to facilitate 
predictive applications of the statistical spring discharge models described earlier in Section 4.  
An example using Bugg Spring data is also presented. 
 
1. Folder: Spring Daily Predictions –  

 
The folder Spring Daily Predictions has two files as shown below: 

• St.Johns.mdb 
• Predictions.xls 

 

 
 
After building the statistical models in STATISTICA, St.Johns.mdb – an ACCESS database 
was built for applying the statistical models to generate daily predictions for both springs. A 
screenshot of the database is shown below. 
 

 
On the left, are the different tables present in the database and on the right is a prediction 
toolbox. The prediction toolbox executes ACCESS queries and/or VISUAL BASIC 
APPLICATION Modules, on the click of different buttons. Predictions.xls – EXCEL file is 
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used to graphically display the daily predictions and frequency analysis generated in 
St.Johns.mdb. The next few pages will walk the user through using the toolbox for generating 
daily predictions and frequency analysis with the help of an example. It will also guide the user 
on how to save the results for different cases.  
 
In the example below, our primary task would be to get Bugg Spring daily predictions from 
10/27/1973 to 11/28/2005. 
 
2. Open St.Johns.mdb 
 
Open St.Johns.mdb (highlighted below) by double clicking the file. 
 

 
 
The original spring discharge, groundwater elevation, lake level and precipitation data reside in 
the “Original Data” ACCESS data table. The screenshot below indicates the Original Data 
table within the database. 
 

 
 
Double-clicking this table would open the Original Data table as shown below. 
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The table has 38747 records for dates ranging from 1/1/1900 to 1/31/2006. If the user wants to 
change a particular data time series, pasting the new time series (with dates from 1/1/1900 to 
1/31/2006) over the old one is one of the ways to do it.  
 
If the user has another ACCESS database with new time series data, it can be added to the 
Original Data table using an Append Query. Append Query allows the user to append one or 
more columns to the Original Data table. For example, if a new time series for L-0096 becomes 
available, append the new data column as L-0096(new) using the Append Query. Then delete the 
old L-0096 column from Original Data table and rename L-0096(new) as L-0096. If data is not 
available for a particular date, the user can leave it blank as seen in Original Data table for 
different variables. 
 
3. Data Gap Filling to create “Modified Data” Table  
 
Gaps in the data (over continuous periods) are filled by regressing against more frequently 
observed data for a related variable. The need to fill data gaps for some wells arises during the 
calculation of moving averages.  For example, groundwater elevations at L-0703 can be 
predicted from water levels at L-0096 using a simple linear regression model.  Such 
relationships, developed for well pairs L-0703/L-0096 and L-0054/L-0096 have been pre-
programmed, and are invoked to fill in the gaps in the Original Data table. 
 
Therefore the next step is clicking the “Filling in data gaps” button on the prediction toolbox. 
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Clicking this button creates a Modified_data table as highlighted below: 
 

 
Open the Modified_data table by double-clicking on it. Below is the screenshot: 
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The user would notice some new variables present in the Modified_Table. For example, we see 
L-703-R highlighted in the above screenshot. L-703-R has all the original well-data for L-0703 
and some regressed data values from L-0096 using a simple linear regression model. Similarly, 
Modified_Table will also have L0054-R as new variable. Modified_Table also has additional 
columns called L-703-code and L-54-code, which flag the water-level data values filled by 
regression with letter “R”. This is highlighted in screenshot below: 
 

 
 



    Statistical Modeling of Spring Discharge 

Final Report A-6  

 
4. Calculating moving average variables for each spring 
 
The statistical models in the report show the use of moving averages of different variables 
(spring, groundwater level, lake level, and rainfall data) for predicting daily discharge for each 
spring. Computation of these variables, for each spring, is then performed by clicking the two 
buttons highlighted below.  
 

 
 
For example clicking on Calculate Moving Average/Bugg would fill the table Bugg present in 
the database. The screenshot below shows table Bugg: 
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The highlighted columns in the Bugg table above show some of the calculated moving averages 
to be used in the Bugg statistical model for daily discharge predictions. One extra piece of 
information generated on clicking Calculate Moving Average/Bugg is in the table Missing Dates 
shown below: 

 
 
The table above informs the user about interpolated values added to a particular data time-series 
to facilitate calculation of certain moving average variables. For example, in the first row, a 
linear interpolated value (12.05) is added on 3/23/2002 to fill a 42 day gap between 3/2/2002 and 
4/13/2002. Values in columns startvalue (11.9) and endvalue (12.2) are the data associated with 
3/2/2002 and 4/13/2002 respectively. This interpolation would then help in calculation of Bugg-
6-week moving average variable. 
  
Similarly, clicking Calculate Moving Average/Apopka, would fill the table Apopka with 
required moving average variables. Also, the Missing Dates table is updated for each spring. 
The following screenshot indicates the two tables being filled with moving average variables. 
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5. Calculate Spring discharge predictions and frequency analysis 
 
Spring discharge daily predictions are limited by a range of lower and upper date. This is due to 
limited date range coverage for explanatory variables in the statistical model for a particular 
spring. The following are the dates for the two springs for which daily discharge predictions can 
be computed: 
 

Spring Date Range for discharge predictions 
Apopka 6/2/1949 to 12/31/2005 
Bugg 10/27/1973 to 11/28/2005 

 
Clicking the buttons highlighted below give daily discharge predictions and maximum and 
minimum frequencies for date ranges specified by the user.  Note that these date ranges have to 
fall within the ranges mentioned above for a particular spring 

 
 
For example, on clicking Predict Spring Discharge - Bugg, we see a pop-up window asking for 
the date from which predictions are needed. For our example enter 10/27/1973. As noted earlier, 
the date entered should be greater than 10/26/1973, since Bugg Spring predictions are only 
available since that date. 
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Press OK. Another window asking for the date till which predictions are needed. For our 
example enter 11/28/2005. Again the date entered should be less than 11/29/2005, since Bugg 
Spring predictions are only available till 11/28/2005. 
 

 
 
On pressing OK, tables called Bugg-predictions, Bugg-Frequency-district and Bugg 
Frequency table-District are added to the ACCESS database as shown below: 
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Double click Bugg-predictions table to view. The screenshot on next page shows the observed 
Bugg discharge data and the predicted Bugg discharge data, between the lower and upper date 
ranges we entered. 

 
 
The highlighted columns above show Observed Bugg Discharge data, Bugg discharge 
predictions, Bugg discharge predictions upper (+) and lower (-) 95% confidence interval.  
 
Double-click table Bugg-Frequency-district to view. The table has continuously-exceeded and 
average values for 1-day, 30-day, 90-day, 183-day, 273-day and 365-day periods for each year 
starting on June 1 of a year and ending on May 31 of the next year. The table also has 
continuously-not-exceeded and average values for 1-day, 30-day, 90-day, 183-day, 273-day and 
365-day periods for each year starting on October 1 of a year and ending on September 30 of the 
next year. It is important to note that each year range for picking maximums and minimums is 
assumed to be independent of other years. The screenshot below shows some of the columns 
present in the table. 
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Double-click table Bugg Frequency Table-district to view. The table contains the maximums 
from 1-day, 30-day, 90-day, 183-day, 273-day and 365-day continuously-exceeded and average 
time-series for each year. The table also contains the minimums from 1-day, 30-day, 90-day, 
183-day, 273-day and 365-day continuously-not-exceeded and average time-series for each year. 
The screenshot below shows a few columns from the table 
 

 
 



    Statistical Modeling of Spring Discharge 

Final Report A-12  

Similarly predictions and, maximum and minimum frequencies, for Apopka Spring can be 
obtained for any specified upper and lower date ranges. Tables Apopka-predictions, Apopka-
Frequency-District, Apopka Frequency Table-district (shown below) are added to the 
database on clicking Predict Spring Discharge – Apopka and following all the above steps as for 
Bugg Spring.  

  
 
6. Viewing prediction plots and maximum and minimum frequencies 
 
Plots of observed and predicted daily discharge data can be viewed in the EXCEL file 
predictions.xls which is linked to the prediction tables in ACCESS. The file already has been 
run to include daily predictions and frequencies for Apopka and Bugg springs for the complete 
date ranges associated with the two springs. 

 
For our example, open predictions.xls. The screenshot below shows this file. By default, the 
Apopka worksheet opens up, which contains the predictions for the complete range for which 
daily discharge values can be computed for Apopka (6/2/1949 to 12/31/2005) 
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Click worksheet Bugg as shown below. We see the daily predictions for Bugg: 
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The next step is pressing the red exclamation button to refresh the predictions for the date range 
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark 
is highlighted by a red ellipse in the above figure. 

 
To view the plots for the above data, click on worksheet Bugg (pre3-13-90) for predictions 
before 3/13/1990 and worksheet Bugg (post3-13-90) for predictions from 3/13/1990. The 
worksheets have been highlighted in the figure above. The screenshot below shows worksheet 
Bugg (pre3-13-90): 
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Also, the screenshot below shows worksheet Bugg (post3-13-990): 

 

 
 
The procedure to view maximum and minimum frequencies is similar to viewing predictions. 
Click worksheet Bugg-FrequencyAnalysis as shown below. We see the maximum and minimum 
frequencies for Bugg for the year range 1974-2004 
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The next step is pressing the red exclamation button to refresh the frequencies for the date range 
which the user requested for this example, i.e. 10/27/1973 to 11/28/2005. The exclamation mark 
is highlighted by a red ellipse in the above figure. 
 
The table above only shows the maximum and minimum frequencies for the years they can be 
computed. 
 
7.  Saving results for different cases 
 
To save the daily discharge predictions and frequencies for a particular set of well or spring data 
in Original Data table, make another copy of the prediction tables in ACCESS and give them a 
different name. This step is crucial since for a new set of data, the prediction and frequency 
tables are overwritten. In our example for instance, copy the Bugg-predictions table as shown 
below: 
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ACCESS prompts for a new name as shown below: 
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Enter a table name and press OK. The prediction table for our example is created. Similarly 
create new tables for the Bugg-frequency-district and Bugg Frequency Table-district. The 
highlighted tables in the screenshot are the new tables created. 

 

 
It is also necessary to save the predictions and frequencies in predictions.xls in a different file 

before the prediction worksheets in EXCEL are refreshed to get predictions for a different case. 
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APPENDIX B:  Resolution of Peer Review Comments. 

Appendix B contains the comments provided by peer review of the first report in this Statistical 

Modeling of Spring Discharge series and the author’s resolution of these comments. This peer 

review and the subsequent resolution pertain to application of statistical methodology and are, 

therefore, included in this report as well.  The report modifications included some comments on 

potential use of the presented models as well as a clear statement of the models objectives.  
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Memorandum 

 

TO:  Bob Epting, St. Johns River Water Management District 

FROM: Shahrokh Rouhani, Ph.D., P.E., NewFields 

SUBJECT: Peer review of “Statistical Modeling of Spring Discharge at Ponce de Leon, 

Green, and Gemini Springs in Volusia County Florida” by Intera (2005) and 

“Statistical Modeling of Spring Discharge at Apopka and Bugg Springs in Lake 

County Florida” by Intera (2006) 

DATE:  July 16, 2006 

********************* 

INTRODUCTION 

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows 

and Levels (MFLs) and Water Supply Development projects.  Such projects require daily 

discharge time series at a number of springs of interest.  Most of these springs suffer from 

sporadic discharge measurements.  Intera (2005 and 2006) utilizes multiple regression models to 

estimate (hindcast) daily discharges at a number of springs of interest based on a variety of 

available nearby moving averages of measured spring discharges, groundwater levels, lake 

levels, and precipitation rates.  The estimated daily discharge time series at each spring are then 

used to generate frequency, duration, discharge curves. 

GENERAL COMMENT 

In general, I must note that the reports are well written, and easy to follow.  Furthermore, from a 

conceptual point of view, multiple regression of nearby hydrologic data to fill the gaps in times 

series of daily spring discharges is quite acceptable.  The resulting estimated time series and 

frequency curves also display reasonable patterns consistent with existing, albeit limited, 

discharge measurements at the investigated springs.  However, the review of the reports raises a 
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number of fundamental questions that may warrant further considerations by the authors.  These 

mainly statistical questions are the focus of this memorandum.    

SPECIFIC COMMENTS  

1. The above reports use multiple regression models that relate moving averages (MA) of 

nearby hydrologic data to estimate daily spring discharges.  Intera (2005) presents the general 

form of such a model as 

[Spring discharge] = f {[same spring MA] + [water level MA]  

+ [precipitation MA] + [adjacent spring MA]} 

The authors state that “the use of moving-average-based independent variables is 

necessitated by the fact that most independent variables are not measured on a daily basis.”  

Although, statistical methods, including multiple regression analysis, are not bound by 

hydrological principals, it is always desirable to use independent variables that are 

hydrologically consistent with the dependent variable. 

 

The independent variable in the above reports is daily spring discharge, i.e. a non-integrated 

or differentiated flow variable.  Daily precipitation is also a flow variable, while water levels 

(either groundwater or lake levels) are storage variables.  Within the context of mass balance, 

the net sum of flows is equal to the rate of change of storage variables.  In other words, in a 

linear model, daily spring discharge is expected to be related to (a) daily values of other flow 

variables (e.g. precipitation or nearby spring discharges), and (b) daily rates of changes in 

storage variables (e.g. water levels).  This implies that under ideal conditions, non-integrated 

flow variables and differentiated storage variables should be used in a regression model. 

 

While I recognize that absence of continuous data may make some of the above 

differentiations impossible, I am still puzzled about the fact that all dependent variables are 

uniformly integrated.  Integration is the exact opposite of what mass balance suggests.  In 

fact, in cases that continuous daily time series of storage variables (e.g. groundwater or lake 

levels) are available; their difference values should be explored as an alternative to the 

current moving averages.  For this purpose, continuous or augmented groundwater level time 

series, such as L-0054 and L-0703, along with other complete daily time series appear to be 
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suitable candidates.  I encourage the authors to consider this alternative approach, which is 

more consistent with the mass balance concept.  

 

2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of partial 

correlation coefficients (PCC) and stepwise analysis somehow solves this problem.  While 

the use of PCC and stepwise analysis are commendable, they do not address the issue of 

multicolinearity.   

 

Multiple regression analysis is based on the fundamental assumption that the variables on the 

right hand side of the equation are statistically independent, i.e. uncorrelated.  

Multicolinearity exists when independent variables are highly correlated.  Unfortunately, the 

reports do not contain any systematic information on cross correlations among independent 

variables.  However, statements made in Intera (2006) concerning high correlations among 

certain groundwater levels (which were used to justify the filling of data gaps in some of the 

monitoring wells) clearly indicate that at least some of the independent variables are highly 

correlated.  This is especially true for moving averages of the same variables, which are used 

concurrently as independent variables in the same model.  So one can assume that some, if 

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. 

 

A high degree of multicolinearity produces unacceptable uncertainty (large variance) in 

regression coefficient estimates.  Specifically, the coefficients can change drastically 

depending on which terms are in or out of the model and also the order they are placed in the 

model.  In fact, a typical consequence of multicolinearity is a high regression coefficient, 

when a number of independent variables have regression coefficients that are deemed as 

insignificant.  For example, Table 8 in Intera (2006) indicates that of the 13 independent 

variables used to estimate Apopka (post-1990) five variables have statistically insignificant 

coefficient (i.e. their p values are greater than or equal to 0.05), while R2 of the same model is 

nearly 0.80.  In other words, the regression results indicate that the collection of selected 

independent variables has explanatory power but we cannot tell which variable or to what 
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degree the individual variable is explaining the variations of the dependent variable.  

Generally, such ‘black-box’ models are viewed as undesirable.  

 

I encourage the authors to consider computing the variance inflation factor (VIF) of each 

independent variable.  VIF associated with the ith independent variable is equal to 

2
iR1

1
−

where iR is the regression coefficient of the ith independent variable on all of the other 

independent variables.  A rule of thumb is to treat any VIF in excess of 10 as evidence of 

multicolinearity.  Elimination of collinear independent variables should continue until all VIF 

are below 10.  This approach along with the stepwise analysis would lead to much more 

defensible models.  Other remedies are also discussed in Gujarati (Basic Econometrics, 4th 

Edition, McGraw Hill, 2002, Chapter 10).  

 

3. The results of predicted versus observed time series are visually satisfactory (e.g. Figure 18 

in Intera, 2006); however, their corresponding observed versus predicted plots (e.g. Figure 12 

in Intera 2006) display poor fits.  An explanation of this visual discrepancy would be helpful.  

I also noticed that the updated frequency curves for Apopka and Bugg springs are much 

closer to the pattern exhibited by the observed data.  However, the addendum dated July 11, 

2006 does not describe the reason for this improvement. 

 

4. To compare observed versus predicted discharges, the authors should also consider the 

comparison of their variances.  Results like Figure 12 (Intera, 2006) imply that the predicted 

values are much less variable that measured discharges.  Although, such results are not 

unexpected (estimated values are generally smoother than actual data), the impacts of such 

smoothings on the frequency curves must be discussed.  Specifically, are extreme discharges 

adequately estimated?   

 

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 7/11/06).  

While observed discharges in the central portion of the curve match their estimated values, 

extreme values deviate systematically, i.e. biased results.  Similar patterns are present in 
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almost all the generated frequency curves.  The authors should address this issue, and if 

deemed significant, appropriate remedies should be considered. 
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T E C H N I C A L  M E M O R A N D U M    
 
PREPARED FOR: Bob Epting, St. Johns River Water Management District 
PREPARED BY: Alaa Aly and Srikanta Mishra, INTERA Incorporated 
SUBJECT: Resolution of peer review comments of “Statistical Modeling of 

Spring Discharge at Ponce de Leon, Green and Gemini Springs in 
Volusia County Florida” by Intera (2005) and “Statistical Modeling 
of Spring Discharge at Apopka and Bugg Springs in Lake County 
Florida” by Shahrokh Rouhani, NewFields 

DATE: July 18, 2007 

 

INTRODUCTION 

St. Johns River Water Management District (District) is engaged in ongoing Minimum Flows 

and Levels (MFLs) and Water Supply Development projects.  Such projects require daily 

discharge time series at a number of springs of interest.  Most of these springs suffer from 

sporadic discharge measurements.  Intera (2005 and 2006) utilizes multiple regression models to 

estimate (hindcast) daily discharges at a number of springs of interest based on a variety of 

available nearby moving averages of measured spring discharges, groundwater levels, lake 

levels, and precipitation rates.  The estimated daily discharge time series at each spring are then 

used to generate frequency, duration, discharge curves. 

 

GENERAL COMMENT 
We appreciate the comments from Dr. Rouhani about the validity of the approach and the clarity 

of the presentation in the report. The following sections address the specific comments in the 

peer review memorandum. 
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SPECIFIC COMMENTS 
 

1. …… Within the context of mass balance, the net sum of flows is equal to the rate of 

change of storage variables.  …….  This implies that under ideal conditions, non-

integrated flow variables and differentiated storage variables should be used in a 

regression model. While I recognize that absence of continuous data may make some 

of the above differentiations impossible, I am still puzzled about the fact that all 

dependent variables are uniformly integrated.  Integration is the exact opposite of 

what mass balance suggests.  …….   I encourage the authors to consider this 

alternative approach, which is more consistent with the mass balance concept.  

 

While mass balance would suggest exactly what the reviewer points out, the presented models 

are statistical, not physical. Therefore, they are not intended to be used as mass balance models. 

The models are based on exploitation of the statistical correlation between the explanatory and 

response variables. For example, spring discharge is correlated with aquifer water levels, perhaps 

with a lead time. This correlation explains some of the variability in the observed spring 

discharge rates. Further, the correlation is improved using the average water level values rather 

than the individual measurements which always have higher variances. However, as the reviewer 

notes, spring discharge can also be expected to be correlated to the change in water levels over 

time. These changes are a function of the “net” change of fluxes to and from the aquifer. In the 

absence of other significant fluxes such as recharge and pumping, these changes will be closely 

correlated to the observed spring discharge rates. Unobserved (e.g., pumping) and unobservable 

(e.g., aquifer recharge) fluxes will complicate this correlation. Further, as noted, this difference is 

typically very difficult to obtain from real data as data gaps can be a major obstacle for such 

calculation. 
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2. Intera (2006) notes the issue of multicolinearity, but suggests that computation of 

partial correlation coefficients (PCC) and stepwise analysis somehow solves this 

problem.  …… Multiple regression analysis is based on the fundamental assumption 

that the variables on the right hand side of the equation are statistically independent, 

i.e. uncorrelated.  …..  However, statements made in Intera (2006) concerning high 

correlations among certain groundwater levels (which were used to justify the filling 

of data gaps in some of the monitoring wells) clearly indicate that at least some of the 

independent variables are highly correlated.  ......  So one can assume that some, if 

not all of the models used in Intera (2005 and 2006), suffer from multicolinearity. ….. 

I encourage the authors to consider computing the variance inflation factor (VIF) of 

each independent variable.  

 

First, multicolinearity is mainly a problem for the uniqueness and variances for the regression 

coefficients. That is, when correlated variables are used as explanatory variables, the fitted 

regression coefficients will not be meaningful and might have very high variances. However, the 

predicted values from such regression model are still acceptable with the only issue that needs to 

be addressed is whether adding the correlated variable(s) have resulted in unnecessary inflation 

of the prediction variance. This variance inflation resulting from adding more variables to the 

regression equation is exactly what is considered in the stepwise regression algorithm. As 

detailed below, a variable is only added to the regression equation if it will improve the 

prediction capability of the final regression equation without adding significantly to the 

prediction variance. Our experience in applying stepwise regression to outputs of probabilistic 

risk assessment models confirms this. We have also computed variance inflation factors for the 

discharge models for Rock and Wekiva springs, and these also indicate that the stepwise 

regression process has minimized multicolinearity issues. The following description of stepwise 

regression provides the background information for the procedure showing how multicolinearity 

is formally dealt with. 

 

In the utilized stepwise approach, a sequence of regression models is constructed starting with 

the input variable that explains the largest amount of variance in the output, i.e., the variable that 
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has the highest Pearson correlation coefficient with the output. At each successive step in the 

regression modeling process, the variable that explains the largest fraction of unexplained 

variance from the previous step is included.  This is the variable with the largest absolute value 

of the partial correlation coefficient.  The model generated at every step is tested to ensure that 

the each of the regression coefficients is significantly different from zero.  The test is 

implemented in two stages.  First, a variable selected for entry via the PCC criterion is tested for 

its significance before it is admitted into the model.  Second, after the model is built at that step, 

each of the variables in the model is tested for significance.  If some variables are found to be 

insignificant, then the “most insignificant” variable is dropped and the model is built again.  The 

sequential dropping of the variables judged to be not significant and rebuilding the model 

continues until all the variables in the model become significant at the prescribed levels.  The 

significance levels are prescribed separately for the entering and departing variables to avoid 

possible looping where the same variable can enter and depart from the model with the 

significance level for the departing variables generally set larger than that for the entering 

variable.  Note that the need for dropping a variable generally arises only in the cases when the 

input variables are strongly correlated (strong multicolinearity).  This step ensures that no 

significant multicolinearity will be present in the final multiple regression model. The stepwise 

regression process continues until the input-output model contains all of the input variables that 

explain statistically significant amounts of variance in the output (i.e., no more variables are 

found with a statistically significant regression coefficient).  

 

 

3. The results of predicted versus observed time series are visually satisfactory (e.g. 

Figure 18 in Intera, 2006); however, their corresponding observed versus predicted 

plots (e.g. Figure 12 in Intera 2006) display poor fits.  An explanation of this visual 

discrepancy would be helpful.  I also noticed that the updated frequency curves for 

Apopka and Bugg springs are much closer to the pattern exhibited by the observed 

data.  However, the addendum dated July 11, 2006 does not describe the reason for 

this improvement. 
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Figure 18 shows that the general pattern displayed by the observed discharge hydrograph for 

Bugg Spring. While there is significant visual scatter shown in Figure 12, this figure also shows 

that the vast majority of the predicted discharge values are in agreement with the observed 

values. Figure 12 also shows that there in no general bias in any direction for the entire range of 

observed discharge values, a further affirmation for the validity of predictive model. The 

explanations missing from the July 11, 2006 addendum have been added to the final report. 

 

4. To compare observed versus predicted discharges, the authors should also 

consider the comparison of their variances.  Results like Figure 12 (Intera, 2006) 

imply that the predicted values are much less variable that measured discharges.  

Although, such results are not unexpected (estimated values are generally smoother 

than actual data), the impacts of such smoothings on the frequency curves must be 

discussed.  Specifically, are extreme discharges adequately estimated?   

 

Consider the updated frequency curve for Bugg Spring (Intera addendum dated 

7/11/06).  While observed discharges in the central portion of the curve match their 

estimated values, extreme values deviate systematically, i.e. biased results.  Similar 

patterns are present in almost all the generated frequency curves.  The authors 

should address this issue, and if deemed significant, appropriate remedies should be 

considered. 

 

While it is not anticipated that extreme discharge values will be predicted accurately, it is 

important that no consistent bias is displayed by the predictive models. Figure 12 clearly shows 

that predicted values are not biased at either end of the observed discharge values because high 

and low values are equally spread around the regression line. Further, additional analyses are 

added to the report to examine the differences between the variances of the observed and 

regression-model-generated spring discharge values. 
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