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Executive Summary 
Levels of nitrate-N (nitrate) and 12 other water quality parameters were examined from 
published data from 56 wells in the Silver Springs springshed in an effort to locate 
specific regions that may be sources of elevated nitrate concentrations in Silvers Springs 
discharge. Clustering, principal components and spatial linear models (kriging) were 
computed and results plotted to aid in the location of elevated nitrate. A descriptive plot 
coloring wells by nitrate level and predictions from a kriging spatial model were by far 
the best locators of regions with elevated nitrate. Three regions were identified as having 
elevated nitrate levels, hence indicating possible sources of nitrate contamination: one 
area 6 miles northwest of Silver Springs, and two areas 8 miles and 14 miles south of 
Silver Springs.  The latter area is near the southern boundary of Marion County. 
 
The use of clustering and principal components provide interesting detail on how the 13 
water quality parameters are interrelated and specifically which parameters co-vary with 
nitrate, providing a nitrate-related index to water quality. However, kriging is the best of 
the three methods used to identify areas contributing to nitrate contamination at Silver 
Springs. 
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1 Introduction 
Silver Springs is the largest spring in the St Johns River Water Management District 
(District). It consists of 30 different vent groups in the upper 1,200 meters of the Silver 
River. In 2006, the District sampled the 30 spring vent groups for water quality and 
nutrients. Most of the different spring vents had elevated (greater than 1.0 mg/L) values 
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for nitrate-N. This is significant because a value of 1.0 mg/L of nitrate-N is considered by 
the Florida Springs Task force to be detrimental to the springs' ecology. In 2004, the U. 
S. Geological Survey (Phelps, 2004) published a report on the chemistry of ground water 
in the Silver Springs basin with an emphasis on nitrate. Phelps sampled 56 wells located 
within the Silver Springs spring shed and found nitrate-N to be elevated in many of them. 
In 2007, the District amended the existing contract with the Florida Department of 
Environmental Protection (FDEP) for Phase II and III, and to identify the areas in the 
spring shed that contribute nitrate-N to Silver Springs. The District has chosen cluster 
analysis and principle component analysis as a means of performing this work. 
Deliverables from this project will be provided to FDEP as part of the existing agreement 
between the District and FDEP. 

2 Objective 
The objective of this study is to identify the discrete areas in the spring shed that 
contribute nitrate-N to the different vent groups at Silver Springs. To achieve this 
objective, statistical cluster analysis and principle component analysis will be performed 
(using SPLUS statistical software) on water quality data collected from 34 samples 
collected at Silver Springs and 56 wells sampled by Phelps (2004). The Consultant shall 
prepare a report identifying areas within the spring shed that contribute nitrate-N (nitrate) 
to the springs. The report shall fully explain the analysis steps used to identify the 
contributing areas. 

3 Procedures 
Data received from the staff of the St John’s River Water Management District (District) 
were imported into S-PLUS and examined for irregularities by  

1. computing summaries (min, max, mean , median, 25th and 75th percentiles and the 
number of missing values),  

2. creating descriptive plots including histograms and pair-wise scatter plots, and 
3. creating maps of well and spring locations colored to indicate elevated values of 

nitrate.  
 
Because some of the nitrate levels were high (> 5.0 mg/L) all the nitrate values were 
checked against the data as listed in the Scientific Investigations Report 2004-5144, titled 
Chemistry of Ground Water in the Silver Springs Basin, Florida, with an Emphasis on 
Nitrate.  
 
Following the initial examination of the data, clustering (k-means) and principal 
components analyses were computed in an attempt to identify regions in the Silver 
Springs spring shed that contribute nitrate and other correlated water quality parameters 
to the springs. Prior to computing these analyses the data were rescaled to a mean of 0 
(zero) and variance of 1 (one) to avoid a potential problem of one or a few of the water 
quality parameters dominating, due to difference in scale, the clustering and principal 
components results.  
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In addition a spatial model was developed to create nitrate surface plots for better 
describing varying levels of nitrate in the spring shed. A kriging model was used to create 
the nitrate surface plots.  
 
 
 
 
 

4 Results 
The following sections describe the analyses in detail, sequentially.  

1. Descriptive statistics – verifying and understanding the data 
2. Clustering  
3. Principal components 
4. Nitrate spatial model 

4.1 Descriptive Statistics 
Table 1 and Table 2 show the summary statistics for the water parameters of the wells 
and vents, respectively. Note the large maximum value of 12.0 for nitrate for wells. Both 
the mean and median are above acceptable levels of 1.0. Although the maximum for the 
vents is less than 2.0 (1.9), the mean and median for the vents are also above acceptable 
levels of 1.0 mg/L.  
 
Table 1: Summary of water parameters for wells.  

  Minimum 1st Quartile Median Mean 3rd Quartile Maximum Missing 
DO    0.1    1.3    4.1    3.7    5.5    8.3 2 
pHfield    6.3    7.0    7.3    7.3    7.5    9.8 0 
SpC lab  170.0  324.8  435.0  444.0  523.5 1270.0 0 
Temp C   21.8   23.2   23.8   23.8   24.4   25.5 0 
Calcium   24.0   48.8   71.5   71.4   88.5  176.0 0 
Magnesium    1.1    3.0    6.0    7.4   11.0   25.0 0 
Potassium    0.1    0.3    0.6    0.9    1.0    5.6 0 
Sodium    2.2    4.3    6.5   11.2    9.2  140.0 0 
Alkalinity   29.0  109.0  151.0  154.3  193.8  285.0 0 
Chloride    3.0    8.0    9.8   17.7   15.2  230.0 0 
Sulfate    0.2    6.0   20.5   47.2   65.0  400.0 0 
NOxN    0.0    0.6    1.2    1.7    1.8   12.0 0 
Phosphorus Tot    0.0    0.0    0.0    0.1    0.0    2.7 0 

 
 
Table 2: Summary of water parameters for vents. 

 Minimum 1st Quartile Median Mean 3rd Quartile Maximum Missing 
DO   0.1   1.9   2.7   2.5   3.5   3.7 0 
pHfield   7.0   7.3   7.4   7.4   7.5   7.6 0 
SpClab 320.0 357.0 409.0 411.5 466.5 514.0 0 
Temp C  22.0  23.4  23.7  23.5  23.7  23.8 0 
Calcium  47.0  56.5  66.5  65.8  76.5  85.0 0 
Magnesium   6.1   8.1   9.4   9.6  11.0  13.0 0 
Potassium   0.5   0.7   0.8   0.8   0.8   0.9 0 
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Sodium   5.3   6.3   6.7   6.6   7.0   7.2 0 
Alkalinity 114.0 137.8 162.5 158.9 177.0 206.0 0 
Chloride   9.0  10.7  11.3  11.0  11.5  11.8 0 
Sulfate  16.7  33.6  44.0  46.2  59.1  74.4 0 
NOxN   0.9   1.3   1.4   1.4   1.5   1.9 0 
Phosphorus Tot   0.0   0.0   0.0   0.0   0.0   0.0 0 
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Wells with nitrate-N levels elevated above 5.0 mg/L are listed in Table 3. 
 

      Table 3: Wells with high nitrate levels. 
Well Number NOxN Level 

1 6.3 
11 9.9 
16 5.1 
48 5.9 
49 12.0   

 
In addition to the summary tables presented above, it’s helpful to look at stem and leaf 
plots of nitrate-N levels to get a sense of the distribution of those values. A stem and leaf 
plots displays all the values in the form of a text-based histogram. The values are 
represented by stems to the left of the colon (the decimal point in the plot below) and the 
leaves (the fractional part of the number). For a detailed description of a stem and leaf 
plot see Appendix B: Understanding a Stem and Leaf Plot.  
 
N = 56   Median = 1.2 
Quartiles = 0.51, 1.9 
 
Decimal point is at the colon 
 
   0 : 00000000123444 
   0 : 66788899 
   1 : 0111122222444 
   1 : 5567788 
   2 : 022244 
   2 : 7 
   3 : 1 
   3 : 
   4 : 0 
High:  5.1  5.9  6.3  9.9 12.0 
 
Figure 1: Stem and leaf plot for NOxN levels in the 56 wells.  
 

The first row in Figure 1 corresponds to 8 wells with values of 0.0, three wells with 
values of 0.1, 0.2 and 0.3 and three wells each with values 0.4. The high values are listed 
separately at the bottom of the graph.  
 
With the assistance of the stem and leaf plot of Figure 1, four groups of nitrate were 
created and used to differentially color a map of the wells to get a sense of regions with 
high nitrate-N levels. The nitrate-N groups are specified with 
 

Table 4: Nitrate-N groups for coloring the wells in Figure 2. 
      NOxN < 0.5 
0.5 ≤ NOxN < 1.0 
1.0 ≤ NOxN < 2.0 
2.0 ≤ NOxN 
 

The resulting map is displayed in Figure 2.  It’s clear from the map that most of the wells 
west and south of the vents have elevated nitrate-N levels. However, there are also two 
wells north and slightly west of the vents with elevated nitrate-N levels. 
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NOxN < 0.5
0.5 <= NOxN < 1.0
1.0 <= NOxN < 2.0
2.0 <= NOxN
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Rivers & Lakes
County Boundary

Well Colors Determined by NOxN Level

 
Figure 2: Well locations colored by nitrate-N levels. The five larger red points correspond to nitrate-
N levels greater than 5.0 mg/L, those listed in       Table 3. 

4.2 Clustering 
The groups defined by Table 4 provide a suitable starting point for k-means clustering on the 
water quality parameters displayed in Table 1 and Table 2. By computing the mean level of each 
parameter for each group we can see clear and consistent differences in some of the parameters. 
The values for DO and NOxN increase with group number and those for Alkalinity decrease.  
 

Table 5: Mean levels of the water quality parameters for the wells for each of the nitrate 
groups formed by Table 4.  

 Group 1 Group 2 Group 3 Group 4 
DO 1.74 2.73 4.2 5.04 
pHfield 7.18 7.37 7.32 7.46 
SpClab 492.43 343.88 419.2 488.36 
TempDegC 23.39 23.54 24.04 23.91 
Calcium 82.71 62.88 66.9 71.5 
Magnesium 9.81 4.5 8.2 5.54 
Potassium 0.96 0.51 0.64 1.55 
Sodium 9.36 7.41 7.33 20.8 
Alkalinity 168.43 151.5 149.95 148.14 
Chloride 14.84 10.44 10.73 34.72 
Sulfate 74.09 11.89 49.16 37.64 
NOxN 0.14 0.78 1.36 4.46 
PhosphorusTotal 0.24 0.05 0.03 0.08 
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Four clusters were created using scaled water quality parameters. The scaled parameters 
were computed by subtracting the mean and dividing by the standard deviation for each 
column.  Initial group centers used to start the clustering algorithm were computed as the 
means for all the scaled water quality parameters for each group. The final four clusters 
had scaled water quality parameter means as listed in Table 6. Note that nitrate increases 
in the following order Group 2, Group 1, Group 3 and Group 4.  
 

Table 6: Mean levels of water quality parameters for each of the k-means cluster groups 
created from well data only.  

 Group 1 Group 2 Group 3 Group 4 
DO -0.10 -0.56 0.85 0.84 
pHfield -0.17 -0.48 0.92 -0.97 
SpClab 0.74 -0.17 -0.77 4.29 
TempDegC 0.28 -0.50 0.38 0.97 
Calcium 0.79 0.12 -1.05 1.41 
Magnesium 1.11 -0.48 -0.39 -0.44 
Potassium 0.32 -0.39 0.28 -0.56 
Sodium -0.04 -0.23 -0.04 6.52 
Alkalinity 0.23 0.54 -1.12 1.92 
Chloride -0.06 -0.25 0.01 6.62 
Sulfate 1.07 -0.47 -0.37 -0.42 
NOxN -0.20 -0.35 0.59 1.85 
PhosphorusTotal -0.18 0.20 -0.10 -0.11 

 
Similar to Figure 2, well locations were plotted with colors (blue, purple, yellow and red) 
representing increasing nitrate levels. The pattern is similar to that seen in Figure 2, 
although not as striking. This is due, no doubt, to some dissipation of the nitrate signal 
when looking at all the water parameters.  

 8



I-75

kmCluster Grp 2
kmCluster Grp 1
kmCluster Grp3
kmCluster Grp 4
Silver Springs
Roads
Rivers & Lakes
County Boudary

Well Colors Determined by K-Means Clusters

 
Figure 3: Well locations colored by k-means group membership.  Blue, purple, yellow and red show 
increasing levels of nitrate, respectively.  
 
In addition to k-means clustering, clusters were computed using hierarchical clustering. 
Hierarchical clustering was less useful in identifying areas of high nitrate because the 
automated tools for combining observations to condense the grouping did not 
discriminate nitrate groups very well.  Therefore, hierarchical clustering was not further 
used. 

4.3 Principal Components 
Principal components for the well data were computed to determine the primary axes of 
variation among the water parameters. Prior to computing the principal components, the 
water parameters were rescaled to have mean 0 (zero) and variance 1 (one). Rescaling is 
critical to avoid a single (or a few) variable(s) from dominating the calculations simply 
because their scale is much larger than the other parameters. For example, from Table 1, 
we can see that SpC  lab, Calcium, Alkalinity, Chloride and Sulfate have large scales 
relative to the other parameters and especially relative to nitrate.  
 
The first six components explain about 90% of the variation with greatly diminished 
explanatory power after the sixth component. Table 7 lists the coefficients for the first six 
principal components exceeding 0.3 in absolute value to emphasize those parameters with 
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the greatest influence on each component. The second component (PC2) includes a large 
positive coefficient (0.429) for nitrate as well as large positive coefficients for Sodium 
and Chloride. Consequently large values of PC2 correspond to elevated values of these 
three arameters.   p

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

0
1

2
3

4

Variance Explained by
Successive Principal Components

V
ar

ia
nc

es

0.289

0.498

0.655

0.745 0.834

0.898

0.931 0.958
0.974 0.99

 
Figure 4: Bar plot of the principal components showing graphically the proportion of variance 
explained by each component.  
 
 
Table 7: Coefficients (or loadings) for the first six principal components of the water quality 
parameters for the wells.  Coefficients are shown only if they exceed 0.3 in absolute value to 
emphasize the parameters having the greatest influence on each component.  

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
DO  0.453 0.406
pHfield   0.337 -0.436 -0.310
SpClab -0.455   
Temp C   0.343 0.581
Calcium -0.465   
Magnesium -0.307  0.460  
Potassium   0.317 -0.523 0.351
Sodium  0.517  
Alkalinity -0.358  -0.419  
Chloride  0.523  
Sulfate -0.310  0.487  
NOxN  0.429  0.548
Phosphorus Tot   0.531 -0.683
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A plot of the first two principal components with points labeled by the well number is 
displayed in Figure 5. The four points farthest to the right, 1, 49, 11, and 48 are listed in 
Table 3 as having high nitrate levels so PC2 identifies those four points. Well 52 is also 
high on PC2 because it has relatively high Sodium (33) and Chloride (65) levels, two 
other water quality parameters with high loadings on PC2. The fact that most of the wells 
cluster in the upper left portion of the plot results from their PC1 and PC2 values being 
relatively close to zero compared to the extremes.  
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Figure 5: Scatter plot of first two principal components, labeling the points with the well number.  
Looking at the stem and leaf plot of PC2 with an expanded scale we can create groups 
and label extreme values of PC2 similar to what was done for Figure 2.  
 
N = 56   Median = -0.408823 
Quartiles = -0.800508, 0.1553385 
 
Decimal point is 1 place to the left of the colon 
 
  -14 : 73 
  -13 : 
  -12 : 4 
  -11 : 9500 
  -10 : 9420 
   -9 : 87 
-------------break 1 
   -8 : 2 
   -7 : 87 
   -6 : 54332 
   -5 : 4110 
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   -4 : 5420 
-------------break 2 
   -3 : 7 
   -2 : 41 
   -1 : 3 
   -0 : 642 
    0 : 013589 
-------------break 3 
    1 : 
    2 : 258 
    3 : 23 
    4 : 4 
    5 : 04 
    6 : 0 
    7 : 
    8 : 
    9 : 
   10 : 
   11 : 
   12 : 
   13 : 
   14 : 
   15 : 
   16 : 
   17 : 5 
   18 : 
   19 : 2 
 
High: 2.721023 5.888535 9.142356 
 
Figure 6: Stem and leaf plot for the second principal component, PC2, with expanded scale. Note that 
the decimal point is one place to the left of the colon. Natural breaks occur at -0.8, -0.3 and 0.1 which 
produces group sizes similar to when grouping on nitrate alone.  
 
 

Table 8: PC2 groups for coloring the wells in Figure 7. 
       PC2 < -0.8 
-0.8 ≤ PC2 < -0.3 
-0.3 ≤ PC2 <  0.1 
 0.1 ≤ PC2 

The resulting map is displayed in Figure 7. Note the similarity between Figure 2 and 
Figure 7. As seen with the nitrate colored map, higher PC2 values, correlated with higher 
nitrate levels, occur south and west of the vents.  
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Figure 7: Well locations colored by PC2 groups as specified in Table 8.  
 

4.4 Nitrate Spatial Model 
The disadvantage of using clustering or principal components on all the water parameters 
for locating wells with elevated nitrate levels is that some of the nitrate “signal” or effect 
is lost when combined with the other parameters. A more direct way of locating elevated 
levels of nitrate in the spring shed is to model nitrate directly as a spatial model which 
produces a nitrate surface as function of location. This can be done using a kriging model 
or a spatial linear model. Kriging models based on interpolation have been historically 
used in mining applications (see, for example, http://en.wikipedia.org/wiki/Kriging) by 
modeling density of mineral and metal deposits based on known density values at various 
locations in the field under investigation. The mining scenario is completely analogous to 
our problem of locating regions of high nitrate levels.  
 
A kriging model is a linear interpolation method that allows predictions of unknown 
values of a random function from observations at known locations. See Kaluzny, Vega, 
Cardoso & Shelly (1998) for more details about kriging models. The random function in 
our case is a function that describes (or models) the nitrate levels in the St John’s River 
spring shed. An integral part of a kriging model is the variogram or variance as a function 
of distance from any given observation. For the kriging model applied to the nitrate levels 
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we assumed a spherical variogram based on the assumption that a high concentration of 
nitrate at any given point would diffuse radially and approximately equally in all 
directions in the ground water. This assumption was confirmed by fitting an empirical 
variogram based on the data alone and then overlaying the theoretical spherical 
variogram to verify the fit. The fit was quite good as indicated by Figure 8.  
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4

objective = 3.7241

 
Figure 8: Theoretical variogram overlaying the empirical estimates of variance as a function of 
distance from any given observation. This graph indicates that a theoretical spherical variogram 
assumption is reasonable for developing a kriging model for nitrate.  
 
Figure 9 displays predictions from a kriging model of nitrate as a function of location.  
The contours clearly delineate regions of elevated nitrate levels. This model is based 
solely on the levels of nitrate so there is no lost signal due to combining nitrate with other 
water parameters. The red triangles on the graph correspond to well locations.  
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Figure 9: Prediction of nitrate levels based on a spatial (kriging) model.  Darker blue corresponds to 
higher levels of nitrate.  Well locations are indicated by the red triangles.  
 
The three wells on or near the northern peak correspond to well numbers 48, 49 and 50. 
See Table 9 for well locations and nitrate levels. The three wells on or near the southern 
peak correspond to well numbers 10, 11 and 12. See Table 10 for well locations and 
nitrate levels. The two wells on or near the peak towards the bottom of the map 
correspond to well numbers 1 and 3. See Table 11 for well locations and nitrate levels. 
Table 9, Table 10, and Table 11 combined list five of the six wells with the highest 
nitrate levels recorded as 4, 5.1, 5.9, 6.3, 9.9 and 12.0.  
 

Table 9: Wells on or near the northern peak of the nitrate surface map. 
Well Number Nitrate value Longitude Latitude 

48   5.90 -82.113 29.288  
49 12.00 -82.088 29.289 
50   0.65 -82.088 29.306   

 
Table 10: Wells on or near the southern peak of the nitrate surface map. 

Well Number Nitrate value Longitude Latitude 
10   1.20 -82.039 29.079 

11   9.90 -82.028 29.082 
12   2.20 -82.024 29.085 
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Table 11: Wells on or near the peak towards the bottom of the map. 

Well Number Nitrate value Longitude Latitude 
 1   6.30 -82.011 28.973  
 3   4.00 -82.019 28.982   

5 Conclusions 
The primary objective of this study is “to identify the discrete areas in the spring shed 
that contribute nitrate to the different vent groups at Silver Springs.” The most direct way 
to accomplish this goal is to locate regions in the Silver Springs spring shed with elevated 
nitrate levels. This is most easily and directly done by creating the elevated nitrate level 
plot of Figure 2 and the spatial model prediction surface of Figure 9. Both these displays 
work directly with the nitrate levels and hence lead to results and conclusions based on 
nitrate levels alone.  In particular, we can see from both figures that elevated levels of 
nitrate occur to the north and slightly west and to the south of Silver Springs. 
Consequently, the most likely sources of nitrate contributing to the spring shed are near 
wells 48, 49 and 50 to the north and near wells 1, 3, 10, 11 and 12 to the south.  These are 
the same well numbers as used in Phelps (2004).  
 
The use of clustering and principal components provide interesting detail on how the 13 
water quality parameters are interrelated and specifically which parameters co-vary with 
nitrate, providing a nitrate-related index to water quality. However, to specifically answer 
the question of regions of high nitrate levels contributing to overall spring ill-health they 
are not as direct or as useful as a spatial model of nitrate alone.  
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7 Appendix A: Well Locations 
The following table is a list of all the wells with latitude and longitude displayed in both 
decimal and degree-minute-second (ddmmss) formats. Add NOx data to table 12.  Well 
numbers are the same as in Phelps (2004). 
 

Table 12: Latitude and Longitude for each well in both decimal and degrees, 
minutes, seconds format. 

Well No Latitude Longitude Latitude Longitude NOxN
1 28.9731 -82.0114 285823 820041 6.30
2 28.9814 -82.1108 285853 820639 1.80
3 28.9819 -82.0189 285855 820108 4.00
4 28.9822 -81.9886 285856 815919 1.60
5 28.9844 -82.0678 285904 820404 2.40
6 28.9983 -81.9858 285954 815909 1.40
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7 29.0033 -82.0039 290012 820014 1.40
8 29.0175 -81.9678 290103 815804 2.00
9 29.0406 -82.2014 290226 821205 0.02
10 29.0792 -82.0392 290445 820221 1.20
11 29.0822 -82.0278 290456 820140 9.90
12 29.0847 -82.0244 290505 820128 2.20
13 29.1139 -82.0917 290650 820530 1.10
14 29.1317 -82.2086 290754 821231 0.93
15 29.1361 -82.0444 290810 820240 1.10
16 29.1361 -82.1083 290810 820630 5.10
17 29.1375 -82.0492 290815 820257 0.94
18 29.1439 -82.1764 290838 821035 2.70
19 29.1453 -82.0942 290843 820539 2.20
20 29.1472 -82.1444 290850 820800 2.20
21 29.1472 -82.1611 290850 820940 2.40
22 29.1611 -82.1278 290900 820700 1.20
23 29.1542 -82.0422 290915 820232 0.85
24 29.1664 -82.1958 290959 821145 1.40
25 29.1825 -82.0594 291057 820334 1.70
26 29.1847 -82.0164 291105 820059 0.02
27 29.1861 -82.1000 291110 820600 0.37
28 29.1892 -82.0778 291121 820440 1.50
29 29.1897 -82.1139 291123 820650 0.02
30 29.1897 -82.1317 291123 820754 0.38
31 29.1900 -82.1172 291124 820702 1.10
32 29.1928 -82.0539 291134 820314 1.80
33 29.1967 -82.1242 291148 820727 0.84
34 29.2014 -82.0508 291205 820303 0.09
35 29.2072 -82.0722 291226 820420 1.10
36 29.2097 -82.0553 291235 820319 1.20
37 29.2108 -82.1011 291239 820604 1.20
38 29.2133 -81.9733 291248 815824 0.02
39 29.2175 -82.0372 291303 820214 0.02
40 29.2206 -82.0450 291314 820242 0.60
41 29.2222 -82.0731 291320 820423 0.42
42 29.2225 -82.1233 291321 820724 1.00
43 29.2269 -82.0772 291337 820438 0.67
44 29.2281 -82.0094 291341 820034 0.20
45 29.2333 -82.1278 291400 820700 1.70
46 29.2400 -82.1631 291424 820947 3.10
47 29.2581 -82.2222 291529 821320 0.77
48 29.2883 -82.1117 291718 820642 5.90
49 29.2897 -82.0878 291723 820516       12.00
50 29.3064 -82.0883 291823 820518 0.65
51 29.3253 -82.2178 291931 821304 1.20
52 29.3342 -81.7556 292003 814520 0.32
53 29.3389 -82.1133 292020 820648 1.50
54 29.3597 -82.0886 292135 820519 0.02
55 29.3681 -82.0414 292205 820229 0.02
56 29.3889 -82.2836 292320 821701 0.05
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8 Appendix B: Understanding A Stem and Leaf Plot  

In a stem-and-leaf plot each data value is split into a stem and a leaf.  The leaf 
is usually the last digit of the number and the other digits to the left of the leaf 
form the stem.  The number 123 would be split as:  

stem  12 
leaf 3  

 

Constructing a stem-and-leaf plot: 

The data: Math test scores out of 50 points:  35, 36, 38, 40, 42, 42, 44, 45, 
45, 47, 48, 49, 50, 50, 50. 

Writing the data in numerical 
order may help to organize the 

data, but is NOT a required 
step.  Ordering can be done 

later. 

35, 36, 38, 40, 42, 42, 44, 45, 45, 47, 48, 49, 50, 
50, 50 

Separate each number into a 
stem and a leaf.  Since these are 
two digit numbers, the tens digit 
is the stem and the units digit is 

the leaf.   

The number 38 would be represented as  

 Stem Leaf 
3 8 

 

Group the numbers with the 
same stems.  List the stems in 
numerical order.  (If your leaf 
values are not in increasing 

order, order them now.)  Title 
the graph. 

Math Test Scores 
 (out of 50 pts) 

Stem Leaf 
3 5 6 8  
4 0 2 2 4 5 5  7 8 9  
5 0 0 0  

 

Prepare an appropriate legend
(key) for the graph. Legend:  3 | 6  means 36 

A stem-and-leaf plot shows the shape and distribution of data.  It can be clearly 
seen in the diagram above that the data clusters around the row with a stem of 
4. 
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9 Appendix C: The S-PLUS Code 
Following is the S-PLUS code used to create the tables and figures used in this report.  
 
### Load the maps library for create map graphics of Marion county 
library(maps) 
 
### read the well data and modify the column names 
Phelps = importData("../FilesFromClient/Phelps&SSG-I.xls", stringsAsFactors = F) 
names(Phelps) = c("WellNo", "USGSsiteID", "Latitude", "Longitude", "WellDepthFeet", 

"Date", "DO", "pHfield", "SpClab", 
              "TempDegC", "Calcium", "Magnesium", "Potassium", "Sodium", 

"Alkalinity", "Chloride", "Sulfate", "NOxN",  
                 "PhosphorusTotal") 
 
### Function for converting deg/min/sec lat and long data to decimal equivalents 
###   Verified this function using the on-line conversion port  
###   http://www.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html 
geoDegMinSec2Dec = function(x){ 
 # compute degrees 
 Sgn = sign(x) 
 x = abs(x) 
 Deg = trunc(x) 
 MinSec = (x - Deg) * 100 
 Min = trunc(MinSec) 
 Sec = (MinSec - Min) * 100 
 Sgn * (Deg + Min/60 + Sec/3600) 
} 
 
 
### Create vents variable indicating which observations are vents 
vents = substring(Phelps$USGSsiteID, 1, 3) == "SSG" 
 
############### 
### Table 1 ### 
############### 
### Create summary for Report - Table 1 
ssWells = summary(Phelps[!vents, ]) 
print.default(ssWells) 
H2OParamsWells = t(ssWells[, 7:19]) 
 
lapply(apply(H2OParamsWells, 1, unpaste, sep = ":"), function(x)x[[1]])[[1]] 
valuesWells = t(sapply(apply(H2OParamsWells, 1, unpaste, sep = ":"), function(x)x[[2]])) 
dimnames(valuesWells)[[2]] = lapply(apply(H2OParamsWells, 1, unpaste, sep = ":"), 

function(x)x[[1]])[[1]] 
valuesWells 
valWells = apply(valuesWells, 2, as.numeric) 
dimnames(valWells)[[1]] = dimnames(valuesWells)[[1]] 
valWells = format(round(valWells, 1)) 
exportData(valWells, "summariesWells.xls") 
print(values, quote = F) 
 
############### 
### Table 2 ### 
############### 
### Create summary for Report - Table 2 
ssVents = summary(Phelps[vents, ]) 
print.default(ssVents) 
H2OParamsVents = t(ssVents[, 7:19]) 
 
lapply(apply(H2OParamsVents, 1, unpaste, sep = ":"), function(x)x[[1]])[[1]] 
valuesVents = t(sapply(apply(H2OParamsVents, 1, unpaste, sep = ":"), function(x)x[[2]])) 
dimnames(valuesVents)[[2]] = lapply(apply(H2OParamsVents, 1, unpaste, sep = ":"), 

function(x)x[[1]])[[1]] 
valuesVents 
valVents = apply(valuesVents, 2, as.numeric) 
dimnames(valVents)[[1]] = dimnames(valuesVents)[[1]] 
valVents = format(round(valVents, 1)) 
exportData(valVents, "summariesVents.xls") 
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### Rescale lat and long 
Phelps$Latitude = Phelps$Latitude/10000 
Phelps$Longitude = -Phelps$Longitude/10000 
 
### Convert from Deg/Min/Sec to decimal 
Phelps$Latitude = geoDegMinSec2Dec(Phelps$Latitude) 
Phelps$Longitude = geoDegMinSec2Dec(Phelps$Longitude) 
 
summary(Phelps) 
 
### Number of vents 
sum(substring(Phelps$USGSsiteID, 1, 3) == "SSG") 
### Number of wells 
sum(substring(Phelps$USGSsiteID, 1, 3) != "SSG") 
 
############### 
### Table 3 ### 
############### 
### View wells with elevated NOxN levels - Table 3 
names(Phelps) 
Phelps[Phelps$NOxN >= 5, c("WellNo", "NOxN")] 
Phelps[Phelps$NOxN >= 2, c("WellNo", "NOxN")] 
Phelps[Phelps$NOxN >= 5, c(1,7:19)] 
 
################ 
### Figure 1 ### 
################ 
### Create stem and leaf plots of NOx-N values separate for vents and wells - Figure 1 
stem(Phelps$NOxN[vents], scale = 0) 
stem(Phelps$NOxN[!vents], scale = 0) 
 
stem(Phelps$NOxN[vents], scale = 1) 
stem(Phelps$NOxN[!vents], scale = 1) 
 
### Look are sorted values of NOx-N values for vents and wells 
sort(unique(Phelps$NOxN[vents])) 
sort(unique(Phelps$NOxN[!vents])) 
 
 
### Create state map with single color for wells and vents 
map("county", regions = "florida") 
points(Phelps$Longitude, Phelps$Latitude, cex = .5) 
title("Forida With Wells and Vents Overlaid") 
par("usr") 
 
### Create state map with separate colors for wells and vents 
map("county", regions = "florida") 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents], col = "blue", cex = .5) 
points(Phelps$Longitude[vents], Phelps$Latitude[vents], col = "red", cex = .5) 
key(corner = c(0,0), points = list(pch = c(1, 1), col = c("blue", "red")), 
       text = list(c("well", "vent"))) 
 
summary(Phelps[vents, c("Longitude", "Latitude")]) 
summary(Phelps[!vents, c("Longitude", "Latitude")]) 
 
### Zoom in   
map("county", regions = "florida", ylim = c(28.96, 29.4), xlim = c(-82.3, -81.75)) 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents], col = "blue") 
points(Phelps$Longitude[vents], Phelps$Latitude[vents], col = "red") 
key(corner = c(0,0), points = list(pch = c(1, 1), col = c("blue", "red")), 
       text = list(c("well", "vent"))) 
 
### Jittering the vents to better see multiple vents 
map("county", regions = "florida", ylim = c(28.96, 29.4), xlim = c(-82.3, -81.75)) 
vents = substring(Phelps$USGSsiteID, 1, 3) == "SSG" 
points(jitter(Phelps$Longitude[vents], amount = .05), jitter(Phelps$Latitude[vents], 

amount = .05), col = "red") 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents], col = "blue") 
key(corner = c(0,0), points = list(pch = c(1, 1), col = c("blue", "red")), 
       text = list(c("well", "vent"))) 
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### Fill in ploting symbols with color depending on the values of NOx-N 
map("county", regions = "florida", ylim = c(28.96, 29.4), xlim = c(-82.3, -81.75)) 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents], col = "blue") 
points(Phelps$Longitude[!vents & Phelps$NOxN > 1.8], Phelps$Latitude[!vents & Phelps$NOxN 

> 1.8], col = "blue", pch = 16,  
  cex = sqrt(Phelps$NOxN[!vents & Phelps$NOxN > 1.8]/12)) 
 
points(Phelps$Longitude[vents], Phelps$Latitude[vents], col = "red") 
points(Phelps$Longitude[vents & Phelps$NOxN > 1.8], Phelps$Latitude[vents & Phelps$NOxN > 

1.8], col = "red", pch = 16, 
  cex = sqrt(Phelps$NOxN[vents & Phelps$NOxN > 1.8]/12)) 
 
key(corner = c(0,0), points = list(pch = c(1, 1), col = c("blue", "red")), 
       text = list(c("well", "vent"))) 
 
 
### Another view of the NOxN data 
###   Differentially color points using RGBA specs 
java.graph() 
map("county", regions = "florida", ylim = c(28.96, 29.4), xlim = c(-82.3, -81.75)) 
vents = substring(Phelps$USGSsiteID, 1, 3) == "SSG" 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents], pch = 16, cex = 1, 
  col = hsv(h=0.6666667, s = 1, v = 1, alpha = pmin(1, Phelps$NOxN[!vents]/6))) 
points(Phelps$Longitude[vents], Phelps$Latitude[vents], pch = 16, cex = 1, 
        col = hsv(h=0, s = 1, v = 1, alpha = pmin(1, Phelps$NOxN[vents]/6))) 
key(corner = c(0,0), points = list(pch = c(16, 16), col = c("blue", "red")), 
       text = list(c("well", "vent"))) 
 
############################################# 
### Map With Wells Colored by NOxN Groups ### 
############################################# 
 
### Create grouping on NOxN values - Table 4 
stem(Phelps$NOxN) 
sort(Phelps$NOxN) 
# create NOxN Groups 
#  grp 1: NOxN < 0.5 
#  grp 2: 0.5 <= NOxN < 1.0 
#  grp 3: 1.0 <= NOxN < 2.0 
#  grp 4: 2.0 <= NOxN 
 
Phelps$NOxNgrp <- rep(1, numRows(Phelps)) 
Phelps$NOxNgrp[Phelps$NOxN >= 0.5] <- 2 
Phelps$NOxNgrp[Phelps$NOxN >= 1.0] <- 3 
Phelps$NOxNgrp[Phelps$NOxN >= 2.0] <- 4 
 
### Explore summary statistics for the groups 
summary(Phelps[, c("NOxN", "NOxNgrp")]) 
summary(Phelps$NOxNgrp) 
table(Phelps$NOxNgrp) 
table(Phelps$NOxNgrp[!vents]) 
 
tapply(Phelps$NOxN, Phelps$NOxNgrp, mean) 
tapply(Phelps$NOxN, Phelps$NOxNgrp, median) 
tapply(Phelps$NOxN, Phelps$NOxNgrp, range) 
 
################ 
### Figure 2 ### 
################ 
### Create wells and vents map - Figure 2 
map("county", regions = "florida", ylim = c(28.9, 29.54), xlim = c(-82.25, -81.943), lty 

= 3, lwd = 2) 
## add state route 
state.routeLatLongOK = state.routeLatLong[104:323, ] 
lines( x = state.routeLatLongOK$Longitude, y = state.routeLatLongOK$Latitude,  

col="lightgray", lwd = 2) 
 
## add inter-state route 
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lines( x = is.routeLatLong$Longitude, y = is.routeLatLong$Latitude,   col="lightgray", 
lwd = 2) 

text("I-75", x = -82.28, y = 29.46, adj = 1, col = "grey", cex = .8) 
## add us route 
us.routeLatlongOK = us.routeLatLong[1:2116, ] 
lines( x = us.routeLatLongOK$Longitude, y = us.routeLatLongOK$Latitude, col="lightgray", 

lwd = 2) 
 
## add lakes and rivers 
polygon(marionhydroLatLong2$Longitude, marionhydroLatLong2$Latitude, 

border="cornflowerblue", col="cornflowerblue") 
 
## add colored wells 
points(Phelps$Longitude[!vents & Phelps$NOxNgrp == 1], Phelps$Latitude[!vents & 

Phelps$NOxNgrp  == 1], col = "blue", pch = 16) 
points(Phelps$Longitude[!vents & Phelps$NOxNgrp == 2], Phelps$Latitude[!vents & 

Phelps$NOxNgrp  == 2], col = "purple", pch = 16) 
points(Phelps$Longitude[!vents & Phelps$NOxNgrp == 3], Phelps$Latitude[!vents & 

Phelps$NOxNgrp  == 3], col = "yellow", pch = 16) 
points(Phelps$Longitude[!vents & Phelps$NOxNgrp == 4], Phelps$Latitude[!vents & 

Phelps$NOxNgrp  == 4], col = "red", pch = 16) 
points(Phelps$Longitude[!vents], Phelps$Latitude[!vents]) 
points(Phelps$Longitude[!vents & Phelps$NOxNgrp == 4 & Phelps$NOxN > 5], 

Phelps$Latitude[!vents & Phelps$NOxNgrp  == 4 & Phelps$NOxN > 5],  
       col = "red", pch = 16, cex = 1.5) 
points(Phelps$Longitude[!vents & Phelps$NOxN > 5], Phelps$Latitude[!vents & Phelps$NOxN > 

5], cex = 1.5) 
 
### Add Silver Springs 
points(silverPoint$Longitude, silverPoint$Latitude, col="cornflowerblue", cex = 1.3, lwd 

= 3) 
 
key(corner = c(0,0), lines = list(pch = c(16, 16, 16, 16, 1, 1, 1, 1),  
         col = c("blue", "purple", "yellow", "red",   
                                          "cornflowerblue", "lightgray",  
                                          "cornflowerblue", "black"),  
                                  lwd = c(1, 1, 1, 1, 4, 2, 2, 2),  
                                  lty = c(rep(1, 7), 3),  
                                  type = c("p", "p", "p", "p", "p", "l", "l", "l")), 
       text = list(c("NOxN < 0.5", "0.5 <= NOxN < 1.0",  
                                     "1.0 <= NOxN < 2.0", "2.0 <= NOxN",  
                                     "Silver Springs", "Roads", "Rivers & Lakes", 
                                     "County Boundary"),  
          cex = .75)) 
title("Well Colors Determined by NOxN Level") 
 
 
 
############################ 
###  K-means clustering  ### 
############################ 
summary(Phelps) 
 
### Remove missing values from the water parameters 
Phelps.noNA = na.exclude(Phelps[, 7:20]) 
indx.nas = attr(Phelps.noNA, "na.action") 
 
dim(Phelps.noNA) #88 x 14 
summary(Phelps.noNA) 
 
### Select the wells 
Phelps.cl = scale(Phelps.noNA[!vents, 1:13]) 
dim(Phelps.cl)  #56 x 13 
dimnames(Phelps.cl) 
class(Phelps.cl) 
 
### Create centers for staring the clustering based on the NOxNgrp groups for wells 
grpCenters = matrix(0, ncol = 19 - 7 + 1, nrow = 4) 
dimnames(grpCenters) = list(1:4, dimnames(Phelps.cl)[[2]]) 
for(i in 1:4) grpCenters[i, ] = colMeans(Phelps.cl[Phelps.noNA[!vents,]$NOxNgrp == i, ]) 
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############### 
### Table 5 ### 
############### 
exportData(t(round(grpCenters, 2)), "grpCenters.xls", rowNames = T) #   - Table 5 
 
### Compute k-means clusters 
km.Phelps = kmeans(Phelps.cl, centers = grpCenters) 
 
############### 
### Table 6 ### 
############### 
t(round(km.Phelps$centers, 2)) #   - Table 6 
exportData(t(round(km.Phelps$centers, 2)), "kmGrpCenters.xls", rowNames = T) 
 
summary(km.Phelps) 
names(km.Phelps) 
km.Phelps$cluster 
length(km.Phelps$cluster) 
dim(Phelps.cl) 
Phelps.cl = cbind(Phelps.cl, kmGrp = km.Phelps$cluster) 
 
################ 
### Figure 3 ### 
################ 
map("county", regions = "florida", ylim = c(28.9, 29.54), xlim = c(-82.25, -81.943), lty 

= 3, lwd = 2) 
## add state route 
state.routeLatLongOK = state.routeLatLong[104:323, ] 
lines( x = state.routeLatLongOK$Longitude, y = state.routeLatLongOK$Latitude,  

col="lightgray", lwd = 2) 
 
## add inter-state route 
lines( x = is.routeLatLong$Longitude, y = is.routeLatLong$Latitude,   col="lightgray", 

lwd = 2) 
text("I-75", x = -82.28, y = 29.46, adj = 1, col = "grey", cex = .8) 
 
## add us route 
us.routeLatlongOK = us.routeLatLong[1:2116, ] 
lines( x = us.routeLatLongOK$Longitude, y = us.routeLatLongOK$Latitude, col="lightgray", 

lwd = 2) 
 
polygon(marionhydroLatLong2$Longitude, marionhydroLatLong2$Latitude, 

border="cornflowerblue", col="cornflowerblue") 
 
## add wells 
points(Phelps[-indx.nas, "Longitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"] == 2], 

Phelps[-indx.nas, "Latitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"]  == 2], col = 
"blue", pch = 16) 

points(Phelps[-indx.nas, "Longitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"] == 1], 
Phelps[-indx.nas, "Latitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"]  == 1], col = 
"purple", pch = 16) 

points(Phelps[-indx.nas, "Longitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"] == 3], 
Phelps[-indx.nas, "Latitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"]  == 3], col = 
"yellow", pch = 16) 

points(Phelps[-indx.nas, "Longitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"] == 4], 
Phelps[-indx.nas, "Latitude"][!vents[-indx.nas]][Phelps.cl[, "kmGrp"]  == 4], col = 
"red", pch = 16) 

points(Phelps[-indx.nas, "Longitude"][!vents[-indx.nas]], Phelps[-indx.nas, 
"Latitude"][!vents[-indx.nas]]) 

 
key(corner = c(0,0), lines = list(pch = c(16, 16, 16, 16, 1, 1, 1, 1),  
          col = c("blue", "purple", "yellow", "red", 

"cornflowerblue", "lightgray", "cornflowerblue", "black"),  
                                  lwd = c(1, 1, 1, 1, 4, 2, 2, 2),  
          lty = c(rep(1, 7), 3),  
          type = c("p", "p", "p", "p", "p", "l", "l", "l")), 
       text = list(c("NOxN < 0.5", "0.5 <= NOxN < 1.0", "1.0 <= NOxN < 

2.0", "2.0 <= NOxN", "Silver Springs", "Roads", "Rivers & Lakes", "County Boundary"),  
          cex = .75)) 
title("Well Colors Determined by K-Means Clusters") 
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### Add Silver Springs 
points(silverPoint$Longitude, silverPoint$Latitude, col="cornflowerblue", cex = 1.3, lwd 

= 3) 
 
 
 
################################# 
###  Heirarchical Clustering  ###  # not used 
################################# 
 
class(Phelps.cl) 
hc.Phelps = hclust(dist(Phelps.cl)) 
plOut = plclust(hc.Phelps, cex = .5) 
title("hclust on Phelps.cl") 
names(hc.Phelps) 
 
hc.Phelps$height 
hist(hc.Phelps$height, n = 15) 
cbind(1:88, hc.Phelps$order, c(0, hc.Phelps$height)) 
 
# create groups 
table(cutree(hc.Phelps, h = 5)) 
ck = cbind(id = seq(numRows(Phelps.cl)), NOxN = Phelps.cl[, "NOxN"], NOxN2 = 

Phelps.noNA$NOxN, treeGroups = cutree(hc.Phelps, h = 5)) 
tapply(ck[, "NOxN2"], ck[, "treeGroups"], mean) 
 
 
plclust(hc.Phelps, hmin = 5, cex = .5) 
Phelps = cbind(Phelps, hcGrp = factor(cutree(hc.PhelpsPS, h = 5.3))) 
Phelps[Phelps[, "hcGrp"] >= 5, "hcGrp"] = 5 
table(Phelps[, "hcGrp"]) 
sapply(Phelps, class) 
tapply(Phelps$NOxN, Phelps$hcGrp, mean) 
tapply(Phelps$NOxN, Phelps$hcGrp, median) 
tapply(Phelps$NOxN, Phelps$hcGrp, range) 
for(i in levels(Phelps$hcGrp)) print(stem(Phelps[Phelps$hcGrp == i, "NOxN"])) 
 
cbind(c(48, 23, 1, 8, 11, 49, 9, 39, 44, 30), Phelps[c(48, 23, 1, 8, 11, 49, 9, 39, 44, 

30), "NOxN"]) 
 
 
summary(PhelpsPS) 
dim(Phelps 
cutree(hc.PhelpsPS, h = 4) 
 
############################## 
###  Principal Components  ### 
############################## 
pairs(Phelps[!vents, 7:19]) 
stem(Phelps[!vents,"NOxN"]) 
stem(Phelps[!vents,"NOxN"], scale = 1) 
apply(Phelps.cl, 2, summary) 
 
### Compute principal components 
pc.Phelps.cl = princomp(Phelps.cl) 
attributes(pc.Phelps.cl) 
summary(pc.Phelps.cl) 
 
################ 
### Figure 4 ### 
################ 
screeplot(pc.Phelps.cl, cex = .8, main = "Variance Explained by\nSuccessive Principal 

Components") 
loadings(pc.Phelps.cl) 
 
############### 
### Table 7 ### 
############### 
print(loadings(pc.Phelps.cl), cutoff = .3) 
 
pc.Phelps.cl$scores 
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dimnames(pc.Phelps.cl$scores) 
dim(pc.Phelps.cl$scores) 
summary(pc.Phelps.cl$scores[, 2]) 
 
 
################ 
### Figure 5 ### 
################ 
PC1 = pc.Phelps.cl$scores[, 1] 
PC2 = pc.Phelps.cl$scores[, 2] 
plot(PC2, PC1) 
 
plot(PC2, PC1, type = "n") 
text(PC2, PC1, dimnames(pc.Phelps.cl$scores)[[1]], cex = .6, col = "black") 
title("PC1 vs PC2 With Well Numbers") 
 
pairs(pc.PhelpsPS$scores[, 1:6]) 
 
################ 
### Figure 6 ### 
################ 
## histogram for PC2 
hist(PC2, n = 20) 
stem(PC2, scale = 1) 
stem(PC2) 
 
############### 
### Table 8 ### 
############### 
# PC2 < -.80       # blue 
# -0.80 <= PC2 < -0.30   # green 
# -0.30 <= PC2 <  0.10   # yellow 
#  0.10 <= PC2     # red 
 
# or 
# PC2 < 2.2 
# 2.2 <= PC2 < 3.0 
# 3.0 <= PC2 < 3.5 
# 3.5 <= PC2 
 
dim(Phelps.cl) 
dimnames(Phelps.cl) 
 
################ 
### Figure 7 ### 
################ 
#Phelps.cl = Phelps.cl[, 1:14] 
Phelps.cl <- cbind(Phelps.cl, PC2grp = rep(1, numRows(Phelps.cl))) 
Phelps.cl[, "PC2grp"][PC2 >= -0.80] <- 2 
Phelps.cl[, "PC2grp"][PC2 >= -0.30] <- 3 
Phelps.cl[, "PC2grp"][PC2 >=  0.10] <- 4 
table(Phelps.cl[, "PC2grp"]) 
 
PCgrpCenters = matrix(0, ncol = 19 - 7 + 1, nrow = 4) 
dimnames(PCgrpCenters) = list(1:4, dimnames(Phelps.cl)[[2]][1:13]) 
for(i in 1:4) PCgrpCenters[i, ] = colMeans(Phelps.cl[, 1:13][Phelps.cl[, "PC2grp"] == i, 

]) 
 
 
map("county", regions = "florida", ylim = c(28.9, 29.54), xlim = c(-82.25, -81.943), lty 

= 3, lwd = 2) 
## add state route 
state.routeLatLongOK = state.routeLatLong[104:323, ] 
lines( x = state.routeLatLongOK$Longitude, y = state.routeLatLongOK$Latitude,  

col="lightgray", lwd = 2) 
 
## add inter-state route 
lines( x = is.routeLatLong$Longitude, y = is.routeLatLong$Latitude,   col="lightgray", 

lwd = 2) 
text("I-75", x = -82.28, y = 29.46, adj = 1, col = "grey", cex = .8) 
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## add us route 
us.routeLatlongOK = us.routeLatLong[1:2116, ] 
lines( x = us.routeLatLongOK$Longitude, y = us.routeLatLongOK$Latitude, col="lightgray", 

lwd = 2) 
 
## add lakes and rivers 
polygon(marionhydroLatLong2$Longitude, marionhydroLatLong2$Latitude, 

border="cornflowerblue", col="cornflowerblue") 
 
## add wells 
points(Phelps[!vents, "Longitude"][Phelps.cl[, "PC2grp"] == 1], Phelps[!vents, 

"Latitude"][Phelps.cl[, "PC2grp"]  == 1], col = "blue", pch = 16) 
points(Phelps[!vents, "Longitude"][Phelps.cl[, "PC2grp"] == 2], Phelps[!vents, 

"Latitude"][Phelps.cl[, "PC2grp"]  == 2], col = "purple", pch = 16) 
points(Phelps[!vents, "Longitude"][Phelps.cl[, "PC2grp"] == 3], Phelps[!vents, 

"Latitude"][Phelps.cl[, "PC2grp"]  == 3], col = "yellow", pch = 16) 
points(Phelps[!vents, "Longitude"][Phelps.cl[, "PC2grp"] == 4], Phelps[!vents, 

"Latitude"][Phelps.cl[, "PC2grp"]  == 4], col = "red", pch = 16) 
points(Phelps[!vents, "Longitude"], Phelps[!vents, "Latitude"]) 
 
key(corner = c(0,0), lines = list(pch = c(16, 16, 16, 16, 1, 1, 1, 1),  
          col = c("blue", "purple", "yellow", "red", 

"cornflowerblue", "lightgray", "cornflowerblue", "black"),  
                                  lwd = c(1, 1, 1, 1, 4, 2, 2, 2),  
          lty = c(rep(1, 7), 3),  
          type = c("p", "p", "p", "p", "p", "l", "l", "l")), 
       text = list(c(" PC2 < -0.8", "-0.8 <= PC2 < -0.3", "-0.3 <= PC2 <  

0.1", " 0.1 <= PC2", "Silver Springs", "Roads", "Rivers & Lakes", "County Boudary"),  
          cex = .75)) 
title("Well Colors Determined by PC2 Groups") 
 
### Add Silver Springs 
points(silverPoint$Longitude, silverPoint$Latitude, col="cornflowerblue", cex = 1.3, lwd 

= 3) 
 
 
 
##################### 
### Spatial Model ### 
##################### 
module(spatial) 
NOxN.var1 = variogram(log(NOxN) ~ loc(Longitude, Latitude), data = Phelps, 
                      subset = !vents, na.action = na.exclude) 
 
## use parameter estimates from the following fit for the krige fit.  
variogram.fit(NOxN.var1) 
 
## fit kriging model 
Phelps.krig2 = krige(NOxN ~ loc(Longitude, Latitude, angle = 0, ratio = 1),  
       data = Phelps, subset = !vents,  
       na.action = na.exclude, covfun = spher.cov, 
       range = 0.205796078261651,  
       sill = 2.27028118686959,  
       nugget = 1.14960423109506) 
 
#Compute kriging predictions 
Long.seq = seq(-82.3, -81.75, length = 200) 
Lat.seq = seq(28.87, 29.56, length = 200) 
pgrid = expand.grid(Longitude = Long.seq, Latitude = Lat.seq) 
pred = predict(Phelps.krig2, newdata = pgrid) 
 
## Plot the surface 
opar = par(pty = "s") 
image(x = Long.seq, y = Lat.seq, z = mfit) 
par(xaxs = "d") 
contour(x = Long.seq, y = Lat.seq, z = mfit, add = T, nlevels = 10, labex = .4) 
 
## Add country boundary 
map("county", regions = "florida", ylim = c(28.87, 29.56), xlim = c(-82.3, -81.75),  
 add = T, lwd = 2, lty = 3) 
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## add state route 
state.routeLatLongOK = state.routeLatLong[104:323, ] 
lines( x = state.routeLatLongOK$Longitude, y = state.routeLatLongOK$Latitude, 
      col="lightgray", lwd = 2) 
 
 
 
## add inter-state route 
lines( x = is.routeLatLong$Longitude, y = is.routeLatLong$Latitude,   col="lightgray",  
       lwd = 2) 
 
## add us route 
us.routeLatlongOK = us.routeLatLong[1:2116, ] 
lines( x = us.routeLatLongOK$Longitude, y = us.routeLatLongOK$Latitude, col="lightgray", 
       lwd = 2) 
 
## Add lakes and rivers 
polygon(marionhydroLatLong2$Longitude, marionhydroLatLong2$Latitude, 
        border="cornflowerblue", col="cornflowerblue") 
 
## add wells 
points( x = Phelps[!vents, "Longitude"], y = Phelps[!vents, "Latitude"], panel = 1,  
        pch = 2, col = "red", cex = .6) 
 
### Add Silver Springs 
points(silverPoint$Longitude, silverPoint$Latitude, col="cornflowerblue", cex = 1.3,  
       lwd = 3) 
 
key(x = par("usr")[2], y = par("usr")[4], corner = c(0,1),  
      lines = list( pch = c(2, 1, 1, 1, 1),  
          col = c("red", "cornflowerblue", "lightgray",  
                                              "cornflowerblue", "black"),  
          lwd = c(1, 4, 2, 2, 2),  
          lty = c(rep(1, 4), 3),  
          type = c("p", "p", "l", "l", "l")), 
       text = list(c("Wells", "Silver Springs", "Roads", "Rivers & Lakes", 
            "County Boundary"),  
          cex = .6), 
      transparent = T) 
 
title("Kriging Predictions") 
 
## reset par parameters 
par(opar) 
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