SPECIAL PUBLICATION SJ2008-SP6

SILVER SPRINGS SPRING VENT DOCUMENTATION AND GEOCHEMICAL CHARACTERIZATION

Special Publication SJ2008-SP6

Silver Springs Spring Vent Documentation and Geochemical Characterization

by

Peter Butt Karst Environmental Services, Inc.

> Alaa Aly, Ph.D., P.E. Intera, Inc.

> > Edited by

David Toth, Ph.D., P.G. St. Johns River Water Management District

Special Publication SJ2008-SP6

Silver Springs Spring Vent Documentation And Geochemical Characterization

Errata Sheet

Appendix 5

Results of Discharge Measurements of Timber Spring, Marion County, Florida; September 30, 2006

Results and Discussion

Second paragraph, replace first sentence with text below:

The estimated discharge of Timber Spring on September 30, 2006, was 0.765 CFS (cubic feet per second). This result is also expressed as 343 GPM (gallons per minute) or 0.494 MGD (million gallons per day), see Table 1.

Table 1

Replace Timber Spring Total Discharge with text below:

Timber Spring Total DischargeCFS0.765MGD0.494GPM343

Executive Summary

Background

The Silver Springs spring group is one of Florida's 33 first-magnitude springs and is the largest spring within the St. Johns River Water Management District (the District). The median flow of the Silver Springs group accounts for nearly 45% of all spring flow within the District.

Currently, 30 separate vents are known to make up the Silver Springs group. Some of the known 30 vents have multiple vent discharge points that are believed to be part of the same conduit system, but this has not been verified and documented. Routine water quality sampling by the U.S. Geological Survey over the years has been confined to composite sampling of Mammoth Springs, which are really two large vents with documented temperature and visual water clarity differences. Visual observations of water clarity variations and vegetation variations among the various vents lead to the conclusion that water quality may be spatially and seasonally variable. Because many important water quality variables, such as nutrients, do not cause visible changes in the clarity of water the variation between the vents may be considerable. There is no documentation or even a baseline measurement of the current water quality concentrations discharged from all the Silver Springs group vents. This report is the first comprehensive study of the discharge and quality of water from different vents at Silver Springs in the upper 1,200 meters of the Silver River.

As part of the Florida Springs Initiative (FDEP 2000), on a year-by-year basis, the Florida Department of Environmental Protection (FDEP) requests from the Legislature an amount for funding hydrologic monitoring and research investigations that are critical to developing strategies to manage spring-related water resources. Silver Springs is important to study because of elevated levels of nitrates in Mammoth Springs. The nitrate concentrations (about 1.1 mg/L nitrate–nitrogen) are higher than background levels and have been increasing since 1950 (Munch et al., 2006). During fiscal year 2006–2007, the FDEP funded phase 1, the first phase of a four-phase project. The overall project is expected to last four years. Phase 2 involves the tracing of vent subgroups to source regions in the springshed. It is expected to last one year and is budgeted for fiscal year 2007–2008. Phase 3 (-isotope, anthropogenic, pesticide, and wastewater chemical characterization of the Silver Springs main vents) began in 2007 and is planned to last two years. The seasonality of water quality at Silver Springs will be examined during phase 4. It is expected to last two years and is planned for fiscal years 2008–2009 and 2009–2010.

The topic of this report is the phase 1 documentation, flow discharge measurement, and water quality sampling of all of the spring vents in the Silver Springs spring group. During phase 1, numerous vents at Silver Springs were sketched, photographed, sampled for water quality and, where possible, measured for discharge. Karst Environmental Services, Inc. (KES) sketched and photographed the different vents; assisted in the water quality sampling, made biological observations at the different vents; and conducted discharge measurements, where possible. Intera, Inc. performed multivariate statistical analysis consisting of cluster analysis and principal

component analysis on the water quality data. The purpose of Intera's work was to reduce the number of water quality samples required to characterize the water quality of the spring group and to correlate springs relative to source water characteristics. This resulted in the design of a sampling plan that represents the variation of the clusters to simplify large volumes of data into simpler groups. Cluster analysis was aimed at determining the smallest number of spring groups that represent the water quality at Silver Springs.

Spring Vent Documentation (Appendix 3) and Water Quality Characteristics (Appendix 4):

Counting Mammoth Spring as two discrete spring vents, Silver Springs consists of 30 different springs, with 61 vents in the upper 1,200 meters of the Silver River. In September 2006, KES

Silver Springs

sketched, photographed, and sampled most of these discrete springs. KES also made discharge measurements at many of these spring vents. The sketches, photographs, discharge measurements, and water quality data are included in this report. All of the sampled springs discharge a calcium-bicarbonate type water.

The two vents at Mammoth Spring (Mammoth-East and Mammoth-West) produce slightly different water quality and differed in temperature by 1.4° Celsius (C). They also differed in dissolved oxygen, field conductivity, total nitrate plus nitrite (NOx-total), sulfate, and total dissolved solids (TDS). Dissolved oxygen (DO) was 1.98 milligrams per liter (mg/L) in Mammoth-East and 0.94 mg/L in Mammoth-West. DO was highest at Indian Cave Spring (3.70 mg/L) and lowest at Log Spring (0.08 mg/L). The NOx-total concentration at Mammoth-East and

Mammoth-West was 1.27 mg/L and 0.91 mg/L, respectively. Total NOx concentration was highest at No Name Cove Spring (1.89 mg/L) and lowest at Log Spring (0.87 mg/L). The mean and median total NOx concentrations were 1.36 mg/L and 1.40 mg/L, respectively.

Sulfate was highest at Ladies Parlor Spring (74.4 mg/L) and lowest at Log Spring (16.7 mg/L). Sulfate was 45.5 mg/L at Mammoth-East and 17.7 mg/L at Mammoth-West. Generally, sulfate concentration is lower in the downriver spring vents than in those closest to the Mammoth Spring vents. Spring vents with higher sulfate concentrations probably have a deeper flow system than spring vents with lower sulfate concentrations. The source for the sulfate may be the dissolution of gypsum and anhydrite at the top of the middle semi-confining unit of the Floridan aquifer system.

TDS concentrations were highest in Catfish Reception Hall-1 Spring (318 mg/L) and lowest in Shipwreck-1 Spring (195 mg/L). TDS concentration was 304 mg/L in Mammoth-East and 236 mg/L in Mammoth-West. Generally, TDS concentrations were lower in the downstream spring vents than in those closest to the Mammoth Spring vents.

Discharge (Appendix 5):

KES made discharge measurements at the Silver Springs group in September 2006. The largest discharge, 240 cubic feet per second (cfs) occurred at Mammoth Springs. The second largest discharge, 36 cfs, occurred at Catfish Reception Hall. The remaining discharges at 21 vents were less than 10 cfs each. The smallest discharge, 0.24 cfs, occurred at No Name Cove and Devils Kitchen B. No discharge measurements were performed at six vents because of an absence of a suitable cross section at four of the vents and because of very little discharge at two of the vents. The vents without suitable cross sections were First Fishermans Paradise, Turtle Meadows, Catfish Hotel, and Rocky vent. The vents with little discharge were Lost River and Log. The total discharge from all of the measured vents was 327 cfs.

Geochemical Characterization (Appendix 6):

Intera, Inc. performed a statistical cluster analysis on the water quality data from these different spring groups. Cluster analysis was used to simplify large volumes of data into simpler groups to describe most of the essential characteristics of the data. Cluster analysis of the Silver Springs water samples reveals five distinct groups. Groups 1 and 2 contain 11 vents; group 3 contains 10 vents; groups 4 and 5 contain one vent each. Cluster analysis was performed on water quality samples from 34 vents. Group 1 is located in the southern and western part of the Silver River and has the highest total dissolved solids, dissolved oxygen (DO), calcium, magnesium, bicarbonate, sulfate (SO4), nitrate, and phosphorus (P) concentrations. Group 2, which includes vents in the northern part of the springs, has lower concentrations of most solutes than group 1 and particularly low DO, SO4 and P concentrations. Group 3 is intermediate between groups 1 and 2. Group 4 had a high total-organic carbon concentration and group 5 had a high P concentration. However, two of the groups consist of only one spring and are distinguished from the other groups due to anomalously high total-organic carbon

(TOC) or phosphorus concentrations. These two groups are considered to be outliers and are probably the result of sampling errors or anomalies. Both samples contained suspended material. Excluding the samples with outliers, Silver Springs consists of three distinct groups.

The clusters show continuous rather than discrete changes from one group to the next. This suggests that water from many of the springs represents a mixture of different source waters, rather than distinct end-members. An 'end-member' can be viewed as a spring with specific chemical characteristics. A few vents within each cluster can be singled out as end-members corresponding to each of the three groups. The rest of the samples can be viewed as mixtures of these three waters.

<u>References</u>

- [FDEP] Florida Department of Environmental Protection. 2000. *Florida's Springs—Strategies for Protection and Restoration.* Tallahassee.
- Munch, D.A., Toth, D.J., Huang, C-tzu, Davis, J.B., Fortich, C.M., Osburn, W.L., Phlips, E.J., Allen, M.S., and Knight, R.L., 2006, *Fifty-Year Retrospective Study of the Ecology of Silver Springs, Florida.* Prepared for Florida Department of Environmental Protection, Tallahassee.

Contents

Executive Summary
Appendix 1: Stiff Diagrams
Appendix 2: Trilinear Diagram
Appendix 3: Silver Springs Vent Documentation, September 2006
Appendix 4: Water Quality
Silver Springs Geochemical Characterization
Silver Springs_WQ1_final
Appendix 5: Silver Springs Discharge Reports, September 2006
Silver Spring Discharge Summary, September 2006
Appendix 6: Cluster Analysis Report
Appendix 7: Photographs (access separately on CD-ROM)

Appendix 1 Stiff Diagrams

SSG-Cat-Rec-Hall-1 CATIONS ANIONS meq/l Ion meq/l Na+ .30 meq/l 4.00 meq/l 4.00 2.00 0 2.00 Ca²⁺ 3.94 Mg^{2+} .99 K^+ .02 Cl- Na^+ Cl^{-} .33 HCO_{3}^{-} SO_{4}^{2-} CO_{3}^{2-} 3.54 1.53 Ca^{2+} HCO_3^- .00 5.24 5.40 Mg²⁺ SO_4^{2-} K^+ CO_{3}^{2-} SAMPLE 4

 K^+

SAMPLE 5

 CO_{3}^{2-}

·

SSG-Alligator-Hole-1

.

.

۰.

.

SSG-Christ-Tree-N

SSG-Garden-of-Eden-1 CATIONS ANIONS meq/l meq/l Ion Na+ .28 meq/l 3.50 meq/l 3.50 1.75 1.75 0 Ca^{2+} 3.29 Mg^{2+} .78 K^+ .02 Na^+ Cl-.30 Cl^{-} HCO_3^- 3.39 SO_4^{2-} CO_3^{2-} .90 Ca²⁺ HCO_3^- .00 4.38 4.59 Mg²⁺ SO_4^{2-}

K+

.

_____ C0²⁻

SAMPLE 16

SSG-Garden-of-Eden-2 CATIONS ANIONS meq/l meq/l Ion Na^+ .26 meq/l 3.50 meq/l 3.50 1.75 1.75 0 Ca^{2+} 3.09 Mg^{2+} .63 K^+ .02 Cl^{-} .31 Na^+ $C1^{-}$ $HC0_{3}^{-}$ $S0_{4}^{2-}$ $C0_{3}^{2-}$ 3.20 .61 Ca²⁺ HCO_{3}^{-} .00 4.014.11Mg²⁺ $\mathrm{SO}_4^{\mathtt{z}-}$ K^+ CO_{3}^{2-} SAMPLE 17

.

SSG-Indian-Cave-1

SSG-First-Fish-Par-1

.

SSG-Turtle-Meadows-1

SSG-Catfish-Hotel-1

Ion

 Na^+

 Ca^{2+}

Mg²⁺

 K^+

 Cl^{-}

SAMPLE 26

•

.

Appendix 2 Trilinear Diagram

1 SSG-Mammoth-Q SSG-Catfish-2 SSG-Mammoth-R SSG-Turtle-N 3 SSG-Jacobs-W S SSG-Turtle-N 4 SSG-Cat-Rec- ⊤ SSG-Rac-Isl-5 SSG-Bridal-C U SSG-Rocky-Ve ∨ SSG-Shipwrec 6 SSG-Oscar 7 SSG-Devils-K W SSG-Cat-Conv 8 SSG-Ladies-P X SSG-Cat-Conv 9 SSG-Devils-K Y SSG-Timber-1 A SSG-Alligato Ζ B SSG-Mastodon C SSG-Geyser-1 D SSG-Blue-Gro E SSG-Christ-T F SSG-Christ-T G SSG-Garden-o H SSG-Garden-o | SSG-Lost-Riv J SSG-Log K SSG-Indian-C L SSG-First-Fi M SSG-First-Fi N SSG-No-Name-O SSG-Turtle-M P SSG-Sec-Fish

Appendix 3 Silver Springs Vent Documentation, September 2006

Silver Springs Spring Vent Documentation Marion County, Florida; September, 2006

For:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

By:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

TABLE OF CONTENTS

TABLE OF CONTENTS	<u>Page No.</u> <i>i</i>
	1
INTRODUCTION	1
PURPOSE AND SCOPE OF WORK	1
PERSONNEL	2
METHODS	2
ECOLOGICAL OBSERVATIONS General Description of Study Site Survey Results Table 1. Bottom Cover Conditions	3 3 4 6
REFERENCES	7
SPRING DESCRIPTION, ECOLOGY & MAP Mammoth Spring Jacob's Well Spring Catfish Reception Hall Spring Bridal Chamber Spring Oscar Spring Ladies Parlor Spring Devil's Kitchen Springs A & B Alligator Hole Spring Mastodon Bone Spring Geyser Springs Group Blue Grotto Spring Christmas Tree Spring Garden of Eden Springs Group Lost River Spring Log Spring Indian Cave Spring First Fisherman's Paradise Springs Group No Name Cove Spring Second Fisherman's Paradise Spring Catfish Hotel Spring Turtle Meadows Spring Second Fisherman's Paradise Spring Catfish Hotel Spring Turtle Nook Spring Surutle Nook Spring Shipwreck Spring Shipwreck Spring Catfish Convention Hall Spring Rocky Vent Spring	
Rocky Vent Spring Timber Spring	43 45

Silver Springs Spring Vent Documentation Marion County, Florida; September, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to assist in the collection of data from the various springs that constitute the Silver Springs Group in Marion County, Florida. This report documents the results of the work done at the site during September, 2006, which includes the first comprehensive physical and ecological description and mapping of all the springs in the first 1,200 meters (m) of the Silver River, as well as an estimation of their discharge. Water samples were also collected for water quality analysis by the SJRWMD. The Silver River starts at the first spring called Mammoth Spring.

Silver Springs consists of a group of at least 30 named springs or spring groups located along about 0.5 mile of the Silver River. Mammoth Spring makes up two of these spring groups. It is thought that Silver Springs is increasingly threatened by activities associated with the tremendous population growth in its watershed. These threats include: groundwater overpumping, overuse and inappropriate use of pesticides and fertilizers, urban sprawl, and stormwater and agricultural runoff.

Monitoring of water quality at Silver Springs has found contaminants entrained in its discharge, indicating at least localized and possibly generalized pollution of groundwater in its springshed. Some of these contaminants, most notably nitrate, are thought to be adversely affecting the spring environment, chiefly by accelerating the growth of algae, such as the filamentous *Lyngbya*, with subsequent shifts in vegetative patterns and loss of certain physical habitats, such as sandy bottom.

Since the 1950's, there have been several ecological studies at Silver Springs that have documented a gradual deterioration of conditions in the river and springs (Whitford, 1954, 1956; Odum, 1957; Martin, 1966; Stevenson, et.al. 2004; Phlips and Allen, 2004; and Phelps and Walsh, 2005; Munch et al, 2006). Silver Spring is almost unique in this respect; at most other Florida springs, researchers studying ecological trends have nothing to rely upon but anecdotal accounts of past conditions. This study will add to the literature on this great spring group, and hopefully provide a "snapshot" of flow, water quality, and ecological conditions that will be useful in understanding and protecting this natural wonder.

PURPOSE and SCOPE OF WORK

The following tasks were to be performed at 30 or more selected vents:

1. Collect water samples (directly for SJRWMD staff), assist with positioning of boats for handheld GPS locations.

2. Make sketch maps and record physical descriptions of each vent, make and note biological/ecological observations, process data and prepare report. Take photographs of each spring and its features.

3. Perform underwater discharge measurements, process data and prepare report.

PERSONNEL

Fieldwork was conducted by Peter Butt, Project Manager, Tom Morris, Biologist, and Mark Long, Field Technician. Photography was performed by Jill Heinerth and Georgia Shemitz. Watercraft support was provided by Scott Braunsroth. Data management and report preparation was performed by Peter Butt and Tom Morris.

METHODS

The fieldwork for this study was carried out during the month of September, 2006. Jon boats were used to access all previously known Silver River springs and spring groups, as well as several springs that were discovered during the study.

During the first part of the study, KES divers assisted SJRWMD personnel in collecting water samples from each of the springs or spring groups. Samples were collected by divers running tubing directly into spring vents and pumping the water up to the boats. Water samples were analyzed immediately for field parameters and sent by SJRWMD to labs for further analysis.

In the second part of the study, information was gathered at each spring or spring group for the preparation of descriptions and sketch maps, which are included in this report. Also, a visual ecological survey of the relative dominance of several cover-types was completed at each spring basin, and interesting biological observation were recorded. Underwater photographs of the springs were taken throughout the water sampling and data collection activities.

During the third part of the study, discharge measurements of the springs were made and additional ecological observations were made.

The delineation of spring and spring group boundaries was necessarily somewhat subjective. Most of the springs occur as distinct openings in the rock bottom of the Silver River, or within sediment-mantled depressions located in coves along the bank. However, many of the springs consist of groupings or clusters of two or more spring vents, or as groups of vent clusters. Furthermore, several of the springs discharge through complex areas of boulders and ledges.

Spring and springs group boundaries were generally delineated at more-or-less distinct topographic breaks, where the upward-sloping walls of the basins level out to the depth of the surrounding bottom. However, some of the springs have no "natural" boundary formed by an easily recognizable topographic break. Nevertheless, these springs usually have an obvious zone of influence, where bottom sediments and vegetation differ from the surrounding area. These factors, as well as relative distance between features, were all used in delineating these spring and spring group boundaries.

Cover-type survey was based on a visual survey of each spring basin; no measured transects or plots were utilized. However, these are likely good order of magnitude vegetation cover estimates which may be useful for tracking future changes at the springs. All ecological

observations described herein were made by KES biologist Tom Morris using SCUBA or snorkeling gear. Wildlife observations were recorded at a few springs and include remarkable occurrences of native fish or the presence of non-indigenous fish.

The cover-type survey and ecological observations were made during the second week of September, 2006. The main observations include: an estimate of the coverage, given as a percent of spring basin bottom area, of submerged macropyhtic plant species; coverage of spring basin bottom area by filamentous macroalgae; growth of filamentous algae on submerged macrophytic vegetation, and percent of basin remaining in sandy and rocky bottom habitat.

Algal standing crop may consist of a consortium or association of several species. However, the scope of this work did not include the identification of extant algae; instead, its focus was on the relative dominance of vegetation types in the spring basins, such as coverage by filamentous algal growths.

Physical measurements of the springs were made using underwater compass and fiberglass tape, with data recorded on plastic slates. Data was transferred to grid paper, scanned and finished using Canvas drawing software.

Photographs were also taken at each site. Photographs of the springs are included in "Silver River Springs Photographic Documentation" by KES.

Discharge measurements were taken at most of the spring vents. These measurements were taken using an electronic flowmeter adapted for underwater use. Many of the springs were measured using the standard cross-section method used by KES. Many vents (especially those discharging through soft bottom sediments and algae) that did not lend themselves to this method were measured using a Vent Discharge Capture Device specially designed for this purpose. Data was processed using Golden Surfer 8 software. The results and summary of these measurements are presented under separate cover.

A brief description of each of the various springs or spring groups, a plan view map of each site, and the results of the ecological survey are presented herein. The springs are listed in upstream to downstream order.

ECOLOGICAL SURVEY AND OBSERVATIONS

General Description of Study Site

Silver Springs consists of a large head spring, and at least 28 other individual springs and clusters or groups of springs located in the bed of the river, or in coves, along the upper one-half mile of the Silver River. The depth at the mouth of Mammoth Spring is about 30 feet. Much of the Silver River is about 10 ft deep or less. Many of the spring vents are between 15 and 20 feet deep. Mammoth Spring consists of two vents.

Assemblages of submerged aquatic macrophytes and macroalgae vary among the springs, probably due to the influence of physical characteristics, such as bottom type or strong current.

The dominant submerged macrophytic vegetation in the Silver River and its individual spring basins is strap-leaf sagittaria (*Sagittaria kurtziana*). The only other submerged macrophyte present is coontail (*Ceratophyllum demersum*). Strap-leaved sagittaria and coontail are both considered to be desirable aquatic plants, providing habitat for micro and macro invetebrates, and food and cover for many wildlife species. Epiphytic algae, including green and diatomaceous algae, as well as filamentous blue-green algae, generally cover the leaves of strapleaf sagittaria to varying degree.

Benthic algal species dominate or cover a significant part of the bottom of the Silver River and many of the springs. The most common algae are *Lyngbya sp. Lyngbya* are nitrogen fixing blue green algae, or cyanobacteria, and their recent rapid colonization of many Florida springs has alarmed biologists. This genera was not present during Odum's (1957) classic study at Silver Springs, although he reported small mats of *Spirogyra sp.* A decade later, Martin (1966) found dense growths of *Spirogyra* in Mammoth Spring, as well as attached *Lyngbya*. By 2003, Stevenson (2004) reported macroalgal cover at Silver Springs to be about 70 percent, of which about three-quarters was *Lyngbya majuscule*. Many ecologists suspect the apparent increase in macroalgae is a response to increasing levels of nutrients in groundwater. It has also been suggested that Lyngbya may be a recently introduced species that is going through the explosive growth phase characteristic of troublesome exotics.

Survey Results

The coverage (in percent) of the bottom of the Silver River spring basins by filamentous macroalgae, strap-leaved sagittaria, coontail, and bare sand and/or rock was estimated by visual survey. These categories included almost all the significant bottom variety in the basins. Ten of the 30 named spring/spring groups were divided into sub-basins for the cover-type survey, so a total of 33 individual basins were surveyed. The results of the cover-type survey for the springs and spring group basins are summarized in Table 1.

Filamentous algae, mostly *Lyngbya sp.* was the dominant cover-type in the spring basins, averaging about 60 percent coverage for all the basins, with a minimum coverage of zero percent and a maximum coverage of 100 percent. Strap-leaved sagittaria was the second most widespread cover-type, averaging about 25 percent coverage, with a minimum coverage of zero percent and a maximum coverage of 85 percent. Only about 9 percent of the basin bottoms had bare sand or rock substrates. Coontail, the only submerged macrophyte other than strap-leaved sagittaria, covered about 7 percent of the basin bottoms on average, varying from zero to 35 percent.

This survey's estimated coverage by filamentous macroalgae is consistent with Stevenson's (2004) report of 70 percent macroalgal cover at Silver Springs in 2003. Filamentous macroalgae was present in all flow conditions, but was noticeably dominant in areas of gentle flow, such as in protected coves and below the canopy of strap-leaved sagittaria., Conversely, filamentous macroalgae cover was reduced in most areas of strong flow. An uncommon, strongly attached moss-like macroalgae, which occurred as a thick carpet on rocky substrates, was only found in the exceptionally strong flow at a few vent orifices. These observations agree with Whitford (1954, 1956), who found water velocity to be the most important factor for algal distribution.

In the Geyser and Jacob's Well Spring basins, two to three feet of filamentous macroalgae sediments have accumulated, burying underlying sand and rock substrates. (Probing these deposits reveals a sharp transition from soft algal deposits to hard substrate.) These are extreme examples, but many of the former sand and rock substrates in the basins are now covered with several inches of algae. The authors are unaware of any studies addressing the ecological effects of the loss of "hard" substrates (sand and rock) in the Silver Springs ecosystem. However, it is possible that some organisms might be affected by these changes. For example, darters were strongly associated with sand substrates, and were never seen on algal substrates.

Vermiculated sailfin catfish (Pterygoplichthys disjunctivus) and their burrows were seen at several of the spring basins. These non-indigenous species from South America have colonized many springs and spring runs in the St. Johns River drainage. They do not appear to be nearly as numerous as in the Silver River springs as they do in other St. Johns River springs, such as Wekiva Springs.

The results of the cover-type survey, and incidental ecological observations, are given for each spring in the following "Spring Description, Ecology & Map" section.

Table 1. Bottom Cover Conditions					
Silver Springs Spring Vent Documentation, Marion County, Florida; September 2006					
Percent of Coverage of Silver River Spring Basins by Four Cover Types					
	Cover Type and Percent of Basin B			ottom	
	Filamentous	Strap-leaved	Coontail	Sand/Rock	
Spring Basin Name	Algae	Sagittaria			
Mammoth	80	10		10	
Jacob's Well	40	20	-	40	
Catfish Reception Hall	60	10	-	30	
Bridal Chamber	65	30	-	5	
Oscar	-	85	10	5	
Ladies Parlor	70	5	-	25	
Devil's Kitchen A	75	15	-	10	
Devil's Kitchen B	65	35	-	-	
Alligator Hole (Main Basin)	85	15	-	-	
Alligator Hole (South Basin)	95	5	-	-	
Mastodon Bone	20	50	30	-	
Geyser	80	5	-	15	
Blue Grotto	50	20	-	30	
Christmas Tree	60	35	5	-	
Garden of Eden (Main Vents)	75	20	5	-	
Lost River and Log	100	-	-	-	
Garden of Eden (SW Vent Line)	39	60	1	-	
Indian Cave	60	35	5	-	
First Fisherman's Paradise (Ledge)	28	50	2	20	
First Fisherman's Paradise (East)	75	-	-	25	
No Name Cove	70	30	-	-	
Turtle Meadows (Main)	20	30	30	20	
Turtle Meadows (SE)	45	10	35	10	
Turtle Meadows (South)	20	40	30	10	
Second Fisherman's Paradise	50	35	5	10	
Catfish Hotel	70	15	10	5	
Turtle Nook	95	-	5	-	
Turtle Nook Run	80	-	10	10	
Raccoon Island	95	-	5	-	
Shipwreck	80	5	10	5	
Catfish Convention Hall	40	45	15	-	
Rocky Vent	40	40	10	10	
Timber	10	50	30	10	
Total Percent Coverage:	59	24	7	9	

REFERENCES

Martin, R. A. 1966. Eternal Springs: Man's 10,000 years of history at Florida's Silver Springs. St. Petersburg, FL. Great Outdoors Press, Inc. 264 p.

Munch, D.A., D.J. Toth, C-t Huang, J.B. Davis, C.M Fortich, W.L. Osburn, E.J. Philips, E.L. Quinlan, M.S. Allen, M.J. Woods, P. Cooney, R.L. Knight, R.A. Clarke, and S.L. Knight, 2006, Fifty-year retrospective study of the ecology of Silver Springs, Florida, prepared for Florida Department of Environmental Protection, in draft.

Odum, Howard T., 1957. Trophic Structure and Productivity of Silver Springs, Florida. Ecological Monographs, Vol. 27: Pages 55-112.

Phelps, G.G. and Stephen J. Walsh. 2005. Characterization of the hydrology, water quality, and aquatic communities of selected springs in the St. Johns River Water Management District, Florida. Presented at USGS "Science in Florida". Orlando, Florida.

Phlips, E. J. and Mike Allen. 2004. Silver Springs: A 50 year retrospective of the relationships between environmental and water resource related systems. Report on Phase 1, January-June 2004. Prepared by the University of Florida, Department of Fisheries and Aquatic Sciences for the SJRWMD. 26 p.

Stevenson, R. J., Pinowska, Agnieska, and Wang Yi-Kuang. 2004. Ecological condition of algae and nutrients in Florida Springs. Report to Florida Department of Environmental Protection. Contract # WM858. 101 p.

Whitford, L. A. 1954. The species of algae and their distribution in Florida springs. Third semi-annual report to the Biology Office of Naval Research. University of Florida, Department of Biology. Gainesville, Florida.

Whitford, L. A. 1956. The communities of algae in the springs and spring streams of Florida. Ecology, Volume 37: Pages 433-442.

SPRING DESCRIPTION, ECOLOGY & MAP

Mammoth Spring

Description: This is the largest and most upstream of the spring vents. It discharges horizontally into a large basin just east of the glass-bottom boat loading area. The vent is a horizontal, oval-shaped opening 2 to 6 feet high and about 65 feet wide at the base of a limestone wall. The bottom of the vent's mouth is composed largely of breakdown boulders and rubble. The depth of water measured in front of the vent opening is about 34 feet. Water from at least two distinct sources (called Mammoth East and Mammoth West) discharge from the cave opening. These sources differ in temperature and chemistry. The spring basin measures about 300 feet north to south and 200 feet east to west.

Ecology: Benthic filamentous algae were the dominant vegetation in the deep parts of the basin, covering up to 80 percent of the rock or sand substrate in front of the vent. The wall above the vent was almost completely shrouded in filamentous algae, and "streamers" of algae attached to the roof of the vent undulated in the strong flow. An unidentified moss-like macroalgae covered many of the rocks in front of the cave entrance where flow was strong. The shallower parts of the head spring area supported strap-leaved sagittaria, with especially vigorous stands in the high flow zone in the south of the basin. The sagittaria leaf blades were generally covered with epiphytic algae, with filamentous algae mostly confined to the low flow microenvironment below the sagittaria and 10 percent by sandy or rock bottom. Sagittaria growing on the rocky shelf above the basin headwall was covered with filamentous algae.

Crayfish (*Procambarus sp.*) were easy to find under rocks in the boulder-strewn bottom in front of the vent. Centrarchids, including long-ear and red-belly sunfish, and largemouth bass were common in the basin.

Jacob's Well Spring

Description: Jacob's Well Spring is located on the south side of the upper Silver River, approximately 500 feet downstream from Mammoth Spring. The spring is in a large, sandy-bottomed depression shared with Catfish Reception Hall Spring to the southeast, and is about 22 feet deep. Water discharges horizontally from a narrow 10 foot long rocky vent beneath a limestone ledge. The ledge is at the bottom of the relatively steep western wall of the depression.

Ecology: About 40 percent of the basin was sandy, about 40 percent was sand covered with filamentous algae, and about 20 percent (the upper slopes) was covered by strap-leaved sagittaria. In places, filamentous algae was over two feet deep, with healthy algae covering older dead algae.

Several species of sunfish were common in the spring basin.

Catfish Reception Hall Spring

Description: Catfish Reception Hall Spring is located in the western part of a cove on the south side of the Silver River, approximately 50 feet southeast of Jacob's Well Spring, and shares a large sandy-bottomed depression with that spring. Catfish Reception Hall Spring discharges horizontally from a limestone ledge that forms a vent 26 feet long and up to five feet high at its eastern end, and tapering in height to its western side. The deepest portion of the vent bottom is 32 feet deep. A second narrow vent, about 7 feet long and less than one foot high extends along the rock ledge beginning about 3 feet west of the first vent. One other small vent in soft sediment was located about midway between this spring and Jacob's Well Spring.

Ecology: The deeper parts of the basin were dominated by filamentous algae, which covered about 60 percent of the bottom. The remaining 30 percent was sand, including the high flow area just outside the vent. The upper slopes were dominated by strap-leaved sagittaria, with about 10 percent cover. Two unidentified species of small snails were common on rocks at the spring vent.

Bridal Chamber Spring

Description: Bridal Chamber Spring is located in a large basin on the south side of the Silver River, approximately 100 feet southeast of Catfish Reception Hall. Discharge is from an elongated vertical vent in the limestone, about 15 feet long, up to 2.5 feet wide, and about 18 feet deep.

Ecology: About 30 percent of the basin, mainly on the sloping sides and shoulders, was covered by strap-leaved sagittaria. Five percent of the basin was sandy bottom, and 65 percent was sand or rock covered by filamentous algae.

Oscar Spring

Description: Oscar Spring is a group of spring vents in a shallow depression on the north side of the center of the river channel, about 140 feet northeast of Jacob's Well Spring. There are three small vents in the depression, one of which discharges from a marl ledge, and a line of vents about 8 feet long about ten feet to the southwest of the marl ledge. The deepest part of the depression is about 17 feet deep.

Ecology: The area around this spring was dominated by strap-leaved sagittaria, which covered about 85 percent of the basin. Coontail covered about ten percent, and the rest, about five percent, was sandy bottom in front of the vents. A large school of shad was in the area.

Ladies Parlor Spring

Description: Ladies Parlor Spring is located in the south side of a cove, approximately 60 feet southeast of Bridal Chamber Spring. Water discharges from a long vent beneath a ledge on the bottom of the southwest side of a large depression. The long vent is composed of two sections, one about 14 feet long, separated by about 5 feet of rock from the narrower vent that is about five feet wide. There is a strong flow moving the sand and shell fragments as water exits the vent. South of the long vent and also along the ledge are several very small vents, mostly obscured by algae.

Ecology: Vigorous flow keeps the sand and shell covered apron in front of the long vent free of algae. The sand and shell bottom covered about 25 percent of the basin, filamentous algae covered about 70 percent of the basin, and strap-leaved sagittaria covered about five percent of the shallow part of the upper slope above the vent.

A group of about ten darters, probably the black-banded darter (*Percina nigrofasciata*), were seen in the strong flow at the mouth of the vent.

Devil's Kitchen Springs A and B

Description: Devil's Kitchen Spring A is located approximately 90 feet northeast of Ladies Parlor Spring. Water flows from vents beneath a 26 foot long linear limestone ledge, at a depth of 20 feet, at the bottom of a bowl-shaped depression. There are vents at each end of the ledge and several smaller vents between these.

The depression extends to the northwest with a low saddle separating the deeper Devil's Kitchen Spring A basin and the slightly shallower Devil's Kitchen B basin. There is one small vent located between the two springs.

Devil's Kitchen Spring B is located approximately 60 feet northwest of Devil's Kitchen Spring A. It discharges from a roughly circular vent, about 15 feet deep, at the bottom of a sediment-sided depression.

Ecology: Devil's Kitchen A has a sandy area along the linear vent that covered about ten percent of the basin. Strap-leaved sagittaria covered about 15 percent of the basin and filamentous algae covered about 75 percent of the basin.

About 35 percent of the Devil's Kitchen B basin was covered by strap-leaved sagittaria, and 65 percent was sand covered by filamentous algae.

The slopes of both Devil's Kitchen spring basins had a half-dozen or so burrows dug by the vermiculated sailfin catfish (*Pterygoplichthys disjunctivus*). This non-indigenous species from South America has colonized many springs and spring runs in the St. Johns drainage. Several of the catfish were seen in the burrows.

Alligator Hole Spring

Description: The main vents at Alligator Hole Spring are located in a somewhat elongated, oval basin along the south side of the Silver River, approximately 150 feet northeast of Devils Kitchen A. This depression is formed in soft sediments and is about 14 feet long. There are vents at both the upstream and downstream end of this depression, at depths of 15 and 17 feet, respectively. There is also a smaller vent about 40 feet southeast of Alligator Hole, about 18 feet deep, within a conical, silty depression, about 12 feet in diameter.

Ecology: Filamentous algae covered about 85 percent of the main basin and about 95 percent of the south basin. Strap-leaved sagittaria covered about 15 percent of the main basin and five percent of the shoulders of the south basin.

A large number of chain pickerel (*Esox niger*) were present among the cover of algal draped dead tree limbs in this cove.

Mastodon Bone Spring

Description: Mastodon Bone Spring is located within the Silver River, on the north side, and opposite from a peninsula on the south side that is immediately upstream of the Geyser Spring Group. This spring discharges vigorously from two 4-foot long linear cracks that form a roughly triangular vent in the limestone, at the bottom of a conical basin. This spring is rocky, with little sediment around it, and is about 12 feet deep.

Ecology: Strap-leaved sagittaria and coontail are present at the vents and up the sloping sides of the basin, covering 50 percent and 30 percent of the basin, respectively. Twenty percent of the basin is covered by filamentous algae. Coontail is also entangled in the limbs of a fallen tree, anchoring it in the fairly strong flow of the river.

Geyser Spring Group

Description: The Geyser Spring Group is located in the western side of a large cove on the south side of the Silver River, east and downstream of Alligator Hole. There is a small peninsula of land between Alligator Hole Spring and Geyser Spring.

The Geyser Spring Group encompasses a number of vents of varying description. The large basin containing this spring group is dominated by a linear outcrop of limestone about 3 feet high and 26 feet long, at about 16 feet of depth. There are vents all along the base of this outcrop, with the largest vent on the northern side of its eastern end. Numerous other vents can be observed on the bottom of the basin around this outcrop, discharging through the filamentous algae that covers the bottom.

On the north side of the basin, about 35 to 40 feet north of the outcrop, there is a group of five large vents formed within the thick peaty deposits that overly the limestone. These vents lie along the bottom of the north slope of the basin, at about 18 to 20 feet deep.

About 30 to 40 feet west of the outcrop, there are several vents at about 17 feet of depth discharging through the algae covering the bottom. About 30 feet south of the outcrop, another vent discharges from the bottom of a conical depression at about 19 feet deep.

Ecology: Algae deposits up to three feet deep cover about 80 percent of this basin. Sand covers about 15 percent of the basin around the vents, and strap-leaved sagittaria covers about five percent of the rim of the basin. A thick mantle of organic deposits lie along the base of the north slope of the basin, and surround the larger rocky northern vents.

Blue Grotto Spring

Description: Blue Grotto Spring is located within a basin in the same cove as the Geyser Spring Group, about 100 feet to the southeast. There is an exposure of limestone bedrock and boulders at the bottom of the basin. Most of the discharge flows from vents at the northern end of this rocky structure, and a small conduit can be observed descending below 25 feet of depth. Water also discharges from a smaller vent on the south end of the structure, about 15 feet south of the large northern vent. Several smaller vents also discharge from numerous cracks between the boulders that make up the top and west side of this structure. Discharge from several of the vents is strong enough to suspend agitated sand and shell fragments.

Ecology: About 30 percent of this basin is sand bottom or sand with a thin cover of filamentous algae. Strap-leaved sagittaria covered about 20 percent of the rim and sloping sides, and the remaining 50 percent was covered by a thick cover of filamentous algae. Many sunfish were present at this spring.

Christmas Tree Spring

Description: Christmas Tree Spring is located in a cove on the north side of the Silver River, south of the attraction's main stage area. It consists of a cluster of vents within a depression that surround a sunken boat. A second sunken boat lies along the west bank. A line of vents begins at the north end of the cove at about 14 feet deep, runs for 20 feet to the southeast, and then angles to the south for 18 feet, ending at 14 feet of depth. This vent line accounts for most of the discharge from this basin and contains debris and considerable aquatic vegetation. West of the vent line, and near the bow of the sunken boat, is a roughly circular vent about 16 feet deep. Another vent lies west of the sunken boat at 14 feet of depth. Discharge was also observed near the second sunken boat on the western edge of the basin.

Ecology: Strap-leaved sagittaria covered about 35 percent of the sloping sides of the basin and the basin bottom, including around the vents. Coontail covered about five percent of the basin. The remaining 60 percent of the basin was covered in soft sediments with varying amounts of filamentous algae. In areas of low flow the algae had risen from the bottom, forming stalagmite-like columns. Many fish were present here, especially under the cover of a nearby bankside sudd. These included bass, sunfish, and mudfish or bowfin (*Amia calva*). A few vermiculated sailfin catfish were seen at this spring.

Garden of Eden Spring Group

Description: The Garden of Eden Spring Group is located in a cove about 240 feet east of Christmas Tree Spring. Garden of Eden is in the same cove as the jungle boat docks. A linear depression about 24 feet long and 15 feet deep contains a line of vents. This vent line accounts for most of the discharge from this group, and contains debris. About 30 feet west of this vent line, there is a roughly circular vent about 4 feet in diameter and 14 feet deep.

Another line of vents, about 17 feet long and 15 feet deep, lies 110 feet southwest of the main vent line. This vent line lies within a depression at the edge of the strong flow of the Silver River. The vents discharge through sand and gravel sediments.

Lost River Spring and Log Spring

Two additional vents were discovered during this study east of the vent line, in a shallow swampy extension of the cove. The nearest of these, named Lost River Spring, is about 70 feet to the east, and is about two feet in diameter and about 8 feet deep. The second vent, named Log Spring, is 110 feet to the east of the vent line, and is about 3 feet in diameter and 5 feet deep. The vents of both of these springs gently discharge through detrital sediments and are beneath fallen tree limbs.

Ecology: Water current is low in the Garden of Eden basin due to its diffuse discharge and its protected position from river current in the cove. Strap-leaved sagittaria covered about 20 percent of the rim of the basin, and coontail covered about five percent. Both species were covered with filamentous algae. The remaining 75 percent of the basin had a sandy bottom with a light cover of filamentous algae. Sunfish were numerous in this basin and largemouth bass were present.

Lost River and Log Springs lie in a shallow swampy cove due east of Garden of Eden Spring main vent line. Both springs discharge vertically through detrital sediments. The soft bottom and the branches of several fallen trees were 100 percent covered in filamentous algae. A half dozen or so peninsula cooters (*Pseudemys floridana peninsularis*) were seen in the cove.

The sides of the basin containing the vent line southwest of the main Garden of Eden Spring vents were about 60 percent covered with strap-leaved sagittaria, which was largely covered with filamentous algae. A small amount of coontail, with about one percent coverage, was present. The coontail was also covered with algae. The remaining 39 percent of the basin was sand covered with algae. Sunfish were common in this basin. The location of this spring protects it from strong river current.

Indian Cave Spring

Description: Indian Cave Spring is located within a small cove on the south side of the Silver River, about 250 feet southeast of the Garden of Eden Spring Group. The main vent, about 11 feet long, lies within a sediment-sided basin, about 17 feet deep. The main vent discharges from a rocky opening at its southeastern end, and has additional smaller vents discharging through detritus at its western end. There is an additional vent about 40 feet to the south in the bottom of a conical basin formed in soft sediment, and about 15 feet deep. (This additional vent is not shown on the map.)

Ecology: In the main basin, strap-leaved sagittaria covered about 35 percent of the sides. Algae covered coontail covered about five percent of the area, mostly hanging from the branches of a dead tree. Filamentous algae covered the remaining 60 percent of the basin. Strap-leaved sagittaria covered about 80 percent of the basin to the south. The remaining 20 percent was covered in filamentous algae.

First Fisherman's Paradise Springs Group

Description: The First Fisherman's Paradise Springs Group is located approximately 200 feet east of Indian Cave. Water discharges horizontally from vents beneath and along a limestone ledge that parallels the river channel. This ledge lies no more than about a foot above the bottom of the channel, is at 17 feet of depth, and is about 43 feet long. About 25 feet to the northwest of the west end of the ledge is a line of spring vents along the bottom about 10 feet long, at 18 feet deep.

Beyond the eastern end of the ledge, and in a generally southeastern direction, are at least eight more vents, located within a basin along the outside edge of the flow of the main river channel. They all lie between 30 and 70 feet southeast of the east end of the ledge. Some of these vents discharge directly from rock, but some discharged through a thick layer of filamentous algae, at depths of 19 to 22 feet deep.

The physical structure and complexity of this spring did not lend itself to the application of the underwater discharge measurement methods used at the other springs.

Ecology: The vegetation changed considerably from the western, upstream vents to the eastern, downstream vents, so the site was divided into upper and lower sections for the ecological survey.

The upper vents section, the ledge area, was covered by about 50 percent strap-leaved sagittaria, 28 percent filamentous algae, and two percent coontail, with the remaining 20 percent being sandy bottom.

The lower, southeastern vents section, the deeper basin area, had a very open and flat bottom which was 75 percent covered by filamentous algae. The remaining 25 percent was rock and sand bottom.

No Name Cove Spring

Description: No Name Cove Spring is a line of six vents spread along the bottom of linear depression located in a small cove along the south side of the Silver River, about 450 feet east of First Fisherman's Paradise. The vents discharge vertically through soft bottom sediments, from between 10 to 14 feet deep.

Ecology: Algae-covered strap-leaved sagittaria covered about 30 percent of the basin and filamentous algae covered the remaining 70 percent of the soft bottom.

Chain pickerel and longnose gar (*Lepisosteus osseus*) were numerous in this cove. Schooling redeye chubs (*Notropis harperi*) were present in the cove.

Turtle Meadows Spring

Description: Turtle Meadows Spring is a complex area of ledges, limestone boulders and bedrock exposures with many vents. It is located approximately 200 feet northeast of No Name Cove, slightly north of the center of the Silver River. There are several tiers of ledges that slope from 9 feet deep to a depth of 18 feet on the eastern side of the basin. One large vent in the northern section discharges into a small room formed under a large boulder. Other vents discharge throughout the piles of boulders and along the ledges. At many of the vents, voids extend down beyond the boulders. The flow from the numerous vents was generally strong.

Two other spring vent clusters are located beyond the ledge and boulder pile area of this spring. One of these clusters lies about 15 feet to the southeast, and the other, a twenty foot long line of vents, lies about 25 feet south of the "main" spring.

The physical structure and complexity of this spring did not lend itself to the application of the underwater discharge measurement methods used at the other springs.

Ecology: Strap-leaved sagittaria was present in several of the vents in the main boulder pile, covering about 30 percent of the area. Coontail covered about 30 percent of the area, and the remaining 20 percent was covered by filamentous algae. Sand and rock covered 20 percent of the bottom here.

Many sunfish were present in the area. Four darters, probably black-banded darters, were seen in a sandy area among sagittaria. Several red-eyed chub were also seen at this site.

Forty-five percent of the southeastern vents area was covered by filamentous algae, 35 percent by coontail, and 10 percent by strap-leaved sagittaria. Sand and rock covered 10 percent of the bottom here.

There was no obvious basin associated with the southernmost line of vents, and river flow was strong. Strap-leaved sagittaria covered about 40 percent of the river bottom in this area, coontail about 30 percent, and filamentous algae about 20 percent. Sand and rock covered 10 percent of the bottom here.

Second Fisherman's Paradise Spring

Description: Second Fisherman's Paradise Spring is a distinct vent in the bare limestone bottom in the middle of the river channel about 200 feet southeast of Turtle Meadows Spring. The oval vent is about 2.5 feet long and about one foot wide. The shoulders of the vent are 20 feet deep, and the vent descends vertically into the rock for at least 5 feet.

Ecology: Scattered strap-leaved sagittaria near the vent and nearby in the river covered about 35 percent of area. Coontail caught on rocks covered about five percent of the area. Rocky bottom near vents accounted for about ten percent of the area. Rocks covered in moss-like algae and filamentous algae accounted for about 50 percent of area.

Catfish Hotel Spring

Description: Catfish Hotel Spring is located in the main channel approximately 100 feet southeast of Second Fisherman's Paradise Spring. This spring has a deep basin that is bordered on the east by a limestone ledge. West of this ledge is a large and complex area of angular boulders and slabs. Discharge was strong from the numerous vents scattered among the boulders and ledges. Void spaces below the rocks extend down past depths of 25 feet. The physical structure and complexity of this spring did not lend itself to the application of the underwater discharge measurement methods used at the other springs.

Ecology: An unidentified moss-like algae was common on rocks in the strong flow near the vents, and a reddish filamentous algae was present in the vents. Seventy percent of the basin was covered with filamentous algae, and coontail and strap-leaved sagittaria covered 10 and 15 percent of the basin, respectively. The remaining five percent was bare sand and rock. Vermiculated sailfin catfish were present at this spring.

Silver Springs Spring Vent Documentation, Marion County, FL; September, 2006. Page 37 of 45

Turtle Nook Spring

Description: Turtle Nook Spring is located on the northwest side of a forested island in the river, approximately 100 feet northeast of Second Fisherman's Paradise. Water discharges from three vents along a line about 10 feet long at the bottom of a small, conical basin. The vents are between 15 and 18 feet deep.

Ecology: The bottom of the cove was composed of soft sediments covered with filamentous algae. Filamentous algae also covered 95 percent of the spring basin. Coontail covered five percent of the basin. A sudd was floating over the spring and was composed of duckweed (*Lemna sp.*), water lettuce (*Pistia stratiodes*), and broken pieces of strap-leaved sagittaria. Sunfish were numerous in the cove. They behaved like they are used to being fed.

Turtle Nook Run Spring

Description: Turtle Nook Run Spring is located about 30 feet southwest of Turtle Nook Spring, at the west side of the entrance to the cove. Water discharges from several rocky vents and one detrital vent cluster.

The main vent discharges from along a rock outcrop, 18 feet deep, and beneath a ledge on the south side of a basin about 25 feet in diameter. Several smaller vents also discharge through sediment and algae to the north of the main vent. The top of the limestone outcrop in the basin is 13 feet below the water surface. The basin is just north of and out of the main channel of the Silver River.

Ecology: Filamentous algae covered 80 percent of the basin, including the limestone boulders. Algal "stalagmites", which only form in still water, were present. A moss-like algae was attached to the boulders in the strong flow near the vents. Coontail, which was covered with filamentous algae, covered about ten percent of the basin. Ten percent of the bottom here was exposed sand and rock.

Sunfish were numerous in the basin.

Raccoon Island Spring

Description: Raccoon Island Spring is located in Gar Cove northeast of a forested island. Discharge is primarily from three vent clusters, with each cluster located in the bottom of three broad, low relief depressions. The vents discharge through a layer of sediment and filamentous algae. The "central" vent cluster comprises an area of about six feet in diameter, and is 12 feet deep. A second vent cluster lies 25 feet to the southwest in 14 feet of water, and a third vent cluster lies 35 feet to the north (towards the bank) in 10 feet of water.

Ecology: Gar Cove is a large shallow area, about eight feet deep, with an open bottom about 95 percent covered by filamentous algae. Three slightly deeper basins are located within about 50 feet of each other. Each basin has one or several small vents discharging water through deep organic sediments covered by filamentous algae. Clumps of coontail were scattered around the area, with about five percent coverage.

Longnose gar and sunfish were common in the cove. One loggerhead musk turtle (*Sternotherus minor minor*) was seen in the cove.

Shipwreck Springs Group

Shipwreck Spring

Description: The main vent of the Shipwreck Springs Group is located at the bow of a sunken boat on the bottom of a large, 20 foot deep depression north of the main river channel, and east of the eastern tip of a forested island. The main vent discharges from rock through a layer of sediment and algae. Another similar but smaller vent lies about 15 feet to the east. Discharging from the algae-covered bottom of the western side of the basin, and about 20 to 30 feet from the stern section of the sunken boat, are numerous small vents.

Ecology: The area around the Shipwreck Spring is a broad, open basin, with soft bottom sediments, which was about 80 percent covered by filamentous algae three to eight inches thick.

Coontail covered about ten percent of the bottom, strap-leaved sagittaria about five percent, and about five percent of the bottom was sandy with no algae.

Catfish Convention Hall Spring

Description: Catfish Convention Hall Spring is comprised of two clusters of small vents, about 20 feet deep, and located directly downstream from Shipwreck Spring and the bow of the namesake sunken boat. They lie in the eastern end of the basin that is an extension of the Shipwreck Spring basin. The main vent cluster contains about five small vents within an area of about six feet in diameter, all discharging through sediments.

Ecology: Forty-five percent of the area was covered by strap-leaved sagittaria, 15 percent by coontail, and 40 percent was open bottom mostly covered by filamentous algae.

Rocky Vent Spring

Description: Rocky Vent Spring is located west of Catfish Convention Hall Spring and south of Shipwreck Spring and the bow of the namesake sunken boat. It lies at the outer edge of the Shipwreck Spring basin, and within the main river channel. This spring is comprised of a small group of small vents that discharge from beneath and along a low rock ledge, along with a few other scattered small vents nearby.

Ecology: The area around the vents was rocky, with slab-like boulders scattered around. About 40 percent of the rock was covered with filamentous algae. Forty percent of the area supported strap-leaved sagittaria and coontail covered about 10 percent of the bottom. Ten percent of the area was covered by exposed sand and rock.

Timber Spring

Description: Timber Spring lies in the north side of the Silver River, about 800 feet downstream of the Shipwreck Springs Group. It is the most downstream of the springs in the upper 1,200 meters of the Silver River. It has at least six vents about 14 feet deep in a 20 foot long roughly oval depression with a bottom of detritus, sand, and pebbles. A few fallen branches and logs lie across some of the spring vents.

Ecology: The vents in Timber Spring discharge vertically, with enough vigor to keep sand and shell fragments agitated. Strap-leaved sagittaria covered about 50 percent of the basin area, coontail 30 percent, bare sand 10 percent, and filamentous algae 10 percent. Sunfish and largemouth bass were present in the area.

Appendix 4 Water Quality

Silver Springs Spring Vent Geochemical Characterization

Spectrum Data Services, with the assistance of divers from Karst Environmental Services Inc. (KES), collected water quality samples from 34 vents at Silver Springs on September 12 and 13, 2006. They measured temperature, pH, dissolved oxygen (DO), and field conductivity at each vent. The water samples were analyzed by Columbia Analytical Services for lab conductivity, alkalinity, total nitrate plus nitrite (NOx-total), total phosphorus (P-total), total organic carbon (TOC), total calcium (Ca-T), total magnesium (Mg-T), total sodium (Na-T), total potassium (K-T), chloride, sulfate, total dissolved solids (TDS), and total orthophosphate (PO4-T), table 2.

The two vents at Mammoth Spring (Mammoth-East and Mammoth-West) had different water quality and differed by 1.4 degrees C in temperature. They also differed in DO, field conductivity, NOx-total, sulfate, and TDS.

For most vents, temperature was near 23.7°C. However, temperature was lower at Christmas Tree Springs, Garden of Eden Springs, Lost River Spring, and Log Spring.

DO was highest at Indian Cave spring (3.70 mg/L) and lowest at Log spring (0.08 mg/L). DO was below 1.5 mg/L in Mammoth-West Spring, Mastodon Bone Spring, Christmas Tree Springs, Garden of Eden-2 and 3 springs, Lost River Spring, Log Spring, and Racoon Island-1 Spring. DO was 1.98 mg/L in Mammoth-East and 0.94 mg/L in Mammoth-West.

Total NOx concentration was highest at No Name Cove Spring (1.89 mg/L) and lowest at Log Spring (0.869 mg/L). The mean and median total NOx concentrations were 1.36 mg/L and 1.40 mg/L, respectively. The NOx-total concentration at Mammoth-East and Mammoth-West was 1.27 mg/L and 0.91 mg/L, respectively. About half the discharge from Silver Springs comes from Mammoth Springs.

Sulfate was highest at Ladies Parlor spring (74.4 mg/L) and lowest at Log spring (16.7 mg/L). Sulfate was 45.5 mg/L at Mammoth-East and 17.7 mg/L at Mammoth-West. Generally, sulfate concentration decreases in the downriver springs. Springs with higher sulfate concentrations probably have a deeper flow system than springs with lower sulfate concentrations. The source for the sulfate is the dissolution of gypsum and anhydrite at the top of the middle confining unit.

TDS concentrations was highest in Catfish Reception Hall-1 Spring (318 mg/L) and lowest in Shipwreck-1 Spring (195 mg/L). TDS concentration was 304 mg/L in Mammoth-East and 236 mg/L in Mammoth-West. Generally, TDS concentrations decrease in the downstream springs.

All of the springs have a calcium-bicarbonate type water (Appendix 1). The water type is determined by plotting the relative proportions, in milli-equivalents/liter, of major ions in the sample on a Stiff (1951) diagram.

All samples are plotted on a Piper diagram (Piper, 1944), which relates the changes in proportions, but not concentrations, between samples (Appendix 2). The Silver Springs spring vents have a similar chemistry as those from Rainbow Springs (Jones et. al., 1966).

References

Jones, G.W., Upchurch, S.B., and Champion, K.M., 1996, Origin of nitrate in groundwater discharging from Rainbow Springs, Marion County, Florida, Southwest Florida Water Management District: Brooksville, Fla.

Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of wateranalyses, American Geophysical Union Transactions, 25: 914–923.

Stiff, H.A., Jr., 1951, The interpretation of chemical water analysis by means of patterns, Journal of Petroleum Technology, vol 3, no. 10, sec 1, pp. 15-16, sect. 2,3.

Number Spring Name	Abreviation	Lat	Long	depth (ft) T	emp (degC) p	H DO	Field Cond L	ab Cond	Alkalinity	Nox-total P-total TOC	Ca-T	Mg-T	Na-T K-T	Chloride	Sulfate	TDS PO4-T
1 SSG-Mammoth East	ME	291258.2	820309.6	6 40	23.4	7.29 1.98	458.6	465	206	1.27 0.03 0.54	T 78	11	6.9 0.7T	11.5	45.5	304 0.02
2 SSG-Mammoth-West	MW	291258.7	820309.8	3 38	22.0	7.43 0.94	408.1	434	202	0.91 0.028 0.21	T 72	8.5	6.2 0.54T	10.6	17.7	236 0.016
3 SSG-Jacobs Well	JW	291254.2	820306.8	3 22	23.7	7.35 2.84	455.5	514	186	1.5 0.031 0.13	T 85	13	7.2 0.74T	11.6	65.4	310 0.016
4 SSG-Catfish Reception Hall-1	CR-1	291253.8	820306.4	20	23.8	7.34 3.18	473.3	509	177	1.4 0.021 0.03	T 79	12	6.8 0.7T	11.6	73.7	318 0.0051T
SSG-Catfish Reception Hall-2	CR-2			20	23.7	7.32 2.70	493.9									
5 SSG-Bridal Chamber	BC	291253.2	820305.5	5 30	23.7	7.40 3.38	480.7	485	177	1.4 0.028 0.79	T 81	12	7 0.78T	11.6	73	314 0.009T
6 SSG-Oscar	OS-1	291255.9	820302.8	3 17	23.8	7.30 3.35	453.0	477	178	1.6 0.35J 0.17	T 82	12	6.8 0.69T	11.3	64	292 0.0257
7 SSG-Devils Kitchen B	DK-21	291254	820305.2	2 16	23.7	7.43 3.66	482.6	502	170	1.43 0.0297 0.53	T 78	12	6.7 0.82T	11.5	71.5	315 0.02
8 SSG-Ladies Parlor	LP-1	291252.7	820305.2	2 21	23.7	7.37 3.47	464.0	486	182	1.6 0.027 0.2T	78	12	7.1 0.77T	11.8	74.4	304 0.013
9 SSG-Devils Kitchen A-1 SSG-Devils Kitchen A-2	DK-11 DK-12	291253.6	820304.8	3 20 21	23.7	7.37 3.46 7.37 3.36	487.0 485.0	492	181	1.6 0.028 0.28	T 78	12	6.6 0.75T	11.5	73.4	312 0.014
SSG-Devils Kitchen A-3	DK-13			21	23.7	7.35 3.47	452.5									
10 SSG-Alligator Hole-1	AH-1	291254.4	820303.33	3 17	23.7	7.30 3.59	452.6	477	169	1.5 0.026 0.05	T 72	12	6.7 0.67T	11.5	65.6	303 0.11T
SSG-Alligator Hole-2	AH-2			15	23.8	7.33 3.44	452.0									
11 SSG-Mastodon Bone	MB-1	291256.6	820301.5	5 16	23.2	7.38 1.21	388.4	402	170	1.2 0.0274 0.41	T 67	8.2	6 0.74T	10.2	29	242 0.012
12 SSG-Geyser-1	GY-1	291255.4	820300.3	3 22	23.6	7.30 2.71	437.2	446	160	1.3 0.0266 0.2T	72	11	6.6 0.62T	11.2	55	279 0.013
SSG-Geyser-2	GY-2			18	23.6	7.40 3.01	445.8									
SSG-Geyser-3	GY-3			18	23.7	7.38 3.32	454.6									
SSG-Geyser-4	GY-4			18	23.6	7.32 2.62	437.0									
13 SSG-Blue Grotto	BG	291254.8	820259.3	3 26	23.7	7.35 3.29	446.2	467	183	1.3 0.0282 0.11	T 71	11	6.5 0.66T	11.3	59.9	282 0.0088T
14 SSG-Christmas Tree-1 (Central)	CT-1	291258.3	820257.3	3 18	23.1	7.36 1.41	392.5	395	169	1.1 0.0252 0.23	T 62	7.5	5.4 0.72T	10.4	31.1	246 0.011
SSG-Christmas Tree-2 (West)	CT-2			14	23.3	7.41 1.21	402.9									
SSG-Christmas Tree-3 (North)	CT-3			16	23.1	7.01 0.50	367.2	360	165	1.1 0.0304 0.17	T 60	7	5.4 0.75T	9.17	21.7	213 0.015
SSG-Christmas Tree-4 (East)	CT-4			15	23.2	7.45 1.45	396.3									
SSG-Christmas Tree-5 (Southeast)	CT-5			14	23.2	7.48 1.41	395.1									
15 SSG-Garden of Eden-1	GE-1	291258.1	820254.8	3 16	23.5	7.37 2.45	414.9	425	170	1.32 0.0296 0.19	T 66	9.5	6.5 0.77T	10.7	43	248 0.01T
SSG-Garden of Eden-2	GE-2			16	23.2	7.40 1.16	382.4	395	160	1.11 0.0341 0.21	T 62	7.7	5.9 0.86T	10.9	29.1	231 0.016
SSG-Garden of Eden-3	GE-3			16	23.2	7.39 1.34	358.5									
Number Spring Name	Abreviation	Lat	_ong	depth (ft) T	emp (degC) p	H DO	Field Cond L	ab Cond	Alkalinity	Nox-total P-total TOC	Ca-T	Mg-T	Na-T K-T	Chloride	Sulfate	TDS PO4-T
16 SSG-Lost River	LR-1	291258.6	820253.5	5 10	23.0	7.56 0.20	362.5	361	160	1.02 0.0306	33 59	6.2	5.3 0.8	9.01	18.1	209 0.011T
17 SSG-Log	L-1	291258.6	820253.3	3 6	22.9	7.47 0.08	316.7	355	167	0.869 0.0305 0.72	T 68	6.1	5.4 0.78T	9.17	16.7	207 0.014
18 SSG-Indian Cave-1	IC-1	291256.1	820252.8	3 18	23.7	7.47 3.51	440.4	436	157	1.59 0.0323 0.25	T 67	11	6.9 0.86T	11.5	56.6	270 0.011T
SSG-Indian Cave-2	IC-2			12	23.7	7.34 3.70	441.8									

	SSG-Indian Cave-3	IC-3			12	23.7	7.44	3.14	441.4											
19	SSG-First Fishermans Paradise-1 (middle)	FP-11	291256.1	820250.4	18	23.7	7.35	3.65	433.1	437	158 1.	54	0.0262 0.2T	65	11	7 0.74T	11.6	54	.7 269	0.013
	SSG-First Fishermans Paradise-2 (upstream)	FP-12	291256.5	820250.6	18	23.7	7.42	3.59	435.8											
	SSG-First Fishermans Paradise-3 (downstream)	FP-13			19	23.5	7.25	3.62	448.2											
	SSG-First Fishermans Paradise-4	FP-14	291256.0	820250.0	21	23.7	7.27	3.70	432.9											
	SSG-First Fishermans Paradise-5	FP-15	291255.7	820250.3	18	23.7	7.44	3.71	440.1	442	157 1.	57	0.0346 0.29T	68	11	7.1 0.79T	11.7	56	.6 274	0.011T
20	SSG-No Name Cove	NN	291256.2	820246.7	15	23.8	7.30	3.64	413.5	416	151 1.	89 (0.33J 0.61T	83	10	7 0.86T	11.7	50	.6 250	0.031
21	SSG-Turtle Meadows-1	TM-1	291257.2	820245.2	15	23.4	7.32	2.07	395.2	394	177 1.	49	0.0305 0.3T	62	8.6	6.3 0.75T	10.6	36	.7 232	0.013
	SSG-Turtle Meadows-2	TM-2			19	23.7	7.38	2.73	407.7											
	SSG-Turtle Meadows-3	TM-3			18	23.8	7.43	3.15	399.4											
22	SSG-Second Fishermans Paradise	FP-2	291256.4	820243.2	24	23.8	7.33	3.46	389.8	370	133 1.	45	0.0328 0.38T	58	9.6	7.2 0.82T	11.5	45	.5 234	0.0095T
23	SSG-Catfish Hotel-1	CH-1	291255.4	820242.4	29	23.8	7.49	3.07	361.6	352	133 1.	56	0.0295 0.23T	51	8.8	7 0.8	11.3	41	.2 208	0.011T
	SSG-Catfish Hotel-2	CH-2			21	23.8	7.43	2.97	356.8											
	SSG-Catfish Hotel-3	CH-3			22	23.8	7.43	3.15	361.1											
24	SSG-Turtle Nook	TN-1	291257	820242	19	23.6	7.39	1.84	371.4	356	143 1.	36	0.0322 0.2T	54	7.6	6.4 0.81T	10.6	32	.6 213	0.013
																		<u> </u>		
25	SSG-Turtle Nook Run	IR-1	291256.5	820243.3	19	23.8	7.45	3.45	388.5	383	129 1.	41	0.0284 0.131	56	9.4	7.1 0.771	11.4		15 229	0.011
			004050 7			00.5	7.44	0.00	0.40.4	000	405 4	~~	0.0050 0.44T	50	7.0	0.0.0.747	40.7		0 000	0.040
26	SSG-Raccoon Island-1 (Inland)	RI-1	291256.7	820239	11	23.5	7.44	0.99	342.4	333	135 1.	09	0.0359 0.411	53	7.3	6.3 0.741	10.7	29	.6 203	0.019
	SSG-Raccoon Island-2 (downstream)	RI-2			13	23.5	7.38	1.73	342.2									<u> </u>		
	SSG-Raccoon Island-3 (upstream)	RI-3			14	23.7	7.36	2.27	344.6									<u> </u>		
27	SSC Booky Vont	D\/ 1	201255 5	020220 2	21	22.7	7 5 1	2 77	241.2	220	110 1	16	0.0294.0.1T	51	0 /	60091T	11.2	20	0 202	0.012
21		KV-1	291200.0	020230.3	21	23.1	7.51	2.11	341.3	330	110 1.	40	0.0284 0.11	51	0.4	0.9 0.011	11.3		.9 202	0.013
28	SSG-Shipwreck-1	SW-1	291255.6	820238.4	21	23.7	7 54	2 44	340.2	327	114 1	39	0 0324 0 09T	47	79	67073T	11	36	7 195	0.015
20	SSG-Shipwreck-2	SW-2	201200.0	020200.4	19	23.7	7.55	2.35	338.8	021		00	0.0024 0.001		7.0	0.7 0.701			./ 100	0.010
	SSG-Shipwreck-3	SW-3			17	23.8	7.00	2.50	345.5											
	SSG-Shipwreck-4	SW-4			18	23.7	7.61	2.32	343.1									<u> </u>		
									0.011									<u> </u>		
Number	Spring Name	Abreviation	Lat	Long	depth (ft)	Temp (degC)	pН	DO	Field Cond	Lab Cond	Alkalinity Nox-tot	al	P-total TOC	Ca-T	Mg-T	Na-T K-T	Chloride	Sulfat	e TDS	PO4-T
29	SSG-Catfish Convention Hall-1	CC-1	291255.6	820237.9	19	23.7	7.50	2.61	240.2	322	116 1.	38 2	2.1J 0.14T	55	8.1	6.7 0.77T	11.2	37	.2 198	0.0291
	SSG-Catfish Convention Hall-2	CC-2			20	23.7	7.47	2.53	320.4	320	136 1.	35 (0.25J 0.26T	49	8.3	6.9 0.79T	11.6	38	.4 196	0.029
30	SSG-Timber-1	TB-1	291256.3	820229.8	14	23.8	7.60	2.70	300.2	325	114 1.	26	0.022 0.17T	47	8.3	6.9 0.83T	11.4	41	.6 207	0.0267
	SSG-Timber-2	TB-2			14	23.8	7.52	2.69	343.2											
	SSG-Timber-3	TB-3			15	23.8	7.49	2.65	344.9											
Appendix 5 Silver Springs Discharge Reports September 2006

Discharge Measurement: Second Fisherman's Paradise Spring, Marion County, Florida; September 22, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Second Fisherman's Paradise Spring, Marion County, Florida; September 22, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Second Fisherman's Paradise Spring, Marion County, Florida; September 22, 2006.
- 2. Table 1. Discharge of Second Fisherman's Paradise Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Second Fisherman's Paradise Spring.
- 4. Figure 2. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006 measurement.
- 5. Figure 3. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown ...
- 6. Table 2. Second Fisherman's Paradise Spring, September 22, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 7. Figure 4. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 8. Table 3. Second Fisherman's Paradise Spring XYZ Grid Data, September 22, 2006.
- 9. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Second Fisherman's Paradise Spring, Marion County, Florida; September 22, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Second Fisherman's Paradise Spring on September 22, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Second Fisherman's Paradise Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Tom Morris, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Second Fisherman's Paradise Spring is a distinct vent in the bare limestone bottom in the middle of the river channel about 200 feet southeast of Turtle Meadows Spring. The oval vent is about 2.5 feet long and about one foot wide. The shoulders of the vent are 20 feet deep, and the vent descends vertically into the rock for at least 5 feet. See Figure 1.

Since the orifice of this spring is located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Fourteen station readings were taken.

The approximate depth for the measurement grid was 20 feet. A telescoping aluminum pole with 1, 0.5, 0.25 and 0.1 foot interval markings was positioned horizontally to allow for a grid of velocity measurements. The sensor-support pole was positioned at a right angle to the main flow path, so no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the pole with a quick release clamp. Several hand-held velocity measurements were also made. Spring vent dimensions and positions were measured with a metal tape.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 2. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, two negative velocities were measured. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Second Fisherman's Paradise Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Second Fisherman's Paradise Spring on September 22, 2006 was 0.564 CFS (cubic feet per second). This result is also expressed as 253 GPM (gallons per minute) or 0.365 MGD (million gallons per day), see Table 1. Fourteen (14) readings were made, see Figures 2, 3 and 4. The point velocity readings ranged from -0.07 to 1.09 feet per second (fps), with an overall average station reading of 0.59 fps. The total cross-sectional area was calculated as 1.205 square feet. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 17:01 hours and were completed by 17:24 hours.

UNDERWATER	DISCHARGE N	IEASUREMENT				
Location:	2nd FISHERM	AN'S PARADIS	E SPRING	Date:	September 22, 2	006
	Silver Springs	Group,		Time Start:	17:01	1
	Marion County	, Florida		Time End:	17:24	
Personnel:	Peter Butt, Tom	Morris				
Method:	Grid within irregu	ılar conduit				
Instrument:	MMB2000 FLO-	MATE in U/W case	e, sensor on su	oport poles		
Msmt. Periods:		60 seconds				
Analysis Method:	Surfer 8 with krigin	g				
Second Fisherman	n's Paradise Spring	g Total Discharge:				
CFS	0.564					
MGD	0.365					
GPM	253					
Total Cross-sectiona	Il Area (sq/ft):	1.205				
Avg. Station Point Ve	elocity (ft/sec):	0.59				
Cross-section Depth (feet deep):		20				
Velocity Reading	g by Station:	(All velocity readings in feet per second.		per second.)		
Station #	Point Velocity					
1	0.67					
2	0.85					
3	0.85					
4	0.84					
5	0.74					
6	0.41					
7	0.05					
8	-0.07					
9	-0.07					
10	0.65					1
11	0.44					
12	1.01					
13	1.09					
14	0.81					
1						

Table 1. Discharge of Second Fisherman's Paradise Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Second Fisherman's Paradise Spring.

Figure 2. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Figure 3. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

TABLE 2. SECOND FISHERMAN'S PARADISE SPRING, SEPTEMBER 22, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\FishermansParadise\FishermansParadise2_9-06.bln.grd
Grid Size:	31 rows x 65 columns
X Minimum:	0
X Maximum:	3.2
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	1.5
Y Spacing:	0.05
Z Minimum:	-0.070000001351811
Z Maximum:	1.090000008725

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.5639816929985
Simpson's Rule:	0.56392672419669
Simpson's 3/8 Rule:	0.56322154773733

CUT & FILL VOLUMES

Positive Volume [Cut]:0.56474821909307Negative Volume [Fill]:0.00076652609456318Net Volume [Cut-Fill]:0.5639816929985Other Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:1.205 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:1.1623253407311Negative Planar Area [Fill]:0.042674659268919Blanked Planar Area:3.595Total Planar Area:4.8

Surface Areas

Positive Surface Area [Cut]:	3.005023176162
Negative Surface Area [Fill]:	0.051637038949547

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\FishermansParadise\FisherPara2 9-06 SURFER XYZ T3 BLF.xls
X Column:	A
Y Column:	В
Z Column:	С
Data Counts	
Active Data:	119
Original Data:	119
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0

Univariate Statistics

0

0

Artificial Data:

Superseded Data:

	Х	Y	Z
Minimum:	0.5	0.4	-0.07
25%-tile:	1.05	0.65	0
Median:	1.7	1	0
75%-tile:	2.3125	1.12	0
Maximum:	2.95	1.35	1.09
Midrange:	1.725	0.875	0.51
Range:	2.45	0.95	1.16
Interquartile Range:	1.2625	0.47	0
Median Abs. Deviation:	0.64375	0.26	0
Mean:	1.6846638655462	0.90167899159664	0.069495798319328
Trim Mean (10%):	1.6837155963303	0.90375963302752	0.034587155963303
Standard Deviation:	0.71532580756129	0.29236179763257	0.22886585091149
Variance:	0.51169101096321	0.085475420714949	0.052379577713438
Coef. of Variation:			3.2932329212173
Coef. of Skewness:			3.1350965156207

Inter-Variable Correlation

	Х	Y	Z
X:	1.000	-0.069	-0.150
Y:		1.000	0.136
Z:			1.000

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.51169101096321	-0.01449628437257 0.085475420714949	3 -0.024619077042582 0.0090765944495445 0.052379577713438

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С	
Parameter Value:	-0.04532256	5764271 0.0985030	03288039 0.0570309	998482238
Standard Error:	0.02920099	5506968 0.0714464	94931144 0.0862772	29549038

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	-0.069 1.000	-0.622 0.786 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 116 118	0.23917471459586 5.9939950333033 6.2331697478992	0.11958735729793 0.051672370976753	2.3143

Coefficient of Multiple Determination (R^2): 0.038371282071449

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.03335	0
25%-tile:	0.050990195135928	0
Median:	0.051221620435125	0
75%-tile:	0.058309518948453	0
Maximum:	0.25	1.09

Table 2. Bridal Chamber Spring, September 22, 2006.

Midrange:	0.141675	0.545
Range:	0.21665	1.09
Interquartile Range:	0.0073193238125253	3 0
Median Abs. Deviation:	0.0026300276362202	2 0
Mean:	0.063608833540175	0.051596638655462
Trim Mean (10%):	0.057868953302751	0.017522935779817
Standard Deviation:	0.036097051438436	0.18375167383118
Variance:	0.001302997122549	0.03376467763576
Coef. of Variation:	0.56748488267181	3.5613109423307
Coef. of Skewness:	3.5048336872728	4.0846093279673
Root Mean Square:	0.073137410583714	0.1908583002028
Mean Square:	0.0053490808268908	8 0.036426890756303

Complete Spatial Randomness

Lambda:	51.127819548872
Clark and Evans:	0.90965364291078
Skellam:	204.48585033448

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:FirstX Duplicate Tolerance:2.9E-007Y Duplicate Tolerance:1.1E-007No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:2Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\FishermansParadise\FishermansParadise2_9-06_grd
Grid Size:	31 rows x 65 columns
Total Nodes:	2015
Filled Nodes:	2015
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	3.2
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	1.5
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-5.075080504521
Z 25%-tile:	-1.3441108685009
Z Median:	-0.4842795698062
Z 75%-tile:	0.0237942075502
Z Maximum:	1.090000008725
Z Midrange:	-1.9925402518243
Z Range:	6.1650805053935
Z Interquartile Range:	1.3679050760511
Z Median Abs. Deviation:	0.61274020284566
Z Mean:	-0.71771601472079
Z Trim Mean (10%):	-0.64976068588311
Z Standard Deviation:	1.1035812373635
Z Variance:	1.2178915474607
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.93146816705129
Z Root Mean Square:	1.3164375508346
Z Mean Square:	1.7330078252474

Figure 4. Discharge measurement cross-section; Second Fisherman's Paradise Spring, Marion County, Florida, September 22, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Table 3. Second Fisherman's Paradise Spring XYZ Grid Data, September 22, 2006.								
	V	7 () (ala aitu)	Station Name	V Diet	V Dist			
	I	Z (Velocity)	Station Name	A Plot	T PIOL			
0.75	1	0.67	1	15	20			
1	1	0.85	2	20	20			
1.25	1	0.85	3	25	20			
1.5	1	0.84	4	30	20			
1.75	1	0.74	5	35	20			
2	1	0.41	6	40	20			
2.05	0.8	0.05	7	41	16			
2.5	1	-0.07	8	50	20			
2.75	1	-0.07	9	55	20			
1.5	0.7	0.65	10	30	14			
1	0.75	0.44	11	20	15			
1	1.2	1.01	12	20	24			
1.5	1.2	1.09	13	30	24			
1.75	1.2	0.81	14	35	24			
0.5	1	0	Α	10	20			
0.5	0.8	0	В	10	16			
0.75	0.65	0	C	15	13			
1	0.65	0	D	20	13			
1.25	0.6	0	E	25	12			
1.5	0.5	0	F	30	10			
1.75	0.45	0	G	35	9			
2	0.45	0	H	40	9			
2.25	0.4	0		45	8			
2.5	0.8	0	J	50	16			
2.95	1	0	ĸ	59	20			
2.5	1.1	0	L	50	22			
2.25	11	0	IVI N	40	20			
1 75	1.1	0		35	22			
1.75	1.3	0	P	30	20			
1.5	1.5	0	0	25	20			
1	1.35	0	R	20	26			
0.75	1.0	0	S	15	24			
		.		10				
0.5	0.95	0	A1	10	19			
0.5	0.9	0	A2	10	18			
0.5	0.85	0	A3	10	17			
0.55	0.77	0	B1	11	15.4			
0.6	0.74	0	B2	12	14.8			
0.65	0.71	0	B3	13	14.2			
0.7	0.68	0	B4	14	13.6			
0.8	0.65	0	C1	16	13			
0.85	0.65	0	C2	17	13			

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
0.9	0.65	0	C3	18	13	
0.95	0.65	0	C4	19	13	
1.05	0.64	0	D1	21	12.8	
1.1	0.63	0	D2	22	12.6	
1.15	0.62	0	D3	23	12.4	
1.2	0.61	0	D4	24	12.2	
1.3	0.58	0	E1	26	11.6	
1.35	0.56	0	E2	27	11.2	
1.4	0.54	0	E3	28	10.8	
1.45	0.52	0	E4	29	10.4	
		-				
1.55	0.49	0	F1	31	9.8	
1.6	0.48	0	F2	32	9.6	
1.65	0.47	0	F3	33	9.4	
1.00	0.46	0	F4	34	9.2	
	0.40	Ŭ		01	0.2	
1.8	0.45	0	G1	36	9	
1.0	0.45	0	G2	37	9	
1.05	0.45	0	63	38	9	
1.9	0.45	0	G3 G4	30	9	
1.95	0.45	U	- 64		9	
2.05	0.44	0	LI1	11	0 0	
2.05	0.44	0		41	0.0	
2.1	0.43	0	HZ	42	0.0	
2.15	0.42	0	H3	43	0.4	
2.2	0.41	U	Π4	44	0.2	
0.004.05	0.45	•	14	45.005	0	
2.28125	0.45	0	11	45.625	9	
2.3125	0.5	0	12	46.25	10	
2.34375	0.55	0	13	40.875	11	
2.375	0.6	0	14	47.5	12	
2.40625	0.65	0	15	48.125	13	
2.4375	0.7	0	16	48.75	14	
2.46875	0.75	0	17	49.375	15	
2.55	0.82222	0	J1	51	16.4444	
2.6	0.84444	0	J2	52	16.8888	
2.65	0.86666	0	J3	53	17.3332	
2.7	0.8888	0	J4	54	17.776	
2.75	0.9111	0	J5	55	18.222	
2.8	0.93332	0	J6	56	18.6664	
2.85	0.95554	0	J7	57	19.1108	
2.9	0.97776	0	J8	58	19.5552	
2.9	1.01111	0	K1	58	20.2222	
2.85	1.02222	0	K2	57	20.4444	
2.8	1.03333	0	K3	56	20.6666	
2.75	1.04444	0	K4	55	20.8888	

Table 3. Second Fisherman's Paradise Spring XYZ Grid Data, September 22, 2006. Page 2 of 3

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.7	1.05555	0	K5	54	21.111	
2.65	1.06666	0	K6	53	21.3332	
2.6	1.07777	0	K7	52	21.5554	
2.55	1.08888	0	K8	51	21.7776	
2.45	1.08	0	L1	49	21.6	
2.4	1.06	0	L2	48	21.2	
2.35	1.04	0	L3	47	20.8	
2.3	1.02	0	L4	46	20.4	
2.2	1.02	0	M1	44	20.4	
2.15	1.04	0	M2	43	20.8	
2.1	1.06	0	M3	42	21.2	
2.05	1.08	0	M4	41	21.6	
1.95	1.14	0	N1	39	22.8	
1.9	1.18	0	N2	38	23.6	
1.85	1.22	0	N3	37	24.4	
1.8	1.26	0	N4	36	25.2	
1.7	1.3	0	01	34	26	
1.65	1.3	0	02	33	26	
1.6	1.3	0	O3	32	26	
1.55	1.3	0	04	31	26	
1.45	1.31	0	P1	29	26.2	
1.4	1.32	0	P2	28	26.4	
1.35	1.33	0	P3	27	26.6	
1.3	1.34	0	P4	26	26.8	
1.2	1.34	0	Q1	24	26.8	
1.15	1.33	0	Q2	23	26.6	
1.1	1.32	0	Q3	22	26.4	
1.05	1.31	0	Q4	21	26.2	
0.95	1.28	0	R1	19	25.6	
0.9	1.26	0	R2	18	25.2	
0.85	1.24	0	R3	17	24.8	
0.8	1.22	0	R4	16	24.4	
0.7	1.16	0	<u>\$1</u>	14	23.2	
0.65	1.12	0	<u>S2</u>	13	22.4	
0.6	1.08	0	S 3	12	21.6	
0.55	1.04	0	S4	11	20.8	

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Alligator Hole Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Alligator Hole Spring, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Alligator Hole Spring, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Alligator Hole Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Alligator Hole Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Alligator Hole Spring, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Alligator Hole Spring on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Alligator Hole Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

The main vents at Alligator Hole Spring are located in a somewhat elongated, oval basin along the south side of the Silver River, approximately 150 feet northeast of Devils Kitchen A. This depression is formed in soft sediments and is about 14 feet long. There are vents at both the upstream and downstream end of this depression, at depths of 15 and 17 feet, respectively. There is also a smaller vent about 40 feet southeast of Alligator Hole, about 18 feet deep, within a conical, silty depression, about 12 feet in diameter. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Alligator Hole Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Alligator Hole Spring on September 28, 2006 was 0.77 CFS (cubic feet per second). This result is also expressed as 346 GPM (gallons per minute) or 0.498 MGD (million gallons per day), see Table 1. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.93 to 1.85 feet per second (fps), with an overall average station reading of 1.36 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 15 to 18 feet. The measurements commenced at about 16:35 hours and were completed by 17:00 hours.

UNDERWATER	DISCHARGE M	EASUREMENT			
Location:	ALLIGATOR H	IOLE SPRING		Date:	September 28, 2006
	Silver Springs	Group,		Time Start:	16:35
	Marion County	, Florida		Time End:	17:00
Personnel:	Peter Butt, Tom	Morris			
Method:	Vent Discharge (Capture Device	(0.49' Diameter)		
Instrument:	MMB2000 FLO-	MATE in U/W case, se	ensor in vertical pip	pe.	
Calculation Metho	d: Discharge = V x	<i>pi</i> x r ²			
Measurement Pe	eriods:	60 seconds			
Alligator Hole Spring Total Dis		charge:	Main U/S Vent:	Main D/S Vent:	South Vent:
CFS	0.77		0.348	0.248	0.175
MGD	0.498		0.225	0.160	0.113
GPM	346	All Vents:	156	111	79
Avg. Point Velocity (f	t/sec):	1.36	1.84	1.31	0.93
 Vent Depth (feet dee	p):		15	17	18
Velocity Readings:		(All velocity readings in feet per see		cond.)	
Main U/S Vent (tag)		Main D/S Vent		South Vent	
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	1.84	1	1.36	1	0.93
2	1.84	2	1.31	2	0.93
3	1.85	3	1.27	3	0.93
Average:	1.84	Average:	1.31	Average:	0.93
Discharge:	0.348	Discharge:	0.248	Discharge:	0.175

Table 1. Discharge of Alligator Hole Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Alligator Hole Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Blue Grotto Spring, Marion County, Florida; September 29, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Blue Grotto Spring, Marion County, Florida; September 29, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Blue Grotto Spring, Marion County, Florida; September 29, 2006.
- 2. Table 1. Discharge of Blue Grotto Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Blue Grotto Spring.
- 4. Figure 2A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006 measurement.
- 5. Figure 2B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006 measurement.
- 6. Figure 3A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006 measurement. Flow contour velocities are shown ...
- 7. Figure 3B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006 measurement. Flow contour velocities are shown ...
- 8. Table 2A. Blue Grotto Spring Vent 1 (Main Vent), September 29, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 9. Table 2B. Blue Grotto Spring Vent 2 (Back Vent), September 29, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 10. Figure 4A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 11. Figure 4B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 12. Table 3A. Blue Grotto Spring Vent 1 (Main Vent) XYZ Grid Data, September 29, 2006.
- 13. Table 3B. Blue Grotto Spring Vent 2 (Back Vent) XYZ Grid Data, September 29, 2006.
- 14. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Blue Grotto Spring, Marion County, Florida; September 29, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Blue Grotto Spring on September 29, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Blue Grotto Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Blue Grotto Spring is located on the south side of the Silver River, within a basin in the same cove as the Geyser Springs Group, about 100 feet to the southeast. There is an exposure of limestone bedrock and boulders at the bottom of the basin. Most of the discharge flows from a large "Main" vent (Vent 1) at the northern end of this rocky structure, and a small conduit can be observed descending below 26 feet of depth. Water also discharges from a smaller vent on the south end of the structure (Vent 2, also called the "Back" vent), about 15 feet south of the main vent. Water also discharges through numerous smaller vents in the network of cracks between the boulders that make up the top and west side of this structure. Discharge from several of the vents is strong enough to suspend agitated sand and shell fragments. See Figure 1.

Since the orifice of this spring is located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Mark Long read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. A total of forty (40) station readings were taken.

The approximate depth for the measurement grids was 24 to 26 and 21 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figures 2(AB). Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Tables 3A and 3B. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used for both vents was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0°, and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3(AB) and 4(AB).

During this measurement, three negative velocities were measured in Vent 1. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Tables 2A and 2B as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Tables 2A and 2B as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Blue Grotto Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. There was additional discharge from various cracks at this site that were not measurable. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated total discharge of Blue Grotto Spring (both vents) on September 29, 2006 was 6.28 CFS (cubic feet per second). This result is also expressed as 2818 GPM (gallons per minute) or 4.058 MGD (million gallons per day), see Table 1. A total of forty (40) readings were made, see Figures 2(AB), 3(AB) and 4(AB). The total cross-sectional area was calculated as 8.95 square feet. The point velocity readings ranged from -0.09 to 1.87 feet per second (fps), with an overall average station reading of 0.92 fps. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 14:34 hours and were completed by 15:51 hours. The results for each of the individual vents are detailed below.

The estimated discharge of Blue Grotto Spring Vent 1 (Main) on September 29, 2006 was 5.763 CFS. This result is also expressed as 2587 GPM or 3.725 MGD, see Table 1. Thirty-four (34) readings were made, see Figures 2A, 3A and 4A. The total cross-sectional area was calculated as 7.964 square feet. The point velocity readings ranged from -0.09 to 1.87 feet per second (fps), with an overall average station reading of 0.92 fps.

The estimated discharge of Blue Grotto Spring Vent 2 (Back) on September 29, 2006 was 0.515 CFS. This result is also expressed as 231 GPM or 0.333 MGD, see Table 1. Six (6) readings were made, see Figures 2B, 3B and 4B. The total cross-sectional area was calculated as 0.98 square feet. The point velocity readings ranged from 0.84 to 1.03 feet per second (fps), with an overall average station reading of 0.93 fps.

UNDERWATER	DISCHARGE ME	ASUREMENT			
Location:	BLUE GROTTO) SPRING	Date:	September 29	, 2006
	Silver Springs G	Group,	Time Start:	14:34	
	Marion County,	Florida	Time End:	15:51	
Personnel:	Peter Butt, Mark I	_ong			
Method:	Grid within irregul	ar conduit			
Instrument:	MMB2000 FLO-N	1ATE in U/W case	e, sensor on suppo	rt poles	
Msmt. Periods:		60 seconds			
Analysis Method: S	urfer 8 with kriging				
Dive Orette Orein	Tatal Disaharan				
Blue Grotto Spring	g Total Discharge:	1	vent 1 (Main):	Vent 2 (Back):	
CFS	6.28		5.763	0.515	
MGD	4.058		3.725	0.333	
GPM	2818	All Vents:	2587	231	
I otal Cross-sectional	Area (sq/ft):	8.95	7.964	0.98	
Avg. Station Point Vel	locity (ft/sec):	0.92	0.92	0.93	
Cross-section Depth (feet deep):	1	24-26	21	
Velocity Reading	by Station:	(All velocity re	adings in feet pe	er second.)	D 1 () () ()
Station #	Point Velocity	Station #	Point Velocity	Station #	Point Velocity
VENT 1 (Main)		VENT 1 (M	lain) contd.	VENT	2 (Back)
1	0.41	18	1.51	1	0.94
2	0.59	19	0.1	2	0.87
3	1.12	20	0.74	3	0.91
4	1.12	21	1.66	4	0.99
5	1.28	22	-0.1	5	1.03
6	1.26	23	-0.09	6	0.84
7	1.09	24	1.04		
8	1.24	25	1.32		
9	1.67	26	0.54		
10	1.11	27	1.11		
11	-0.08	28	0.17		
12	1.12	29	0.19		
13	1.87	30	0.79		
14	0.3	31	0.52		
15	1.73	32	1.24		
16	0.40		4 5		
-	0.43	33	1.5		

Table 1. Discharge of Blue Grotto Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Blue Grotto Spring.

Figure 2A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 24 to 26-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Yaxis scales are shown in feet.

Figure 2B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 21-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2A. BLUE GROTTO SPRING, MAIN VENT, SEPTEMBER 29, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\BlueGrotto_Main\Blue_Grotto_Main_9-06.bln.grd	
Grid Size:	101 rows x 71 columns	
X Minimum:	0	
X Maximum:	3.5	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	5	
Y Spacing:	0.05	
Z Minimum:	-0.09999999993944	
Z Maximum:	1.870000001211	
X Minimum: X Maximum: X Spacing: Y Minimum: Y Maximum: Y Spacing: Z Minimum: Z Maximum:	0 3.5 0.05 0 5 0.05 -0.09999999999999944 1.8700000001211	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	5.7625840992995
Simpson's Rule:	5.7639321415871
Simpson's 3/8 Rule:	5.7625473203968

CUT & FILL VOLUMES

Positive Volume [Cut]:5.7715718227459Negative Volume [Fil]:0.0089877234464345Net Volume [Cut-Fil]:5.7625840992995 <<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume.Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:7.964 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:7.6788263454663Negative Planar Area [Fill]:0.2849236545337Blanked Planar Area:9.53625Total Planar Area:17.5

Surface Areas

Positive Surface Area [Cut]:	17.0639513975
Negative Surface Area [Fill]:	0.3222253780419

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\BlueGrotto_Main\Blue Grotto Main 9-06 SURFER XYZ T3A BLF-macro.xls
X Column:	Α
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	300
Original Data:	300
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	X	Y	Z
Minimum:	0.35	0.35	-0.1
Median:	1.1 1.85	2.55	0
75%-tile: Maximum:	2.59 3.45	4 4.9	0 1.87
Midrange: Range: Interquartile Range: Median Abs. Deviation:	1.9 3.1 1.49 0.75	2.625 4.55 3 1.5	0.885 1.97 0 0
Mean: Trim Mean (10%): Standard Deviation: Variance:	1.8452504 1.8391300740741 0.88793396313521 0.78842672288901	2.5885477833333 2.5816667962963 1.5263962331337 2.3298854605247	0.1042 0.037962962962963 0.34840641019744 0.12138702666667
Coef. of Variation: Coef. of Skewness:			3.3436315757912 3.3913233622281

Inter-Variable Correlation

X	Y	Z
X: 1.00 Y: 7	0 -0.142 1.000	0.110 0.019 1.000

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.78842672288901	-0.19228951428161 2.3298854605247	0.034083241653333 0.0099383209766667 0.12138702666667

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.045179165638709	0.0079942989080623	0.00013950181573744
Standard Error:	0.022846858036717	0.013290455493383	0.061446547389603

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	-0.142 1.000	-0.766 0.657 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual:	2 297	0.48579069860755 35.930317301392	0.24289534930378 0.12097749933129	2.0078
Total:	299	36.416108		

Coefficient of Multiple Determination (R^2): 0.013339994999124

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.050249378105604	0
Median:	0.052201532544552	0
75%-tile:	0.055901699437495	0
Maximum:	0.5	1.87

Table 2A. Blue Grotto Spring, September 29, 2006.

Midrange:	0.275	0.935
Range:	0.45	1.87
Interquartile Range:	0.005652321	13318903 0
Median Abs. Deviation:	0.002201532	25445524 0
Mean:	0.077411124	4564493 0.0723333333333333
Trim Mean (10%):	0.061859035	5695728 0.013888888888888
Standard Deviation:	0.078861265	5510455 0.27882112944004
Variance:	0.006219099	91979105 0.077741222222222
Coef. of Variation:	1.018732978	86787 3.8546699922587

Coef. of Skewness:	3.6680586243133	4.5229832649136
Root Mean Square:	0.1105060242894	0.2880509214242
Mean Square:	0.01221158140425	0.0829733333333333

Complete Spatial Randomness

Lambda:	21.269053527118
Clark and Evans:	0.71401519537594
Skellam:	489.57721354803

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 3.6E-007 Y Duplicate Tolerance: 5.4E-007 No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method: Kriging Kriging Type: Point Polynomial Drift Order: 2 Kriging std. deviation grid: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\BlueGrotto_Main\Blue_Grotto_Main_9-06 .grd
Grid Size:	101 rows x /1 columns
I otal Nodes:	/1/1
Filled Nodes:	/1/1
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	3.5
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	5
Y Spacing:	0.05
Crid Statistics	
7 Minimum:	-3 6082622616273
7.25%-tile:	-0.43684709244721
Z Median:	-0.044476168674593
Z 75%-tile	0 59230899678273
Z Maximum	1.870000001211
	1.070000001211
Z Midrange:	-0.86913113075312
Z Range:	5.4782622617485
Z Interquartile Range:	1.0291560892299
Z Median Abs. Deviation:	0.48371241524235
7 Mean	0 02/153328787679
Z Trim Mean (10%):	0.0183/2101351005
Z film Mean (10%). Z Standard Deviation:	0.010342101331003
Z Variance:	0.82086738658459
	0.02700750050+57
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.6229512741844
Z Root Mean Square:	0.9112907164435
Z Mean Square:	0.83045076987611

TABLE 2B. BLUE GROTTO SPRING, BACK VENT, SEPTEMBER 29, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
06\BlueGrotto_Back\Blue_Grotto_Back_9-06.bln.grd
41 rows x 77 columns
0
1.9
0.025
0
1
0.025
-1.0054116983405E-009
1.030000010496

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.51544610644649
Simpson's Rule:	0.51545315374961
Simpson's 3/8 Rule:	0.51544488497162

CUT & FILL VOLUMES

Positive Volume [Cut]:0.51544610644712Negative Volume [Fill]:6.3236712945569E-013Net Volume [Cut-Fill]:0.51544610644649Other Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas Operational Planar Area: 0.981 <<<<Total Cross-section Area in Square Feet (Calculated using blanking file due to the presence of negative velocity values;

Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area]. Please refer to report text.)

Positive Planar Area [Cut]:	0.9809375
Negative Planar Area [Fill]:	1.1223574916769E-018
Blanked Planar Area:	0.9190625
Total Planar Area:	1.9

Surface Areas

Positive Surface Area [Cut]:	3.0377142692774
Negative Surface Area [Fill]:	4.5412944833673E-018

Table 2B. Blue Grotto Spring, September 29, 2006.

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\BlueGrotto_Back\Blue Grotto Back 9-06 SURFER XYZ T3B BLF.xls
X Column:	A
Y Column:	В
Z Column:	С
Data Counts	
Active Data:	86
Original Data:	86
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	X	Y	Z
Minimum:	0.1	0.05	0
25%-tile:	0.35	0.2	0
Median:	0.85	0.5	0
75%-tile:	1.33334	0.83	0
Maximum:	1.8	0.95	1.03
Midrange:	0.95	0.5	0.515
Range:	1.7	0.9	1.03
Interquartile Range:	0.98334	0.63	0
Median Abs. Deviation:	0.5	0.31	0
Mean:	0.8677323255814	0.51424418604651	0.064883720930233
Trim Mean (10%):	0.86062275641026	0.51544871794872	0.021923076923077
Standard Deviation:	0.52447620241959	0.30354352724332	0.23755412693398
Variance:	0.27507528690448	0.092138672931314	0.056431963223364
Coef. of Variation:			3.6612284796276
COULT OF DAG WIICSS.			J.+U/UJJ/J/ <u>/</u> ++++

Inter-Variable Correlation

	Х	Y	Z	
X: Y: Z:	1.000	0.003 1.000	0.003 -0.013 1.000	

Table 2B. Blue Grotto Spring, September 29, 2006.

Inter-Variable Covariance

	Х	Y Z	
X: Y: Z:	0.27507528690448	0.00048368489724175 0.092138672931314	0.00038434445646295 -0.00092421579232017 0.056431963223364

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.0014148844617483	-0.010038131884699	0.068818030906285
Standard Error:	0.049712082404103	0.08589477901393	0.066933223429385

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.003 1.000	-0.642 0.658 1.000

ANOVA Table

Source	df	Sum of Squares Mean Square F	
Regression:	2	0.00084462345908687 0.00042231172954343 0.0072238	
Residual:	83	4.8523042137502 0.058461496551207	
Total:	85	4.8531488372093	

Coefficient of Multiple Determination (R^2): 0.0001740361747431

Nearest Neighbor Statistics

	Separation	Delta Z	
Minimum:	0.05	0	
25%-tile:	0.050990195135928	0	
Median:	0.053400023408235	0	
75%-tile:	0.055901699437495	0	
Maximum:	0.25	0.94	
Midrange:	0.15	0.47	
Table 2B. Blue Grotto Spring, September 29, 2006.			Page 3 of 5.

Range:	0.2	0.94
Interquartile Range:	0.0049115043015669	9 0
Median Abs. Deviation:	0.0024098282723067	7 0
Mean:	0.065160800034783	0.023372093023256
Trim Mean (10%):	0.056459343628095	0.001025641025641
Standard Deviation:	0.042971158758496	0.13454151658992
Variance:	0.0018465204850479	9 0.018101419686317
Coef. of Variation:	0.65946333893319	5.7565026998674
Coef. of Skewness:	3.7907379499815	6.273863312207
Root Mean Square:	0.078054150089671	0.13655648801359
Mean Square:	0.0060924503462209	9 0.018647674418605

Complete Spatial Randomness

Lambda:	56.209150326797
Clark and Evans:	0.97705702974537
Skellam:	185.04499302138

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	2E-007
Y Duplicate Tolerance:	1E-007
No duplicate data were for	ınd.

Breakline Filtering Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point
Polynomial Drift Order:	2
Kriging std. deviation grid	: no

Semi-Variogram Model

0
1
1

Search Parameters

No Search (use all data): true

Output Crid

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\BlueGrotto_Back\Blue_Grotto_Back_9-06.grd 41 rows x 77 columns 3157 3157 0
0 1.9 0.025
0 1 0.025
-1.5010038418826 -0.29067154932768 0.036780703502293 0.53007151371379 1.0300000010496
-0.2355019204165 2.5310038429323 0.82074306304147 0.38919939345847
0.085807086237219 0.097260680368286 0.5210522718665 0.27149547001724
6.0723687834594 -0.10352248837477
0.52807037984132 0.27885832606576

Figure 4A. Discharge measurement cross-section; Blue Grotto Spring Vent 1 (Main Vent), Marion County, Florida, September 29, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4B. Discharge measurement cross-section; Blue Grotto Spring Vent 2 (Back Vent), Marion County, Florida, September 29, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Table 3A. Blue Grotto Spring Vent 1 (Main Vent) XYZ Grid Data, September 29, 2006.						
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2	0.7	0.41	1	40	14	
2	1	0.59	2	40	20	
2	1.5	1.12	3	40	30	
2	2	1.12	4	40	40	
2	2.5	1.28	5	40	50	
2	3	1.26	6	40	60	
2	3.5	1.09	7	40	70	
2	4	1.24	8	40	80	
2	4.5	1.67	9	40	90	
2	4.75	1.11	10	40	95	
1	4.25	-0.08	11	20	85	
1.5	4.25	1.12	12	30	85	
2.3	4.25	1.87	13	46	85	
1.5	3.75	0.3	14	30	75	
2.4	3.75	1.73	15	48	75	
1.4	3	0.43	16	28	60	
1.8	3	1.12	17	36	60	
2.5	3	1.51	18	50	60	
1.1	2.25	0.1	19	22	45	
1.5	2.25	0.74	20	30	45	
2.5	2.25	1.66	21	50	45	
0.7	1.5	-0.1	22	14	30	
1.2	1.5	-0.09	23	24	30	
1.7	1.5	1.04	24	34	30	
2.2	1.5	1.32	25	44	30	
2.7	1.5	0.54	26	54	30	
3.1	1.5	1.11	27	62	30	
0.85	1	0.17	28	17	20	
1.35	1	0.19	29	27	20	
1.85	1	0.79	30	37	20	
2.35	1	0.52	31	47	20	
2.85	1	1.24	32	57	20	
2.5	1.75	1.5	33	50	35	
2.5	2.75	1.64	34	50	55	
1.3	4.9	0	Α	26	98	
1.5	4.9	0	В	30	98	
2	4.9	0	С	40	98	
2.4	4.9	0	D	48	98	
2.4	4.5	0	E	48	90	
2.45	4.25	0	F	49	85	
2.6	4	0	G	52	80	
2.6	3.75	0	Н	52	75	
2.55	3.5	0	I	51	70	
2.6	3	0	J	52	60	
2.85	2.5	0	K	57	50	
2.9	2.25	0	L	58	45	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
3.15	2	0	М	63	40	
3.3	1.5	0	N	66	30	
3.45	1	0	0	69	20	
3.1	1	0	Р	62	20	
2.85	0.45	0	Q	57	9	
2.35	0.35	0	R	47	7	
2	0.5	0	S	40	10	
1.35	0.6	0	Т	27	12	
0.85	0.65	0	U	17	13	
0.35	1	0	V	7	20	
0.5	1.5	0	W	10	30	
0.75	2	0	X	15	40	
0.95	2.25	0	Y	19	45	
1.1	2.5	0	Z	22	50	
1.25	3	0	AA	25	60	
1.35	3.5	0	BB	27	70	
1.3	3.75	0	CC	26	75	
1	3.75	0	DD	20	75	
0.9	3.75	0	EE	18	75	
0.9	4	0	FF	18	80	
0.95	4.15	0	GG	19	83	
0.6	4.25	0	HH	12	85	
1	4.65	0	II	20	93	
1.2	4.5	0	JJ	24	90	
1.35	4.9	0	A1	27	98	
1.4	4.9	0	A2	28	98	
1.45	4.9	0	A3	29	98	
1.55	4.9	0	B1	31	98	
1.6	4.9	0	B2	32	98	
1.65	4.9	0	B3	33	98	
1.7	4.9	0	B4	34	98	
1.75	4.9	0	B5	35	98	
1.8	4.9	0	B6	36	98	
1.85	4.9	0	B7	37	98	
1.9	4.9	0	B8	38	98	
1.95	4.9	0	B9	39	98	
0.05	10		01	4.4	00	
2.05	4.9	0	C1	41	98	
2.1	4.9	0	C2	42	98	
2.15	4.9	U		43	98	
2.2	4.9	U		44	98	
2.25	4.9	U	65	45	98	
2.3	4.9	0	<u>C6</u>	46	98	
2.35	4.9	U	C7	47	98	
	4.05		D 4	40	07	
2.4	4.85	U		48	97	
2.4	4.8	0	D2	48	96	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.4	4.75	0	D3	48	95	
2.4	4.7	0	D4	48	94	
2.4	4.65	0	D5	48	93	
2.4	4.6	0	D6	48	92	
2.4	4.55	0	D7	48	91	
2.41	4.45	0	E1	48.2	89	
2.42	4.4	0	E2	48.4	88	
2.43	4.35	0	E3	48.6	87	
2.44	4.3	0	E4	48.8	86	
2.48	4.2	0	F1	49.6	84	
2.51	4.15	0	F2	50.2	83	
2.54	4.1	0	F3	50.8	82	
2.57	4.05	0	F4	51.4	81	
2.6	3.95	0	G1	52	79	
2.6	3.9	0	G2	52	78	
2.6	3.85	0	G3	52	77	
2.6	3.8	0	G4	52	76	
2.59	3.7	0	H1	51.8	74	
2.58	3.65	0	H2	51.6	73	
2.57	3.6	0	H3	51.4	72	
2.56	3.55	0	H4	51.2	71	
2.555	3.45	0	l1	51.1	69	
2.56	3.4	0	12	51.2	68	
2.565	3.35	0	13	51.3	67	
2.57	3.3	0	14	51.4	66	
2.575	3.25	0	15	51.5	65	
2.58	3.2	0	16	51.6	64	
2.585	3.15	0	17	51.7	63	
2.59	3.1	0	18	51.8	62	
2.595	3.05	0	19	51.9	61	
2.625	2.95	0	J1	52.5	59	
2.65	2.9	0	J2	53	58	
2.675	2.85	0	J3	53.5	57	
2.7	2.8	0	J4	54	56	
2.725	2.75	0	J5	54.5	55	
2.75	2.7	0	J6	55	54	
2.775	2.65	0	J7	55.5	53	
2.8	2.6	0	J8	56	52	
2.825	2.55	0	J9	56.5	51	
					42	
2.86	2.45	0	K1	57.2	49	
2.87	2.4	0	K2	57.4	48	
2.88	2.35	0	K3	57.6	47	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.89	2.3	0	K4	57.8	46	
2.95	2.2	0	L1	59	44	
3	2.15	0	L2	60	43	
3.05	2.1	0	L3	61	42	
3.1	2.05	0	L4	62	41	
3.165	1.95	0	M1	63.3	39	
3.18	1.9	0	M2	63.6	38	
3.195	1.85	0	M3	63.9	37	
3.21	1.8	0	M4	64.2	36	
3.225	1.75	0	M5	64.5	35	
3.24	1.7	0	M6	64.8	34	
3.255	1.65	0	M7	65.1	33	
3.27	1.6	0	M8	65.4	32	
3.285	1.55	0	M9	65.7	31	
		-	-			
3.315	1.45	0	N1	66.3	29	
3.33	1.4	0	N2	66.6	28	
3.345	1.35	0	N3	66.9	27	
3.36	1.3	0	N4	67.2	26	
3.375	1.25	0	N5	67.5	25	
3.39	1.2	0	N6	67.8	24	
3.405	1.15	0	N7	68.1	23	
3.42	1.1	0	N8	68.4	22	
3.435	1.05	0	N9	68.7	21	
3.4	1	0	01	68	20	
3.35	1	0	02	67	20	
3.3	1	0	03	66	20	
3.25	1	0	04	65	20	
3.2	1	0	O5	64	20	
3.15	1	0	O6	63	20	
		-				
3.07728	0.95	0	P1	61.5455	19	
3.05455	0.9	0	P2	61.091	18	
3.03183	0.85	0	P3	60.6365	17	
3.0091	0.8	0	P4	60.182	16	
2.98638	0.75	0	P5	59.7275	15	
2.96365	0.7	0	P6	59.273	14	
2.94093	0.65	0	P7	58.8185	13	
2.9182	0.6	0	P8	58.364	12	
2.89548	0.55	0	P9	57.9095	11	
2.87275	0.5	0	P10	57.455	10	
					1	
2.8	0.44	0	Q1	56	8.8	
2.75	0.43	0	Q2	55	8.6	
2.7	0.42	0	Q3	54	8.4	
2.65	0.41	0	Q4	53	8.2	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.6	0.4	0	Q5	52	8	
2.55	0.39	0	Q6	51	7.8	
2.5	0.38	0	Q7	50	7.6	
2.45	0.37	0	Q8	49	7.4	
2.4	0.36	0	Q9	48	7.2	
2.3	0.37143	0	R1	46	7.4286	
2.25	0.39286	0	R2	45	7.8572	
2.2	0.41429	0	R3	44	8.2858	
2.15	0.43572	0	R4	43	8.7144	
2.1	0.45715	0	R5	42	9.143	
2.05	0.47858	0	R6	41	9.5716	
1.95	0.50769	0	S1	39	10.1538	
1.9	0.51538	0	S2	38	10.3076	
1.85	0.52307	0	S3	37	10.4614	
1.8	0.53076	0	S4	36	10.6152	
1.75	0.53845	0	S5	35	10.769	
1.7	0.54614	0	S6	34	10.9228	
1.65	0.55383	0	S7	33	11.0766	
1.6	0.56152	0	S8	32	11.2304	
1.55	0.56921	0	S9	31	11.3842	
1.5	0.5769	0	S10	30	11.538	
1.45	0.58459	0	S11	29	11.6918	
1.4	0.59228	0	S12	28	11.8456	
1.3	0.605	0	T1	26	12.1	
1.25	0.61	0	T2	25	12.2	
1.2	0.615	0	Т3	24	12.3	
1.15	0.62	0	T4	23	12.4	
1.1	0.625	0	Т5	22	12.5	
1.05	0.63	0	Т6	21	12.6	
1	0.635	0	T7	20	12.7	
0.95	0.64	0	Т8	19	12.8	
0.9	0.645	0	Т9	18	12.9	
0.8	0.685	0	U1	16	13.7	
0.75	0.72	0	U2	15	14.4	
0.7	0.755	0	U3	14	15.1	
0.65	0.79	0	U4	13	15.8	
0.6	0.825	0	U5	12	16.5	
0.55	0.86	0	U6	11	17.2	
0.5	0.895	0	U7	10	17.9	
0.45	0.93	0	U8	9	18.6	
0.4	0.965	0	U9	8	19.3	
0.365	1.05	0	V1	7.3	21	
0.38	1.1	0	V2	7.6	22	
0.395	1.15	0	V3	7.9	23	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
0.41	1.2	0	V4	8.2	24	
0.425	1.25	0	V5	8.5	25	
0.44	1.3	0	V6	8.8	26	
0.455	1.35	0	V7	9.1	27	
0.47	1.4	0	V8	9.4	28	
0.485	1.45	0	V9	9.7	29	
0.525	1.55	0	W1	10.5	31	
0.55	1.6	0	W2	11	32	
0.575	1.65	0	W3	11.5	33	
0.6	1.7	0	W4	12	34	
0.625	1.75	0	W5	12.5	35	
0.65	1.8	0	W6	13	36	
0.675	1.85	0	W7	13.5	37	
0.7	1.9	0	W8	14	38	
0.725	1.95	0	W9	14.5	39	
0.79	2.05	0	X1	15.8	41	
0.83	2.1	0	X2	16.6	42	
0.87	2.15	0	X3	17.4	43	
0.91	2.2	0	X4	18.2	44	
		-		-		
0.98	2.3	0	Y1	19.6	46	
1.01	2.35	0	Y2	20.2	47	
1.04	2.4	0	Y3	20.8	48	
1.07	2.45	0	Y4	21.4	49	
1.115	2.55	0	Z1	22.3	51	
1.13	2.6	0	Z2	22.6	52	
1.145	2.65	0	Z3	22.9	53	
1.16	2.7	0	Z4	23.2	54	
1.175	2.75	0	Z5	23.5	55	
1.19	2.8	0	Z6	23.8	56	
1.205	2.85	0	Z7	24.1	57	
1.22	2.9	0	Z8	24.4	58	
1.235	2.95	0	Z9	24.7	59	
1.26	3.05	0	AA1	25.2	61	
1.27	3.1	0	AA2	25.4	62	
1.28	3.15	0	AA3	25.6	63	
1.29	3.2	0	AA4	25.8	64	
1.3	3.25	0	AA5	26	65	
1.31	3.3	0	AA6	26.2	66	
1.32	3.35	0	AA7	26.4	67	
1.33	3.4	0	AA8	26.6	68	
1.34	3.45	0	AA9	26.8	69	
1.34	3.55	0	BB1	26.8	71	
1.33	3.6	0	BB2	26.6	72	
		–			•	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.32	3.65	0	BB3	26.4	73	
1.31	3.7	0	BB4	26.2	74	
1.25	3.75	0	CC1	25	75	
1.2	3.75	0	CC2	24	75	
1.15	3.75	0	CC3	23	75	
1.1	3.75	0	CC4	22	75	
1.05	3.75	0	CC5	21	75	
0.95	3.75	0	DD1	19	75	
0.9	3.8	0	EE1	18	76	
0.9	3.85	0	EE2	18	77	
0.9	3.9	0	EE3	18	78	
0.9	3.95	0	EE4	18	79	
0.91667	4.05	0	FF1	18.3333	81	
0.93333	4.1	0	FF2	18.6666	82	
0.9	4.16379	0	GG1	18	83.2757	
0.85	4.17757	0	GG2	17	83.5514	
0.8	4.19136	0	GG3	16	83.8271	
0.75	4.20514	0	GG4	15	84.1028	
0.7	4.21893	0	GG5	14	84.3785	
0.65	4.23271	0	GG6	13	84.6542	
0.65	4.3	0	HH1	13	86	
0.7	4.35	0	HH2	14	87	
0.75	4.4	0	HH3	15	88	
0.8	4.45	0	HH4	16	89	
0.85	4.5	0	HH5	17	90	
0.9	4.55	0	HH6	18	91	
0.95	4.6	0	HH7	19	92	
1.05	4.6125	0	II1	21	92.25	
1.1	4.575	0	ll2	22	91.5	
1.15	4.5375	0	113	23	90.75	
1.2125	4.55	0	JJ1	24.25	91	
1.225	4.6	0	JJ2	24.5	92	
1.2375	4.65	0	JJ3	24.75	93	
1.25	4.7	0	JJ4	25	94	
1.2625	4.75	0	JJ5	25.25	95	
1.275	4.8	0	JJ6	25.5	96	
1.2875	4.85	0	JJ7	25.75	97	

Table 3B. Blue Grotto Spring Vent 2 (Back Vent) XYZ Grid Data, September 29, 2006.						
X				X 51 (
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.5	0.5	0.94	1	30	10	
1.25	0.5	0.87	2	25	10	
1	0.5	0.91	3	20	10	
0.75	0.5	0.99	4	15	10	
0.5	0.5	1.03	5	10	10	
0.25	0.5	0.84	6	5	10	
0.25	0.9	0	A	5	18	
0.5	0.95	0	В	10	19	
0.75	0.9	0	C	15	18	
1	0.85	0	D	20	17	
1.25	0.8	0	E	25	16	
1.5	0.85	0	F	30	17	
1.8	0.5	0	G	36	10	
1.5	0.35	0	Н	30	7	
1.25	0.05	0	I	25	1	
1	0.1	0	J	20	2	
0.75	0.2	0	K	15	4	
0.5	0.2	0	L	10	4	
0.25	0.1	0	М	5	2	
0.1	0.5	0	N	2	10	
0.3	0.91	0	A1	6	18.2	
0.35	0.92	0	A2	7	18.4	
0.4	0.93	0	A3	8	18.6	
0.45	0.94	0	A4	9	18.8	
0.55	0.94	0	B1	11	18.8	
0.6	0.93	0	B2	12	18.6	
0.65	0.92	0	B3	13	18.4	
0.7	0.91	0	B4	14	18.2	
0.8	0.89	0	C1	16	17.8	
0.85	0.88	0	C2	17	17.6	
0.9	0.87	0	C3	18	17.4	
0.95	0.86	0	C4	19	17.2	
		_				
1.05	0.84	0	D1	21	16.8	
1.1	0.83	0	D2	22	16.6	
1.15	0.82	0	D3	23	16.4	
1.2	0.81	0	D4	24	16.2	
			 -		10.5	
1.3	0.81	0	E1	26	16.2	
1.35	0.82	0	E2	27	16.4	
1.4	0.83	0	E3	28	16.6	
1.45	0.84	0	E4	29	16.8	
	0					

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.54286	0.8	0	F1	30.8571	16	
1.58571	0.75	0	F2	31.7142	15	
1.62857	0.7	0	F3	32.5713	14	
1.67142	0.65	0	F4	33.4284	13	
1.71428	0.6	0	F5	34.2855	12	
1.75713	0.55	0	F6	35.1426	11	
1.75	0.475	0	G1	35	9.5	
1.7	0.45	0	G2	34	9	
1.65	0.425	0	G3	33	8.5	
1.6	0.4	0	G4	32	8	
1.55	0.375	0	G5	31	7.5	
	0					
1.45834	0.3	0	H1	29.1667	6	
1.41667	0.25	0	H2	28.3334	5	
1.37501	0.2	0	H3	27.5001	4	
1.33334	0.15	0	H4	26.6668	3	
1.29168	0.1	0	H5	25.8335	2	
1.2	0.06	0	l1	24	1.2	
1.15	0.07	0	12	23	1.4	
1.1	0.08	0	13	22	1.6	
1.05	0.09	0	14	21	1.8	
0.95	0.12	0	J1	19	2.4	
0.9	0.14	0	J2	18	2.8	
0.85	0.16	0	J3	17	3.2	
0.8	0.18	0	J4	16	3.6	
0.7	0.2	0	K1	14	4	
0.65	0.2	0	K2	13	4	
0.6	0.2	0	K3	12	4	
0.55	0.2	0	K4	11	4	
0.45	0.18	0	L1	9	3.6	
0.4	0.16	0	L2	8	3.2	
0.35	0.14	0	L3	7	2.8	
0.3	0.12	0	L4	6	2.4	
0.23125	0.15	0	M1	4.625	3	
0.2125	0.2	0	M2	4.25	4	
0.19375	0.25	0	M3	3.875	5	
0.175	0.3	0	M4	3.5	6	
0.15625	0.35	0	M5	3.125	7	
0.1375	0.4	0	M6	2.75	8	
0.11875	0.45	0	M7	2.375	9	
0.11875	0.55	0	N1	2.375	11	
0.1375	0.6	0	N2	2.75	12	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
0.15625	0.65	0	N3	3.125	13	
0.175	0.7	0	N4	3.5	14	
0.19375	0.75	0	N5	3.875	15	
0.2125	0.8	0	N6	4.25	16	
0.23125	0.85	0	N7	4.625	17	

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Bridal Chamber Spring, Marion County, Florida; September 22, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Bridal Chamber Spring, Marion County, Florida; September 22, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Bridal Chamber Spring, Marion County, Florida; September 22, 2006.
- 2. Table 1. Discharge of Bridal Chamber Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Bridal Chamber Spring.
- 4. Figure 2. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006 measurement.
- 5. Figure 3. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown ...
- 6. Table 2. Bridal Chamber Spring, September 22, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 7. Figure 4. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 8. Table 3. Bridal Chamber Spring XYZ Grid Data, September 22, 2006.
- 9. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Bridal Chamber Spring, Marion County, Florida; September 22, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Bridal Chamber Spring on September 22, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Bridal Chamber Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Tom Morris, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Bridal Chamber Spring is located in a large basin on the south side of the Silver River, approximately 100 feet southeast of Catfish Reception Hall. Discharge is from an elongated vertical vent in the limestone, about 15 feet long, up to 2.5 feet wide, and about 18 feet deep. See Figure 1.

Since the orifice of this spring is located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Thirty-one station readings were taken.

The approximate depth for the measurement grid was 25 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 2. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, three negative velocities were measured. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Bridal Chamber Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Bridal Chamber Spring on September 22, 2006 was 4.61 CFS (cubic feet per second). This result is also expressed as 2069 GPM (gallons per minute) or 2.98 MGD (million gallons per day), see Table 1. Thirty-one (31) readings were made, see Figures 2, 3 and 4. The point velocity readings ranged from -0.03 to 1.25 feet per second (fps), with an overall average station reading of 0.50 fps. The total cross-sectional area was calculated as 12.72 square feet. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 12:18 hours and were completed by 13:10 hours.

UNDERWATE	R DISCHARGE	MEASUREME	NT			
Location:	BRIDAL CHAN	IBER SPRING		Date:	September 22,	2006
	Silver Springs G	Group,		Time Start:	12:18	
	Marion County,	Florida		Time End:	13:10	
Personnel:	Peter Butt, Tom N	Morris				
Method:	Grid within irregu	lar conduit				
Instrument:	MMB2000 FLO-N	1ATE in U/W cas	e, sensor on supp	ort poles		
Msmt. Periods	:	60 seconds				
Analysis Method	d: Surfer 8 with krigi	ng				
Bridal Chambe	r Spring Total Dis	cnarge:				
CFS	4.61					
MGD	2.980					
GPM	2069					
Total Cross-section	onal Area (sq/ft):	12.72				
Avg. Station Point	Velocity (ft/sec):	0.50				
Cross-section Dep	oth (feet deep):	25				
Velocity Readi	Velocity Reading by Station:		eadings in feet p	er second.)		
Station #	Point Velocity	Station #	Point Velocity			
1	0.03	17	0.3			
2	0.71	18	0.65			
3	0.85	19	0.51			
4	0.91	20	0.23			
5	1.09	21	0.28			
6	0.77	22	0.65			
7	0.72	23	0.71			
8	1.25	24	0.15			
9	0.49	25	0.28			
10	0.39	26	0.18			
11	0.41	27	0.19			
12	0.82	28	0.19			
13	1.18	29	0.05			
14	0.66	30	-0.01			
15	-0.02	31	-0.03			
16	0.88					

Table 1. Discharge of Bridal Chamber Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Bridal Chamber Spring.

Figure 2. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006 measurement. Crosssection is viewed to the upstream of observer, and is located at the 25-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.
TABLE 2. BRIDAL CHAMBER SPRING, SEPTEMBER 22, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep		
06\Bridal\Bridal Chamber9-06.bln.grd		
91 rows x 181 columns		
0		
9		
0.05		
0		
4.5		
0.05		
-0.029999999906424		
1.2499999994179		

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	4.6093688398188
Simpson's Rule:	4.6092627410793
Simpson's 3/8 Rule:	4.6098884317064

CUT & FILL VOLUMES

Positive Volume [Cut]:4.6151646099565Negative Volume [Fill]:0.0057957701377344Net Volume [Cut-Fill]:4.6093688398188 <<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas	
Operational Planar Area:	12.72 <<< <total area="" cross-section="" feet<="" in="" square="" th=""></total>
(Calculated using blanking fil	e due to the presence of negative velocity values;
Operational Planar Area = [P.	P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)	
Positive Planar Area [Cut]:	11.99149711077
Negative Planar Area [Fill]:	0.72975288922952
Blanked Planar Area:	27.77875
Total Planar Area:	40.5
Surface Areas	

Positive Surface Area [Cut]:	16.35953150765
Negative Surface Area [Fill]:	0.73244394340526

GRIDDING REPORT

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Bridal\Bridal Chamber 9-06 SURFER XYZ T3BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	223
Original Data:	223
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.8	0.6	-0.03
25%-tile:	2.5	1.49	0
Median:	4	2.1	0
75%-tile:	6.2	3.12	0
Maximum:	8.3	4	1.25
Midrange:	4.55	2.3	0.61
Range:	7.5	3.4	1.28
Interquartile Range:	3.7	1.63	0
Median Abs. Deviation:	1.9	0.87	0
Mean:	4.3493159192825	2.2925556053812	0.069372197309417
Trim Mean (10%):	4.3271433333333	2.2890044776119	0.028059701492537
Standard Deviation:	2.2286133008764	0.93158148746953	0.21924567078906
Variance:	4.966717244843	0.86784406779593	0.048068664159746
Coef. of Variation:			3.1604256358087
Coef. of Skewness:			3.4267443026346

Inter-Variable Correlation

	Х	Y	Z	
X:	1.000	0.109	-0.168	
Y:		1.000	-0.023	
Z:			1.000	

Table 2. Bridal Chamber Spring, September 22, 2006.

Inter-Variable Covariance

	Х	Y	Ζ
X: Y: Z:	4.966717244843	0.22620160250045 0.86784406779593	-0.081923395835428 -0.0046315480504333 0.048068664159746

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.016446652060644	-0.0010500607567238	0.1433112056095
Standard Error:	0.0065778190739264	0.015736052375547	0.045906263539468

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	0.109 1.000	-0.538 0.718 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 220 222	0.30154706561347 10.41776504201 10.719312107623	0.15077353280673 0.047353477463681	3.184

Coefficient of Multiple Determination (R^2): 0.028131195601536

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.10049875621121	0
Median:	0.10307764064044	0
75%-tile:	0.11180339887499	0
Maximum:	0.5	0.91

Table 2. Bridal Chamber Spring, September 22, 2006.

Midrange:	0.275	0.455
Range:	0.45	0.91
Interquartile Range:	0.011304642663781	0
Median Abs. Deviation:	0.0030776406404412	0
Mean:	0.13639607897281	0.04542600896861
Trim Mean (10%):	0.12105971477001	0.016517412935323
Standard Deviation:	0.098360125541042	0.14821409991367
Variance:	0.0096747142964495	0.02196741941322
Coef. of Variation:	0.72113602005123 3.	.2627585667077
Coef. of Skewness:	2.8894187016816 3.	.9104284279017
Root Mean Square:	0.16816243532848 0.	.15501916560231
Mean Square:	0.028278604655605 0.	.024030941704036

Complete Spatial Randomness

Lambda:	8.7450980392157
Clark and Evans:	0.806704022803
Skellam:	346.50331222287

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:FirstX Duplicate Tolerance:8.9E-007Y Duplicate Tolerance:4E-007No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid Size:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Bridal\Bridal Chamber9-06.grd
Total Nodes:	91 IOWS X 181 COLUMNIS 16471
Filled Nodes:	16471
Plankad Nodasy	0
Blaiked Nodes.	0
Grid Geometry	
X Minimum:	0
X Maximum:	9
X Spacing:	0.05
n ~paring.	
Y Minimum:	0
Y Maximum:	4.5
Y Spacing:	0.05
Crid Statistics	
7 Minimum:	0 60156485722707
$Z_{25\%}$ tile:	0.12052624260201
Z 23%-tile. Z Modion:	-0.18938034200201
Z Mediali. Z $750/$ tile:	-0.031300707513802
Z 75%-tile.	1.240000004170
	1.2499999994179
Z Midrange:	0.27921757109043
Z Range:	1.941564856655
Z Interguartile Range:	0.23790912095583
Z Median Abs. Deviation:	0.12867322019532
Z Mean:	-0.0019552326059334
Z Trim Mean (10%):	-0.023973527001435
Z Standard Deviation:	0.33092260225407
Z Variance:	0.1095097686826
7 Coef of Variation:	-1
7 Coef of Skewness	1 2914153557695
L COUL OF SKEWHESS.	1.2717133337073
Z Root Mean Square:	0.33092837837989
Z Mean Square:	0.10951359161715
*	

Figure 4. Discharge measurement cross-section; Bridal Chamber Spring, Marion County, Florida, September 22, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Table 3. Br	idal Chamber	Spring XYZ G	rid Data, Septem	nber 22, 2006.	
x	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1	2	0.03	1	10	20
15	2	0.00	2	15	20
2	21	0.85	2	20	20
2	2.1	0.00	4	20	29
2	2.5	1.09	5	20	26
2	1.6	0.77	6	20	16
2	1.0	0.77	7	20	10
25	2	1 25	9	20	20
2.5	2 2 2	0.40	0	30	20
3	3.5	0.49		30	35
3	3.5	0.39	10	30	30
3	25	0.41	12	30	25
3	2.5	1 18	12	30	20
3	15	0.66	13	30	15
3	1	-0.02	15	30	10
3.5	2	0.88	16	35	20
4	2.9	0.3	17	40	29
4	2.5	0.65	18	40	25
4	2	0.51	19	40	20
4	1.6	0.23	20	40	16
4.5	2	0.28	21	45	20
5	2	0.65	22	50	20
5.5	2	0.71	23	55	20
6	3	0.15	24	60	30
6	2.5	0.28	25	60	25
6	2	0.18	26	60	20
6	1.5	0.19	27	60	15
6.5	2	0.19	28	65	20
7	2	0.05	29	70	20
7.5	2	-0.01	30	75	20
8	2	-0.03	31	80	20
0.8	2	0	AE1	8	20
0.9	1.6	0	AE2	9	16
1	1.15	0	AS	10	11.5
1	2.2	0	AI	10	22
1.5	1.2	0	ABS	15	12
1.5	2.4	0	ABI1	15	24
1.4	2.6	0	AB12	14	26
2	3	0	AB13	20	30
2	1.2	0	BS	20	12
2	3.1	0	BI	20	31
2.5	1	0	BCS1	25	10
2.5	0.9	0	BCS2	25	9
2.8	0.6	0	BCS3	28	6
2.5	3.5	0	BCT1	25	35
2.5	3.55	0	BCT2	25	35.5
2.6	3.9	0	BCT3	26	39

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3	0.6	0	CS	30	6
3	4	0	СТ	30	40
3.25	0.6	0	CDS1	32.5	6
3.4	1	0	CDS2	34	10
3.5	1.25	0	CDS3	35	12.5
3.5	4	0	CDT1	35	40
3.6	3.5	0	CDT2	36	35
3.45	3	0	CDT3	34.5	30
3.5	2.95	0	CDT4	35	29.5
4	1.4	0	DS	40	14
4	3.05	0	DT	40	30.5
4.5	1.7	0	DES1	45	17
4.75	1.9	0	DES2	47.5	19
4.5	3.15	0	DET	45	31.5
5	1.6	0	ES	50	16
5	3.3	0	ET	50	33
5.5	1.5	0	EFS	55	15
5.5	3.25	0	EFT	55	32.5
6	1.3	0	FS	60	13
6	3.15	0	FT	60	31.5
6.5	1.45	0	FGS	65	14.5
6.5	3.15	0	FGT	65	31.5
7	1.5	0	GS	70	15
7	3	0	GT	70	30
7.5	2.95	0	GHS	75	29.5
7.5	1.7	0	GHT	75	17
8	1.7	0	HS	80	17
8	3.3	0	HT	80	33
8.3	2	0	HE	83	20
0.98888	1.2	0	A1	9.8888	12
0.96666	1.3	0	A2	9.6666	13
0.94444	1.4	0	A3	9.4444	14
0.92222	1.5	0	A4	9.2222	15
0.875	1.7	0	A5	8.75	17
0.85	1.8	0	A6	8.5	18
0.825	1.9	0	A7	8.25	19
0.9	2.1	0	A8	9	21
1.1	1.16	0	AS1	11	11.6
1.2	1.17	0	AS2	12	11.7
1.3	1.18	0	AS3	13	11.8
1.4	1.19	0	AS4	14	11.9
1.6	1.2	0	AS5	16	12
1.7	1.2	0	AS6	17	12
1.8	1.2	0	AS7	18	12
1.9	1.2	0	AS8	19	12
2.1	1.16	0	BS1	21	11.6

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.2	1.12	0	BS2	22	11.2
2.3	1.08	0	BS3	23	10.8
2.4	1.04	0	BS4	24	10.4
2.6	0.8	0	BS5	26	8
2.7	0.7	0	BS6	27	7
2.9	0.6	0	BS7	29	6
3.1	0.6	0	CS1	31	6
3.2	0.6	0	CS2	32	6
3.2875	0.7	0	CS3	32.875	7
3.325	0.8	0	CS4	33.25	8
3.3625	0.9	0	CS5	33.625	9
3.45	1.1	0	CS6	34.5	11
3.6	1.28	0	CS7	36	12.8
3.7	1.31	0	CS8	37	13.1
3.8	1.34	0	CS9	38	13.4
3.9	1.37	0	CS10	39	13.7
-					
4.1	1.46	0	DS1	41	14.6
4.2	1.52	0	DS2	42	15.2
4.3	1.58	0	DS3	43	15.8
4.4	1.64	0	DS4	44	16.4
4.6	1.78	0	DS5	46	17.8
4.7	1.86	0	DS6	47	18.6
4.83334	1.8	0	DS7	48.3334	18
4.91667	1.7	0	DS8	49.1667	17
-					
5.1	1.58	0	ES1	51	15.8
5.2	1.56	0	ES2	52	15.6
5.3	1.54	0	ES3	53	15.4
5.4	1.52	0	ES4	54	15.2
5.6	1.46	0	ES5	56	14.6
5.7	1.42	0	ES6	57	14.2
5.8	1.38	0	ES7	58	13.8
5.9	1.34	0	ES8	59	13.4
6.1	1.33	0	FS1	61	13.3
6.2	1.36	0	FS2	62	13.6
6.3	1.39	0	FS3	63	13.9
6.4	1.42	0	FS4	64	14.2
6.6	1.46	0	FS5	66	14.6
6.7	1.47	0	FS6	67	14.7
6.8	1.48	0	FS7	68	14.8
6.9	1.49	0	FS8	69	14.9
7.1	1.54	0	GS1	71	15.4
7.2	1.58	0	GS2	72	15.8
7.3	1.62	0	GS3	73	16.2
7.4	1.66	0	GS4	74	16.6

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
7.6	1.7	0	GS5	76	17
7.7	1.7	0	GS6	77	17
7.8	1.7	0	GS7	78	17
7.9	1.7	0	GS8	79	17
8.1	1.8	0	HS1	81	18
8.2	1.9	0	HS2	82	19
1.1	2.24	0	AT1	11	22.4
1.2	2.28	0	AT2	12	22.8
1.3	2.32	0	AT3	13	23.2
1.4	2.36	0	AT4	14	23.6
1.45	2.5	0	AT5	14.5	25
1.5	2.66666	0	AT6	15	26.6666
1.6	2.73332	0	AT7	16	27.3332
1.7	2.79998	0	AT8	17	27.9998
1.8	2.86664	0	AT9	18	28.6664
1.9	2.9333	0	AT10	19	29.333
2.1	3.18	0	BT1	21	31.8
2.2	3.26	0	BT2	22	32.6
2.3	3.34	0	BT3	23	33.4
2.4	3.42	0	BT4	24	34.2
2.525	3.6	0	BT5	25.25	36
2.55	3.7	0	BT6	25.5	37
2.575	3.8	0	BT7	25.75	38
2.7	3.925	0	BT8	27	39.25
2.8	3.95	0	BT9	28	39.5
2.9	3.975	0	BT10	29	39.75
3.1	4	0	CT1	31	40
3.2	4	0	CT2	32	40
3.3	4	0	CT3	33	40
3.4	4	0	CT4	34	40
3.52	3.9	0	CT5	35.2	39
3.54	3.8	0	CT6	35.4	38
3.56	3.7	0	CT7	35.6	37
3.58	3.6	0	CT8	35.8	36
3.57	3.4	0	СТ9	35.7	34
3.54	3.3	0	CT10	35.4	33
3.51	3.2	0	CT11	35.1	32
3.48	3.1	0	CT12	34.8	31
3.6	2.97	0	CT13	36	29.7
3.7	2.99	0	CT14	37	29.9
3.8	3.01	0	CT15	38	30.1
3.9	3.03	0	CT16	39	30.3
4.1	3.07	0	DT1	41	30.7
4.2	3.09	0	DT2	42	30.9

Table 3. Bridal Chamber Spring XYZ Grid Data, September 22, 2006.Page 4 of 5

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4.3	3.11	0	DT3	43	31.1
4.4	3.13	0	DT4	44	31.3
4.6	3.18	0	DT5	46	31.8
4.7	3.21	0	DT6	47	32.1
4.8	3.24	0	DT7	48	32.4
4.9	3.27	0	DT8	49	32.7
5.1	3.29	0	ET1	51	32.9
5.2	3.28	0	ET2	52	32.8
5.3	3.27	0	ET3	53	32.7
5.4	3.26	0	ET4	54	32.6
5.6	3.23	0	ET5	56	32.3
5.7	3.21	0	ET6	57	32.1
5.8	3.19	0	ET7	58	31.9
5.9	3.17	0	ET8	59	31.7
6.1	3.15	0	FT1	61	31.5
6.2	3.15	0	FT2	62	31.5
6.3	3.15	0	FT3	63	31.5
6.4	3.15	0	FT4	64	31.5
6.6	3.12	0	FT5	66	31.2
6.7	3.09	0	FT6	67	30.9
6.8	3.06	0	FT7	68	30.6
6.9	3.03	0	FT8	69	30.3
7.1	2.99	0	GT1	71	29.9
7.2	2.98	0	GT2	72	29.8
7.3	2.97	0	GT3	73	29.7
7.4	2.96	0	GT4	74	29.6
7.6	3.02	0	GT5	76	30.2
7.7	3.09	0	GT6	77	30.9
7.8	3.16	0	GT7	78	31.6
7.9	3.23	0	GT8	79	32.3
8.02308	3.2	0	HT1	80.2308	32
8.04616	3.1	0	HT2	80.4616	31
8.06924	3	0	HT3	80.6924	30
8.09232	2.9	0	HT4	80.9232	29
8.1154	2.8	0	HT5	81.154	28
8.13848	2.7	0	HT6	81.3848	27
8.16156	2.6	0	HT7	81.6156	26
8.18464	2.5	0	HT8	81.8464	25
8.20772	2.4	0	HT9	82.0772	24
8.2308	2.3	0	HT10	82.308	23
8.25388	2.2	0	HT11	82.5388	22
8.27696	2.1	0	HT12	82.7696	21

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Catfish Convention Hall Spring, Marion County, Florida; September 30, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Catfish Convention Hall Spring, Marion County, Florida; September 30, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Catfish Convention Hall Spring, Marion County, Florida; September 30, 2006.
- 2. Table 1. Discharge of Catfish Convention Hall Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Catfish Convention Hall Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Catfish Convention Hall Spring, Marion County, Florida; September 30, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Catfish Convention Hall Spring on September 30, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Catfish Convention Hall Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Catfish Convention Hall Spring is comprised of two clusters of small vents, about 20 feet deep, and located directly downstream from Shipwreck Spring and the bow of the namesake sunken boat. They lie in the eastern end of the basin that is an extension of the Shipwreck Spring basin. The main vent cluster contains about five small vents within an area of about six feet in diameter, all discharging through sediments.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Catfish Convention Hall Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Catfish Convention Hall Spring on September 30, 2006 was 0.32 CFS (cubic feet per second). This result is also expressed as 142 GPM (gallons per minute) or 0.204 MGD (million gallons per day), see Table 1. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.42 to 0.75 feet per second (fps), with an overall average station reading of 0.56 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 19 feet. The measurements commenced at about 15:00 hours and were completed by 15:16 hours.

UNDEF	RWATE	R DISCHARGE I	MEASUREMEN	Г		
Locatio	n:	CATFISH CON	VENTION HALL	. SPRING	Date:	September 30, 2006
		Silver Springs G	Group,		Time Start:	15:00
		Marion County,	Florida		Time End:	15:16
Personn	nel:	Peter Butt, Mark I	_ong			
Method:		Vent Discharge C	apture Device	(0.49' Diameter)		
Instrume	ent:	MMB2000 FLO-N	IATE in U/W case	, sensor in vertical	pipe	
Calculat	tion Meth	nod: Discharge = V	x <i>pi</i> x r ²			
Measur	rement	Periods:	60 seconds			
Catfish	Conven	tion Hall Spring T	otal Discharge:	Vent 1	Vent 2	Vent 3
CFS		0.32		0.096	0.080	0.140
MGD		0.204		0.062	0.052	0.091
GPM		142	All Vents:	43	36	63
Avg. Poir	nt Velocity	/ (ft/sec):	0.56	0.51	0.42	0.74
Vent Dep	oth (feet d	eep):		19	19	19
Velocit	ty Read	ings:	(All velocity rea	adings in feet per	second.)	
Ven	nt 1		Vent 2		Vent 3	
Taggeo	d vent					
Readi	ing #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1		0.51	1	0.42	1	0.75
2	2	0.51	2	0.43	2	0.75
3	3	0.51	3	0.42	3	0.73
Avera	age:	0.51	Average:	0.42	Average:	0.74
Discha	arge:	0.096	Discharge:	0.080	Discharge:	0.140

Table 1. Discharge of Catfish Convention Hall Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Catfish Convention Hall Spring.

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Catfish Reception Hall Spring, Marion County, Florida; September 21, 2006

Prepared for:

St. Johns River Water Management District Post Office Box 1429 Palatka, FL 32178-1429

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Catfish Reception Hall Spring, Marion County, Florida; September 21, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Catfish Reception Hall Spring, Marion County, Florida; September 21, 2006.
- 2. Table 1. Discharge of Catfish Reception Hall Spring, Marion County, Florida on September 21, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Catfish Reception Hall Spring.
- 4. Figure 2A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement.
- 5. Figure 2B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006 measurement.
- 6. Figure 2C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement.
- 7. Figure 3A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement.
- 8. Figure 3B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006 measurement.
- 9. Figure 3C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement.
- 10. Table 2A. Catfish Reception Hall Spring Vent 1 (Main Vent), September 21, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 11. Table 2B. Catfish Reception Hall Spring Vent 2, September 21, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 12. Table 2C. Catfish Reception Hall Spring Vent 3, September 21, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 13. Figure 4A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement.
- 14. Figure 4B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006 measurement.
- 15. Figure 4C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement.
- 16. Table 3A. Catfish Reception Hall Spring Vent 1 (Main Vent) XYZ Grid Data, September 21, 2006.
- 17. Table 3B. Catfish Reception Hall Spring Vent 2 XYZ Grid Data, September 21, 2006.
- 18. Table 3C. Catfish Reception Hall Spring Vent 3 XYZ Grid Data, September 21, 2006.
- 19. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Catfish Reception Hall Spring, Marion County, Florida; September 21, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a discharge measurement at the Catfish Reception Hall Spring in Marion County, Florida. This report documents the results of the measurement made at the site on September 21, 2006. A summary of the results and collected data for that measurement are presented in Table 1.

PURPOSE and SCOPE OF WORK

The purpose of this work was to obtain accurate discharge measurements of the Catfish Reception Hall Spring, located within the Silver Springs Group, and a source of groundwater discharge into the Silver River. A discharge measurement was to be made at the orifices of Catfish Reception Hall Spring during September, 2006.

SITE DESCRIPTION

Catfish Reception Hall Spring is located about 600 feet downstream of Mammoth Spring, on the bottom of Silver Springs Run. It is also referred to as "The Abyss" and Reception Hall Spring. The three vents that comprise the spring lie within a depression on the bottom that is located in an embayment along the right bank of the run. The depression containing the vents lies between 20 to 33 feet of depth, with a sand floor and surrounded by aquatic vegetation. Limestone is exposed around the vents.

This spring consists of a long horizontal vent (Vent 1, also referred to as the Main Vent in this report) with an adjacent smaller vent (Vent 2) extending along the same rock ledge. A third vent (Vent 3) also lies along the same rock ledge a few feet further to the west. The rock that comprises the ceiling of these vents is solid and self-supported, with the floor beneath composed of solid rock, sand, rubble and boulders. The outer edges of these long horizontal openings provide suitable locations for discharge measurements with the application of an appropriately adapted instrument.

PERSONNEL

Fieldwork for this discharge measurement was conducted by KES personnel Peter Butt and Tom Morris. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech-HAI of Orlando, Florida.

METHODS

Instrumentation

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Field Operations

Velocity measurements were taken at locations just inside the ceiling ledges of all three vents. At the measurement site, the floor of Vent 1 (Main Vent) was 33 feet deep, and the ceiling was 29 feet deep. Vent 2 and Vent 3 were located along the 27 foot depth level.

A positioning grid of telescoping aluminum poles with 0.5-foot interval markings that provided support for the sensor was set up by Pete Butt. Butt also recorded measurements of the grid and surrounding walls. At Vent 1, fourteen poles were positioned vertically to provide a primary positioning grid for velocity measurements, and seven horizontal poles fastened to the vertical poles for support were used for spacing reference. A single horizontal pole was used at Vent 2, and Vent 3 was a hand-held reading. Conduit dimensions around the grid were measured with a collapsible steel tape. As all sensor-support poles were positioned at roughly right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was attached to the poles with a low-profile metal spring clamp. Most measurement stations were set using one-foot intervals on the vertical poles. Velocity stations and boundary points are identified with alpha-numeric labels, based on the letter assigned to identify each vertical pole. See Figure 1.

Pete Butt positioned the sensor and recorded positional data. Tom Morris took the velocity readings after taking reset cues from Butt, and also re-positioned the sensor and recorded positional data. During all measurements, the sensor handler was able to move away from the measurement cross-section, and remove himself from the cross section of the flow. The meter operator was also positioned downstream and away from the cross-section. This minimized or eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in the "Fixed Point Averaging" mode. Fixed Point Averaging is an average of velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Sixty-two (62) station readings were made.

Data Processing

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figures 2A, 2B and 2C. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Tables 3A, 3B and 3C. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 3 at an angle of 0°, and a variogram slope of 1.0 for Vents 1 and 2. The anisotropy ratio for Vent 3 was 1. The high anisotropy ratio was selected due to the extremely elongated horizontal aspect of the measurement cross-sections. The results of the contour processing are illustrated in Figures 3(ABC) and 4(ABC).

Discharge and measurement cross-section areas are given on the Grid Volume Computations Report feature of the software, included in this report on page 1 of Tables 2A, 2B and 2C. The total discharge is shown as the "Net Volume (Cut-Fill)". The Net Volume value is used because

a Surfer 8 "blanking file" operation was used to define the measurement cross-section boundary and eliminate artifacts present in the contouring process that would create inaccuracies in the flow calculations. The software also calculated the total cross-sectional area of the measurement location within the passage, and is shown in square feet as the "Positive Planar Area (Cut)".

RESULTS AND DISCUSSION

This measurement is the second one performed at Catfish Reception Hall Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. As a result of the prior measurement performed here, additional velocity station readings close to the boundary walls of the cross-section were made to provide the additional data needed for Surfer to more accurately account for the higher flows present near the boundary edge and adjust the contours more appropriately. Due to the extremely elongated cross-section, a high anisotropy ratio setting was used to minimize a "bull's eye" or "curtain" effect that occurs in the contouring and has the unwanted effect of lowering the actual discharge value.

The estimated total discharge of Catfish Reception Hall Spring (all three vents) on September 21, 2006 was 36.43 CFS (cubic feet per second). This result is also expressed as 16,349 GPM (gallons per minute) or 23.543 MGD (million gallons per day), see Table 1. A total of sixty-two (62) readings were made, see Figures 2(ABC), 3(ABC) and 4(ABC). The total cross-sectional area was calculated as 59.45 square feet. The point velocity readings ranged from 0.13 to 1.29 feet per second (fps). The overall average station reading was 0.69 fps. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 14:17 hours and were completed by 17:29 hours. The results for each of the individual vents are summarized below.

The estimated discharge of Catfish Reception Hall Spring Vent 1 ((Main Vent) on September 21, 2006 was 35.62 CFS (cubic feet per second). This result is also expressed as 15,987 GPM (gallons per minute) or 23.022 MGD (million gallons per day), see Table 1. A total of fifty-four (54) readings were made, see Figures 2A, 3A and 4A. The Vent 1 cross-sectional area was calculated as 56.58 square feet. The point velocity readings ranged from 0.13 to 1.29 feet per second (fps). The average station reading for Vent 1 was 0.77 fps.

The estimated discharge of Catfish Reception Hall Spring Vent 2 on September 21, 2006 was 0.732 CFS (cubic feet per second). This result is also expressed as 329 GPM (gallons per minute) or 0.473 MGD (million gallons per day), see Table 1. A total of seven (7) readings were made, see Figures 2B, 3B and 4B. The Vent 2 cross-sectional area was calculated as 2.48 square feet. The point velocity readings ranged from 0.4 to 0.89 feet per second (fps). The average station reading for Vent 2 was 0.65 fps.

The estimated discharge of Catfish Reception Hall Spring Vent 3 on September 21, 2006 was 0.074 CFS (cubic feet per second). This result is also expressed as 33 GPM (gallons per minute) or 0.048 MGD (million gallons per day), see Table 1. A total of one (1) reading was made, see Figures 2C, 3C and 4C. The Vent 3 cross-sectional area was calculated as 0.39 square feet. The point velocity reading was 0.65 feet per second (fps).

UNDERWATER I	DISCHARGE ME	EASUREME	NT		1	
Location:	CATFISH RECEPTION HALL SPRING		Date:	September 21,	2006	
	Silver Springs	Group,		Time Start:	14:17	
	Marion County	, Florida		Time End:	17:29	
Personnel:	Peter Butt, Tom	Morris				
Method:	Grid within irregu	ılar conduit				
Instrument:	MMB2000 FLO-I	MATE in U/W	case, sensor on su	pport poles		
Msmt. Periods:	•	60 seconds	5			
Analysis Method: S	urfer 8 with kriging					
Catfish Reception	Hall Spring Total	Discharge:	Vent 1 (Main):	Vent 2:	Vent 3:	_
CFS	36.43		35.62	0.732	0.074	
MGD	23.543		23.022	0.473	0.048	
GPM	16349	All Vents:	15987	329	33	
Total Cross-sectional	Area (sq/ft):	59.45	56.575	2.48	0.391	
Avg. Station Point Vel	ocity (ft/sec):	0.69	0.77	0.65	0.65	
Cross-section Depth (feet deep):		29-33	27	27	
Velocity Reading	by Station:	(All velocity	readings in feet	per second.)		
		-				
Station #	Point Velocity	Station #	Point Velocity	Station #	Point Velocity	
VENT 1 (MAIN)		VENT 1 (MAIN) contd.	VENT 2		
A1	0.69	F1	1.1	1	0.45	
A2	0.83	F2	1.02	2	0.4	
A3	0.42	F3	1.17	3	0.77	
A4	0.48	FG	1.08	4	0.37	
A5	0.53	G1	0.7	5	0.83	
A6	0.9	G2	0.85	6	0.89	
AB	0.72	G3	1.24	7	0.83	
B1	0.71	G4	1.29			
B2	0.77	GH	0.76	VENT 3		
B3	0.57	H1	0.7	1	0.65	
B4	0.31	H2	1.05			
B5	0.13	H3	1.23			1
BC	0.66	HI	0.92		1	
C1	0.54	l1	0.67			1
C2	0.65	12	0.88			1
C3	0.63	13	1.2			1
C4	0.36	HM	0.92			1
CD	0.42	J1	0.82			1
D1	0.45	J2	0.91		1	
D2	0.71	J3	0.86			
D3	0.6	JK	0.84			
D4	0.57	K1	0.74			
DE	0.74	K2	0.79			ļ
<u>E1</u>	0.72	K3	0.77			ļ
E2	0.81	K4	0.82			
E3	0.78	K5	0.89			<u> </u>
	1	K6	0.79			

Table 1. Discharge of Catfish Reception Hall Spring, Marion County, Florida on September 21, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Catfish Reception Hall Spring.

Figure 2A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located between the 29and 33-foot depth levels. Support poles are represented by dashed lines. Velocity measurement stations are shown as points along the support poles. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

Figure 2B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006. Cross-section is viewed to the upstream of observer, and is located at the 27-foot depth level. Support poles are represented by dashed lines. Velocity measurement stations are shown as points along the support poles. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

Figure 2C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 27-foot depth levels. The velocity measurement station was hand-held. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

Figure 3A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2A. CATFISH RECEPTION HALL SPRING VENT 1 (MAIN VENT), SEPTEMBER 21, 2006. SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep		
	06\CatfishMain\CatfishReceptionHallMain_9-06.3x.bln.grd		
Grid Size:	61 rows x 256 columns		
X Minimum:	0		
X Maximum:	25.5		
X Spacing:	0.1		
Y Minimum:	0.5		
Y Maximum:	6.5		
Y Spacing:	0.1		
Z Minimum:	-6.5944716354238E-010		
Z Maximum:	1.4238157997923		

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	35.620356677853
Simpson's Rule:	35.637719952228
Simpson's 3/8 Rule:	35.612103361508

CUT & FILL VOLUMES

Positive Volume [Cut]:35.620356677874Negative Volume [Fill]:2.1716014128935E-011Net Volume [Cut-Fill]:35.620356677853(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas

Operational Planar Area: 56.575 <<<<Total Cross-section Area in Square Feet

(Calculated using blanking file due to the presence of negative velocity values;
Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)
Positive Planar Area [Cut]: 56.57499999993
Negative Planar Area [Fill]: 6.9664282908436E-011
Blanked Planar Area: 96.425
Total Planar Area: 153

Surface Areas

 Positive Surface Area [Cut]:
 77.538106682827

 Negative Surface Area [Fill]:
 1.795449817077E-010

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishMain\Catfish Reception Hall Main 9-06 SURFER XYZ T3A BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	641
Original Data:	641
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	X	Y	Z
Minimum:	0.1	0.6	0
25%-tile:	4.9	3.2	0
Median:	11.2	4.71	0
75%-tile:	18.3	5.7	0
Maximum:	25	6.25	1.36
Midrange:	12.55	3.425	0.68
Range:	24.9	5.65	1.36
Interquartile Range:	13.4	2.5	0
Median Abs. Deviation:	6.7	1.04	0
Mean:	11.672343042122	4.3237952028081	0.082964118564743
Trim Mean (10%):	11.57232610052	4.4023958838822	0.042755632582322
Standard Deviation:	7.5367844373149	1.5324714294778	0.23264392379855
Variance:	56.803119654552	2.3484686821656	0.054123195280385
Coef. of Variation:			2.8041510935478
Coef. of Skewness:			2.9094189276715

Inter-Variable Correlation

	X	Y	Z	
X: Y: Z:	1.000	0.444 1.000	0.030 0.036 1.000	

Inter-Variable Covariance

	Х	Y	Ζ
X: Y: Z:	56.803119654552	5.1331624406753 2.3484686821656	0.052411539812744 0.012985290350491 0.054123195280385

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.00052714369706637	0.004377054802533	0.057885627942471
Standard Error:	0.0013631362475099	0.0067039840734085	0.027715249904956

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.444 1.000	-0.109 0.791 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 638 640	0.054142539568666 34.638825635158 34.692968174727	0.027071269784333 0.054292830149151	0.49862

Coefficient of Multiple Determination (R^2): 0.0015606199877735

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.1002215326165	0
Median:	0.10198039027186	0
75%-tile:	0.1087978841706	0
Maximum:	1	1.36
Midrange:	0.525	0.68
Range:	0.95	1.36

Table 2A. Catfish Reception Hall Spring Vent 1 (Main Vent), September 21, 2006. Page 3 of 5
Interquartile Range:	0.0085763515541032 0
Median Abs. Deviation:	0.0019803902718574 0
Mean:	0.13740918951053 0.059173166926677
Trim Mean (10%):	0.11273951198281 0.021542461005199
Standard Deviation:	0.13358438645032 0.19252514384271
Variance:	0.017844788303308 0.037065931011655
Coef. of Variation:	0.97216486703809 3.2535886423194
Coef. of Skewness:	4.1381448570868 3.7126144280172
Root Mean Square:	0.19164048023643 0.2014134918415
Mean Square:	0.036726073665249 0.040567394695788

Complete Spatial Randomness

Lambda:	4.5562782101859
Clark and Evans:	0.58661192989886
Skellam:	673.94217235663

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	2.9E-006
Y Duplicate Tolerance:	6.7E-007
No duplicate data were for	ınd.

Breakline Filtering

	-		
Breakline	Filtering:	Not In	Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point
Polynomial Drift Order:	0
Kriging std. deviation grid	: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	3
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid	
Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishMain\CatfishReceptionHallMain_9-06.3x.grd
Grid Size:	61 rows x 256 columns
Total Nodes:	15616
Filled Nodes:	15616
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	25.5
X Spacing:	0.1
Y Minimum:	0.5
Y Maximum:	6.5
Y Spacing:	0.1
Grid Statistics	
Z Minimum:	-0.98679218418089
Z 25%-tile:	-0.6631644757017
Z Median:	-0.22059744433548
Z 75%-tile:	0.46170840092478
Z Maximum:	1.4238157997923
Z Midrange:	0.21851180780573
Z Range:	2.4106079839732
Z Interquartile Range:	1.1248728766265
Z Median Abs. Deviation:	0.53350843329231
Z Mean:	-0.10401250439169
Z Trim Mean (10%):	-0.13001237549711
Z Standard Deviation:	0.63047630077387
Z Variance:	0.3975003658375
Z Coef. of Variation:	-1
Z Coef. of Skewness:	0.44736322288118
Z Root Mean Square:	0.63899840915869
Z Mean Square:	0.40831896690734

TABLE 2B. CATFISH RECEPTION HALL SPRING VENT 2, SEPTEMBER 21, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\CatfishSide(2)\CatfishReceptionHallSide_9-06.bln.grd
Grid Size:	41 rows x 171 columns
X Minimum:	0
X Maximum:	8.5
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	2
Y Spacing:	0.05
Z Minimum:	-0.00020313758708324
Z Maximum:	0.8200000027394

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.73183215070098
Simpson's Rule:	0.73032506309639
Simpson's 3/8 Rule:	0.73509353441039

CUT & FILL VOLUMES

Positive Volume [Cut]:0.731832476721Negative Volume [Fil]:3.2602002264778E-007Net Volume [Cut-Fil]:0.73183215070098Orthe Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas

Operational Planar Area: 2.484 <<<<Total Cross-section Area in Square Feet

(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:2.4837446567812Negative Planar Area [Fill]:5.3432187693254E-006Blanked Planar Area:14.51625Total Planar Area:17

Surface Areas

 Positive Surface Area [Cut]:
 6.2980700226502

 Negative Surface Area [Fill]:
 1.2245858241398E-005

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishSide(2)\Catfish Reception Hall Side 9-06 SURFER XYZ T3B BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	160
Original Data:	160
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.5	0.45	0
25%-tile:	2.5	0.8	0
Median:	4.3	1	0
75%-tile:	6.1	1.12	0
Maximum:	8	1.4	0.82
Midrange:	4.25	0.925	0.41
Range:	7.5	0.95	0.82
Interquartile Range:	3.6	0.32	0
Median Abs. Deviation:	1.8	0.16	0
Mean:	4.264375	0.9705625625	0.0406875
Trim Mean (10%):	4.2659722222222	0.97340284722222	0.0061111111111111
Standard Deviation:	2.1443340130155	0.22675209453345	0.16062425826677
Variance:	4.598168359375	0.051416512375309	0.02580015234375
Coef. of Variation:			3.9477544274475
Coef. of Skewness:			3.82252531568

Inter-Variable Correlation

	Х	Y	Z	
X:	1.000	0.170	0.029	
Y:		1.000	0.033	
Z:			1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	4.598168359375	0.082541053789062 0.051416512375309	0.0101494921875 0.0011977357382813 0.02580015234375

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.0018422168660102	0.020337381291442	0.013092895551246
Standard Error:	0.0060611594289395	0.05731876633169	0.058641262425307

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	0.170 1.000	-0.280 0.874 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0068890198536090 8	6 0 13122	
Residual: Total:	157 159	4.1211353551464 4.128024375	0.026249269778002	

Coefficient of Multiple Determination (R^2): 0.0016688418545517

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.03	0
25%-tile:	0.1	0
Median:	0.10198039027186	0
75%-tile:	0.10198039027186	0
Maximum:	0.26	0.82

Midrange:	0.145	0.41
Range:	0.23	0.82
Interquartile Range:	0.001980390271855	7 0
Median Abs. Deviation:	0.0014816340606466	5 0
Mean:	0.10245283435035	0.05125
Trim Mean (10%):	0.10182281431965	0.016875
Standard Deviation:	0.022850770196637	0.17608857856204
Variance:	0.0005221576985793	5 0.0310071875
Coef. of Variation:	0.22303697444324	3.4358747036496
Coef. of Skewness:	2.5234001103899	3.2772702690313
Root Mean Square:	0.10497019084007	0.18339506536437
Mean Square:	0.011018740965	0.03363375

Complete Spatial Randomness

Lambda:	22.456140350877
Clark and Evans:	0.9710051432107
Skellam:	248.75220465594

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First	
X Duplicate Tolerance:	8.9E-007	
Y Duplicate Tolerance:	1.1E-007	
No duplicate data were found.		

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point
Polynomial Drift Order:	1
Kriging std. deviation grid:	no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	3
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishSide(2)\CatfishReceptionHallSide_9-06.grd
Grid Size:	41 rows x 171 columns
Total Nodes:	7011
Filled Nodes:	7011
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	8.5
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	2
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-0.3718666786826
Z 25%-tile:	-0.21212701124653
Z Median:	-0.1648128407893
Z 75%-tile:	-0.067481525958489
Z Maximum:	0.8200000027394
Z Midrange:	0.22406666079567
Z Range:	1.1918666789565
Z Interquartile Range:	0.14464548528804
Z Median Abs. Deviation:	0.070397316230419
Z Mean:	-0.11090534269392
Z Trim Mean (10%):	-0.13242353399369
Z Standard Deviation:	0.19813045093621
Z Variance:	0.039255675588185
Z Coef. of Variation:	-1
Z Coef. of Skewness:	1.8684968288223
Z Root Mean Square:	0.22705873827325
Z Mean Square:	0.05155567062624

TABLE 2C. CATFISH RECEPTION HALL SPRING VENT 3, SEPTEMBER 21, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\CatfishVent\CatfishReceptionHallVent-0906.bln.grd
Grid Size:	51 rows x 56 columns
X Minimum:	0
X Maximum:	1.1
X Spacing:	0.02
Y Minimum:	0
Y Maximum:	1
Y Spacing:	0.02
Z Minimum:	0.0012025577001354
Z Maximum:	0.65

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.073677759681247
Simpson's Rule:	0.073726057764768
Simpson's 3/8 Rule:	0.073662944497755

CUT & FILL VOLUMES

Positive Volume [Cut]:0.073677759681247Negative Volume [Fill]:0Net Volume [Cut-Fill]:0.073677759681247Other Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas

Operational Planar Area: 0.391 <<<<Total Cross-section Area in Square Feet

(Calculated using blanking file due to the presence of negative velocity values;
Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)
Positive Planar Area [Cut]: 0.3906
Negative Planar Area [Fill]: 0
Blanked Planar Area: 0.7094
Total Planar Area: 1.1

Surface Areas

Positive Surface Area [Cut]:	0.74063315330587
Negative Surface Area [Fill]:	0

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishVent\Catfish Reception Hall Vent 9-06 SURFER XYZ T3C BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	27
Original Data:	27
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.1	0.1	0
25%-tile:	0.2	0.3	0
Median:	0.5	0.6	0
75%-tile:	0.77142	0.8	0
Maximum:	1	0.8	0.65
Midrange:	0.55	0.45	0.325
Range:	0.9	0.7	0.65
Interquartile Range:	0.57142	0.5	0
Median Abs. Deviation:	0.3	0.2	0
Mean: Trim Mean (10%): Standard Deviation: Variance:	0.50184851851852 0.4979964 0.28624296630794 0.081935035760768	0.53518518518519 0.542 0.2564229776838 0.065752743484225	$\begin{array}{c} 0.024074074074074074\\ 0\\ 0.12275417347538\\ 0.015068587105624 \end{array}$
Coef. of Variation: Coef. of Skewness:			5.0990195135928 4.9029033784546

Inter-Variable Correlation

	Х	Y	Z	
X: Y:	1.000	0.147 1.000	-0.001 -0.027	
Z:			1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.081935035760768	0.010798922496571 0.065752743484225	-4.4501371742112E-005 -0.00084705075445816 0.015068587105624

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.0011802961401653	3 -0.0130762099866	51 0.030479938067951
Standard Error:	0.08846854601283	0.09875674662389	3 0.068567770906849

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	0.147 1.000	-0.534 0.676 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.000297639595908	362	
-	0.000148819797954	431	0.0087852	
Residual:	24	0.40655421225594	0.016939758843998	
Total:	26	0.40685185185185		

Coefficient of Multiple Determination (R^2): 0.00073156750928838

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.1	0
25%-tile:	0.1	0
Median:	0.101378279725	0
75%-tile:	0.10878213272408	0
Maximum:	0.28925562466441	0.65

Midrange:	0.19462781233221 0.325
Range:	0.18925562466441 0.65
Interquartile Range:	0.008782132724083 0
Median Abs. Deviation:	0.0013782797249983 0
Mean:	0.11090629295012 0.024074074074074
Trim Mean (10%):	0.10420857139956 0
Standard Deviation:	0.035425006636166 0.12275417347538
Variance:	0.0012549310951724 0.015068587105624
Coef. of Variation:	0.31941385555188 5.0990195135928
Coef. of Skewness:	4.7098805788202 4.9029033784546
Root Mean Square:	0.11642653009994 0.12509255832442
Mean Square:	0.013555136911111 0.015648148148148

Complete Spatial Randomness

Lambda:	42.857142857143
Clark and Evans:	1.4521042356883
Skellam:	98.553205760183

Exclusion Filtering

Exclusion Filter String:	Not In Use
--------------------------	------------

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	1E-007
Y Duplicate Tolerance:	8.3E-008
No duplicate data were for	ınd.

Breakline Filtering

	-		
Breakline	Filtering:	Not In	Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point

Polynomial Drift Order: 2 Kriging std. deviation grid: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\CatfishVent\CatfishReceptionHallVent-0906.grd
Grid Size:	51 rows x 56 columns
Total Nodes:	2856
Filled Nodes:	2856
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	1.1
X Spacing:	0.02
Y Minimum:	0
Y Maximum:	1
Y Spacing:	0.02
Grid Statistics	
Z Minimum:	-0.70729761711412
Z 25%-tile:	-0.14126177389324
Z Median:	-0.042595526568344
Z 75%-tile:	0.073519944338342
Z Maximum:	0.65
Z Midrange:	-0.02864880855706
Z Range:	1.3572976171141
Z Interquartile Range:	0.21478171823158
Z Median Abs. Deviation:	0.10546913702577
Z Mean:	-0.024623024399732
Z Trim Mean (10%):	-0.027847947649028
Z Standard Deviation:	0.20064693385346
Z Variance:	0.040259192064793
Z Coef. of Variation:	-1
Z Coef. of Skewness:	0.3395383816665
Z Root Mean Square:	0.20215213428352
Z Mean Square:	0.040865485395383

Figure 4A. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 1 (Main Vent), Marion County, Florida, September 21, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (labeled points) are shown. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Figure 4B. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 2, Marion County, Florida, September 21, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (labeled points) are shown. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Figure 4C. Discharge measurement cross-section; Catfish Reception Hall Spring Vent 3, Marion County, Florida, September 21, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (labeled points) are shown. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Table 3A. Catfish Reception Hall Spring Vent 1 (Main Vent) XYZ Grid Data, September 21, 2006.					
X	Ŷ	Z (Velocity)	Station Name	X Plot	Y Plot
2	1.75	0.43	A1	20	17.5
2	2	0.37	A2	20	20
2	2.5	0.6	A3	20	25
2	3	0.72	A4	20	30
2	3.5	0.7	A5	20	35
1.5	3.5	0.39	A6	15	35
2	4	0.41	A7	20	40
2	4.5	0.46	A8	20	45
2	5	0.52	A9	20	50
2	5.6	0.6	A10	20	56
2.75	3.5	0.72	AB	27.5	35
3.5	1.95	0.53	B1	35	19.5
3.5	2.2	0.53	B2	35	22
3.5	3.2	0.55	B3	35	32
3.5	4.2	0.42	B4	35	42
3.5	5.2	0.26	B5	35	52
3.5	5.6	0.22	B6	35	56
4.25	3.5	0.49	BC	42.5	35
5	2	0.3	C1	50	20
5	2.5	0.58	C2	50	25
5	3.5	0.35	C3	50	35
5	4.5	0.4	C4	50	45
5	5.5	0.33	C5	50	55
5.75	3.5	0.48	CD	57.5	35
6.5	2.35	0.44	D1	65	23.5
6.5	2.6	0.44	D2	65	26
6.5	3.7	0.48	D3	65	37
6.5	4.6	0.51	D4	65	46
6.5	5.5	0.5	D5	65	55
7.25	3.5	0.51	DE	72.5	35
8	2.65	0.29	E1	80	26.5
8	2.9	0.35	E2	80	29
8	3.9	0.54	E3	80	39
8	4.9	0.67	E4	80	49
8	5.6	0.67	E5	80	56
8.75	3.5	0.57	EF	87.5	35
9.5	3.1	0.48	F1	95	31
9.5	3.5	0.53	F2	95	35
9.5	4.5	0.7	F3	95	45
9.5	5.5	0.97	F4	95	55
10.25	3.5	0.58	FG	102.5	35

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
11	3.2	0.39	G1	110	32
11	3.7	0.63	G2	110	37
11	4.7	1.05	G3	110	47
11	5.3	1.15	G4	110	53
12	4.2	1.02	GHL	120	42
12	5.5	1.23	GHU	120	55
13	3.75	0.81	H1	130	37.5
13	4.4	1.14	H2	130	44
13	5.5	1.2	H3	130	55
13	5.75	1.36	H4	130	57.5
14.2	4.2	0.75	HIL	142	42
14	5.9	0.98	HIU	140	59
15	3.8	0.45	l1	150	38
15	4.55	1.01	12	150	45.5
15	5.55	1	13	150	55.5
15	6.05	1.06	14	150	60.5
16	4.2	0.74	IJL	160	42
16	5.7	1.02	IJŪ	160	57
17	3.95	0.61	J1	170	39.5
17	4.5	0.7	J2	170	45
17	5.5	0.95	J3	170	55
17.75	4.2	0.79	JK	177.5	42
18.5	4	0.78	K1	185	40
18.5	4.7	0.88	K2	185	47
18.5	5.4	0.75	K3	185	54
19.25	4.2	0.71	KLL	192.5	42
19.25	4.95	0.79	KLU	192.5	49.5
	10	0.04		000	40
20	4.2	0.64	L1	200	42
20	4.7	0.64		200	47
20	5.5	0.62		200	55 40 F
21	4.95	0.71		210	49.5
21	5.05	0.73	LIVIO	210	00.0
22	A 75	0.61	M1	220	17.5
22	4.75	0.01	MO	220	52 5
22	5.25	0.7	M2	220	57.5
22	J.75 A 05	0.09	MNII	220	
23	4.55	0.07		230	43.0 55 5
23	5.55	0.30		230	55.5
24	4 95	0.45	N1	240	49.5
24		0.41	N2	240	53
24	5.5	0.71	N3	240	56
27	5.0	0.50	115	240	50

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
24.5	4.95	0.39	N4	245	49.5
24.9	4.95	0.44	N5	249	49.5
2	5.9	0	AT	20	59
2	1.5	0	AS	20	15
3.5	5.8	0	BT	35	58
3.5	1.35	0	BS	35	13.5
5	5.75	0	СТ	50	57.5
5	1.85	0	CS	50	18.5
6.5	5.65	0	DT	65	56.5
6.5	2.1	0	DS	65	21
8	5.75	0	ET	80	57.5
8	2.5	0	ES	80	25
9.5	5.65	0	FT	95	56.5
9.5	2.9	0	FS	95	29
11	5.5	0	GT	110	55
11	3.1	0	GS	110	31
13	6	0	HT	130	60
13	3.6	0	HS	130	36
15	6.2	0	IT	150	62
15	3.65	0	IS	150	36.5
17	5.7	0	JT	170	57
17	3.7	0	JS	170	37
18.5	5.5	0	KT	185	55
18.5	3.8	0	KS	185	38
20	5.6	0	LT	200	56
20	4	0	LS	200	40
22	5.9	0	MT	220	59
22	4.55	0	MS	220	45.5
24	5.7	0	NT	240	57
24	4.9	0	NS	240	49
0					
2.75	1.75	0	ABS	27.5	17.5
4.25	1.85	0	BCS	42.5	18.5
5.75	2	0	CDS	57.5	20
7.25	2.35	0	DES	72.5	23.5
8.75	2.7	0	EFS	87.5	27
10.25	3	0	FGS	102.5	30
11.5	3.15	0	GHS1	115	31.5
12	3.7	0	GH52	120	37
12.5	<u>ک</u> ، ک	U		120	30 20 F
13.5	3.95	U	HIST	135	39.5
14	4.2	U		140	42
14.5	3.8	U	HIS3	145	38 20
15.5	3.9	U	1351	100	39
10	4	U	IJ52	100	40
10.0	১. ৬ ১.৩	0	1722	100	<u>১</u> ৬ ১০
C.11	3.9	U	<u>JV91</u>	1/5	39

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 3 of 15

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
18	3.9	0	JKS2	180	39
19	3.95	0	KLS1	190	39.5
19.5	4.05	0	KLS2	195	40.5
20.5	4.05	0	LMS1	205	40.5
21	4.3	0	LMS2	210	43
21.5	4.5	0	LMS3	215	45
22.5	4.75	0	MNS1	225	47.5
23	4.75	0	MNS2	230	47.5
23.5	4.85	0	MNS3	235	48.5
2.75	5.8	0	ABT	27.5	58
4.25	5.8	0	BCT	42.5	58
5.75	5.65	0	CDT	57.5	56.5
7.25	5.7	0	DET	72.5	57
8.75	5.8	0	EFT	87.5	58
10.25	5.6	0	FGT	102.5	56
11.5	5.6	0	GHT1	115	56
12	5.8	0	GHT2	120	58
12.5	5.9	0	GHT3	125	59
13.5	6.1	0	HIT1	135	61
14	6.15	0	HIT2	140	61.5
14.5	6.2	0	HIT3	145	62
15.5	6	0	IJT1	155	60
16	5.9	0	IJT2	160	59
16.5	5.8	0	IJT3	165	58
17.5	5.7	0	JKT1	175	57
18	5.55	0	JKT2	180	55.5
19	5.5	0	KLT1	190	55
19.5	5.45	0	KLT2	195	54.5
20.5	5.8	0	LMT1	205	58
21	5.95	0	LMT2	210	59.5
21.5	6.1	0	LMT3	215	61
22.5	5.9	0	MNT1	225	59
23	5.75	0	MNT2	230	57.5
23.5	5.7	0	MNT3	235	57
					-
0.1	0.6	0	AE1	1	6
0.6	1.5	0	AE2	6	15
0.85	2	0	AE3	8.5	20
0.9	2.5	0	AE4	9	25
0.8	3	U	AE5	8 40 F	30
1.05	3.5	0	AE6	10.5	35
1.5	4	U	AE/	15	40
1.6	4.5	U	AEð	16	45
1./	5	U	AE9	1/	50
1.65	5.5	U	AE10	10.5	55
1.5	5.9	U	AE11	15	59
1.65	0.25	U	AE12	10.5	62.5

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 4 of 15

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
24.5	4.85	0	NV1	245	48.5
25	4.8	0	NV2	250	48
25	4.95	0	NV3	250	49.5
25	5.25	0	NV4	250	52.5
24.5	5.35	0	NV5	245	53.5
0.15666	0.7	0	AV1	1.5666	7
0.21332	0.8	0	AV2	2.1332	8
0.26998	0.9	0	AV3	2.6998	9
0.32661	1	0	AV4	3.2661	10
0.3833	1.1	0	AV5	3.833	11
0.43996	1.2	0	AV6	4.3996	12
0.49662	1.3	0	AV7	4.9662	13
0.55328	1.4	0	AV8	5.5328	14
0.65	1.6	0	AV9	6.5	16
0.7	1.7	0	AV10	7	17
0.75	1.8	0	AV11	7.5	18
0.8	1.9	0	AV12	8	19
0.86	2.1	0	AV13	8.6	21
0.87	2.2	0	AV14	8.7	22
0.88	2.3	0	AV15	8.8	23
0.89	2.4	0	AV16	8.9	24
0.88	2.6	0	AV17	8.8	26
0.86	2.7	0	AV18	8.6	27
0.84	2.8	0	AV19	8.4	28
0.82	2.9	0	AV20	8.2	29
0.85	3.1	0	AV21	8.5	31
0.9	3.2	0	AV22	9	32
0.95	3.3	0	AV23	9.5	33
1	3.4	0	AV24	10	34
			11/05	44.4	00
1.14	3.6	0	AV25	11.4	36
1.23	3.7	0	AV26	12.3	37
1.32	3.8	0	AV27	13.2	38
1.41	3.9	U	AV28	14.1	39
1.50		0	A\/20	15.0	11
1.52	4.1	0	AV29 A\/20	15.2	41
1.54	4.2	0	AV30 A\/24	10.4	42
1.50	4.J	0	AV31 A\/22	15.0	43
1.30	4.4	U	MV32	13.0	+4
1.62	4.6	0	∆\/22	16.2	46
1.02	4.0	0	Δ//2/	16.2	 ⊿7
1.04	7.7	v	~ • • •	10.4	77

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.66	4.8	0	AV35	16.6	48
1.68	4.9	0	AV36	16.8	49
1.69	5.1	0	AV37	16.9	51
1.68	5.2	0	AV38	16.8	52
1.67	5.3	0	AV39	16.7	53
1.66	5.4	0	AV40	16.6	54
1.6125	5.6	0	AV41	16.125	56
1.575	5.7	0	AV42	15.75	57
1.5375	5.8	0	AV43	15.375	58
1.54286	6	0	AV44	15.4286	60
1.58572	6.1	0	AV45	15.8572	61
1.62858	6.2	0	AV46	16.2858	62
1.7	6.2	0	AET1	17	62
1.8	6.1	0	AET2	18	61
1.9	6	0	AET3	19	60
0.2	0.64737	0	AES1	2	6.4737
0.3	0.69474	0	AES2	3	6.9474
0.4	0.74211	0	AES3	4	7.4211
0.5	0.78948	0	AES4	5	7.8948
0.6	0.83685	0	AES5	6	8.3685
0.7	0.88422	0	AES6	7	8.8422
0.8	0.93159	0	AES7	8	9.3159
0.9	0.97896	0	AES8	9	9.7896
1	1.02633	0	AES9	10	10.2633
1.1	1.0737	0	AES10	11	10.737
1.2	1.12107	0	AES11	12	11.2107
1.3	1.16844	0	AES12	13	11.6844
1.4	1.21581	0	AES13	14	12.1581
1.5	1.26318	0	AES14	15	12.6318
1.6	1.31055	0	AES15	16	13.1055
1.7	1.35792	0	AES16	17	13.5792
1.8	1.40529	0	AES17	18	14.0529
1.9	1.45266	0	AES18	19	14.5266
25	5.2	0	NE1	250	52
25	5.1	0	NE2	250	51
25	5	0	NE3	250	50
25	4.9	0	NE4	250	49
2.1	5.88667	0	AT1	21	58.8667
2.2	5.87334	0	AT2	22	58.7334
2.3	5.86001	0	AT3	23	58.6001
2.4	5.84668	0	AT4	24	58.4668

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.5	5.83335	0	AT5	25	58.3335
2.6	5.82002	0	AT6	26	58.2002
2.7	5.80669	0	AT7	27	58.0669
2.8	5.8	0	AT8	28	58
2.9	5.8	0	AT9	29	58
3	5.8	0	AT10	30	58
3.1	5.8	0	AT11	31	58
3.2	5.8	0	AT12	32	58
3.3	5.8	0	AT13	33	58
3.4	5.8	0	AT14	34	58
3.6	5.8	0	BT1	36	58
3.7	5.8	0	BT2	37	58
3.8	5.8	0	BT3	38	58
3.9	5.8	0	BT4	39	58
4	5.8	0	BT5	40	58
4.1	5.8	0	BT6	41	58
4.2	5.8	0	BT7	42	58
4.3	5.79334	0	BT8	43	57.9334
4.4	5.78668	0	BT9	44	57.8668
4.5	5.78002	0	BT10	45	57.8002
4.6	5.77336	0	BT11	46	57.7336
4.7	5.7667	0	BT12	47	57.667
4.8	5.76004	0	BT13	48	57.6004
4.9	5.75338	0	BT14	49	57.5338
5.1	5.73667	0	CT1	51	57.3667
5.2	5.72334	0	CT2	52	57.2334
5.3	5.71001	0	CT3	53	57.1001
5.4	5.69668	0	CT4	54	56.9668
5.5	5.68335	0	CT5	55	56.8335
5.6	5.67002	0	CT6	56	56.7002
5.7	5.65669	0	CT7	57	56.5669
5.8	5.65	0	CT8	58	56.5
5.9	5.65	0	CT9	59	56.5
6	5.65	0	C110	60	56.5
6.1	5.65	0	CI11	61	56.5
6.2	5.65	0	C112	62	56.5
6.3	5.65	0	CT13	63	56.5
6.4	5.65	0	C114	64	56.5
	E CECCO		DT4	60	
0.0	5.05000 5.00000	0		00	50.3000
0./	5.00332	0		0/	50.033Z
6.8	5.66998	U	DI3	00 60	20.0998
6.9 	5.0/004	0		09	56,000
	5.0833 5.68000	U		70	50.033
7.1	5.08996	U		71	20.8990
1.2	5.69662	U	וע	72	20.9662

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 7 of 15

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
7.3	5.70328	0	DT8	73	57.0328
7.4	5.70994	0	DT9	74	57.0994
7.5	5.7166	0	DT10	75	57.166
7.6	5.72326	0	DT11	76	57.2326
7.7	5.72992	0	DT12	77	57.2992
7.8	5.73658	0	DT13	78	57.3658
7.9	5.74324	0	DT14	79	57.4324
8.1	5.75666	0	ET1	81	57.5666
8.2	5.76332	0	ET2	82	57.6332
8.3	5.76998	0	ET3	83	57.6998
8.4	5.77664	0	ET4	84	57.7664
8.5	5.7833	0	ET5	85	57.833
8.6	5.78996	0	ET6	86	57.8996
8.7	5.79662	0	ET7	87	57.9662
8.8	5.79	0	ET8	88	57.9
8.9	5.77	0	ET9	89	57.7
9	5.75	0	ET10	90	57.5
9.1	5.73	0	ET11	91	57.3
9.2	5.71	0	ET12	92	57.1
9.3	5.69	0	ET13	93	56.9
9.4	5.67	0	ET14	94	56.7
9.6	5.64334	0	FT1	96	56.4334
9.7	5.63668	0	FT2	97	56.3668
9.8	5.63002	0	FT3	98	56.3002
9.9	5.62336	0	FT4	99	56.2336
10	5.6167	0	FT5	100	56.167
10.1	5.61004	0	FT6	101	56.1004
10.2	5.60338	0	FT7	102	56.0338
10.3	5.59333	0	FT8	103	55.9333
10.4	5.58	0	FT9	104	55.8
10.5	5.56667	0	FT10	105	55.6667
10.6	5.55334	0	FT11	106	55.5334
10.7	5.54001	0	FT12	107	55.4001
10.8	5.52668	0	FT13	108	55.2668
10.9	5.51335	0	F114	109	55.1335
44.4	5 50		074	444	55.0
11.1	5.52	0	GTT	110	55.Z
11.2	5.54	0	GIZ CT2	112	55.4
11.3	5.50 5.59	0	GT3	113	55.8
11.4	5.50	0	GT4	114	55.0
11.0	5.69	0	GTS	117	56.8
11./	5.00	0	GT7	118	57.2
11.0	5.72	0	617 678	110	57.6
12.1	5.70	0	GTO	121	58.2
12.1	5.02	0	GT10	121	58.4
12.2	0.04	5		122	00.4

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
12.3	5.86	0	GT11	123	58.6
12.4	5.88	0	GT12	124	58.8
12.6	5.92	0	GT13	126	59.2
12.7	5.94	0	GT14	127	59.4
12.8	5.96	0	GT15	128	59.6
12.9	5.98	0	GT16	129	59.8
13.1	6.02	0	HT1	131	60.2
13.2	6.04	0	HT2	132	60.4
13.3	6.06	0	HT3	133	60.6
13.4	6.08	0	HT4	134	60.8
13.6	6.11	0	HT5	136	61.1
13.7	6.12	0	HT6	137	61.2
13.8	6.13	0	HT7	138	61.3
13.9	6.14	0	HT8	139	61.4
14.1	6.16	0	HT9	141	61.6
14.2	6.17	0	HT10	142	61.7
14.3	6.18	0	HT11	143	61.8
14.4	6.19	0	HT12	144	61.9
14.6	6.2	0	HT13	146	62
14.7	6.2	0	HT14	147	62
14.8	6.2	0	HT15	148	62
14.9	6.2	0	HT16	149	62
15.1	6.16	0	IT1	151	61.6
15.2	6.12	0	IT2	152	61.2
15.3	6.08	0	IT3	153	60.8
15.4	6.04	0	IT4	154	60.4
15.6	5.98	0	IT5	156	59.8
15.7	5.96	0	IT6	157	59.6
15.8	5.94	0	IT7	158	59.4
15.9	5.92	0	IT8	159	59.2
16.1	5.88	0	IT9	161	58.8
16.2	5.86	0	IT10	162	58.6
16.3	5.84	0	IT11	163	58.4
16.4	5.82	0	IT12	164	58.2
16.6	5.78	0	IT13	166	57.8
16.7	5.76	0	IT14	167	57.6
16.8	5.74	0	IT15	168	57.4
16.9	5.72	0	IT16	169	57.2
17.1	5.7	0	JT1	171	57
17.2	5.7	0	JT2	172	57
17.3	5.7	0	JT3	173	57
17.4	5.7	0	JT4	174	57
17.6	5.67	0	JT5	176	56.7
17.7	5.64	0	JT6	177	56.4
17.8	5.61	0	JT7	178	56.1

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
17.9	5.58	0	JT8	179	55.8
18.1	5.54	0	JT9	181	55.4
18.2	5.53	0	JT10	182	55.3
18.3	5.52	0	JT11	183	55.2
18.4	5.51	0	JT12	184	55.1
18.6	5.5	0	KT1	186	55
18.7	5.5	0	KT2	187	55
18.8	5.5	0	KT3	188	55
18.9	5.5	0	KT4	189	55
19.1	5.49	0	KT5	191	54.9
19.2	5.48	0	KT6	192	54.8
19.3	5.47	0	KT7	193	54.7
19.4	5.46	0	KT8	194	54.6
19.6	5.48	0	KT9	196	54.8
19.7	5.51	0	KT10	197	55.1
19.8	5.54	0	KT11	198	55.4
19.9	5.57	0	KT12	199	55.7
20.1	5.64	0	LT1	201	56.4
20.2	5.68	0	LT2	202	56.8
20.3	5.72	0	LT3	203	57.2
20.4	5.76	0	LT4	204	57.6
20.6	5.83	0	LT5	206	58.3
20.7	5.86	0	LT6	207	58.6
20.8	5.89	0	LT7	208	58.9
20.9	5.92	0	LT8	209	59.2
21.1	5.98	0	LT9	211	59.8
21.2	6.01	0	LT10	212	60.1
21.3	6.04	0	LT11	213	60.4
21.4	6.07	0	LT12	214	60.7
21.6	6.06	0	LT13	216	60.6
21.7	6.02	0	LT14	217	60.2
21.8	5.98	0	LT15	218	59.8
21.9	5.94	0	LT16	219	59.4
22.1	5.9	0	MT1	221	59
22.2	5.9	0	MT2	222	59
22.3	5.9	0	MT3	223	59
22.4	5.9	0	MT4	224	59
22.6	5.87	0	MT5	226	58.7
22.7	5.84	0	MT6	227	58.4
22.8	5.81	0	MT7	228	58.1
22.9	5.78	0	MT8	229	57.8
23.1	5.74	0	MT9	231	57.4
23.2	5.73	0	MT10	232	57.3
23.3	5.72	0	MT11	233	57.2
23.4	5.71	0	MT12	234	57.1

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 10 of 15

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
23.6	5.7	0	MT13	236	57
23.7	5.7	0	MT14	237	57
23.8	5.7	0	MT15	238	57
23.9	5.7	0	MT16	239	57
24.1	5.63	0	NT1	241	56.3
24.2	5.56	0	NT2	242	55.6
24.3	5.49	0	NT3	243	54.9
24.4	5.42	0	NT4	244	54.2
24.6	5.33	0	NT5	246	53.3
24.7	5.31	0	NT6	247	53.1
24.8	5.29	0	NT7	248	52.9
24.9	5.27	0	NT8	249	52.7
2.1	1.53333	0	AS1	21	15.3333
2.2	1.56666	0	AS2	22	15.6666
2.3	1.59999	0	AS3	23	15.9999
2.4	1.63332	0	AS4	24	16.3332
2.5	1.66665	0	AS5	25	16.6665
2.6	1.69998	0	AS6	26	16.9998
2.7	1.73331	0	AS7	27	17.3331
2.8	1.72334	0	AS8	28	17.23335
2.9	1.67	0	AS9	29	16.7
3	1.61668	0	AS10	30	16.1668
3.1	1.56335	0	AS11	31	15.6335
3.2	1.51002	0	AS12	32	15.1002
3.3	1.45669	0	AS13	33	14.5669
3.4	1.40336	0	AS14	34	14.0336
3.6	1.41666	0	BS1	36	14.1666
3.7	1.48332	0	BS2	37	14.8332
3.8	1.54998	0	BS3	38	15.4998
3.9	1.61664	0	BS4	39	16.1664
4	1.6833	0	BS5	40	16.833
4.1	1.74996	0	BS6	41	17.4996
4.2	1.81662	0	BS7	42	18.1662
4.3	1.85	0	BS8	43	18.5
4.4	1.85	0	BS9	44	18.5
4.5	1.85	0	BS10	45	18.5
4.6	1.85	0	BS11	46	18.5
4.7	1.85	0	BS12	47	18.5
4.8	1.85	0	BS13	48	18.5
4.9	1.85	0	BS14	49	18.5
5.1	1.87	0	CS1	51	18.7
5.2	1.89	0	CS2	52	18.9
5.3	1.91	0	CS3	53	19.1
5.4	1.93	0	CS4	54	19.3

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
5.5	1.95	0	CS5	55	19.5
5.6	1.97	0	CS6	56	19.7
5.7	1.99	0	CS7	57	19.9
5.8	2.00667	0	CS8	58	20.0667
5.9	2.02	0	CS9	59	20.2
6	2.03333	0	CS10	60	20.3333
6.1	2.04666	0	CS11	61	20.4666
6.2	2.05999	0	CS12	62	20.5999
6.3	2.07332	0	CS13	63	20.7332
6.4	2.08665	0	CS14	64	20.8665
6.6	2.13333	0	DS1	66	21.3333
6.7	2.16666	0	DS2	67	21.6666
6.8	2.19999	0	DS3	68	21.9999
6.9	2.23332	0	DS4	69	22.3332
7	2.26665	0	DS5	70	22.6665
7.1	2.29998	0	DS6	71	22.9998
7.2	2.33331	0	DS7	72	23.3331
7.3	2.36	0	DS8	73	23.6
7.4	2.38	0	DS9	74	23.8
7.5	2.4	0	DS10	75	24
7.6	2.42	0	DS11	76	24.2
7.7	2.44	0	DS12	77	24.4
7.8	2.46	0	DS13	78	24.6
7.9	2.48	0	DS14	79	24.8
8.1	2.52666	0	ES1	81	25.2666
8.2	2.55332	0	ES2	82	25.5332
8.3	2.57998	0	ES3	83	25.7998
8.4	2.60664	0	ES4	84	26.0664
8.5	2.6333	0	ES5	85	26.333
8.6	2.65996	0	ES6	86	26.5996
8.7	2.68662	0	ES7	87	26.8662
8.8	2.71333	0	ES8	88	27.1333
8.9	2.74	0	ES9	89	27.4
9	2.76667	0	ES10	90	27.6667
9.1	2.79334	0	ES11	91	27.9334
9.2	2.82001	0	ES12	92	28.2001
9.3	2.84668	0	ES13	93	28.4668
9.4	2.87335	0	ES14	94	28.7335
9.6	2.91333	0	FS1	96	29.1333
9.7	2.92666	0	FS2	97	29.2666
9.8	2.93999	0	FS3	98	29.3999
9.9	2.95332	0	FS4	99	29.5332
10	2.96665	0	FS5	100	29.6665
10.1	2.97998	0	FS6	101	29.7998
10.2	2.99331	0	FS7	102	29.9331

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 12 of 15

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
10.3	3.00667	0	FS8	103	30.0667
10.4	3.02	0	FS9	104	30.2
10.5	3.03333	0	FS10	105	30.3333
10.6	3.04666	0	FS11	106	30.4666
10.7	3.05999	0	FS12	107	30.5999
10.8	3.07332	0	FS13	108	30.7332
10.9	3.08665	0	FS14	109	30.8665
11.1	3.11	0	GS1	111	31.1
11.2	3.12	0	GS2	112	31.2
11.3	3.13	0	GS3	113	31.3
11.4	3.14	0	GS4	114	31.4
11.6	3.26	0	GS5	116	32.6
11.7	3.37	0	GS6	117	33.7
11.8	3.48	0	GS7	118	34.8
11.9	3.59	0	GS8	119	35.9
12.1	3.66	0	GS9	121	36.6
12.2	3.62	0	GS10	122	36.2
12.3	3.58	0	GS11	123	35.8
12.4	3.54	0	GS12	124	35.4
12.6	3.52	0	GS13	126	35.2
12.7	3.54	0	GS14	127	35.4
12.8	3.56	0	GS15	128	35.6
12.9	3.58	0	GS16	129	35.8
13.1	3.67	0	HS1	131	36.7
13.2	3.74	0	HS2	132	37.4
13.3	3.81	0	HS3	133	38.1
13.4	3.88	0	HS4	134	38.8
13.6	4	0	HS5	136	40
13.7	4.05	0	HS6	137	40.5
13.8	4.1	0	HS7	138	41
13.9	4.15	0	HS8	139	41.5
14.1	4.12	0	HS9	141	41.2
14.2	4.04	0	HS10	142	40.4
14.3	3.96	0	HS11	143	39.6
14.4	3.88	0	HS12	144	38.8
14.6	3.77	0	HS13	146	37.7
14.7	3.74	0	HS14	147	37.4
14.8	3.71	0	HS15	148	37.1
14.9	3.68	U	H516	149	30.8
45.4	2.7	0	164	151	27
15.1	3.1 2.75	0	101	101	31 27 5
15.2	3./3	0	102	102	31.3 20
15.3	3.0 2.05	0	100	100	30 38 5
15.4	3.00	0	134	154	30.0
15.0	3.92	0	100	150	39.Z
13./	ა.94	U	130	107	39.4

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
15.8	3.96	0	IS7	158	39.6
15.9	3.98	0	IS8	159	39.8
16.1	3.98	0	IS9	161	39.8
16.2	3.96	0	IS10	162	39.6
16.3	3.94	0	IS11	163	39.4
16.4	3.92	0	IS12	164	39.2
16.6	3.86	0	IS13	166	38.6
16.7	3.82	0	IS14	167	38.2
16.8	3.78	0	IS15	168	37.8
16.9	3.74	0	IS16	169	37.4
17.1	3.74	0	JS1	171	37.4
17.2	3.78	0	JS2	172	37.8
17.3	3.82	0	JS3	173	38.2
17.4	3.86	0	JS4	174	38.6
17.6	3.9	0	JS5	176	39
17.7	3.9	0	JS6	177	39
17.8	3.9	0	JS7	178	39
17.9	3.9	0	JS8	179	39
18.1	3.88	0	JS9	181	38.8
18.2	3.86	0	JS10	182	38.6
18.3	3.84	0	JS11	183	38.4
18.4	3.82	0	JS12	184	38.2
18.6	3.83	0	KS1	186	38.3
18.7	3.86	0	KS2	187	38.6
18.8	3.89	0	KS3	188	38.9
18.9	3.92	0	KS4	189	39.2
19.1	3.97	0	KS5	191	39.7
19.2	3.99	0	KS6	192	39.9
19.3	4.01	0	KS7	193	40.1
19.4	4.03	0	KS8	194	40.3
19.6	4.04	0	KS9	196	40.4
19.7	4.03	0	KS10	197	40.3
19.8	4.02	0	KS11	198	40.2
19.9	4.01	0	KS12	199	40.1
20.1	4.01	0	LS1	201	40.1
20.2	4.02	0	LS2	202	40.2
20.3	4.03	0	LS3	203	40.3
20.4	4.04	0	LS4	204	40.4
20.6	4.1	0	LS5	206	41
20.7	4.15	0	LS6	207	41.5
20.8	4.2	0	LS7	208	42
20.9	4.25	0	LS8	209	42.5
21.1	4.34	0	LS9	211	43.4
21.2	4.38	0	LS10	212	43.8
21.3	4.42	0	LS11	213	44.2

Table 3A. Catfish Reception Hall Spring Vent 1 XYZ Grid Data, September 21, 2006. Page 14 of 15

1		·			
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
21.4	4.46	0	LS12	214	44.6
21.6	4.51	0	LS13	216	45.1
21.7	4.52	0	LS14	217	45.2
21.8	4.53	0	LS15	218	45.3
21.9	4.54	0	LS16	219	45.4
22.1	4.59	0	MS1	221	45.9
22.2	4.63	0	MS2	222	46.3
22.3	4.67	0	MS3	223	46.7
22.4	4.71	0	MS4	224	47.1
22.6	4.75	0	MS5	226	47.5
22.7	4.75	0	MS6	227	47.5
22.8	4.75	0	MS7	228	47.5
22.9	4.75	0	MS8	229	47.5
23.1	4.77	0	MS9	231	47.7
23.2	4.79	0	MS10	232	47.9
23.3	4.81	0	MS11	233	48.1
23.4	4.83	0	MS12	234	48.3
23.6	4.86	0	MS13	236	48.6
23.7	4.87	0	MS14	237	48.7
23.8	4.88	0	MS15	238	48.8
23.9	4.89	0	MS16	239	48.9
24.1	4.89	0	NS1	241	48.9
24.2	4.88	0	NS2	242	48.8
24.3	4.87	0	NS3	243	48.7
24.4	4.86	0	NS4	244	48.6
24.6	4.84	0	NS5	246	48.4
24.7	4.83	0	NS6	247	48.3
24.8	4.82	0	NS7	248	48.2
24.9	4.81	0	NS8	249	48.1

Table 3B. Catfish Reception Hall Spring Vent 2 XYZ Grid Data, September 21, 2006.						
X	X	7000				
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.5	1	0.43	1	15	10	
2.5	1	0.7	2	25	10	
3	1	0.74	3	30	10	
3.5	1	0.67	4	35	10	
4	1	0.56	5	40	10	
5	1	0.82	6	50	10	
5.5	1	0.73	7	55	10	
6	1	0.76	8	60	10	
6.5	1	0.65	9	65	10	
7.3	1	0.45	10	73	10	
	_		-	_		
0.5	1	0	A	5	10	
1.5	1.1	0	BT	15	11	
2	1.05	0	СТ	20	10.5	
2.5	1.05	0	DT	25	10.5	
3	1.2	0	ET	30	12	
3.5	1.2	0	FT	35	12	
4	1.1	0	GT	40	11	
4.5	1	0	HT	45	10	
5	1.3	0	IT	50	13	
5.5	1.2	0	JT	55	12	
6	1.3	0	KT	60	13	
6.5	1.4	0	LT	65	14	
7	1.4	0	MT	70	14	
7.3	1.15	0	NT	73	11.5	
8	1	0	0	80	10	
1.5	0.8	0	BS	15	8	
2	0.75	0	CS	20	7.5	
2.5	0.8	0	DS	25	8	
3	0.8	0	ES	30	8	
3.5	0.7	0	FS	35	7	
4	0.65	0	GS	40	6.5	
4.5	0.55	0	HS	45	5.5	
5	0.45	0	IS	50	4.5	
5.5	0.6	0	JS	55	6	
6	0.9	0	KS	60	9	
6.5	0.9	0	LS	65	9	
7	1	0	MS	70	10	
7.3	0.85	0	NS	73	8.5	
0.6	1.01	0	AT1	6	10.1	
0.7	1.02	0	AT2	7	10.2	
0.8	1.03	0	AT3	8	10.3	
0.9	1.04	0	AT4	9	10.4	
1	1.05	0	AT5	10	10.5	
1.1	1.06	0	AT6	11	10.6	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.2	1.07	0	AT7	12	10.7
1.3	1.08	0	AT8	13	10.8
1.4	1.09	0	AT9	14	10.9
1.6	1.09	0	BT1	16	10.9
1.7	1.08	0	BT2	17	10.8
1.8	1.07	0	BT3	18	10.7
1.9	1.06	0	BT4	19	10.6
2.1	1.05	0	CT1	21	10.5
2.2	1.05	0	CT2	22	10.5
2.3	1.05	0	CT3	23	10.5
2.4	1.05	0	CT4	24	10.5
2.6	1.08	0	DT1	26	10.8
2.7	1.11	0	DT2	27	11.1
2.8	1.14	0	DT3	28	11.4
2.9	1.17	0	DT4	29	11.7
3.1	1.2	0	ET1	31	12
3.2	1.2	0	ET2	32	12
3.3	1.2	0	ET3	33	12
3.4	1.2	0	ET4	34	12
	1.18				
3.6	1.16	0	FT1	36	11.8
3.7	1.14	0	FT2	37	11.6
3.8	1.12	0	FT3	38	11.4
3.9	1.12	0	FT4	39	11.2
4.1	1.08	0	GT1	41	10.8
4.2	1.06	0	GT2	42	10.6
4.3	1.04	0	GT3	43	10.4
4.4	1.02	0	GT4	44	10.2
4.6	1.06	0	HT1	46	10.6
4.7	1.12	0	HT2	47	11.2
4.8	1.18	0	HT3	48	11.8
4.9	1.24	0	HT4	49	12.4
5.1	1.28	0	IT1	51	12.8
5.2	1.26	0	IT2	52	12.6
5.3	1.24	0	IT3	53	12.4
5.4	1.22	0	IT4	54	12.2
5.6	1.22	0	JT1	56	12.2
5.7	1.24	0	JT2	57	12.4
5.8	1.26	0	JT3	58	12.6
5.9	1.28	0	JT4	59	12.8

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
6.1	1.32	0	KT1	61	13.2
6.2	1.34	0	KT2	62	13.4
6.3	1.36	0	KT3	63	13.6
6.4	1.38	0	KT4	64	13.8
6.6	1.4	0	LT1	66	14
6.7	1.4	0	LT2	67	14
6.8	1.4	0	LT3	68	14
6.9	1.4	0	LT4	69	14
7.1	1.31667	0	MT1	71	13.1667
7.2	1.23334	0	MT2	72	12.3334
7.4	1.12857	0	NT1	74	11.2857
7.5	1.10714	0	NT2	75	11.0714
7.6	1.08571	0	NT3	76	10.8571
7.7	1.06428	0	NT4	77	10.6428
7.8	1.04285	0	NT5	78	10.4285
7.9	1.02142	0	NT6	79	10.2142
0.6	0.98	0	AS1	6	9.8
0.7	0.96	0	AS2	7	9.6
0.8	0.94	0	AS3	8	9.4
0.9	0.92	0	AS4	9	9.2
1	0.9	0	AS5	10	9
1.1	0.88	0	AS6	11	8.8
1.2	0.86	0	AS7	12	8.6
1.3	0.84	0	AS8	13	8.4
1.4	0.82	0	AS9	14	8.2
1.6	0.79	0	BS1	16	7.9
1.7	0.78	0	BS2	17	7.8
1.8	0.77	0	BS3	18	1.1
1.9	0.76	0	BS4	19	7.6
	0.70		001	01	7.0
2.1	0.76	0	CS1	21	7.6
2.2	0.77	0	CS2	22	7.7
2.3	0.78	0		23	7.8
2.4	0.79	U	CS4	24	7.9
2.6	0.9	0		26	0
2.0	0.0	0		20	0
2.1	0.0	0	D92	21	0
2.ŏ	0.0	0	000	20	0
2.9	υ.δ	U	054	29	0
2.1	0.78	0	EQ1	21	7 8
3.1	0.76	0	EST EST	30	7.6
5.2	0.70	v	LUZ	52	7.0

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3.3	0.74	0	ES3	33	7.4
3.4	0.72	0	ES4	34	7.2
0					
3.6	0.69	0	FS1	36	6.9
3.7	0.68	0	FS2	37	6.8
3.8	0.67	0	FS3	38	6.7
3.9	0.66	0	FS4	39	6.6
4.1	0.63	0	GS1	41	6.3
4.2	0.61	0	GS2	42	6.1
4.3	0.59	0	GS3	43	5.9
4.4	0.57	0	GS4	44	5.7
4.6	0.53	0	HS1	46	5.3
4.7	0.51	0	HS2	47	5.1
4.8	0.49	0	HS3	48	4.9
4.9	0.47	0	HS4	49	4.7
0					
5.1	0.48	0	IS1	51	4.8
5.2	0.51	0	IS2	52	5.1
5.3	0.54	0	IS3	53	5.4
5.4	0.57	0	IS4	54	5.7
5.6	0.66	0	JS1	56	6.6
5.7	0.72	0	JS2	57	7.2
5.8	0.78	0	JS3	58	7.8
5.9	0.84	0	JS4	59	8.4
6.1	0.9	0	KS1	61	9
6.2	0.9	0	KS2	62	9
6.3	0.9	0	KS3	63	9
6.4	0.9	0	KS4	64	9
	0				
6.6	0.92	0	LS1	66	9.2
6.7	0.94	0	LS2	67	9.4
6.8	0.96	0	LS3	68	9.6
6.9	0.98	0	LS4	69	9.8
7.1	0.95	0	MS1	71	9.5
7.2	0.9	0	MS2	72	9
7.4	0.87143	0	NS1	74	8.7143
7.5	0.89286	0	NS2	75	8.9286
7.6	0.91429	0	NS3	76	9.1429
7.7	0.93572	0	NS4	77	9.3572
7.8	0.95715	0	NS5	78	9.5715
7.9	0.97858	0	NS6	79	9.7858

Table 3C. Catfish Reception Hall Spring Vent 3 XYZ Grid Data, September 21, 2006.								
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot			
0.5	0.5	0.65	1	5	5			
0.1	0.8	0	Α	1	8			
0.2	0.2	0	В	2	2			
0.6	0.1	0	C	6	1			
1	0.8	0	D	10	8			
0.11667	0.7	0	A1	1.1667	7			
0.13334	0.6	0	A2	1.3334	6			
0.15	0.5	0	A3	1.5	5			
0.16667	0.4	0	A4	1.6667	4			
0.18333	0.3	0	A5	1.8333	3			
0.3	0.175	0	B1	3	1.75			
0.4	0.15	0	B2	4	1.5			
0.5	0.125	0	B3	5	1.25			
0.65714	0.2	0	C1	6.5714	2			
0.71428	0.3	0	C2	7.1428	3			
0.77142	0.4	0	C3	7.7142	4			
0.82856	0.5	0	C4	8.2856	5			
0.88568	0.6	0	C5	8.8568	6			
0.94282	0.7	0	C6	9.4282	7			
0.9	0.8	0	D1	9	8			
0.8	0.8	0	D2	8	8			
0.7	0.8	0	D3	7	8			
0.6	0.8	0	D4	6	8			
0.5	0.8	0	D5	5	8			
0.4	0.8	0	D6	4	8			
0.3	0.8	0	D7	3	8			
0.2	0.8	0	D8	2	8			

CALIBRATION CERTIFICATE Model: 2000-21 Serial Number: 2002679 Time Constant: _____ Unit Gain Ratio: Type of Reading Level: Velocity: FPS IN CM CMS X N/A Dynamic Velocity Static Velocity Level 2.00 N/A Standard: Zero 1.98 N/A Ø.ØØ Measured: X Factory Calibration TOW TANIC Field Profile Calibration; Site Coefficient or Velocity Multiplier: Date: 18 Apr 200 Calibration Technician Date QA Technician: This document certifies that the described instrument has been calibrated. Verification is indicated by the measured results show above. Velocity calibration is traceable to the National Institute of Standards and Technology (NIST), Gaithersburg, MD. For Product information, service, or calibration, please contact the Customer Service Department. MARSH MCBIRNEY A Higher Level of Flow Meotoremont 4539 Metropolitan Ct., Frederick, MD 21704-9452 (301) 874-5599 (800)-368-2723 FAX (301) 874-2172
Discharge Measurement: Christmas Tree Spring, Marion County, Florida; September 29, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Christmas Tree Spring, Marion County, Florida; September 29, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Christmas Tree Spring, Marion County, Florida; September 29, 2006.
- 2. Table 1. Discharge of Christmas Tree Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Christmas Tree Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Christmas Tree Spring, Marion County, Florida; September 29, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Christmas Tree Spring on September 29, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Christmas Tree Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Christmas Tree Spring is located in a cove on the north side of the Silver River, south of the main stage area. It consists of a cluster of vents within a depression that surround a sunken boat. A second sunken boat lies along the west bank. A line of vents begins at the north end of the cove, at about 15 feet deep, runs for 20 feet to the southeast, and then angles to the south for 18 feet, ending at 13 feet of depth. This vent line accounts for most of the discharge from this basin, and contains debris and considerable aquatic vegetation. West of the vent line, and near the bow of the sunken boat is a roughly circular vent about 15 feet deep. Another vent lies west of the sunken boat at 14 feet of depth. Discharge was also observed near the second sunken boat on the western edge of the basin. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is

assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Christmas Tree Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Christmas Tree Spring on September 29, 2006 was 4.18 CFS (cubic feet per second). This result is also expressed as 1878 GPM (gallons per minute) or 2.705 MGD (million gallons per day), see Table 1. Three readings were made at each of six vents, for a total of eighteen (18) readings. Individual point velocity readings ranged from 0.47 to 1.51 feet per second (fps), with an overall average station reading of 1.02 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 14 to 16 feet. The measurements commenced at about 12:42 hours and were completed by 13:20 hours.

UNDERWATER D	DISCHARG	E MEASUREMENT						PAGE 1 of 2
Location:	CHRISTMAS TREE SPRING			Date:	September 29, 2	006		
	Silver Spr	ings Group,		Time Start:	12:42			
	Marion Co	ounty, Florida		Time End:	13:20			
Personnel:	Peter Butt,	Mark Long						
Method:	Vent Disch	arge Capture Device	(0.49' Diameter)					
Instrument:	MMB2000	FLO-MATE in U/W cas	e, sensor in vertical	pipe				
Calculation Method:	Discharge =	$= V \times pi \times r^2$						
Measurement Perio	ds:	60 seconds						
 Christmas Tree S	Spring ES	I IMA I ED Discharge	: Marit 4	March O	March 0		March F	March 0
 (Combined Vents	and vent s	segments)	Vent 1	Vent 2	Vent 3	Vent 4	Vent 5	Vent 6
CFS	4.18		0.226	0.155	0.123	0.272	0.425	0.090
MGD	2.705		0.146	0.100	0.079	0.176	0.275	0.058
GPM	1878		102	69	55	122	191	40
		(Multiplier:)					(1.5)	
			Vent Segment	Vent Segment	Vent Segment			
			V1-V2	V2-V3	V3-V4			
		CFS	0.762	0.555	1.577			
		MGD	0.493	0.358	1.019			
		GPM	342	249	708			
		(Length:)	(8')	(8')	(16')			
		(Multiplier:)	(4)	(4)	(8)			
Christmas Tree S	Spring Mea	asured Discharge:	Vent 1	Vent 2	Vent 3	Vent 4	Vent 5	Vent 6
CFS	4.04		0.226	0.155	0.123	0.272	0.284	0.090
MGD	2.613		0.146	0.100	0.079	0.176	0.183	0.058
GPM	1815	All Vents:	102	69	55	122	127	40
Avg. Point Velocity (ft/	sec):	1.02	1.20	0.82	0.65	1.44	1.50	0.48
Vent Depth (feet deep)):		14	14	14	14	16	14

Table 1. Page 1 of 2. Discharge of Christmas Tree Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

UNDERWATER DISC	HARGE MEASURE	MENT			PAG	E 2 of 2	
Location:	CHRISTMAS TREE	E SPRING		Date:	September 29, 200	06	
Silver Springs Group		p, Marion County, Flor	ida				
Velocity Readings:		(All velocity readings	in feet per second.)				
Ven	t 1	Ven	t 2	Vent 3			
North Vent	(under log)	East of	Vent 1	East of Vent	ast of Vent 1 (at 'angle')		
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity		
1	1.19	1	0.82	1	0.71		
2	1.2	2	0.82	2	0.63		
3	1.21	3	0.82	3	0.61		
Average:	1.20	Average:	0.82	Average:	0.65		
Discharge:	0.226	Discharge:	0.155	Discharge:	0.123		
Ven	t 4	Ven	t 5	Ver	Vent 6		
South Ve	nt (end)	West	Vent	Far West Ven	/est Vent (near barge)		
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity		
1	1.44	1	1.5	1	0.48		
2	1.44	2	1.51	2	0.47		
3	1.44	3	1.5	3	0.48		
Average:	1.44	Average:	1.50	Average:	0.48		
Discharge:	0.272	Discharge:	0.284	Discharge:	0.090		
		Multiplier:	1.5				
		Est. Discharge:	0.425				
Vent Segm	ent V1-V2	Vent Segm	ent V2-V3	Vent Segn	ient V3-V4		
Vent Line in dense vegetation		Vent Line in der	nse vegetation	Vent Line in de	nse vegetation		
V1/V2 PV Avg:	1.01	V2/V3 PV Avg:	0.74	V3/V4 PV Avg:	1.05		
Length:	8'	Length:	8'	Length:	16'		
Multiplier:	4	Multiplier:	4	Multiplier:	8		
Est. Discharge:	0.762	Est. Discharge:	0.555	Est. Discharge:	1.577		
Segment Estimated D	ischarges Calculation				<u> </u>		
Averaged End Point V	elocity X Multiplier X	VUCD X-section Area.	i				
iviuitiplier based on se	gment length.	1	1		1		

Table 1. Page 2 of 2. Discharge of Christmas Tree Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Christmas Tree Spring.

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Devil's Kitchen Spring A, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Devil's Kitchen Spring A, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Devil's Kitchen Spring A, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Devil's Kitchen Spring A, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Devil's Kitchen Spring A.
- 4. Figure 2A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006 measurement.
- 5. Figure 2B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006 measurement.
- 6. Figure 3A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006 measurement.
- 7. Figure 3B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006 measurement.
- 8. Table 2A. Devil's Kitchen Spring A Upstream Vent, September 28, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 9. Table 2B. Devil's Kitchen Spring A Downstream Vent, September 28, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 10. Figure 4A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006, measurement.
- 11. Figure 4B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006, measurement.
- 12. Table 3A. Devil's Kitchen Spring A UpstreamVent XYZ Grid Data, September 28, 2006.
- 13. Table 3B. Devil's Kitchen Spring A Downstream Vent XYZ Grid Data, September 28, 2006.
- 14. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Devil's Kitchen Spring A, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Devil's Kitchen Spring A on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Devil's Kitchen Spring A, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Devil's Kitchen Spring A is located approximately 90 feet northeast of Ladies Parlor Spring. Water flows from vents beneath a 26 foot long linear limestone ledge, at a depth of 20 feet, at the bottom of a bowl-shaped depression. There are vents at each end of the ledge (Upstream and Downstream Vents) and several smaller vents between these (Middle Vents). See Figure 1.

(The depression extends to the northwest with a low saddle separating the deeper Devil's Kitchen Spring A basin and the slightly shallower Devil's Kitchen B basin. Devil's Kitchen Spring B is located approximately 60 feet northwest of Devil's Kitchen Spring A. It discharges from a roughly circular vent, about 15 feet deep, at the bottom of a sediment-sided depression. There is one small vent located between the two springs, and it was tabulated with Spring B.)

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring openings there are suitable locations for discharge measurements that lends themselves to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Seventeen (17) station readings were taken.

The approximate depth for the measurement grids was 20 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape. Two hand-held readings were made in two smaller Middle Vents.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figures 2(AB). Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Tables 3A and 3B. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3(AB) and 4(AB).

During this measurement, one negative velocity was measured in the Upstream Vent. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Tables 2A and 2B as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Tables 2A and 2B as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Devil's Kitchen Spring A applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated total discharge of Devil's Kitchen Spring A (all vents) on September 28, 2006 was 1.51 CFS (cubic feet per second). This result is also expressed as 678 GPM (gallons per minute) or 0.976 MGD (million gallons per day), see Table 1. A total of seventeen (17) readings were made, see Figures 2(AB), 3(AB) and 4(AB). The total cross-sectional area was calculated as 3.16 square feet. The point velocity readings ranged from -0.04 to 1.81 feet per second (fps), with an overall average station reading of 0.94 fps. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 15:21 hours and were completed by 15:55 hours. The results for each of the individual vents are detailed below.

The estimated discharge of Devil's Kitchen Spring A Upstream Vent on September 28, 2006 was 0.835 CFS. This result is also expressed as 375 GPM or 0.54 MGD, see Table 1. Ten (10) readings were made, see Figures 2A, 3A and 4A. The total cross-sectional area was calculated as 1.979 square feet. The point velocity readings ranged from -0.04 to 0.94 feet per second (fps), with an overall average station reading of 0.68 fps.

The estimated discharge of Devil's Kitchen Spring A Downstream Vent on September 28, 2006 was 0.362 CFS. This result is also expressed as 162 GPM or 0.234 MGD, see Table 1. Five (5) readings were made, see Figures 2B, 3B and 4B. The total cross-sectional area was calculated as 0.79 square feet. The point velocity readings ranged from 0.71 to 1.81 feet per second (fps), with an overall average station reading of 1.41 fps.

The estimated discharge of Devil's Kitchen Spring A Middle Vents on September 28, 2006 was 0.313 CFS. This result is also expressed as 0.202 GPM or 141 MGD, see Table 1. Two (2) readings were made, see Table 1. The total cross-sectional areas were calculated as 0.39 square feet. The point velocity readings were 0.42 and 1.25 feet per second (fps).

UNDERWAT	ER DISCHARG	E MEASUREMEI				
Location:	tion: DEVIL'S KITCHEN SPRING A			Date:	September 28,	2006
	Silver Springs G	Group,		Time Start:	15:21	
	Marion County,	Florida		Time End:	15:55	
Personnel:	Peter Butt, Tom N	<i>l</i> orris				
Method:	Grid within irregul	ar conduit				
Instrument:	MMB2000 FLO-M	IATE in U/W case,	sensor on supp	port poles		
Msmt. Period	ls:	60 seconds				
Analysis Methe	od: Surfer 8 with k	riging				
Deville Kitch		Disalar		D/O V/amfa		
Devil's Kitche	en Spring A Total	Discharge:	0/5 vent:	D/S vent:	Middle Vents:	
CFS	1.51		0.835	0.362	0.313	
MGD	0.976		0.540	0.234	0.202	
GPIVI Total Cross soci	tional Area (cg/ft):	All Vents.	375	162	141	
Avg. Station Doi	nt Valasity (ft/sos):	3.16	1.979	0.79	0.39	
Avg. Station Pol	onth (foot doop):	0.94	0.68	1.41	0.84	
CI055-Section D	eptin (leet deep).		20	20	20	
	ding by Stations		l a a din ga in fa	ot por coord)		
			eaungs in ie			
Station #	Point Velocit	v Station #	Point Veloc	ity Station #	Point Velocity	
				Midd	le U/S Vent	
1	0.37	1	1 81	6	0.42	
2	0.81	2	1.27		0	
3	0.91	3	1.57	Midd	le D/S Vent	
4	-0.04	4	0.71	7	1.25	
5	0.61	5	1.69			
6	0.74					
7	0.94					
8	0.93					
9	0.81					
10	0.7					
Handheld M	iddle Vent Read	lings Calculation	าร			
Station #	Point Velocit	y X-Sec Area	Discharge:		Mid U/S Vent:	Mid D/S Vent:
		(in Sq. Ft.)		CFS	0.0882	0.225
6	0.42	0.21	0.0882	MGD	0.057	0.145
Middle/Upstr	eam	(0.3' x 0.7')		GPM	40	101
7	1.25	0.18	0.225			
Middle/Down	stream	(0.3' x 0.6')				

Table 1. Discharge of Devil's Kitchen Spring A, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Devil's Kitchen Spring A.

Figure 2A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 2B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2A. DEVIL'S KITCHEN SPRING A, UPSTREAM VENT, SEPTEMBER 28,2006. SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\DevilsKitchen_1_US\Devil'sKitchen_1_US_9-06.bln.grd
Grid Size:	19 rows x 119 columns
X Minimum:	0.4
X Maximum:	6.3
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	0.9
Y Spacing:	0.05
Z Minimum:	-0.039999998457619
Z Maximum:	0.9400000028401

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.8345491603032
Simpson's Rule:	0.83757118089679
Simpson's 3/8 Rule:	0.83478378571318

CUT & FILL VOLUMES

Positive Volume [Cut]:0.83458749910691Negative Volume [Fill]:3.8338803705738E-005Net Volume [Cut-Fill]:0.8345491603032<<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas	
Operational Planar Area: 1	.979 <<< <total area="" cross-section="" feet<="" in="" square="" th=""></total>
(Calculated using blanking file	e due to the presence of negative velocity values;
Operational Planar Area = [P.I	P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)	
Positive Planar Area [Cut]:	1.9758745910505
Negative Planar Area [Fill]:	0.0028754089494666
Blanked Planar Area:	3.33125
Total Planar Area:	5.31

Surface Areas

Positive Surface Area [Cut]:	5.4691394940791
Negative Surface Area [Fill]:	0.0051227823875163

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\DevilsKitchen_1_US\Devil's Kitchen 1 US 9-06 SURFER XYZ T3A BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	251
Original Data:	251
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0
Univariate Statistics	

	Х	Y	Z
Minimum:	0.5	0.1	-0.04
25%-tile:	1.9	0.36	0
Median:	3.4	0.5	0
75%-tile:	4.9	0.7	0
Maximum:	6.25	0.8	0.94
Midrange:	3.375	0.45	0.45
Range:	5.75	0.7	0.98
Interquartile Range:	3	0.34	0
Median Abs. Deviation:	1.5	0.2	0
Mean: Trim Mean (10%): Standard Deviation: Variance:	3.3949202191235 3.3954844713656 1.7287545134656 2.9885921678277	0.51314741035857 0.51977973568282 0.21197105291565 0.04493172727417	0.027011952191235 0 0.14467794932363 0.020931709020492
Coef. of Variation: Coef. of Skewness:			5.3560715752554 5.32350567317

Inter-Variable Correlation

	Х	Y	Z	
X: Y: Z:	1.000	0.066 1.000	0.046 -0.012 1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	2.9885921678277	0.024172049907938 0.04493172727417	0.01162327057507 -0.00035513722004413 0.020931709020492

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	0.0039704165111376	-0.010039906174851	0.0186846567531
Standard Error:	0.0053195356917998	0.043384090470125	0.029204772045708

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.066 1.000	-0.568 0.721 1.000

ANOVA Table

Source Regression:	df 2	Sum of Squares 0.012478407213052	Mean Square F 0.0062392036065262 0.29	9521
Residual: Total:	248 250	5.2413805569304 5.2538589641434	0.021134599019881	

Coefficient of Multiple Determination (R^2): 0.0023750936784209

Nearest Neighbor Statistics

	Separation	Delta Z	
Minimum:	0.05	0	
25%-tile:	0.05	0	
Median:	0.05	0	
75%-tile:	0.050990195135928	0	
Maximum:	0.29427877939124	0.94	

Midrange: Range: Interquartile Range:	0.17213938969562 0.47 0.24427877939124 0.94 0.00099019513592785 0
Median Abs. Deviation:	2.2204460492503E-016 0
Mean: Trim Mean (10%): Standard Deviation: Variance:	0.0559293605188320.0273306772908370.05120257827446700.026276746165120.144618078608790.000690467389026170.020914388660497
Coef. of Variation: Coef. of Skewness:	0.469820250425945.29141949428656.20366438593555.3239076068281
Root Mean Square: Mean Square:	0.0617945042626910.147177969077150.00381856075707170.021661354581673

Complete Spatial Randomness

Lambda:	62.360248447205
Clark and Evans:	0.88333160160242
Skellam:	375.54426282221

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	6.8E-007
Y Duplicate Tolerance:	8.3E-008
No duplicate data were for	ınd.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point

Polynomial Drift Order: 2 Kriging std. deviation grid: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\DevilsKitchen 1 US\Devil'sKitchen 1 US 9-06.grd
Grid Size:	19 rows x 119 columns
Total Nodes:	2261
Filled Nodes:	2261
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0.4
X Maximum:	6.3
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	0.9
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-2.2167705865747
Z 25%-tile:	-0.65170021190854
Z Median:	-0.12219709295333
Z 75%-tile:	0.23647685235408
Z Maximum:	0.9400000028401
Z Midrange:	-0.63838529314533
Z Range:	3.1567705868587
Z Interquartile Range:	0.88817706426262
Z Median Abs. Deviation:	0.44407971640074
Z Mean:	-0.24160530344016
Z Trim Mean (10%):	-0.20980536955367
Z Standard Deviation:	0.67141916704771
Z Variance:	0.45080369787904
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.65488297469124
Z Root Mean Square:	0.7135662691926
Z Mean Square:	0.50917682052945

TABLE 2B. DEVIL'S KITCHEN SPRING A, DOWNSTREAM VENT, SEPTEMBER 28, 2006. SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\DevilsKitchen_1_DS\Devil's Kitchen_1_DS_9-06.bln.grd
Grid Size:	51 rows x 83 columns
X Minimum:	0.45
X Maximum:	2.5
X Spacing:	0.025
Y Minimum:	0
Y Maximum:	1.25
Y Spacing:	0.025
Z Minimum:	-0.0021994340998188
Z Maximum:	1.8099999992163

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.36229367794045
Simpson's Rule:	0.36221858155177
Simpson's 3/8 Rule:	0.36240598541292

CUT & FILL VOLUMES

Positive Volume [Cut]: 0.362306885294 Negative Volume [Fill]: 1.3207353559033E-005 Net Volume [Cut-Fill]: 0.36229367794044<<<<<Total Discharge in CFS (The Net Volume value is used due to the presence of negative velocity values. Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas Operational Planar Area: 0.791 <<<<Total Cross-section Area in Square Feet (Calculated using blanking file due to the presence of negative velocity values; Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area]. Please refer to report text.) Positive Planar Area [Cut]: 0.78312166453988 Negative Planar Area [Fill]: 0.0084408354601214 Blanked Planar Area: 1.7709375 Total Planar Area: 2.5625

Surface Areas Positive Surface Area [Cut]: 3.548024973059 Negative Surface Area [Fill]: 0.0084454324786012

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\DevilsKitchen_1_DS\Devil's Kitchen 1 DS 9-06 SURFER XYZ T3B BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	114
Original Data:	114
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	X	Y	Z
Minimum:	0.5	0.05	0
25%-tile:	1.1	0.55	0
Median:	1.75	0.95	0
75%-tile:	2.15	1.135	0
Maximum:	2.4	1.2	1.81
Midrange:	1.45	0.625	0.905
Range:	1.9	1.15	1.81
Interquartile Range:	1.05	0.585	0
Median Abs. Deviation:	0.475	0.22	0
Mean:	1.6065786842105	0.81219192982456	0.061842105263158
Trim Mean (10%):	1.6223715865385	0.828845	0
Standard Deviation:	0.59014182073154	0.36503802191564	0.3002646954771
Variance:	0.34826736857634	0.13325275744408	0.090158887349954
Coef. of Variation:			4.8553440119701
Coef. of Skewness:			4.8924686379338

Inter-Variable Correlation

	Х	Y	Z	
X: Y: Z:	1.000	-0.547 1.000	0.132 0.023 1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.34826736857634	-0.1178187989615 0.13325275744408	0.023356318213296 0.0025004113573407 0.090158887349954

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	0.10474254385166	$\begin{array}{c} 0.11137519672224 \\ 0.091836988574452 \end{array}$	-0.19689306897934
Standard Error:	0.056806671668093		0.14874985986379

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	-0.547 1.000	-0.888 0.837 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 111 113	0.31063677502872 9.967476382866 10.278113157895	0.15531838751436 0.089797084530324	1.7297

Coefficient of Multiple Determination (R^2): 0.030223132422911

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.050249378105604	0
Median:	0.052201532544553	0
75%-tile:	0.052704100646914	0
Maximum:	0.19002119783066	1.81

Midrange:	0.12001059891533	0.905
Range:	0.14002119783066	1.81
Interquartile Range:	0.0024547225413094	0
Median Abs. Deviation:	0.0019521544389481	0
Mean:	0.055619191719095	0.061842105263158
Trim Mean (10%):	0.052664383425515	0
Standard Deviation:	0.017052490570696	0.3002646954771
Variance:	0.00029078743466368	0.090158887349954
Coef. of Variation:	0.30659364229563 4	.8553440119701
Coef. of Skewness:	6.034975528559 4	.8924686379338
Root Mean Square:	0.058174581409316	0.30656701279383
Mean Square:	0.0033842819221491	0.0939833333333333

Complete Spatial Randomness

Lambda:	52.173913043478
Clark and Evans:	0.8034916611653
Skellam:	126.47499292907

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	2.2E-007
Y Duplicate Tolerance:	1.3E-007
No duplicate data were for	und.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point

Polynomial Drift Order: 1 Kriging std. deviation grid: no

Semi-Variogram Model

Linear
0
1
1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\DevilsKitchen 1 DS\Devil's Kitchen 1 DS 9-06 grd
Grid Size:	51 rows x 83 columns
Total Nodes:	4233
Filled Nodes:	4233
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0.45
X Maximum:	2.5
X Spacing:	0.025
Y Minimum:	0
Y Maximum:	1.25
Y Spacing:	0.025
Grid Statistics	
Z Minimum:	-0.87191986995473
Z 25%-tile:	-0.097036151680639
Z Median:	8.0514572786683E-010
Z 75%-tile:	0.14466911502255
Z Maximum:	1.809999992163
Z Midrange:	0.46904006463078
Z Range:	2.681919869171
Z Interquartile Range:	0.24170526670319
Z Median Abs. Deviation:	0.11606356255849
Z Mean:	0.081875401544725
Z Trim Mean (10%):	0.049885620566584
Z Standard Deviation:	0.36479367304436
Z Variance:	0.13307442389319
Z Coef. of Variation:	4.4554733920308
Z Coef. of Skewness:	1.6821035450455
Z Root Mean Square:	0.37386896805071
Z Mean Square:	0.1397780052713

Figure 4A. Discharge measurement cross-section; Devil's Kitchen Spring A Upstream Vent, Marion County, Florida, September 28, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4B. Discharge measurement cross-section; Devil's Kitchen Spring A Downstream Vent, Marion County, Florida, September 28, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X-and Y-axis scales are shown in feet.

Table 3A. Devil's Kitchen 1 Upstream XYZ Grid Data, September 28, 2006.					
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1	0.5	0.37	1	20	10
1.5	0.5	0.81	2	30	10
2	0.5	0.91	3	40	10
2.5	0.5	-0.04	4	50	10
3.5	0.5	0.61	5	70	10
4	0.5	0.74	6	80	10
4.5	0.5	0.94	7	90	10
5	0.5	0.93	8	100	10
5.5	0.5	0.81	9	110	10
6	0.5	0.7	10	120	10
0.5	0.7	0	AT	10	14
1	0.7	0	BT	20	14
1.5	0.8	0	СТ	30	16
2	0.7	0	DT	40	14
2.5	0.7	0	ET	50	14
3	0.6	0	FT	60	12
3.5	0.6	0	GT	70	12
4	0.75	0	HT	80	15
4.5	0.7	0	IT	90	14
5	0.8	0	JT	100	16
5.5	0.8	0	KT	110	16
6	0.7	0	LT	120	14
6.25	0.7	0	MT	125	14
0.5	0.5	0	AS	10	10
0.75	0.5	0	ABS	15	10
1	0.2	0	BS	20	4
1.5	0.1	0	CS	30	2
2	0.1	0	DS	40	2
2.5	0.4	0	ES	50	8
3	0.4	0	FS	60	8
3.5	0.4	0	GS	70	8
4	0.4	0	HS	80	8
4.5	0.4	0	IS	90	8
5	0.3	0	JS	100	6
5.5	0.3	0	KS	110	6
6	0.2	0	LS	120	4
6.25	0.4	0	MS	125	8
0.55	0.7	0	AT1	11	14
0.6	0.7	0	AT2	12	14
0.65	0.7	0	AT3	13	14
0.7	0.7	0	AT4	14	14
0.75	0.7	0	AT5	15	14
0.8	0.7	0	AT6	16	14
0.85	0.7	0	AT7	17	14

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.9	0.7	0	AT8	18	14
0.95	0.7	0	AT9	19	14
0.5	0.55	0	AV1	10	11
0.5	0.6	0	AV2	10	12
0.5	0.65	0	AV3	10	13
1.05	0.71	0	BT1	21	14.2
1.1	0.72	0	BT2	22	14.4
1.15	0.73	0	BT3	23	14.6
1.2	0.74	0	BT4	24	14.8
1.25	0.75	0	BT5	25	15
1.3	0.76	0	BT5	26	15.2
1.35	0.77	0	BT6	27	15.4
1.4	0.78	0	BT8	28	15.6
1.45	0.79	0	BT9	29	15.8
1.55	0.79	0	CT1	31	15.8
1.6	0.78	0	CT2	32	15.6
1.65	0.77	0	CT3	33	15.4
1.7	0.76	0	CT4	34	15.2
1.75	0.75	0	CT5	35	15
1.8	0.74	0	CT6	36	14.8
1.85	0.73	0	CT7	37	14.6
1.9	0.72	0	CT8	38	14.4
1.95	0.71	0	CT9	39	14.2
2.05	0.7	0	DT1	41	14
2.1	0.7	0	DT2	42	14
2.15	0.7	0	DT3	43	14
2.2	0.7	0	DT4	44	14
2.25	0.7	0	DT5	45	14
2.3	0.7	0	DT6	46	14
2.35	0.7	0	DT7	47	14
2.4	0.7	0	DT8	48	14
2.45	0.7	0	DT9	49	14
2.55	0.69	0	ET1	51	13.8
2.6	0.68	0	ET2	52	13.6
2.65	0.67	0	ET3	53	13.4
2.7	0.66	0	ET4	54	13.2
2.75	0.65	0	ET5	55	13
2.8	0.64	0	ET6	56	12.8
2.85	0.63	0	ET7	57	12.6
2.9	0.62	0	ET8	58	12.4
2.95	0.61	0	ET9	59	12.2
3.05	0.6	0	FT1	61	12
3.1	0.6	0	FT2	62	12

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3.15	0.6	0	FT3	63	12
3.2	0.6	0	FT4	64	12
3.25	0.6	0	FT5	65	12
3.3	0.6	0	FT6	66	12
3.35	0.6	0	FT7	67	12
3.4	0.6	0	FT8	68	12
3.45	0.6	0	FT9	69	12
3.55	0.615	0	GT1	71	12.3
3.6	0.63	0	GT2	72	12.6
3.65	0.645	0	GT3	73	12.9
3.7	0.66	0	GT4	74	13.2
3.75	0.675	0	GT5	75	13.5
3.8	0.69	0	GT6	76	13.8
3.85	0.705	0	GT7	77	14.1
3.9	0.72	0	GT8	78	14.4
3.95	0.735	0	GT9	79	14.7
4.05	0.745	0	HT1	81	14.9
4.1	0.74	0	HT2	82	14.8
4.15	0.735	0	HT3	83	14.7
4.2	0.73	0	HT4	84	14.6
4.25	0.725	0	HT5	85	14.5
4.3	0.72	0	HT6	86	14.4
4.35	0.715	0	HT7	87	14.3
4.4	0.71	0	HT8	88	14.2
4.45	0.705	0	HT9	89	14.1
4.55	0.71	0	IT1	91	14.2
4.6	0.72	0	IT2	92	14.4
4.65	0.73	0	IT3	93	14.6
4.7	0.74	0	IT4	94	14.8
4.75	0.75	0	IT5	95	15
4.8	0.76	0	IT6	96	15.2
4.85	0.77	0	IT7	97	15.4
4.9	0.78	0	IT8	98	15.6
4.95	0.79	0	IT9	99	15.8
5.05	0.8	0	JT1	101	16
5.1	0.8	0	JT1	102	16
5.15	0.8	0	JT3	103	16
5.2	0.8	0	JT4	104	16
5.25	0.8	0	JT5	105	16
5.3	0.8	0	JT6	106	16
5.35	0.8	0	JT7	107	16
5.4	0.8	0	JT8	108	16
5.45	0.8	0	JT9	109	16
5.55	0.79	0	KT1	111	15.8

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
5.6	0.78	0	KT2	112	15.6
5.65	0.77	0	KT3	113	15.4
5.7	0.76	0	KT4	114	15.2
5.75	0.75	0	KT5	115	15
5.8	0.74	0	KT6	116	14.8
5.85	0.73	0	KT7	117	14.6
5.9	0.72	0	KT8	118	14.4
5.95	0.71	0	KT9	119	14.2
6.05	0.7	0	LT1	121	14
6.1	0.7	0	LT2	122	14
6.15	0.7	0	LT3	123	14
6.2	0.7	0	LT4	124	14
6.25	0.65	0	MV1	125	13
6.25	0.6	0	MV2	125	12
6.25	0.55	0	MV3	125	11
6.25	0.5	0	MV4	125	10
6.25	0.45	0	MV5	125	9
0.55	0.5	0	AS1	11	10
0.6	0.5	0	AS2	12	10
0.65	0.5	0	AS3	13	10
0.7	0.5	0	AS4	14	10
0.79167	0.45	0	ABS1	15.8333	9
0.83333	0.4	0	ABS2	16.6666	8
0.875	0.35	0	ABS3	17.4999	7
0.91666	0.3	0	ABS4	18.3332	6
0.95833	0.25	0	ABS5	19.1665	5
		_			
1.05	0.19	0	BS1	21	3.8
1.1	0.18	0	BS2	22	3.6
1.15	0.17	0	BS3	23	3.4
1.2	0.16	0	BS4	24	3.2
1.25	0.15	0	BS5	25	3
1.3	0.14	0	BS6	26	2.8
1.35	0.13	0	BS7	27	2.6
1.4	0.12	0	BS8	28	2.4
1.45	0.11	0	BS9	29	2.2
4.55	0.1		001	04	0
1.55	0.1	0	000	31	2
1.6	0.1	U	052	32	2
1.65	0.1	0		33	2
1./	0.1	U	034	34	2
1./5	0.1	0	000	35	2
1.8	0.1	U	007	36	2
1.85	0.1	0	CS7	37	2
1.9	0.1	0	CS8	38	2
X	Y	Z (Velocity)	Station Name	on Name X Plot	
------	------	--------------	--------------	----------------	-----
1.95	0.1	0	CS9	39	2
2.05	0.13	0	DS1	41	2.6
2.1	0.16	0	DS2	42	3.2
2.15	0.19	0	DS3	43	3.8
2.2	0.22	0	DS4	44	4.4
2.25	0.25	0	DS5	45	5
2.3	0.28	0	DS6	46	5.6
2.35	0.31	0	DS7	47	6.2
2.4	0.34	0	DS8	48	6.8
2.45	0.37	0	DS9	49	7.4
2.55	0.4	0	ES1	51	8
2.6	0.4	0	ES2	52	8
2.65	0.4	0	ES3	53	8
2.7	0.4	0	ES4	54	8
2.75	0.4	0	ES5	55	8
2.8	0.4	0	ES6	56	8
2.85	0.4	0	ES7	57	8
2.9	0.4	0	ES8	58	8
2.95	0.4	0	ES9	59	8
3.05	0.4	0	FS1	61	8
3.1	0.4	0	FS2	62	8
3.15	0.4	0	FS3	63	8
3.2	0.4	0	FS4	64	8
3.25	0.4	0	FS5	65	8
3.3	0.4	0	FS6	66	8
3.35	0.4	0	FS7	67	8
3.4	0.4	0	FS8	68	8
3.45	0.4	0	FS9	69	8
3.55	0.4	0	GS1	71	8
3.6	0.4	0	GS2	72	8
3.65	0.4	0	GS2	73	8
3.7	0.4	0	GS4	74	8
3.75	0.4	0	GS5	75	8
3.8	0.4	0	GS6	76	8
3.85	0.4	0	GS7	77	8
3.9	0.4	0	GS8	78	8
3.95	0.4	0	GS9	79	8
4.05	0.4	0	HS1	81	8
4.1	0.4	0	HS2	82	8
4.15	0.4	0	HS3	83	8
4.2	0.4	0	HS4	84	8
4.25	0.4	0	HS5	85	8
4.3	0.4	0	HS6	86	8
4.35	0.4	0	HS7	87	8

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4.4	0.4	0	HS8	88	8
4.45	0.4	0	HS9	89	8
4.55	0.39	0	IS1	91	7.8
4.6	0.38	0	IS2	92	7.6
4.65	0.37	0	IS3	93	7.4
4.7	0.36	0	IS4	94	7.2
4.75	0.35	0	IS5	95	7
4.8	0.34	0	IS6	96	6.8
4.85	0.33	0	IS8	97	6.6
4.9	0.32	0	IS8	98	6.4
4.95	0.31	0	IS9	99	6.2
5.05	0.3	0	JS1	101	6
5.1	0.3	0	JS2	102	6
5.15	0.3	0	JS3	103	6
5.2	0.3	0	JS4	104	6
5.25	0.3	0	JS5	105	6
5.3	0.3	0	JS6	106	6
5.35	0.3	0	JS7	107	6
5.4	0.3	0	JS8	108	6
5.45	0.3	0	JS9	109	6
5.55	0.29	0	KS1	111	5.8
5.6	0.28	0	KS2	112	5.6
5.65	0.27	0	KS3	113	5.4
5.7	0.26	0	KS4	114	5.2
5.75	0.25	0	KS5	115	5
5.8	0.24	0	KS6	116	4.8
5.85	0.23	0	KS7	117	4.6
5.9	0.22	0	KS8	118	4.4
5.95	0.21	0	KS9	119	4.2
6.05	0.24	0	LS1	121	4.8
6.1	0.28	0	LS1	122	5.6
6.15	0.32	0	LS3	123	6.4
6.2	0.36	0	LS4	124	7.2

Table 3B. Devil's Kitchen 1 Downstream XYZ Grid Data, September 28, 2006.							
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot		
1.5	1	1.81	1	30	20		
2	1	1.27	2	40	20		
2.2	0.7	1.57	3	44	14		
2.2	0.2	0.71	4	44	4		
2.2	1	1.69	5	44	20		
0.5	1.2	0	A	10	24		
1	1.2	0	В	20	24		
1.5	1.15	0	C	30	23		
2	1.1	0	D	40	22		
2.2	1.2	0	E	44	24		
2.3	1	0	F	46	20		
2.4	0.7	0	G	48	14		
2.3	0.2	0	H	46	4		
2.2	0.05	0	I	44	1		
1.7	0.2	0	J	34	4		
2	0.6	0	K	40	12		
1.8	0.7	0	L	36	14		
1.5	0.8	0	M	30	16		
0.9	1	0	N	18	20		
0.5	1	0	0	10	20		
0.55	1.2	0	A1	11	24		
0.6	1.2	0	A2	12	24		
0.65	1.2	0	A3	13	24		
0.7	1.2	0	A4	14	24		
0.75	1.2	0	A5	15	24		
0.8	1.2	0	A6	16	24		
0.85	1.2	0	A7	17	24		
0.9	1.2	0	A8	18	24		
0.95	1.2	0	A9	19	24		
1.05	1.19	0	B1	21	23.9		
1.1	1.185	0	B2	22	23.8		
1.15	1.18	0	B3	23	23.7		
1.2	1.175	0	B4	24	23.6		
1.25	1.17	0	B5	25	23.5		
1.3	1.165	0	B6	26	23.4		
1.35	1.16	0	B7	27	23.3		
1.4	1.16	0	B8	28	23.2		
1.45	1.155	0	B9	29	23.1		
1.55	1.145	0	C1	31	22.9		
1.6	1.14	0	C2	32	22.8		
1.65	1.135	0	C3	33	22.7		
1.7	1.13	0	C4	34	22.6		
1.75	1.125	0	C5	35	22.5		

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.8	1.12	0	C6	36	22.4
1.85	1.115	0	C7	37	22.3
1.9	1.11	0	C8	38	22.2
1.95	1.105	0	C9	39	22.1
2.05	1.125	0	D1	41	22.5
2.1	1.15	0	D2	42	23
2.15	1.175	0	D3	43	23.5
2.225	1.15	0	E1	44.5	23
2.25	1.1	0	E2	45	22
2.275	1.05	0	E3	45.5	21
2.31667	0.95	0	F1	46.3333	19
2.33333	0.9	0	F2	46.6666	18
2.35	0.85	0	F3	46.9999	17
2.36666	0.8	0	F4	47.3332	16
2.38333	0.75	0	F5	47.6665	15
2.39	0.65	0	G1	47.8	13
2.38	0.6	0	G2	47.6	12
2.37	0.55	0	G3	47.4	11
2.36	0.5	0	G4	47.2	10
2.35	0.45	0	G5	47	9
2.34	0.4	0	G6	46.8	8
2.33	0.35	0	G7	46.6	7
2.32	0.3	0	G8	46.4	6
2.31	0.25	0	G9	46.2	5
2.26667	0.15	0	H1	45.3333	3
2.23333	0.1	0	H2	44.6666	2
2.15	0.065	0	1	43	1.3
2.1	0.08	0	12	42	1.6
2.05	0.095	0	13	41	1.9
2	0.11	0	14	40	2.2
1.95	0.125	0	15	39	2.5
1.9	0.14	0	16	38	2.8
1.85	0.155	0	17	37	3.1
1.8	0.17	0	18	36	3.4
1.75	0.185	0	19	35	3.7
1.7375	0.25	0	J1	34.75	5
1.775	0.3	0	J2	35.5	6
1.8125	0.35	0	J3	36.25	7
1.85	0.4	0	J4	37	8
1.8875	0.45	0	J5	37.75	9
1.925	0.5	0	J6	38.5	10
1.9625	0.55	0	J7	39.25	11

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.95	0.625	0	K1	39	12.5
1.9	0.65	0	K2	38	13
1.85	0.675	0	K3	37	13.5
1.75	0.71667	0	L1	35	14.3333
1.7	0.73333	0	L2	34	14.6666
1.65	0.75	0	L3	33	14.9999
1.6	0.76666	0	L4	32	15.3332
1.55	0.78333	0	L5	31	15.6665
1.45	0.81667	0	M1	29	16.3333
1.4	0.83333	0	M2	28	16.6666
1.35	0.85	0	M3	27	16.9999
1.3	0.86667	0	M4	26	17.3333
1.25	0.88333	0	M5	25	17.6666
1.2	0.9	0	M6	24	17.9999
1.15	0.91666	0	M7	23	18.3331
1.1	0.93332	0	M8	22	18.6664
1.05	0.94999	0	M9	21	18.9997
1	0.96665	0	M10	20	19.333
0.95	0.98332	0	M11	19	19.6663
0.85	1	0	N1	17	20
0.8	1	0	N2	16	20
0.75	1	0	N3	15	20
0.7	1	0	N4	14	20
0.65	1	0	N5	13	20
0.6	1	0	N6	12	20
0.55	1	0	N7	11	20
0.5	1.05	0	01	10	21
0.5	1.1	0	02	10	22
0.5	1.15	0	O3	10	23

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Devil's Kitchen Spring B, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Devil's Kitchen Spring B, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Devil's Kitchen Spring B, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Devil's Kitchen Spring B, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Devil's Kitchen Spring B.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Devil's Kitchen Spring B, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Devil's Kitchen Spring B on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Devil's Kitchen Spring B, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Devil's Kitchen Spring B is located approximately 60 feet northwest of Devil's Kitchen Spring A. It discharges from a roughly circular vent, about 15 feet deep, at the bottom of a sediment-sided depression.

The depression extends to the southeast with a low saddle separating the deeper Devil's Kitchen Spring A basin and the slightly shallower Devil's Kitchen B basin. There is one small vent located between the two springs, and is included in this measurement. See Figure 1.

(Devil's Kitchen Spring A is located approximately 90 feet northeast of Ladies Parlor Spring. Water flows from vents beneath a 26 foot long linear limestone ledge, at a depth of 20 feet, at the bottom of a bowl-shaped depression. There are vents at each end of the ledge and several smaller vents between these.)

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Devil's Kitchen Spring B applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Devil's Kitchen Spring B on September 28, 2006 was 0.24 CFS (cubic feet per second). This result is also expressed as 109 GPM (gallons per minute) or 0.157 MGD (million gallons per day), see Table 1. Three readings were made at each of two vents, for a total of six (6) readings. Individual point velocity readings ranged from 0.23 to 1.02 feet per second (fps), with an overall average station reading of 0.62 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 15 and 17 feet. The measurements commenced at about 15:58 hours and were completed by 16:08 hours.

UNDERWATER	DISCHARGE M				
Location:	DEVIL'S KITC	HEN SPRING B		Date:	September 28, 2006
	Silver Springs	Group,		Time Start:	15:58
	Marion County	, Florida		Time End:	16:08
Personnel:	Peter Butt, Tom	Morris			
Method:	Vent Discharge (Capture Device	(0.49' Diameter)		
Instrument:	MMB2000 FLO-	MATE in U/W case	e, sensor in vertical	pipe.	
Calculation Metho	d: Discharge = V x	<i>pi</i> x r ²			
Measurement Pe	eriods:	60 seconds			
Devil's Kitchen	Spring B Total	Discharge:	Main Vent:	Small Vent:	
CFS	0.24		0.198	0.045	
MGD	0.157		0.128	0.029	
GPM	109	All Vents:	89	20	
Avg. Point Velocity (f	ft/sec):	0.62	1.01	0.23	
Vent Depth (feet dee	ep):		15	17	
Velocity Readin	igs:	(All velocity rea	dings in feet per	second.)	
Main Vent		Small Vent			
Reading #	Point Velocity	Reading #	Point Velocity		
1	1	1	0.23		
2	1	2	0.23		
3	1.02	3	0.23		
Average:	1.01	Average:	0.23		
Discharge:	0.190	Discharge:	0.043		

Table 1. Discharge of Devil's Kitchen Spring B, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Devil's Kitchen Spring B.

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:	Zero	2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Garden of Eden Springs Group, Marion County, Florida; September 29, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Garden of Eden Springs Group, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Garden of Eden Springs Group, Marion County, Florida; September 29, 2006.
- 2. Table 1. Discharge of Garden of Eden Springs Group Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Garden of Eden Springs Group Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Garden of Eden Springs Group, Marion County, Florida; September 29, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Garden of Eden Springs Group on September 29, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Garden of Eden Springs Group, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

The Garden of Eden Spring Group is located in a cove about 240 feet east of Christmas Tree Spring. Garden of Eden is in the same cove as the jungle boat docks. A linear depression about 24 feet long and 15 feet deep contains a line of vents. This vent line accounts for most of the discharge from this group, and contains debris. About 30 feet west of this vent line, there is a roughly circular vent about 4 feet in diameter and 14 feet deep.

Two additional vents lie east of the vent line in a shallow swampy extension of the cove. The first of these, about 70 feet east, is about 2 feet tin diameter and about 8 feet deep. The second vent is 110 feet to the east, and is about 3 feet in diameter and 5 feet deep. Both of these vents gently discharge through detrital sediments and are beneath fallen tree limbs.

Another line of vents, about 17 feet long and 15 feet deep, lies 110 feet southwest of the main vent line. This vent line lies within a depression at the edge of the strong flow of the Silver River. The vents discharge through sand and gravel sediments. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of

measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Garden of Eden Springs Group applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Garden of Eden Springs Group on September 29, 2006 was 2.559 cubic feet per second). This result is also expressed as 1149 (gallons per minute) or 1.654 million gallons per day), see Table 1. Three readings were made at each of twelve, for a total of thirty-six (36) readings. Individual point velocity readings ranged from 0.25 to 0.67 feet per second (fps), with an overall average station reading of 1.12 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 14 to 16 feet. The measurements commenced at about 11:04 hours and were completed by 12:25 hours.

UNDERWATER	DISCHA	RGE MEASUREMENT			PAGE	1 of 4
Location:	GARDE	N OF EDEN SPRINGS	GROUP	Date:	September 29	, 2006
	Silver Sp	orings Group,		Time Start:	11:04	
	Marion C	County, Florida		Time End:	12:25	
Personnel:	Peter But	t, Mark Long				
Method:	Vent Disc	harge Capture Device	(0.49' Diameter)			
Instrument: MMB2000 FLO-MATE in U/W case, sensor in vertical			pipe			
Calculation Method: Discharge = $V \times pi \times r^2$						
Measurement Periods: 60 seconds						
Garden of Eden	Springs G	oup Total ESTIMATED	Discharge:			
			Long Vent	Round Vent	River Vent	
CFS	2.559		1.470	0.612	0.477	
MGD	1.654		0.950	0.396	0.308	
GPM	1149		660	275	214	
		(Multiplier:)	(2.5)	(2)	n/a	
Garden of Eden	Springs G	oup Total Measured Dis	charge:			
CFS	1.371		0.588	0.306	0.477	
MGD	0.886		0.380	0.198	0.308	
GPM	615	All Vents:	264	137	214	
Avg. Point Velocity ((ft/sec):	0.65	0.62	0.81	0.51	

Table 1. Page 1 of 4. Discharge of Garden of Eden Springs Group, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

UNDERWATER DISCHARGE MEASUREMENT							PAGE 2 of 4
Location:	GARDEN OF E	DEN SPRINGS GR	OUP	Date:	September 29,	2006	
	Silver Springs C	Group, Marion Count	ty, Florida		•		
Garden of Eden I	Long Vent ESTIN	IATED Discharge					
			Vent 1	Vent 2	Vent 3	Vent 4	Vent 5
CFS	1.470		0.379	0.314	0.288	0.269	0.220
MGD	0.950		0.245	0.203	0.186	0.174	0.142
GPM	660		170	141	129	121	99
		(Multiplion)	(2.5)	(2.5)	(2.5)	(2.5)	(2.5)
		(iviulupilei.)	(2.3)	(2.3)	(2.3)	(2.5)	(2.5)
Garden of Eden Lo	ng Vent Measured	Discharge					
			Vent 1	Vent 2	Vent 3	Vent 4	Vent 5
CFS	0.588		0.152	0.126	0.115	0.108	0.088
MGD	0.380		0.098	0.081	0.074	0.069	0.057
GPM	264	All Vents:	68	56	52	48	40
Avg. Point Velocity (ft/sec):	0.62	0.80	0.67	0.61	0.57	0.47
Vent Depth (feet dee	ep):		16	16	16	16	16
Velocity Readings:	1	(All velocity readings	s in feet per second	l.)			
Ven	t 1	Vent	t 2	Ven	t 3	Ver	nt 4
North En	d Vent	North En	d Vent	Middle-No	orth Vent	Middle-South Vent	
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.81	1	0.67	1	0.63	1	0.56
2	0.79	2	0.67	2	0.6	2	0.58
3	0.81	3	0.66	3	0.6	3	0.57
Average:	0.80	Average:	0.67	Average:	0.61	Average:	0.57
Discharge:	0.152	Discharge:	0.126	Discharge:	0.115	Discharge:	0.108
Multiplier:	2.5	Multiplier:	2.5	Multiplier:	2.5	Multiplier:	2.5
Est. Discharge:	0.379	Est. Discharge:	0.314	Est. Discharge:	0.288	Est. Discharge:	0.269
	-						
Ven	t 5						
South Er	nd Vent						
Reading #	Point Velocity						
1	0.48						
2	0.45						
3				1	1	1	
	0.47						
Average:	0.47						
Average: Discharge:	0.47 0.47 0.088						
Average: Discharge: Multiplier:	0.47 0.47 0.088 2.5						

Table 1. Page 2 of 4. Discharge of Garden of Eden Springs Group, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

UNDERWATER DISCHARGE MEASUREMENT					PAGE 3 of 4
Location:	GARDEN OF	EDEN SPRINGS	GROUP	Date:	September 29, 2006
	Silver Springs	Group, Marion Co	ounty, Florida		
Garden of Eden I	Round Vent ES	FIMATED Discha	irge:		
			Vent 6	Vent 7	
CFS	0.612		0.415	0.197	
MGD	0.396		0.268	0.128	
GPM	275		186	89	
		(Multiplier)	(2)	(2)	
Garden of Eden Round Vent Me		asured Discharg	e:		
CFS	0.306	0.208		0.099	
MGD	0.198		0.134	0.064	
GPM	137	All Vents:	93	44	
Avg. Point Velocity (ft/s	sec):	0.81	1.10	0.52	
Vent Depth (feet deep)	:		14	14	
Velocity Reading	S:	(All velocity read	dings in feet p	per second.))
Vent	6	Ven	nt 7		
Round Vent S	outh (Main)	Round Ve	ent North		
Reading #	Point Velocity	Reading #	Point Veloc	ity	
1	1.12	1	0.52		
2	1.09	2	0.53		
3	1.09	3	0.52		
Average:	1.10	Average:	0.52		
Discharge:	0.208	Discharge:	0.099		
Multiplier:	2	Multiplier:	2		
Est. Discharge:	0.415	Est. Discharge:	0.197		

Table 1. Page 3 of 4.Discharge of Garden of Eden Springs Group, Marion County, Florida onSeptember 29, 2006.Data record and calculation of discharge measurement.

UNDERWATER DISCHARGE MEASUREMENT						PAGE 4 of 4	
Location:	GARDEN OF E	DEN SPRINGS	GROUP	Date:	September 29	, 2006	
	Silver Springs G	Group, Marion C	ounty, Florida				
Garden of Ede	n River Vent		Vent 1	Vent 2	Vent 3	Vent 4	Vent 5
CFS	0.477		0.075	0.126	0.048	0.113	0.115
MGD	0.308		0.048	0.082	0.031	0.073	0.074
GPM	214	All Vents:	34	57	21	51	52
Avg. Point Velocity	(ft/sec):	0.51	0.40	0.67	0.25	0.60	0.61
Vent Depth (feet de	ep):		14	14	15	15	15
Velocity Readi	ngs:	(All velocity re	adings in feet per	second.)			
Vent 1		Vent 2		Vent 3		Vent 4	
Downstr	eam Vent	Middle Downstream Vent		Midd	e Vent	Middle Upstream Vent	
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.41	1	0.67	1	0.25	1	0.6
2	0.39	2	0.67	2	0.26	2	0.59
3	0.39	3	0.67	3	0.25	3	0.6
Average:	0.40	Average:	0.67	Average:	0.25	Average:	0.60
Discharge:	0.075	Discharge:	0.126	Discharge:	0.048	Discharge:	0.113
Ve	nt 5						
Upstream Vent							
Reading #	Point Velocity						
1	0.61						
2	0.61						
3	0.61						
Average:	0.61						
Discharge:	0.115						

Table 1. Page 4 of 4. Discharge of Garden of Eden Springs Group, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Garden of Eden Springs Group.

Model: 20	800-JI	Serial Number:	002.679				
Unit Gain Rati	o:	Time Con	stant:				
	Sen	sorSer#N/	A				
Type of Reading							
Velocity:		Level:					
			X N/A				
	Static Velocity	Dynamic Velocity	Level				
Standard:	Zero	2.00	NA				
Magguradi	of other	198	NIA				
Measured.	<i>p.oy</i>	1.10	<u></u>				
Eactory C	alibration Tax						
X raciory c		TANIC					
Field Prof	ile Calibration;						
Site Coef	ficient or Velocity N	Iultiplier:					
	51	XDA.					
Calibration Te	chnician:	ge Culiste	Date: 18 Apr 200				
OA Technicia	. Ath	all	Date 4/18/0C				
	Cal)					
This documen	t certifies that the c	described instrument h	as been calibrated.				
is traceable to	the National Institu	ute of Standards and 1	Technology (NIST),				
the Customer	Service Departmen	normation, service, or nt.	canoration, please contact				
		MARSH					
	A High	MCBIRNEY her Level of Flow Measurement					
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452				
(;	301) 874-5599 _ (80	00)-368-2723 FAX (301) 874-2172				

Discharge Measurement: Geyser Springs Group, Marion County, Florida; September 29 & 30, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Geyser Springs Group, Marion County, Florida; September 29 and 30, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Geyser Springs Group, Marion County, Florida; September 29 and 30, 2006.
- Table 1A. Discharge of Geyser Springs Group, Marion County, Florida on September 29 & 30, 2006. Data record and calculation of discharge measurement.
- 3. Table 1B. Discharge of Geyser Springs Group Small Vents, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 4. Figure 1. Map of Geyser Springs Group.
- 5. Figure 2A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement.
- 6. Figure 2BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement.
- 7. Figure 2BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement.
- 8. Figure 2C. Discharge measurement cross-section; Geyser Springs Group Vent C, Marion County, Florida, September 30, 2006 measurement.
- 9. Figure 2D. Discharge measurement cross-section; Geyser Springs Group Vent D, Marion County, Florida, September 30, 2006 measurement.
- 10. Figure 3A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities ...
- 11. Figure 3BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities...
- 12. Figure 3BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities...
- 13. Figure 3C. Discharge measurement cross-section; Geyser Springs Group Vent C, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities...
- 14. Figure 3D. Discharge measurement cross-section; Geyser Springs Group Vent D, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities...

LIST OF CONTENTS (Continued)

- 15. Table 2A. Geyser Springs Group, Vent A, September 30, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 16. Table 2BU. Geyser Springs Group, Vent B Upper, September 30, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 17. Table 2BL. Geyser Springs Group, Vent B Lower, September 30, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 18. Table 2C. Geyser Springs Group, Vent C, September 30, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 19. Table 2D. Geyser Springs Group, Vent D, September 30, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 20. Figure 4A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours...
- 21. Figure 4BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours...
- 22. Figure 4BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours...
- 23. Figure 4C. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours...
- 24. Figure 4D. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours...
- 25. Table 3A. Geyser Springs Group Vent A, XYZ Grid Data, September 30, 2006.
- 26. Table 3BU. Geyser Springs Group Vent B Upper, XYZ Grid Data, September 30, 2006.
- 27. Table 3BL. Geyser Springs Group Vent B Lower, XYZ Grid Data, September 30, 2006.
- 28. Table 3C. Geyser Springs Group Vent C, XYZ Grid Data, September 30, 2006.
- 29. Table 3D. Geyser Springs Group Vent D, XYZ Grid Data, September 30, 2006.
- 30. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Geyser Springs Group, Marion County, Florida; September 29 and 30, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurements made at Geyser Springs Group on September 29 and 30, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Geyser Springs Group, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

The Geyser Spring Group is located in the western side of a large cove on the south side of the Silver River, east and downstream of Alligator Hole. There is a small peninsula of land between Alligator Hole Spring and Geyser Spring.

The Geyser Spring Group encompasses a number of vents of varying description. The large basin containing this spring group is dominated by a linear outcrop of limestone about 3 feet high and 26 feet long, at about 16 feet of depth. There are vents all along the base of this outcrop, with the largest vent on the northern side of its eastern end. Numerous other vents can be observed on the bottom of the basin around this outcrop, discharging through the filamentous algae that covers the bottom.

On the north side of the basin, about 35 to 40 feet north of the outcrop, there is a group of five large vents formed within the thick peaty deposits that overly the limestone. These vents lie along the bottom of the north slope of the basin, at about 18 to 21 feet deep.

About 30 to 40 feet west of the outcrop, there are several vents at about 15 feet of depth discharging through the algae covering the bottom. About 30 feet south of the outcrop, another vent discharges from the bottom of a conical depression at about 18 feet deep. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening

there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Cross-Section Measurements

Pete Butt positioned the sensor, and recorded positional data, while Mark Long read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Fifty-two (52) station readings were taken.

The approximate depth for the measurement grids was 18 to 21 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape. Two hand-held readings were made in two small vents,

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figures 2(A, BL, BU, C & D). Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Tables 3A, 3BL, 3BU, 3C & 3D. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used for all five vents was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0°, and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3(A, BL, BU, C & D) and 4(A, BL, BU, C & D).

During this measurement, one negative velocity was measured in Vent A. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Tables 2A, 2BL, 2BU,

2C and 2D as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Tables 2A, 2BL, 2BU, 2C and 2D as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

VDCD Measurements

This spring also has small, scattered vents discharging through a mixed bottom of either detritus, sediments, or a thick algal layer. Direct measurements of the vent cross-sections at these locations were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1B.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V x pi x r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1B, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Geyser Springs Group applying the methods and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated total discharge of Geyser Springs Group (all vents) on September 29 and 30, 2006 was 6.06 CFS (cubic feet per second). This result is also expressed as 3.919 GPM (gallons per minute) or 2722 MGD (million gallons per day), see Tables 1A and 1B. The small vent measurements were performed between 16:09 and 16:28 hours on September 29 and 11:03 and the cross-sectional vent measurements between 11:03 and 12:40 hours on September 30. The results for each of the individual vents are detailed below. Individual point velocity measurement periods of 60 seconds were used. A total of fifty-two (52) cross-sectional readings were made, see Figures 2(A,BL,BU,C,D), 3(A,BL,BU,C,D) and 4(A,BL,BU,C,D). The total cross-sectional area was calculated as 21.25 square feet. The point velocity readings ranged from -0.53 to 1.06 feet per second (fps), with an overall average station reading of 0.44 fps.

The estimated discharge of Geyser Springs Group Vent A on September 30, 2006 was 1.576 CFS. This result is also expressed as 707 GPM or 1.019 MGD, see Table 1A. Fifteen (15) readings were made, see Figures 2A, 3A and 4A. The total cross-sectional area was calculated as 8.28 square feet. The point velocity readings ranged from -0.53 to 0.44 feet per second (fps), with an overall average station reading of 0.22 fps.

The estimated discharge of Geyser Springs Group Vent B Upper on September 30, 2006 was 0.2 CFS. This result is also expressed as 90 GPM or 0.129 MGD, see Table 1A. Thirteen (13) readings were made, see Figures 2BU, 3BU and 4BU. The total cross-sectional area was

calculated as 2.14 square feet. The point velocity readings ranged from 0.17 to 0.61 feet per second (fps), with an overall average station reading of 0.41 fps.

The estimated discharge of Geyser Springs Group Vent B Lower on September 30, 2006 was 1.584 CFS. This result is also expressed as 711 GPM or 1.024 MGD, see Table 1A. Eight (8) readings were made, see Figures 2BL, 3BL and 4BL. The total cross-sectional area was calculated as 5.39 square feet. The point velocity readings ranged from 0.01 to 0.36 feet per second (fps), with an overall average station reading of 0.17 fps.

The estimated discharge of Geyser Springs Group Vent C on September 30, 2006 was 0.321 CFS. This result is also expressed as 144 GPM or 0.207 MGD, see Table 1A. Five (5) readings were made, see Figures 2C, 3C and 4C. The total cross-sectional area was calculated as 0.82 square feet. The point velocity readings ranged from 0.55 to 1.06 feet per second (fps), with an overall average station reading of 0.8 fps.

The estimated discharge of Geyser Springs Group Vent D on September 30, 2006 was 1.683 CFS. This result is also expressed as 755 GPM or 1.088 MGD, see Table 1A. Eleven (11) readings were made, see Figures 2D, 3D and 4D. The total cross-sectional area was calculated as 4.62 square feet. The point velocity readings ranged from 0.03 to 1.04 feet per second (fps), with an overall average station reading of 0.57 fps.

The estimated discharge of Geyser Springs Group Miscellaneous Vents on September 29, 2006 was 0.7 CFS. This result is also expressed as 316 GPM or 0.456 MGD, see Table 1B. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.24 to 1.13 feet per second (fps), with an overall average station reading of 0.56 fps. The approximate depth for the measurements was 15 to 18 feet. The measurements commenced at about 16:09 hours and were completed by 16:28 hours.

UNDERWATER DISCHARGE MEASUREMENT								
Location:	GEYSER SPRINGS GROUP			Date:	September 30, 2006		September 29, 2006	
	Silver Springs G	Group,		Time Start:	11:03		16:09	
	Marion County,	Florida		Time End:	12:40		16:28	
Personnel:	Personnel: Peter Butt, Mark Long				(X-Sec. Vents)		(Small Vents)	
Method:	Method: Grid within irregular conduit							
Instrument:	MMB2000 FLO-N	ATE in U/W case, s	ensor on support p	oles				
 Msmt. Periods:		60 seconds						(From
 Analysis Method: Surfer 8 with kriging							Table 1B)	
 Gevser Spring Total Discharge:		Vent A:	Vent B Upper:	Vent B Lower:	Vent C:	Vent D:	Small Vents:	
CFS	6.06		1.576	0.2	1.584	0.321	1.683	0.7
MGD	3.919		1.019	0.129	1.024	0.207	1.088	0.456
 GPM	2722	X-Sec. Vents:	707	90	711	144	755	316
Total Cross-sectio	nal Area (sq/ft):	21.25	8.28	2.14	5.39	0.82	4.62	n/a
 Avg. Station Point	Velocity (ft/sec):	0.44	0.22	0.17	0.41	0.80	0.57	(0.56)
 Cross-section Dep	oth (feet deep):		19-21	18-19	19	20	20-21	18-21
Velocity Reading by Station: (All velocity reading			ngs in feet per s	econd.)	•			
 Station #	Point Velocity	Station #	Point Velocity	Station #	Point Velocity	Station #	Point Velocity	
VENT A		VENT B Upper		VENT B Lower		VENT C		
1	0.44	1	0.01	1	0.39	1	0.83	
2	0.39	2	0.07	2	0.58	2	0.76	
3	0.31	3	0.06	3	0.6	3	0.79	
4	0.1	4	0.16	4	0.53	4	0.55	
5	0.2	5	0.35	5	0.61	5	1.06	
6	0.33	6	0.26	6	0.21			
7	0.24	7	0.36	7	0.54	VENT D		
8	0.42	8	0.12	8	0.26	1	0.46	
9	-0.53			9	0.29	2	0.76	
10	0.23			10	0.24	3	0.77	
11	0.09			11	0.17	4	1.04	
12	0.21			12	0.4	5	0.84	
13	0.15			13	0.53	6	0.08	
14	0.34					7	0.03	
15	0.36					8	0.63	
						9	0.65	
						10	0.78	
						11	0.27	

Table 1A. Discharge of Geyser Springs Group, Marion County, Florida on September 29 & 30, 2006. Data record and calculation of discharge measurement.

UNDERWATER	R DISCHARGE M	IEASUREMENT				
Location:	GEYSER SPR	INGS GROUP SM	ALL VENTS	Date:	September 29,	2006
	Silver Springs	Group,		Time Start:	16:09	
	Marion County	, Florida		Time End:	16:28	
Personnel:	Peter Butt, Mark	Long				
Method:	Vent Discharge (Capture Device	(0.49' Diameter			
Instrument:	MMB2000 FLO-	MATE in U/W case, sensor in vertical		pipe.		
Calculation Metho	od: Discharge = V :	x <i>pi</i> x r ²				
Measurement Periods:		60 seconds				
Geyser Spring	s Group Small \	/ents ESTIMATE	Discharge:			
All Small Vents:			Vent 1:	Vent 2:	Vent 3:	1
CFS	0.70		0.092	0.198	0.415	
MGD	0.456		0.059	0.128	0.268	
GPM	316		41	89	186	
		(Multipliers:)	(2)	(3)	(2)	
Geyser Spring	s Group Small \	/ents Measured I	Discharge:			
CFS	0.32		0.046	0.066	0.208	
MGD	0.206		0.030	0.043	0.134	
GPM	143	All Vents:	21	30	93	
Avg. Point Velocity (ft/sec): Vent Depth (feet deep): Velocity Readings:		0.56	0.24	0.35	1.10	
			15	15	18	
		(All velocity read				
		Vent 2		Vent 3		
West Vent		West Vent		South Vent		
Reading #	Point Velocity	Reading #	Point	Reading #	Point Velocity	
rtoading #		rtodding //	Velocity	rtoading //	I can't blocky	
1	0.25	1	0.35	1	1.13	
2	0.24	2	0.35	2	1.11	
3	0.24	3	0.35	3	1.06	
Average:	0.24	Average:	0.35	Average:	1.10	
Discharge:	0.046	Discharge:	0.066	Discharge:	0.208	
Multiplier:	2	Multiplier:	3	Multiplier:	2	
Est. Discharge:	0.092	Est. Discharge:	0.198	Est. Discharge:	0.415	

Table 1B. Discharge of Geyser Springs Group Small Vents, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Geyser Springs Group.

Figure 2A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 19 to 21-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 2BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 18 to 20-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Yaxis scales are shown in feet.

Figure 2BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 19-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 2C. Discharge measurement cross-section; Geyser Springs Group Vent C, Marion County, Florida, September 30, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 2D. Discharge measurement cross-section; Geyser Springs Group Vent D, Marion County, Florida, September 30, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20 to 21-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3C. Discharge measurement cross-section; Geyser Springs Group Vent C, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3D. Discharge measurement cross-section; Geyser Springs Group Vent D, Marion County, Florida, September 30, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2A. GEYSER SPRINGS GROUP, VENT A, SEPTEMBER 30, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\Geyser_A\Geyser_Vent_A_9-06.bln.grd	
Grid Size:	71 rows x 101 columns	
X Minimum:	0	
X Maximum:	5	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	3.5	
Y Spacing:	0.05	
Z Minimum:	-0.530000002622	
Z Maximum:	0.44651694257247	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	1.5755136003306
Simpson's Rule:	1.5756338953435
Simpson's 3/8 Rule:	1.5754395882871

CUT & FILL VOLUMES

Positive Volume [Cut]:1.6290435254362Negative Volume [Fill]:0.053529925105566Net Volume [Cut-Fill]:1.5755136003306 <<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:8.28 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:7.8597272106182Negative Planar Area [Fill]:0.41527278938182Blanked Planar Area:9.225Total Planar Area:17.5

Surface Areas

Positive Surface Area [Cut]:8.8593874031864Negative Surface Area [Fill]:0.65247574906328

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Gevser A\Gevser Vent A 9-06 SURFER XYZ T3A BLF.xls
X Column:	A
Y Column:	В
Z Column:	С
Data Counts	
Active Data:	258
Original Data:	258
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0
Univariate Statistics	

	Х	Y	Z
Minimum:	0.2	0.1	-0.53
25%-tile:	0.5375	0.9	0
Median:	1.95	1.9	0
75%-tile:	3.35	2.7	0
Maximum:	4.6	3.3	0.44
Midrange:	2.4	1.7	-0.045
Range:	4.4	3.2	0.97
Interquartile Range:	2.8125	1.8	0
Median Abs. Deviation:	1.4125	0.9	0
Mean:	2.0725764341085	1.769573120155	0.012713178294574
Trim Mean (10%):	2.0389045726496	1.7728626709402	0.00081196581196581
Standard Deviation:	1.4393965772601	1.012466824136	0.074882356705117
Variance:	2.0718625066282	1.025089069976	0.0056073673457124
Coef. of Variation:			5.8901365944879
Coef. of Skewness:			1.9758765408185

Inter-Variable Correlation

	Х	Y	Z	
X: Y·	1.000	-0.097	-0.005	
Z:		1.000	1.000	

Table 2A. Geyser Springs Group, September 30, 2006.

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	2.0718625066282	-0.14103021877686 1.025089069976	-0.00057383993750376 -0.0011790691244517 0.0056073673457124

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.00035862066997249	-0.0011995498849915	0.015579138276709
Standard Error:	0.0032727236619922	0.0046527423171716	0.012107401397244

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	-0.097 1.000	-0.626 0.734 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.000417996918633	309	
	0.00020899	9845931655	0.036849	
Residual:	255	1.4462827782752	0.00567169716	97065
Total:	257	1.4467007751938		

Coefficient of Multiple Determination (R^2): 0.00028893114996575

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.05	0
Median:	0.052201532544552	0
75%-tile:	0.056955470544979	0
Maximum:	0.70710678118655	0.53

Table 2A. Geyser Springs Group, September 30, 2006.

Midrange:	0.37855339059327 0.265	
Range:	0.65710678118655 0.53	
Interquartile Range:	0.006955470544979 0	
Median Abs. Deviation:	0.0022015325445526 0	
Moon	0.070025607064002.0.01220020222558	1
Mean:	0.070953097004095 0.01220950252538	1
Trim Mean (10%):	0.054640177246354 0.00059829059829	06
Standard Deviation:	0.083635808076405 0.06108961195375	6
Variance:	0.0069949483925933 0.0037319406886	6605
Coef. of Variation:	1.1790369523096 5.0035301219267	
Coef. of Skewness:	5.3813088304613 5.925215557905	
Poot Moon Square	0 10066686605608 0 06220773472557	Λ
Nooi Mean Square.	0.1090000000000000000000000000000000000	4 0
Mean Square:	0.012026821510562 0.00388100775193	8

Complete Spatial Randomness

Lambda:	18.323863636364
Clark and Evans:	0.60730011312083
Skellam:	357.24609571494

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 5.2E-007 Y Duplicate Tolerance: 3.8E-007 No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Caid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
G : 1 G'	06\Geyser_A\Geyser_Vent_A_9-06.grd
Grid Size:	/1 rows x 101 columns
Total Nodes:	/1/1
Filled Inodes:	/1/1
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	5
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	3.5
Y Spacing:	0.05
Grid Statistics	
7 Minimum:	-0.530000002622
Z 25%-tile:	-0.07971588178555
Z Median:	-0.0071902918605128
Z 75%-tile:	0 17845647968758
Z Maximum:	0.44651694257247
Z Midrange:	-0.041741528844863
Z Range:	0.97651694283467
Z Interquartile Range:	0.25817236147313
Z Median Abs. Deviation:	0.098336854431382
7 Mean	0.049755561733246
Z Trim Mean (10%):	0.041593290558128
Z Standard Deviation:	0.16690863656794
7 Variance	0.027858492960968
	0.027030172700700
Z Coef. of Variation:	3.3545724488608
Z Coef. of Skewness:	0.71298051338966
7 Deet Meet C	0.17416600050027
Z Koot Mean Square:	0.1/41008993083/
Z Mean Square:	0.030334108884339

TABLE 2B(U). GEYSER SPRINGS GROUP, VENT B UPPER, SEPTEMBER 30, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\Geyser_BU\Geyser_Vent_BU_9-06.bln.grd	
Grid Size:	61 rows x 61 columns	
X Minimum:	0	
X Maximum:	3	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	3	
Y Spacing:	0.05	
Z Minimum:	-1.9054065339419E-009	
Z Maximum:	0.35999999913212	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.19985692106969
Simpson's Rule:	0.19974981921935
Simpson's 3/8 Rule:	0.19998590399039

CUT & FILL VOLUMES

Positive Volume [Cut]:0.19985692107422Negative Volume [Fil]:4.5287054924879E-012Net Volume [Cut-Fil]:0.19985692106969 <<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:2.14 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:2.14375Negative Planar Area [Fill]:7.0528941581705E-018Blanked Planar Area:6.85625Total Planar Area:9

Surface Areas Positive Surface Area [Cut]: 2.4478130435977

Negative Surface Area [Fill]: 1.1262859755052E-017

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Geyser_BU\Geyser Vent BU 9-06 SURFER XYZ T3B Upper BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts Active Data: Original Data: Excluded Data: Deleted Duplicates:	157 157 0 0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.45	0.2	0
25%-tile:	0.8	0.6	0
Median:	1.31	1.075	0
75%-tile:	1.95	1.65	0
Maximum:	2.9	2.5	0.36
Midrange:	1.675	1.35	0.18
Range:	2.45	2.3	0.36
Interquartile Range:	1.15	1.05	0
Median Abs. Deviation:	0.59	0.525	0
Mean:	1.4186300636943	1.126592388535	0.0088535031847134
Trim Mean (10%):	1.3959784965035	1.1089161188811	6.993006993007E-005
Standard Deviation:	0.709863046854	0.66203433052775	0.04761801501501
Variance:	0.50390554528885	0.43828945479732	0.0022674753539697
Coef. of Variation:			5.378437667163
Coef. of Skewness:			6.1307486390296

Inter-Variable Correlation

X	Y	Z
1.000	0.003 1.000	0.090 -0.001

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.50390554528885	0.001282723827554 0.43828945479732	9 0.0030261414742992 -3.7983567284677E-005 0.0022674753539697

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	$\begin{array}{c} 0.0060056397737444 \\ 0.0053838151069798 \end{array}$	-0.00010423966176253	0.00045115765948667
Standard Error:		0.0057727692044199	0.01072215052142

Inter-Parameter Correlations

	А	В	С	
A: B: C:	1.000	0.003 1.000	-0.711 0.605 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0028539263739378	3	
	0.0014269631869689	9	0.62228	
Residual:	154	0.35313970419931	0.0022931149623332	2
Total:	156	0.35599363057325		

Coefficient of Multiple Determination (R^2): 0.0080167905513989

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.02	0
25%-tile:	0.050249378105604	0
Median:	0.050990195135928	0
75%-tile:	0.055901699437495	0
Maximum:	0.4770105475773	0.36

Midrange:	0.24850527378865 0.18
Range:	0.4570105475773 0.36
Interquartile Range:	0.0056523213318903 0
Median Abs. Deviation:	0.00099019513592785 0
Mean:	0.062756138216994 0.0087898089171975
Trim Mean (10%):	0.053297753429381 6.993006993007E-005
Standard Deviation:	0.051158168998328 0.047542810992132
Variance:	0.0026171582552615 0.0022603188770336
Coef. of Variation:	0.81518988344114 5.4088560331628
Coef. of Skewness:	5.4818051280421 6.1582867328558
Root Mean Square:	0.080965987545215 0.048348522395564
Mean Square:	0.006555491139172 0.0023375796178344

Complete Spatial Randomness

Lambda:	27.861579414374
Clark and Evans:	0.66250486611138
Skellam:	180.17332259924

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 2.9E-007 Y Duplicate Tolerance: 2.7E-007 No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Output Grid	
Grid File Name:	Y:\2. PROJECTS\KARSTENVIRONMENTAL\Silver Springs\Sep
	06\Geyser_BU\Geyser_Vent_BU_9-06.grd
Grid Size:	61 rows x 61 columns
Total Nodes:	3721
Filled Nodes:	3721
Blanked Nodes:	0
Grid Geometry	
X Minimum	0
X Maximum:	3
X Spacing	0.05
A spacing.	0.05
Y Minimum:	0
Y Maximum:	3
Y Spacing:	0.05
C	
	0 12002248676141
Z Minimum: Z 250(tile:	-0.13093348070141
	-0.079300840378139
Z Median:	-0.01219014680448
Z/5%-tile:	1.3390852870998E-009
Z Maximum:	0.35999999913212
Z Midrange:	0.11453325618535
Z Range:	0.49093348589354
Z Interguartile Range:	0.079360847717244
Z Median Abs. Deviation:	0.041149375777078
Z Mean:	-0.016175827589535
Z Trim Mean (10%):	-0.02315512867045
Z Standard Deviation:	0.07987902576432
Z Variance:	0.0063806587570569
7 Coef of Variation	-1
7 Coef of Skewness	1 2647909491083
	1.207/2027/1003
Z Root Mean Square:	0.081500405859501
Z Mean Square:	0.0066423161552633
-	

TABLE 2B(L).GEYSER SPRINGS GROUP, VENT B LOWER, SEPTEMBER 30, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\Geyser_BL\Geyser_Vent_BL_9-06.bln.grd	
Grid Size:	81 rows x 71 columns	
X Minimum:	0	
X Maximum:	3.5	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	4	
Y Spacing:	0.05	
Z Minimum:	-1.927751569486E-009	
Z Maximum:	0.6100000037419	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	1.5844231016445
Simpson's Rule:	1.5843335206557
Simpson's 3/8 Rule:	1.5846051838843

CUT & FILL VOLUMES

Positive Volume [Cut]:1.5844231016653Negative Volume [Fil]:2.0790231951731E-011Net Volume [Cut-Fil]:1.5844231016445 <<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume.Please refer to report text.)

AREAS

Planar Areas

Operational Planar Area: 5.39 <<<<Total Cross-section Area in Square Feet

(Calculated using blanking file due to the presence of negative velocity values;
Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)
Positive Planar Area [Cut]: 5.3924999991292
Negative Planar Area [Fill]: 8.7082175107482E-010
Blanked Planar Area: 8.6075
Total Planar Area: 14

Surface Areas

Positive Surface Area [Cut]: 6.6653471641368 Negative Surface Area [Fill]: 1.030662966842E-009

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Geyser_BL\Geyser Vent BL 9-06 SURFER XYZ T3B Lower BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	184
Original Data:	184
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.5	0.3	0
25%-tile:	1.15	1.1	0
Median:	1.9	2.05	0
75%-tile:	2.65	3.05	0
Maximum:	3.1	3.5	0.61
Midrange:	1.8	1.9	0.305
Range:	2.6	3.2	0.61
Interquartile Range:	1.5	1.95	0
Median Abs. Deviation:	0.75	1	0
Mean:	1.8648269293478	2.0092394293478	0.029076086956522
Trim Mean (10%):	1.8708925	2.0230726204819	0.0053012048192771
Standard Deviation:	0.82718438382107	1.0607247329431	0.11327014013215
Variance:	0.68423400483745	1.1251369590773	0.012830124645558
Coef. of Variation:			3.8956459409937
Coef. of Skewness:			4.0244567515591

Inter-Variable Correlation

Х	Y	Z
1.000	0.014 1.000	0.018 -0.020
		1.000

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.68423400483745	0.012165669318628 1.1251369590773	0.0016422604782018 -0.0024153855815808 0.012830124645558

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	$\begin{array}{c} 0.0024387824886283\\ 0.010175573473071 \end{array}$	-0.0021731176663887	0.028894493396826
Standard Error:		0.0079352118527437	0.02601390437717

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.014 1.000	-0.721 0.603 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression:	2	0.0017027421041043	3	
-	0.000851371052052	13	0.065322	
Residual:	181	2.3590401926785	0.013033371230268	
Total:	183	2.3607429347826		

Coefficient of Multiple Determination (R^2): 0.00072127383249421

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.050990195135928	0
Median:	0.052704100646914	0
75%-tile:	0.058309518948453	0

Maximum:	0.5	0.54
Midrange:	0.275	0.27
Range:	0.45	0.54
Interquartile Range:	0.007319323812525	1 0
Median Abs. Deviation:	0.002704100646913	5 0

Mean:	0.07599684339297	0.016521739130435
Trim Mean (10%):	0.057295562163537	0.0013253012048193
Standard Deviation:	0.087344080302385	0.074109712773767
Variance:	0.0076289883638696	5 0.0054922495274102
Coef. of Variation:	1.1493119503759	4.4855878784122
Coef. of Skewness:	4.1187194179348	5.2811217814352
Root Mean Square:	0.11577784144458	0.07592902864718
Mean Square:	0.013404508569565	0.0057652173913043

Complete Spatial Randomness

Lambda:	22.115384615385
Clark and Evans:	0.71478066762577
Skellam:	342.72286903585

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	3E-007
Y Duplicate Tolerance:	3.8E-007
No duplicate data were for	ınd.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Output Grid	
Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\Geyser_BL\Geyser_Vent_BL_9-06.grd
Grid Size:	81 rows x 71 columns
Total Nodes:	5751
Filled Nodes:	5751
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	3.5
X Spacing:	0.05
1 0	
Y Minimum:	0
Y Maximum:	4
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-0.34171924854028
Z 25%-tile:	-0.15023084809837
Z Median:	-0.066224672493005
Z 75%-tile:	0.19440943250605
Z Maximum:	0.6100000037419
Z Midrange:	0 13414037591696
Z Range	0 95171924891446
Z Interquartile Range	0 34464028060442
Z Median Abs Deviation:	0.12238619456149
	0.12230017130117
Z Mean:	0.024549986585448
Z Trim Mean (10%):	0.012579268010808
Z Standard Deviation:	0.24129063769018
Z Variance:	0.058221171836932
Z Coef of Variation	9 8285445839388
Z Coef. of Skewness:	0.82245798729235
7 Poot Moon Squares	0.24252622475880
Z Noor Square:	0.2423033473007
Z mean square:	0.0300230/30/82//

TABLE 2C. GEYSER SPRINGS GROUP, VENT C, SEPTEMBER 30, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\Geyser_C\Geyser_Vent_C_9-06.bln.grd	
Grid Size:	69 rows x 65 columns	
X Minimum:	0	
X Maximum:	1.6	
X Spacing:	0.025	
Y Minimum:	0	
Y Maximum:	1.7	
Y Spacing:	0.025	
Z Minimum:	-1.3503103080126E-009	
Z Maximum:	1.0599999968131	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	0.32148228538414
Simpson's Rule:	0.32148029291413
Simpson's 3/8 Rule:	0.32151520130326

CUT & FILL VOLUMES

Positive Volume [Cut]:0.32148228538493Negative Volume [Fill]:7.9281079130205E-013Net Volume [Cut-Fill]:0.32148228538414 <<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume.Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:0.82 <<<<Total Cross-section Area in Square Feet</td>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:0.8196875Negative Planar Area [Fill]:3.3786686758949E-018Blanked Planar Area:1.9003125Total Planar Area:2.72

Surface Areas

Positive Surface Area [Cut]:	2.0589030319955
Negative Surface Area [Fill]:	7.456068009908E-018

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\Geyser_C\Geyser Vent C 9-06 SURFER XYZ T3C BLF.xls
X Column:	А
Y Column:	В
Z Column:	С
Data Counts	
Active Data:	70
Original Data:	70
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0
Univariate Statistics	

	X	Y	Z
Minimum:	0.4	0.4	0
25%-tile:	0.48333	0.6	0
Median:	0.85	1	0
75%-tile:	1.18182	1.3	0
Maximum:	1.5	1.55	1.06
Midrange:	0.95	0.975	0.53
Range:	1.1	1.15	1.06
Interguartile Range:	0.69849	0.7	0
Median Abs. Deviation:	0.36112	0.4	0
Mean:	0.85464107142857	0.96214285714286	0.057
Trim Mean (10%):	0.84659609375	0.96140625	0.02046875
Standard Deviation:	0.3562931183088	0.37798674525946	0.21007719669547
Variance:	0.12694478615421	0.14287397959184	0.044132428571429
Coef. of Variation:			3.6855648543065
Coef. of Skewness:			3.5747569996417

Inter-Variable Correlation

	Х	Y	Z	
X:	1.000	0.045	0.109	
Y:		1.000	0.037	
Z:			1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	0.12694478615421	0.0060866619897959 0.14287397959184	9 0.0081426017857143 0.0029078571428571 0.044132428571429

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.063296299575166	$\begin{array}{c} 0.017656076840197\\ 0.067530868525308\end{array}$	-0.014083285503345
Standard Error:	0.07164262200625		0.090891442276611

Inter-Parameter Correlations

A	В	С	
A: 1.000 B: C:	0.045 1.000	-0.641 0.684 1.000	

ANOVA Table

Source	df	Sum of Squares Mean Square F
Regression: Residual:	2 67	0.039671653777312 0.019835826888656 0.4358 3.0495983462227 0.045516393227204
Total:	69	3.08927

Coefficient of Multiple Determination (R^2): 0.012841756718355

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.050689961777456	0
Median:	0.051219450407047	0
75%-tile:	0.064031242374328	0
Maximum:	0.25	0.79

Midrange:	0.15	0.395
Range:	0.2	0.79
Interquartile Range:	0.013341280596872	0
Median Abs. Deviation:	0.0012194504070473	30

Mean:	0.066044395320757 0.037571428571429
Trim Mean (10%):	0.058912306810746 0.00828125
Standard Deviation:	0.041208590426389 0.14872251932744
Variance:	0.0016981479249299 0.022118387755102
Coef. of Variation: Coef. of Skewness:	0.623952876337983.95839405054033.52056737606574.1661984884886
Root Mean Square:	0.077846066555827 0.15339491516996
Mean Square:	0.0060600100782143 0.02353

Complete Spatial Randomness

Lambda:	55.335968379447
Clark and Evans:	0.98258407516029
Skellam:	147.48870734822

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:FirstX Duplicate Tolerance:1.3E-007Y Duplicate Tolerance:1.3E-007No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Geyser C\Geyser Vent C 9-06.grd
Grid Size:	69 rows x 65 columns
Total Nodes:	4485
Filled Nodes:	4485
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	1.6
X Spacing:	0.025
Y Minimum:	0
Y Maximum:	1.7
Y Spacing:	0.025
Grid Statistics	
Z Minimum:	-0.44711523250258
Z 25%-tile:	-0.15807341730339
Z Median:	-0.085294141159168
Z 75%-tile:	0.070066669512005
Z Maximum:	1.0599999968131
Z Midrange:	0.30644238215524
Z Range:	1.5071152293156
Z Interquartile Range:	0.22814008681539
Z Median Abs. Deviation:	0.091272102443869
Z Mean:	0.016170425325832
Z Trim Mean (10%):	-0.011457911947425
Z Standard Deviation:	0.29852945517153
Z Variance:	0.089119835605008
Z Coef. of Variation:	18.461447312374
Z Coef. of Skewness:	1.5757359881958
Z Root Mean Square:	0.29896708558005
Z Mean Square:	0.089381318260226

TABLE 2D. GEYSER SPRINGS GROUP, VENT D, SEPTEMBER 30, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\Geyser_D\Geyser_Vent_D_9-06.bln.grd	
Grid Size:	61 rows x 71 columns	
X Minimum:	0	
X Maximum:	3.5	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	3	
Y Spacing:	0.05	
Z Minimum:	-1.3449608093907E-009	
Z Maximum:	1.0399999980003	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	1.6828187454261
Simpson's Rule:	1.6823001350709
Simpson's 3/8 Rule:	1.6824713497665

CUT & FILL VOLUMES

Positive Volume [Cut]:1.6828187454307Negative Volume [Fill]:4.6302506469873E-012Net Volume [Cut-Fill]:1.682818745426 <<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:4.62 <<<<Total Cross-section Area in Square Feet</td>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:4.6237499998559Negative Planar Area [Fill]:1.4412154077208E-010Blanked Planar Area:5.87625Total Planar Area:10.5

Surface Areas

Positive Surface Area [Cut]:	6.925795774864
Negative Surface Area [Fill]:	1.5307341981236E-010

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Gevser_D\Gevser Vent D 9-06 SURFER XYZ T3D BLF xls
X Column:	A
Y Column:	В
Z Column:	С
Data Counts	
Active Data:	183
Original Data:	183
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0
Univariate Statistics	

	Х	Y	Ζ
Minimum:	0.099995	0.3	0
25%-tile:	0.4	0.76	0
Median:	1.4	1.5	0
75%-tile:	2.45	2.25	0
Maximum:	3.4	2.6	1.04
Midrange:	1.7499975	1.45	0.52
Range:	3.300005	2.3	1.04
Interquartile Range:	2.05	1.49	0
Median Abs. Deviation:	1	0.75	0
Mean:	1.4651645355191	1.503825136612	0.03448087431694
Trim Mean (10%):	1.4398152424242	1.507196969697	0.0006666666666666667
Standard Deviation:	1.0723770083162	0.73040398341304	0.1561092108102
Variance:	1.1499924479652	0.53348997898564	0.024370085699782
Coef. of Variation:			4.5274145131958
Coef. of Skewness:			4.6840149182031

Inter-Variable Correlation

	Х	Y	Z	
X: Y:	1.000	-0.060 1.000	0.047 0.027	
Z:			1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	1.1499924479652	-0.04689110751291 0.53348997898564	50.0077858567260892 0.0030894174206456 0.024370085699782

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	0.007031682825096	$\begin{array}{c} 0.0064090066368162\\ 0.015934686105977\end{array}$	0.014540276735433
Standard Error:	0.010853233625846		0.031744139351613

Inter-Parameter Correlations

	A	В	С
A: B: C:	1.000	-0.060 1.000	-0.546 0.785 1.000

ANOVA Table

Source	df	Sum of Squares Mean Square F	
Regression:	2	0.013642242234334 0.0068211211171669	0.27615
Residual:	180	4.4460834408258 0.024700463560143	
Total:	182	4.4597256830601	

Coefficient of Multiple Determination (R^2): 0.0030589868534185

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.05	0
Median:	0.052201532544552	0
75%-tile:	0.055901699437495	0
Maximum:	0.5	0.78

Midrange:	0.275	0.39
Range:	0.45	0.78
Interquartile Range:	0.005901699437494	5 0
Median Abs. Deviation:	0.0022015325445524	4 0
Mean:	0.071667838362829	0.023060109289617
Trim Mean (10%):	0.054369306915191	0.0007878787878787879
Standard Deviation:	0.079019581885201	0.10725808563144
Variance:	0.006244094321312	0.011504296933321
Coef. of Variation:	1.1025807906352	4.651239258425
Coef. of Skewness:	4.3762152082884	5.2009602304154

Root Mean Square:0.106678832843790.10970900406881Mean Square:0.0113803733769130.01203606557377

Complete Spatial Randomness

Lambda:	24.110635405493
Clark and Evans:	0.703815179292
Skellam:	315.49764721575

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First	
X Duplicate Tolerance:	3.9E-007	
Y Duplicate Tolerance:	2.7E-007	
No duplicate data were found.		

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:1Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Output Grid	
Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\Geyser_D\Geyser_Vent_D_9-06.grd
Grid Size:	61 rows x 71 columns
Total Nodes:	4331
Filled Nodes:	4331
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	3.5
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	3
Y Spacing:	0.05
Crid Statistics	
7 Minimum:	-0 39917967762178
$7.25\%_{tile}$	-0.19268725024338
Z 25 % - the.	0.01468282220243365
775% tile:	0.22007337660654
Z / 5 /0-tile. Z Movimum:	1 020000000000
	1.03777777800003
Z Midrange:	0.32041016018927
Z Range:	1.4391796756221
Z Interguartile Range:	0.42266062693992
Z Median Abs. Deviation:	0.19474436383401
Z Mean [.]	0 060346854061225
Z Trim Mean (10%):	0 0394891888478
Z Standard Deviation:	0 33240723939151
Z Variance:	0.11049457279988
7 Coef of Variation	5 5082778474958
Z Coef. of Skewness:	0.9528661930389
7 Doot Moon Saugra	0 2279 4066509764
Z KOOL Wean Square:	0.11412621550407
Z Mean Square:	0.11413031339497

Figure 4A. Discharge measurement cross-section; Geyser Springs Group Vent A, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4BU. Discharge measurement cross-section; Geyser Springs Group Vent B Upper, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4BL. Discharge measurement cross-section; Geyser Springs Group Vent B Lower, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4C. Discharge measurement cross-section; Geyser Springs Group Vent C, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4D. Discharge measurement cross-section; Geyser Springs Group Vent D, Marion County, Florida, September 30, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Table 3A. Geyser Springs Group Vent A XYZ Grid Data, September 30, 2006.							
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot		
1	0.75	0.44	1	20	15		
1	1.75	0.39	2	20	35		
1	2.75	0.31	3	20	55		
1	3.15	0.1	4	20	63		
0.5	2	0.2	5	10	40		
1.5	2	0.33	6	30	40		
2	0.5	0.24	7	40	10		
2	1.5	0.42	8	40	30		
2	2.5	-0.53	9	40	50		
2.5	2	0.23	10	50	40		
3	1.2	0.09	11	60	24		
3	2.2	0.21	12	60	44		
3	2.7	0.15	13	60	54		
3.5	2	0.34	14	70	40		
4	2	0.36	15	80	40		
0.2	3.3	0	A	4	66		
1	3.3	0	В	20	66		
1.5	2.7	0	C	30	54		
2	2.65	0	D	40	53		
2.5	2.8	0	E	50	56		
3	2.8	0	F	60	56		
3.2	2.7	0	G	64	54		
3.5	2.5	0	Н	70	50		
4	2.35	0		80	47		
4.1	2.2	0	J	82	44		
4.35	2	0	K	87	40		
4.5	2	0	L	90	40		
4.6	1.7	0	М	92	34		
4.5	1.3	0	N	90	26		
3.9	1.2	0	0	78	24		
3.7	0.9	0	Р	74	18		
3	0.9	0	Q	60	18		
2.5	0.4	0	R	50	8		
2	0.35	0	S	40	7		
1.5	0.1	0	Т	30	2		
1	0.35	0	U	20	7		
0.55	0.35	0	V	11	7		
0.5	0.75	0	W	10	15		
0.4	1.25	0	X	8	25		
0.2	1.75	0	Y	4	35		
0.4	2	0	Z	8	40		
0.5	2.25	0	AA	10	45		
0.5	2.75	0	BB	10	55		
0.25	3.3	0	A1	5	66		
0.3	3.3	0	A2	6	66		

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.35	3.3	0	A3	7	66
0.4	3.3	0	A4	8	66
0.45	3.3	0	A5	9	66
0.5	3.3	0	A6	10	66
0.55	3.3	0	A7	11	66
0.6	3.3	0	A8	12	66
0.65	3.3	0	A9	13	66
0.7	3.3	0	A10	14	66
0.75	3.3	0	A11	15	66
0.8	3.3	0	A12	16	66
0.85	3.3	0	A13	17	66
0.9	3.3	0	A14	18	66
0.95	3.3	0	A15	19	66
1.04167	3.25	0	B1	20.8333	65
1.08333	3.2	0	B2	21.6666	64
1.125	3.15	0	B3	22.4999	63
1.16666	3.1	0	B4	23.3332	62
1.20833	3.05	0	B5	24.1665	61
1.24999	3	0	B6	24.9998	60
1.29166	2.95	0	B7	25.8331	59
1.33332	2.9	0	B8	26.6664	58
1.37499	2.85	0	B9	27.4997	57
1.41665	2.8	0	B10	28.333	56
1.45832	2.75	0	B11	29.1663	55
1.55	2.695	0	C1	31	53.9
1.6	2.69	0	C2	32	53.8
1.65	2.685	0	C3	33	53.7
1.7	2.68	0	C4	34	53.6
1.75	2.675	0	C5	35	53.5
1.8	2.67	0	C6	36	53.4
1.85	2.665	0	C7	37	53.3
1.9	2.66	0	C8	38	53.2
1.95	2.655	0	C9	39	53.1
_			_		
2.05	2.665	0	D1	41	53.3
2.1	2.68	0	D2	42	53.6
2.15	2.695	0	D3	43	53.9
2.2	2.71	0	D4	44	54.2
2.25	2.725	0	D5	45	54.5
2.3	2.74	0	D6	46	54.8
2.35	2.755	0	D7	47	55.1
2.4	2.77	0	D8	48	55.4
2.45	2.785	0	D9	49	55.7
2.55	2.8	0	E1	51	56
2.6	2.8	0	E2	52	56
2.65	2.8	0	E3	53	56

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.7	2.8	0	E4	54	56
2.75	2.8	0	E5	55	56
2.8	2.8	0	E6	56	56
2.85	2.8	0	E7	57	56
2.9	2.8	0	E8	58	56
2.95	2.8	0	E9	59	56
3.05	2.775	0	F1	61	55.5
3.1	2.75	0	F2	62	55
3.15	2.725	0	F3	63	54.5
3.25	2.66667	0	G1	65	53.3333
3.3	2.63333	0	G2	66	52.6666
3.35	2.6	0	G3	67	51.9999
3.4	2.56666	0	G4	68	51.3332
3.45	2.53333	0	G5	69	50.6665
3.55	2.485	0	H1	71	49.7
3.6	2.47	0	H2	72	49.4
3.65	2.455	0	H3	73	49.1
3.7	2.44	0	H4	74	48.8
3.75	2.425	0	H5	75	48.5
3.8	2.41	0	H6	76	48.2
3.85	2.395	0	H7	77	47.9
3.9	2.38	0	H8	78	47.6
3.95	2.365	0	H9	79	47.3
4.03334	2.3	0	l1	80.6667	46
4.06667	2.25	0	12	81.3334	45
4.15	2.16	0	J1	83	43.2
4.2	2.12	0	J2	84	42.4
4.25	2.08	0	J3	85	41.6
4.3	2.04	0	J4	86	40.8
4.4	2	0	K1	88	40
4.45	2	0	K2	89	40
4.51667	1.95	0	L1	90.3333	39
4.53333	1.9	0	L2	90.6666	38
4.55	1.85	0	L3	90.9999	37
4.56666	1.8	0	L4	91.3332	36
4.58333	1.75	0	L5	91.6665	35
4.5875	1.65	0	M1	91.75	33
4.575	1.6	0	M2	91.5	32
4.5625	1.55	0	M3	91.25	31
4.55	1.5	0	M4	91	30
4.5375	1.45	0	M5	90.75	29

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4.525	1.4	0	M6	90.5	28
4.5125	1.35	0	M7	90.25	27
4.45	1.29167	0	N1	89	25.8333
4.4	1.28333	0	N2	88	25.6666
4.35	1.275	0	N3	87	25.4999
4.3	1.26666	0	N4	86	25.3332
4.25	1.25833	0	N5	85	25.1665
4.2	1.24999	0	N6	84	24.9998
4.15	1.24166	0	N7	83	24.8331
4.1	1.23332	0	N8	82	24.6664
4.05	1.22499	0	N9	81	24.4997
4	1.21665	0	N10	80	24.333
3.95	1.20832	0	N11	79	24.1663
3.86667	1.15	0	01	77.3333	23
3.83333	1.1	0	O2	76.6666	22
3.8	1.05	0	O3	75.9999	21
3.76666	1	0	O4	75.3332	20
3.73333	0.95	0	O5	74.6665	19
3.65	0.9	0	P1	73	18
3.6	0.9	0	P2	72	18
3.55	0.9	0	P3	71	18
3.5	0.9	0	P4	70	18
3.45	0.9	0	P5	69	18
3.4	0.9	0	P6	68	18
3.35	0.9	0	P7	67	18
3.3	0.9	0	P8	66	18
3.25	0.9	0	P9	65	18
3.2	0.9	0	P10	64	18
3.15	0.9	0	P11	63	18
3.1	0.9	0	P12	62	18
3.05	0.9	0	P13	61	18
2.95	0.85	0	Q1	59	17
2.9	0.8	0	Q2	58	16
2.85	0.75	0	Q3	57	15
2.8	0.7	0	Q4	56	14
2.75	0.65	0	Q5	55	13
2.7	0.6	0	Q6	54	12
2.65	0.55	0	Q7	53	11
2.6	0.5	0	Q8	52	10
2.55	0.45	0	Q9	51	9
2.45	0.395	0	R1	49	7.9
2.4	0.39	0	R2	48	7.8
2.35	0.385	0	R3	47	7.7
2.3	0.38	0	R4	46	7.6

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.25	0.375	0	R5	45	7.5
2.2	0.37	0	R6	44	7.4
2.15	0.365	0	R7	43	7.3
2.1	0.36	0	R8	42	7.2
2.05	0.355	0	R9	41	7.1
1.95	0.325	0	S1	39	6.5
1.9	0.3	0	S2	38	6
1.85	0.275	0	S3	37	5.5
1.8	0.25	0	S4	36	5
1.75	0.225	0	S5	35	4.5
1.7	0.2	0	S6	34	4
1.65	0.175	0	S7	33	3.5
1.6	0.15	0	S8	32	3
1.55	0.125	0	S9	31	2.5
1.45	0.125	0	T1	29	2.5
1.4	0.15	0	T2	28	3
1.35	0.175	0	Т3	27	3.5
1.3	0.2	0	T4	26	4
1.25	0.225	0	Т5	25	4.5
1.2	0.25	0	Т6	24	5
1.15	0.275	0	T7	23	5.5
1.1	0.3	0	Т8	22	6
1.05	0.325	0	Т9	21	6.5
0.95	0.35	0	U1	19	7
0.9	0.35	0	U2	18	7
0.85	0.35	0	U3	17	7
0.8	0.35	0	U4	16	7
0.75	0.35	0	U5	15	7
0.7	0.35	0	U6	14	7
0.65	0.35	0	U7	13	7
0.6	0.35	0	U8	12	7
0.54375	0.4	0	V1	10.875	8
0.5375	0.45	0	V2	10.75	9
0.53125	0.5	0	V3	10.625	10
0.525	0.55	0	V4	10.5	11
0.51875	0.6	0	V5	10.375	12
0.5125	0.65	0	V6	10.25	13
0.50625	0.7	0	V7	10.125	14
					4.2
0.49	0.8	0	W1	9.8	16
0.48	0.85	0	W2	9.6	17
0.47	0.9	0	W3	9.4	18
0.46	0.95	0	W4	9.2	19
0.45	1	0	W5	9	20
0.44	1.05	0	W6	8.8	21

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.43	1.1	0	W7	8.6	22
0.42	1.15	0	W8	8.4	23
0.41	1.2	0	W9	8.2	24
0.38	1.3	0	X1	7.6	26
0.36	1.35	0	X2	7.2	27
0.34	1.4	0	X3	6.8	28
0.32	1.45	0	X4	6.4	29
0.3	1.5	0	X5	6	30
0.28	1.55	0	X6	5.6	31
0.26	1.6	0	X7	5.2	32
0.24	1.65	0	X8	4.8	33
0.22	1.7	0	X9	4.4	34
0.24	1.8	0	Y1	4.8	36
0.28	1.85	0	Y2	5.6	37
0.32	1.9	0	Y3	6.4	38
0.36	1.95	0	Y4	7.2	39
0.42	2.05	0	Z1	8.4	41
0.44	2.1	0	Z2	8.8	42
0.46	2.15	0	Z3	9.2	43
0.48	2.2	0	Z4	9.6	44
0.5	2.3	0	AA1	10	46
0.5	2.35	0	AA2	10	47
0.5	2.4	0	AA3	10	48
0.5	2.45	0	AA4	10	49
0.5	2.5	0	AA5	10	50
0.5	2.55	0	AA6	10	51
0.5	2.6	0	AA7	10	52
0.5	2.65	0	AA8	10	53
0.5	2.7	0	AA9	10	54
0.47273	2.8	0	BB1	9.4545	56
0.44545	2.85	0	BB2	8.909	57
0.41818	2.9	0	BB3	8.3635	58
0.3909	2.95	0	BB4	7.818	59
0.36363	3	0	BB5	7.2725	60
0.33635	3.05	0	BB6	6.727	61
0.30908	3.1	0	BB7	6.1815	62
0.2818	3.15	0	BB8	5.636	63
0.25453	3.2	0	BB9	5.0905	64
0.22725	3.25	0	BB10	4.545	65

Table 3B Upper. Geyser Springs Group Vent B Upper XYZ Grid Data, September 30, 2006.					
X	X	70/1 20		N DL /	X DL (
X	Ŷ	Z (Velocity)	Station Name	X Plot	Y Plot
0.7	1	0.01	1	14	20
1	1	0.07	2	20	20
1.25	0.5	0.06	3	25	10
1.25	1.5	0.16	4	25	30
1.5	1	0.35	5	30	20
2	1	0.26	6	40	20
2.5	1	0.36	7	50	20
1.25	2	0.12	8	25	40
			•	4.0	
0.5	1.5	0	<u>A</u>	10	30
0.7	1.7	0	В	14	34
1	1.8	0	C	20	36
1.15	2	0	D	23	40
1.25	2.5	0	E	25	50
1.35	2	0	F	27	40
1.5	1.55	0	G	30	31
1.6	1.5	0	Н	32	30
2	1.25	0	I	40	25
2.5	1.2	0	J	50	24
2.9	1	0	K	58	20
2.5	0.8	0	L	50	16
2	0.7	0	М	40	14
1.65	0.5	0	N	33	10
1.5	0.2	0	0	30	4
1.45	0.2	0	Р	29	4
1.25	0.2	0	Q	25	4
1	0.2	0	R	20	4
0.7	0.2	0	S	14	4
0.45	0.2	0	Т	9	4
0.55	0.5	0	U	11	10
0.5	1	0	V	10	20
0.55	1.55	0	A1	11	31
0.6	1.6	0	A2	12	32
0.65	1.65	0	A3	13	33
0.75	1.71667	0	B1	15	34.3333
0.8	1.73333	0	B2	16	34.6666
0.85	1.75	0	B3	17	34.9999
0.9	1.76666	0	B4	18	35.3332
0.95	1.78333	0	B5	19	35.6665
1.0375	1.85	0	C1	20.75	37
1.075	1.9	0	C2	21.5	38
1.1125	1.95	0	C3	22.25	39
1.16	2.05	0	D1	23.2	41

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.17	2.1	0	D2	23.4	42
1.18	2.15	0	D3	23.6	43
1.19	2.2	0	D4	23.8	44
1.2	2.25	0	D5	24	45
1.21	2.3	0	D6	24.2	46
1.22	2.35	0	D7	24.4	47
1.23	2.4	0	D8	24.6	48
1.24	2.45	0	D9	24.8	49
1.26	2.45	0	E1	25.2	49
1.27	2.4	0	E2	25.4	48
1.28	2.35	0	E3	25.6	47
1.29	2.3	0	E4	25.8	46
1.3	2.25	0	E5	26	45
1.31	2.2	0	E6	26.2	44
1.32	2.15	0	E7	26.4	43
1.33	2.1	0	E8	26.6	42
1.34	2.05	0	E9	26.8	41
1.36667	1.95	0	F1	27.3333	39
1.38333	1.9	0	F2	27.6666	38
1.4	1.85	0	F3	27.9999	37
1.41666	1.8	0	F4	28.3332	36
1.43333	1.75	0	F5	28.6665	35
1.44999	1.7	0	F6	28.9998	34
1.46666	1.65	0	F7	29.3331	33
1.48332	1.6	0	F8	29.6664	32
1.55	1.525	0	G1	31	30.5
1.65	1.46875	0	H1	33	29.375
1.7	1.4375	0	H2	34	28.75
1.75	1.40625	0	H3	35	28.125
1.8	1.375	0	H4	36	27.5
1.85	1.34375	0	H5	37	26.875
1.9	1.3125	0	H6	38	26.25
1.95	1.28125	0	H7	39	25.625
2.05	1.245	0	l1	41	24.9
2.1	1.24	0	12	42	24.8
2.15	1.235	0	13	43	24.7
2.2	1.23	0	14	44	24.6
2.25	1.225	0	15	45	24.5
2.3	1.22	0	16	46	24.4
2.35	1.215	0	17	47	24.3
2.4	1.21	0	18	48	24.2
2.45	1.205	0	19	49	24.1
2.55	1.175	0	J1	51	23.5

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.6	1.15	0	J2	52	23
2.65	1.125	0	J3	53	22.5
2.7	1.1	0	J4	54	22
2.75	1.075	0	J5	55	21.5
2.8	1.05	0	J6	56	21
2.85	1.025	0	J7	57	20.5
		0			
2.85	0.975	0	K 1	57	19.5
2.8	0.95	0	K2	56	19
2.75	0.925	0	K3	55	18.5
2.7	0.9	0	K4	54	18
2.65	0.875	0	K5	53	17.5
2.6	0.85	0	K6	52	17
2.55	0.825	0	K7	51	16.5
2.45	0.79	0	L1	49	15.8
2.4	0.78	0	L2	48	15.6
2.35	0.77	0	L3	47	15.4
2.3	0.76	0	L4	46	15.2
2.25	0.75	0	L5	45	15
2.2	0.74	0	L6	44	14.8
2.15	0.73	0	L7	43	14.6
2.1	0.72	0	L8	42	14.4
2.05	0.71	0	L9	41	14.2
1.95	0.67143	0	M1	39	13.4286
1.9	0.64286	0	M2	38	12.8572
1.85	0.61429	0	M3	37	12.2858
1.8	0.58572	0	M4	36	11.7144
1.75	0.55715	0	M5	35	11.143
1.7	0.52858	0	M6	34	10.5716
1.625	0.45	0	N1	32.5	9
1.6	0.4	0	N2	32	8
1.575	0.35	0	N3	31.5	7
1.55	0.3	0	N4	31	6
1.525	0.25	0	N5	30.5	5
			_		
1.4	0.2	0	P1	28	4
1.35	0.2	0	P2	27	4
1.3	0.2	0	P3	26	4
		0			
1.2	0.2	0	Q1	24	4
1.15	0.2	0	Q2	23	4
1.1	0.2	0	Q3	22	4
1.05	0.2	0	Q4	21	4
				40	
0.95	0.2	0	R1	19	4
0.9	0.2	0	R2	18	4

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.85	0.2	0	R3	17	4
0.8	0.2	0	R4	16	4
0.75	0.2	0	R5	15	4
0.65	0.2	0	S1	13	4
0.6	0.2	0	S2	12	4
0.55	0.2	0	S3	11	4
0.5	0.2	0	S4	10	4
0.46667	0.25	0	T1	9.3333	5
0.48333	0.3	0	T2	9.6666	6
0.5	0.35	0	Т3	10	7
0.51666	0.4	0	T4	10.3332	8
0.53333	0.45	0	T5	10.6665	9
0.545	0.55	0	U1	10.9	11
0.54	0.6	0	U2	10.8	12
0.535	0.65	0	U3	10.7	13
0.53	0.7	0	U4	10.6	14
0.525	0.75	0	U5	10.5	15
0.52	0.8	0	U6	10.4	16
0.515	0.85	0	U7	10.3	17
0.51	0.9	0	U8	10.2	18
0.505	0.95	0	U9	10.1	19
0.5	1.05	0	V1	10	21
0.5	1.1	0	V2	10	22
0.5	1.15	0	V3	10	23
0.5	1.2	0	V4	10	24
0.5	1.25	0	V5	10	25
0.5	1.3	0	V6	10	26
0.5	1.35	0	V7	10	27
0.5	1.4	0	V8	10	28
0.5	1.45	0	V9	10	29

Table 3B Lower. Geyser Springs Group Vent B Lower XYZ Grid Data, September 30, 2006.						
X	X					
X	Ŷ	Z (Velocity)	Station Name	X Plot	Y Plot	
2	3	0.39	1	40	60	
2	2.5	0.58	2	40	50	
2	2	0.6	3	40	40	
2	1.5	0.53	4	40	30	
2	1	0.61	5	40	20	
2	0.5	0.21	6	40	10	
1	2.5	0.54	7	20	50	
1.5	2.5	0.26	8	30	50	
2.5	2.5	0.29	9	50	50	
2.8	2.5	0.24	10	56	50	
1.1	1.5	0.17	11	22	30	
1.5	1.5	0.4	12	30	30	
2.5	1.5	0.53	13	50	30	
0.5	2.5	0	A	10	50	
0.7	3	0	В	14	60	
1	3.3	0	С	20	66	
1.2	3.4	0	D	24	68	
1.5	3.3	0	E	30	66	
2	3.4	0	F	40	68	
2.5	3.5	0	G	50	70	
2.6	3.4	0	Н	52	68	
3	3.1	0	I	60	62	
3	3	0	J	60	60	
3	2.5	0	K	60	50	
3.1	2	0	L	62	40	
2.7	1.5	0	М	54	30	
2.6	1	0	N	52	20	
2.5	0.9	0	0	50	18	
2.35	0.5	0	Р	47	10	
2	0.3	0	Q	40	6	
1.5	0.3	0	R	30	6	
1.4	0.5	0	S	28	10	
1.3	1	0	Т	26	20	
1.1	1.4	0	U	22	28	
0.9	1.5	0	V	18	30	
0.8	2	0	W	16	40	
0.52	2.55	0	A1	10.4	51	
0.54	2.6	0	A2	10.8	52	
0.56	2.65	0	A3	11.2	53	
0.58	2.7	0	A4	11.6	54	
0.6	2.75	0	A5	12	55	
0.62	2.8	0	A6	12.4	56	
0.64	2.85	0	A7	12.8	57	
0.66	2.9	0	A8	13.2	58	
0.68	2.95	0	A9	13.6	59	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.75	3.05	0	B1	15	61
0.8	3.1	0	B2	16	62
0.85	3.15	0	B3	17	63
0.9	3.2	0	B4	18	64
0.95	3.25	0	B5	19	65
1.05	3.325	0	C1	21	66.5
1.1	3.35	0	C2	22	67
1.15	3.375	0	C3	23	67.5
1.25	3.38334	0	D1	25	67.6667
1.3	3.36667	0	D2	26	67.3334
1.35	3.35001	0	D3	27	67.0001
1.4	3.33334	0	D4	28	66.6668
1.45	3.31668	0	D5	29	66.3335
1.55	3.31	0	E1	31	66.2
1.6	3.32	0	E2	32	66.4
1.65	3.33	0	E3	33	66.6
1.7	3.34	0	E4	34	66.8
1.75	3.35	0	E5	35	67
1.8	3.36	0	E6	36	67.2
1.85	3.37	0	E7	37	67.4
1.9	3.38	0	E8	38	67.6
1.95	3.39	0	E9	39	67.8
2.05	3.41	0	F1	41	68.2
2.1	3.42	0	F2	42	68.4
2.15	3.43	0	F3	43	68.6
2.2	3.44	0	F4	44	68.8
2.25	3.45	0	F5	45	69
2.3	3.46	0	F6	46	69.2
2.35	3.47	0	F7	47	69.4
2.4	3.48	0	F8	48	69.6
2.45	3.49	0	F9	49	69.8
		_			
2.55	3.45	0	G1	51	69
		_			
2.65	3.3625	0	H1	53	67.25
2.7	3.325	0	H2	54	66.5
2.75	3.2875	0	H3	55	65.75
2.8	3.25	0	H4	56 	65
2.85	3.2125	0	H5	57	64.25
2.9	3.175	0	H6	58	63.5
2.95	3.1375	0	H7	59	62.75
				~~	<u> </u>
3	3.05	0	1	60	61

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3	2.95	0	J1	60	59
3	2.9	0	J2	60	58
3	2.85	0	J3	60	57
3	2.8	0	J4	60	56
3	2.75	0	J5	60	55
3	2.7	0	J6	60	54
3	2.65	0	J7	60	53
3	2.6	0	J8	60	52
3	2.55	0	J9	60	51
3.01	2.45	0	K1	60.2	49
3.02	2.4	0	K2	60.4	48
3.03	2.35	0	K3	60.6	47
3.04	2.3	0	K4	60.8	46
3.05	2.25	0	K5	61	45
3.06	2.2	0	K6	61.2	44
3.07	2.15	0	K7	61.4	43
3.08	2.1	0	K8	61.6	42
3.09	2.05	0	K9	61.8	41
3.06	1.95	0	L1	61.2	39
3.02	1.9	0	L2	60.4	38
2.98	1.85	0	L3	59.6	37
2.94	1.8	0	L4	58.8	36
2.9	1.75	0	L5	58	35
2.86	1.7	0	L6	57.2	34
2.82	1.65	0	L7	56.4	33
2.78	1.6	0	L8	55.6	32
2.74	1.55	0	L9	54.8	31
	_				
2.69	1.45	0	M1	53.8	29
2.68	1.4	0	M2	53.6	28
2.67	1.35	0	M3	53.4	27
2.66	1.3	0	M4	53.2	26
2.65	1.25	0	M5	53	25
2.64	1.2	0	M6	52.8	24
2.63	1.15	0	M7	52.6	23
2.62	1.1	0	M8 M0	52.4	22
2.01	1.05	U	NI9	52.2	21
0.55	0.05	•	NA	E 1	10
2.55	0.95	0	NI	51	19
2 10125	0.95	0	01	10 607	17
2.40133	0.00	0		49.021	16
2.4021	0.0	0	02	49.204	10
2.44441	0.75	0		18 500	10
2.4234	0.7	0	04	40.000	12
2.40075	0.05	0	05	47 762	12
2.3001	0.0	0	07	47 380	11
2.30343	0.35	5	57	505. IF	11

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.3	0.47143	0	P1	46	9.4286
2.25	0.44286	0	P2	45	8.8572
2.2	0.41429	0	P3	44	8.2858
2.15	0.38572	0	P4	43	7.7144
2.1	0.35715	0	P5	42	7.143
2.05	0.32858	0	P6	41	6.5716
1.95	0.3	0	Q1	39	6
1.9	0.3	0	Q2	38	6
1.85	0.3	0	Q3	37	6
1.8	0.3	0	Q4	36	6
1.75	0.3	0	Q5	35	6
1.7	0.3	0	Q6	34	6
1.65	0.3	0	Q7	33	6
1.6	0.3	0	Q8	32	6
1.55	0.3	0	Q9	31	6
1.475	0.35	0	R1	29.5	7
1.45	0.4	0	R2	29	8
1.425	0.45	0	R3	28.5	9
1.39	0.55	0	S1	27.8	11
1.38	0.6	0	S2	27.6	12
1.37	0.65	0	S3	27.4	13
1.36	0.7	0	S4	27.2	14
1.35	0.75	0	S5	27	15
1.34	0.8	0	S6	26.8	16
1.33	0.85	0	S7	26.6	17
1.32	0.9	0	S8	26.4	18
1.31	0.95	0	S9	26.2	19
1.275	1.05	0	T1	25.5	21
1.25	1.1	0	T2	25	22
1.225	1.15	0	Т3	24.5	23
1.2	1.2	0	T4	24	24
1.175	1.25	0	Т5	23.5	25
1.15	1.3	0	Т6	23	26
1.125	1.35	0	T7	22.5	27
1.05	1.425	0	U1	21	28.5
1	1.45	0	U2	20	29
0.95	1.475	0	U3	19	29.5
0.89	1.55	0	V1	17.8	31
0.88	1.6	0	V2	17.6	32
0.87	1.65	0	V3	17.4	33
0.86	1.7	0	V4	17.2	34
0.85	1.75	0	V5	17	35

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.84	1.8	0	V6	16.8	36
0.83	1.85	0	V7	16.6	37
0.82	1.9	0	V8	16.4	38
0.81	1.95	0	V9	16.2	39
0.77	2.05	0	W1	15.4	41
0.74	2.1	0	W2	14.8	42
0.71	2.15	0	W3	14.2	43
0.68	2.2	0	W4	13.6	44
0.65	2.25	0	W5	13	45
0.62	2.3	0	W6	12.4	46
0.59	2.35	0	W7	11.8	47
0.56	2.4	0	W8	11.2	48
0.53	2.45	0	W9	10.6	49

Table 3C. Geyser Springs Group Vent C XYZ Grid Data, September 30, 2006.							
Y	X		Ctation Name	V Dist			
X 0.75	Ŷ	Z (Velocity)	Station Name	X Plot			
0.75	1	0.83	1	15	20		
1	1.25	0.76	2	20	25		
1.25	1	0.79	3	25	20		
1	0.75	0.55	4	20	15		
1	1	1.06	5	20	20		
0.5	1.45	0	A	10	29		
1	1.55	0	В	20	31		
1.5	1	0	C	30	20		
1.25	0.6	0	D	25	12		
1	0.6	0	E	20	12		
0.75	0.4	0	F	15	8		
0.5	0.4	0	G	10	8		
0.4	1	0	Н	8	20		
0.55	1.46	0	A1	11	29.2		
0.6	1.47	0	A2	12	29.4		
0.65	1.48	0	A3	13	29.6		
0.7	1.49	0	A4	14	29.8		
0.75	1.5	0	A5	15	30		
0.8	1.51	0	A6	16	30.2		
0.85	1.52	0	A7	17	30.4		
0.9	1.53	0	A8	18	30.6		
0.95	1.54	0	A9	19	30.8		
1.04546	1.5	0	B1	20.9091	30		
1.09091	1.45	0	B2	21.8182	29		
1.13637	1.4	0	B3	22.7273	28		
1.18182	1.35	0	B4	23.6364	27		
1.22728	1.3	0	B5	24.5455	26		
1.27273	1.25	0	B6	25.4546	25		
1.31819	1.2	0	B7	26.3637	24		
1.36364	1.15	0	B8	27.2728	23		
1.4091	1.1	0	B9	28.1819	22		
1.45455	1.05	0	B10	29.091	21		
	_		-				
1.46875	0.95	0	C1	29.375	19		
1.4375	0.9	0	C2	28.75	18		
1.40625	0.85	0	C3	28.125	17		
1.375	0.8	0	C4	27.5	16		
1.34375	0.75	0	C5	26.875	15		
1.3125	0.7	0	C6	26.25	14		
1.28125	0.65	0	C7	25.625	13		
1.2	0.6	0	D1	24	12		
1.15	0.6	0	D2	23	12		
1.1	0.6	0	D3	22	12		

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.05	0.6	0	D4	21	12
0.95	0.56	0	E1	19	11.2
0.9	0.52	0	E2	18	10.4
0.85	0.48	0	E3	17	9.6
0.8	0.44	0	E4	16	8.8
0.7	0.4	0	F1	14	8
0.65	0.4	0	F2	13	8
0.6	0.4	0	F3	12	8
0.55	0.4	0	F4	11	8
0.49167	0.45	0	G1	9.8333	9
0.48333	0.5	0	G2	9.6666	10
0.475	0.55	0	G3	9.4999	11
0.46666	0.6	0	G4	9.3332	12
0.45833	0.65	0	G5	9.1665	13
0.44999	0.7	0	G6	8.9998	14
0.44166	0.75	0	G7	8.8331	15
0.43332	0.8	0	G8	8.6664	16
0.42499	0.85	0	G9	8.4997	17
0.41665	0.9	0	G10	8.333	18
0.40832	0.95	0	G11	8.1663	19
0.41111	1.05	0	H1	8.2222	21
0.42222	1.1	0	H2	8.4444	22
0.43333	1.15	0	H3	8.6666	23
0.44444	1.2	0	H4	8.8888	24
0.45555	1.25	0	H5	9.111	25
0.46666	1.3	0	H6	9.3332	26
0.47777	1.35	0	H7	9.5554	27
0.48888	1.4	0	H8	9.7776	28

Table 3D. Geyser Springs Group Vent D XYZ Grid Data, September 30, 2006.							
X	X	7 () (- 1 1)	Otatian Nama	V DL (N Dist		
X	Y 4.5	Z (Velocity)	Station Name		Y Plot		
3	1.5	0.46	1	60	30		
2.5	1.5	0.76	2	50	30		
2	1.5	0.77	3	40	30		
1.5	1.5	1.04	4	30	30		
1	1.5	0.84	5	20	30		
0.5	1.5	0.08	6	10	30		
1	1	0.03	1	20	20		
1	2	0.63	8	20	40		
1	2.4	0.65	9	20	48		
2	1	0.78	10	40	20		
2	1.85	0.27	11	40	37		
	0.45				40		
0.1	2.45	0	A	2	49		
0.5	2.6	0	В	10	52		
1	2.45	0	C	20	49		
1.5	2.35	0	D	30	47		
2	2.2	0	E	40	44		
2.5	2.3	0	F	50	46		
2.6	2.2	0	G	52	44		
2.8	2	0	Н	56	40		
3	1.65	0		60	33		
3.3	1.5	0	J	66	30		
3.4	1.5	0	K	68	30		
3	1.05	0	L	60	21		
3	1	0	Μ	60	20		
2.5	0.8	0	N	50	16		
2	0.7	0	0	40	14		
1.5	0.6	0	Р	30	12		
1	0.6	0	Q	20	12		
0.5	0.3	0	R	10	6		
0.35	0.6	0	S	7	12		
0.1	1	0	Т	2	20		
0.1	1.5	0	U	2	30		
0.1	2	0	V	2	40		
0.1	2.35	0	W	2	47		
_	_		-				
0.15	2.46875	0	A1	3	49.375		
0.2	2.4875	0	A2	4	49.75		
0.25	2.50625	0	A3	5	50.125		
0.3	2.525	0	A4	6	50.5		
0.35	2.54375	0	A5	7	50.875		
0.4	2.5625	0	A6	8	51.25		
0.45	2.58125	0	A7	9	51.625		
0.55	2.585	0	B1	11	51.7		
0.6	2.57	0	B2	12	51.4		
0.65	2.555	0	B3	13	51.1		

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.7	2.54	0	B4	14	50.8
0.75	2.525	0	B5	15	50.5
0.8	2.51	0	B6	16	50.2
0.85	2.495	0	B7	17	49.9
0.9	2.48	0	B8	18	49.6
0.95	2.465	0	B9	19	49.3
1.05	2.44	0	C1	21	48.8
1.1	2.43	0	C2	22	48.6
1.15	2.42	0	C3	23	48.4
1.2	2.41	0	C4	24	48.2
1.25	2.4	0	C5	25	48
1.3	2.39	0	C6	26	47.8
1.35	2.38	0	C7	27	47.6
1.4	2.37	0	C8	28	47.4
1.45	2.36	0	C9	29	47.2
1.55	2.335	0	D1	31	46.7
1.6	2.32	0	D2	32	46.4
1.65	2.305	0	D3	33	46.1
1.7	2.29	0	D4	34	45.8
1.75	2.275	0	D5	35	45.5
1.8	2.26	0	D6	36	45.2
1.85	2.245	0	D7	37	44.9
1.9	2.23	0	D8	38	44.6
1.95	2.215	0	D9	39	44.3
2.05	2.21	0	E1	41	44.2
2.1	2.22	0	E2	42	44.4
2.15	2.23	0	E3	43	44.6
2.2	2.24	0	E4	44	44.8
2.25	2.25	0	E5	45	45
2.3	2.26	0	E6	46	45.2
2.35	2.27	0	E7	47	45.4
2.4	2.28	0	E8	48	45.6
2.45	2.29	0	E9	49	45.8
0.55	0.05	•	F 4	E4	45
2.55	2.25	0	F1	51	45
0.05	0.45		.	50	40
2.65	2.15	0	G1	53	43
2.1	2.1	0	G2	54	42
2.15	2.05	U	63	55	41
2 92957	1.05	0	L14	56 E74 A	20
2.02001	1.90	0		57 1400	১ ৬ ১০
2.83/14	1.9	0	ロ 2	57 7442	30 27
2.000/1		0	П3 Ц4	59 2056	31 26
2.91428	1.8	0	H4	50.2000	30
2.94283	1./5	U		50.007	30
2.9/142	1.7	U	dh	J9.4284	34

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3.05	1.625	0	l1	61	32.5
3.1	1.6	0	12	62	32
3.15	1.575	0	13	63	31.5
3.2	1.55	0	14	64	31
3.25	1.525	0	15	65	30.5
3.35	1.5	0	J1	67	30
3.35556	1.45	0	K1	67.1112	29
3.31112	1.4	0	K2	66.2224	28
3.26668	1.35	0	K3	65.3336	27
3.22224	1.3	0	K4	64.4448	26
3.1778	1.25	0	K5	63.556	25
3.13336	1.2	0	K6	62.6672	24
3.08892	1.15	0	K7	61.7784	23
3.04448	1.1	0	K8	60.8896	22
2.95	0.98	0	M1	59	19.6
2.9	0.96	0	M2	58	19.2
2.85	0.94	0	M3	57	18.8
2.8	0.92	0	M4	56	18.4
2.75	0.9	0	M5	55	18
2.7	0.88	0	M6	54	17.6
2.65	0.86	0	M7	53	17.2
2.6	0.84	0	M8	52	16.8
2.55	0.82	0	M9	51	16.4
2.45	0.79	0	N1	49	15.8
2.4	0.78	0	N2	48	15.6
2.35	0.77	0	N3	47	15.4
2.3	0.76	0	N4	46	15.2
2.25	0.75	0	N5	45	15
2.2	0.74	0	N6	44	14.8
2.15	0.73	0	N7	43	14.6
2.1	0.72	0	N8	42	14.4
2.05	0.71	0	N9	41	14.2
1.95	0.69	0	01	39	13.8
1.9	0.68	0	02	38	13.6
1.85	0.67	0	O3	37	13.4
1.8	0.66	0	04	36	13.2
1.75	0.65	0	05	35	13
1.7	0.64	0	O6	34	12.8
1.65	0.63	0	07	33	12.6
1.6	0.62	0	08	32	12.4
1.55	0.61	0	O9	31	12.2
			_		
1.45	0.6	0	P1	29	12

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.4	0.6	0	P2	28	12
1.35	0.6	0	P3	27	12
1.3	0.6	0	P4	26	12
1.25	0.6	0	P5	25	12
1.2	0.6	0	P6	24	12
1.15	0.6	0	P7	23	12
1.1	0.6	0	P8	22	12
1.05	0.6	0	P9	21	12
0.95	0.57	0	Q1	19	11.4
0.9	0.54	0	Q2	18	10.8
0.85	0.51	0	Q3	17	10.2
0.8	0.48	0	Q4	16	9.6
0.75	0.45	0	Q5	15	9
0.7	0.42	0	Q6	14	8.4
0.65	0.39	0	Q7	13	7.8
0.6	0.36	0	Q8	12	7.2
0.55	0.33	0	Q9	11	6.6
0.475	0.35	0	R1	9.5	7
0.45	0.4	0	R2	9	8
0.425	0.45	0	R3	8.5	9
0.4	0.5	0	R4	8	10
0.375	0.55	0	R5	7.5	11
0.31429	0.65	0	S1	6.2857	13
0.27857	0.7	0	S2	5.5714	14
0.24286	0.75	0	S3	4.8571	15
0.20714	0.8	0	S4	4.1428	16
0.17143	0.85	0	S5	3.4285	17
0.13571	0.9	0	S6	2.7142	18
0.1	0.95	0	S7	1.9999	19
0.1	1.05	0	T1	2	21
0.1	1.1	0	T2	2	22
0.1	1.15	0	Т3	2	23
0.1	1.2	0	T4	2	24
0.1	1.25	0	Т5	2	25
0.1	1.3	0	Т6	2	26
0.1	1.35	0	T7	2	27
0.1	1.4	0	Т8	2	28
0.1	1.45	0	Т9	2	29
0.1	1.55	0	U1	2	31
0.1	1.6	0	U2	2	32
0.1	1.65	0	U3	2	33
0.1	1.7	0	U4	2	34
0.1	1.75	0	U5	2	35
0.1	1.8	0	U6	2	36

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.1	1.85	0	U7	2	37
0.1	1.9	0	U8	2	38
0.1	1.95	0	U9	2	39
0.1	2.05	0	V1	2	41
0.1	2.1	0	V2	2	42
0.1	2.15	0	V3	2	43
0.1	2.2	0	V4	2	44
0.1	2.25	0	V5	2	45
0.1	2.3	0	V6	2	46
0.1	2.4	0	W1	2	48

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Indian Cave Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Indian Cave Spring, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Indian Cave Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Table 1A. Discharge of Indian Cave Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 4. Table 1B. Discharge of Indian Cave Spring; Miscellaneous Vents, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 5. Figure 1. Map of Indian Cave Spring.
- 6. Figure 2. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006 measurement.
- 7. Figure 3. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown ...
- 8. Table 2. Indian Cave Spring, September 28, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 9. Figure 4. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 10. Table 3. Indian Cave Spring XYZ Grid Data, September 28, 2006.
- 11. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Indian Cave Spring, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Indian Cave Spring on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Indian Cave Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Tom Morris, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Indian Cave Spring is located within a small cove on the south side of the Silver River, about 250 feet southeast of the Garden of Eden Spring Group. The main vent, about 11 feet long, lies within a sediment-sided basin, about 17 feet deep. The main vent discharges from a rocky opening at its southeastern end, and has additional smaller vents discharging through detritus at its western end. There is an additional vent about 40 feet to the south in the bottom of a conical basin formed in soft sediment, and about 15 feet deep. (This additional vent is not shown on the map.) See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Cross-Section Measurement

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Thirty-one station readings were taken along the measurement cross-section, along with three hand-held readings.

The approximate depth for the measurement grid was 17 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape. Three hand-held readings were made in each of three small vents, and vertical and horizontal measurements were made.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 2. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, no negative velocities were measured. However, in order to incorporate one or more negative values that have been typical in other measurements, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

VDCD Measurements

This spring also has a small vent discharging through a mixed bottom of detritus and sediments. Direct measurements of the vent cross-sections at this vent were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate

the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1A.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V x \text{ pi } x \text{ r}^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

RESULTS AND DISCUSSION

This measurement is the first one performed at Indian Cave Spring applying the methods and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum

value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated total discharge of Indian Cave Spring (all vents) on September 28, 2006 was 4.31 CFS (cubic feet per second). This result is also expressed as 1934 GPM (gallons per minute) or 2.786 MGD (million gallons per day), see Tables 1A and 1B. A total of thirty-one (31) cross-section and 4 miscellaneous vent readings were made, see Figures 2(AB), 3(AB) and 4(AB). The total cross-sectional area was calculated as 11.64 square feet. The point velocity readings ranged from 0.13 to 0.76 feet per second (fps), with an overall average station reading of 0.46 fps. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 11:43 hours and were completed by 12:40 hours. The results for each of the individual vents are detailed below.

The estimated discharge of Indian Cave Spring Main Vent on September 28, 2006 was 3.9 CFS. This result is also expressed as 1750 GPM or 2.521 MGD, see Table 1A. Thirty-one (31) readings were made, see Figures 2A, 3A and 4A. The total cross-sectional area was calculated as 10.29 square feet. The point velocity readings ranged from 0.13 to 0.76 feet per second (fps), with an overall average station reading of 0.46 fps.

The estimated discharge of Indian Cave Spring Miscellaneous Vents hand-held readings on September 28, 2006 was 0.41 CFS. This result is also expressed as 183 GPM or 0.263 MGD, see Table 1B. One VDCD measurement was made at Vent 2, with three readings taken. Individual point velocity readings ranged from 0.85 to 0.89 feet per second (fps), with an overall average station reading of 0.87 fps. The approximate depth for this measurement was 11 feet. Three (3) hand-held readings were made. The total cross-sectional areas for these were calculated as 0.32, 0.28 and 0.75 square feet. The point velocity readings were 0.11, 0.29 and 0.17 feet per second (fps). The approximate depth for these measurements was 15 feet.

UNDERWATE	R DISCHARGE	MEASUREMEN	IT			
Location:	INDIAN CAVE	SPRING		Date:	September 28,	2006
	Silver Springs (Group,		Time Start:	11:43	
	Marion County,	Florida		Time End:	12:40	
Personnel:	Peter Butt, Tom I	Morris				_
Indian Cave Sp	ring Total Discha	rge:		Misc. Vents		_
(Total from belo	ow and Table 1B)			From Table 1	B:	
CFS	4.31			CFS	0.41	
MGD	2.786			MGD	0.263	
GPM	1934			GPM	183	
Method:	Grid within irregu	lar conduit				
Instrument:	MMB2000 FLO-N	ATE in U/W case	e, sensor on suppo	ort poles		
Msmt. Periods		60 seconds				
Analysis Method	: Surfer 8 with krig	ing				
Indian Caus Ca						
Indian Cave Sp	ring Discharge:					
CFS	3.90					
MGD	2.521					
GPIN Total Cross section		40.00				
Avg. Station Daint		10.29				
Avg. Station Point	th (fact doop):	0.46				
Closs-section Dep	(leet deep).	17				
Volocity Boodi	ng by Station:		dingo in foot nor			
	ng by Station.	(All velocity rea	luings in leet per	second.)		
Station #	Point Velocity	Station #	Point Velocity			
1		17				
2	0.09	17	0.14			
3	0.02	10	0.0			
<u> </u>	0.70	20	0.4			
5	0.57	20	0.00			
6	0.69	21	0.47			
7	0.51	22	0.16			
8	0.52	20	0.10			-
9	0.02	25	0.13			_
10	0.73	26	0.10			-
11	0.62	20	0.65			
12	0.02	28	0.53			_
13	0.72	20	0.00			_
14	0.72	30	0.10			-
15	0.18	30	0.34			+
16	0.15	51	0.04			
10	0.15					

Table 1A. Discharge of Indian Cave Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

UNDERWATE MEASUREME	ER DISCHARGE ENT				
Location:	ation: INDIAN CAVE SPRING: MISCELLANEOUS VENTS				
	Silver Springs Group,		Date:	September 28, 2006	
	Marion County, Florida			Time Start:	11:43
Personnel:	Peter Butt, Tom Morris			Time End:	12:40
Method:	Vent Discharge Capture Device		(0.49' Diameter)		
Instrument: MMB2000 FLO-MATE in U/W case			sensor in vertical pipe and handheld.		
Calculation Met	hod: Discharge = V x	<i>pi</i> x r ²			
Measurement P	Measurement Periods:				
Indian Cave Sp	oring Misc. Vents	<u> </u>			
Total Discharge:		Vent 2	Station 32	Station 33	Station 34
CFS	0.41	0.163	0.035	0.081	0.128
MGD	0.263	0.106	0.023	0.052	0.082
GPM	183	73	16	36	57
Vent Depth (feet o	Vent Depth (feet deep):		15	15	15
VDCD Velocity Readings:		(All velocity readings in feet per second.)			
Vont 2					
Pooding #					
1	0.65				
2	0.80				
3	0.89				
Average:	0.87				
Discharge:	0.163				
Mice Vente I	londhold Dooding				
Misc. vents Handheid Readings		S V Cas Area	Diashannas		
Station #	Point velocity		Discharge:		
	0.44		0.0050		
32	0.11	0.32	0.0352		
	0.00	0.00	0.0040		
33	0.29	0.28	0.0812		
34	0.17	0.75	0.1275		

Table 1B. Discharge of Indian Cave Spring, Miscellaneous Vents, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Indian Cave Spring.

Figure 2. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 17-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1A for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Yaxis scales are shown in feet.

TABLE 2. INDIAN CAVE SPRING, SEPTEMBER 28, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
06\IndianCave\IndianCave_9-06.bln.grd	
71 rows x 151 columns	
0	
7.5	
0.05	
1	
4.5	
0.05	
-0.00099237264110141	
0.79999999910804	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	3.9009458401774
Simpson's Rule:	3.9014972621891
Simpson's 3/8 Rule:	3.9012446249881

CUT & FILL VOLUMES

Positive Volume [Cut]:3.900946736763Negative Volume [Fill]:8.9658560387483E-007Net Volume [Cut-Fill]:3.9009458401774<<<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas	
Operational Planar Area:	10.29 <<< <total area="" cross-section="" feet<="" in="" square="" th=""></total>
(Calculated using blanking fil	le due to the presence of negative velocity values;
Operational Planar Area = [P.	P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)	
Positive Planar Area [Cut]:	10.287494327203
Negative Planar Area [Fill]:	5.6727972423821E-006
Blanked Planar Area:	15.9625
Total Planar Area:	26.25

Surface Areas

Positive Surface Area [Cut]:	13.973011181825
Negative Surface Area [Fill]:	6.6216656540163E-006

GRIDDING REPORT

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep		
	06\IndianCave\Indian Cave 9-06 SURFER XYZ BLF.xls		
X Column:	A		
Y Column:	В		
Z Column:	C		
Data Counts			
Active Data:	175		
Original Data:	175		
Excluded Data:	0		
Deleted Duplicates:	0		
Retained Duplicates:	0		
Artificial Data:	0		
Superseded Data:	0		

Univariate Statistics

	Х	Y	Z
Minimum:	0.5	1.6	0
25%-tile:	2.3	1.88	0
Median:	4	3	0
75%-tile:	5.8	3.4	0
Maximum:	7.3	4	0.8
Midrange:	3.9	2.8	0.4
Range:	6.8	2.4	0.8
Interquartile Range:	3.5	1.52	0
Median Abs. Deviation:	1.75001	0.7	0
Mean:	4.0205677142857	2.7748571428571	0.081885714285714
Trim Mean (10%):	4.030184591195	2.7727044025157	0.054213836477987
Standard Deviation:	1.9734295441679	0.80971378163106	0.19765016301227
Variance:	3.8944241657948	0.65563640816326	0.039065586938776
Coef. of Variation:			2.4137319279237
Coef. of Skewness:			2.2937862181651

Inter-Variable Correlation

	Х	Y	Z	
X: Y: 7:	1.000	-0.002 1.000	-0.074 0.092	

Inter-Variable Covariance

	Х	Y	Ζ
X: Y: Z:	3.8944241657948	-0.0036715831836735 0.65563640816326	5 -0.028792773404082 0.014653126530612 0.039065586938776

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.0073723009676423	0.022308185348231	0.049624522078495
Standard Error:	0.0075839367017246	0.018483524780985	0.06157515204671

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	-0.002 1.000	-0.497 0.834 1.000

ANOVA Table

Source	df	Sum of Squares Mean Square F
Regression:	2	0.094351889415696 0.047175944707848 1.2035
Residual: Total:	172 174	6.74212582487 0.039198405958547 6.8364777142857

Coefficient of Multiple Determination (R^2): 0.013801242885431

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.1	0
25%-tile:	0.1	0
Median:	0.10440306508911	0
75%-tile:	0.11661903789691	0
Maximum:	0.50990195135928	0.76

Table 2. Indian Cave Spring, September 28, 2006.

Midrange:	0.30495097567964	0.38
Range:	0.40990195135928	0.76
Interquartile Range:	0.016619037896906	0
Median Abs. Deviation:	0.004403065089105	5 0
Mean:	0.14494185912647	0.0708
Trim Mean (10%):	0.12927624777216	0.044150943396226
Standard Deviation:	0.10341226735101	0.17349002441474
Variance:	0.010694097038676	0.030098788571429
Coef. of Variation:	0.71347413351979	2.4504240736546
Coef. of Skewness:	2.7584504549624	2.5569866059782
Root Mean Square: Mean Square:	$\begin{array}{c} 0.17805122736368\\ 0.031702239565714 \end{array}$	0.18738043807033 0.035111428571429

Complete Spatial Randomness

Lambda:	10.723039215686
Clark and Evans:	0.94925473117842
Skellam:	373.78834429975

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	8.1E-007
Y Duplicate Tolerance:	2.8E-007
No duplicate data were for	ınd.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point

Polynomial Drift Order: 2 Kriging std. deviation grid: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\IndianCave\IndianCave_9-06.grd
Grid Size:	71 rows x 151 columns
Total Nodes:	10721
Filled Nodes:	10/21
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	7.5
X Spacing:	0.05
Y Minimum:	1
Y Maximum:	4.5
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-2.8131387348556
Z 25%-tile:	-0.72473240724118
Z Median:	-0.17962918752979
Z 75%-tile:	0.28631636883304
Z Maximum:	0.79999999910804
7 Midrange:	-1 0065693678738
7 Range	3 6131387339637
Z Interquartile Range	1 0110487760742
Z Median Abs. Deviation:	0.49855343220606
Z Mean:	-0.28078853274951
Z Trim Mean (10%):	-0.24290013893576
Z Standard Deviation:	0.68472961544247
Z Variance:	0.46885464626399
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.70486773374004
Z Root Mean Square:	0.74006543385542
Z Mean Square:	0.54769684638761

Figure 4. Discharge measurement cross-section; Indian Cave Spring, Marion County, Florida, September 28, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. See Table 1A for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Table 3. Indian Cave Spring XYZ Grid Data, September 28, 2006.						
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
0.9	3	0.69	1	9	30	
1	3.2	0.62	2	10	32	
1	2.7	0.76	3	10	27	
1.5	3	0.67	4	15	30	
2	3.25	0.52	5	20	32.5	
2	3	0.69	6	20	30	
2	2.5	0.51	7	20	25	
2.5	3	0.52	8	25	30	
3	3.3	0.45	9	30	33	
3	2.9	0.73	10	30	29	
3	2.4	0.62	11	30	24	
3	1.9	0.04	12	30	19	
3.5	3	0.72	13	35	30	
4	3.5	0.41	14	40	35	
4	3	0.18	15	40	30	
4	2.5	0.15	16	40	25	
4	2	0.14	17	40	20	
4.5	3	0.5	18	45	30	
5	3.9	0.4	19	50	39	
5	3.6	0.33	20	50	36	
5	3.1	0.47	21	50	31	
5	2.6	0.42	22	50	26	
5	2.1	0.16	23	50	21	
5.5	3	0.51	24	55	30	
6	3.7	0.13	25	60	37	
6	3.3	0.8	26	60	33	
6	2.8	0.65	27	60	28	
6	2.3	0.53	28	60	23	
6.5	1.8	0.16	29	65	10	
0.0	3	0.31	30	70	30	
1	J	0.34	51	70		
0.5	3	0	٨F	5	30	
1	33	0	ΔΤ	10	33	
1.5	3.3	0	ABT	15	33	
2	3.35	0	BT	20	33.5	
2.5	3.2	0	BCT	25	32	
3	3.4	0	CT	30	34	
35	3.5	0		35	35	
4	3.7	0		40	37	
4.5	4	0	DFT	45	40	
5	4	0	ET	50	40	
5.5	39	0	 FFT	55	39	
6	39	0	FT	60	39	
65	30	0	FT1	65	30	
7	3.3	0	FT2	70	33	
73	2.5	0	FE	73	30	
1.5	3 25	0		10	25	
1	2.5	U	A9	10	20	

1.5	2.4	0	ABS	15	24
Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2	2.3	0	BS	20	23
2.5	1.7	0	BCS	25	17
3	1.6	0	CS	30	16
3.5	1.7	0	CDS	35	17
4	1.9	0	DS	40	19
4.5	1.8	0	DES	45	18
5	1.8	0	ES	50	18
5.5	1.6	0	EFS	55	16
6	1.6	0	FS	60	16
6.5	1.6	0	FS1	65	16
7	2.5	0	FS2	70	25
0.6	3.06	0	AET1	6	30.6
0.7	3.12	0	AET2	7	31.2
0.8	3.18	0	AET3	8	31.8
0.9	3.24	0	AET4	9	32.4
-					
1.1	3.3	0	AT1	11	33
1.2	3.3	0	AT2	12	33
1.3	3.3	0	AT3	13	33
1.4	3.3	0	AT4	14	33
1.6	3.31	0	AT5	16	33.1
1.7	3.32	0	AT6	17	33.2
1.8	3.33	0	AT7	18	33.3
1.9	3.34	0	AT8	19	33.4
-					
2.1	3.32	0	BT1	21	33.2
2.2	3.29	0	BT2	22	32.9
2.3	3.26	0	BT3	23	32.6
2.4	3.23	0	BT4	24	32.3
2.6	3.24	0	BT5	26	32.4
2.7	3.28	0	BT6	27	32.8
2.8	3.32	0	BT7	28	33.2
2.9	3.36	0	BT8	29	33.6
3.1	3.42	0	CT1	31	34.2
3.2	3.44	0	CT2	32	34.4
3.3	3.46	0	CT3	33	34.6
3.4	3.48	0	CT4	34	34.8
3.6	3.54	0	CT5	36	35.4
3.7	3.58	0	СТ6	37	35.8
3.8	3.62	0	CT7	38	36.2
3.9	3.66	0	CT8	39	36.6
4.1	3.76	0	DT1	41	37.6
4.2	3.82	0	DT2	42	38.2
4.3	3.88	0	DT3	43	38.8
4.4	3.94	0	DT4	44	39.4

4.6	4	0	DT5	46	40
Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4.7	4	0	DT6	47	40
4.8	4	0	DT7	48	40
4.9	4	0	DT8	49	40
-					
5.1	3.98	0	ET1	51	39.8
5.2	3.96	0	ET2	52	39.6
5.3	3.94	0	ET3	53	39.4
5.4	3.92	0	ET4	54	39.2
5.6	3.9	0	ET5	56	39
5.7	3.9	0	ET6	57	39
5.8	3.9	0	ET7	58	39
5.9	3.9	0	ET8	59	39
-					
6.1	3.9	0	FT1	61	39
6.2	3.9	0	FT2	62	39
6.3	3.9	0	FT3	63	39
6.4	3.9	0	FT4	64	39
6.58333	3.8	0	FT5	65.8333	38
6.66666	3.7	0	FT6	66.6666	37
6.74999	3.6	0	FT7	67.4999	36
6.83332	3.5	0	FT8	68.3332	35
6.91665	3.4	0	FT9	69.1665	34
7.1	3.2	0	FT10	71	32
7.2	3.1	0	FT11	72	31
0.6	2.9	0	AES1	6	29
0.7	2.8	0	AES2	7	28
0.8	2.7	0	AES3	8	27
0.9	2.6	0	AES4	9	26
1.1	2.48	0	AS1	11	24.8
1.2	2.46	0	AS2	12	24.6
1.3	2.44	0	AS3	13	24.4
1.4	2.42	0	AS4	14	24.2
1.6	2.38	0	AS5	16	23.8
1.7	2.36	0	AS6	17	23.6
1.8	2.34	0	AS7	18	23.4
1.9	2.32	0	AS8	19	23.2
2.08333	2.2	0	BS1	20.8333	22
2.16666	2.1	0	BS2	21.6666	21
2.24999	2	0	BS3	22.4999	20
2.33332	1.9	0	BS4	23.3332	19
2.41665	1.8	0	BS5	24.1665	18
2.6	1.68	0	BS6	26	16.8
2.7	1.66	0	BS7	27	16.6
2.8	1.64	0	BS8	28	16.4
2.9	1.62	0	BS9	29	16.2

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3.1	1.62	0	CS1	31	16.2
3.2	1.64	0	CS2	32	16.4
3.3	1.66	0	CS3	33	16.6
3.4	1.68	0	CS4	34	16.8
3.6	1.74	0	CS5	36	17.4
3.7	1.78	0	CS6	37	17.8
3.8	1.82	0	CS7	38	18.2
3.9	1.86	0	CS8	39	18.6
4.1	1.88	0	DS1	41	18.8
4.2	1.86	0	DS2	42	18.6
4.3	1.84	0	DS3	43	18.4
4.4	1.82	0	DS4	44	18.2
4.6	1.8	0	DS5	46	18
4.7	1.8	0	DS6	47	18
4.8	1.8	0	DS7	48	18
4.9	1.8	0	DS8	49	18
5.1	1.76	0	ES1	51	17.6
5.2	1.72	0	ES2	52	17.2
5.3	1.68	0	ES3	53	16.8
5.4	1.64	0	ES4	54	16.4
5.6	1.6	0	ES5	56	16
5.7	1.6	0	ES6	57	16
5.8	1.6	0	ES7	58	16
5.9	1.6	0	ES8	59	16
6.1	1.6	0	FS1	61	16
6.2	1.6	0	FS2	62	16
6.3	1.6	0	FS3	63	16
6.4	1.6	0	FS4	64	16
6.55555	1.7	0	FS5	65.5555	17
6.6111	1.8	0	FS6	66.111	18
6.66665	1.9	0	FS7	66.6665	19
6.7222	2	0	FS8	67.222	20
6.77775	2.1	0	FS9	67.7775	21
6.8333	2.2	0	FS10	68.333	22
6.8885	2.3	0	FS11	68.885	23
6.9444	2.4	0	FS12	69.444	24
7.06	2.6	0	FS13	70.6	26
7.12	2.7	0	FS14	71.2	27
7.18	2.8	0	FS15	71.8	28
7.24	2.9	0	FS16	72.4	29

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Jacob's Well Spring, Marion County, Florida; September 21, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Jacob's Well Spring, Marion County, Florida; September 21, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Jacob's Well Spring, Marion County, Florida; September 21, 2006.
- 2. Table 1. Discharge of Jacob's Well Spring, Marion County, Florida on September 21, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Jacob's Well Spring.
- 4. Figure 2. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006 measurement.
- 5. Figure 3. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006 measurement. Flow contour velocities are shown ...
- 6. Table 2. Jacob's Well Spring, September 21, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 7. Figure 4. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 8. Table 3. Jacob's Well Spring XYZ Grid Data, September 21, 2006.
- 9. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Jacobs's Well Spring, Marion County, Florida; September 22, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Jacob's Well Spring on September 21, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Jacob's Well Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Tom Morris, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Jacob's Well Spring is located on the south side of the upper Silver River, approximately 500 feet downstream from Mammoth Spring. The spring is in a large, sandy-bottomed depression shared with Catfish Reception Hall Spring to the southeast, and is about 22 feet deep. Water discharges horizontally from a narrow 10 foot long rocky vent beneath a limestone ledge. The ledge is at the bottom of the relatively steep western wall of the depression. See Figure 1.

Since the orifice of this spring is located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Twenty-six station readings were taken.

Velocity measurements were taken at the same location and approximate position as those taken on March 25, 2005. The approximate depth for the measurement grid was 21 to 22 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 2. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 3 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, no negative velocities were measured. However, in order to incorporate one or more negative values that have been typical in other measurements, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the second one performed at Jacob's Well Spring applying the method and data processing used at other spring sites by KES. This spring is referred to as "Catfish Reception Hall Spring Vent #3" for the March 25, 2005 measurement. Based on KES'

experience at other springs, the estimate of discharge for these initial measurements should be considered to be a minimum value.

The estimated discharge of Jacob's Well Spring on September 21, 2006 was 2.57 CFS (cubic feet per second). This result is also expressed as 1153 GPM (gallons per minute) or 1.661 MGD (million gallons per day), see Table 1. Twenty-six (26) readings were made, see Figures 2, 3 and 4. The point velocity readings ranged from 0.16 to 0.94 feet per second (fps), with an overall average station reading of 0.48 fps. The total cross-sectional area was calculated as 8.831 square feet. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 18:01 hours and were completed by 18:39 hours.

UNDERWATE	R DISCHARGE N	IEASUREMEI	NT			
Location:	JACOB'S WELL	SPRING		Date:	September 21, 20	006
	Silver Springs Group,			Time Start:	18:01	
	Marion County, Florida			Time End:	18:39	
 Personnel:	Peter Butt, Tom Morris					
Method:	Grid within irregula	ar conduit				
Instrument:	MMB2000 FLO-M	ATE in U/W cas	e, sensor on su	pport poles		
 Msmt. Periods		60 seconds				
 Analysis Method	I: Surfer 8 with krigin	ig				
 lacob's Well St	aring Total Dischar					
 CES	2 57	ge.				-
 MGD	1 661					
 GPM	1153					
 Total Cross-sectio	nal Area (sg/ft):	8 831				
 Avg. Station Point	Velocity (ft/sec):	0.48				
 Cross-section Dep	th (feet deep):	21-22				
 Velocity Readi	ng by Station:	(All velocity	readings in fe	et per second.)		
		(,) 0.0001				
 Station #	Point Velocity					
 1	0.22					
 2	0.4					
 3	0.55					
 4	0.69					
 5	0.16					
 6	0.94					
 7	0.89					
 8	0.21					
9	0.53					
10	0.29					
11	0.45					
12	0.58					
13	0.76					
 14	0.89					
 15	0.5					
 16	0.57					
17	0.51					
18	0.22					
19	0.42					
20	0.44					
21	0.36					
22	0.48					
23	0.65					
24	0.4					
25	0.17					
26	0.16					

Table 1. Discharge of Jacob's Well Spring, Marion County, Florida on September 21, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Jacob's Well Spring.

Figure 2. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 21 to 22-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2. JACOB'S WELL SPRING, SEPTEMBER 21, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\JacobsWell(CRH3)\JacobsWell-0906.bln.grd	
Grid Size:	26 rows x 126 columns	
X Minimum:	0	
X Maximum:	12.5	
X Spacing:	0.1	
Y Minimum:	0	
Y Maximum:	2.5	
Y Spacing:	0.1	
Z Minimum:	-1.4926044289432E-009	
Z Maximum:	0.93999999893634	
	0.7377777777777034	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	2.5701866471267
Simpson's Rule:	2.5806130412344
Simpson's 3/8 Rule:	2.5656673358512

CUT & FILL VOLUMES

Positive Volume [Cut]:2.5701866471563Negative Volume [Fil]:2.967538545994E-011Net Volume [Cut-Fil]:2.5701866471267<<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:8.831 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:7.8149999989839Negative Planar Area [Fill]:1.0160794168321E-009Blanked Planar Area:23.435Total Planar Area:31.25

Surface Areas

Positive Surface Area [Cut]:	12.504904628616
Negative Surface Area [Fill]:	1.1300707258449E-009

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\JacobsWell(CRH3)\Jacobs Well 9-06 SURFER XYZ T3 BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	270
Original Data:	270
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0
Univariate Statistics	

	Х	Y	Z
Minimum:	0.2	0.5	0
25%-tile:	3	1.12	0
Median:	6	1.5	0
75%-tile:	9.1	1.84	0
Maximum:	12.2	2.3	0.94
Midrange:	6.2	1.4	0.47
Range:	12	1.8	0.94
Interquartile Range:	6.1	0.72	0
Median Abs. Deviation:	3	0.36	0
Mean:	6.0883446296296	1.4343518518519	0.046074074074074
Trim Mean (10%):	6.074397704918	1.4431762295082	0.015983606557377
Standard Deviation:	3.4607455343828	0.47552351394162	0.1573300201925
Variance:	11.976759653751	0.22612261231139	0.024752735253772
Coef. of Variation:			3.4147190877793
Coef. of Skewness:			3.6989557962157

Inter-Variable Correlation

	Х	Y	Z	
X: Y:	1.000	0.366 1.000	-0.095 -0.047	
Z:			1.000	

Table 2. Jacob's Well Spring, September 21, 2006.

Inter-Variable Covariance

	Х	Y	Ζ
X: Y: Z:	11.976759653751	0.60294697985254 0.22612261231139	-0.051625952565158 -0.0035234705075446 0.024752735253772

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.0040727798781188	-0.0047222176035993	0.077643883137253
Standard Error:	0.0029763726491654	0.021661322841594	0.031193099747327

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.366 1.000	-0.216 0.783 1.000

ANOVA Table

Source	df	Sum of Squares Mean Square F
Regression:	2	0.061262928518198 0.030631464259099 1.2351
Residual:	267	6.6219755900003 0.024801406704121
Total:	269	6.6832385185185

Coefficient of Multiple Determination (R^2): 0.0091666530153675

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.1	0
Median:	0.10198039027186	0
75%-tile:	0.10770329614269	0
Maximum:	0.5	0.89

Table 2. Jacob's Well Spring, September 21, 2006.

Midrange:	0.275	0.445
Range:	0.45	0.89
Interquartile Range:	0.0077032961426897	7 0
Median Abs. Deviation:	0.0019803902718557	7 0
Mean:	0.12112571262197	0.043518518518519
Trim Mean (10%):	0.10798232182241	0.016680327868852
Standard Deviation:	0.070191460296006	0.14346450596534
Variance:	0.0049268410984857	0.020582064471879
Coef. of Variation:	0.57949265087149	3.2966312009057
Coef. of Skewness:	3.9484878383673	3.6999240390784
Root Mean Square:	0.13999385471036	0.1499197316097
Mean Square:	0.019598279356667	0.022475925925926

Complete Spatial Randomness

Lambda:	12.5
Clark and Evans:	0.8564881277105
Skellam:	415.59622053685

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	1.4E-006
Y Duplicate Tolerance:	2.1E-007
No duplicate data were for	und.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point

Polynomial Drift Order: 1 Kriging std. deviation grid: no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	3
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Caid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\JacobsWell(CRH3)\JacobsWell-0906.grd
Grid Size:	26 rows x 126 columns
Total Nodes:	3276
Filled Nodes:	3276
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	12.5
X Spacing:	0.1
Y Minimum:	0
Y Maximum:	2.5
Y Spacing:	0.1
Grid Statistics	
Z Minimum:	-0.50769800581695
Z 25%-tile:	-0.27272544777595
Z Median:	-0.077083669936039
Z 75%-tile:	0.015920966823845
Z Maximum:	0.93999999893634
Z Midrange:	0.21615099655969
Z Range:	1.4476980047533
Z Interquartile Range:	0.28864641459979
Z Median Abs. Deviation:	0.15469473481763
Z Mean:	-0.066143090002099
Z Trim Mean (10%):	-0.082184134719625
Z Standard Deviation:	0.27930234638628
Z Variance:	0.078009800696884
Z Coef. of Variation:	-1
Z Coef. of Skewness:	0.82775381549849
Z Root Mean Square:	0.28702736638152
Z Mean Square:	0.08238470905191

Figure 4. Discharge measurement cross-section; Jacob's Well Spring, Marion County, Florida, September 21, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X-and Y-axis scales are shown in feet.

Table 3. Jacob's Well Spring XYZ Grid Data, September 21, 2006.					
	X	7 () (ala aita)	Otation Name	V Dist	V Dist
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1	1	0.22	1	10	10
1.5	1	0.22	1	10	10
1.5	0.7	0.4	2	10	10
2	0.7	0.55	3	20	10
2	1	0.69	4	20	10
2	1.5	0.16	5	20	15
2.5	1	0.94	6	25	10
2.5	1.5	0.89	7	25	15
3	0.7	0.21	8	30	1
3	1.2	0.53	9	30	12
3	1.7	0.29	10	30	17
3.4	1.5	0.45	11	34	15
4	1.5	0.58	12	40	15
4.5	1.5	0.76	13	45	15
5	1.5	0.89	14	50	15
5.5	1.5	0.5	15	55	15
6	1.5	0.57	16	60	15
6.5	1.5	0.51	17	65	15
75	1.5	0.22	18	70	15
7.5	1.5	0.42	19	75	15
0	1.5	0.44	20	00 95	15
0.0	1.5	0.30	21	00	15
9	1.5	0.40	22	90	15
9.5 10	1.5	0.05	23	100	15
10.5	1.5	0.4	24	105	17
11	17	0.17	26	110	17
		0110			
0.2	1	0	Α	2	10
1	1.15	0	BT	10	11.5
1.5	1.35	0	СТ	15	13.5
2	2.2	0	DT	20	22
2.5	2	0	FT	25	20
3	23	0	FT	30	23
35	210	0	GT	35	20
4	19	0	нт	40	19
4.5	1.5	0	IT	45	18
	2	0	и 1Т	50	20
55	21	0	ST KT	55	20
5.5	2.1	0		60	21
65	2.2	0		65	21 5
0.0	2.10 4 7E	0		70	21.0 17 F
75	1./0	0		70	17.0
C. 1	1.55	U		/5	15.5
ð of	1.55	U		80	15.5
8.5	1.6	0		85	16
9	1.75	0		90	17.5
9.5	1.8	0	ST 	95	18
10	2.1	0	TT	100	21

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
10.5	1.9	0	UT	105	19
11	1.9	0	VT	110	19
11.5	1.8	0	WT	115	18
12	1.8	0	ХТ	120	18
12.2	1.5	0	Y	122	15
1	0.6	0	BS	10	6
1.5	0.6	0	CS	15	6
2	0.5	0	DS	20	5
2.5	0.5	0	ES	25	5
3	0.5	0	FS	30	5
3.5	0.8	0	GS	35	8
4	0.9	0	HS	40	9
4.5	1	0	IS	45	10
5	1.05	0	JS	50	10.5
5.5	1.1	0	KS	55	11
6	1.15	0	LS	60	11.5
6.5	1.15	0	MS	65	11.5
7	1.15	0	NS	70	11.5
7.5	1.2	0	OS	75	12
8	1.2	0	PS	80	12
8.5	1.15	0	QS	85	11.5
9	1.25	0	RS	90	12.5
9.5	1.3	0	SS	95	13
10	1.4	0	TS	100	14
10.5	1.5	0	US	105	15
11	1.5	0	VS	110	15
11.5	1.5	0	WS	115	15
12	1.5	0	XS	120	15
0.3	1.01875	0	AT1	3	10.1875
0.4	1.0375	0	AT2	4	10.375
0.5	1.05625	0	AT3	5	10.5625
0.6	1.075	0	AT4	6	10.75
0.7	1.09375	0	AT5	7	10.9375
0.8	1.1125	0	AT6	8	11.125
0.9	1.13125	0	AT7	9	11.3125
1.1	1.19	0	BT1	11	11.9
1.2	1.23	0	BT2	12	12.3
1.3	1.27	0	BI3	13	12.7
1.4	1.31	0	B14	14	13.1
4 50000			074	45.0000	45
1.58826	1.5	U		15.8826	15
1.64708	1.6	0		16.4708	16
1./059	1./	U	C13	17.059	17
1./6472	1.8	0		17.6472	18
1.82354	1.9	0	015	18.2354	19
1.88236	2	0	CT6	18.8236	20

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.94118	2.1	0	CT7	19.4118	21
2.1	2.16	0	DT1	21	21.6
2.2	2.12	0	DT2	22	21.2
2.3	2.08	0	DT3	23	20.8
2.4	2.04	0	DT4	24	20.4
2.6	2.06	0	ET1	26	20.6
2.7	2.12	0	ET2	27	21.2
2.8	2.18	0	ET3	28	21.8
2.9	2.24	0	ET4	29	22.4
3.1	2.24	0	FT1	31	22.4
3.2	2.18	0	FT2	32	21.8
3.3	2.12	0	FT3	33	21.2
3.4	2.06	0	FT4	34	20.6
3.6	1.98	0	GT1	36	19.8
3.7	1.96	0	GT2	37	19.6
3.8	1.94	0	GT3	38	19.4
3.9	1.92	0	GT4	39	19.2
4.1	1.88	0	HT1	41	18.8
4.2	1.86	0	HT2	42	18.6
4.3	1.84	0	HT3	43	18.4
4.4	1.82	0	HT4	44	18.2
4.6	1.84	0	IT1	46	18.4
4.7	1.88	0	IT2	47	18.8
4.8	1.92	0	IT3	48	19.2
4.9	1.96	0	IT4	49	19.6
			177.4	F 4	
5.1	2.02	0	JI1	51	20.2
5.2	2.04	0	JI2	52	20.4
5.3	2.06	0		53	20.6
5.4	2.08	U	J14	54	20.8
5.6	2 4 2	0	KT1	56	21.2
5.0 5.7	2.12	0			21.2
5.7	2.14	0	KT2	59	21.4
5.0	2.10	0	KTA	50	21.0
5.5	2.10	U	N14		21.0
61	2 10	0	I T1	61	21 Q
6.2	2.13	0	I T2	62	21.3
63	2.10	0	T2	63	21.0
6.0	2.17	0	I T4	64	21.7
0. 7	2.10	V		V T	21.0
6.6	2.07	0	MT1	66	20.7
6.7	1.99	0	MT2	67	19.9
		-		.	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
6.8	1.91	0	MT3	68	19.1
6.9	1.83	0	MT4	69	18.3
7.1	1.71	0	NT1	71	17.1
7.2	1.67	0	NT2	72	16.7
7.3	1.63	0	NT3	73	16.3
7.4	1.59	0	NT4	74	15.9
7.6	1.55	0	OT1	76	15.5
7.7	1.55	0	OT2	77	15.5
7.8	1.55	0	OT3	78	15.5
7.9	1.55	0	OT4	79	15.5
8.1	1.56	0	PT1	81	15.6
8.2	1.57	0	PT2	82	15.7
8.3	1.58	0	PT3	83	15.8
8.4	1.59	0	PT4	84	15.9
8.6	1.63	0	QT1	86	16.3
8.7	1.66	0	QT2	87	16.6
8.8	1.69	0	QT3	88	16.9
8.9	1.72	0	QT4	89	17.2
9.1	1.76	0	RT1	91	17.6
9.2	1.77	0	RT2	92	17.7
9.3	1.78	0	RT3	93	17.8
9.4	1.79	0	RT4	94	17.9
9.6	1.86	0	ST1	96	18.6
9.7	1.92	0	ST2	97	19.2
9.8	1.98	0	ST3	98	19.8
9.9	2.04	0	ST4	99	20.4
10.1	2.06	0	TT1	101	20.6
10.2	2.02	0	TT2	102	20.2
10.3	1.98	0	TT3	103	19.8
10.4	1.94	0	TT4	104	19.4
10.6	1.9	0	UT1	106	19
10.7	1.9	0	UT2	107	19
10.8	1.9	0	UT3	108	19
10.9	1.9	0	UT4	109	19
11.1	1.88	0	VT1	111	18.8
11.2	1.86	0	VT2	112	18.6
11.3	1.84	0	VT3	113	18.4
11.4	1.82	0	VT4	114	18.2
11.6	1.8	0	WT1	116	18

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
11.7	1.8	0	WT2	117	18
11.8	1.8	0	WT3	118	18
11.9	1.8	0	WT4	119	18
12.0667	1.7	0	XT1	120.6667	17
12.1333	1.6	0	XT2	121.3334	16
0.3	0.95	0	AS1	3	9.5
0.4	0.9	0	AS2	4	9
0.5	0.85	0	AS3	5	8.5
0.6	0.8	0	AS4	6	8
0.7	0.75	0	AS5	7	7.5
0.8	0.7	0	AS6	8	7
0.9	0.65	0	AS7	9	6.5
1.1	0.6	0	BS1	11	6
1.2	0.6	0	BS2	12	6
1.3	0.6	0	BS3	13	6
1.4	0.6	0	BS4	14	6
1.6	0.58	0	CS1	16	5.8
1.7	0.56	0	CS2	17	5.6
1.8	0.54	0	CS3	18	5.4
1.9	0.52	0	CS4	19	5.2
2.1	0.5	0	DS1	21	5
2.2	0.5	0	DS2	22	5
2.3	0.5	0	DS3	23	5
2.4	0.5	0	DS4	24	5
2.6	0.5	0	ES1	26	5
2.7	0.5	0	ES2	27	5
2.8	0.5	0	ES3	28	5
2.9	0.5	0	ES4	29	5
3.1	0.56	0	FS1	31	5.6
3.2	0.62	0	FS2	32	6.2
3.3	0.68	0	FS3	33	6.8
3.4	0.74	0	FS4	34	7.4
3.6	0.82	0	GS1	36	8.2
3.7	0.84	0	GS2	37	8.4
3.8	0.86	0	GS3	38	8.6
3.9	0.88	0	GS4	39	8.8
4.1	0.92	0	HS1	41	9.2
4.2	0.94	0	HS2	42	9.4
4.3	0.96	0	HS3	43	9.6
4.4	0.98	0	HS4	44	9.8
	0.00			• •	0.0

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4.6	1.01	0	IS1	46	10.1
4.7	1.02	0	IS2	47	10.2
4.8	1.03	0	IS3	48	10.3
4.9	1.04	0	IS4	49	10.4
5.1	1.06	0	JS1	51	10.6
5.2	1.07	0	JS2	52	10.7
5.3	1.08	0	JS3	53	10.8
5.4	1.09	0	JS4	54	10.9
5.6	1.11	0	KS1	56	11.1
5.7	1.12	0	KS2	57	11.2
5.8	1.13	0	KS3	58	11.3
5.9	1.14	0	KS4	59	11.4
6.1	1.15	0	LS1	61	11.5
6.2	1.15	0	LS2	62	11.5
6.3	1.15	0	LS3	63	11.5
6.4	1.15	0	LS4	64	11.5
6.6	1.15	0	MS1	66	11.5
6.7	1.15	0	MS2	67	11.5
6.8	1.15	0	MS3	68	11.5
6.9	1.15	0	MS4	69	11.5
7.1	1.16	0	NS1	71	11.6
7.2	1.17	0	NS2	72	11.7
7.3	1.18	0	NS3	73	11.8
7.4	1.19	0	NS4	74	11.9
				70	40
7.6	1.2	0	0\$1	76	12
7.7	1.2	0	OS2	//	12
7.8	1.2	0	083	78	12
7.9	1.2	0	054	79	12
0.4	4.40		D C4	01	11.0
8.1	1.19	0	P51	81	11.9
8.2	1.18	0	P52	82	11.8
0.3	1.17	0	P33	03	11.7
8.4	1.10	U	P54	04	11.0
9.6	1 17	0	061	96	11 7
0.0 9.7	1.17		092	87	11.7
0.7	1.19	0	052	07	12.1
0.0 8 0	1.21	0	001	80	12.1
0.9	1.23	U	4 04	09	12.3
0.1	1.26	0	DC1	01	12.6
9.1 0.2	1.20	0 0	DC2	02	12.0
3 .2	1.21	0		92	12.7
9.3	1.20	U	KƏJ	93	12.8

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
9.4	1.29	0	RS4	94	12.9
9.6	1.32	0	SS1	96	13.2
9.7	1.34	0	SS2	97	13.4
9.8	1.36	0	SS3	98	13.6
9.9	1.38	0	SS4	99	13.8
10.1	1.42	0	TS1	101	14.2
10.2	1.44	0	TS2	102	14.4
10.3	1.46	0	TS3	103	14.6
10.4	1.48	0	TS4	104	14.8
10.6	1.5	0	US1	106	15
10.7	1.5	0	US2	107	15
10.8	1.5	0	US3	108	15
10.9	1.5	0	US4	109	15
11.1	1.5	0	VS1	111	15
11.2	1.5	0	VS2	112	15
11.3	1.5	0	VS3	113	15
11.4	1.5	0	VS4	114	15
11.6	1.5	0	WS1	116	15
11.7	1.5	0	WS2	117	15
11.8	1.5	0	WS3	118	15
11.9	1.5	0	WS4	119	15
12.1	1.5	0	XS1	121	15

Model: 20	800-JI	Serial Number:	002.679
Unit Gain Rati	o:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:	Zero	2.00	NA
Magguradi	of other	198	NIA
Measured.	<i>p.oy</i>	1.10	<u></u>
Eactory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XDA.	
Calibration Te	chnician:	ge Culiste	Date: 18 Apr 200
OA Technicia	· Ath	all	Date 4/18/0C
	Cal)	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ute of Standards and 1	Technology (NIST),
the Customer	Service Departmen	normation, service, or nt.	canoration, please contact
		MARSH	
	A High	MCBIRNEY her Level of Flow Measurement	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 FAX (301) 874-2172
Discharge Measurement: Ladies Parlor Spring, Marion County, Florida; September 22, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Ladies Parlor Spring, Marion County, Florida; September 22, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Ladies Parlor Spring, Marion County, Florida; September 22, 2006.
- Table 1. Discharge of Ladies Parlor Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Ladies Parlor Spring.
- 4. Figure 2A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006 measurement.
- 5. Figure 2B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006 measurement.
- 6. Figure 3A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown ...
- 7. Figure 3B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown ...
- 8. Table 2A. Ladies Parlor Spring North Vent, September 22, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 9. Table 2B. Ladies Parlor Spring South Vent, September 22, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 10. Figure 4A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 11. Figure 4B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 12. Table 3A. Ladies Parlor Spring North Vent XYZ Grid Data, September 22, 2006.
- 13. Table 3B. Ladies Parlor Spring South Vent XYZ Grid Data, September 22, 2006.
- 14. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Ladies Parlor Spring, Marion County, Florida; September 22, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Ladies Parlor Spring on September 22, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Ladies Parlor Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Ladies Parlor Spring is located in the south side of a cove on the south side of the Silver River, approximately 60 feet southeast of Bridal Chamber Spring. Water discharges from a long vent beneath a ledge on the bottom of the southwest side of a large depression. The long vent is composed of two sections, one about 14 feet long (the South Vent), separated by about 5 feet of rock from the narrower vent that is about five feet wide (the North Vent). There is a strong flow moving the sand and shell fragments as water exits the vent. South of the long vent and also along the ledge are several very small vents (Misc. Vents), mostly obscured by algae. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Fifty-eight (58) station readings were taken.

The approximate depth for the measurement grids was 20 to 22 and 21 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape. Two hand-held readings were made in two small vents,

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figures 2(AB). Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Tables 3A and 3B. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift. An anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0 was used for the North Vent calculation. An anisotropy ratio of 3 at an angle of 0° , and a variogram slope of 1.0 was used for the South Vent calculation. The results of the contour processing are illustrated in Figures 3(AB) and 4(AB).

During this measurement, four negative velocities were measured in the North Vent. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Tables 2A and 2B as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Tables 2A and 2B as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Ladies Parlor Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated total discharge of Ladies Parlor Spring (all vents) on September 22, 2006 was 9.56 CFS (cubic feet per second). This result is also expressed as 4292 GPM (gallons per minute) or 6.18 MGD (million gallons per day), see Table 1. A total of fifty-eight (58) readings were made, see Figures 2(AB), 3(AB) and 4(AB). The total cross-sectional area was calculated as 13.7 square feet. The point velocity readings ranged from -0.16 to 1.54 feet per second (fps), with an overall average station reading of 0.89 fps. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 14:32 hours and were completed by 16:03 hours. The results for each of the individual vents are detailed below.

The estimated discharge of Ladies Parlor Spring North Vent on September 22, 2006 was 3.079 CFS. This result is also expressed as 1382 GPM or 1.99 MGD, see Table 1. Twenty-three (23) readings were made, see Figures 2A, 3A and 4A. The total cross-sectional area was calculated as 6.055 square feet. The point velocity readings ranged from -0.16 to 1.41 feet per second (fps), with an overall average station reading of 0.60 fps.

The estimated discharge of Ladies Parlor Spring South Vent on September 22, 2006 was 6.09 CFS. This result is also expressed as 2733 GPM or 3.936 MGD, see Table 1. Thirty-three (33) readings were made, see Figures 2B, 3B and 4B. The total cross-sectional area was calculated as 7.64 square feet. The point velocity readings ranged from 0.04 to 1.54 feet per second (fps), with an overall average station reading of 0.94 fps.

The estimated discharge of Ladies Parlor Spring Miscellaneous Vents on September 22, 2006 was 0.3927 CFS. This result is also expressed as 176 GPM or 0.254 MGD, see Table 1. Two (2) readings were made, see Table 1. The total cross-sectional areas were calculated as 0.09 and 0.25 square feet. The point velocity readings were 1.03 and 1.2 feet per second (fps).

UNDERWATER DISCHARGE MEASUREMENT					
Location:	LADIES PARLOR SPRING		Date:	September 22	2006
	Silver Springs Group,		Time Start:	14:32	
	Marion County,	Florida	Time End:	16:03	
Personnel:	Peter Butt, Tom N	Iorris			
Method:	Grid within irregul	ar conduit			
Instrument:	MMB2000 FLO-M	IATE in U/W case, se	nsor on support pole	es	
Msmt. Periods:	60 seconds				
Analysis Method: S	urfer 8 with kriging				
Ladies Parlor Spri	ng Total Discharg	e:	North Vent:	South Vent:	Misc. Vents:
CFS	9.56		3.079	6.09	0.3927
MGD	6.180		1.990	3.936	0.254
GPM	4292	All Vents:	1382	2733	176
Total Cross-sectional	Area (sq/ft):	13.70	6.055	7.64	0.34
Avg. Station Point Vel	ocity (ft/sec):	0.89	0.60	0.94	1 12
Cross-Section Depth	(Depth in feet):	0.00	20-22	21	21
	· · · · · · · · · · · · · · · · · · ·		20-22	21	<u> </u>
Velocity Reading	by Station:	(All velocity readi	ngs in feet per sec	ond.)	
Station #	Point Velocity	Station #	Point Velocity	- /	1
	1 on to orototy				NT (cont'd)
	0.16		0.91	24	
	-0.10	1 2	0.01	24	0.94
2	0.13	2	0.04	20	1.19
3	1.00	3	0.24	20	0.04
	0.12	4 5	0.24	21	0.02
<u> </u>	0.13	5	0.42	20	1.31
7	1.20	0	0.01	29	0.00
/ 0	0.06	7	0.30	30	1.4
0	-0.00	0	0.40	22	1.01
10	-0.03	9 10	0.09	32	1.44
10	0.32	10	0.99		1.03
12	1.39	12	0.00	Station #	Point Volocity
12	0.04	12	1.2		
13	1 11	13	1.11	34	1.03
14	0.55	14	0.09	25	1.05
10	0.55	10	0.00		1.2
17	1 1 1	17	1.20		
11	0.84	1/	1.04		
10	0.04	10	1.44		
20	-0.09	20	0.50		
20	1 01	20	1 11		
21	0.77	21	1.11		
22	0.77	22	1.43		+
23	0.21	23	1.31		+
Misc. Vents Handheld Readings					
Station #	Point Velocity	X-Sec Area	Discharge:	1	1
	. entreidenty	(in Sq. Ft.)	District ye.		1
34	1.03	0.09	0.0927		
35	1.2	0.25	0.3	1	1
Misc. Vents Total:	1.115	0.34	0.3927		

Table 1. Discharge of Ladies Parlor Spring, Marion County, Florida on September 22, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Ladies Parlor Spring.

Figure 2A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 20 to 22-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 2B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 21-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

Figure 3A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

Figure 3B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006 measurement. Flow contour velocities are shown in feet per second. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

TABLE 2A. LADIES PARLOR SPRING, NORTH VENT, SEPTEMBER 22, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep		

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	3.0785561564418
Simpson's Rule:	3.0783625424388
Simpson's 3/8 Rule:	3.0787120169365

CUT & FILL VOLUMES

Positive Volume [Cut]:3.0859348616188Negative Volume [Fil]:0.0073787051769583Net Volume [Cut-Fil]:3.0785561564418Other Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:6.055 <<<<Total Cross-section Area in Square Feet</td>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:5.8402980261255Negative Planar Area [Fill]:0.2147019738745Blanked Planar Area:11.945Total Planar Area:18

Surface Areas

Positive Surface Area [Cut]:	10.935003351861
Negative Surface Area [Fill]:	0.25096376781654

GRIDDING REPORT

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\LadiesNorth\Ladies Parlor North 9-06 SURFER XYZ T3A BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	256
Original Data:	256
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.25	0.45	-0.16
25%-tile:	1.65	1.15	0
Median:	2.85	1.825	0
75%-tile:	4	2.375	0
Maximum:	5.4	2.7	1.41
Midrange:	2.825	1.575	0.625
Range:	5.15	2.25	1.57
Interquartile Range:	2.35	1.225	0
Median Abs. Deviation:	1.15	0.610715	0
Mean:	2.8257816796875	1.715976640625	0.0540625
Trim Mean (10%):	2.8260780603448	1.7316380172414	0.0071551724137931
Standard Deviation:	1.4192381972877	0.72692885131078	0.23037821314905
Variance:	2.0142370606403	0.52842555486801	0.05307412109375
Coef. of Variation: Coef. of Skewness:			4.2613311102715 4.4467973116959

Inter-Variable Correlation

	Х	Y	Z	
X: Y: Z:	1.000	0.003 1.000	-0.011 0.037 1.000	

Table 2A. Ladies Parlor Spring, September 22, 2006.

Inter-Variable Covariance

	Х	Y	Z	
X: Y: Z:	2.0142370606403	0.002791328767361 0.52842555486801	4 0.006167512866210 0.05307412109375	-0.0035989001831054 9

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.0018029187327191	0.011681012298273	0.039112810482194
Standard Error:	0.010197786200439	0.019909909583777	0.046923209622549

Inter-Parameter Correlations

А	В	С	
A: 1.000 B: C:	0.003 1.000	-0.612 0.726 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual:	2 253 255	0.020104017458502 13.566870982541 13.586975	0.010052008729251 0.053623995978425	0.18745

Coefficient of Multiple Determination (R^2): 0.0014796536726167

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.050249378105604	0
Median:	0.050990195135928	0
75%-tile:	0.055901699437495	0
Maximum:	0.5	1.47

Table 2A. Ladies Parlor Spring, September 22, 2006.

Midrange:	0.275	0.735
Range:	0.45	1.47
Interquartile Range:	0.005652321331891	1 0
Median Abs. Deviation:	0.000990195135928	03 0

Mean:	0.077796607650957 0.0402734375	
Trim Mean (10%):	0.061815878669274 0.0047413793103448	
Standard Deviation:	0.085436795378833 0.18199502975887	
Variance:	0.0072994460046046 0.033122190856934	
Coef. of Variation:	1.0982072092675	4.5189842500749
Coef. of Skewness:	3.5615461085497	5.5420214711515
Root Mean Square:	0.11554980816341	0.18639780209273
Mean Square:	0.013351758166602	0.034744140625

Complete Spatial Randomness

Lambda:	22.092772384035
Clark and Evans:	0.73133400028201
Skellam:	474.4697285736

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	6.1E-007
Y Duplicate Tolerance:	2.6E-007
No duplicate data were for	ınd.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:2Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Crid

Output Grid	
Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\LadiesNorth\LadiesParlorNorth9-06.grd
Grid Size:	61 rows x 121 columns
Total Nodes:	7381
Filled Nodes:	7381
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	6
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	3
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-1.7690810013035
Z 25%-tile:	-0.45930599807493
Z Median:	-0.1388425652188
Z 75%-tile:	0.11831861372189
Z Maximum:	1.4281510419231
Z Midrange:	-0.17046497969022
Z Range:	3.1972320432266
Z Interquartile Range:	0.57762461179681
Z Median Abs. Deviation:	0.29406549179321
Z Mean:	-0.10801586070138
Z Trim Mean (10%):	-0.12286034254903
Z Standard Deviation:	0.56557176502299
Z Variance:	0.31987142139122
Z Coef. of Variation:	-1
Z Coef. of Skewness:	0.47314027808224
Z Root Mean Square:	0.57579410170153
Z Mean Square:	0.33153884755427

TABLE 2B. LADIES PARLOR SPRING, SOUTH VENT, SEPTEMBER 22, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep	
	06\LadiesSouth\LadiesParlorSouth9-06.bln.grd	
Grid Size:	51 rows x 221 columns	
X Minimum:	0	
X Maximum:	11	
X Spacing:	0.05	
Y Minimum:	0	
Y Maximum:	2.5	
Y Spacing:	0.05	
Z Minimum:	-9.5319174775454E-010	
Z Maximum:	1.5638836154687	

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	6.0906172652304
Simpson's Rule:	6.0922790619635
Simpson's 3/8 Rule:	6.0894454132164

CUT & FILL VOLUMES

Positive Volume [Cut]:6.0906172652416Negative Volume [Fil]:1.115389443556E-011Net Volume [Cut-Fil]:6.0906172652304<<<<<Total Discharge in CFS</th>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar AreasOperational Planar Area:7.644 <<<<Total Cross-section Area in Square Feet</th>(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:7.643749999963Negative Planar Area [Fill]:3.6986072321774E-011Blanked Planar Area:19.85625Total Planar Area:27.5

Surface Areas

 Positive Surface Area [Cut]:
 20.553678325726

 Negative Surface Area [Fill]:
 2.5496363751931E-010

Table 2B. Ladies Parlor Spring, September 22, 2006.

GRIDDING REPORT

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\LadiesSouth\Ladies Parlor South 9-06 SURFER XYZ T3B BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	441
Original Data:	441
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.3	0.2	0
25%-tile:	3	1.08	0
Median:	5.55	1.5	0
75%-tile:	7.95	1.81	0
Maximum:	10.5	2.25	1.54
Midrange:	5.4	1.225	0.77
Range:	10.2	2.05	1.54
Interquartile Range:	4.95	0.73	0
Median Abs. Deviation:	2.5	0.33	0
Mean:	5.484693877551	1.416215	0.072199546485261
Trim Mean (10%):	5.4931989924433	1.4336418513854	0.012544080604534
Standard Deviation:	2.9150322665291	0.49696437602005	0.27975356194211
Variance:	8.4974131149058	0.24697359103299	0.078262055419296
Coef. of Variation: Coef. of Skewness:			3.8747274125775 3.9852892232753

Inter-Variable Correlation

	Х	Y	Z	
X:	1.000	-0.149	0.126	
Y:		1.000	0.019	
Z:			1.000	

Table 2B. Ladies Parlor Spring, September 22, 2006.

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	8.4974131149058	-0.21602225056689 0.24697359103299	0.10282618353464 0.0026036607709751 0.078262055419296

Planar Regression: Z = **AX+BY+C**

Fitted Parameters

	А	В	С
Parameter Value:	0.012650178887602	0.021607091114595	-0.027783098752354
Standard Error:	0.0045970577517285	0.026964853667592	0.050564644146572

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	-0.149 1.000	-0.611 0.830 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 438 440	0.59844897383469 33.915117466075 34.513566439909	0.29922448691734 0.0774317750367	3.8644

Coefficient of Multiple Determination (R^2): 0.017339528642357

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.016665	0
25%-tile:	0.050249378105603	0
Median:	0.052201532544552	0
75%-tile:	0.053851648071345	0
Maximum:	0.5	1.51

Table 2B. Ladies Parlor Spring, September 22, 2006.

Midrange:	0.2583325 0.755
Range:	0.483335 1.51
Interquartile Range:	0.0036022699657415 0
Median Abs. Deviation:	0.0019521544389482 0
Mean:	0.064776671992442 0.059886621315193
Trim Mean (10%):	0.053726236920891 0.011335012594458
Standard Deviation:	0.054351142980664 0.23384246849203
Variance:	0.0029540467433046 0.054682300070444
Coef. of Variation:	0.8390542661254 3.9047530709952
Coef. of Skewness:	4.7987233249983 4.2941011276605
Root Mean Square:	0.084558050933788 0.24138912047355
Mean Square:	0.0071500639777211 0.058268707482993

Complete Spatial Randomness

Lambda:	21.090387374462
Clark and Evans:	0.59496429776504
Skellam:	417.84281848706

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:FirstX Duplicate Tolerance:1.2E-006Y Duplicate Tolerance:2.4E-007No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:2Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	3
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Caid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\LadiesSouth\LadiesParlorSouth9-06.grd
Grid Size:	51 rows x 221 columns
Total Nodes:	11271
Filled Nodes:	11271
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	11
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	2.5
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-3.6728564406162
Z 25%-tile:	-0.97821314517684
Z Median:	-0.41998271189097
Z 75%-tile:	0.13994638583107
Z Maximum:	1.5638836154687
Z Midrange:	-1.0544864125738
Z Range:	5.2367400560849
Z Interquartile Range:	1.1181595310079
Z Median Abs. Deviation:	0.55906907056478
Z Mean:	-0.39213211670544
Z Trim Mean (10%):	-0.37737736468936
Z Standard Deviation:	0.94748089879929
Z Variance:	0.89772005358951
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.076871166658746
Z Root Mean Square:	1.0254207187986
Z Mean Square:	1.0514876505414

Figure 4A. Discharge measurement cross-section; Ladies Parlor Spring North Vent, Marion County, Florida, September 22, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Figure 4B. Discharge measurement cross-section; Ladies Parlor Spring South Vent, Marion County, Florida, September 22, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Boundary of cross section is shown as connected points. X- and Y-axis scales are shown in feet.

Table 3A. La	Table 3A. Ladies Parlor Spring North Vent XYZ Grid Data, September 22, 2006.					
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.5	0.7	-0.16	1	50	14	
2.5	1.2	0.13	2	50	24	
2.5	1.7	1.08	3	50	34	
2.5	2.2	1.25	4	50	44	
3	0.9	0.13	5	60	18	
3	1.4	1.25	6	60	28	
3	1.9	1.41	7	60	38	
3	2.4	-0.06	8	60	48	
3.5	0.8	-0.03	9	70	16	
3.5	1.1	0.32	10	70	22	
3.5	1.6	1.39	11	70	32	
3.5	2.1	0.64	12	70	42	
3.5	2.5	0.07	13	70	50	
4	2	1.11	14	80	40	
4.5	2	0.55	15	90	40	
5	2	0.19	16	100	40	
2	2	1.11	17	40	40	
1.5	2	0.84	18	30	40	
1	2	0.59	19	20	40	
0.5	2	-0.02	20	10	40	
2.25	1.7	1.01	21	45	34	
1.75	1.7	0.77	22	35	34	
1.25	1.7	0.27	23	25	34	
0.25	2	0	LE	5	40	
0.5	2.25	0	Α	10	45	
1	2.35	0	В	20	47	
1.5	2.35	0	С	30	47	
2	2.4	0	D	40	48	
2.5	2.6	0	E	50	52	
3	2.7	0	F	60	54	
3.5	2.55	0	G	70	51	
4	2.5	0	Н	80	50	
4.5	2.6	0	I	90	52	
5	2.3	0	J	100	46	
5.4	2	0	RE	108	40	
5	1.8	0	K	100	36	
4.5	1.7	0	L	90	34	
4.35	1.6	0	М	87	32	
4	1.3	0	N	80	26	
4	1.1	0	0	80	22	
4	0.6	0	Р	80	12	
3.5	0.6	0	Q	70	12	
3	0.5	0	R	60	10	
2.5	0.45	0	S	50	9	
2.35	0.45	0	Т	47	9	
2.25	0.7	0	U	45	14	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.15	1.2	0	V	43	24	
1.75	1.3	0	W	35	26	
1.25	1.1	0	X	25	22	
0.85	1.7	0	Y	17	34	
0.3	2.05	0	LE1	6	41	
0.35	2.1	0	LE2	7	42	
0.4	2.15	0	LE3	8	43	
0.45	2.2	0	LE4	9	44	
0.55	2.26	0	A1	11	45.2	
0.6	2.27	0	A2	12	45.4	
0.65	2.28	0	A3	13	45.6	
0.7	2.29	0	A4	14	45.8	
0.75	2.3	0	A5	15	46	
0.8	2.31	0	A6	16	46.2	
0.85	2.32	0	A7	17	46.4	
0.9	2.33	0	A8	18	46.6	
0.95	2.34	0	A9	19	46.8	
1.05	2.35	0	B1	21	47	
1.1	2.35	0	B2	22	47	
1.15	2.35	0	B3	23	47	
1.2	2.35	0	B4	24	47	
1.25	2.35	0	B5	25	47	
1.3	2.35	0	B6	26	47	
1.35	2.35	0	B7	27	47	
1.4	2.35	0	B8	28	47	
1.45	2.35	0	B9	29	47	
1.55	2.355	0	C1	31	47.1	
1.6	2.36	0	C2	32	47.2	
1.65	2.365	0	C3	33	47.3	
1.7	2.37	0	C4	34	47.4	
1.75	2.375	0	C5	35	47.5	
1.8	2.38	0	C6	36	47.6	
1.85	2.385	0	C7	37	47.7	
1.9	2.39	0	C8	38	47.8	
1.95	2.395	0	C9	39	47.9	
2.05	2.42	0	D1	41	48.4	
2.1	2.44	0	D2	42	48.8	
2.15	2.46	0	D3	43	49.2	
2.2	2.48	0	D4	44	49.6	
2.25	2.5	0	D5	45	50	
2.3	2.52	0	D6	46	50.4	
2.35	2.54	0	D7	47	50.8	
2.4	2.56	0	D8	48	51.2	
2.45	2.58	0	D9	49	51.6	

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.55	2.61	0	E1	51	52.2	
2.6	2.62	0	E2	52	52.4	
2.65	2.63	0	E3	53	52.6	
2.7	2.64	0	E4	54	52.8	
2.75	2.65	0	E5	55	53	
2.8	2.66	0	E6	56	53.2	
2.85	2.67	0	E7	57	53.4	
2.9	2.68	0	E8	58	53.6	
2.95	2.69	0	E9	59	53.8	
3.05	2.685	0	F1	61	53.7	
3.1	2.67	0	F2	62	53.4	
3.15	2.655	0	F3	63	53.1	
3.2	2.64	0	F4	64	52.8	
3.25	2.625	0	F5	65	52.5	
3.3	2.61	0	F6	66	52.2	
3.35	2.595	0	F7	67	51.9	
3.4	2.58	0	F8	68	51.6	
3.45	2.565	0	F9	69	51.3	
3.55	2.545	0	G1	71	50.9	
3.6	2.54	0	G2	72	50.8	
3.65	2.535	0	G3	73	50.7	
3.7	2.53	0	G4	74	50.6	
3.75	2.525	0	G5	75	50.5	
3.8	2.52	0	G6	76	50.4	
3.85	2.515	0	G7	77	50.3	
3.9	2.51	0	G8	78	50.2	
3.95	2.505	0	G9	79	50.1	
4.05	2.51	0	H1	81	50.2	
4.1	2.52	0	H2	82	50.4	
4.15	2.53	0	H3	83	50.6	
4.2	2.54	0	H4	84	50.8	
4.25	2.55	0	H5	85	51	
4.3	2.56		H6	86	51.2	
4.35	2.57	0	H7	87	51.4	
4.4	2.58	0	H8	88	51.6	
4.45	2.59	0	H9	89	51.8	
			-			
4.55	2.57	0	1	91	51.4	
4.6	2.54	0	12	92	50.8	
4.65	2.51	0	13	93	50.2	
4.7	2.48	0	14	94	49.6	
4.75	2.45	0	15	95	49	
4.8	2.42	0	16	96	48.4	
4.85	2.39	0	17	97	47.8	
4.9	2.36	0	18	98	47.2	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
4.95	2.33	0	19	99	46.6	
5.05	2.2625	0	J1	101	45.25	
5.1	2.225	0	J2	102	44.5	
5.15	2.1875	0	J3	103	43.75	
5.2	2.15	0	J4	104	43	
5.25	2.1125	0	J5	105	42.25	
5.3	2.075	0	J6	106	41.5	
5.35	2.0375	0	J7	107	40.75	
5.35	1.975	0	RE1	107	39.5	
5.3	1.95	0	RE2	106	39	
5.25	1.925	0	RE3	105	38.5	
5.2	1.9	0	RE4	104	38	
5.15	1.875	0	RE5	103	37.5	
5.1	1.85	0	RE6	102	37	
5.05	1.825	0	RE7	101	36.5	
4.95	1.79	0	K1	99	35.8	
4.9	1.78	0	K2	98	35.6	
4.85	1.77	0	K3	97	35.4	
4.8	1.76	0	K4	96	35.2	
4.75	1.75	0	K5	95	35	
4.7	1.74	0	K6	94	34.8	
4.65	1.73	0	K7	93	34.6	
4.6	1.72	0	K8	92	34.4	
4.55	1.71	0	K9	91	34.2	
4.45	1.66667	0	L1	89	33.3333	
4.4	1.63333	0	L2	88	32.6666	
4.3	1.55715	0	M1	86	31.1429	
4.25	1.51429	0	M2	85	30.2858	
4.2	1.47144	0	M3	84	29.4287	
4.15	1.42858	0	M4	83	28.5716	
4.1	1.38573	0	M5	82	27.7145	
4.05	1.34287	0	M6	81	26.8574	
4	1.25	0	N1	80	25	
4	1.2	0	N2	80	24	
4	1.15	0	N3	80	23	
4	1.05	0	01	80	21	_
4	1	0	02	80	20	
4	0.95	0	O3	80	19	
4	0.9	0	O4	80	18	
4	0.85	0	O5	80	17	
4	0.8	0	O6	80	16	
					ı – – – – – – – – – – – – – – – – – – –	

4	0.75	0	07	80	15	
Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
4	0.7	0	O8	80	14	
4	0.65	0	O9	80	13	
3.95	0.6	0	P1	79	12	
3.9	0.6	0	P2	78	12	
3.85	0.6	0	P3	77	12	
3.8	0.6	0	P4	76	12	
3.75	0.6	0	P5	75	12	
3.7	0.6	0	P6	74	12	
3.65	0.6	0	P7	73	12	
3.6	0.6	0	P8	72	12	
3.55	0.6	0	P9	71	12	
3.45	0.59	0	Q1	69	11.8	
3.4	0.58	0	Q2	68	11.6	
3.35	0.57	0	Q3	67	11.4	
3.3	0.56	0	Q4	66	11.2	
3.25	0.55	0	Q5	65	11	
3.2	0.54	0	Q6	64	10.8	
3.15	0.53	0	Q7	63	10.6	
3.1	0.52	0	Q8	62	10.4	
3.05	0.51	0	Q9	61	10.2	
2.95	0.495	0	R1	59	9.9	
2.9	0.49	0	R2	58	9.8	
2.85	0.485	0	R3	57	9.7	
2.8	0.48	0	R4	56	9.6	
2.75	0.475	0	R5	55	9.5	
2.7	0.47	0	R6	54	9.4	
2.65	0.465	0	R7	53	9.3	
2.6	0.46	0	R8	52	9.2	
2.55	0.455	0	R9	51	9.1	
2.45	0.45	0	S1	49	9	
2.4	0.45	0	S2	48	9	
				40.0	10	
2.33	0.5	0	11	46.6	10	
2.31	0.55	0	12	46.2	11	
2.29	0.6	0		45.8	12	
2.27	0.65	0	14	45.4	13	
2.24	0.75	•	114	44.0	15	
2.24	0.75	0	U1	44.8	10	
2.23	U.ð	0	U2	44.0	10	
2.22	0.00	0	03	44.4	10	
2.21	0.9	U	04	44.Z	10	
2.2	0.90	•	00	44	19	
2.19	1 05	0	00	43.0	20	
2.18	1.05	U	U/	43.0	21	

2.17	1.1	0	U8	43.4	22	
Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
2.16	1.15	0	U9	43.2	23	
2.1	1.2125	0	V1	42	24.25	
2.05	1.225	0	V2	41	24.5	
2	1.2375	0	V3	40	24.75	
1.95	1.25	0	V4	39	25	
1.9	1.2625	0	V5	38	25.25	
1.85	1.275	0	V6	37	25.5	
1.8	1.2875	0	V7	36	25.75	
1.7	1.28	0	W1	34	25.6	
1.65	1.26	0	W2	33	25.2	
1.6	1.24	0	W3	32	24.8	
1.55	1.22	0	W4	31	24.4	
1.5	1.2	0	W5	30	24	
1.45	1.18	0	W6	29	23.6	
1.4	1.16	0	W7	28	23.2	
1.35	1.14	0	W8	27	22.8	
1.3	1.12	0	W9	26	22.4	
1.21669	1.15	0	X1	24.3337	23	
1.18335	1.2	0	X2	23.667	24	
1.15002	1.25	0	X3	23.0003	25	
1.11668	1.3	0	X4	22.3336	26	
1.08335	1.35	0	X5	21.6669	27	
1.05001	1.4	0	X6	21.0002	28	
1.01668	1.45	0	X7	20.3335	29	
0.98334	1.5	0	X8	19.6668	30	
0.95001	1.55	0	X9	19.0001	31	
0.91667	1.6	0	X10	18.3334	32	
0.88334	1.65	0	X11	17.6667	33	
0.8	1.725	0	Y1	16	34.5	
0.75	1.75	0	Y2	15	35	
0.7	1.775	0	Y3	14	35.5	
0.65	1.8	0	Y4	13	36	
0.6	1.825	0	Y5	12	36.5	
0.55	1.85	0	Y6	11	37	
0.5	1.875	0	Y7	10	37.5	
0.45	1.9	0	Y8	9	38	
0.4	1.925	0	Y9	8	38.5	
0.35	1.95	0	Y10	7	39	
0.3	1.975	0	Y11	6	39.5	

Table 3E	3. Ladies Parlor S	pring South Ver	nt XYZ Grid Data	, September	22, 2006.	
						ļ
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.5	1.55	0.81	1	30	31	
2	1.55	0.84	2	40	31	
2.5	1.5	1.05	3	50	30	ļ
3	1.5	0.24	4	60	30	ļ
3.5	1.5	0.42	5	70	30	ļ
4	1.5	0.61	6	80	30	
4.5	1.5	0.56	7	90	30	
4.5	1.15	0.46	8	90	23	
5	1.5	0.89	9	100	30	ļ
5.5	1.5	0.99	10	110	30	ļ
6	0.95	0.68	11	120	19	ļ
6	1.45	1.2	12	120	29	ļ
6	1.7	1.11	13	120	34	ļ
6.5	1.5	1.51	14	130	30	
7	0.7	0.08	15	140	14	
7	1	1.23	16	140	20	
7	1.5	1.54	17	140	30	
7	1.8	1.44	18	140	36	
7.5	1.5	1.52	19	150	30	
7.75	0.45	0.59	20	155	9	
7.75	0.75	1.11	21	155	15	
7.75	1.25	1.49	22	155	25	
7.75	1.75	1.31	23	155	35	
7.75	2.05	0.94	24	155	41	
8	1.5	1.19	25	160	30	
8.5	0.7	0.04	26	170	14	
8.5	1	0.62	27	170	20	
8.5	1.5	1.31	28	170	30	
8.5	2	0.68	29	170	40	
9	1.5	1.4	30	180	30	
9.5	1.5	1.51	31	190	30	
10	1.5	1.44	32	200	30	
10.3	1.5	1.03	33	206	30	
0.3	1.5	0	Α	6	30	
1.5	1.9	0	BT	30	38	
2	1.8	0	СТ	40	36	
2.5	1.75	0	DT	50	35	
3	1.9	0	ET	60	38	
3.5	1.7	0	FT	70	34	
4	1.55	0	GT	80	31	
4.5	1.6	0	HT	90	32	
5	1.6	0	IT	100	32	
5.5	1.75	0	JT	110	35	ļ
6	1.85	0	КТ	120	37	
6.5	1.85	0	LT	130	37	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
7	2	0	MT	140	40
7.5	2.05	0	NT	150	41
7.75	2.1	0	ОТ	155	42
8	2.25	0	PT	160	45
8.5	2.2	0	QT	170	44
9	1.9	0	RT	180	38
9.5	1.85	0	ST	190	37
10	1.8	0	TT	200	36
10.3	1.7	0	UT	206	34
10.5	1.5	0	V	210	30
1.5	1.5	0	BS	30	30
2	1.5	0	CS	40	30
2.5	1.2	0	DS	50	24
3	1.4	0	ES	60	28
3.5	1.25	0	FS	70	25
4	1.15	0	GS	80	23
4.5	1.05	0	HS	90	21
5	1	0	IS	100	20
5.5	0.85	0	JS	110	17
6	0.65	0	KS	120	13
6.5	0.65	0	LS	130	13
7	0.5	0	MS	140	10
7.5	0.5	0	NS	150	10
7.75	0.25	0	OS	155	5
8	0.2	0	PS	160	4
8.5	0.5	0	QS	170	10
9	0.85	0	RS	180	17
9.5	1.05	0	SS	190	21
10	1.35	0	TS	200	27
10.3	1 4	0	US	206	28
0.35	1.51667	0	AT1	7	30.3333
0.4	1.53333	0	AT2	8	30.6666
0.45	1.55	0	AT3	9	30,9999
0.5	1.56666	0	AT4	10	31.3332
0.55	1.58333	0	AT5	11	31.6665
0.6	1.59999	0	AT6	12	31.9998
0.65	1.61666	0	AT7	13	32,3331
0.7	1.63332	0	AT8	14	32.6664
0.75	1.64999	0	AT9	15	32,9997
0.8	1.66665	0	AT10	16	33.333
0.85	1.68332	0	AT11	17	33.6663
0.9	1.69998	0	AT12	18	33,9996
0.95	1,71665	0	AT13	19	34.3329
1	1.73331	0	AT14	20	34.6662
1.05	1,74998	0	AT15	21	34.9995
11	1.76664	0	AT16	22	35.3328
1.15	1.78331	0	AT17	23	35.6661
		5			55.5501

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
1.2	1.79997	0	AT18	24	35.9994	
1.25	1.81664	0	AT19	25	36.3327	
1.3	1.8333	0	AT20	26	36.666	
1.35	1.84997	0	AT21	27	36.9993	
1.4	1.86663	0	AT22	28	37.3326	
1.45	1.8833	0	AT23	29	37.6659	
1.55	1.89	0	BT1	31	37.8	
1.6	1.88	0	BT2	32	37.6	
1.65	1.87	0	BT3	33	37.4	
1.7	1.86	0	BT4	34	37.2	
1.75	1.85	0	BT5	35	37	
1.8	1.84	0	BT6	36	36.8	
1.85	1.83	0	BT7	37	36.6	
19	1 82	0	BT8	38	36.4	
1 95	1.81	0	BT9	39	36.2	
1.00	1.01	.	510	00	00.2	
2 05	1 795	0	CT1	41	35.9	
2.00	1 79	0	CT2	42	35.8	
2.15	1 785	0	CT3	43	35.7	
2.10	1.705	0	CT4	40	35.6	
2.2	1.70	0	CT5	45	35.5	
2.25	1.77	0	CT6	45	35.0	
2.5	1.77	0		40	35.3	
2.33	1.705	0		47	35.2	
2.4	1.70	0		40	35.2	
2.40	1.755	U	619	49	35.1	
2 55	1 765	0	DT1	51	25.2	
2.55	1.705	0		52	35.5	
2.0	1.70	0		52	35.0	
2.00	1.795	0	DI3 DT4	53	30.9	
2.1	1.01	0	D14	54	30.2	
2.75	1.820	0		55	30.3	
2.8	1.84	0	DT6	50	30.0	
2.85	1.855	0	DT7	57	37.1	
2.9	1.87	0	DI8	58	37.4	
2.95	1.885	U	DI9	59	37.7	
0.05	4.00			04	07.0	
3.05	1.88	U	EI1	61	37.0	
3.1	1.86	0	EI2	62	37.2	
3.15	1.84	0	ET3	63	36.8	
3.2	1.82	0	ET4	64	36.4	
3.25	1.8	0	ET5	65	36	
3.3	1.78	0	ET6	66	35.6	
3.35	1.76	0	ET7	67	35.2	
3.4	1.74	0	ET8	68	34.8	
3.45	1.72	0	ET9	69	34.4	
3.55	1.685	0	FT1	71	33.7	
3.6	1.67	0	FT2	72	33.4	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
3.65	1.655	0	FT3	73	33.1	
3.7	1.64	0	FT4	74	32.8	
3.75	1.625	0	FT5	75	32.5	
3.8	1.61	0	FT6	76	32.2	
3.85	1.595	0	FT7	77	31.9	
3.9	1.58	0	FT8	78	31.6	
3.95	1.565	0	FT9	79	31.3	
4.05	1.555	0	GT1	81	31.1	
4.1	1.56	0	GT2	82	31.2	
4.15	1.565	0	GT3	83	31.3	
4.2	1.57	0	GT4	84	31.4	
4.25	1.575	0	GT5	85	31.5	
4.3	1.58	0	GT6	86	31.6	
4 35	1 585	0	GT7	87	31.7	
4.00	1 59	0	GT8	88	31.8	
4.4	1 595	0	GT9	89	31.9	
	1.000	Ŭ	013	00	0110	
4 55	16	0	HT1	91	32	
4.00	1.0	0	HT2	92	32	
4 65	1.0	0	HT3	92	32	
4.05	1.0	0	НТИ	94	32	
4.75	1.0	0	HT5	95	32	
4.75	1.0	0	ШТЕ	95	32	
4.85	1.0	0		90	32	
4.05	1.0	0		97	32	
4.5	1.0	0	μтα	90	32	
4.35	1.0	Ū	1113			
5.05	1 615	0	IT1	101	32.3	
5.00	1.63	0	IT 1	102	32.6	
5.15	1.05	0	112	102	32.0	
5.2	1.645	0	IT3	103	33.2	
5.2	1.00	0	114	104	33.5	
5.25	1.60	0	ITS	105	33.8	
5.3	1 705	0	110	100	34.1	
5.00	1.705	0	ITR	107	34.4	
5.45	1.72	0	ITO	100	34.7	
3.43	1.755	Ŭ	115	105	01.7	
5 55	1 76	0	JT1	111	35.2	
5.55	1.70	0 0	IT2	110	35.4	
5.65	1.77	0	J12 IT2	112	35.6	
5.05	1.70	0		113	35.8	
5.75	1.75	0 0	J14 JT5	115	36	
5.75	1.0	n 0	ITE	116	26.0	
5.0	1.01	n 0	117	117	26 /	
5.65	1.02	0	J17 IT0	110	26.6	
5.9	1.03	0		110	30.0	
5.95	1.84	U	713	119	JO.O	
6.05	4.95	<u> </u>		104	07	
6.05	1.85	U	K11	121	37	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
6.1	1.85	0	KT2	122	37
6.15	1.85	0	KT3	123	37
6.2	1.85	0	KT4	124	37
6.25	1.85	0	KT5	125	37
6.3	1.85	0	KT6	126	37
6.35	1.85	0	KT7	127	37
6.4	1.85	0	KT8	128	37
6.45	1.85	0	KT9	129	37
6.55	1.865	0	LT1	131	37.3
6.6	1.88	0	LT2	132	37.6
6.65	1.895	0	LT3	133	37.9
6.7	1.91	0	LT4	134	38.2
6.75	1.925	0	LT5	135	38.5
6.8	1 94	0	L T6	136	38.8
6.85	1 955	0	L 10	137	39.1
6.9	1 97	0	1 T8	138	39.4
6.95	1 985	0	1 T9	139	39.7
0.00	1.505	•	215	100	00.7
7.05	2 005	0	MT1	141	40.1
7.05	2.005	0	MT2	142	40.2
7.15	2.01	0	MT2 MT3	142	40.3
7.15	2.013	0	MT3 MT4	143	40.0
7.2	2.02	0	MT5	144	40.4
7.25	2.025	0	MTG	145	40.5
7.5	2.03	0		140	40.0
7.35	2.035	0		147	40.7
7.4	2.04	0		140	40.8
7.45	2.045	U	IVI I 9	149	40.9
7 55	2.06	0	NIT4	151	41.2
7.55	2.00	0		101	41.2
7.0	2.07	0	NIZ NT2	152	41.4
7.05	2.08	0	NI3	153	41.0
1.1	2.09	U	NI4	154	41.8
7.0	0.40	0	074	450	40.0
7.8	2.13	0	011	156	42.6
7.85	2.16	0	012	157	43.2
7.9	2.19	0	013	158	43.8
7.95	2.22	0	014	159	44.4
	0				
8.05	2.245	0	PT1	161	44.9
8.1	2.24	0	PT2	162	44.8
8.15	2.235	0	PT3	163	44.7
8.2	2.23	0	PT4	164	44.6
8.25	2.225	0	PT5	165	44.5
8.3	2.22	0	PT6	166	44.4
8.35	2.215	0	PT7	167	44.3
8.4	2.21	0	PT8	168	44.2
8.45	2.205	0	PT9	169	44.1

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
8.55	2.17	0	QT1	171	43.4	
8.6	2.14	0	QT2	172	42.8	
8.65	2.11	0	QT3	173	42.2	
8.7	2.08	0	QT4	174	41.6	
8.75	2.05	0	QT5	175	41	
8.8	2.02	0	QT6	176	40.4	
8.85	1.99	0	QT7	177	39.8	
8.9	1.96	0	QT8	178	39.2	
8.95	1.93	0	QT9	179	38.6	
9.05	1.895	0	RT1	181	37.9	
9.1	1.89	0	RT2	182	37.8	
9.15	1.885	0	RT3	183	37.7	
9.2	1.88	0	RT4	184	37.6	
9.25	1.875	0	RT5	185	37.5	
9.3	1.87	0	RT6	186	37.4	
9.35	1.865	0	RT7	187	37.3	
9.4	1.86	0	RT8	188	37.2	
9.45	1.855	0	RT9	189	37.1	
9.55	1.845	0	ST1	191	36.9	
9.6	1.84	0	ST2	192	36.8	
9.65	1.835	0	ST3	193	36.7	
9.7	1.83	0	ST4	194	36.6	
9.75	1.825	0	ST5	195	36.5	
9.8	1.82	0	ST6	196	36.4	
9.85	1.815	0	ST7	197	36.3	
9.9	1.81	0	ST8	198	36.2	
9.95	1.805	0	ST9	199	36.1	
10.05	1.78335	0	TT1	201	35.667	
10.1	1.7667	0	TT2	202	35.334	
10.15	1.75005	0	TT3	203	35.001	
10.2	1.7334	0	TT4	204	34.668	
10.25	1.71775	0	TT5	205	34.355	
10.35	1.65	0	UT1	207	33	
10.4	1.6	0	UT2	208	32	
10.45	1.55	0	UT3	209	31	
0.35	1.5	0	AS1	7	30	
0.4	1.5	0	AS2	8	30	
0.45	1.5	0	AS3	9	30	
0.5	1.5	0	AS4	10	30	
0.55	1.5	0	AS5	11	30	
0.6	1.5	0	AS6	12	30	
0.65	1.5	0	AS7	13	30	
0.7	1.5	0	AS8	14	30	
0.75	1.5	0	AS9	15	30	

0.8 1.5 0 AS10 16 30 0.85 1.5 0 AS11 17 30 0.9 1.5 0 AS12 18 30 0.95 1.5 0 AS13 19 30 1 1.5 0 AS14 20 30 1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS23 29 30 1.4 1.5 0 BS2 32 30 1.45 1.5 0 BS2 32 30 1.65 1.5
0.85 1.5 0 AS11 17 30 0.9 1.5 0 AS12 18 30 0.95 1.5 0 AS13 19 30 1 1.5 0 AS14 20 30 1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS20 26 30 1.3 1.5 0 AS21 27 30 1.3 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.4 1.5 0 BS2 32 30 1.45 1.5 0 BS3 33 30 1.65 1.5
0.9 1.5 0 AS12 18 30 0.95 1.5 0 AS13 19 30 1 1.5 0 AS14 20 30 1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.15 1.5 0 AS18 24 30 1.25 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.45 1.5 0 BS2 32 30 1.45 1.5 0 BS3 33 30 1.6 1.5
0.95 1.5 0 AS13 19 30 1 1.5 0 AS14 20 30 1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.2 1.5 0 AS19 25 30 1.2 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS23 29 30 1.4 1.5 0 BS1 31 30 1.45 1.5 0 BS1 31 30 1.45 1.5 0 BS2 32 30 1.65 1.5 0 BS4 34 30 1.7 1.5
1 1.5 0 AS14 20 30 1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS16 22 30 1.2 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.45 1.5 0 BS2 32 30 1.6 1.5 0 BS3 33 30 1.65 1.5 0 BS4 34 30 1.7 1.5
1.05 1.5 0 AS15 21 30 1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.2 1.5 0 AS19 25 30 1.25 1.5 0 AS20 26 30 1.3 1.5 0 AS21 27 30 1.35 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.4 1.5 0 BS1 31 30 1.4 1.5 0 BS2 32 30 1.6 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS6 36 30 1.8 1.5 0 BS8
1.1 1.5 0 AS16 22 30 1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS18 24 30 1.3 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.4 1.5 0 BS1 31 30 1.45 1.5 0 BS2 32 30 1.65 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.75 1.5 0 BS4 34 30 1.75 0
1.15 1.5 0 AS17 23 30 1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 AS23 29 30 1.6 1.5 0 BS1 31 30 1.6 1.5 0 BS3 33 30 1.65 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9
1.2 1.5 0 AS18 24 30 1.25 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS20 26 30 1.4 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.6 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.65 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS8 38 30 1.9 1.5
1.25 1.5 0 AS19 25 30 1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS22 28 30 1.4 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.45 1.5 0 BS2 32 30 1.66 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.75 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9 39 30 2.05 1.47
1.3 1.5 0 AS20 26 30 1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS22 28 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.65 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.85 1.5 0 BS7 37 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.0 1.47
1.35 1.5 0 AS21 27 30 1.4 1.5 0 AS22 28 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 AS23 29 30 1.45 1.5 0 BS1 31 30 1.55 1.5 0 BS2 32 30 1.6 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2
1.4 1.5 0 AS22 28 30 1.45 1.5 0 AS23 29 30 1.55 1.5 0 BS1 31 30 1.6 1.5 0 BS2 32 30 1.6 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.75 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9 39 30 1.95 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 </th
1.45 1.5 0 AS23 29 30 1.55 1.5 0 BS1 31 30 1.6 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.75 1.5 0 BS6 36 30 1.75 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4<
1.55 1.5 0 BS1 31 30 1.6 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.7 1.5 0 BS5 35 30 1.75 1.5 0 BS6 36 30 1.75 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6
1.55 1.5 0 BS1 31 30 1.6 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.8 1.5 0 BS8 38 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4
1.6 1.5 0 BS2 32 30 1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS9 39 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.65 1.5 0 BS3 33 30 1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.7 1.5 0 BS4 34 30 1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.8 1.5 0 BS7 37 30 1.85 1.5 0 BS8 38 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.75 1.5 0 BS5 35 30 1.8 1.5 0 BS6 36 30 1.85 1.5 0 BS7 37 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.8 1.5 0 BS6 36 30 1.85 1.5 0 BS7 37 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.85 1.5 0 BS7 37 30 1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.9 1.5 0 BS8 38 30 1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
1.95 1.5 0 BS9 39 30 2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.05 1.47 0 CS1 41 29.4 2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.1 1.44 0 CS2 42 28.8 2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.15 1.41 0 CS3 43 28.2 2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.2 1.38 0 CS4 44 27.6 2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.25 1.35 0 CS5 45 27 2.3 1.32 0 CS6 46 26.4
2.3 1.32 0 CS6 46 26.4
2.35 1.29 0 CS7 47 25.8
2.4 1.26 0 CS8 48 25.2
2.45 1.23 0 CS9 49 24.6
2.55 1.22 0 DS1 51 24.4
2.6 1.24 0 DS2 52 24.8
2.65 1.26 0 DS3 53 25.2
2.7 1.28 0 DS4 54 25.6
2.75 1.3 0 DS5 55 26
2.8 1.32 0 DS6 56 26.4
2.85 1.34 0 DS7 57 26.8
2.9 1.36 0 DS8 58 27.2
2.95 1.38 0 DS9 59 27.6
3.05 1.385 0 ES1 61 27.7
3.1 1.37 0 ES2 62 27.4
3.15 1.355 0 ES3 63 27.1
3.2 1.34 0 ES4 64 26.8
Х

3.25
3.3
3.35
3.4
3.45
3.55
3.6
3.65
3.7
3.75
3.8
3 85
3.9
3 95
3.35
4 05
4.00
4 15
4.10
4 25
4.20
4 35
4.00
4.4 1 15
7.75
4 55
4.00
4 65
4.00
4 75
4.70
4.85
4.00
/ 95
4.55
5.05
5.05
5.15
5.15
5.2
5.25
5 35
5.00
5 15
J.4J
5 55
5.55
5.65
5.05

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
5.7	0.77	0	JS4	114	15.4	
5.75	0.75	0	JS5	115	15	
5.8	0.73	0	JS6	116	14.6	
5.85	0.71	0	JS7	117	14.2	
5.9	0.69	0	JS8	118	13.8	
5.95	0.67	0	JS9	119	13.4	
6.05	0.65	0	KS1	121	13	
6.1	0.65	0	KS2	122	13	
6.15	0.65	0	KS3	123	13	
6.2	0.65	0	KS4	124	13	
6.25	0.65	0	KS5	125	13	
6.3	0.65	0	KS6	126	13	
6.35	0.65	0	KS7	127	13	
6.4	0.65	0	KS8	128	13	
6.45	0.65	0	KS9	129	13	
0.40	0.00	-		.20		
6.55	0.635	0	I S1	131	12 7	
6.6	0.000	0	1.52	132	12.7	
6.65	0.02	0	1.53	132	12.4	
67	0.003	0	1.54	134	11.1	
6.75	0.55	0	1 95	135	11.5	
6.8	0.575	0	1.56	136	11.0	
6.85	0.50	0	1.97	137	10.9	
6.0	0.545	0	1.59	138	10.5	
6.05	0.55	0		130	10.3	
0.35	0.010	Ŭ	209	100	10.0	
7 05	0.5	0	MS1	141	10	
7.1	0.5	0	MS2	142	10	
7 15	0.5	0	MS3	143	10	
72	0.5	0	MS4	144	10	
7.25	0.5	0	MS5	145	10	
73	0.5	0	MS6	146	10	
7.3	0.5	0	MS0 MS7	140	10	
7.33	0.5	0	MS7 MS8	1/8	10	
7.4	0.5	0	MSO	140	10	
7.43	0.5	Ū	INI39	145	10	
7 55	0.45	0	NS1	151	0	
7.55	0.45	0	NS2	152	8	
7.0	0.4	0	NG2	152	7	
7.03	0.35	0	NG4	153	6	
1.1	0.3	Ū	1134	134	0	
7 9	0.24	0	091	156	4.8	
7.0	0.24	n	001	157	4.0	
7.05	0.23	n	002	150	4.0	
7.5	0.22	n 0	033	150	4.4	
7.95	0.21	0	034	159	4.2	
8.05	0.23	0	DC1	161	4.6	
0.00	0.23	0	F31 De2	162	5.2	
ð.1	U.26	U	r52	162	5.Z	

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot	
8.15	0.29	0	PS3	163	5.8	
8.2	0.32	0	PS4	164	6.4	
8.25	0.35	0	PS5	165	7	
8.3	0.38	0	PS6	166	7.6	
8.35	0.41	0	PS7	167	8.2	
8.4	0.44	0	PS8	168	8.8	
8.45	0.47	0	PS9	169	9.4	
8.55	0.535	0	QS1	171	10.7	
8.6	0.57	0	QS2	172	11.4	
8.65	0.605	0	QS3	173	12.1	
8.7	0.64	0	QS4	174	12.8	
8.75	0.675	0	QS5	175	13.5	
8.8	0.71	0	QS6	176	14.2	
8.85	0.745	0	QS7	177	14.9	
8.9	0.78	0	QS8	178	15.6	
8.95	0.815	0	QS9	179	16.3	
9.05	0.87	0	RS1	181	17.4	
9.1	0.89	0	RS2	182	17.8	
9.15	0.91	0	RS3	183	18.2	
9.2	0.93	0	RS4	184	18.6	
9.25	0.95	0	RS5	185	19	
9.3	0.97	0	RS6	186	19.4	
9.35	0.99	0	RS7	187	19.8	
9.4	1.01	0	RS8	188	20.2	
9.45	1.03	0	RS9	189	20.6	
9.55	1.08	0	SS1	191	21.6	
9.6	1.11	0	SS2	192	22.2	
9.65	1.14	0	SS3	193	22.8	
9.7	1.17	0	SS4	194	23.4	
9.75	1.2	0	SS5	195	24	
9.8	1.23	0	SS6	196	24.6	
9.85	1.26	0	SS7	197	25.2	
9.9	1.29	0	SS8	198	25.8	
9.95	1.32	0	SS9	199	26.4	
10.05	1.35834	0	TS1	201	27.1667	
10.1	1.36667	0	TS2	202	27.3334	
10.15	1.37501	0	TS3	203	27.5001	
10.2	1.38334	0	TS4	204	27.6668	
10.25	1.39168	0	TS5	205	27.8335	
				. <u></u>		
10.35	1.425	0	US1	207	28.5	
10.4	1.45	0	US2	208	29	
10.45	1.475	0	US3	209	29.5	

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: Mammoth Spring, Silver Springs Group, Marion County, Florida; September 19, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Mammoth Spring, Marion County, Florida; September 19, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Mammoth Spring, Marion County, Florida; September 19, 2006.
- 2. Table 1. Discharge of Mammoth Spring, Marion County, Florida on September 19, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Mammoth Spring, Silver Springs Group, Marion County, Florida..
- 4. Figure 2. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement.
- 5. Figure 3. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement. Flow contour velocities are shown ...
- 6. Table 2. Mammoth Spring, September 19, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 7. Figure 4. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement. Relationship of flow contours and velocity measurement stations are shown...
- 8. Table 3. Mammoth Spring XYZ Grid Data, September 19, 2006.
- 9. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Mammoth Spring, Marion County, Florida; September 19, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a discharge measurement at the Mammoth Spring in Marion County, Florida. This report documents the results of the measurement made at the site on September 19, 2006. A summary of the results and collected data for that measurement are presented in Table 1.

PURPOSE and SCOPE OF WORK

The purpose of this work was to obtain accurate discharge measurements of the Mammoth Spring, the headspring and major source of groundwater discharge into the Silver River. A discharge measurement was to be made at the vent of Mammoth Spring during September, 2006.

SITE DESCRIPTION

Mammoth Spring is the largest spring of the Silver Springs Group, and is the headspring of the Silver River. The spring lies within a spring pool surrounded by the Silver Springs theme park. Mammoth Spring's vent is a wide, oval-shaped opening about 69 feet across, with floor to ceiling heights that vary from under 2 to over 6 feet. The depth of this vent ranges between 25 and 34 feet deep. The rock that comprises the ceiling of this vent is solid and self-supported, with the floor beneath composed of a layer of boulders and rubble. See Figure 1.

A large cavern with a complex network of cave passages lies inside of this vent. These cave passages supply waters of varying characteristics to the cavern, where some mixing occurs before these waters exit the vent. The inside of the cavern is a complex structure of breakdown boulders, bedding planes, and small passageways. It was determined during prior investigations that discharge measurements of individual water sources within the cavern would be problematic, if not impossible. The outer edge of this spring vent provided the best location for an underwater discharge measurement with an appropriately adapted instrument.

PERSONNEL

Fieldwork for this discharge measurement was conducted by KES personnel Peter Butt, Tom Morris and Jytka Hyniova. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech-HAI of Orlando, Florida.

METHODS

Instrumentation

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Field Operations

Velocity measurements were taken just inside the ceiling edge of the vent. At the measurement site, the floor of the vent was 32 feet deep, and the ceiling was 26 feet deep.

A positioning grid of telescoping aluminum poles with 0.5-foot interval markings that provided support for the sensor was set up by Pete Butt. Butt also recorded measurements of the grid and surrounding walls. Seventeen poles were positioned vertically to provide the primary positioning grid for velocity measurements. Eight horizontal poles were used as a spacing reference, and fastened to the vertical poles for support. Conduit dimensions around the grid were measured with a collapsible steel tape. As all sensor-support poles were positioned at roughly right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was attached to the poles with a low-profile metal spring clamp. Most measurement stations were set using one-foot intervals on the vertical poles. Velocity stations and boundary points are identified with alpha-numeric labels, based on the letter assigned to identify each vertical pole. See Figure 2.

Tom Morris positioned the sensor and recorded positional data. Jytka Hyniova took the velocity readings after taking reset cues from Morris, and also recorded positional data. During all measurements, the sensor handler was able to move away from the measurement cross-section, and remove himself from the cross section of the flow. The meter operator was also positioned downstream and away from the cross-section. This minimized or eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in the "Fixed Point Averaging" mode. Fixed Point Averaging is an average of velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. One-hundred and thirty-eight (138) station readings were made.

Data Processing

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 1. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 3 at an angle of 0° , and a variogram slope of 1.0. The anisotropy ratio used was selected due to the extremely elongated horizontal aspect of the measurement cross-section. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, eight negative velocities were measured. These negative velocity stations represent slight back eddies near walls. In order to incorporate these negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The blanking file operation also assists in the elimination of artifacts present in the contouring process that would create inaccuracies in the flow calculations.

The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on page 1 of Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the second one performed at Mammoth Spring applying the method and data processing used at other spring sites by KES. This measurement also represents the largest cross-section and amount of discharge measured to date by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. Based on results of the prior measurement performed here, additional velocity station readings close to the boundary walls of the cross-section were made to provide the additional data needed for Surfer to more accurately account for the higher flows present near the boundary edge and adjust the contours more appropriately. Due to the extremely elongated cross-section, a high anisotropy ratio setting was used to minimize a "bull's eye" or "curtain" effect that occurs in the contouring and has the unwanted effect of lowering the actual discharge value.

The estimated discharge of Mammoth Spring on September 19, 2006 was 240.07 CFS (cubic feet per second). This result is also expressed as 107,750 GPM (gallons per minute) or 155.16 MGD (million gallons per day), see Table 1. One-hundred and thirty-eight (138) readings were made, see Figures 2, 3 and 4. The point velocity readings ranged from -0.39 to 1.16 feet per second (fps), with an overall average station reading of 0.71 fps. The total cross-sectional area was calculated as 308.16 square feet. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 13:40 hours and were completed by 17:50 hours.

UNDERWATER D	SCHARGE MEASU	REMENT			
Location:	SILVER SPRINGS	MAIN SPRING		Marion Cour	ity, Florida
Personnel:	Peter Butt, Tom Mor	ris, Jytka Hyniova			
Method:	Grid within irregular of	conduit/cross-section			
Instrument:	MMB2000 FLO-MAT	E in U/W case, sens	or on support poles	·	
Analysis Method: Sur	fer 8 with kriging				
Silver Springe Ma	in Spring Total Dia		Data	Sontombor	10, 2006
Silver Springs Ma		charge.	Dale.		19, 2000
	240.07			13.40	
	100.100		Time End.	17.50	
GPINI Total Cross costian		200.40	a anna fa at		
Total Cross-section	al Area:	308.10	square reet		
Avg. Station Point		0.71	feet/second		
Cross-section Dept	in:	26-32	teet deep	-	-
Msmt. Periods:		60 seconds			
Velocity Reading by	y Station:	(All velocity read	ings in feet per seco	ond.)	
Station #	Point Velocity	Station #	Point Velocity	Station #	Point Velocity
A1	0.18	F7	0.92	L1	0.68
A2	0.25	FG	0.95	L2	0.8
A3	0.59	G1	0.03	L3	0.91
A4	0.47	G2	0.81	L4	1
A5	0.53	G3	1 1 01	L5	0.99
	-0.07	G5	0.92	17	1 03
AB	0.35	G6	1.09	L8	0.88
B1	-0.39	GH	0.93	LM	0.89
B2	-0.4	H1	0.2	M1	-0.07
B3	-0.04	H2	0.77	M2	0.26
B4	0.11	H3	0.85	M3	0.68
B5	0.27	H4	0.88	M4	0.78
B0 B7	0.83	H5 H6	1 09	M5 M6	0.91
B8	0.5	H7	1.00	M7	1.04
BC	0.68	HI	0.98	M8	1.07
C1	0.56	1	0.07	MN	0.91
C2	0.81	12	0.39	N1	0.05
C3	0.93	13	0.92	N2	0.53
C4	0.91	14	0.86	N3	0.76
C6	0.96	6	0.96	N4 N5	0.99
CD	0.99	10	0.96	N6	0.97
D1	0.65	18	0.72	N7	1.02
D2	0.76	IJ	0.85	N8	0.88
D3	0.86	J1	0.22	NO	0.79
D4	0.96	J2	0.39	01	0.31
D5	1.07	J3	0.59	02	0.66
D0	1.02	.15	1 16	03	0.92
DE	1.05	J6	0.85	05	0.9
E1	0.32	J7	0.99	OP	0.9
E2	0.69	J8	1.01	P1	0.52
E3	0.86	J9	0.98	P2	0.76
E4	0.78	JK	0.83	P3	0.9
ED	0.84	K)	-0.02	P5	0.0
E7	0.95	K3	0.71	PQ	0.42
EF	0.89	K4	0.71	Q1	0.2
F1	-0.02	K5	0.87	Q2	0.27
F2	0.76	K6	0.94	Q3	0.4
F3	0.92	K7	1.01	Q4	0.32
F4	0.93	K8	1.03	Q5	0.34
F0 F6	0.00	K9 K9	1.14		0.25
10	0.33	11	0.9		0.2

Table 1. Discharge of Mammoth Spring, Marion County, Florida on September 19, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Mammoth Spring.

Figure 2. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located between the 26- and 32-foot depth levels. Support poles are represented by dashed lines. Velocity measurement stations are shown as points along the support poles. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Figure 3. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

TABLE 2. MAMMOTH SPRING, SEPTEMBER 19, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep		
	06\SS_Main\SilverSpringMain-0906.bln.grd		
Grid Size:	61 rows x 351 columns		
X Minimum:	0		
X Maximum:	70		
X Spacing:	0.2		
Y Minimum:	0		
Y Maximum:	12		
Y Spacing:	0.2		
Z Minimum:	-0.3900000071826		
Z Maximum:	1.160000013049		

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	240.06792644883
Simpson's Rule:	240.00517156312
Simpson's 3/8 Rule:	239.94186683411

CUT & FILL VOLUMES

Positive Volume [Cut]:240.15113319567Negative Volume [Fil]:0.083206746841645Net Volume [Cut-Fil]:240.06792644883Other Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas

Operational Planar Area: 308.16 <<<< Total Cross-section Area in Square Feet

(Calculated using blanking file due to the presence of negative velocity values;Operational Planar Area = [P.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].Please refer to report text.)Positive Planar Area [Cut]:306.68517561951Negative Planar Area [Fill]:1.474824380489Blanked Planar Area:531.84Total Planar Area:840

Surface Areas

Positive Surface Area [Cut]:	349.2420271661
Negative Surface Area [Fill]:	1.6275387805188

GRIDDING REPORT

Data Source

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\SS_Main\Silver Spring Main 9-06 SURFER XYZ T3 BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	750
Original Data:	750
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.3	2	-0.4
25%-tile:	17.2	5.01	0
Median:	37.2	7.25	0
75%-tile:	57.3334	9	0
Maximum:	69.3	10.7	1.16
Midrange:	34.8	6.35	0.38
Range:	69	8.7	1.56
Interquartile Range:	40.1334	3.99	0
Median Abs. Deviation:	20	1.99	0
Mean:	37.098293613333	6.89148464	0.13104
Trim Mean (10%):	37.301583150888	6.9555524852071	0.090976331360947
Standard Deviation:	21.485960669933	2.4746796394004	0.31325897443915
Variance:	461.6465059099	6.124039317663	0.098131185066667
Coef. of Variation: Coef. of Skewness:			2.3905599392487 2.078037077697

Inter-Variable Correlation

	Х	Y	Z	
X: Y: 7.	1.000	0.172 1.000	-0.052 -0.003 1.000	

Inter-Variable Covariance

	Х	Y	Z
X: Y: Z:	461.6465059099	9.1257214708366 6.124039317663	-0.3513203950912 -0.0020914805589333 0.098131185066667

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.00077715760043612	0.0008165596238364	0.1542439127395
Standard Error:	0.00054072917911662	0.004694783797712	0.036843060637724

Inter-Parameter Correlations

	А	В	С
A: B: C:	1.000	0.172 1.000	-0.394 0.785 1.000

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual:	2 747	0.20349262249117	0.10174631124558	1.0356
Total:	749	73.5983888	0.070252075002201	

Coefficient of Multiple Determination (R^2): 0.0027649059416797

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.05	0
25%-tile:	0.200249843945	0
Median:	0.20223748416157	0
75%-tile:	0.25	0
Maximum:	2.0155644370746	1.14

Midrange:	1.0327822185373	0.57
Range:	1.9655644370746	1.14
Interquartile Range:	0.049750156054996	0
Median Abs. Deviation:	0.013169108123813	0
Mean:	0.28909959535923	0.07332
Trim Mean (10%):	0.24958089885178	0.031701183431953
Standard Deviation:	0.27084799622358	0.21272277170063
Variance:	0.073358637058327	0.0452509776
Coef. of Variation:	0.93686743451516	2.9012925763862
Coef. of Skewness:	3.2902711963084	3.331410372399
Root Mean Square:	0.39615301727388	0.22500399996445
Mean Square:	0.1569372130952	0.0506268

Complete Spatial Randomness

Lambda:	1.2493753123438
Clark and Evans:	0.64628479648316
Skellam:	923.97450475025

Exclusion Filtering Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep:	First
X Duplicate Tolerance:	8.2E-006
Y Duplicate Tolerance:	1E-006
No duplicate data were for	ınd.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:	Kriging
Kriging Type:	Point
Polynomial Drift Order:	2
Kriging std. deviation grid:	no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	3
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\SS_Main\SilverSpringMain-0906.grd
Grid Size:	61 rows x 351 columns
Total Nodes:	21411
Filled Nodes:	21411
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0
X Maximum:	70
X Spacing:	0.2
Y Minimum:	0
Y Maximum:	12
Y Spacing:	0.2
Grid Statistics	
Z Minimum:	-4.0870627657804
Z 25%-tile:	-1.4759114144108
Z Median:	-0.31733645004242
Z 75%-tile:	0.7104002992699
Z Maximum:	1.160000013049
Z Midrange:	-1.4635313822378
Z Range:	5.2470627670853
Z Interquartile Range:	2.1863117136807
Z Median Abs. Deviation:	1.0777507785677
Z Mean:	-0.53115562257292
Z Trim Mean (10%):	-0.4690794712427
Z Standard Deviation:	1.2764266925575
Z Variance:	1.6292651014732
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-0.52088718331664
Z Root Mean Square:	1.3825307941829
Z Mean Square:	1.911391396864

Figure 4. Discharge measurement cross-section; Mammoth Spring, Marion County, Florida, September 19, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (labeled points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary wall of the cross section is shown as the perimeter ring of connected points. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Table 3. Mammoth Spring XYZ Grid Data, September 19, 2006.					
(Minor boundary points have been edited for processing in Surfer.)					
Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
67	7.25	0.18	A1	670	72.5
67	7.5	0.25	A2	670	75
67	8.5	0.59	A3	670	85
67	9.5	0.47	A4	670	95
67	9.7	0.53	A5	670	97
68	8	-0.07	AH1	680	80
69	8	-0.03	AH2	690	80
65	8	0.35	AB	650	80
63	4.4	-0.39	B1	630	44
63	4.9	-0.4	B2	630	49
63	5.9	-0.04	B3	630	59
63	6.9	0.11	B4	630	69
63	7.9	0.27	B5	630	79
63	8.9	0.83	B6	630	89
63	9.9	0.85	B7	630	99
63	10.4	0.5	B8	630	104
61	8	0.68	BC	610	80
59	5.65	0.56	C1	590	56.5
59	6.4	0.81	C2	590	64
59	7.4	0.93	C3	590	74
59	8.4	0.91	C4	590	84
59	9.4	1.16	C5	590	94
59	9.7	0.96	C6	590	97
57	6.9	0.99	CD	570	69
55	5.25	0.65	D1	550	52.5
55	5.5	0.76	D2	550	55
55	6.5	0.86	D3	550	65
55	7.5	0.96	D4	550	75
55	8.5	1.07	D5	550	85
55	9.5	1.02	D6	550	95
55	9.8	1.01	D7	550	98
53	6.9	1.05	DE	530	69
51	5.05	0.32	E1	510	50.5
51	5.3	0.69	E2	510	53
51	5.8	0.86	E3	510	58
51	6.8	0.78	E4	510	68
51	7.8	0.84	E5	510	78
51	8.8	1	E6	510	88
51	9.5	0.95	E7	510	95
49	7.3	0.89	EF	490	73

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
47	5.4	-0.02	F1	470	54
47	5.65	0.76	F2	470	56.5
47	6.15	0.92	F3	470	61.5
47	7.15	0.93	F4	470	71.5
47	8.15	1.07	F5	470	81.5
47	8.65	0.99	F6	470	86.5
47	9.05	0.92	F7	470	90.5
45	7.3	0.95	FG	450	73
43	4.5	0.03	G1	430	45
43	5	0.81	G2	430	50
43	6	1	G3	430	60
43	7	1.01	G4	430	70
43	8	0.92	G5	430	80
43	8.3	1.09	G6	430	83
41	5.5	0.93	GH	410	55
39	3.9	0.2	H1	390	39
39	4.4	0.77	H2	390	44
39	5.4	0.85	H3	390	54
39	6.4	0.88	H4	390	64
39	7.4	1	H5	390	74
39	8.4	1.08	H6	390	84
39	9	1.04	H7	390	90
37	5.5	0.98	HI	370	55
35	3	0.07	l1	350	30
35	3.5	0.39	12	350	35
35	4.5	0.92	13	350	45
35	5.5	0.86	14	350	55
35	6.5	0.96	15	350	65
35	7.5	0.97	16	350	75
35	8.5	0.96	17	350	85
35	9.2	0.72	18	350	92
33	4	0.85	IJ	330	40
24	0.45	0.00	14	210	24.5
31	2.45	0.22	JI	310	24.5
31	2.7	0.39	JZ	310	27
31	3.2	0.59	J3	310	32
31	4.2	0.72	J4	310	42
31 24	J.Z	1.10	JO	210	52 62
31 24	0.2	0.00	J0 17	310	0Z 70
31	1.2	0.99	J/	310	12
51	ŏ.∠	1.01	δL	310	0Z
31	ŏ.4	0.98	18	310	04
29	4	0.83	JK	290	40
	2.05	0.00	K4	270	20 F
Z 1	2.03	-0.02		210	20.3

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
27	2.3	0.38	K2	270	23
27	2.8	0.71	K3	270	28
27	3.8	0.71	K4	270	38
27	4.8	0.87	K5	270	48
27	5.8	0.94	K6	270	58
27	6.8	1.01	K7	270	68
27	7.8	1.03	K8	270	78
27	8.4	1.14	K9	270	84
25	3.3	0.9	KL	250	33
23	2.65	0.68	L1	230	26.5
23	3.15	0.8	L2	230	31.5
23	4.15	0.91	L3	230	41.5
23	5.15	1	L4	230	51.5
23	6.15	0.99	L5	230	61.5
23	7.15	1	L6	230	71.5
23	8.15	1.03	L7	230	81.5
23	8.45	0.88	L8	230	84.5
21	3.3	0.89	LM	210	33
19	2.3	-0.07	M1	190	23
19	2.8	0.26	M2	190	28
19	3.8	0.68	M3	190	38
19	4.8	0.78	M4	190	48
19	5.8	0.91	M5	190	58
19	6.8	0.96	M6	190	68
19	7.8	1.04	M7	190	78
19	8.4	1.07	M8	190	84
17	5.3	0.91	MN	170	53
15	3.55	0.05	N1	150	35.5
15	4.05	0.53	N2	150	40.5
15	5.05	0.76	N3	150	50.5
15	6.05	0.99	N4	150	60.5
15	7.05	0.98	N5	150	70.5
15	8.05	0.97	N6	150	80.5
15	9.05	1.02	N7	150	90.5
15	9.45	0.88	N8	150	94.5
13	5.3	0.79	NO	130	53
11	5.25	0.31	01	110	52.5
11	5.7	0.66	02	110	57
11	6.7	0.92	O3	110	67
11	7.7	0.95	O4	110	77
11	8.45	0.9	O5	110	84.5
9	7.2	0.9	OP	90	72
7	6.8	0.52	P1	70	68
7	7.3	0.76	P2	70	73

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
7	8.3	0.9	P3	70	83
7	9.3	0.6	P4	70	93
7	9.6	0.84	P5	70	96
5	7.2	0.42	PQ	50	72
3	6.15	0.2	Q1	30	61.5
3	6.35	0.27	Q2	30	63.5
3	6.85	0.4	Q3	30	68.5
3	7.85	0.32	Q4	30	78.5
3	8.25	0.34	Q5	30	82.5
1.4	7.2	0.25	QH1	14	72
2	7.2	0.2	QH2	20	72
67	9.9	0	AT	670	99
67	6.8	0	AS	670	68
63	10.65	0	BT	630	106.5
63	4.1	0	BS	630	41
59	9.9	0	СТ	590	99
59	5.4	0	CS	590	54
55	10.1	0	DT	550	101
55	4.25	0	DS	550	42.5
51	9.8	0	ET	510	98
51	5	0	ES	510	50
47	9.25	0	FT	470	92.5
47	5.15	0	FS	470	51.5
43	8.55	0	GT	430	85.5
43	4.2	0	GS	430	42
39	9.5	0	HT	390	95
39	3.6	0	HS	390	36
35	9.35	0	IT	350	93.5
35	2.9	0	IS	350	29
31	8.8	0	JT	310	88
31	2.2	0	JS	310	22
27	8.7	0	KT	270	87
27	2	0	KS	270	20
23	8.65	0	LT	230	86.5
23	2.35	0	LS	230	23.5
19	8.6	0	MT	190	86
19	2.2	0	MS	190	22
15	9.6	0	NT	150	96
15	3.25	0	NS	150	32.5
11	8.75	0	ОТ	110	87.5
11	4.9	0	OS	110	49
7	9.8	0	PT	70	98
7	6.5	0	PS	70	65
3	8.7	0	QT	30	87
3	6.05	0	QS	30	60.5

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
65	10.7	0	ABT	650	107
65	6.8	0	ABS	650	68
61	10.3	0	BCT	610	103
61	5.8	0	BCS	610	58
57	10	0	CDT	570	100
57	5.1	0	CDS	570	51
53	10	0	DET	530	100
53	5.5	0	DES	530	55
49	9.5	0	EFT	490	95
49	5.4	0	EFS	490	54
45	9.2	0	FGT	450	92
45	5.2	0	FGS	450	52
41	9	0	GHT	410	90
41	4.3	0	GHS	410	43
37	9.8	0	HIT	370	98
37	3.5	0	HIS	370	35
33	9.1	0	IJT	330	91
33	2.7	0	IJS	330	27
29	8.6	0	JKT	290	86
29	2.4	0	JKS	290	24
25	8.5	0	KLT	250	85
25	2.1	0	KLS	250	21
21	8.7	0	LMT	210	87
21	2.7	0	LMS	210	27
17	8.6	0	MNT	170	86
17	3	0	MNS	170	30
13	9	0	NOT	130	90
13	4.55	0	NOS	130	45.5
9	8.65	0	OPT	90	86.5
9	6	0	OPS	90	60
5	9.3	0	PQT	50	93
5	6.7	0	PQS	50	67
64	10.5	0	ABTA	640	105
66	10.2	0	ABTB	660	102
63.2	4.4	0	ABSA	632	44
63.15	4.9	0	ABSB	631.5	49
63.15	5.4	0	ABSC	631.5	54
63.2	5.9	0	ABSD	632	59
63.25	6.4	0	ABSE	632.5	64
63.3	6.9	U	ABSE	633	69
64	(U	ABSG	640	70
66	0.3	U	ABSH	660	63
60	10	U	BUIA	600	100
62	10.7	0	BCIB	620	107
60	5.8	U	BCSA	600	58
62	5	U	BCSB	620	50
56	5.2	0	CDSA	560	52

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
57.5	4.5	0	CDSB	575	45
58	5.3	0	CDSC	580	53
44	9	0	FGTA	440	90
46	9.1	0	FGTB	460	91
44	4.6	0	FGSA	440	46
46	5.5	0	FGSB	460	55
11.5	8.6	0	NOTA	115	86
12	8.6	0	NOTB	120	86
12.5	8.7	0	NOTC	125	87
13.5	9	0	NOTD	135	90
14	9.2	0	NOTE	140	92
14.5	9.3	0	NOTF	145	93
11.5	5.05	0	NOSA	115	50.5
12	4.9	0	NOSB	120	49
12.5	4.5	0	NOSC	125	45
13.5	4.65	0	NOSD	135	46.5
14	4.5	0	NOSE	140	45
14.5	3.5	0	NOSF	145	35
7.9	8.8	0	ΟΡΤΑ	79	88
8	8.7	0	OPTB	80	87
10	8.9	0	OPTC	100	89
8	6.35	0	OPSA	80	63.5
10	5.65	0	OPSB	100	56.5
4	6.3	0	PQSA	40	63
6	6.7	0	PQSB	60	67
		_			
67.3	7	0	AV1	673	70
67.5	7.3	0	AV2	675	73
67.9	7.5	0	AV3	679	75
68	7.5	0	AV4	680	75
68.5	7.7	0	AV5	685	//
69	7.9	0	AV6	690	79
69.3	8	0	AV7	693	80
69.1	8.5	0	AV8	691	85
69.3	9	0	AV9	693	90
69	9.1	0	AV10	690	91
68.5	9.3	0	AV11	685	93
68	9.4	0	AV12	680	94
67.6	9.5	0	AV13	676	95
67.5	9.7	0	AV14	675	97
1 45	6.25	0	0\/1	115	62.5
1.45	6.95	0		14.5	68.5
1.1	7.00	0	01/2	12.5	72
1.25	7 35	0	QV3	12.5	73.5
1.25	7.85	0	0\/5	12.0	78.5
1.4	8.05	0	01/6	12	80.5
0.3	0.05 Q 25	0	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	3	83.5
0.5	0.55	<u> </u>	<u> </u>	5	00.0

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.3	8.7	0	QV8	3	87
67.1	6.86667	0	AE1	671	68.6667
67.2	6.93334	0	AE2	672	69.3334
67.3667	7.1	0	AE3	673.6667	71
67.4333	7.2	0	AE4	674.3334	72
67.6	7.35	0	AE5	676	73.5
67.7	7.4	0	AE6	677	74
67.8	7.45	0	AE7	678	74.5
68.1	7.54	0	AE8	681	75.4
68.2	7.58	0	AE9	682	75.8
68.3	7.62	0	AE10	683	76.2
68.4	7.66	0	AE11	684	76.6
68.6	7.74	0	AE12	686	77.4
68.7	7.78	0	AE13	687	77.8
68.8	7.82	0	AE14	688	78.2
68.9	7.86	0	AE15	689	78.6
69.1	7.9333	0	AE16	691	79.333
69.2	7.96666	0	AE17	692	79.6666
69.26	8.1	0	AE18	692.6	81
69.22	8.2	0	AE19	692.2	82
69.18	8.3	0	AE20	691.8	83
69.14	8.4	0	AE21	691.4	84
69.14	8.6	0	AE22	691.4	86
69.18	8.7	0	AE23	691.8	87
69.22	8.8	0	AE24	692.2	88
69.26	8.9	0	AE25	692.6	89
69.2	9.03333	0	AE26	692	90.3333
69.1	9.06666	0	AE27	691	90.6666
68.9	9.14	0	AE28	689	91.4
68.8	9.18	0	AE29	688	91.8
68.7	9.22	0	AE30	687	92.2
68.6	9.26	0	AE31	686	92.6
68.4	9.32	0	AE32	684	93.2
68.3	9.34	0	AE33	683	93.4
68.2	9.36	0	AE34	682	93.6
68.1	9.38	0	AE35	681	93.8
67.9	9.425	0	AE36	679	94.25
67.8	9.45	0	AE37	678	94.5
67.7	9.475	0	AE38	677	94.75
67.55	9.6	0	AE39	675.5	96
67.4	9.74	0	AE40	674	97.4
67.3	9.78	0	AE41	673	97.8
67.2	9.82	0	AE42	672	98.2
67.1	9.86	0	AE43	671	98.6
20	6.00	0	051	20	60.0
2.0	0.09	U		20	61.7
2.4	0.17	U	QE3	24	01.7

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2	6.25	0	QE5	20	62.5
1.6	6.33	0	QE7	16	63.3
1.3	6.5	0	QE8	13	65
1.15	6.7	0	QE9	11.5	67
1.15	7	0	QE10	11.5	70
1.35	7.5	0	QE11	13.5	75
1.45	7.7	0	QE12	14.5	77
1.1	8.1	0	QE13	11	81
0.9	8.15	0	QE14	9	81.5
0.5	8.25	0	QE16	5	82.5
0.3	8.5	0	QE17	3	85
0.4	8.7	0	QE18	4	87
0.8	8.7	0	QE20	8	87
1.2	8.7	0	QE22	12	87
1.6	8.7	0	QE24	16	87
2	8.7	0	QE26	20	87
2.4	8.7	0	QE28	24	87
2.8	8.7	0	QE30	28	87
66.8	6.7	0	ABS1	668	67
66.6	6.6	0	ABS2	666	66
66.4	6.5	0	ABS3	664	65
66.2	6.4	0	ABS4	662	64
65.8	6.4	0	ABS5	658	64
65.6	6.5	0	ABS6	656	65
65.4	6.6	0	ABS7	654	66
65.2	6.7	0	ABS8	652	67
64.8	6.84	0	ABS9	648	68.4
64.6	6.88	0	ABS10	646	68.8
64.4	6.92	0	ABS11	644	69.2
64.2	6.96	0	ABS12	642	69.6
63.8	6.97142	0	ABS13	638	69.7142
63.6	6.94284	0	ABS14	636	69.4284
63.4	6.91426	0	ABS15	634	69.1426
63.28	6.8	0	ABS16	632.8	68
63.26	6.6	0	ABS17	632.6	66
63.23	6.2	0	ABS18	632.3	62
63.21	6	0	ABS19	632.1	60
63.18	5.7	0	ABS20	631.8	57
63.16	5.5	0	ABS21	631.6	55
63.15	5.2	0	ABS22	631.5	52
63.15	5	0	ABS23	631.5	50
63.17	4.7	0	ABS24	631.7	47
63.19	4.5	0	ABS25	631.9	45
63.1	4.25	0	ABS26	631	42.5
62.8	4.28	0	BCS1	628	42.8
62.6	4.46	0	BCS2	626	44.6

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
62.4	4.64	0	BCS3	624	46.4
62.2	4.82	0	BCS4	622	48.2
61.8	5.16	0	BCS5	618	51.6
61.6	5.32	0	BCS6	616	53.2
61.4	5.48	0	BCS7	614	54.8
61.2	5.64	0	BCS8	612	56.4
60.8	5.8	0	BCS9	608	58
60.4	5.8	0	BCS11	604	58
60.2	5.8	0	BCS12	602	58
59.8	5.72	0	BCS13	598	57.2
59.4	5.56	0	BCS15	594	55.6
59.2	5.48	0	BCS16	592	54.8
58.8	5.38	0	CDS1	588	53.8
58.6	5.36	0	CDS2	586	53.6
58.2	5.32	0	CDS4	582	53.2
57.875	5.1	0	CDS5	578.75	51
57.75	4.9	0	CDS6	577.5	49
57.625	4.7	0	CDS7	576.25	47
57.3334	4.7	0	CDS8	573.334	47
57.1668	4.9	0	CDS9	571.668	49
56.8	5.12	0	CDS10	568	51.2
56.6	5.14	0	CDS11	566	51.4
56.4	5.16	0	CDS12	564	51.6
56.2	5.18	0	CDS13	562	51.8
55.8	5.01	0	CDS14	558	50.1
55.6	4.82	0	CDS15	556	48.2
55.4	4.63	0	CDS16	554	46.3
55.2	4.44	0	CDS17	552	44.4
55.1	4.3	0	CDS18	551	43
55	4.4	0	DES1	550	44
55	4.6	0	DES2	550	46
55	5	0	DES4	550	50
54.8	5.23	0	DES5	548	52.3
54.6	5.26	0	DES6	546	52.6
54.2	5.32	0	DES8	542	53.2
54	5.35	0	DES9	540	53.5
53.6	5.41	0	DES11	536	54.1
53.2	5.47	0	DES13	532	54.7
52.8	5.45	0	DES14	528	54.5
52.4	5.35	0	DES16	524	53.5
52	5.25	0	DES18	520	52.5
51.8	5.2	0	DES19	518	52
51.4	5.1	0	DES21	514	51
51.2	5.05	0	DES22	512	50.5
50.8	5.04	0	EFS1	508	50.4

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
50.6	5.08	0	EFS2	506	50.8
50.2	5.16	0	EFS4	502	51.6
50	5.2	0	EFS5	500	52
49.6	5.28	0	EFS7	496	52.8
49.2	5.36	0	EFS9	492	53.6
48.8	5.375	0	EFS10	488	53.75
48.4	5.325	0	EFS12	484	53.25
48	5.275	0	EFS14	480	52.75
47.8	5.25	0	EFS15	478	52.5
47.4	5.2	0	EFS17	474	52
47.2	5.175	0	EFS18	472	51.75
46.8	5.22	0	FGS1	468	52.2
46.4	5.36	0	FGS3	464	53.6
45.8	5.44	0	FGS5	458	54.4
45.4	5.32	0	FGS7	454	53.2
45.2	5.26	0	FGS8	452	52.6
44.8	5.08	0	FGS9	448	50.8
44.4	4.84	0	FGS11	444	48.4
44.2	4.72	0	FGS12	442	47.2
43.6	4.44	0	FGS14	436	44.4
43.2	4.28	0	FGS16	432	42.8
42.8	4.21	0	GHS1	428	42.1
42.6	4.22	0	GHS2	426	42.2
42.2	4.24	0	GHS4	422	42.4
42	4.25	0	GHS5	420	42.5
41.6	4.27	0	GHS7	416	42.7
41.2	4.29	0	GHS9	412	42.9
40.8	4.23	0	GHS10	408	42.3
40.4	4.09	0	GHS12	404	40.9
40	3.95	0	GHS14	400	39.5
39.8	3.88	0	GHS15	398	38.8
39.4	3.74	0	GHS17	394	37.4
39.2	3.67	0	GHS18	392	36.7
38.8	3.59	0	HIS1	388	35.9
38.6	3.58	0	HIS2	386	35.8
38.2	3.56	0	HIS4	382	35.6
38	3.55	0	HIS5	380	35.5
37.6	3.53	0	HIS7	376	35.3
37.2	3.51	0	HIS9	372	35.1
36.8	3.44	0	HIS10	368	34.4
36.4	3.32	0	HIS12	364	33.2
36	3.2	0	HIS14	360	32
35.8	3.14	0	HIS15	358	31.4
35.4	3.02	0	HIS17	354	30.2

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
35.2	2.96	0	HIS18	352	29.6
34.8	2.88	0	IJS1	348	28.8
34.6	2.86	0	IJS2	346	28.6
34.2	2.82	0	IJS4	342	28.2
34	2.8	0	IJS5	340	28
33.8	2.78	0	IJS6	338	27.8
33.6	2.76	0	IJS7	336	27.6
33.2	2.72	0	IJS9	332	27.2
32.8	2.65	0	IJS10	328	26.5
32.4	2.55	0	IJS12	324	25.5
32	2.45	0	IJS14	320	24.5
31.8	2.4	0	IJS15	318	24
31.4	2.3	0	IJS17	314	23
31.2	2.25	0	IJS18	312	22.5
30.8	2.22	0	JKS1	308	22.2
30.6	2.24	0	JKS2	306	22.4
30.2	2.28	0	JKS4	302	22.8
30	2.3	0	JKS5	300	23
29.6	2.34	0	JKS7	296	23.4
29.2	2.38	0	JKS9	292	23.8
28.8	2.36	0	JKS10	288	23.6
28.4	2.28	0	JKS12	284	22.8
28	2.2	0	JKS14	280	22
27.8	2.16	0	JKS15	278	21.6
27.4	2.08	0	JKS17	274	20.8
27.2	2.04	0	JKS18	272	20.4
	0.04	•	1/1 04	000	00.4
26.8	2.01	0	KLS1	268	20.1
26.6	2.02	0	KLS2	266	20.2
26.2	2.04	0	KLS4	262	20.4
26	2.05	0	KLS5	260	20.5
25.6	2.07	0	KLS/	250	20.7
25.2	2.09	0	KLS9	252	20.9
24.8	2.125	0	KLS10	248	21.25
24.4	2.175	0	KLS1Z	244	21.75
24	2.225	0	KLS14	240	22.25
23.0	2.20	0	KLSIJ KLSIJ	230	22.0
23.4	2.3	0	KLS17	234	23
23.2	2.325	0	NL310	232	23.25
22.8	2 385	0	I MS1	228	23.85
22.0	2.303	0		220	20.00
22.0	2.72	0		220	24.2
22.2	2.75	0		220	25.25
21.6	2.525	0	I MS7	220	25.25
21.0	2.555	0		210	26.65
21.2	2.000	v	LIVISS	212	20.00

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
20.8	2.65	0	LMS10	208	26.5
20.4	2.55	0	LMS12	204	25.5
20	2.45	0	LMS14	200	24.5
19.8	2.4	0	LMS15	198	24
19.4	2.3	0	LMS17	194	23
19.2	2.25	0	LMS18	192	22.5
18.8	2.28	0	MNS1	188	22.8
18.6	2.36	0	MNS2	186	23.6
18.2	2.52	0	MNS4	182	25.2
18	2.6	0	MNS5	180	26
17.6	2.76	0	MNS7	176	27.6
17.2	2.92	0	MNS9	172	29.2
16.8	3.025	0	MNS10	168	30.25
16.4	3.075	0	MNS12	164	30.75
16	3.125	0	MNS14	160	31.25
15.8	3.15	0	MNS15	158	31.5
15.4	3.2	0	MNS17	154	32
15.2	3.225	0	MNS18	152	32.25
14.8	3.31	0	NOS1	148	33.1
14.6	3.37	0	NOS2	146	33.7
14.45	3.6	0	NOS3	144.5	36
14.35	3.8	0	NOS4	143.5	38
14.25	4	0	NOS5	142.5	40
14.15	4.2	0	NOS6	141.5	42
14.05	4.4	0	NOS7	140.5	44
13.9	4.53	0	NOS8	139	45.3
13.7	4.59	0	NSO9	137	45.9
13.3	4.63	0	NOS10	133	46.3
13.1	4.59	0	NOS11	131	45.9
12.9	4.54	0	NOS12	129	45.4
12.7	4.52	0	NOS13	127	45.2
12.3	4.7	0	NOS14	123	47
12.1	4.8	0	NOS15	121	48
11.9	4.96	0	NOS16	119	49.6
11.7	5.02	0	NOS17	117	50.2
11.3	4.99	0	NOS18	113	49.9
11.1	4.93	0	NO519	111	49.3
10.9	5.06	0	0051	109	50.6
10.0	5.00	0	0P31	108	50.0
10.4	5.30	0	0133	104	55.0
0.0	5.54	0	0P34	00	57.2
9.0	J.12 E 06	0	0000	30	59.6
9.4 0.2	5.00	0	000	94 02	50.0
9.2 9.0	5.93 6.07	0	0000	92 80	60.7
0.0	0.07	0	0000	00	62.4
ŏ.4	0.21	U	04211	ŏ4	02.1

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
8.2	6.28	0	OPS12	82	62.8
7.8	6.38	0	OPS13	78	63.8
7.4	6.44	0	OPS15	74	64.4
7.2	6.47	0	OPS16	72	64.7
6.8	6.54	0	PQS1	68	65.4
6.4	6.62	0	PQS3	64	66.2
5.8	6.7	0	PQS5	58	67
5.4	6.7	0	PQS7	54	67
5.2	6.7	0	PQS8	52	67
4.8	6.62	0	PQS9	48	66.2
4.4	6.46	0	PQS11	44	64.6
3.8	6.25	0	PQS13	38	62.5
3.4	6.15	0	PQS15	34	61.5
3.2	6.1	0	PQS16	32	61
66.8	9.96	0	ABT1	668	99.6
66.6	10.02	0	ABT2	666	100.2
66.4	10.08	0	ABT3	664	100.8
66.2	10.14	0	ABT4	662	101.4
65.8	10.3	0	ABT5	658	103
65.6	10.4	0	ABT6	656	104
65.4	10.5	0	ABT7	654	105
65.2	10.6	0	ABT8	652	106
64.8	10.66	0	ABT9	648	106.6
64.6	10.62	0	ABT10	646	106.2
64.4	10.58	0	ABT11	644	105.8
64.2	10.54	0	ABT12	642	105.4
63.8	10.53	0	ABT13	638	105.3
63.6	10.56	0	ABT14	636	105.6
63.4	10.59	0	ABT15	634	105.9
63.2	10.62	0	ABT16	632	106.2
62.8	10.66	0	BCT1	628	106.6
62.4	10.68	0	BCT3	624	106.8
62.2	10.69	0	BCT4	622	106.9
61.8	10.62	0	BCT5	618	106.2
61.6	10.54	0	BCT6	616	105.4
61.4	10.46	0	BCT7	614	104.6
61.2	10.38	0	BCT8	612	103.8
60.8	10.24	0	BCT9	608	102.4
60.6	10.18	0	BCT10	606	101.8
60.4	10.12	0	BCT11	604	101.2
60.2	10.06	0	BCT12	602	100.6
59.8	9.98	0	BCT13	598	99.8
59.6	9.96	0	BCT14	596	99.6
59.4	9.94	0	BCT15	594	99.4
59.2	9.92	0	BCT16	592	99.2

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
58.8	9.91	0	CDT1	588	99.1
58.6	9.92	0	CDT2	586	99.2
58.2	9.94		CDT4	582	99.4
58	9.95	0	CDT5	580	99.5
57.6	9.97	0	CDT7	576	99.7
57.2	9.99	0	CDT9	572	99.9
56.8	10.01	0	CDT10	568	100.1
56.4	10.03	0	CDT12	564	100.3
56	10.05	0	CDT14	560	100.5
55.8	10.06	0	CDT15	558	100.6
55.4	10.08	0	CDT17	554	100.8
55.2	10.09	0	CDT18	552	100.9
		0			
54.8	10.09	0	DET1	548	100.9
54.6	10.08	0	DET2	546	100.8
54.2	10.06	0	DET4	542	100.6
54	10.05	0	DET5	540	100.5
53.6	10.03	0	DET7	536	100.3
53.2	10.01	0	DET9	532	100.1
52.8	9.98	0	DET10	528	99.8
52.4	9.94	0	DET12	524	99.4
52	9.9	0	DET14	520	99
51.8	9.88	0	DET15	518	98.8
51.4	9.84	0	DET17	514	98.4
51.2	9.82	0	DET18	512	98.2
50.8	9.77	0	EFT1	508	97.7
50.6	9.74	0	EFT2	506	97.4
50.2	9.68	0	EFT4	502	96.8
49.8	9.62	0	EFT6	498	96.2
49.6	9.59	0	EFT7	496	95.9
49.2	9.53	0	EFT9	492	95.3
48.8	9.485	0	EFT10	488	94.85
48.4	9.45	0	EFT12	484	94.5
48	9.4	0	EFT14	480	94
47.8	9.375	0	EF 115	478	93.75
47.4	9.325	0	EFT17	474	93.25
47.2	9.3	0	EFT18	472	93
			5074	400	
46.8	9.22	0	FGI1	468	92.2
46.4	9.16	0	FG13	464	91.6
45.8	9.12	0	FG15	458	91.2
45.4	9.16	0	FG17	454	91.6
40.2	9.18	U	FGIð	402	91.8
44.8	9.10	U	FG19	448	91.6
44.4	9.08	U	FGI11	444	90.8
43.8	8.91	U	FG113	438	89.1

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
43.6	8.82	0	FGT14	436	88.2
43.2	8.64	0	FGT16	432	86.4
42.8	8.595	0	GHT1	428	85.95
42.6	8.64	0	GHT2	426	86.4
42.2	8.73	0	GHT4	422	87.3
42	8.775	0	GHT5	420	87.75
41.6	8.865	0	GHT7	416	88.65
41.2	8.955	0	GHT9	412	89.55
40.8	9.05	0	GHT10	408	90.5
40.4	9.15	0	GHT12	404	91.5
40	9.25	0	GHT14	400	92.5
39.8	9.3	0	GHT15	398	93
39.4	9.4	0	GHT17	394	94
39.2	9.45	0	GHT18	392	94.5
38.8	9.53	0	HIT1	388	95.3
38.6	9.56	0	HIT2	386	95.6
38.2	9.62	0	HIT4	382	96.2
38	9.65	0	HIT5	380	96.5
37.6	9.71	0	HIT7	376	97.1
37.2	9.77	0	HIT9	372	97.7
36.8	9.755	0	HIT10	368	97.55
36.4	9.665	0	HIT12	364	96.65
36	9.575	0	HIT14	360	95.75
35.8	9.53	0	HIT15	358	95.3
35.4	9.44	0	HIT17	354	94.4
35.2	9.395	0	HIT18	352	93.95
34.8	9.325	0	IJT1	348	93.25
34.6	9.3	0	IJT2	346	93
34.2	9.25	0	IJT4	342	92.5
34	9.225	0	IJT5	340	92.25
33.6	9.175	0	IJT7	336	91.75
33.2	9.125	0	IJT9	332	91.25
32.8	9.07	0	IJT10	328	90.7
32.4	9.01	0	IJT12	324	90.1
32	8.95	0	IJT14	320	89.5
31.8	8.92	0	IJT15	318	89.2
31.4	8.86	0	IJT17	314	88.6
31.2	8.83	0	IJT18	312	88.3
30.8	8.78	0	JKT1	308	87.8
30.6	8.76	0	JKT2	306	87.6
30.2	8.72	0	JKT4	302	87.2
30	8.7	0	JKT5	300	87
29.6	8.66	0	JHT7	296	86.6
29.2	8.62	0	JKT9	292	86.2

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
28.8	8.61	0	JKT10	288	86.1
28.4	8.63	0	JKT12	284	86.3
28	8.65	0	JKT14	280	86.5
27.8	8.66	0	JKT15	278	86.6
27.4	8.68	0	JKT17	274	86.8
27.2	8.69	0	JKT18	272	86.9
26.8	8.68	0	KLT1	268	86.8
26.6	8.66	0	KLT2	266	86.6
26.2	8.62	0	KLT4	262	86.2
26	8.6	0	KLT5	260	86
25.6	8.56	0	KLT7	256	85.6
25.2	8.52	0	KLT9	252	85.2
24.8	8.515	0	KLT10	248	85.15
24.4	8.545	0	KLT12	244	85.45
24	8.575	0	KLT14	240	85.75
23.8	8.59	0	KLT15	238	85.9
23.4	8.62	0	KLT17	234	86.2
23.2	8.635	0	KLT18	232	86.35
22.8	8.655	0	LMT1	228	86.55
22.6	8.66	0	LMT2	226	86.6
22.2	8.67	0	LMT4	222	86.7
22	8.675	0	LMT5	220	86.75
21.6	8.685	0	LMT7	216	86.85
21.2	8.695	0	LMT9	212	86.95
20.8	8.69	0	LMT10	208	86.9
20.4	8.67	0	LMT12	204	86.7
20	8.65	0	LMT14	200	86.5
19.8	8.64	0	LMT15	198	86.4
19.4	8.62	0	LMT17	194	86.2
19.2	8.61	0	LMT18	192	86.1
				100	
18.8	8.6	0	NMT1	188	86
18.6	8.6	0	NMT2	186	86
18.2	8.6	0	NM14	182	86
18	8.6	0	NM15	180	86
17.6	8.6	0		176	86
17.2	8.6	0		172	86
16.8	8.7	0	NMT10	168	87
16.4	8.9	0		164	89
16	9.1	0	NIMI 14	160	91
15.8	9.2	0	NIMI 15	158	92
15.4	9.4	U		154	94
15.2	9.5	U		152	95
14.9	0.49	0	NOTA	140	04.0
14.8	9.40	0		148	94.8
14.0	9.30	U	NUIZ	140	93.6

Х	Y	Z (Velocitv)	Station Name	X Plot	Y Plot
14.3	9.26	0	NOT3	143	92.6
14.1	9.22	0	NOT4	141	92.2
13.8	9.18	0	NOT5	138	91.8
13.6	9.04	0	NOT6	136	90.4
13.3	9	0	NOT7	133	90
13.1	9	0	NOT8	131	90
12.8	8.88	0	NOT9	128	88.8
12.6	8.76	0	NOT10	126	87.6
12.3	8.64	0	NOT11	123	86.4
12.1	8.62	0	NOT12	121	86.2
11.8	8.6	0	NOT13	118	86
11.6	8.6	0	NOT14	116	86
11.3	8.66	0	NOT15	113	86.6
11.1	8.72	0	NOT16	111	87.2
10.8	8.78	0	OPT1	108	87.8
10.4	8.84	0	OPT3	104	88.4
10.2	8.87	0	OPT4	102	88.7
9.6	8.8	0	OPT6	96	88
9.2	8.7	0	OPT8	92	87
8.8	8.66	0	OPT9	88	86.6
8.4	8.68	0	OPT11	84	86.8
8.2	8.69	0	OPT12	82	86.9
7.72	9	0	OPT13	77.2	90
7.54	9.2	0	OPT15	75.4	92
7.36	9.4	0	OPT15	73.6	94
7.18	9.6	0	OPT16	71.8	96
7.09	9.7	0	OPT17	70.9	97
6.8	9.75	0	PQT1	68	97.5
6.6	9.7	0	PTQ2	66	97
6.2	9.6	0	PQT4	62	96
6	9.55	0	PQT5	60	95.5
5.6	9.45	0	PQT7	56	94.5
5.2	9.35	0	PQT9	52	93.5
4.8	9.24	0	PQT10	48	92.4
4.4	9.12	0	PQT12	44	91.2
4	9	0	PQT14	40	90
3.8	8.94	0	PQT15	38	89.4
3.4	8.82	0	PQT17	34	88.2
3.2	8.76	0	PQT18	32	87.6
CALIBRATION CERTIFICATE Model: 2000-21 Serial Number: 2002679 Sensor Ser # N/A Unit Gain Ratio: Type of Reading Level: Velocity: FPS CM CMS X N/A Dynamic Velocity Static Velocity Level 2.00 N/A Standard: Zero 1.98 N/A Ø.ØØ Measured: X Factory Calibration TOW TANK Field Profile Calibration; Site Coefficient or Velocity Multiplier: Date: 18 Apr 200 Calibration Technician Date QA Technician: This document certifies that the described instrument has been calibrated. Verification is indicated by the measured results show above. Velocity calibration is traceable to the National Institute of Standards and Technology (NIST), Gaithersburg, MD. For Product information, service, or calibration, please contact the Customer Service Department. MARSH MCBIRNEY A Higher Level of How Meosarement 4539 Metropolitan Ct., Frederick, MD 21704-9452 (301) 874-5599 (800)-368-2723 FAX (301) 874-2172

Discharge Measurement: Mastodon Bone Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Mastodon Bone Spring, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Mastodon Bone Spring, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Mastodon Bone Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Mastodon Bone Spring.
- 4. Figure 2. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006 measurement.
- 5. Figure 3. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown ...
- 6. Table 2. Mastodon Bone Spring, September 28, 2006. Surfer 8 Grid Volume Computations and Gridding Report.
- 7. Figure 4. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006, measurement. Relationship of flow contours and velocity measurement stations are shown...
- 8. Table 3. Mastodon Bone Spring XYZ Grid Data, September 28, 2006.
- 9. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Mastodon Bone Spring, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Mastodon Bone Spring on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Mastodon Bone Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Tom Morris, both of KES. Data management and report preparation was performed by Peter Butt. Data processing using Surfer 8 contouring software was performed by W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida.

SITE DESCRIPTION

Mastodon Bone Spring is located within the Silver River, on the north side, and opposite from a peninsula on the south side that is immediately upstream of the Geyser Spring Group. This spring discharges vigorously from two 4-foot long linear cracks that form a roughly triangular vent in the limestone, at the bottom of a conical basin. This spring is rocky, with little sediment around it, and is about 12 feet deep. See Figure 1.

Since the orifice of this spring is located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

Pete Butt positioned the sensor, and recorded positional data, while Tom Morris read the velocity readings, after taking meter reset cues from Butt. During all measurements, the sensor handler completely removed himself from the cross section of the flow. The meter operator was also positioned outside the cross-section. This eliminated the possibility of interference with flow while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each station. Thirteen station readings were taken.

The approximate depth for the measurement grid was 13 feet. Telescoping aluminum poles with 1, 0.5, 0.25 and 0.1 foot interval markings were positioned horizontally to allow for a grid of velocity measurements. As all sensor-support poles were positioned at right angles to the main flow path, no angle coefficient corrections for velocity readings were made. The flowmeter sensor was positioned on the poles with a quick release clamp. Spring vent dimensions and positions were measured with a metal tape.

Field measurements of the velocity measurement stations and vent boundaries were plotted on grid paper and assigned X- and Y-axis values. See Figure 2. Values for the Z-axis were the point velocities, and zero values were assigned to the cross-section boundary points. See Table 3. The X, Y and Z data was processed using the Surfer v.8 (by Golden Software, Inc.) contouring program. The gridding method used was point Kriging with linear drift, an anisotropy ratio of 1 at an angle of 0° , and a variogram slope of 1.0. The results of the contour processing are illustrated in Figures 3 and 4.

During this measurement, one negative velocity was measured. Negative velocity stations typically represent slight back eddies near walls. In order to incorporate any negative values, calculations were made using a Surfer 8 "blanking file" operation to define the measurement cross-section boundary. The total discharge is shown on Table 2 as the **Net Volume (Cut-Fill)**, and has been calculated as the Positive Volume (Cut) less that portion of the Negative Volume (Fill) lying within the measurement cross-section boundary walls that define the plane of measurement.

The software also calculates the total cross-sectional area of the measurement location within the passage, and is presented on Table 2 as the **Operational Planar Area**. The Operational Planar Area is the sum of the Positive (Cut) and that portion of the Negative (Fill) Planar areas lying within the measurement cross-section boundary walls that define the plane of measurement.

RESULTS AND DISCUSSION

This measurement is the first one performed at Mastodon Bone Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Mastodon Bone Spring on September 28, 2006 was 1.45 CFS (cubic feet per second). This result is also expressed as 650 GPM (gallons per minute) or 0.936 MGD (million gallons per day), see Table 1. Thirteen (13) readings were made, see Figures 2, 3 and 4. The point velocity readings ranged from -0.01 to 1.4 feet per second (fps), with an overall average station reading of 0.79 fps. The total cross-sectional area was calculated as 2.755 square feet. Individual point velocity measurement periods of 60 seconds were used. The measurements commenced at about 13:51 hours and were completed by 14:11 hours.

UNDERWAT	ER DISCHARGE	MEASUREME	NT		
Location:	MASTODON B	ONE SPRING		Date:	September 28, 2006
	Silver Springs C	Silver Springs Group,		Time Start:	13:51
	Marion County,	Florida		Time End:	14:11
Personnel:	Peter Butt, Tom N	<i>I</i> orris			
Method:	Grid within irregu	ar conduit			
Instrument:	MMB2000 FLO-N	IATE in U/W cas	e, sensor	on support poles	
	Msmt. Periods:	60 seconds			
Analysis Meth	od: Surfer 8 with krigi	ng			
Mastadan Ba	no Spring Total Dia	ohorgo			
		charge.			
	1.45				
MGD	0.936				
GPM	650	0.755			
I otal Cross-sec	tional Area (sq/ft):	2.755			
Avg. Station Po	int Velocity (ft/sec):	0.79			
Cross-section D	epth (feet deep):	13			
			L		
Velocity Rea	ding by Station:	(All velocity re	eadings i	n feet per secoi	nd.)
Station #					
1	0.08				
2	1.21				
3	1.4				
4	1.19				
5	1.3				
6	0.55				
/	0.08				
8	1.02				
9	0.43				
10	0.34				
11	-0.01				
12	1.08				
13	1.05				

Table 1. Discharge of Mastodon Bone Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Mastodon Bone Spring.

Figure 2. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006 measurement. Cross-section is viewed to the upstream of observer, and is located at the 13-foot depth level. Velocity measurement stations are shown as numbered points. See Table 1 for station velocities. Boundary of cross section is shown as connected points. Support poles represented by dashed lines. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Figure 3. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006 measurement. Flow contour velocities are shown in feet per second. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. Outer boundary of cross section represents the zero-value contour. X- and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

TABLE 2. MASTODON BONE SPRING, SEPTEMBER 28, 2006.SURFER 8 GRID VOLUME COMPUTATIONS AND GRIDDING REPORT

UPPER SURFACE

Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
06\Mastodon\MastodonBone9-06.bln.grd
61 rows x 77 columns
0.2
4
0.05
0
3
0.05
-0.0053314706106041
1.3999999994555

LOWER SURFACE

Level Surface defined by Z = 0

VOLUMES

Z Scale Factor:	1
Total Volumes by:	
Trapezoidal Rule:	1.4484001312717
Simpson's Rule:	1.4484344157176
Simpson's 3/8 Rule:	1.4481101368109

CUT & FILL VOLUMES

Positive Volume [Cut]:1.4484105979796Negative Volume [Fill]:1.0466707929344E-005Net Volume [Cut-Fill]:1.4484001312717<<<<<<Total Discharge in CFS</td>(The Net Volume value is used due to the presence of negative velocity values.Positive Vol. Cut - Negative Vol. Fill = Net Volume. Please refer to report text.)

AREAS

Planar Areas	
Operational Planar Area:	2.755 <<< <total area="" cross-section="" feet<="" in="" square="" th=""></total>
(Calculated using blanking fi	le due to the presence of negative velocity values;
Operational Planar Area = [P	.P.A.Cut + N.P.A.Fill] = [Total Planar Area - Blanked Planar Area].
Please refer to report text.)	
Positive Planar Area [Cut]:	2.7524732324001
Negative Planar Area [Fill]:	0.0025267675999065
Blanked Planar Area:	8.645
Total Planar Area:	11.4

Surface Areas

Positive Surface Area [Cut]:	6.3480024831556
Negative Surface Area [Fill]:	0.0025780922979023

GRIDDING REPORT

Source Data File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep
	06\Mastodon\Mastodon Bone 9-06 SURFER XYZ BLF.xls
X Column:	A
Y Column:	В
Z Column:	C
Data Counts	
Active Data:	180
Original Data:	180
Excluded Data:	0
Deleted Duplicates:	0
Retained Duplicates:	0
Artificial Data:	0
Superseded Data:	0

Univariate Statistics

	Х	Y	Z
Minimum:	0.5	0.2	-0.01
25%-tile:	1.25	0.85	0
Median:	2.25	1.56	0
75%-tile:	2.9	1.8	0
Maximum:	3.7	2.525	1.4
Midrange:	2.1	1.3625	0.695
Range:	3.2	2.325	1.41
Interquartile Range:	1.65	0.95	0
Median Abs. Deviation:	0.8	0.46	0
Mean:	2.0955461111111	1.3554890277778	0.056777777777778
Trim Mean (10%):	2.0989290123457	1.3584137345679	0.0052469135802469
Standard Deviation:	0.96111683233586	0.662839371143	0.23810748169578
Variance:	0.92374556539932	0.43935603193725	0.056695172839506
Coef. of Variation:			4.1936738459139
Coef. of Skewness:			4.3564652474141

Inter-Variable Correlation

	Х	Y	Z	
:	1.000	0.537	-0.062	
' :		1.000	-0.023	
:			1.000	

Table 2. Mastodon Bone Spring, September 28, 2006.

Inter-Variable Covariance

	Х	Y	Ζ
X: Y: Z:	0.92374556539932	0.3420298516865 0.43935603193725	-0.014283229197531 -0.0035630436882716 0.056695172839506

Planar Regression: Z = **AX**+**BY**+**C**

Fitted Parameters

	А	В	С
Parameter Value:	-0.017505373312558	0.0055178861181211	0.085981660656816
Standard Error:	0.022027249301177	0.031939502985335	0.046671237632284

Inter-Parameter Correlations

А	В	С	
A: 1.000 B: C:	0.537 1.000	-0.491 0.397 1.000	

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression: Residual: Total:	2 177 179	0.041467102183052 10.163664008928 10.20513111111	0.020733551091526 0.057421830558916	0.36107

Coefficient of Multiple Determination (R^2): 0.0040633581020731

Nearest Neighbor Statistics

	Separation	Delta Z
Minimum:	0.026215493510518	0
25%-tile:	0.05	0
Median:	0.052433997558836	0
75%-tile:	0.058309518948453	0
Maximum:	0.29181543824822	1.4

Table 2. Mastodon Bone Spring, September 28, 2006.

Midrange:	0.15901546587937 0.7
Range:	0.2655999447377 1.4
Interquartile Range:	0.0083095189484529 0
Median Abs. Deviation:	0.0024339975588357 0
Mean:	0.062478953425028 0.051111111111111
Trim Mean (10%):	0.054759521334596 0.0050617283950617
Standard Deviation:	0.042327369337395 0.21680479927265
Variance:	0.0017916061950243 0.047004320987654
Coef of Variation:	0 6774660428361 4 2418330202475
	0.0774000428301 4.2418330292473
Coef. of Skewness:	3.7545817160282 4.6050132072048
Root Mean Square:	0.075466719924157 0.22274798914169
Mean Square:	0.0056952258161111 0.0496166666666666
incun square.	0.002072220101111 0.01701000000007

Complete Spatial Randomness

Lambda:	24.193548387097
Clark and Evans:	0.61462967773314
Skellam:	155.83424154181

Exclusion Filtering

Exclusion Filter String: Not In Use

Duplicate Filtering

Duplicate Points to Keep: First X Duplicate Tolerance: 3.8E-007 Y Duplicate Tolerance: 2.7E-007 No duplicate data were found.

Breakline Filtering

Breakline Filtering: Not In Use

Gridding Rules

Gridding Method:KrigingKriging Type:PointPolynomial Drift Order:2Kriging std. deviation grid:no

Semi-Variogram Model

Component Type:	Linear
Anisotropy Angle:	0
Anisotropy Ratio:	1
Variogram Slope:	1

Search Parameters

No Search (use all data): true

Output Grid

Grid File Name:	Y:\2. PROJECTS\KARST ENVIRONMENTAL\Silver Springs\Sep 06\Mastodon\MastodonBone9-06.grd
Grid Size:	61 rows x 77 columns
Total Nodes:	4697
Filled Nodes:	4697
Blanked Nodes:	0
Grid Geometry	
X Minimum:	0.2
X Maximum:	4
X Spacing:	0.05
Y Minimum:	0
Y Maximum:	3
Y Spacing:	0.05
Grid Statistics	
Z Minimum:	-5.1976118875018
Z 25%-tile:	-1.1348827250522
Z Median:	-0.33514151066706
Z 75%-tile:	0.0047985274453725
Z Maximum:	1.3999999994555
Z Midrange:	-1.8988059440232
Z Range:	6.5976118869573
Z Interquartile Range:	1.1396812524976
Z Median Abs. Deviation:	0.50008688602946
Z Mean:	-0.62399978464546
Z Trim Mean (10%):	-0.55840322772702
Z Standard Deviation:	1.0966081740578
Z Variance:	1.2025494874104
Z Coef. of Variation:	-1
Z Coef. of Skewness:	-1.0696522801176
Z Root Mean Square:	1.261715189196
Z Mean Square:	1.5919252186479

Figure 4. Discharge measurement cross-section; Mastodon Bone Spring, Marion County, Florida, September 28, 2006 measurement. Relationship of flow contours (velocities shown in feet per second) and velocity measurement stations (numbered points) are shown. Areas with negative velocities (reverse flow) are shaded and delineated by hatched lines. See Table 1 for station velocities. Boundary of cross section is shown as connected points. X-and Y-axis scales are shown in feet.

KARST ENVIRONMENTAL SERVICES, INC. 2007

Table 3. Mastodon Bone Spring XYZ Grid Data, September 28, 2006.					
X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
4	4 5	0.50	4	20	20
1	1.5	0.58	1	20	30
1.5	1.5	1.21	2	30	30
2	1.5	1.4	3	40	30
2.5	1.5	1.19	4	50	30
1.5	1.1	1.3	5	30	22
1.5	0.45	0.55	6	30	9
1.9	0.925	0.08	1	38	18.5
2.275	1.225	1.02	8	45.5	24.5
2.825	1.625	0.43	9	56.5	32.5
3.075	1.825	0.34	10	61.5	36.5
3.475	2.15	-0.01	11	69.5	43
1.75	1.1	1.08	12	35	22
1.25	1.1	1.05	13	25	22
0.5	4 5	•	•	10	20
0.5	1.5	0	A	10	30
0.5	1.1	0	В	10	22
0.8	0.6	0		16	12
1	0.5	0	D -	20	10
1.175	0.35	0	E	23.5	1
1.5	0.2	0	F	30	4
2.1	0.2	0	G	42	4
2.3	0.4	0	н	46	8
2.3	0.6	0	 	46	12
2.475	1	0	J	49.5	20
2.5	1.1	0	ĸ	50	22
2.7	1.1	0	L	54	22
2.8	1.5	0	M	56	30
3.2	1.7	0	N	64	34
3.525	2.075	0	0	70.5	41.5
3.7	2.325	0	P	74	46.5
3.525	2.525	0	Q	70.5	50.5
3.275	2.375	0	R	65.5	47.5
2.975	1.95	0	5	59.5	39
2.5	1.8	0	1	50	36
2	1.7	0	U	40	34
1.5	1.6	0	V	30	32
1	1./	0	vv	20	34
				40	00
0.5	1.45	U	A1	10	29
0.5	1.4	U	A2	10	28
0.5	1.35	0	A3	10	27
0.5	1.3	Ű	A4	10	26
0.5	1.25	0	A5	10	25
0.5	1.2	0	A6	10	24
0.5	1.15	0	A7	10	23

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
0.53	1.05	0	B1	10.6	21
0.56	1	0	B2	11.2	20
0.59	0.95	0	B3	11.8	19
0.62	0.9	0	B4	12.4	18
0.65	0.85	0	B5	13	17
0.68	0.8	0	B6	13.6	16
0.71	0.75	0	B7	14.2	15
0.74	0.7	0	B8	14.8	14
0.77	0.65	0	B9	15.4	13
0.85	0.575	0	C1	17	11.5
0.9	0.55	0	C2	18	11
0.95	0.525	0	C3	19	10.5
1.05	0.45715	0	D1	21	9.143
1.1	0.4143	0	D2	22	8.286
1.15	0.37145	0	D3	23	7.429
1.2	0.33845	0	E1	24	6.769
1.25	0.31538	0	E2	25	6.3075
1.3	0.2923	0	E3	26	5.846
1.35	0.26923	0	E4	27	5.3845
1.4	0.24615	0	E5	28	4.923
1.45	0.22308	0	E6	29	4.4615
1.55	0.2	0	F1	31	4
1.6	0.2	0	F2	32	4
1.65	0.2	0	F3	33	4
1.7	0.2	0	F4	34	4
1.75	0.2	0	F5	35	4
1.8	0.2	0	F6	36	4
1.85	0.2	0	F7	37	4
1.9	0.2	0	F8	38	4
1.95	0.2	0	F9	39	4
2	0.2	0	F10	40	4
2.05	0.2	0	F11	41	4
2.15	0.25	0	G1	43	5
2.2	0.3	0	G2	44	6
2.25	0.35	0	G3	45	7
2.3	0.45	0	H1	46	9
2.3	0.5	0	H2	46	10
2.3	0.55	0	H3	46	11
				-	
2.32188	0.65	0	l1	46.4375	13
2.34375	0.7	0	12	46.875	14
2.36563	0.75	0	13	47.3125	15
2.3875	0.8	0	14	47.75	16

Х	Y	Z (Velocity)	Station Name	X Plot	Y Plot
2.40938	0.85	0	15	48.1875	17
2.43125	0.9	0	16	48.625	18
2.45313	0.95	0	17	49.0625	19
-					
2.4875	1.05	0	J1	49.75	21
_	0				
2.55	1.1	0	K1	51	22
2.6	1.1	0	K2	52	22
2.65	1.1	0	K3	53	22
-					
2.7125	1.15	0	L1	54.25	23
2.725	1.2	0	L2	54.5	24
2.7375	1.25	0	L3	54.75	25
2.75	1.3	0	L4	55	26
2.7625	1.35	0	L5	55.25	27
2.775	1.4	0	L6	55.5	28
2.7875	1.45	0	L7	55.75	29
0					
2.85	1.525	0	M1	57	30.5
2.9	1.55	0	M2	58	31
2.95	1.575	0	M3	59	31.5
3	1.6	0	M4	60	32
3.05	1.625	0	M5	61	32.5
3.1	1.65	0	M6	62	33
3.15	1.675	0	M7	63	33.5
3.24334	1.75	0	N1	64.8667	35
3.28667	1.8	0	N2	65.7334	36
3.33001	1.85	0	N3	66.6001	37
3.37334	1.9	0	N4	67.4668	38
3.41668	1.95	0	N5	68.3335	39
3.46001	2	0	N6	69.2002	40
3.50335	2.05	0	N7	70.0669	41
3.5425	2.1	0	01	70.85	42
3.5775	2.15	0	O2	71.55	43
3.6125	2.2	0	O3	72.25	44
3.6475	2.25	0	04	72.95	45
3.6825	2.3	0	O5	73.65	46
3.67813	2.35	0	P1	73.5625	47
3.63438	2.4	0	P2	72.6875	48
3.59063	2.45	0	P3	71.8125	49
3.54868	2.5	0	P4	70.9735	50
3.5	2.51	0	Q1	70	50.2
3.45	2.48	0	Q2	69	49.6
3.4	2.45	0	Q3	68	49
3.35	2.42	0	Q4	67	48.4

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
3.3	2.39	0	Q5	66	47.8
3.25736	2.35	0	R1	65.1472	47
3.22207	2.3	0	R2	64.4413	46
3.18677	2.25	0	R3	63.7354	45
3.15148	2.2	0	R4	63.0295	44
3.11618	2.15	0	R5	62.3236	43
3.08089	2.1	0	R6	61.6177	42
3.04559	2.05	0	R7	60.9118	41
3.0103	2	0	R8	60.2059	40
2.95	1.94211	0	S1	59	38.8422
2.9	1.92632	0	S2	58	38.5264
2.85	1.91053	0	S3	57	38.2106
2.8	1.89474	0	S4	56	37.8948
2.75	1.87895	0	S5	55	37.579
2.7	1.86316	0	S6	54	37.2632
2.65	1.84737	0	S7	53	36.9474
2.6	1.83158	0	S8	52	36.6316
2.55	1.81579	0	S9	51	36.3158
2.45	1.79	0	T1	49	35.8
2.4	1.78	0	T2	48	35.6
2.35	1.77	0	Т3	47	35.4
2.3	1.76	0	T4	46	35.2
2.25	1.75	0	T5	45	35
2.2	1.74	0	Т6	44	34.8
2.15	1.73	0	T7	43	34.6
2.1	1.72	0	Т8	42	34.4
2.05	1.71	0	Т9	41	34.2
1.95	1.69	0	U1	39	33.8
1.9	1.68	0	U2	38	33.6
1.85	1.67	0	U3	37	33.4
1.8	1.66	0	U4	36	33.2
1.75	1.65	0	U5	35	33
1.7	1.64	0	U6	34	32.8
1.65	1.63	0	U7	33	32.6
1.6	1.62	0	U8	32	32.4
1.55	1.61	0	U9	31	32.2
					00.0
1.45	1.61	0	V1	29	32.2
1.4	1.62	0	V2	28	32.4
1.35	1.63	0	V3	27	32.6
1.3	1.64	0	V4	26	32.8
1.25	1.65	0	V5	25	33
1.2	1.66	0	V6	24	33.2
1.15	1.67	0	V7	23	33.4

X	Y	Z (Velocity)	Station Name	X Plot	Y Plot
1.1	1.68	0	V8	22	33.6
1.05	1.69	0	V9	21	33.8
0.95	1.68	0	W1	19	33.6
0.9	1.66	0	W2	18	33.2
0.85	1.64	0	W3	17	32.8
0.8	1.62	0	W4	16	32.4
0.75	1.6	0	W5	15	32
0.7	1.58	0	W6	14	31.6
0.65	1.56	0	W7	13	31.2
0.6	1.54	0	W8	12	30.8
0.55	1.52	0	W9	11	30.4

Model: 20	100 - JI	Serial Number: 2	002679
Unit Gain Rati	p:	Time Cons	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
	X FPS CMS		
			X N/A
	Static Velocity	Dynamic Velocity	Level
Standard:		2.00	N/A
Measured:	ø.øø	1.98	<u> N/A</u>
Calibration Te	le Calibration; icient or Velocity M chnician:	tultiplier:	Date: <u>18 Apr 2000</u>
QA Techniciar	-Of	ju	_ Date. 10/05
This documen Verification is is traceable to Gaithersburg, the Customer	t certifies that the of indicated by the me the National Institu MD. For Product in Service Departmen	described instrument h easured results show a ute of Standards and T nformation, service, or nt.	as been calibrated. above. Velocity calibration echnology (NIST), calibration, please contact
		N	
		MARSH MCBIRNEY	
	4539 Metropolitar	ner Level of Flow Measurement n Ct., Frederick, MD 2	1704-9452
(3	01) 874-5599 (80	00)-368-2723 FAX (3	301) 874-2172

Discharge Measurement: No Name Cove Spring, Marion County, Florida; September 29, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: No Name Cove Spring, Marion County, Florida; September 29, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of No Name Cove Spring, Marion County, Florida; September 29, 2006.
- 2. Table 1. Discharge of No Name Cove Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of No Name Cove Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of No Name Cove Spring, Marion County, Florida; September 29, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at No Name Cove Spring on September 29, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of No Name Cove Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

No Name Cove Spring is a line of six vents spread along the bottom of linear depression located in a small cove along the south side of the Silver River, about 450 feet east of First Fisherman's Paradise. The vents discharge vertically through soft bottom sediments, from between 10 to 14 feet deep. See Figure 1. Three of these vents were suitable for attempts at measurement.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \ge pi \ge r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents

too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at No Name Cove Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of No Name Cove Spring on September 29, 2006 was 0.24 CFS (cubic feet per second). This result is also expressed as 106 GPM (gallons per minute) or 0.153 MGD (million gallons per day), see Table 1. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.07 to 0.41 feet per second (fps), with an overall average station reading of 0.20 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 10 to 14 feet. The measurements commenced at about 16:53 hours and were completed by 17:11 hours.

UNDERWATER	R DISCHARGE N	IEASUREMENT			
Location:	NO NAME COV	E SPRING	Date:	September 29,	2006
	Silver Springs G	Silver Springs Group,		16:53	
	Marion County,	Marion County, Florida		17:11	
Personnel:	Peter Butt, Mark I	_ong			
Method:	Vent Discharge C	apture Device	(0.49' Diameter)		
Instrument:	MMB2000 FLO-M	IATE in U/W case, se	ensor in vertical pipe	-	
Calculation Metho	od: Discharge = V x	x pi x r ²			
Measurement Pe	riods:	60 seconds			
No Name Cove	e Spring ESTIMA	TED Discharge:	Vent 1:	Vent 2:	Vent 3:
CFS	0.24		0.153	0.040	0.044
MGD	0.153		0.099	0.026	0.028
GPM	106		69	18	20
		(Multipliers:)	(2)	(3)	(2)
No Name Cove	Spring Measur	ed Discharge:			
CFS	0.11		0.077	0.013	0.022
MGD	0.072		0.050	0.009	0.014
GPM	50	All Vents:	34	6	10
Avg. Point Velocity	(ft/sec):	0.20	0.41	0.07	0.12
Vent Depth (feet de	ep):		14	12	10
Velocity Readi	ngs:	(All velocity read	ings in feet per sec	cond.)	
 Vent 1	(Middle)	Vent 2	(North)	Vent 3	(South)
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.41	1	0.07	1	0.11
2	0.41	2	0.07	2	0.12
3	0.4	3	0.07	3	0.12
Average:	0.41	Average:	0.07	Average:	0.12
Discharge:	0.077	Discharge:	0.013	Discharge:	0.022
Multiplier:	2	Multiplier:	3	Multiplier:	2
Est. Discharge:	0.153	Est. Discharge:	0.040	Est. Discharge:	0.044

Table 1. Discharge of No Name Cove Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of No Name Cove Spring.

Model: 20	800-JI	Serial Number:	002.679					
Unit Gain Rati	o:	Time Con	stant:					
	Sen	sorSer#N/	A					
Type of Reading								
Velocity: Level:								
			X N/A					
	Static Velocity	Dynamic Velocity	Level					
Standard:	Zero	2.00	NA					
Magguradi	of other	198	NIA					
Measured.	<i>p.oy</i>	1.10	<u></u>					
Eactory C	alibration Tax							
X Factory Calibration Tow TANIC								
Field Prof	ile Calibration;							
Site Coef	ficient or Velocity N	Iultiplier:						
	51	XDA.						
Calibration Te	chnician:	ge Culiste	Date: 18 Apr 200					
OA Technicia	. Ath	all	Date 4/18/0C					
	Cal)						
This documen	t certifies that the c	described instrument h	as been calibrated.					
is traceable to	the National Institu	ute of Standards and 1	Technology (NIST),					
the Customer	Service Departmen	normation, service, or nt.	canoration, please contact					
		MARSH						
	A High	MCBIRNEY her Level of Flow Measurement						
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452					
(;	301) 874-5599 _ (80	00)-368-2723 FAX (301) 874-2172					

Discharge Measurement: Oscar Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Oscar Spring, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Oscar Spring, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Oscar Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Oscar Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Oscar Spring, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Oscar Spring on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Oscar Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Oscar Spring is a group of spring vents in a shallow depression on the north side of the center of the river channel, about 140 feet northeast of Jacob's Well Spring. There are three small vents in the depression, one of which discharges from a marl ledge, and a line of vents about 8 feet long about ten feet to the southwest of the marl ledge. The deepest part of the depression is about 17 feet deep. See Figure 1. The line of vents was not measured.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure

effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Oscar Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Oscar Spring on September 28, 2006 was 0.46 (cubic feet per second). This result is also expressed as 205 GPM (gallons per minute) or 0.295 MGD (million gallons per day), see Table 1. A single reading was made at each of three vents, for a total of three (3) readings. (A minimum number of readings were taken here due to tour boat traffic in the channel.) Individual point velocity readings ranged from 0.28 to 0.5 feet per second (fps), with an overall average station reading of 0.40 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 15 to 17 feet. The measurements commenced at about 14:30 hours and were completed by 14:41 hours.

UNDERWATER	DISCHARGE M	EASUREMENT			
Location:	OSCAR SPRIN	NG	Date:	September 28,	2006
	Silver Springs	Group,	Time Start:	14:30	
	Marion County, Florida		Time End:	14:41	
Personnel:	Peter Butt, Tom Morris				
Method:	Vent Discharge Capture Device		(0.49' Diameter)		
Instrument: MMB2000 FLO-MATE in U/W ca			sensor in vertical	pipe.	
Calculation Metho	d: Discharge = V x	<i>pi</i> x r ²			
Measurement Peri	ods:	60 seconds			
		-			
Oscar Spring E	STIMATED Disc	charge:	Vent 1	Vent 2	Vent 3
CFS	0.46		0.162	0.106	0.189
MGD	0.295		0.105	0.068	0.122
GPM	205		73	47	85
		(Multipliers:)	(2)	(2)	(2)
Oscar Spring Measured Discha		arge:	0.001	0.050	0.004
CFS	0.23		0.081	0.053	0.094
 MGD	0.148		0.052	0.034	0.061
GPM	102	All Vents:	36	24	42
Avg. Point Velocity (ft/sec):		0.40	0.43	0.28	0.50
Vent Depth (feet deep):			15	17	17
Velocity Readings:		(All velocity readings in feet per		second.)	
Vent 1 (near tag)		Vent 2		Vent 3	
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.43	1	0.28	1	0.5
Average:	0.43	Average:	0.28	Average:	0.50
Discharge:	0.081	Discharge:	0.053	Discharge:	0.094
Multiplier	2	Multiplier	2	Multiplier	2
Est. Discharge:	0.162	Est. Discharge:	0.106	Est. Discharge:	0.189

Table 1. Discharge of Oscar Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Oscar Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Raccoon Island Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Raccoon Island Spring, Marion County, Florida; September 28, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Raccoon Island Spring, Marion County, Florida; September 28, 2006.
- 2. Table 1. Discharge of Raccoon Island Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Raccoon Island Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Raccoon Island Spring, Marion County, Florida; September 28, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Raccoon Island Spring on September 28, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Raccoon Island Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Raccoon Island Spring is located in Gar Cove northeast of a forested island. Discharge is primarily from three vent clusters, with each cluster located in the bottom of three broad, low relief depressions. The vents discharge through a layer of sediment and filamentous algae. The "central" vent cluster comprises an area of about six feet in diameter, and is 12 feet deep. A second vent cluster lies 25 feet to the southwest in 14 feet of water, and a third vent cluster lies 35 feet to the north (towards the bank) in 10 feet of water. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Raccoon Island Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Raccoon Island Spring on September 29, 2006 was 0.52 CFS (cubic feet per second). This result is also expressed as 235 GPM (gallons per minute) or 0.338 MGD (million gallons per day), see Table 1. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.31 to 0.49 feet per second (fps), with an overall average station reading of 0.38 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 10 to 14 feet. The measurements commenced at about 17:12 hours and were completed by 17:35 hours.

UNDERWATER	DISCHARGE N	IEASUREMENT			
Location:	RACOON ISLA	AND SPRING	Date:	September 28,	2006
	Silver Springs (Group,	Time Start:	17:12	
	Marion County,	, Florida	Time End:	17:35	
Personnel:	Peter Butt, Tom	Morris			
Method:	Vent Discharge Capture Device		(0.49' Diameter)		
Instrument:	MMB2000 FLO-N	MATE in U/W case, se	ensor in vertical pip	pe.	
Calculation Metho	d: Discharge = V x	<u>k</u> pi x r ²			
Measurement Per	iods:	60 seconds			
Raccoon Island	 Spring ESTIM/	ATED Discharge:	North Vent:	South Vent:	Middle Vent:
CFS	0.52		0.128	0.277	0.117
MGD	0.338		0.083	0.179	0.076
GPM	235		58	124	52
		(Multiplier:)	(2)	(3)	(2)
Raccoon Island	Spring Measu	red Discharge:			
CFS	0.22		0.064	0.092	0.058
MGD	0.139		0.041	0.060	0.038
GPM	97	All Vents:	29	41	26
Avg. Point Velocity (ft/sec):	0.38	0.34	0.49	0.31
Vent Depth (feet dee	ep):		10	14	12
Velocity Reading	ngs:	(All velocity readir	ngs in feet per se	cond.)	
North Ve	ent (tag)	South	Vent	Middl	eVent
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.34	1	0.48	1	0.31
2	0.34	2	0.5	2	0.31
3	0.34	3	0.49	3	0.31
Average:	0.34	Average:	0.49	Average:	0.31
Discharge:	0.064	Discharge:	0.092	Discharge:	0.058
Multiplier:	2	Multiplier:	3	Multiplier:	2
Est. Discharge:	0.128	Est. Discharge:	0.277	Est. Discharge:	0.117

Table 1. Discharge of Raccoon Island Spring, Marion County, Florida on September 28, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Raccoon Island Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Shipwreck Spring, Marion County, Florida; September 30, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Shipwreck Spring, Marion County, Florida; September 30, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Shipwreck Spring, Marion County, Florida; September 30, 2006.
- 2. Table 1. Discharge of Shipwreck Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Shipwreck Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Shipwreck Spring, Marion County, Florida; September 30, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Shipwreck Spring on September 30, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Shipwreck Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

The main vent of the Shipwreck Springs Group is located at the bow of a sunken boat on the bottom of a large, 20 foot deep depression north of the main river channel, and east of the eastern tip of a forested island. The main vent discharges from rock through a layer of sediment and algae. Another similar but smaller vent lies about 15 feet to the east. Discharging from the algae-covered bottom of the western side of the basin, and about 20 to 30 feet from the stern section of the sunken boat, are numerous small vents. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period. The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Shipwreck Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Shipwreck Spring on September 30, 2006 was 0.90 CFS (cubic feet per second). This result is also expressed as 404 GPM (gallons per minute) or 0.352 MGD (million gallons per day), see Table 1. Three readings were made at each of five vents, for a total of fifteen (15) readings. Individual point velocity readings ranged from 0.15 to 0.1.61 feet per second (fps), with an overall average station reading of 0.58 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 17 to 20 feet. The measurements commenced at about 15:17 hours and were completed by 16:00 hours.

UNDERWATER [DISCHARGE MEA	ASUREMENT					
Location:	SHIPWRECK S	PRINGS GROUP	Date:	September 30, 20	06		
	Silver Springs G	iroup,	Time Start:	15:17			
	Marion County.	Florida	Time End:	16:00			
Personnel:	Peter Butt. Mark L	ona	Instrument:	MMB2000 FLO-MAT	E in U/W case. sen	sor in vertical pipe	
Calculation Method:	Discharge = V x pi	x r ²	Method:	Vent Discharge Capt	ure Device	(0.49' Diameter)	
Measurement Periods	: :	60 seconds				(0.10 2.0	
Shipwreck Sprin	gs Group ESTIM	ATED Discharge:	Vent 1	Vent 2	Vent 3	Vent 4	Vent 5
CFS	0.90		0.140	0.455	0.085	0.087	0.134
MGD	0.582		0.091	0.294	0.055	0.056	0.087
GPM	404		63	204	38	39	60
		(Multiplier:)	n/a	(1.5)	(3)	(3)	(3)
			Π/α	(1.0)	(0)	(0)	(0)
Shipwreck Sprin	as Group Measi	ured Discharge:	Vent 1	Vent 2	Vent 3	Vent 4	Vent 5
CFS	0.55		0.140	0.303	0.028	0.029	0.045
MGD	0.352		0.091	0.196	0.018	0.019	0.029
GPM	245	All Vents:	63	136	13	13	20
Ava. Point Velocity (ft/	(sec):	0.58	0.74	1.61	0.15	0.15	0.24
Vent Denth (feet deen).	0.00	20	20	17	17	17
	,. 		20	20	17	17	1/
Velocity Reading	IS:	(All velocity readir	nas in feet per second.)				
Ver	nt 1		/ent 2	Ven	t 3		
Vent East of	Wreck Bow	Main Ven	t at Wreck Bow	West of Wre	ck Stern A		
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity		
1	0.72	1	1.61	1	0.15		
2	0.76	2	1.6	2	0.15		
3	0.75	3	1.61	3	0.15		
Average:	0.74	Average:	1.61	Average:	0.15		
Discharge:	0.140	Discharge:	0.303	Discharge:	0.028		
		Multiplier:	1.5	Multiplier:	3		
Est. Discharge:	n/a	Est. Discharge:	0.455	Est. Discharge:	0.085		
Ver	Vent 4 V		/ent 5				
West of Wre	ECK Stern B	West of	Wreck Stern C				
Reading #		Reading #					
	0.15		0.23				
2	0.16	2	0.24				
Average:	0.15	J Average:	0.24				
Discharge:	0.15	Discharge:	0.24				
Multiplior:	0.029	Multiplior	0.040				
Fst Discharge	0.087	Fst Discharge:	0 134				
Average: Discharge: Multiplier: Est. Discharge:	0.15 0.029 3 0.087	Average: Discharge: Multiplier: Est. Discharge:	0.24 0.24 0.045 3 0.134				

Table 1. Discharge of Shipwreck Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Shipwreck Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Timber Spring, Marion County, Florida; September 30, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX **Discharge Measurement: Timber Spring,**

Marion County, Florida; September 30, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Timber Spring, Marion County, Florida; September 30, 2006.
- 2. Table 1. Discharge of Timber Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Timber Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Timber Spring, Marion County, Florida; September 30, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Timber Spring on September 30, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Timber Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Timber Spring lies in the north side of the Silver River, about 800 feet downstream of the Shipwreck Springs Group. It is the most downstream of the springs in the Silver River. It has at least 6 vents about 14 feet deep in a 20 foot long roughly oval depression with a bottom of detritus, sand, and pebbles. A few fallen branches and logs lay across some of the spring vents. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure

effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Timber Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Timber Spring on September 30, 2006 was 2.33 CFS (cubic feet per second). This result is also expressed as 1047 GPM (gallons per minute) or 1.508 MGD (million gallons per day), see Table 1. Three readings were made at each of six vents, for a total of eighteen (18) readings. Individual point velocity readings ranged from 0.25 to 0.97 feet per second (fps), with an overall average station reading of 0.68 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 14 feet. The measurements commenced at about 15:47 hours and were completed by 18:16 hours.

UNDERWA	TER DISCHARG	E MEASUREM	ENT			
Location:	TIMBER SPRIN	IG		Date:	September 30,	2006
	Silver Springs C	Group,		Time Start:	15:47	
	Marion County,	Florida		Time End:	18:16	
Personnel:	Peter Butt, Mark	Long				
Method:	Vent Discharge C	Capture Device	(0.49' Diameter)			
Instrument:	MMB2000 FLO-N	IATE in U/W case	, sensor in vertical	pipe.		
Calculation M	ethod: Discharge =	= V x <i>pi</i> x r ²				
Measureme	nt Periods:	60 seconds				
 T '					<u> </u>	
Timber Spr	ing Total Discha	arge:	Vent 1	Vent 2	Vent 3	
 CFS	2.33		0.170	0.180	0.050	
 MGD	1.508		0.110	0.116	0.033	
GPM	1047	All Vents:	76	81	23	
Avg. Point Velo	city (ft/sec):	0.68	0.90	0.95	0.27	
Vent Depth (fee	et deep):		14	14	14	
			Vent 4	Vent 5	Vent 6	
		CFS	0.727	0.787	0.420	
		MGD	0.470	0.508	0.271	
		GPM	326	353	189	
	Avg. Point Velocity	(ft/sec):	0.73	0.79	0.42	
	Vent Depth (feet de	ep):	14	14	14	
Velocity Re	adings:	(All velocity rea	adings in feet per	r second.)		
V	ent 1	Ve	nt 2	Vent 3		
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity	
1	0.9	1	0.87	1	0.28	
2	0.9	2	0.97	2	0.27	
3	0.9	3	1.02	3	0.25	
Average:	0.90	Average:	0.95	Average:	0.27	
Discharge:	0.170	Discharge:	0.180	Discharge:	0.050	
V	ent 4	Ve	nt 5	Ve	nt 6	
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity	
1	0.73	1	0.8	1	0.41	
2	0.74	2	0.8	2	0.43	
3	0.71	3	0.76	3	0.42	
Average:	0.73	Average:	0.79	Average:	0.42	
Discharge:	0.137	Discharge:	0.148	Discharge:	0.079	

Table 1. Discharge of Timber Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Timber Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Turtle Nook Spring, Marion County, Florida; September 28, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Turtle Nook Spring, Marion County, Florida; September 30, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Turtle Nook Spring, Marion County, Florida; September 30, 2006.
- 2. Table 1. Discharge of Turtle Nook Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Turtle Nook Spring.
- 4. Flowmeter Calibration Certificate.

Results of Discharge Measurements of Turtle Nook Spring, Marion County, Florida; September 30, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Turtle Nook Spring on September 30, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Turtle Nook Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Turtle Nook Spring is located on the northwest side of a forested island in the river, approximately 100 feet northeast of Second Fisherman's Paradise. Water discharges from three vents along a line about 10 feet long at the bottom of a small, conical basin. The vents are between 15 and 18 feet deep. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \ge pi \ge r^2$). For purposes of this calculation, it is assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents

too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Turtle Nook Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Turtle Nook Spring on September 30, 2006 was 0.63 CFS (cubic feet per second). This result is also expressed as 283 GPM (gallons per minute) or 0.408 MGD (million gallons per day), see Table 1. Three readings were made at each of two vents, for a total of six (6) readings. Individual point velocity readings ranged from 0.79 to 1.05 feet per second (fps), with an overall average station reading of 0.94 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 15 to 18 feet. The measurements commenced at about 13:15 hours and were completed by 13:26 hours.

UNDERWATER	DISCHARGE ME	ASUREMENT			
Location:	TURTLE NOOP	(SPRING	Date:	September 30, 2006	
	Silver Springs G	Group,	Time Start:	13:15	
	Marion County,	Florida	Time End:	13:26	
Personnel:	Peter Butt, Mark	Long			
Method:	Vent Discharge C	apture Device	(0.49' Diameter)		
Instrument:	MMB2000 FLO-M	IATE in U/W case, se	nsor in vertical pipe.		
Calculation Method	: Discharge = V x p	<i>i</i> x r ²			
Measurement Peri	ods:	60 seconds			
Turtle Nook Spr	ing ESTIMATED	Discharge:	North Vent:	South Vent:	
CFS	0.63		0.389	0.242	
MGD	0.408		0.251	0.157	
GPM	283		174	109	
		(Multipliers:)	(2)	(1.5)	
Turtle Nook Spr	ing Measured Di	scharge:			
CFS	0.36		0.194	0.162	
MGD	0.230		0.126	0.104	
GPM	160	All Vents:	87	73	
Avg. Point Velocity (f	t/sec):	0.94	1.03	0.86	
Vent Depth (feet dee	p):		18	15	
Velocity Readin	as:	(All velocity readin	l nas in feet per seco	 nd.)	
North	Vent:	South	Vent:		
Reading #	Point Velocity	Reading #	Point Velocity		
1	1.02	1	0.91		
2	1.02	2	0.87		
3	1.05	3	0.79		
Average:	1.03	Average:	0.86		
Discharge:	0.194	Discharge:	0.162		
Multiplier:	2	Multiplier:	1.5		
Est. Discharge:	0.389	Est. Discharge:	0.242		

Table 1. Discharge of Turtle Nook Spring, Marion County, Florida on September 30, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Turtle Nook Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

Discharge Measurement: Turtle Nook Run Spring, Marion County, Florida; September 29, 2006

Prepared for:

St. Johns River Water Management District

4049 Reid Street Palatka, Florida 32177

Prepared by:

Karst Environmental Services, Inc.

5779 NE County Road 340 High Springs, Florida 32643 (386) 454-3556 (386) 454-3541 FAX

Discharge Measurement: Turtle Nook Run Spring, Marion County, Florida; September 29, 2006

LIST OF CONTENTS

- 1. Results of Discharge Measurements of Turtle Nook Run Spring, Marion County, Florida; September 29, 2006.
- 2. Table 1. Discharge of Turtle Nook Run Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.
- 3. Figure 1. Map of Turtle Nook Run Spring.
- 4. Flowmeter Calibration Certificate.
Results of Discharge Measurements of Turtle Nook Run Spring, Marion County, Florida; September 29, 2006

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) contracted with Karst Environmental Services, Inc. (KES) to conduct a series of discharge measurements at the Silver Springs Group in Marion County, Florida. This report documents the results of the measurement made at Turtle Nook Run Spring on September 29, 2006.

PURPOSE and SCOPE OF WORK

The purpose of this work is to obtain an initial discharge measurement of Turtle Nook Run Spring, which is among the many sources of groundwater discharging into the Silver River. A program of discharge measurements was to be made of the springs in the Silver Springs Group during September of 2006.

PERSONNEL

Fieldwork for this discharge measurement was conducted by Peter Butt and Mark Long, both of KES. Data management and report preparation was performed by Peter Butt. W. Bruce Lafrenz, P.G., of Tetra Tech HAI of Orlando, Florida provided oversight.

SITE DESCRIPTION

Turtle Nook Run Spring is located about 30 feet southwest of Turtle Nook Spring, at the west side of the entrance to the cove. Water discharges from several rocky vents and one detrital vent cluster.

The main vent discharges from along a rock outcrop, 18 feet deep, and beneath a ledge on the south side of a basin about 25 feet in diameter. Several smaller vents also discharge through sediment and algae to the north of the main vent. The top of the limestone outcrop in the basin is 13 feet below the water surface. The basin is just north of and out of the main channel of the Silver River. See Figure 1.

Since the vents of this spring are located on the bottom of the river, its discharge cannot be measured by conventional discharge measurement methods. However, at the spring opening there is a suitable location for a discharge measurement that lends itself to the application of an appropriately adapted instrument.

METHODS

The instrument used for this discharge measurement was a Marsh-McBirney Model 2000 Flo-Mate electronic flowmeter (Serial Number 2002679) that has been adapted for fully submersible use. In order to operate and read the meter at depth, the unit has been placed within an underwater housing with a transparent lid. The sensor wire is routed through a sealing gland on the housing lid. There are two housing controls that allow for direct operation of the flow meter. One operates the on/off/reset buttons, and the other operates the time interval selector buttons that control the measurement period.

The flowmeter used was factory calibrated while in its underwater housing in the method normally used for this unit on April 18, 2006. A copy of the Calibration Certificate is included with this report.

This spring consists of small, scattered vents discharging through a mixed bottom of either detritus, sediments, a thick algal layer, sand or pebbles. Direct measurements of the vent cross-sections at this site were not practical. To accomplish measurements of these vents, a device was designed and employed to capture and concentrate the vent discharge for effective measurement. This device is referred to herein as the Vent Discharge Capture Device (VDCD).

The VDCD is constructed of an inverted heavy-duty plastic tub that has a plastic flange connecting it to a short length of plastic pipe. The tub dimensions are 2.23 feet inside diameter on its bottom, a height of 1.05 feet, and a top inside diameter of 1.8 feet. The top side of the tub has a 0.5 foot hole to which a flange is attached. A 0.49 foot inside diameter plastic discharge pipe is attached to the flange and extends upward for 2.05 feet. This minimum pipe length was chosen to minimize turbulence at the sensor placement location at its upper end.

A section of half-inch PVC pipe is inserted through holes on opposite sides of the discharge pipe near its top for positioning the flow sensor. The sensor has a spring clip that attaches it to the half-inch PVC pipe, and it is positioned facing downward in the center of the discharge pipe.

To install the VDCD over a spring vent for a measurement, the open end of the tub is centered over a vent and pushed down onto the bottom, often into the sediment or detritus. Belts of weights are placed around the flange area of the tub to securely hold it in place. Sediments were sometimes arranged around the bottom circumference of the tub to provide a more effective seal. The discharge pipe is kept in a vertical position. The sensor is positioned at a right angle to the main flow path within the discharge pipe, so no angle coefficient corrections for velocity readings are necessary.

Once in place, the installation is checked for leakage around its bottom circumference. The condition of nearby vents is monitored for changes in flow, or the formation of new vents. A few minutes are allowed to let debris clear and for conditions to stabilize. The sensor is monitored for debris accumulation and cleaned off as needed.

Once the VDCD and sensor are positioned, and positional data recorded, velocity readings are made. During all measurements, the sensor handler moved away from the discharge pipe, eliminating the possibility of interference while the measurements were taken. The flowmeter was operated in its Fixed Point Averaging mode. Fixed Point Averaging is an average of measured velocities over a fixed period of time. Averaging periods of 60 seconds were used. The flowmeter was reset between each reading. A record and the calculated results of these measurements are presented in Table 1.

To measure the discharge, a series of three readings are typically taken at each vent installation, and the average velocity determined. The discharge (Q) is calculated by multiplying the averaged velocity by the area of the pipe ($Q = V \times pi \times r^2$). For purposes of this calculation, it is

assumed that the measured velocity is representative of velocities over the entire cross-section. This assumption is based on direct observations of the uniformity of flow exiting the pipe. In addition, the plastic pipe is smooth sided and relatively short in length.

It was often impractical or impossible to capture and quantify all of a spring's discharge at its various vents using this device. The reasons include; leakage, large size of vents, backpressure effects at adjacent vents, vents formed on long, narrow fissures and the presence of small vents too numerous and scattered to effectively measure. To better estimate the actual discharge, a multiplier was applied to the measurement results of some individual vents and lines of vents in order to account for water that would be otherwise missed at and beyond the measurement locations. While applying this multiplier to a measured discharge adds some element of subjectivity to that measurement, it is felt that this method provides a more accurate description in a difficult measurement situation. When used, these multipliers and resulting values are included in Table 1, and identified therein as "Estimated Discharge", and are presented along with the original "Measured Discharge" value.

RESULTS AND DISCUSSION

This measurement is the first one performed at Turtle Nook Run Spring applying the method and data processing used at other spring sites by KES. Based on KES' experience at other springs, the estimate of discharge for this initial measurement should be considered to be a minimum value. The data from this measurement will also provide a guide for the planning and improvements for any future measurements of this type here.

The estimated discharge of Turtle Nook Run Spring on September 29, 2006 was 0.64 CFS (cubic feet per second). This result is also expressed as 287 GPM (gallons per minute) or 0.413 MGD (million gallons per day), see Table 1. Three readings were made at each of three vents, for a total of nine (9) readings. Individual point velocity readings ranged from 0.33 to 0.67 feet per second (fps), with an overall average station reading of 0.51 fps. Individual point velocity measurement periods of 60 seconds were used. The approximate depth for the measurements was 15 to 18 feet. The measurements commenced at about 17:24 hours and were completed by 17:42 hours.

UNDERWATER	DISCHARGE MI	EASUREMENT			
Location:	TURTLE NOOI	K RUN SPRING	Date:	September 29,	2006
	Silver Springs (Group,	Time Start:	17:24	
	Marion County,	Florida	Time End:	17:42	
Personnel:	Peter Butt, Mark	Long			
Method:	Vent Discharge C	Capture Device	(0.49' Diameter)		
Instrument:	MMB2000 FLO-N	/IATE in U/W case, se	nsor in vertical pipe	9.	
Calculation Metho	d: Discharge = V x	<i>pi</i> x r ²			
Measurement Peri	ods:	60 seconds			
Turtle Nook Ru	n Spring ESTIM	ATED Discharge:	Vent 1:	Vent 2:	Vent 3:
CFS	0.64		0.200	0.189	0.250
MGD	0.413		0.129	0.122	0.162
GPM	287		90	85	112
		(Multipliers:)	(2)	(3)	(2)
Turtle Nook Ru	n Spring Measu	red Discharge:			
CFS	0.29		0.100	0.063	0.125
MGD	0.186		0.065	0.041	0.081
GPM	129	All Vents:	45	28	56
Avg. Point Velocity (f	ít/sec):	0.51	0.53	0.33	0.66
Vent Depth (feet dee	ep):		15	15	18
Velocity Readin	as:	(All velocity readir	l nas in feet per sea		
Ver	<u></u> nt 1	Ven	t 2	Ve	nt 3
Main Ve	ent (tag)	North	Vent	Wes	t Vent
Reading #	Point Velocity	Reading #	Point Velocity	Reading #	Point Velocity
1	0.53	1	0.34	1	0.65
2	0.53	2	0.33	2	0.67
3	0.53	3	0.33	3	0.67
Average:	0.53	Average:	0.33	Average:	0.66
Discharge:	0.100	Discharge:	0.063	Discharge:	0.125
Multiplier:	2	Multiplier:	3	Multiplier:	2
Est. Discharge:	0.200	Est. Discharge:	0.189	Est. Discharge:	0.250

Table 1. Discharge of Turtle Nook Run Spring, Marion County, Florida on September 29, 2006. Data record and calculation of discharge measurement.

Figure 1. Map of Turtle Nook Run Spring.

Model: 20	800-JI	Serial Number:	002679
Unit Gain Rati	io:	Time Con	stant:
	Sen	sorSer#N/	A
		Type of Reading	
Velocity:		Level:	
			X N/A
	Static Velocity	Dynamic Velocity	<u>Level</u>
Standard:	Zero	2.00	NA
Maggurodi	of other	198	NIA
measured.	<i>p.oy</i>	1.10	<u> </u>
Factory C	alibration Tax		
X raciory c		TANIC	
Field Prof	ile Calibration;		
Site Coef	ficient or Velocity N	Iultiplier:	
	51	XMA.	
Calibration Te	chnician:	n Leuliste	Date: 18 Apr 200
OA Technicia	. Ath	all	Date 4/18/07
art reenined	en) 7	
This documen	t certifies that the c	described instrument h	as been calibrated.
is traceable to	the National Institu	ite of Standards and T	echnology (NIST),
Gaithersburg, the Customer	MD. For Product in Service Departmen	ntormation, service, or nt.	calibration, please contact
		MARSH	
	j A Hink	MCBIRNEY	
	4539 Metropolita	n Ct., Frederick, MD 2	1704-9452
(;	301) 874-5599 _ (80	00)-368-2723 _ FAX (3	301) 874-2172

SUMMARY of DISCHARGE MEASUREMENTS																
Silver River Springs Group, Marion County, Florie	da; Septem	ber, 2006														
Spring/Vent Name	Abbrev.	Number	Depth	Method	Date	Time	Discharge	Discharge	Discharge	Number of 2	X-sectional	Highest PV	Lowest PV	Negative	Number of	Multiplier
		of Vents	(in feet)				CFS	MGD	GPM	PV Stations	Area	Reading	Reading	PV Stations	VDCD Msmnts	Used?
Mammoth	ME, MW	1	40	Grid XSec	9/19/2006	13:40-17:50	240.07	155.16	107750	138	308.16	1.16	-0.39	8	n/a	n/a
				0.11/0	0/04/0000	40.04.40.00	0.57	1.001	4450		0.004	0.04	0.40			,
Jacobs Well	JW	1	22	Grid XSec	9/21/2006	18:01-18:39	2.57	1.661	1153	26	8.831	0.94	0.16	none	n/a	n/a
Cotfish Recontion Hell	CP	2	27.22	Crid VSoo	0/21/2006	14.17 17.20	26.42	22 542	16240	62	50.54	1.20	0.12		n/o	n/o
	CR	3	27-33		9/21/2000	14.17-17.29	30.43	23.343	10349	02	59.54	1.29	0.13	none	11/d	n/a
Bridal Chamber	BC	1	25	Grid XSec	9/22/2006	12.18-13.10	4 61	2 98	2069	31	12 72	1 25	-0.03	3	n/a	n/a
		•	20		0,22,2000	12.10 10.10		2.00	2000	01	12.12	1.20	0.00	0	17.4	n/a
Oscar	OS	3	15-17	VDCD	9/28/2006	14:30-14:41	0.46	0.295	205	n/a	n/a	0.5	0.28	n/a	3	yes
																<u>,</u>
Devils Kitchen B	DK-2	1	15-17	VDCD	9/28/2006	15:58-16:08	0.24	0.157	109	n/a	n/a	1.02	0.23	n/a	2	no
Ladies Parlor	LP	4	20-22	Grid XSec	9/22/2006	14:32-16:03	9.56	6.18	4292	35	13.7	1.54	-0.016	4	n/a	n/a
				0.11/0							0.40					,
Devils Kitchen A	DK-1	4	20	Grid XSec	9/28/2006	15:21-15:55	1.51	0.976	678	17	3.16	1.81	-0.04	1	n/a	n/a
		2	15 10		0/20/2006	10.25 17:00	0.77	0.409	246	n/o	n/0	1.05	0.02	n/n	2	
	АП	2	15-18	VDCD	9/28/2006	16:35-17:00	0.77	0.498	340	n/a	n/a	1.85	0.93	n/a	3	no
Mastodon Bone	MB	1	13	Grid XSec	9/28/2006	13.51-14.11	1 448	0.936	650	13	2 755	1 21	-0.01	1	n/a	n/a
		I	10		5/20/2000	10.01 14.11	1.440	0.550	000	10	2.100	1.21	0.01	1	Π/α	Π/α
Gevser	GY	5	18-21	Grid XSec	9/30/2006	11:03-12:40	5.36	3.467	2408	52	21.25	1.06	-0.53	1	n/a	n/a
		3	15-18	VDCD	9/29/2006	16:09-16:28	0.7	0.456	316	n/a	n/a	1.13	0.24	n/a	3	yes
																, ,
Blue Grotto	BG	2	26	Grid XSec	9/29/2006	14:34-15:51	6.28	4.058	2818	40	8.95	1.87	-0.1	3	n/a	n/a
Christmas Tree	СТ	5	18	VDCD	9/29/2006	12:42-13:20	4.18	2.705	1878	n/a	n/a	1.51	0.47	n/a	6	yes
			10											,	10	
Garden of Eden	GE	3	16	VDCD	9/29/2006	11:04-12:25	2.559	1.654	1149	n/a	n/a	1.12	0.25	n/a	12	yes
Indian Cava		1	15 17	Grid XSoo	0/28/2006	11.12 12.40	4 31	2 796	1034	24	11.64	0.8	0.11	nono	n/2	n/2
		4	10-17		9/20/2000	11.45-12.40	4.31	2.700	1934	04 n/a	n/a	0.8	0.11		1/a	n/a
		1		1000						11/4	11/0	0.00	0.00	11/4	1	110
First Fishermans Paradise	FP-1	5	18	No Discha	rge Measur	ement Perforn	ned Due to Al	bsence of Su	itable Cross-	sections.						
					<u> </u>											
No Name Cove	NN	3	15-18	VDCD	9/29/2006	16:53-17:11	0.24	0.153	106	n/a	n/a	0.07	0.41	n/a	3	yes
Turtle Meadows	ТМ	3	15	No Discha	rge Measur	ement Perforn	ned Due to Al	bsence of Su	itable Cross-	sections.						
			0.1	0.11/0	0/00/0000	47.04.47.04	0.50	0.005	050		4 0 0 5	1.00	0.07			,
Second Fishermans Paradise	FP-2	1	24	Grid XSec	9/22/2006	17:01-17:24	0.56	0.365	253	14	1.205	1.09	-0.07	2	n/a	n/a
Cotfish Hotal	<u>сп</u>	2	20	No Diacha	rao Mooour	amont Dorforn		 	uitable Cross							
	СП	3	29	NU DISCITA	iye measul											
Turtle Nook	TN	2	15-18	VDCD	9/30/2006	13:15-13:26	0.63	0.408	283	n/a	n/a	0.79	1.05	n/a	2	ves
			10 10		0,00,2000					11/4	1,74	0.10	1100	11/0	_	,
Turtle Nook Run	TR	3	15-18	VDCD	9/29/2006	17:24-17:42	0.64	0.186	287	n/a	n/a	0.33	0.67	n/a	3	yes
																-
Raccoon Island	RI	3	10-14	VDCD	9/28/2006	17:12-17:35	0.52	0.338	235	n/a	n/a	0.5	0.31	n/a	3	yes
							<u> </u>									
Rocky vent	RV	1	21	No Discha	rge Measur	ement Perform	ned Due to Al	bsence of Su	itable Cross-	sections.						
Shinuraak	C14/	F	17.00		0/20/2002	45,47,40,00	0.0	0.500	40.4		n/-	1.04	0.45	n/a	F	
опригеск Г	511	5	17-20	VDCD	9/30/2006	15:17-16:00	0.9	0.582	404	n/a	n/a	1.01	0.15	n/a	5	yes

Catfish Convention Hall	CC	2	19	VDCD	9/30/2006	15:00-15:16	0.32	0.204	142	n/a	n/a	0.75	0.42	n/a	3	no
Timber	TB	6	14	VDCD	9/30/2006	15:47-18:16	2.33	1.508	1047	n/a	n/a	1.02	0.25	n/a	6	no
Total Measured (Estimated) Discharge:							327.197	211.256	146861							
							Discharge	Discharge	Discharge							
							CFS	MGD	GPM							

Appendix 6 Cluster Analysis Report

Multivariate Statistical Analysis of Water Quality Data for Silver Springs, Marion County, Florida

FINAL REPORT

Prepared for:

St. Johns River Water Management District 4049 Reid Street Palatka, Florida 32177

Prepared by:

INTERA, Inc. Niwot, Colorado

May 4, 2007

TABLE OF CONTENTS

Executive Su	mmary	1
I. Introductio	n	
II. Cluster Ar	nalysis	
III. Cluster A	nalysis Results	4
IV. Principal	Components Analysis	23
V. Reference	s	
APPENDIX	A. Principal Components Analysis for Each Cluster	
APPENDIX	B. HCA and PCA Using SPLUS TM	
B.1 C	luster Analysis.ssc	
	User Input	
	Output	
	Report	42
B.2	Principal_Components_Analysis.ssc	
	Output	
	Report	

LIST OF FIGURES

1	Groups formed by Hierarchical Cluster Analysis (HCA) on the Silver Springs water samples and Mean Concentrations
2	Silver Springs Cluster Locations and Mean Concentrations with SJRWMD Geology and Springs Capture Zones
3	Piper Diagram of Water Samples Taken from Vents in Silver Springs 11
4	Spatial Variability of Sulfate Concentrations in Water Samples Taken from Vents in Silver Springs12
5	Spatial Variability of Nitrate Concentrations in Water Samples Taken from Vents in Silver Springs
6	Spatial Variability of Total Dissolved Solids (TDS) Concentrations in Water Samples Taken from Vents in Silver Springs
7	Spatial Variability of Alkalinity (HCO3) Concentrations in Water Samples Taken from Vents in Silver Springs
8	Spatial Variability of Sodium (Na) Concentrations in Water Samples Taken from Vents in Silver Springs
9	Spatial Variability of Chloride (Cl) Concentrations in Water Samples Taken from Vents in Silver Springs
10	Spatial Variability of Dissolved Oxygen (DO) Concentrations in Water Samples Taken from Vents in Silver Springs
11	Spatial Variability of Magnesium (Mg) Concentrations in Water Samples Taken from Vents in Silver Springs
12	Spatial Variability of Calcium (Ca) Concentrations in Water Samples Taken from Vents in Silver Springs
13	Land Use Cover Maps of the Silver Springs Area 21
14	Sodium (Na) versus NOx
A1	Variance Explained by Each Principal Component for Group 1 30
A2	Loadings for each constituent – Group 1 31
A3	Variance Explained by Each Principal Component for Group 2

A4	Loadings for each constituent – Group 2	32
A5	Variance Explained by Each Principal Component for Group 3	33
A6	Loadings for each constituent – Group 3	33
B1	Tree diagram of hierarchical clustering	37
B2	Normalized Constituent Plot by Cluster	38
B3	Map of Groups with Labels	39
B4	Zoom-in Map	40
B5	Piper Diagrams	41
B6	Variance Explained by Each Principal Component	45
B7	Loadings for each constituent	58

Executive Summary

Strong spatial gradients and geochemical clusters are identified in waters entering Silver Springs. Three basic water types are identified that differ in their concentrations of sulfate, dissolved oxygen, Ca, Mg, alkalinity, Na, Cl and nitrate. One group of analytes associated with sulfate weathering and potential anthropogenic pollution or deep brines includes nitrate, sulfate, Na, Cl, and dissolved oxygen, and has strong north-south gradients and weak east-west gradients. Concentrations of these solutes are highest in the southern vents and decrease with distance north. A second group of solutes associated with carbonate weathering includes alkalinity (HCO₃), Mg, Ca, and TDS and has strong east-west gradients with weak north-south gradients. Nitrate is correlated with Na and Cl, suggesting an anthropogenic source or deep brine high in NO3. The southern vents have the highest nitrate concentrations, suggesting they should be targeted for nitrate control. Future geochemical analysis using groundwater wells could identify the flow paths that contribute to the geochemistry of the springs and may suggest mitigation strategies for nitrate contamination.

I. Introduction

The District has a contract with FDEP to perform multivariate statistical analysis on water quality data from 34 samples collected at Silver Springs. Silver Springs consists of 30 different vent groups and 61 vents. In September 2006, the District collected 34 different samples for water quality from 30 vent groups and measured the field parameters of temperature, pH, DO, and conductivity from 61 vents. The District would like to group these vents into a small number of sets of similar vents. The discrete sets of identified vents will then be the focus of sampling in the future for additional parameters of waste water constituents and isotopes. The water quality parameters available are:

- Temperature
- pH
- DO
- Field Conductivity
- Lab Conductivity
- Alkalinity
- NOx-total
- P-total
- TOC
- Ca-T
- Mg-T
- Na-T
- K-T
- Chloride
- Sulfate
- TDS
- PO4-T

The objective of the multivariate statistical analyses is to identify the discrete vent groups or vents that represent the data collected at Silver Springs. To achieve this objective, cluster analysis and principal component analysis are performed using SPLUS[™] on water quality data collected from 34 samples collected at Silver Springs. Measurements included major ions and field parameters of temperature, pH, DO, and conductivity measured at different vents. A larger number of springs were also sampled for field parameters but were not analyzed for major ions. Here we include only the 34 vents with both major ion data and field parameter data. As detailed below, cluster analysis is performed to reveal which observations are most similar to each other and which observations are most different from each other. Another analysis method used in this report is principal component analysis which reveals the data attributes that can be used to provide a concise summary of the available measurements and can be easily used for subsequent analyses.

Multivariate statistics are used to simplify large volumes of data into simpler groups or components that describe most of the essential characteristics of the data. It has been used to identify clusters and factors in geochemical data (Salman and Ruka'h 1999, Suk and Lee 1999, Meng and Maynard 2001, Güler et al. 2002, Thyne et al. 2004, Ji-Hoon Kim et al. 2005),

precipitation (Gong and Richman 1995, Domroes et al. 1998), climate (Fovell 1997), watershed properties (Mather and Doornkamp 1970, Wolock et al. 2004), and streamflow (Pegg and Pierce 2002).

This Report summarizes the results of the statistical analyses performed on these data. Training has also been provided to District staff on the utilized methods and software.

II. Cluster Analysis

Cluster analysis is a widely-used classification technique with the major advantage that no number of groups needs to be specified prior to the analysis (Johnson and Wichern, 1988). Instead, grouping is done on the basis of similarities and differences between the available measurements. The idea is to assign the data into groups where the inter-variance within each group is minimized and the intra-variance between different groups (clusters) is maximized. Variations of cluster analysis have been developed which require a prior specification of the number of groups (clusters). These variations are developed solely to reduce the computational burden of the classical clustering algorithms which can be significant when dealing with a large number of observations (e.g., above 1000). None of these methods will be used in this report as the number of observations is not large enough to necessitate the use of efficient computational algorithms.

One of the most powerful clustering algorithms is hierarchical cluster analysis (HCA) which has two variations: agglomerative and divisive. The agglomerative version (bottom-up) starts with each object in a class by itself. Then, in small steps, we add objects that are close enough to each other and form small groups (clusters) of objects. The process continues with clusters joining other similar clusters and more objects are grouped together into larger and larger clusters. Finally, in the last step, all objects are joined together. Divisive algorithms (top-down) operate in an opposite way where all objects start in the one cluster. Then smaller clusters break out of the large cluster to minimize the within-cluster variance. The process continues with smaller and smaller clusters forming until each object is in a separate cluster. Typically, the two HCA methods generate similar or identical results.

Geochemical data can be grouped for purposes of identifying spatial patterns in water chemistry and associate the patterns with other landscape variables such as hydrological flowpaths or land use. Geochemical facies or groups can be generated using hierarchical cluster analysis (HCA) on observed concentrations of major ions (Thyne et al. 2004). The results of HCA depend on the algorithm used and are typically sensitive to the dataset (Güler et al. 2002). The "agnes" algorithm ("agglomerative nesting") performs HCA in SPLUSTM and has several options:

Option	SPLUS™ Code	Option Recommended
Standardize variables	stand	True
Distance metric	metric	Euclidean
Method	method	Ward

We recommend standardizing the concentrations (stand = true), which gives all variables equal weight and prevents constituents with high concentrations (e.g., HCO3) from dominating the cluster structure. We use Euclidean distance, which is the most commonly used distance measure. Clusters may be aggregated using several different methods; here we follow Güler et al (2002) and Mathes and Rasmussen (2006) and use Ward distancing (also called incremental sum of squares method), which calculates the sum of squared errors as the sum of the Euclidean distances from each sample to the center of its cluster. Clusters are formed to minimize the sum of squared errors at each iteration. In the first iteration of HCA, the number of clusters equals the number of samples. The algorithm then iteratively forms clusters until all samples are included in a single cluster. The results of the clustering may be viewed in a dendrogram (Figure 1) which shows the sample numbers that form each cluster, and the Euclidean distance between each successive cluster. An arbitrary Euclidean distance is selected to distinguish vent groups; any clusters below the threshold are considered a distinct vent group.

One key methodological note is the importance of filling data gaps (Güler et al. 2002). Most statistical packages fill missing data with the average of the other samples for a given constituent, which could lead to erroneous groupings. The recommended method to fill gaps is multiple regression with other constituents as independent variables (Güler et al. 2002). There were no data gaps in the Silver Springs water quality data.

From a mathematical point of view, clusters are not unique. That is, few vents can change cluster designation depending on the numerical algorithm used during the cluster analysis. However, in practical terms, these are typically the border line measurements that have enough noise in their data to make them swing one way or the other. There are always some core vents that will not change cluster designation regardless of the numerical algorithm. These core vents are identified below in the results discussion. Further distinction by physical location (e.g., north and south banks), geochemical signature, or some other physical feature(s) must be used to solidify the uniqueness conclusion.

HCA has seven steps:

- 1. Export data into a text file for import to S-plus
- 2. Load data into SPLUS[™]
- 3. Standardize the concentration values
- 4. Run HCA in SPLUSTM
- 5. Determine threshold height for clusters from the dendrogram
- 6. Calculate constituent means for each cluster (in Excel or SPLUSTM)
- 7. Map clusters to examine spatial associations

III. Cluster Analysis Results

HCA on the Silver Springs water samples reveals five distinct groups (Figure 1, 2). Groups 4 and 5 consists of only one vent each and are distinguished from the other groups due to anomalously high TOC or P concentrations: Lost River (LR1, Group 4) had TOC of 33 mg/L and Catfish Convention Hall 1 (CC1, Group 5) had Total P of 2.1 mg/L.

When the two outlier samples are included in the HCA, the three main clusters show 11 vents each in clusters 1 and 2, and 10 vents in cluster 3 (Figure 1, A). When these two outliers are excluded from the HCA (Figure 1, B), few vents change clusters. When the two outlier samples are excluded, cluster one has 15 springs; cluster two has 10 springs; and cluster three has 7 springs (Table 1 and figure 1B). Vent 22 (No Name Cove) moves from cluster 2 to cluster 1. This illustrates the fact that few samples are borderline and can move between clusters without having a significant impact on the overall statistics. The remainder of this discussion will focus on Groups 1-3 each containing multiple vents. The names of the vents in each group are listed in Table 1.

Group 1 is located in the south and western part of the Silver River and has the highest TDS, DO, Ca, Mg, HCO3, SO4, NO3, and phosphorus (Figure 1). Group 2, which includes vents in the northern part of the springs, has lower concentrations of most solutes than Group 1, and particularly low DO, SO4 and P concentrations. Group 3 is intermediate between Groups 1 and 2.

The clusters show continuous rather than discrete changes from one group to the next as shown on the map (Figure 2) and Figures 3-12. This suggests that water from many of the vents represent a mixture of different source waters, rather than distinct end-members. A few vents within each cluster can be singled out as "end-members" corresponding to each of the three groups (highlighted in red in Table 1). The rest of the samples can be viewed as mixtures of these three waters.

Table 1. Geochemical groups with names and abbreviation. Red indicates samples that may be considered distinct geochemical end-members. The numbers correspond to Figure 1B, except for the 2 outlier springs, whose numbers correspond to Figure 1A.

Abbreviation	Number	Name
		Group 1
ME	1	Mammoth East
JW	3	Jacobs Well
CR1	4	Catfish Reception Hall 1
BC	5	Bridal Chamber
OS1	6	Oscar
DK21	7	Devils Kitchen B
LP1	8	Ladies Parlor
DK11	9	Devils Kitchen A1
AH1	10	Alligator Hole 1
GY1	12	Geyser 1
BG	13	Blue Grotto
IC1	20	IndianCave1
FP11	21	First Fisherman's Paradise 1 middle
FP15	22	First Fisherman's Paradise 5
NN	23	No Name Cove
		Group 2
	2	Mammoth West
MR1	11	Mastodon Bone
CT1	14	Christmas Tree Central
CT3	15	Christmas Tree North
GF1	16	Garden of Eden 1
GF2	17	Garden of Eden 2
11	19	
TM1	24	Turtle Meadows 1
TN1	27	Turtle Nook
RI1	29	Raccoon Island 1 inland
		Group 3
FP2	25	Second Fisherman's Paradise
CH1	26	Catfish Hotel 1
TR1	28	Turtle Nook Run
RV1	30	Rocky Vent
SW1	31	Shinwreck 1
CC2	33	Catfish Convention Hall 2
TB1	34	Timber 1
	Outliors (numbe	r corresponde to Figure 1A)
		Lost Divor 1
	10	

All water samples are Ca-HCO3 type (Figure 3), and Ca+HCO3 accounts for 73-88% of total dissolved solids. Groups 1 and 2 have proportionately more Ca, sulfate and Mg than Group 3, suggesting more weathering of gypsum (CaSO₄) and dolomite(CaMg(CO₃)₂) in waters draining from the south, and dominantly carbonate weathering in waters draining from the north. This could also suggest that Group 1 and 2 are from a deeper source than Group 3. Group 2 has a slightly higher proportion of Na than the other two groups.

All samples fall on a single lithology, Eocene limerock (Eo). Consistent with the geology the spatial geochemical patterns suggest that carbonate weathering dominates though sulfate minerals are weathering in waters draining from the south. Alternatively, waters on the south (Group 1) are from a deeper source. Gypsum is present in the middle confining unit of the Floridan aquifer system.

Land use differs over the region and may contribute to the observed spatial patterns in vent geochemistry. The sampled vents are located within the boundaries of Silver Springs Park. Residential areas are located to the west of the springs, and forested areas, with some regenerating forest, are located to the east (Figure 13). More data, in particular chemical data from wells in the residential and forested areas, information on fertilization patterns on different land cover types, and the management of wastewater from the sewage treatment plant would be required to establish groundwater pathways and solute sources.

The solutes show contrasting behavior with latitude and longitude (Table 2). One group of solutes includes nitrate, sulfate, Mg, Cl, Na, and dissolved oxygen. This group shows the strongest gradients north-south, and weaker or no gradients east-west (Figures 4, 5, 8, 9, 10, 11). A second group indicates carbonate and dolomite weathering, and includes Ca, bicarbonate, and TDS. This group shows the strongest gradients east-west and weaker or no gradients north-south (Figures 6, 7, 12). Bicarbonate in particular shows strong east-west gradients but no north-south gradients (Figure 7). No solute has a significant correlation with depth.

The pollutant of most concern, nitrate, decreases from south to north, has no east-west gradient, and has highest concentrations in Group 1 (Figure 5). Nitrate is strongly associated with Na and Cl (Figure 14), which suggests anthropogenic origin of all three solutes. The results suggest that nitrate control strategies should focus on the springshed contributing water to vents in the southern part of the springs.

The north-south pattern found in the clusters suggests that two different baseflow regimes exist on the two sides of the river (Figure 2). This result should be verified using local hydrogeologic knowledge about the Silver Springs system (e.g. Toth and Katz, 2006).

Table 2. Correlations between water parameters and latitude, longitude, and depth at the Silver Springs sampling locations. The correlation coefficients for longitude are negative for parameters that decrease from west to east. Correlations greater than 0.6 are highlighted in red.

0			
	Lat	Long	Depth
Temp_C	-0.65	0.30	-0.18
pH	-0.12	0.49	-0.05
DO	-0.73	-0.03	0.15
Field_Cond	-0.53	-0.80	0.34
Lab_Cond	-0.52	-0.86	0.28
Alkalinity	-0.01	-0.91	0.36
NOx_total	-0.61	0.07	0.00
P_total	-0.01	0.10	-0.14
TOC	0.10	-0.12	-0.01
Ca_T	-0.36	-0.86	0.20
Mg_T	-0.73	-0.59	0.30
Na_T	-0.62	0.12	0.33
K_	-0.05	0.52	-0.44
Chloride	-0.68	-0.03	0.34
Sulfate	-0.87	-0.43	0.13
TDS	-0.59	-0.81	0.27
PO4 T	-0.13	-0.07	-0.13

Figure 1. Groups formed by Hierarchical Cluster Analysis (HCA) on the Silver Springs water samples and Mean Concentrations.

IV. Principal Components Analysis

Principal component analysis (PCA) attempts to explain the variance-covariance structure of the data through the construction of few uncorrelated (orthogonal) linear combinations of the data (Johnson and Wichern, 1988). These few linear combinations (principal components or PCs) can then be used for data reduction. For example the PCs can be used as explanatory variables in regression analysis where, being uncorrelated, the resulting regression coefficients are unambiguous. Another common use for PCs is for data interpretation where the weights calculated for the linear combinations can be used to understand which data attributes are most relevant for a given application.

Computationally, PCs are obtained using the eigenvectors and eigenvalues of the correlation matrix (or the variance-covariance matrix). The first principal component direction is defined as the eigenvector corresponding to the largest absolute eigenvalue. The second PC is the eigenvector corresponding to the second largest eigenvalue, and so on. The process of obtaining the eigenvectors and eigenvalues can be computationally intensive but several efficient algorithms have been developed for this purpose such as singular value decomposition (Horn and Johnson, 1991).

Principal component analysis is often used to understand the major underlying components that contribute to the overall variability in the water quality measurements. PCA can lead to significant reductions in the efforts required to monitor a natural system by highlighting redundant or correlated measurements. It has been used in geochemical analysis to identify major water types (Melloul and Collin, 1992) and estimate susceptibility of aquifers to pollution (Abu-Jaber et al., 1997). PCA may be performed using either the covariance or correlation matrix; due to the large differences among parameter ranges (e.g. compare TDS and P-Total), we used the correlation matrix.

The correlation matrix (Table 3) shows high correlations among several variables, particularly between TDS, conductivity, alkalinity, Ca, Mg, and SO4, and between Na, Cl, DO, and temperature.

Table	Table 5. Correlation coefficient matrix for the Silver Springs data. Excludes two samples with																
anomalous TOC or TP values. Values in red are greater than 0.60.																	
				Con	Con												
	Т	pН	DO	field	lab	Alk	HCO3	NOx	TP	TOC	Са	Mg	Na	К	CI	SO4	TDS
Т	1.00																
рН	0.13	1.00															
DO	0.77	0.12	1.00														
Cond.f	0.20	-0.39	0.55	1.00													
Cond.I	0.12	-0.35	0.47	0.96	1.00												
			-														
Alk	-0.41	-0.51	0.10	0.70	0.77	1.00											
			-														
HCO3	-0.41	-0.51	0.10	0.70	0.77	1.00	1.00										
NOx	0.76	-0.02	0.86	0.44	0.33	-0.12	-0.12	1.00									
TP	0.20	-0.13	0.19	-0.03	-0.02	-0.04	-0.04	0.39	1.00								
			-														
TOC	-0.14	0.02	0.16	0.05	0.03	0.19	0.19	-0.09	0.14	1.00							
Са	-0.02	-0.43	0.29	0.85	0.91	0.81	0.81	0.28	0.20	0.29	1.00						
Mg	0.48	-0.18	0.78	0.89	0.88	0.46	0.46	0.63	0.09	-0.07	0.74	1.00					
Na	0.70	0.29	0.85	0.33	0.27	-0.20	-0.20	0.75	0.18	-0.10	0.14	0.65	1.00				
K	0.46	0.28	0.18	-0.27	-0.33	-0.51	-0.51	0.35	0.11	0.28	-0.28	-0.17	0.18	1.00			
CI	0.66	0.27	0.88	0.49	0.43	-0.06	-0.06	0.73	0.19	-0.14	0.26	0.74	0.90	0.13	1.00		
SO4	0.66	-0.07	0.84	0.80	0.78	0.27	0.27	0.69	0.09	-0.06	0.62	0.94	0.65	0.01	0.76	1.00	
TDS	0.25	-0.32	0.54	0.96	0.98	0.70	0.70	0.39	-0.03	0.08	0.87	0.92	0.34	-0.26	0.51	0.85	1.00
PO4	0.09	-0.12	0.15	0.06	0.10	0.01	0.01	0.14	0.18	-0.14	0.08	0.17	0.06	-0.15	0.14	0.15	0.14

Table 3 Correlation coefficient matrix for the Silver Springs data. Excludes two samples with

The correlation matrix may be further simplified by finding its principal components or eigenvectors. First, the eigenvalues and eigenvectors of the correlation matrix are found in SPLUSTM. The eigenvalues explain the percent of the total variation in the data explained by each factor or eigenvector. For the Silver Springs data, the first three components accounted for 78% of the variance in the data. Selection of the final components used to model the data is qualitative and depends on the component's eigenvalue and interpretability.

Table 4. Principal components results, showing eigenvalues and the total percent of the variance explained by each additional factor. Red highlights the components selected for further analysis.

			Cumulative percent
		Eigenvalue	explained
Factor	1	7.80	0.43
	2	4.71	0.70
	3	1.45	0.78
	4	1.30	0.85
	5	0.85	0.89
	6	0.74	0.94
	7	0.35	0.95
	8	0.29	0.97
	9	0.17	0.98
	10	0.12	0.99
	11	0.11	0.99
	12	0.06	1.00
	13	0.03	1.00
	14	0.03	1.00
	15	0.01	1.00
	16	0.01	1.00
	17	0.00	1.00
	18	0.00	1.00

For the Silver Springs data, the first three eigenvectors correspond to the following principal components:

- Component 1: TDS-Ca-Mg-SO₄ component,
- Component 2: inverse alkalinity-Na-Cl-Temperature component,
- Component 3: organic constituents component.

The above designations are somewhat subjective and based on the absolute values of the factor loadings shown in Table 5. For example, component 1 has factor loadings values above 0.27 for TDS and related constituents (e.g., conductivity). Component 2 has the largest (negative) factors associated with alkalinity and the largest (positive) factors associated with temperature, Na, and Cl. Component 3 has a large factor associated with TOC with two smaller factors associated with phosphorous and potassium.

Table 5. First the	ee components ir	n the PCA with v	alues of the
factor loadings. I	Red highlights the	e constituents wit	h the largest
influence on eacl	h component.		
	Component 1	Component 2	Component 3
	TDS factor	Na-CI/Temp	Organic factor
Temp.C	0.162	0.357	0.046
рН	-0.089	0.244	-0.070
DO	0.272	0.275	-0.056
Field.Cond	0.332	-0.131	-0.010
Lab.Cond	0.326	-0.170	-0.035
Alkalinity	0.189	-0.375	0.049
Alk.as.HCO3	0.189	-0.375	0.049
NOx.total	0.233	0.277	0.136
P.total	0.052	0.093	0.395
TOC	0.000	-0.088	0.692
Са	0.287	-0.221	0.216
Mg	0.352	0.028	-0.079
Na	0.213	0.309	-0.053
К	-0.054	0.273	0.471
CI	0.255	0.264	-0.087
SO4	0.333	0.109	-0.038
TDS	0.336	-0.125	-0.013
PO4.T	0.060	0.022	-0.207

PCA suggests that at least three distinct water types mix to yield the observed chemistry:

- water high in TDS which contains mostly Ca-Mg sulfates,
- water high in temperature, Na, Cl, NO₃, and low in alkalinity; and
- water high in TOC, K and P.

The correlation of NOx with warm water suggests that NOx are coming from deep sources. For example, at Mammoth spring the warmer vent (23.4 degrees versus 22.0 degrees C) has the higher NOx (1.23 mg/l versus 0.91 mg/l). It is also worth noting that NOx showed a high loading factor (> 0.13) for the top three components, indicating that NOx variability is fairly large and cannot be easily explained by its correlation with temperature and dissolved oxygen.

The analysis also suggests that some constituents, mainly SO4, Ca, Mg, alkalinity and TDS can be predicted using field conductivity, but that other constituents such as TOC, P, and K do not relate to conductivity and need to be measured in each sample.

Based on these results, further analysis is suggested as follows:

1. Principal component analysis can be conducted within each of the three clusters described in Section III above. This analysis can highlight further distinctions between the vents within Silver Springs. Results of this analysis are listed in Appendix A.

2. Regression may be used to understand how well field parameters (conductivity and pH) predict the value of different constituents or to evaluate the correlations between the principal components at Silver Springs and those upstream within the springshed.

3. Hydrogeologic interpretation may be used to attempt to distinguish between the three clusters in terms of the likely groundwater pathlines leading to each cluster. Lines of evidence could include geochemical data from wells, tritium dating of vent water, and information on hydraulic heads and flows. This analysis will depend on modeling results (indicating the different possible capture zones for the spring vents) and expertise with the local hydrogeologic regime.

V. References

Abu-Jaber NS, Aloosy ASE, Ali AJ. 1997. Determination of aquifer susceptibility to pollution using statistical analysis. Environmental Geology **31**:94-106

Domroes, M, Kaviani M, and Schaefer D. 1998. An Analysis of Regional and Intra-annual Precipitation Variability over Iran using Multivariate Statistical Methods. Theoretical and Applied Climatology **61**:151-159.

Fovell, RG. 1997. Consensus Clustering of U.S. Temperature and Precipitation Data. Journal of Climate **10**:1405-1427.

Gong X, and Richman MB. 1995. On the Application of Cluster Analysis to Growing Season Precipitation Data in North America East of the Rockies. Journal of Climate **8**:897-931.

Güler C, Geoffrey DT, John EM, and Keith AT. 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal **10**:455-474.

Ji-Hoon KJH, Rak-Hyeon Kim RH, Jeongho Lee J, Tae-Jin Cheong T, Byoung-Woo Yum BW, and Ho-Wan Chang HW. 2005. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Pages 1261-1276.

Horn RA and Johnson CR. 1991. Topics in Matrix Analysis, Cambridge University Press.

Johnson RA and Wichern DW. 1988. Applied Multivariate Statistical Analysis, Prentice-Hall.

Mather PM and Doornkamp JC. 1970. Multivariate Analysis in Geography with Particular Reference to Drainage-Basin Morphometry. Transactions of the Institute of British Geographers, New Series **51**:163-187, doi:110.2307/621768.

Mathes SE, and Rasmussen TC. 2006. Combining multivariate statistical analysis with geographic information systems mapping: a tool for delineating groundwater contamination. Hydrogeology Journal **14**:1493-1507.

Melloul A, Collin M. 1992. Principal components statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the coastal plain aquifer of Israel. Journal of Hydrology **140**:49-73 Meng, SX, and Maynard JB. 2001. Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil. Journal of Hydrology **250**:78-97.

Pegg MA, and Pierce CL. 2002. Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics. River Research and Applications **18**:31-42.

Salman SR, and Ruka'h YHA. 1999. Multivariate and principal component statistical analysis of contamination in urban and agricultural soils from north Jordan. Environmental Geology **38**:265-270.

Suk H, and Lee KK. 1999. Characterization of a Ground Water Hydrochemical System Through Multivariate Analysis: Clustering into Ground Water Zones. Ground Water **37**:358-366.

Thyne G, Güler C, and Poeter E. 2004. Sequential Analysis of Hydrochemical Data for Watershed Characterization. Ground Water **42**:711-723.

Toth DJ, Katz BG. 2006. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs. Hydrogeology Journal **14**:1060-1080

Wolock DM, Winter TC, and McMahon G. 2004. Delineation and Evaluation of Hydrologic-Landscape Regions in the United States Using Geographic Information System Tools and Multivariate Statistical Analyses. Environmental Management **34**:S71-S88.

APPENDIX A. Principal Components Analysis for Each Cluster

A.1 Group 1

The first four components account for 88% of the variance in Group 1. The first component is dominated by TDS, FieldCond, Alkalinity, and Mg. The second component is Cl, K, and SO4 dominated. The third is Na, Ca and DO dominated.

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6
pH		0.331	0.374	-0.493	0.220	-0.313
DO	-0.229	0.314	0.382	0.326	-0.163	0.164
Field.Cond	0.389	0.239	0.178		0.239	0.213
Alkalinity	0.385		-0.276	-0.212	0.164	0.281
Nox.total	-0.304	0.271	-0.175	0.449		
Ca	0.219	0.167	-0.450	0.403	0.404	-0.261
Mg	0.361	0.254			-0.376	-0.478
Na	-0.141	0.289	-0.468	-0.307	-0.402	-0.291
K	-0.253	0.385		-0.160	0.536	
Cl	-0.130	0.410	-0.294	-0.188	-0.240	0.587
SO4	0.271	0.363	0.252	0.262	-0.147	
TDS	0.440	0.184				0.112

Figure A1. Variance Explained by Each Principal Component for Group 1

Figure A2. Loadings for each constituent – Group 1

A.2 Group 2

Most (87%) of the variance in Group 2 is explained by the first 3 components. The first component is a DO-Mg-SO4 component. The second PC is Alk-Ca-K, and the third is pH-Cl-Na.

Figure A3. Variance Explained by Each Principal Component for Group 2

Figure A4. Loadings for each constituent – Group 2

Group 3 A.3

More than 92% of the variance in Group 3 is explained by the first three components. PC1 is Mg-Na-Ca dominated, PC2 is K-Cl-NOx dominated, and PC3 is Alk-NOx-Cl dominated.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9Comp.10

Figure A6. Loadings for each constituent – Group 3

APPENDIX B. HCA and PCA Using SPLUS™

Two scripts were written for multivariate analysis, including cluster analysis and principal components analysis (PCA). This appendix provides details of these scripts and user instructions.

The scripts Cluster_Analysis.ssc and Principal_Components_Analysis.ssc implement cluster analysis and PCA in SPlus for applications in SJRWMD. The scripts include an example of both analyses using geochemical data from Silver Springs.

B.1 Cluster_Analysis.ssc

This script loads geochemical data, generates clusters using Hierarchical Cluster Analysis (HCA) and produces various plots of the clusters, including Piper Diagrams.

User Input

The first section of the scrip is similar to the Trend Analysis scripts, where the workspace is cleared, and the user defines the path and file names.

The main difference in the User Input section is in the designation of variable columns. There is no time variable in the analysis, and more than one response variable. The location of each sample is designated in an x and y coordinate corresponding to the column names in the Excel sheet:

x.coord.label <- "Long.min" y.coord.label <- "Lat.min"

The constituents in the Excel sheet need to be assigned:

```
# The constituent.list is a list of the names of the columns in the Excel
# spreadsheet.
# They do not need to be in the same order as the columns in the Excel sheet.
# The user can alter the constituent.list to see the effect of excluding
# different constituents
  The names in constituent.abb.list need to be in the same order as the names
#
#
  in constituent.list
# The names in constituent.abb.list should not change for constituents
# involved in the charge balance:
# ("Alk", "NOx""Ca", "Mg", "Na", "K", "Cl", "SO4", "TDS"). All other constituents
# may have arbitrary labels in constituent.abb.list
constituent.list <- c("pH", "DO", "Field.Cond", "Alkalinity", "Nox.total",</pre>
      "Ca", "Mg", "Na", "K", "Cl", "SO4", "TDS")
constituent.abb.list <- c("pH","DO","Cond","Alk","NOx"</pre>
      "Ca", "Mg", "Na", "K", "Cl", "SO4", "TDS")
```

The constituent.list contains the labels of the columns in the Excel spreadsheet of the variables to be included in the analysis. This list can change to test the effect of including/excluding certain constituents on the final cluster results. The list does not need to be chemical analytes; for example, annual groundwater levels (or precipitation) for a sequence of months or years could be used:

```
constituent.list <-
    c("X1980","X1981","X1982","X1983","X1984","X1985","X1986","X1987","X1988")
constituent.abb.list <- c("80","81","82","83","84","85","86","87","88")</pre>
```

The list constituent.abb.list is used both for plotting, and, if a charge balance and Piper diagram are performed, to link the names in the Excel sheet with labels used by the USGS SPLUSTM scripts. The order in constituent.abb.list needs to match the order in constituent.list. For elements involved in the charge balance and Piper Diagrams, the names in constituent.abb.list should not change: Ca, Mg, Na, K, Cl, NOx, Alk, SO4. For all other constituents, the names in constituent.abb.list can be arbitrary. If new analytes (e.g. heavy metals, etc) are included in constituent list, then the user can add to constituent.abb.list with arbitrary abbreviations.

Other user input includes:

exclude.samples <- NULL	# Names of specific samples or stations to # be excluded from the analysis. Can be used # to test the sensitivity of the clustering # to outlier samples.
threshhold.height <- 12	# Defines the threshold separation height that # separates groups

The threshold.height is the single most important parameter in the clustering algorithm. It is a user-defined value that determines the maximum distance groups can be apart and still be in the same cluster. The cluster tree diagram (Figure A1) can be used to visualize how many clusters will be generated by a given threshold height. The lower the threshold.height, the more clusters will be generated. The user can experiment with different values and determine which yields a clustering that provides insight.

The charge balance and Piper Diagram options are:

If the analysis does not include all the constituents required for a mass balance (e.g. if the analysis is to be done on heavy metals or well levels), the user should set the charge.bal.flag and piper.diag.flag to 0. Otherwise an error will result.

The graphics formatting options include:

```
# Graphics Formatting Options
chart.make.jpeg <- 0
                             # option 1 creates JPEG files. Zero will not generate
   JPEGs
                             # When option 1 is used, the file names will be:
                             # ClusterAnalysis01.jpg,
                             # ClusterAnalysis02.jpg, ClusterAnalysis03.jpg,
                             # and so on
                        # chart width for outer margins in inches
chart.size.width <- 8
chart.size.height <- 5  # chart height for outer margins in inches
legend.font.size <- 1
                         # Legend font size
legend.location.x <- 1</pre>
                             # Legend X location within the chart - Value
                             # ranges from zero to one
legend.location.y <- 0</pre>
                             # Legend Y location within the chart - Value
                             # ranges from zero to one
#
 Zoomed map parameters
# Note: These parameters may not be necessary if the large map (Fig 3)
# produces acceptable detail
map.x.min
                  <- -8.2033
                                    # lower limit for x coordinate in the
                                    # zoomed clusters map(longitude)
map.x.max
                   <- -8.202
                                    # upper limit for x coordinate in the
                                    # zoomed clusters map (longitude)
map.y.min
                   <- 2.9125
                                    # lower limit for y coordinate in the
                                    # zoomed clusters map (latitude)
                   <- 2.91262
                                    # upper limit for y coordinate in the
map.y.max
                                    # zoomed clusters map (latitude)
# End of Graphics Options
```

The variables map.x.min(max) and map.y.min(max) allow the user to define the corners of a location to be zoomed for mapping. For example, in some applications, a certain region will have a high density of points that are not visually distinguished on the regional plot. The values map.x.min(max) and map.y.min(max) correspond to values in the x.coord.label and y.coord.label.

Output

The output consists of five figures:

Figure B1. Tree diagram of hierarchical clustering

Data File:Silver_springs_WQ1.xls

Sample

The threshold height determines the number of clusters. For example, a threshold of 15.55 (red line) would yield four clusters, while a threshold of 11 (blue line) would yield five clusters.

Figure B2. Normalized constituent plot by cluster. This allows the user to identify which constituents differ the most from cluster to cluster.

In this example from Silver Springs, DO, Mg, and SO4 show the largest differences among groups, while pH, K and Cl show the smallest differences.

Figure B3. Map of groups with labels. Note that this map is not geometrically correct, but has been fitted to the x and y data. The scales on the x and y axis may therefore be different. Production of a "true" map, as in Figure A2 of the report, needs to be done in a GIS or other mapping software.

In this example, the three clusters form geographically distinct groups. This is a good indication that the algorithm has identified meaningful clusters that correspond to different flowpaths and/or groundwater sources.

Figure B4. A zoom-in for part of the study are in Figure A3. The boundaries of this area are defined by map.x.min(max) and map.y.min(max).

GE-2

Figure B5. Piper Diagrams. First diagram is the means of each group. Second diagram is each individual point, colored by group.

Report

The report gives the mean chemical composition of each cluster:

```
> # Summary Stats
clust.means
                                 DO
                                        Cond
                                                  Alk
                                                           NOx
 clusts.sort...2.
                        рΗ
                                                                     Ca
                                                                               Mg
   K
                  Cl
Na
                1 7.345455 3.173636 462.7909 179.0000 1.445455 77.63636 11.818182
1
6.809091 0.7181818 11.49091
                2 7.450000 3.175455 379.0091 136.3636 1.497273 58.36364 9.427273
2
6.972727 0.8000000 11.45455
                3 7.357000 1.265000 377.9200 165.8000 1.154900 62.60000 7.800000
3
5.980000 0.7460000 10.30400
       SO4
               TDS
1 65.58182 303.0000
2 45.98182 230.3636
3 28.72000 227.1000
```

and the group membership of each sample:

	Sample	Number	Abbreviation	Cluster
1		1	ME	1
3		3	JW	1
4		4	CR-1	1
5		5	BC	1
6		6	0S-1	1
7		7	DK-21	1
8		8	LP-1	1
9		9	DK-11	1
10		10	AH-1	1
12		12	GY-1	1
13		13	BG	1
19		20	IC-1	1
20		21	FP-11	1
21		22	FP-15	1
22		23	NN	1
2		2	MW	2
11		11	MB-1	2
14		14	CT-1	2
15		15	CT-3	2
16		16	GE-1	2
17		17	GE-2	2
18		19	GE-5	2
23		24	TM-1	2
26		27	TN-1	2
28		29	RI-1	2
24		25	FP-2	3
25		26	CH-1	3
27		28	TR-1	3
29		30	RV-1	3
30		31	SW-1	3
31		33	CC-2	3
32		34	TB-1	3

The report also gives the samples that failed the charge balance and their chemical composition:

```
if(charge.bal.flag == 1) {
    err.charge.exceed
}
[1] pH DO Cond Alk NOx Ca Mg Na K Cl SO4 TDS
< 0 rows>
```

For this example, all samples were within the charge balance tolerance of 0.1.

B.2 Principal_Components_Analysis.ssc

PCA reduces a multivariate dataset to a few factors that explain most of the variance. For example, Ca and HCO3 often correlate very closely in natural water samples, so a list of samples with Ca and HCO3 could be reduced to a single vector (eigenvector) that, when multiplied by a conversion factor (eigenvalue), gives the observed Ca and HCO3 concentration.

As in the previous script (B.1), the main input required by the user, other than the file and path name, is the constituent list. There is also an option to write the figures to jpeg files.

Output

The script produces two figures and a report:

Figure B6 shows the variance explained by each principal component, starting with the factor that explains the most variance (PC 1):

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9Comp.10

The number above each bar is cumulative fraction of the total variance explained by adding each principal component. For example, Comp.1 explains 54.5% of the total variance in the data. Comp.2 explains less variance than Comp.1, but adding Comp.2 brings the total variance explained to 80.9%. Note that the variance explained by adding an additional component decreases with the number of components.

This plot helps determine the number of components to keep for the final report. The cutoff can be set to include any number of components, but typically the cutoff is set at 90-95% of the total variance explained. In this example, using a 90% cutoff would include components 1 through 3.

Figure B7 shows the loadings on each constituent for the first 5 components:

Only the six constituents with the highest loadings are displayed. In this example, Comp.1 has high loadings in Mg, SO4, TDS, FieldCond, DO, and Cl, and can be thought of as a "TDS and DO" component. Comp.2 has high loadings in Alk, Na, K, pH, Ca, and NO3. Since it is highest in Alk, Na, and Cl, it could be thought of as an Na-K component. Comp.3 has high loadings in K, pH, NOx, Cl, Na, and Ca. It could be thought of as an K-NOx component.

Report

The report contains the values used to produce Figure 1 and 2, and some additional output including the correlation matrix:

cor.out							
numeric mat	rix: 12 rows	, 12 columns.					
	pH	DO	Field.Cond	Alkalinity	Nox.total	Ca	
Mg	Na						
pH	1.000000000	0.006432464	-0.4397742	-0.51160059	-0.09722307	-0.4601506	-
0.2678734	0.1365002						
DO	0.006432464	1.000000000	0.4844212	-0.08942228	0.86823911	0.3021174	
0.7959701	0.8677639						
Field.Cond	-0.439774231	0.484421166	1.0000000	0.72985609	0.39276359	0.8169963	
0.8292386	0.2962535						
Alkalinity	-0.511600594	-0.089422281	0.7298561	1.00000000	-0.11482854	0.8047924	
0.4527705 -	-0.1867397						
Nox.total	-0.097223070	0.868239109	0.3927636	-0.11482854	1.00000000	0.2871793	
0.6515588	0.7678793						
Ca	-0.460150552	0.302117430	0.8169963	0.80479241	0.28717932	1.0000000	
0.7380517	0.1638288						
Mg	-0.267873418	0.795970098	0.8292386	0.45277054	0.65155878	0.7380517	
1.0000000	0.6817397						
Na	0.136500170	0.867763853	0.2962535	-0.18673968	0.76787927	0.1638288	
0.6817397	1.0000000						
K	0.297301490	0.126235376	-0.2627169	-0.49445787	0.30256805	-0.2882306	-
0.1984558	0.1206238						
Cl	0.089158648	0.892085181	0.4151913	-0.06111361	0.74458271	0.2694915	
0.7550914	0.9173291						
SO4	-0.164284479	0.851660655	0.7433512	0.27541251	0.70983098	0.6217460	
0.9463121	0.6805332						
TDS	-0.383952601	0.542758736	0.9276195	0.70393257	0.40244902	0.8768768	
0.9118578	0.3622148						
	K	Cl	S04	TDS			
pH	0.29730149	0.08915865 -0	0.16428448 -	-0.3839526			
DO	0.12623538	0.89208518 (.85166066	0.5427587			
Field.Cond	-0.26271693	0.41519134 (0.74335116	0.9276195			
Alkalinity	-0.49445787 -	-0.06111361 (.27541251	0.7039326			
Nox.total	0.30256805	0.74458271 (0.70983098	0.4024490			
Ca	-0.28823059	0.26949153 (0.62174601	0.8768768			
Mg	-0.19845581	0.75509135 (0.94631212	0.9118578			
Na	0.12062379	0.91732912 (0.68053320	0.3622148			
K	1.00000000	0.05595437 -0	0.02854355	-0.2726048			
Cl	0.05595437	1.00000000 (.77013222	0.5042483			
S04	-0.02854355	0.77013222 1	.00000000	0.8461429			
TDS	-0.27260478	0.50424826 (0.84614288	1.0000000			

The data used to produce Figure 1 is in "summary(pca.out)":

Proportion of Variance 0.5448762 0.2637962 0.06996078 0.05665376 0.01930495 0.01598318 0.0128610 0.006290733 Cumulative Proportion 0.5448762 0.8086723 0.87863312 0.93528688 0.95459183 0.97057501 0.9834360 0.989726739

Comp.9 Comp.10 Comp.11 Comp.12 Standard deviation 0.239328243 0.2019752 0.130453646 0.0904929684 Proportion of Variance 0.004773167 0.0033995 0.001418179 0.0006824148 Cumulative Proportion 0.994499906 0.9978994 0.999317585 1.000000000

The data used to produce Figure 2 are produced by typing "loadings(pca.out)":

> loadi	ngs	(pca.ou	t)									
		Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10	
Comp.11	. Cor	np.12										
	pН	-0.116	-0.324	0.421	0.779		-0.277	0.129				
	DO	0.324	-0.286		-0.112	-0.225	-0.157		-0.116	0.124	-0.825	
Field.C	lond	0.329	0.233		0.147	-0.219	0.116	0.651	0.250	0.444	0.161	
0.164												
Alkalir	nity	0.172	0.472		0.182	0.408		0.314	-0.256	-0.538	-0.252	
0.157												
Nox.to	otal	0.282	-0.289	-0.301	-0.219	0.211	-0.643	0.269	-0.130	-0.147	0.324	-
0.139												
	Ca	0.290	0.306	-0.136	0.212	0.411	-0.296	-0.502		0.454		
0.169												
	Mg	0.386						-0.143	0.207	-0.228		-
0.464	0.1	708										
	Na	0.273	-0.345	0.206	-0.139	0.429	0.284		0.612	-0.144		
0.128	-0.2	262										
	K		-0.332	-0.776	0.392		0.331					
	Cl	0.306	-0.286	0.228		0.238	0.410		-0.642	0.272	0.213	
0.108												
	SO4	0.371			0.105	-0.463		-0.292		-0.344	0.231	
0.609												
	TDS	0.352	0.207		0.209	-0.223	0.127	-0.143			0.107	-
0.544	-0.6	525										

Appendix 7 Photographs