SPECIAL PUBLICATION SJ2009-SP2

## DETERMINATION OF POTENTIAL WATER SUPPLY YIELD OF THE UPPER ST. JOHNS RIVER AT STATE ROAD 50, FLORIDA, USING MINIMUM FLOWS AND LEVELS COMPLIANCE AS A CONSTRAINT



**Special Publication SJ2009-SP2** 

### DETERMINATION OF POTENTIALWATER SUPPLY YIELD OF THE UPPER ST. JOHNS RIVER AT STATE ROAD 50, FLORIDA, USING MINIMUM FLOWS AND LEVELS COMPLIANCE AS A CONSTRAINT

by

Donthamsetti V. Rao, Ph.D., P.E. Senior Engineering Scientist

BCI Engineers and Scientists, Inc. Lakeland, Florida 33807-5467

Prepared for The Division of Water Supply Management Department of Resource Management St. Johns River Water Management District Palatka, Florida

2008

# **EXECUTIVE SUMMARY**

The Upper St. Johns River (USJR), located in east-central Florida in the St. Johns River Water Management District (SJRWMD), is a major source of water supply for irrigation and drinking water. Thousands of acres of agricultural lands in the upper reaches of the USJR draw water from the river for irrigation and Lake Washington has been the primary municipal water supply source for the City of Melbourne for decades. The USJR is a potential source for additional water supplies. A number of water supply development projects are currently under consideration.

The primary purpose of this report is to present an estimate of the potential additional water supply yield, in addition to existing withdrawals, available from the St. Johns River (SJR) at or above State Road (SR) 50. The analyses described in this report considered additional water supply withdrawal at SR 50 for various selected withdrawal scenarios. It is recognized that water supply development within the USJR basin is likely to occur at multiple locations and design of any proposed additional water supply facility will require a Minimum Flows and Levels (MFLs) compliance analysis similar to the analysis presented herein.

The primary consideration in determining the water supply potential of the USJR is meeting MFLs established for different locations on the river. SJRWMD established MFLs for the SJR at SR 50 in the year 2007. If the current discharge conditions in the river are disturbed by actions such as diverting additional water for irrigation and/or drinking water supplies, water levels and discharges in the river will decline, and the established MFLs may not be met. Water supply potential of a river is the maximum quantity that could be diverted from the river without causing water levels or flows to fall below one or more of the established MFLs.

The investigation described in this report resulted in the determination of the potential additional water supply yield of the SJR at SR 50 using MFLs compliance as a constraint. Two data series were used in the analyses: 1) The United States Geological Survey (USGS) historic discharge data for 1933-2006, and 2) simulated data from the SJRWMD USJR Basin (USJRB) watershed model for Project Conditions 2004 (Rao 2004 and 2009, Appendix A). The SJRWMD USJRB model was essentially a simplified version of the well-known Stanford Watershed model (Crawford and Linsley 1966), with the runoff simulation procedure based on a watershed model introduced in 1976 by the Agricultural Research Service, U.S. Department of Agriculture (Williams and LaSeur 1976). The USGS historic data are primarily pre-project conditions data and thus do not reflect the USJRB project benefits that include augmentation of low flows and increased discharge volumes that result from curtailing discharge diversion to the Indian River Lagoon. The historic record includes historic water supply withdrawals including agricultural irrigation withdrawals and public water supply withdrawals.

The model, on the other hand, fully incorporates the project conditions as completed by 2004. The watershed model also includes existing (2004) water supply withdrawals; agricultural irrigation and withdrawals from Lake Washington (15.5 mgd) for the City of Melbourne's public supply system. Currently, SJRWMD is developing an HSPF model (Hydrologic Simulation Program FORTRAN) for the USJRB, with the project in its ultimate (2010) configuration, but the model development was not complete at the time this report was prepared.

Discharge diversions (DD) for water supply (at SR 50) are considered only when discharges in the river exceed certain minimum values (Minimum River Flow, MRF). Four MRFs are assumed for evaluation: MRF = 300, 200, 100, and 50 cfs. The range of MRFs assumed in this evaluation represents reasonable low flows to support ecologic preservation (HSW Engineering, Inc. 2006). Further, each MRF was evaluated for five DD values: DD = up to 30, 50, 70, 90, 110 cfs. The four MRF and the five DD values assumed for the evaluation gave rise to 20 scenarios. A few additional (special) scenarios were also evaluated and are described in the Methods I and II sections of this document. For a given MRF, the DD values given in the foregoing are maximum values. For example, if MRF = 300 cfs and DD = 90 cfs, but the actual river flow is 310 cfs, then the diverted discharge is only 10 cfs; a DD of 90 cfs would occur only when the actual river flow is equal to or greater than 390 cfs. Time series of discharge data reflecting a given MRF and a given DD (i.e., for a given scenario) were developed from the original (i.e., no diversion) USGS or model data by a FORTRAN program.

Four MFLs (discharges and stages) are set for SJR at SR 50: 1) Minimum frequent high (MFH); 2) Minimum average (MA); 3) Minimum frequent low (MFL), and; 4) Minimum infrequent low (MIL). Compliance with these MFLs is evaluated by standard statistical procedures only for discharges. MFLs compliance for stages is not evaluated because there is no satisfactory methodology to compute the time series of stage data that would reflect MRFs and DDs. Based on evaluations performed by SJRWMD (HSW Engineering, Inc. 2006, Mace 2006), withdrawals within the range of the MRFs considered in the evaluations described in this document would provide for adequate environmental protection during low-flow periods, meet recommended MFLs for the SJR at SR 50, and allow for development of water supplies from the river.

#### Potential water supply yield evaluation methods and results

Potential additional water supply yield of the SJR at SR 50 was determined by three methods.

**Method I and Results:** USGS 1933-2006 historic data were used in this method. Diversion of discharges was assumed to occur when river flows are above MRF, up to a maximum value of the DD for the scenario. Twenty scenarios were evaluated by this method and the results of MFLs compliance and the potential water supply yield are as follows:

| MRF (cfs) | Г  | Discharge | e for Div | ersion (cfs) | )          |
|-----------|----|-----------|-----------|--------------|------------|
|           | 30 | 50        | 70        | 90           | 110        |
| 300       | Y  | Y         | Y         | Y            | N(MA)      |
| 200       | Y  | Y         | Y         | N(MA)        | N(MA)      |
| 100       | Y  | Y         | Y         | N(MA)        | N(MA, MFL) |
| 50        | Y  | Y         | Y         | N(MA)        | N(MA, MFL) |

Table A. SJR at SR 50: Summary of MFLs compliance (Method I)

Y = All MFLs met; N = MFLs in the parentheses not met

Table B. SJR at SR 50: Potential water supply yield, mgd(Mean of diversion discharges for the period analyzed)

| MRF (cfs) | D    | ischarge | Diversi | ion (cfs) |      |
|-----------|------|----------|---------|-----------|------|
| · ·       | 30   | 50       | 70      | 90        | 110  |
| 300       | 14.2 | 23.8     | 33.0    | 42.1      | 51.1 |
| 200       | 15.7 | 26.0     | 36.0    | 45.9      | 55.6 |
| 100       | 17.4 | 28.6     | 39.7    | 50.5      | 61.2 |
| 50        | 18.5 | 30.4     | 42.0    | 53.4      | 64.6 |

The water supply yields shown in bold are infeasible because MFLs are not met for these scenarios.

Maximum yield by this method was 42.1 mgd (from the scenario with MRF = 300 cfs and DD = 90 cfs).

**Method II and results:** USGS 1933-2006 historic data were also used in this method, but discharge diversions were assumed to occur at two levels (tiers) of MRFs, that is, additional diversion was made assuming a second higher MRF. This method was applied to two scenarios, as described below.

```
Scenario II-1

Tier 1 discharge: If MRF > 300 cfs, DD = up to 90 cfs

Tier 2 Discharge: If MRF > 600 cfs, DD = 90 + up to 40 cfs

Example: If the river flow, Q = 610 cfs, DD = 90 + 10 = 100 cfs

If the river flow, Q = 650 cfs, DD = 90 + 40 = 130 cfs

Scenario II-2

Tier 1 discharge: If MRF > 50 cfs, DD = up to 70 cfs

Tier 2 Discharge: If MRF > 400 cfs, DD = 70 + up to 40 cfs (additional)
```

All of the MFLs were met for Scenario II-1, and the potential water supply yield for this scenario was 57.3 mgd. One of the MFLs, MA, was not met for Scenario II-2.

**Method III and results:** This method used the 1942-2001 simulated data for the USJRB Project Conditions 2004. The four borderline scenarios for which MFLs were not met by Method I (e.g., MRF = 300 cfs and DD = 110 cfs, Tables A) were re-evaluated by Method III. The MA was not met by Method I for these scenarios. With the project conditions simulated data, the MFLs were met for all of the four scenarios re-evaluated. The potential average yields for the four scenarios by Method III were as follows.

Scenario III-1: 56.2 mgd (MRF = 300 cfs; DD = 110 cfs) Scenario III-2: 49.8 mgd (MRF = 200 cfs; DD = 90 cfs) Scenario III-3: 54.0 mgd (MRF = 100 cfs; DD = 90 cfs) Scenario III-4: 56.1 mgd (MRF = 50 cfs; DD = 90 cfs)

Scenario III-1 produced the highest potential average yield of the four scenarios, and it also had some 'free-board' (i.e., MA would actually not be met at a higher DD). By an iterative process, DD was gradually increased, and it was determined that the limiting higher value of DD at which MA would be just met was 150 cfs. The potential additional average yield for this scenario (MRF = 300 cfs and DD = 150 cfs) was 75.5 mgd.

Maximum average yields by the three methods: Maximum additional average water yields obtained by the three methods were:

Method I: 42.1 mgd Method II: 57.3 mgd Method III: 75.5 mgd

The maximum of these three methods (Method III) resulted in about an 80% increased yield over Method I (from 42.1 mgd to 75.5 mgd), and about a 30% increased yield over Method II (from 57.3 mgd to 75.5 mgd). This result clearly demonstrated that the USJRB Project greatly enhances the water supply potential by its creation of water management and marsh conservation areas and the flow regulation through the project area. By applying a two-tier withdrawal method to discharges under project conditions (Method II with USGS data), water supply withdrawals under Method III can be further increased.

#### Discharge diversions during drought periods

Potential water supply yields of the SJR at SR 50 for different scenarios presented in the foregoing were the average yields for the periods of evaluation; 72 years for the USGS data and 60 years for the model data. Actual yields for individual years varied. For the periods of analysis, the annual yields varied from 2.4 to 58.1 mgd for Method I, 2.4 to 83.9 mgd for Method II, and 8.0 to 96.9 mgd for Method III. Because of the MRF constraint, water for diversion would not be available for several continuous days during low flow periods. The present analyses showed, if a drought similar to the extreme historic drought of 1980-1982 occurred, water for diversion would not be available for a

continuous period of almost 23 months depending upon the magnitude of the MRF selected for design. There were 12 other drought years during which no water diversion would be possible for continuous periods of 4 to 8 months. Thus, even though the USJRB project greatly enhances the water supply potential of the SJR at SR 50, the increase was only in average volumes, but does not provide higher discharges during the drought conditions.

The drought characteristics of the river and the need to meet MFLs at SR 50 have important implications for water supply facilities design. Because the proposed withdrawals would be made only when river flows exceed certain minimum discharges (i.e., MRFs), water available for diversion would be limited during some drought periods and the SJR becomes an unreliable source under these conditions. Reliability must be provided by raw water or treated water storage, or by integrated development with other more reliable sources of supply including groundwater.

### Conclusions

The following conclusions were reached based on data evaluations presented in this report.

- 1. Average additional potential water supply yields of the SJR at SR 50 based on MFLs compliance as a constraint are: a) 42.1 mgd based on the historic USGS discharge data (1933-2006), with diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs; b) 57.3 mgd based on the historic USGS discharge data (1933-2006), with diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs, and additional diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs, and additional diversion discharges up to a maximum of 40 cfs when river flows exceed 600 cfs, and; c) 75.5 mgd based on the 1942-2001 simulated data for the USRB Project Conditions 2004, with diversion discharges up to a maximum of 150 cfs when river flows exceed 300 cfs. This yield could be further increased by additional diversion when river flows exceed 600 cfs.
- 2. Yearly water supply yield of the SJR at SR 50 can vary widely due to variation of annual/seasonal rainfall. Typically, the annual yield ranges for the three average yields given in the foregoing (i.e., Cases a, b, and c) are, 2.4 to 58.1 mgd, 2.4 to 83.9 mgd, and 8.0 to 96.9 mgd, respectively.
- 3. No water for diversion would be available for prolonged periods (several months to years) during severe droughts. This condition occurs because water supply discharges are diverted from the SJR only when river flows exceed certain minimum discharge (e.g., 300 cfs), and the river flow is below this minimum during severe droughts for prolonged periods. Therefore, the MRF will be an important water supply facilities design parameter. If the MRF is not maintained, three of the MFLs, MA, MFL, and MIL might not be met.
- 4. It appears, the USJRB project would increase the potential water supply yield of the SJR at SR 50 by about 80% over the pre-project conditions (42.1 to 75.5 mgd) because of low flow augmentation and other water management practices

currently in place as a result of USJRB project. However, because of the MRF requirements to support ecological preservation, no increase in water supply withdrawals is possible during some drought conditions (i.e., water available for diversion would be limited during some drought periods because the proposed withdrawals would be made only when river flows exceed certain minimum discharges).

# CONTENTS

| Executive Summary                                                                                   | iii |
|-----------------------------------------------------------------------------------------------------|-----|
| List of Figures                                                                                     | xi  |
| List of Tables                                                                                      | xix |
| INTRODUCTION                                                                                        | 1   |
| MFLs FOR THE ST. JOHNS RIVER AT SR 50                                                               | 4   |
| EVALUATION OF MFLs FOR THE ST. JOHNS RIVER AT SR 50 –<br>THE PROCEDURES                             | 5   |
| POTENTIAL WATER SUPPLY YIELD DETERMINATION: DISCHARGE<br>DIVERSION SCENARIOS AND MFLs EVALUATIONS   |     |
| SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS                                                           | 25  |
| References                                                                                          |     |
| Appendix A – Rao's USJRB Watershed Model: A brief description                                       |     |
| Appendix I – MFLs evaluations for the St. Johns River at the SR 50 Bridge 1933-2005 USGS Discharges | 70  |
| Appendix II – MFLs graphs for the St. Johns River at the SR 50 Bridge<br>1933-2005 USGS Stages      |     |
| Appendix III – MFLs analysis to determine absolute Minimum River Flow                               |     |
| Appendix A5 - MFLs analysis for Scenario A5                                                         |     |
| Appendix A4 - MFLs analysis for Scenario A4                                                         | 103 |
| Appendix B5 - MFLs analysis for Scenario B5                                                         | 109 |
| Appendix B4 - MFLs analysis for Scenario B4                                                         |     |
| Appendix B3 - MFLs analysis for Scenario B3                                                         |     |
| Appendix C5 - MFLs analysis for Scenario C5                                                         | 123 |

| Appendix C4 - MFLs analysis for Scenario C4   | 129 |
|-----------------------------------------------|-----|
| Appendix C3 - MFLs analysis for Scenario C3   | 135 |
| Appendix D5 - MFLs analysis for Scenario D5   | 137 |
| Appendix D4 - MFLs analysis for Scenario D4   | 143 |
| Appendix D3 - MFLs analysis for Scenario D3   | 149 |
| Appendix A4A - MFLs analysis for Scenario A4A | 151 |
| Appendix D3A - MFLs analysis for Scenario D3A | 157 |
| Appendix A5A - MFLs analysis for Scenario A5A | 163 |
| Appendix B4A - MFLs analysis for Scenario B4A | 169 |
| Appendix C4A - MFLs analysis for Scenario C4A | 175 |
| Appendix D4A - MFLs analysis for Scenario D4A | 181 |
| Appendix A6 - MFLs analysis for Scenario A6   | 187 |

### **FIGURES**

| 1.  | Major surface water basins in the St. Johns River Water Management District 2                                  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 2.  | The Upper St. Johns River Basin and its surface water planning units                                           |
| 3.  | St. Johns River near Christmas – Discharge hydrograph                                                          |
| 4.  | St. Johns River near Christmas – Discharge-duration curve                                                      |
| 5.  | St. Johns River near Christmas – Stage hydrograph                                                              |
| 6.  | St. Johns River near Christmas - Stage-duration curve                                                          |
| 7.  | The North Atlantic Ocean                                                                                       |
| 8.  | North Atlantic Sea Surface Temperatures and NE Florida Index Rainfall                                          |
| 9.  | North Atlantic Sea Surface Temperatures and NE Florida Index Rainfall –<br>Wet Season                          |
| 10. | North Atlantic SSTs and discharges for the St. Johns River near Christmas 40                                   |
| 11. | St. Johns River near Christmas – Mass curve of discharges                                                      |
| 12. | St. Johns River near Christmas – Hydrograph of annual mean discharges<br>(USGS Data: 1934-2005 Calendar Years) |
| 13. | St. Johns River near Christmas – Hydrograph of annual mean discharges<br>(USGS Data: 1934-2005 Water Years)    |
| 14. | The Upper St. Johns River Basin Project Area                                                                   |
| A-  | 1. Comparison of stage-duration curves: Pre-project conditions vs. USGS                                        |
| A-2 | 2. Comparison of stage-duration curves: Pre-project conditions vs. USGS (60 to 100% range)                     |
| A-  | 3. Comparison of stage-duration curves: USGS, Pre-project and Project<br>conditions                            |
| A   | 4. Comparison of stage-duration curves: USGS, Pre-project and Project conditions                               |
| A-  | 5. Comparison of discharge-duration curves: Pre-project conditions vs. USGS 54                                 |

| A-6. Comparison of discharge-duration curves: Pre-project conditions vs. USGS (60 to 100% range)       |
|--------------------------------------------------------------------------------------------------------|
| A-7. Comparison of discharge-duration curves: USGS, Pre-project and Project conditions                 |
| A-8. Comparison of discharge-duration curves: USGS, Pre-project and Project conditions (60-100% range) |
| A-9. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1942-1949)         |
| A-10. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1950-1958)        |
| A-11. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1959-1970)        |
| A-12. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1971-1982)        |
| A-13. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1983-1993)        |
| A-14. Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1994-2001)        |
| A-15. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1942-1949)            |
| A-16. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1950-1958)            |
| A-17. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1959-1970)            |
| A-18. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1971-1982)            |
| A-19. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1983-1993)            |
| A-20. Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1994-2001)            |
|                                                                                                        |

| I – 1. Flow duration                                                               | 79  |
|------------------------------------------------------------------------------------|-----|
| I-2. MFLs evaluation for the Minimum Frequent High discharge                       | 80  |
| I-3. MFLs evaluation for the Minimum Average discharge                             | 81  |
| I-4. MFLs evaluation for the Minimum Frequent Low discharge                        | 82  |
| I-5. MFLs evaluation for the Minimum Infrequent Low discharge                      | 83  |
| II – 1. Stage duration                                                             | 85  |
| II – 2. MFLs evaluation for the Minimum Frequent High level                        | 86  |
| II – 3. MFLs evaluation for the Minimum Average level                              | 87  |
| II – 4. MFLs evaluation for the Minimum Frequent Low level                         | 88  |
| II – 5. MFLs evaluation for the Minimum Infrequent Low level                       | 89  |
| III – 1. Flow duration                                                             | 91  |
| III – 2. MFLs evaluation for the Minimum Frequent High discharge                   | 92  |
| III – 3. MFLs evaluation for the Minimum Average discharge                         | 93  |
| III – 4. MFLs evaluation for the Minimum Frequent Low discharge                    | 94  |
| III – 5. MFLs evaluation for the Minimum Infrequent Low discharge<br>(MRF = 0 cfs) | 95  |
| III – 6. MFLs evaluation for the Minimum Infrequent Low discharge<br>(MRF =45 cfs) | 96  |
| A5 – 1. Flow duration                                                              | 98  |
| A5 – 2. MFLs evaluation for the Minimum Frequent High discharge                    | 99  |
| A5 – 3. MFLs evaluation for the Minimum Average discharge                          | 100 |
| A5 – 4. MFLs evaluation for the Minimum Frequent Low discharge                     | 101 |
| A5 – 5. MFLs evaluation for the Minimum Infrequent Low discharge                   | 102 |
| A4 – 1. Flow duration                                                              | 104 |

| A4 – 2. | MFLs evaluation for the Minimum Frequent High discharge105  |
|---------|-------------------------------------------------------------|
| A4 – 3. | MFLs evaluation for the Minimum Average discharge106        |
| A4 – 4. | MFLs evaluation for the Minimum Frequent Low discharge107   |
| A4 – 5. | MFLs evaluation for the Minimum Infrequent Low discharge108 |
| B5 – 1. | Flow duration                                               |
| B5 – 2. | MFLs evaluation for the Minimum Frequent High discharge111  |
| B5 – 3. | MFLs evaluation for the Minimum Average discharge           |
| B5 – 4. | MFLs evaluation for the Minimum Frequent Low discharge113   |
| B5 – 5. | MFLs evaluation for the Minimum Infrequent Low discharge114 |
| B4 – 1. | Flow duration                                               |
| B4 – 2. | MFLs evaluation for the Minimum Frequent High discharge117  |
| B4 – 3. | MFLs evaluation for the Minimum Average discharge           |
| B4 – 4. | MFLs evaluation for the Minimum Frequent Low discharge119   |
| B4 – 5. | MFLs evaluation for the Minimum Infrequent Low discharge120 |
| B3 – 1. | MFLs evaluation for the Minimum Average discharge           |
| C5 – 1. | Flow duration                                               |
| C5 – 2. | MFLs evaluation for the Minimum Frequent High discharge125  |
| C5 – 3. | MFLs evaluation for the Minimum Average discharge           |
| C5 – 4. | MFLs evaluation for the Minimum Frequent Low discharge      |
| C5 – 5. | MFLs evaluation for the Minimum Infrequent Low discharge128 |
| C4 – 1. | Flow duration                                               |
| C4 – 2. | MFLs evaluation for the Minimum Frequent High discharge131  |
| C4 – 3. | MFLs evaluation for the Minimum Average discharge           |

| C4 – 4. MFLs evaluation for the Minimum Frequent Low discharge       |
|----------------------------------------------------------------------|
| C4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge134  |
| C3 – 1. MFLs evaluation for the Minimum Average discharge            |
| D5 – 1. Flow duration                                                |
| D5 – 2. MFLs evaluation for the Minimum Frequent High discharge      |
| D5 – 3. MFLs evaluation for the Minimum Average discharge140         |
| D5 – 4. MFLs evaluation for the Minimum Frequent Low discharge141    |
| D5 – 5. MFLs evaluation for the Minimum Infrequent Low discharge142  |
| D4 – 1. Flow duration                                                |
| D4 – 2. MFLs evaluation for the Minimum Frequent High discharge      |
| D4 – 3. MFLs evaluation for the Minimum Average discharge146         |
| D4 – 4. MFLs evaluation for the Minimum Frequent Low discharge147    |
| D4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge148  |
| D3 – 1. MFLs evaluation for the Minimum Average discharge150         |
| A4A – 1. Flow duration                                               |
| A4A – 2. MFLs evaluation for the Minimum Frequent High discharge153  |
| A4A – 3. MFLs evaluation for the Minimum Average discharge           |
| A4A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |
| A4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge156 |
| D3A – 1. Flow duration                                               |
| D3A – 2. MFLs evaluation for the Minimum Frequent High discharge159  |
| D3A – 3. MFLs evaluation for the Minimum Average discharge           |
| D3A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |

| D3A – 5. MFLs evaluation for the Minimum Infrequent Low discharge162 |
|----------------------------------------------------------------------|
| A5A – 1. Flow duration164                                            |
| A5A – 2. MFLs evaluation for the Minimum Frequent High discharge165  |
| A5A – 3. MFLs evaluation for the Minimum Average discharge           |
| A5A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |
| A5A – 5. MFLs evaluation for the Minimum Infrequent Low discharge168 |
| B4A – 1. Flow duration                                               |
| B4A – 2. MFLs evaluation for the Minimum Frequent High discharge171  |
| B4A – 3. MFLs evaluation for the Minimum Average discharge           |
| B4A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |
| B4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge174 |
| C4A – 1. Flow duration                                               |
| C4A – 2. MFLs evaluation for the Minimum Frequent High discharge     |
| C4A – 3. MFLs evaluation for the Minimum Average discharge           |
| C4A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |
| C4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge180 |
| D4A – 1. Flow duration                                               |
| D4A – 2. MFLs evaluation for the Minimum Frequent High discharge     |
| D4A – 3. MFLs evaluation for the Minimum Average discharge           |
| D4A – 4. MFLs evaluation for the Minimum Frequent Low discharge      |
| D4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge    |
| A6 – 1. Flow duration                                                |
| A6 – 2. MFLs evaluation for the Minimum Frequent High discharge      |

#### St. Johns River Water Management District SJR at SR 50: Potential water supply yield

| A6 – 3. | MFLs evaluation for the Minimum Average discharge19      | 0 |
|---------|----------------------------------------------------------|---|
| A6 – 4. | MFLs evaluation for the Minimum Frequent Low discharge19 | 1 |
| A6 – 5. | MFLs evaluation for the Minimum Infrequent Low discharge | 2 |

## **TABLES**

| 1.  | MFLs for the St. Johns River at SR 50                                  |
|-----|------------------------------------------------------------------------|
| 2.  | SJR at SR 50: Scenarios for MFLs evaluation10                          |
| 3.  | SJR at SR 50: Summary of MFLs compliance (Method I) 13                 |
| 4.  | SJR at SR 50: Potential water supply yield, mgd (Method I)13           |
| 5.  | SJR near Christmas: Diversion statistics – (Scenario A4 Annual) 16     |
| 6.  | SJR near Christmas: Diversion statistics – (Scenario A4 Monthly)       |
| 7.  | SJR near Christmas: Diversion statistics – (Scenario A4 Discharges) 20 |
| 8.  | SJR near Christmas: Diversion statistics – (Scenario A6 Annual)        |
| 9.  | SJR near Christmas: Diversion statistics – (Scenario A6 Monthly) 23    |
| 10. | SJR near Christmas: Diversion statistics – (Scenario A6 Discharges)    |

### **INTRODUCTION**

The Upper St. Johns River (USJR), located in East Central Florida in the St. Johns River Water Management District (SJRWMD) (Figures 1 and 2), is a major source of water supply for irrigation and drinking water. Thousands of acres of agricultural lands in the upper reaches of the USJR (Planning Units 6A, 6B, 6C, and 6F, Figure 2) draw water from the river for irrigation and Lake Washington has been the primary municipal water supply source for the City of Melbourne for decades. The USJR is a potential source for additional water supplies. A number of water supply development projects are currently under consideration in Planning Units 6G and 6H (Figure 2).

The primary consideration in determining water supply potential of the USJR is meeting Minimum Flows and Levels (MFLs) established for different locations on the river. SJRWMD established MFLs for four locations on the St. Johns River (SJR) (Chapter 40C-8, Florida Administrative Code, [*F.A.C.*]). These locations are: 1) Lake Washington; 2) SJR 1.5 miles downstream of Lake Washington weir, 3) SJR at State Road (SR) 50 (Figure 2); and 4) SJR at SR 44 near DeLand, Volusia County (Figure 1). If the current discharge conditions in the river are disturbed, like diverting additional water for irrigation and/or drinking water supplies, water levels and discharges in the river decline, and the established MFLs may not be met. Water supply potential of a river is the maximum quantity that could be diverted from the river without causing water levels or flows to fall below one or more of the established MFLs.

This document reports on data analysis that was performed to estimate the potential additional water supply yield, in addition to existing withdrawals, available from the St. Johns River (SJR) at or above State Road (SR) 50. Two data series are used in the analyses: 1) The United States Geological Survey (USGS) historic discharge data for 1933-2006, and 2) 1942- 2001 model simulated data. This report presents:

- A brief description of MFLs evaluation procedures
- Potential water supply yield methods and MFLs evaluations for a number of scenarios considered
- Summary of results and conclusions



Figure 1. Major surface water basins in the St. Johns River Water Management District



Figure 2. The Upper St. Johns River Basin and its surface water planning units

### MFLs FOR THE ST. JOHNS RIVER AT SR 50

Chapter 40C-8, *F.A.C.*, establishes minimum flows and/or levels for surface watercourses and minimum levels for groundwater at specific locations within SJRWMD. The District implemented the MFLs program in the 1980s and it typically defines three to five MFLs for each system: *minimum infrequent high (MIH), minimum frequent high (MFH), minimum average (MA), minimum frequent low (MFL), and minimum infrequent low (MIL) flows and/or water levels.* Four MFLs have been established for the St. Johns River at SR 50 (Table 1; Mace 2007). Detailed definitions for MFLs and further explanation of the MFLs can be found in Chapter 40C-8, *F.A.C.* 

| MFL Category                                                     | Level<br>(ft NGVD) | Flow<br>(cfs)       | Duration<br>(days)  | Return<br>interval<br>(T)<br>(years) |
|------------------------------------------------------------------|--------------------|---------------------|---------------------|--------------------------------------|
| Minimum Frequent High<br>Minimum Average<br>Minimum Frequent Low | 8.1<br>5.9<br>4.2  | 1,950<br>580<br>140 | ≥30<br>≤180<br>≤120 |                                      |
| Minimum Infrequent Low                                           | 2.7                | 43                  | <u>&lt;</u> 60      | <u>≥</u> 50                          |

Table 1. MFLs for the St. Johns River at SR 50

The details of the procedures used in determining the foregoing MFLs are described in Mace (2007).

The terms "Duration" and "Return interval" appearing in Table 1 are defined as follows for the purpose of this report.

"Duration" means the amount of time in consecutive days.

"Return interval" means the average length of time, in years, between two inundation events or dewatering events of equal or greater magnitude, over the long term.

## **EVALUATION OF MFLs FOR THE ST. JOHNS RIVER AT SR 50 – THE PROCEDURES**

To verify whether the established MFLs are being met, the observed (i.e., gauged) or simulated long-term stage and discharge data for water bodies are analyzed by statistical procedures. SJRWMD staff developed graphical procedures for the evaluation of MFLs. The results of these procedures indicate whether or not water levels or flows will fall below MFLs. The stage and discharge data gauged by the USGS since October 1933 (i.e., Water Year, WY 1934), and model simulated data were used in this report for computing various hydrologic statistics and comparing them with the MFLs for the St. Johns River at SR 50. This section describes and illustrates the MFLs evaluation procedures using the current USGS data, that is, without discharge diversions.

### The MFLs evaluation procedures

The MFLs compliance was evaluated graphically and the evaluation procedures consisted broadly of two steps: a) a visual comparison of data (daily stages and discharges, and duration curves) with the established MFLs, and b) by probability (frequency) plots of annual series of data for specified durations. The following sections illustrate these procedures through analysis of the 1934-2005 USGS WY data without considering discharge diversions for water supply.

Visual comparison of stage/discharge data with MFLs. This comparison is made by plotting the established MFLs values on stage/discharge hydrographs and the graphs of duration curves (Figures 3-6). The long-term hydrographs (Figures 3 and 5) indicate the MFLs compliance during different time periods, and the duration curves (Figures 4 and 6) indicate the overall MFLs compliance.

Probability plots of annual series of data. To evaluate whether MFLs meet the established return intervals, the annual series of data for the desired duration are plotted on probability paper and the plotted data are examined at the return period (T) of interest. The procedure consists of: i) arranging data in descending order of magnitude, ii) assigning a plotting position for each data value, and iii) plotting the data on probability paper. The plotting position (PP) for each data value is computed by the Weibull formula, which is the most commonly used formula for these analyses (Chow 1964). If N is the total number of values in a data sample, and m is the rank of the data value, then the Weibull formula can be written as, PP = m/(N + 1) for high stages/discharges; for low stages/discharges, the data would plot in an opposite order of high values and the plotting position formula would become, PP = (N - m + 1)/(N + 1). PP indicates annual exceedance probability for high stages/discharges, and annual non-exceedance probability for low stages/discharges.

Tables I-1 through I-4 (Appendix I) illustrate the steps involved in developing data for probability plots. Tables I-1 through I-3 are generated first (by FORTRAN programs); these are the data series for different durations. Then the data in Table I-4, the Weibull plotting positions and the required data for MFLs plotting, are generated (also by FORTRAN programs). Further details of these tables are as follows.

Table I-1 gives the highest discharges exceeded continuously for different durations for the 72 years of data used in the evaluation. A reference year June 1 through May 31 was used in evaluating these data series because this reference year includes the wet period, generally June through November. The 30-day duration data were used from this table for the MFH evaluation.

Table I-2 gives the lowest discharges not exceeded continuously for different durations for the 72 years of data used in the evaluation. A reference year October 1 through September 30 was used in evaluating these data series because this reference year includes the dry period, generally November/December through May. The 60-day and 120-day duration data were used from this table for MIL, and MFL evaluations, respectively.

Table I-3 gives the lowest mean discharges for different durations for the 72 years of data used in the evaluation. A reference year October 1 through September 30 was used in evaluating these data series because this reference year includes the dry period, generally November/December through May. The 183-day duration data were used from this table for MA evaluation.

Table I-4 gives data for various MFLs arranged in descending order, and the Weibull plotting positions.

Appendixes I and II present the MFLs graphs for discharges and stages, respectively. These graphs were generated by Grapher 6 software (Golden Software, Inc. 2005). These figures have three basic graphical features that facilitate MFLs evaluation: i) a horizontal line indicating the established minimum level/discharge value, ii) data points representing the annual series of data, and iii) a vertical band that corresponds to the probability of the set T through which the data should plot to meet the established MFLs. The second and third features are further explained in the following.

The data series plotted. Table 1 (see Page 4) gives durations and return intervals for the MFLs for the SJR at SR 50, which should be met to preserve the current ecological conditions of the system. The durations that are to be met are limiting durations (data for other durations also can be found in Tables I-1 through I-3, Appendix I); lower limit for the MFH and upper limits for the MA, MFL, and MIL. Annual series of data (arranged in order) corresponding to these limiting durations can be found in Table I-4 (Appendix I). Data for the limiting durations are plotted in developing MFLs graphs (Appendixes I and II).

**The probability band:** The probability plots in Appendixes I and II show a probability band running upward from the horizontal line of the minimum level/discharge. Like

durations, the Ts shown in Table 1 also are limiting values; upper limit for MFH, and lower limits for the MA, MFL, and MIL. One side of the vertical bands shown in the figures corresponds to the limiting Ts shown in Table 1 and a desirable range. If data plot through the vertical band, it is an indication that the data have a T satisfying the set limit for T, and thus the MFLs would be met.

The probability plots provide additional information such as, a) the actual T of data for the set duration. This is the point where a line drawn through the plotted data intersects the horizontal line plot of the minimum stage/discharge, and b) actual duration of data with the set T. For example, in the figure for the MFH (Figure I - 2, Appendix I), a line drawn through the plotted data points (30-day duration time series) intersects the MFH line of 1,950 cfs at about 73% exceedance probability level, or T = 1.37 years, which is the actual T; this T is less than the set T of 2 years for the MFH (Table 1). Further, the data intersect the vertical probability band at about 2,100 cfs, which means there is some 'free board,' that is, the MFH could be met even at lower discharges.

### Data adequacy

The MFL evaluations in this report were based on 72 years of streamflow data covering the period October 1933 – May 2006. This is a sufficiently long period of data for performing generalized evaluations. However, for satisfactory evaluation of MFLs, it is necessary to ensure that the data are well balanced in terms of prolonged wet and dry periods. This can be done by a plot of smoothed data (i.e., 5 or 10-year moving averages, by detrending data, if necessary), which could reveal the wet and dry cycles of discharges. In addition, cycles in sea surface temperatures (SSTs) also might be useful for this evaluation, which is briefly discussed here.

During the last two decades, research has indicated a possible relation between the SSTs and rainfall/streamflow occurrences in various parts of the world. Enfield et al. (2001) showed that the warm and cool phases of the North Atlantic Multidecadal Oscillation (AMO) influence the rainfall occurrences in the United States. For south Florida, they showed that the warm and cool phases of the AMO coincided with higher and lower rainfall/streamflow phases, respectively.

AMO is a graph of the10-year moving averages of detrended SST data averaged over the entire north Atlantic; the north Atlantic region lying between the Americas and Europe/west Africa, from the equator to 70° N Latitude (Figure 7). However, two of the required conditions for formation of tropical storms and hurricanes over the ocean are: 1) maximum SSTs should exceed 26.5° C, and 2) the oceanic region should be away from the equator at least by 300 miles. By analyzing the 1854-2005 north Atlantic SST data, Rao delineated the region satisfying these conditions and named it the North Atlantic Warm Region (NAWR, Figure 7; Rao 2009); NAWR is found to be much less than 50% of the entire north Atlantic. Whether a Multidecadal Oscillation (MO) developed specifically for NAWR would have a better correlation with rainfall/streamflow occurrences in northeast Florida has been investigated by Rao (2009). MOs for both North Atlantic and NAWR are developed using the currently available SST data (i.e., 1854-2005) and compared to the North East Florida

Index Rainfall (NEFIR). AMO data are available directly from a NOAA website (updated monthly), but the NAWR data were developed by Rao by averaging SSTs specifically over the NAWR. For this purpose, global monthly SST data available at 2x2 Lat/Long grid from a NOAA website from 1854 to present (updated monthly) are used.

Rainfall records in northeast Florida began in 1867 for Jacksonville, and the network grew to 18 stations by 1902. NEFIR is an arithmetic average of rainfall from these stations as the network grew, and it included 24 stations by 1942. The NAWR MO and AMO differed during the first warm and cool phases of MO, and NEFIR better agreed with the NAWR MO (Figure 8). The latter warm and cool phases of the AMO and NAWR MO are more-or-less concurrent. In general, the high and low rainfall phases of NEFIR broadly followed the MO, except that the second higher rainfall phase did not exactly coincide with second warm MO. Figure 9 is developed for the wet season (June-November), and the high and low rainfall phases appear to be better defined for the wet season.

Figure 10 compares the SR 50 discharge data with MO. The 10-year moving averages of discharges for the SJR at SR 50 reveal rather prolonged wet and dry phases during its record period. When the records began, the discharges were low and they are now in a recovering phase after a low discharge phase. Furthermore, in general, the high and low discharge phases matched with the MO warm and cool phases, respectively.

The 10-year moving averages graph of the USJR discharges at SR 50, as seen in Figure 10, is quite well balanced in terms of wet and dry phases, and thus the record may be deemed adequate for the MFLs analyses. Figures 8-10 can play an important role in choosing a simulation period when the streamflow data are to be generated by models. If proper balance is not given to the wet and dry phases of rainfall, the data generated may be inadvertently biased. In the case of SR 50 MFLs, a sensitivity analysis may be performed choosing different periods for analysis, and the effect of the wet and dry cycles noticed in Figure 10 may be determined.

## **POTENTIAL WATER SUPPLY YIELD DETERMINATION: DISCHARGE DIVERSION SCENARIOS AND MFLs EVALUATIONS**

Two data series were available to perform the various analyses for determining the potential water supply yield of the St. Johns River at SR 50: 1) USGS historic discharge data for 1933-2006, and 2) model simulated data for 1942-2001. In the late 1970s, the SJRWMD and the U.S. Army Corps of Engineers (USACE) commenced a massive flood control and environmental restoration project for the USJR Basin (USJRB). Construction of the project, which began in 1988, was mostly completed by the end of 2001 at a cost of about \$200 million. The project is designed to reduce peak flows and augment low flows in the river, and also partially recover the discharge diversions that have been taking place to the Indian River Lagoon from the USJRB. The USGS long-term data does not reflect the project conditions and project benefits (i.e., the modified discharges resulting from the project operation). Long-term data reflecting the project conditions were only available through model simulation. In the late 1970s, SJRWMD developed a continuous hydrologic simulation model for the USJRB for project planning, design, and other evaluations. It was essentially a simplified version of the well-known Stanford Watershed model (Crawford and Linsley 1966), with the runoff simulation procedure based on a watershed model introduced in 1976 by the Agricultural Research Service (Williams and LaSeur 1976). Dr. C. Charles Tai, the then Director of the Division Engineering, SJRWMD, developed an initial version of the model for the pre-project conditions (Tai 1978; Suphunvorranop and Tai. 1982). The task of developing the full model was assigned to Rao (the author of this report). Rao made further improvements to the pre-project conditions model by introducing additional model concepts, developing detailed input data, and by detailed model calibration; Rao also developed a model for the USJRB Project conditions. The USACE completed a general design memorandum (GDM) for the project in 1984 using the SJRWMD model results for developing the project environmental impact statement (EIS).

The SJRWMD model was used for several basin evaluations during 1985-2000: environmental, flood control, MFLs development and water supply (Rao 1985; Rao and Tai 1987; Rao, Borah, and Miller 1995, Miller et al. 1996a; Miller et al. 1996b, and; Hall and Borah 1998). The 1980s pre-project and project conditions models were fully updated during 2000-2005 to incorporate the latest watershed data available from the highly sophisticated SJRWMD GIS database, and to include the project as completed by 2004 (Rao 2004 and 2009). Both updated models were thoroughly calibrated. The 1980s project conditions model was only a design model and was not calibrated because the prototype data with the project in place was not yet available. The model was calibrated only in 2002 using the1994-2001 basin data (Rao 2004). SJRWMD used the updated model for two major studies in 2003: 1) Development of an environmental water management plan for the USJRB Project (Miller, Tremwel and Minno 2003), and 2) Development of an EIS for the Three Forks Marsh Conservation Area in the USJRB by the USACE (USACE 2003). This model, with some additional updates (Rao 2009), was used for the present study. Appendix A presents a brief description of the model with model results for the SJR at SR 50. The model results showed that the USJRB project would increase low discharges at SR 50 (below 1,250 cfs) by up to 150 cfs, and stages below 7.50 ft NGVD by up to 0.6 ft.

Currently, SJRWMD is developing an HSPF model (Hydrological Simulation Program – FORTRAN, Bicknell et al. 2001) for the USJRB that incorporates the project in its ultimate (2010) configuration, but the model development was not complete at the time of preparation of this report.

#### **Discharge diversion scenarios**

The MFLs for SJR at SR50 were used as environmental constraints to evaluate water supply yield in this reach of the USJRB. Four 'minimum river flows (MRF)' and five discharge diversions (DD) were assumed. The four MRFs were: 300, 200, 100, and 50 cfs. The five DDs were: 30, 50, 70, 90, and 110 cfs. The range of MRFs assumed represents reasonable low flows to support ecologic preservation (HSW Engineering, Inc. 2006). The four MRFs and the five DDs give rise to 20 scenarios for evaluation (Table 2). A special case, designated as Scenario A6, was also considered and it was evaluated only for the project conditions data.

The historic gauged USGS data and the USJRB model simulated data represent existing hydrologic conditions, with no water supply diversions at SR 50. Both data sets, however, do include existing upstream discharge withdrawals. A FORTRAN program was developed to derive the time series of modified discharge data for each scenario reflecting the corresponding MRF and DD, and for producing some DD statistics. This MFLs evaluation only analyzed discharge data because there was no satisfactory methodology to compute the time series of stage data that reflects the MRFs and DDs.

| MRF (cfs) | Discharge Diversion (cfs) |    |    |    |     |     |  |
|-----------|---------------------------|----|----|----|-----|-----|--|
|           | 30                        | 50 | 70 | 90 | 110 | 150 |  |
| 300       | A1                        | A2 | A3 | A4 | A5  | A6  |  |
| 200       | B1                        | B2 | B3 | B4 | B5  |     |  |
| 100       | C1                        | C2 | C3 | C4 | C5  |     |  |
| 50        | D1                        | D2 | D3 | D4 | D5  |     |  |

Table 2. SJR at SR 50: Scenarios for MFLs evaluation

The following criterion was used to evaluate MFLs for different scenarios. For a given MRF, the scenario with the highest DD was evaluated first (e.g., Scenario A5 for MRF = 300 cfs). If any of the MFLs were not met, then the scenario with the next lower DD was

evaluated (i.e., A4, etc.). MFLs evaluations were stopped at the scenario where all of the MFLs were met, because other scenarios with lower DDs would also be met.

#### Potential water supply yield evaluation methods

Potential water supply yield of the St. Johns River at SR 50 was determined by three methods. These are:

**Method I:** Evaluation with the USGS 1933-2006 historic data - Diversion after meeting the MRF. In this method, diversion of discharge was assumed to occur after meeting the MRF, up to a maximum of the DD for the scenario.

**Method II:** Evaluation with the USGS 1933-2006 historic data - Two-tier diversion. In this method, discharge diversions were assumed to occur at two levels of MRFs.

**Method III:** Evaluation with the 1942-2001 simulated data - Diversion after meeting the MRF. These data reflect the minimum flow augmentation and the other benefits from the USJRB project.

#### Assumptions

**MRF.** MRF is the quantity of discharge that should always be maintained in the river, unless the river flow (Q) naturally declines due to drought conditions. For a given scenario, on a given day:

- 1. Full diversion occurs only if Q was greater than or equal to (MRF + DD).
- 2. No diversion occurs if Q was less than or equal to MRF.
- 3. If Q was less than (MRF + DD), the discharge available for diversion equals Q minus MRF.

The foregoing assumptions were incorporated into the FORTRAN program that developed time series data for each scenario.

**Data series for MA, MFL, and MIL evaluations.** The USGS water years comprised the reference years for developing these time series. Thus, Oct 1933 to Sept 2005 data (72 years) were used in these analyses by Methods I and II. For Method III, the October-December 1941 data were composed from the nearest daily data (i.e., January-March 1942), and Water Years 1942-2001 (60 years) data were used.

**Data series for MFH evaluations.** The reference year for these time series was June – May. Thus, June 1934 – May 2006 data (72 years) were used in these analyses by Methods I and II. For Method III, June 1942-May 2001 (59 years) data were used.

**Data series for developing discharge-duration graphs.** 1934-2005 calendar years data (72 years) were used in Methods I and II. For Method III, the 1942-2001 calendar years data (60 years) were used.

**Upstream diversions.** The discharges gauged by the USGS at SR 50 on the St. Johns River reflect flows after meeting the historic upstream diversions (i.e., agricultural and municipal withdrawals discussed earlier). Therefore, the present analyses by Methods I and II would not reflect any future revisions in the upstream withdrawals. The project conditions model assumed various withdrawals for agricultural irrigation upstream, and a 15.5 mgd withdrawal from Lake Washington.

**Data homogeneity.** During the 1933-2006 USGS data period, land use changes including urban development and additional agricultural developments occurred in the USJRB. Further, construction of the Upper St. Johns River Basin Project that began in the late 1980s, affected the basin boundary and flow conditions in Planning Units 6A through 6F (Figure 2). The later few years of the USGS discharge data may have been affected somewhat by the currently completed project. To examine whether the historic land use changes and the USJRB project as thus far completed have significantly affected the flow conditions of the SJR at SR 50, a mass curve of discharges was plotted (Figure 11). The mass curve did not show any continuous shifts, and the fluctuations about the trendline drawn through the mass curve generally conformed to the fluctuations in the10-year moving discharge averages (Figure 10). The hydrographs of annual discharges (calendar year and the USGS Water Years) did not show a major trend shift in the overall flow condition (i.e., the discharges neither increased nor decreased with time; Figures 11 - 13). The historic land use changes did not significantly affect the St. Johns River discharge volumes at SR 50; the post-project conditions data is too short to exhibit project effects (Figures 11 - 13). From these results, it was concluded that the USGS data were homogeneous for the present analyses. The simulated data used in Method III, reflecting the project conditions, was homogeneous because the model assumed the same basin conditions (i.e., 2004 conditions) for the entire simulation period (i.e., 1942-2001).

#### **Determination of absolute minimum MRF**

The DD values assumed for developing various withdrawal scenarios were arbitrary (but appeared to be reasonable). An initial MFLs evaluation was performed to determine the absolute MRF that should be maintained to meet MFLs. For this purpose, the MRF was assumed to be zero as a starting value, and DD was assumed to be 70 cfs, a consensus value for DD. An evaluation with these assumptions showed that the MIL would not be met (Figure III – 5, Appendix III). Then additional evaluations were performed by gradually increasing the MRF. An MRF value of 45 cfs was found to be satisfactory to meet the MIL (Figure III – 6, Appendix III). On this basis, the absolute minimum MRF was determined as 45 cfs, which is below the six DDs assumed in developing the DD scenarios, but exceeds the established MIL discharge of 43 cfs.

### Method I: The scenarios evaluated and results

Twenty DD scenarios, A1 through D5 (Table 2) were evaluated by Method I. MFLs graphs similar to those presented in Appendix I were generated for each DD scenario under each MRF as per the criterion described in the foregoing. The analyses for each scenario are presented in the Appendixes named by scenario number (e.g., Appendix A5 for Scenario A5). With DD = 110 cfs, one or more MFLs were not met for all MRFs. With DD = 90 cfs, the MA was not met for all MRFs except MRF = 300 cfs. With DD = 70 cfs, all MFLs were met for all of the MRFs considered. Since all MFLs were met for all of the MRFs with DD = 70 cfs, the MFLs for other scenarios with lower DDs were not evaluated, but it was assumed that the MFLs would be met for those scenarios (Table 3). Based on these results, it may be concluded that the optimal DD by Method I lies between 90 and 110 cfs, and the exact value may be determined by running additional scenarios, gradually increasing DD from 90 cfs. Otherwise, 90 cfs may be regarded as the optimal DD tentatively.

**Potential water supply yield by Method I.** The mean of the discharges diverted for the period of analysis (1934-2005 Water Years) was regarded as the potential additional water supply yield of the SJR at SR 50. The potential water supply yields for the 20 scenarios analyzed are summarized in Table 4. However, as shown by Table 3, MFLs were not met for some of the scenarios, and these scenarios may be regarded as infeasible. The infeasible yields are shown in bold text in Table 4. Scenario A4 gave a maximum yield of 42.1 mgd by Method I (Table 4).

Table 3. SJR at SR 50: Summary of MFLs compliance (Method I)

| MRF (cfs) | Γ  | )  |    |       |            |
|-----------|----|----|----|-------|------------|
|           | 30 | 50 | 70 | 90    | 110        |
| 300       | Y  | Y  | Y  | Y     | N(MA)      |
| 200       | Y  | Y  | Y  | N(MA) | N(MA)      |
| 100       | Y  | Y  | Y  | N(MA) | N(MA, MFL) |
| 50        | Y  | Y  | Y  | N(MA) | N(MA, MFL) |

Y = All MFLs met; N = MFLs in the parentheses not met

| Table 4. | SJR at SR 50: | Potential water supply   | yield, mgd (Method I) |
|----------|---------------|--------------------------|-----------------------|
|          | (Mean of dive | rsion discharges for the | period analyzed)      |

| MRF (cfs) | Discharge Diversion (cfs) |      |      |      |      |  |
|-----------|---------------------------|------|------|------|------|--|
|           | 30                        | 50   | 70   | 90   | 110  |  |
| 300       | 14.2                      | 23.8 | 33.0 | 42.1 | 51.1 |  |
| 200       | 15.7                      | 26.0 | 36.0 | 45.9 | 55.6 |  |
| 100       | 17.4                      | 28.6 | 39.7 | 50.5 | 61.2 |  |
| 50        | 18.5                      | 30.4 | 42.0 | 53.4 | 64.6 |  |
|           |                           |      |      |      |      |  |

The water supply yields shown in bold are infeasible because MFLs are not met for these scenarios.

### Other diversion statistics

In addition to the graphical evaluations of the MFLs, the following diversion statistics were produced:

- 1. Number of days diversion occurred each year (Table 5)
- 2. Number of days diversion occurred each month (Table 6)
- 3. Monthly and annual discharge diversions (Table 7)

Tables 5-7 are the results for Scenario A4. Table 5 gives the total number of days diversion occurred each year with a break-up of days as follows: a) full diversion; b) diversion quantity less than 50% DD; c) diversion quantity equals 50% DD to less than full DD; and d) no diversion. Under Scenario A4, diversion occurred for all days in a year only for 11 of the 72 years (15%). Diversion occurred only for 16 days in 1981.

Table 6 is a monthly break-up of diversion days for each year. This table shows that no water would be available for diversion continuously for several months during dry periods. The most severe drought occurred during 1980–1982, and no diversion would have been allowed for nearly a continuous 24-month period.

Table 7 gives monthly and annual diversion quantities. Annual values also are given as averages in acre-ft and mgd. For this scenario, the diversion discharge was determined to be 72% of the maximum possible diversion (42.1 mgd / 58.1 mgd).

Tables similar to Tables 5-7 were generated for all of the 20 scenarios, but they are not presented in this report. They are available in the output files of the FORTRAN program, and can be retrieved, if necessary.

### Method II: The scenarios evaluated and results

Two scenarios, designated as Scenario A4A and D3A were evaluated by this method. Discharges occur in two stages (tiers) as follows.

Scenario D3A:

Tier 1 discharge: If MRF > 50 cfs, DD = up to 70 cfs Tier 2 Discharge: If MRF > 400 cfs, DD = 70 + up to 40 cfs
**Potential water supply yield by Method II.** All of the MFLs were met for Scenario A4A (Appendix A4A), and the potential water supply yield was 57.3 mgd. One of the MFLs, the MA, was not met for Scenario D3A (Appendix D3A). Thus, the maximum potential water supply yield by Method II was 57.3 mgd.

## Method III: The scenarios evaluated and results

Scenarios A5, B4, C4, and D4, for which MFLs are not met by Method I (Tables 2 - 3), were evaluated by Method III (i.e., model data for the 2004 Project Conditions). The MA was not met by Method I for these scenarios. With the simulated data, the MFLs were met for all of the above four scenarios. The potential average yield for each scenario and the Appendixes that present the respective MFLs graphs, are as follows.

Scenario A5A: 56.2 mgd (MRF = 300 cfs; DD = 110 cfs) (Appendix A5A) Scenario B4A: 49.8 mgd (MRF = 200 cfs; DD = 90 cfs) (Appendix B4A) Scenario C4A: 54.0 mgd (MRF = 100 cfs; DD = 90 cfs) (Appendix C4A) Scenario D4A: 56.1 mgd (MRF = 50 cfs; DD = 90 cfs) (Appendix D4A)

Scenario A5A produced the highest potential average yield, and it also has some 'freeboard' (i.e., MA would not be met at a higher DD; see Figure A5A – 3 in Appendix A5A). By an iterative process, DD was gradually increased and it was found that the MA was just met at DD = 150 cfs; this case is designated as Scenario A6. The potential average yield for this scenario was 75.5 mgd. Tables 8-10 present various diversion statistics for Scenario A6.

**Potential water supply yield by Method III.** MFLs were met for all of the five scenarios evaluated by Method III. Potential water supply yield for the five scenarios ranged from 49.8 to 75.5 mgd. The maximum of these scenarios reflects about 80% increased yield over the Method I evaluations (from 42.1 mgd for Scenario A4 to 75.5 mgd for Scenario A6), and about 30% increased yield over the Method II evaluations (from 57.3 mgd for Scenario A4A to 75.5 mgd for Scenario A6). This result clearly demonstrated that the USJRB Project greatly enhances the water supply potential by its creation of water management and marsh conservation areas (Figure 14) and flow regulation through the project area.

Even though the USJRB project greatly enhances the water supply potential of the SJR at SR 50, the MRF requirements to support ecological preservation will not allow diversions for several days during many low rainfall years, and the full DD would only be possible for a limited number of days in any year (Tables 8 – 9). The statistics showed that diversion for the entire year would be possible only for 14 out 60 years or 23% of years (Table 8). Therefore, water supply developers should recognize this constraint (i.e., MRF) and plan for alternative sources for drought periods. A quantitative analysis of the anticipated deficits can be performed from the results given in Table 10.

| WtrYr | Total      | FullDiv | <50%Div    | 50to <ful< th=""><th>NoDiv</th><th>check</th></ful<> | NoDiv     | check |
|-------|------------|---------|------------|------------------------------------------------------|-----------|-------|
| 1934  | 365        | 363     | 0          | 2                                                    | 0         | 365   |
| 1935  | 220        | 209     | 5          | 6                                                    | 145       | 365   |
| 1936  | 366        | 366     | 0          | 0                                                    | 0         | 366   |
| 1937  | 294        | 242     | 36         | 16                                                   | 71        | 365   |
| 1938  | 289        | 262     | 8          | 19                                                   | 76        | 365   |
| 1939  | 176        | 146     | 15         | 15                                                   | 189       | 365   |
| 1940  | 327        | 312     | 9          | 6                                                    | 39        | 366   |
| 1941  | 350        | 336     | 7          | 7                                                    | 15        | 365   |
| 1942  | 365        | 365     | 0          | 0                                                    | 0         | 365   |
| 1943  | 135        | 125     | 6          | 4                                                    | 230       | 365   |
| 1944  | 229        | 207     | 15         | 7                                                    | 137       | 366   |
| 1945  | 261        | 255     | 3          | 3                                                    | 104       | 365   |
| 1946  | 264        | 235     | 8          | 21                                                   | 101       | 365   |
| 1049  | 271        | 292     | 11         | 8 7                                                  | 54<br>05  | 305   |
| 1940  | 2/1        | 250     | 5          | 7                                                    | 95<br>112 | 365   |
| 1950  | 189        | 151     | 27         | , 11                                                 | 176       | 365   |
| 1951  | 293        | 223     | 42         | 28                                                   | 72        | 365   |
| 1952  | 274        | 254     | 8          | 12                                                   | 92        | 366   |
| 1953  | 304        | 296     | 5          |                                                      | 61        | 365   |
| 1954  | 323        | 305     | 14         | 4                                                    | 42        | 365   |
| 1955  | 302        | 287     | 4          | 11                                                   | 63        | 365   |
| 1956  | 169        | 136     | 19         | 14                                                   | 197       | 366   |
| 1957  | 365        | 365     | 0          | 0                                                    | 0         | 365   |
| 1958  | 344        | 297     | 15         | 32                                                   | 21        | 365   |
| 1959  | 348        | 328     | 6          | 14                                                   | 17        | 365   |
| 1960  | 366        | 366     | 0          | 0                                                    | 0         | 366   |
| 1961  | 257        | 205     | 26         | 26                                                   | 108       | 365   |
| 1962  | 99         | 84      | 11         | 4                                                    | 266       | 365   |
| 1963  | 291        | 272     | 11         | 8                                                    | 74        | 365   |
| 1964  | 282        | 255     | 12         | 15                                                   | 84        | 366   |
| 1965  | 300        | 271     | 15         | 14                                                   | 65        | 365   |
| 1966  | 365        | 365     | 0          | 0                                                    | 0         | 365   |
| 1967  | 2//        | 257     | 10         | 10                                                   | 104       | 365   |
| 1060  | 265        | 264     | 3          | 4                                                    | 194       | 300   |
| 1970  | 333        | 292     | 18         | 23                                                   | 32        | 365   |
| 1971  | 140        | 74      | 28         | 38                                                   | 225       | 365   |
| 1972  | 314        | 296     | 13         | 5                                                    | 52        | 366   |
| 1973  | 365        | 351     |            | 8                                                    | 0         | 365   |
| 1974  | 234        | 226     | 6          | 2                                                    | 131       | 365   |
| 1975  | 203        | 191     | 5          | 7                                                    | 162       | 365   |
| 1976  | 232        | 225     | 5          | 2                                                    | 134       | 366   |
| 1977  | 201        | 194     | 4          | 3                                                    | 164       | 365   |
| 1978  | 365        | 354     | 6          | 5                                                    | 0         | 365   |
| 1979  | 330        | 315     | 6          | 9                                                    | 35        | 365   |
| 1980  | 211        | 197     | 11         | 3                                                    | 155       | 366   |
| 1981  | 16         | 11      | 1          | 4                                                    | 349       | 365   |
| 1982  | 150        | 147     | 2          | 1                                                    | 215       | 365   |
| 1983  | 363        | 353     | 3          | 7                                                    | 2         | 365   |
| 1984  | 366        | 366     | 0          | 0                                                    | 0         | 366   |
| 1985  | 242        | 217     | 16         | 9                                                    | 123       | 365   |
| 1007  | 232        | 207     | 13         | 12                                                   | 133       | 365   |
| 1000  | 281        | 209     | 0          | 4                                                    | 84<br>10  | 305   |
| 1989  | 31/<br>161 | 29/     | 50         | 24                                                   | 49<br>204 | 365   |
| 1990  | 221        | 183     | 26         | 12                                                   | 144       | 365   |
| 1991  | 365        | 365     | <u>~</u> 0 | 0                                                    | 0         | 365   |
| 1992  | 333        | 301     | 19         | 1.3                                                  | 33        | 366   |
| 1993  | 362        | 350     | 9          |                                                      | 3         | 365   |
| 1994  | 235        | 191     | 29         | 15                                                   | 130       | 365   |
| 1995  | 357        | 344     | 7          | 6                                                    | 8         | 365   |
| 1996  | 366        | 366     | 0          | 0                                                    | 0         | 366   |
| 1997  | 209        | 198     | 4          | 7                                                    | 156       | 365   |

Table 5. SJR near Christmas: Diversion statistics - # of days Diversion occursMinimum River Flow = 300. cfs Diversion up to90. cfs (Scenario A4 Annual)

### Table 5 -Continued

| WtrYr | Total | FullDiv | <50%Div | 50to <ful< th=""><th>NoDiv</th><th>check</th></ful<> | NoDiv | check |
|-------|-------|---------|---------|------------------------------------------------------|-------|-------|
|       |       |         |         |                                                      |       |       |
| 1998  | 335   | 318     | 14      | 3                                                    | 30    | 365   |
| 1999  | 228   | 199     | 13      | 16                                                   | 137   | 365   |
| 2000  | 184   | 167     | 7       | 10                                                   | 182   | 366   |
| 2001  | 140   | 133     | 2       | 5                                                    | 225   | 365   |
| 2002  | 279   | 258     | 4       | 17                                                   | 86    | 365   |
| 2003  | 324   | 306     | 14      | 4                                                    | 41    | 365   |
| 2004  | 266   | 214     | 20      | 32                                                   | 100   | 366   |
| 2005  | 365   | 365     | 0       | 0                                                    | 0     | 365   |
| 2006  | 166   | 159     | 2       | 5                                                    | 199   | 365   |

Table 6. SJR near Christmas: Diversion statistics - # of days Diversion occurs Minimum River Flow = 300. cfs Diversion up to 90. cfs (Scenario A4 Monthly)

| WtrYr | Oct      | Nov | Dec      | Jan      | Feb      | Mar      | Apr | May | Jun     | Jul      | Aug      | Sep | Total |
|-------|----------|-----|----------|----------|----------|----------|-----|-----|---------|----------|----------|-----|-------|
| 1934  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1935  | 31       | 30  | 31       | 29       | 0        | 0        | 0   | 0   | 7       | 31       | 31       | 30  | 220   |
| 1936  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 366   |
| 1937  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 14      | 0        | 18       | 19  | 294   |
| 1938  | 31       | 30  | 31       | 31       | 28       | 31       | 23  | 0   | 0       | 23       | 31       | 30  | 289   |
| 1939  | 31       | 30  | 13       | 0        | 0        | 0        | 0   | 8   | 2       | 31       | 31       | 30  | 176   |
| 1940  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 15  | 14      | 24       | 31       | 30  | 327   |
| 1941  | 31       | 30  | 16       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 350   |
| 1942  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1943  | 31       | 22  | 0        | 0        | 0        | 0        | 0   | 0   | 0       | 21       | 31       | 30  | 135   |
| 1944  | 31       | 30  | 31       | 29       | 0        | 0        | 5   | 0   | 11      | 31       | 31       | 30  | 229   |
| 1945  | 31       | 30  | 31       | 31       | 28       | 11       | 0   | 0   | 7       | 31       | 31       | 30  | 261   |
| 1946  | 31       | 30  | 31       | 31       | 28       | 31       | 6   | 0   | 0       | 15       | 31       | 30  | 264   |
| 1947  | 31       | 30  | 31       | 12       | 16       | 31       | 30  | 21  | 17      | 31       | 31       | 30  | 311   |
| 1948  | 31       | 30  | 31       | 31       | 29       | 31       | 20  | 0   | 0       | 7        | 31       | 30  | 271   |
| 1949  | 31       | 30  | 31       | 31       | 28       | 4        | 0   | 0   | 6       | 31       | 31       | 30  | 253   |
| 1950  | 31       | 30  | 31       | 31       | 28       | 19       | 14  | 0   | 0       | 0        | 0        | 5   | 189   |
| 1951  | 15       | 30  | 31       | 31       | 28       | 24       | 1   | 31  | 18      | 23       | 31       | 30  | 293   |
| 1952  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 17  | 2       | 0        | 12       | 30  | 274   |
| 1953  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 25  | 20      | 0<br>21  | 31       | 30  | 304   |
| 1954  | 31<br>21 | 30  | 31<br>21 | 31<br>21 | 20       | 31<br>21 | 1/  | 2   | 30<br>E | 31<br>21 | 31<br>21 | 30  | 323   |
| 1955  | 21       | 30  | 21       | 21       | 20<br>10 | 21       | 23  | 0   | 5       | 31<br>0  | 21       | 20  | 160   |
| 1950  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 21       | 30  | 365   |
| 1958  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 17       | 24       | 30  | 344   |
| 1959  | 31       | 30  | 14       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 348   |
| 1960  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 366   |
| 1961  | 31       | 30  | 31       | 31       | 28       | 31       | 5   | 0   | 0       | 22       | 18       | 30  | 257   |
| 1962  | 23       | 0   | 0        | 0        | 0        | 0        | 0   | õ   | 0       | 17       | 29       | 30  | 99    |
| 1963  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 15  | 0       | 17       | 31       | 16  | 291   |
| 1964  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 23  | 0       | 0        | 16       | 30  | 282   |
| 1965  | 31       | 30  | 31       | 31       | 23       | 31       | 19  | 0   | 12      | 31       | 31       | 30  | 300   |
| 1966  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1967  | 31       | 30  | 31       | 31       | 25       | 30       | 0   | 0   | 7       | 31       | 31       | 30  | 277   |
| 1968  | 31       | 22  | 0        | 0        | 0        | 0        | 0   | 0   | 27      | 31       | 31       | 30  | 172   |
| 1969  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1970  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 11      | 18       | 31       | 30  | 333   |
| 1971  | 31       | 6   | 0        | 0        | 18       | 0        | 0   | 0   | 0       | 24       | 31       | 30  | 140   |
| 1972  | 25       | 30  | 31       | 31       | 29       | 31       | 16  | 9   | 20      | 31       | 31       | 30  | 314   |
| 1973  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1974  | 31       | 30  | 31       | 31       | 15       | 0        | 0   | 0   | 4       | 31       | 31       | 30  | 234   |
| 1975  | 31       | 30  | 31       | 5        | 0        | 0        | 0   | 0   | 14      | 31       | 31       | 30  | 203   |
| 1976  | 31       | 30  | 31       | 16       | 0        | 0        | 0   | 2   | 30      | 31       | 31       | 30  | 232   |
| 1977  | 31       | 30  | 31       | 31       | 28       | 18       | 20  | 0   | 0       | 0        | 5        | 27  | 201   |
| 1978  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1979  | 31       | 30  | 15       | 31       | 28       | 31       | 18  | 24  | 30      | 31       | 31       | 30  | 330   |
| 1001  | 51       | 30  | 51<br>0  | 31<br>0  | 29       | 21       | 23  | 0   | 0       | 0        | 5        | 16  | 16    |
| 1982  | 0        | 0   | 0        | 0        | 0        | 0        | 22  | 6   | 30      | 31       | 21       | 30  | 150   |
| 1983  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 28      | 31       | 31       | 30  | 363   |
| 1984  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 366   |
| 1985  | 31       | 30  | 31       | 31       | 28       | 17       | 18  | 0   | 5       | 3        | 18       | 30  | 242   |
| 1986  | 31       | 30  | 31       | 31       | 28       | 23       | 0   | 0   | 0       | 0        | 28       | 30  | 232   |
| 1987  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 13      | 0        | 0        | 25  | 281   |
| 1988  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 31  | 6       | 6        | 31       | 30  | 317   |
| 1989  | 30       | 8   | 18       | 10       | 28       | 28       | 0   | 0   | 0       | 4        | 18       | 17  | 161   |
| 1990  | 31       | 30  | 31       | 31       | 28       | 31       | 7   | 0   | 0       | 0        | 6        | 26  | 221   |
| 1991  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 31       | 30  | 365   |
| 1992  | 31       | 30  | 31       | 31       | 29       | 31       | 30  | 11  | 17      | 31       | 31       | 30  | 333   |
| 1993  | 31       | 30  | 31       | 31       | 28       | 31       | 30  | 31  | 30      | 31       | 28       | 30  | 362   |
| 1994  | 31       | 20  | 0        | 3        | 18       | 31       | 4   | 10  | 26      | 31       | 31       | 30  | 235   |

## Table 6. -Continued

| WtrYr | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Total |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 1995  | 31  | 30  | 31  | 31  | 28  | 31  | 30  | 31  | 22  | 31  | 31  | 30  | 357   |
| 1996  | 31  | 30  | 31  | 31  | 29  | 31  | 30  | 31  | 30  | 31  | 31  | 30  | 366   |
| 1997  | 31  | 30  | 31  | 8   | 0   | 0   | 0   | 0   | 17  | 31  | 31  | 30  | 209   |
| 1998  | 31  | 30  | 31  | 31  | 28  | 31  | 30  | 31  | 23  | 12  | 27  | 30  | 335   |
| 1999  | 31  | 30  | 30  | 9   | 16  | 0   | 0   | 0   | 20  | 31  | 31  | 30  | 228   |
| 2000  | 31  | 30  | 31  | 31  | 29  | 3   | 0   | 0   | 0   | 4   | 0   | 25  | 184   |
| 2001  | 31  | 30  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 18  | 31  | 30  | 140   |
| 2002  | 31  | 30  | 31  | 31  | 28  | 24  | 0   | 0   | 12  | 31  | 31  | 30  | 279   |
| 2003  | 31  | 30  | 31  | 31  | 28  | 31  | 30  | 4   | 16  | 31  | 31  | 30  | 324   |
| 2004  | 31  | 30  | 31  | 18  | 29  | 22  | 0   | 2   | 13  | 29  | 31  | 30  | 266   |
| 2005  | 31  | 30  | 31  | 31  | 28  | 31  | 30  | 31  | 30  | 31  | 31  | 30  | 365   |
| 2006  | 31  | 30  | 31  | 31  | 28  | 15  | 0   | 0   | 0   | 0   | 0   | 0   | 166   |

Table 7. SJR near Christmas: Diversion statistics - Diversion in cfs-days Minimum River Flow = 300. cfs Diversion up to 90. cfs (Scenario A4 Discharges)

| WtrYr | Oct   | Nov          | Dec           | Jan         | Feb           | Mar          | Apr        | May        | Jun          | Jul        | Aug         | Sep          | Annl            | acrft         | mgd          |
|-------|-------|--------------|---------------|-------------|---------------|--------------|------------|------------|--------------|------------|-------------|--------------|-----------------|---------------|--------------|
| 1934  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2657.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32807.          | 178.2         | 58.1         |
| 1935  | 2790. | 2700.        | 2790.         | 2109.       | ο.            | ο.           | ο.         | ο.         | 630.         | 2790.      | 2790.       | 2700.        | 19299.          | 104.8         | 34.2         |
| 1936  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32940.          | 178.5         | 58.1         |
| 1937  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2470.      | 174.         | 0.         | 356.        | 1379.        | 23459.          | 127.4         | 41.5         |
| 1938  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 1517.      | 0.         | 0.           | 2004.      | 2790.       | 2297.        | 24988.          | 135.8         | 44.2         |
| 1939  | 2194. | 2700.        | 642.          | 0.          | 0.            | 0.           | 0.         | 680.       | 28.          | 2790.      | 2790.       | 2700.        | 14524.          | 78.9          | 25.7         |
| 1940  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 1105.      | 996.         | 1943.      | 2790.       | 2700.        | 28704.          | 155.5         | 50.7         |
| 1941  | 2790. | 2500.        | 999.          | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 30859.          | 167.7         | 54.6         |
| 1942  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2/90.      | 2700.        | 2/90.      | 2790.       | 2700.        | 32850.          | 1/8.5         | 58.1<br>20 6 |
| 1943  | 2790. | 2700         | 2790          | 1962        | 0.            | 0.           | 147        | 0.         | 739          | 2790       | 2790.       | 2700.        | 19408           | 105 2         | 34 3         |
| 1945  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 706.         | 0.         | 0.         | 630.         | 2790.      | 2790.       | 2700.        | 23206.          | 126.1         | 41.1         |
| 1946  | 2790. | 2700.        | 2790.         | 2790.       | 2377.         | 2593.        | 126.       | 0.         | 0.           | 1241.      | 2790.       | 2700.        | 22897.          | 124.4         | 40.5         |
| 1947  | 2790. | 2700.        | 2790.         | 655.        | 1352.         | 2790.        | 2700.      | 1438.      | 1530.        | 2790.      | 2790.       | 2700.        | 27025.          | 146.8         | 47.8         |
| 1948  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 1381.      | Ο.         | Ο.           | 465.       | 2790.       | 2700.        | 23806.          | 129.0         | 42.0         |
| 1949  | 2790. | 2700.        | 2790.         | 2790.       | 2387.         | 84.          | 0.         | 0.         | 482.         | 2790.      | 2790.       | 2700.        | 22303.          | 121.2         | 39.5         |
| 1950  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 674.         | 456.       | 0.         | 0.           | 0.         | 0.          | 55.          | 14775.          | 80.3          | 26.1         |
| 1951  | 1350. | 2700.        | 2790.         | 2790.       | 2520.         | 1632.        | 4.         | 1246.      | 715.         | 1346.      | 2790.       | 2700.        | 22583.          | 122.7         | 40.0         |
| 1952  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 1355.      | 39.          | 0.         | 856.        | 2573.        | 23993.          | 130.0         | 42.3         |
| 1953  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 1831.      | 0.           | 540.       | 2790.       | 2700.        | 26941.          | 146.4         | 47.7         |
| 1954  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 462.       | 152.       | 2700.        | 2790.      | 2790.       | 2700.        | 2/9/4.          | 144 0         | 49.5         |
| 1955  | 2790. | 2700.        | 2790.         | 2/90.       | 1076          | 2/90.        | 1542.      | 0.         | 450.         | 2/90.      | 2/90.       | 2322         | 13641           | 73 9          | 24 1         |
| 1957  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32850.          | 178.5         | 58.1         |
| 1958  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2505.        | 1088.      | 1210.       | 2433.        | 29106.          | 158.1         | 51.5         |
| 1959  | 2603. | 2680.        | 784.          | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 30637.          | 166.4         | 54.2         |
| 1960  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32940.          | 178.5         | 58.1         |
| 1961  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2225.        | 168.       | 0.         | 0.           | 989.       | 1025.       | 2629.        | 20626.          | 112.1         | 36.5         |
| 1962  | 1819. | 0.           | 0.            | 0.          | 0.            | 0.           | 0.         | 0.         | 0.           | 1152.      | 2364.       | 2700.        | 8035.           | 43.7          | 14.2         |
| 1963  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 957.       | 0.           | 1417.      | 2790.       | 1021.        | 25265.          | 137.3         | 44.7         |
| 1964  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2596.      | 1062.      | 0.           | 0.         | 1360.       | 2700.        | 24188.          | 131.1         | 42.7         |
| 1965  | 2790. | 2700.        | 2790.         | 2520.       | 1589.         | 2790.        | 1418.      | 0.         | 809.         | 2790.      | 2790.       | 2700.        | 25686.          | 139.5         | 45.5         |
| 1960  | 2790. | 2700.        | 2790.         | 2790.       | 2520.<br>1834 | 2/90.        | 2700.      | 2/90.      | 2700.<br>554 | 2790.      | 2790.       | 2700.        | 32850.<br>24017 | 130 5         | 28.1<br>42 5 |
| 1968  | 2790. | 1696.        | 2750.         | 2040.       | 1054.         | 242J.<br>0.  | 0.         | 0.         | 2430.        | 2790.      | 2790.       | 2700.        | 15196.          | 82.3          | 26.8         |
| 1969  | 2790. | 2700.        | 2790.         | 2790.       | 2488.         | 2264.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32292.          | 175.4         | 57.2         |
| 1970  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2286.      | 610.         | 1470.      | 2460.       | 2504.        | 28410.          | 154.3         | 50.3         |
| 1971  | 2386. | 302.         | Ο.            | 0.          | 998.          | Ο.           | Ο.         | Ο.         | Ο.           | 1520.      | 2790.       | 1838.        | 9834.           | 53.4          | 17.4         |
| 1972  | 2204. | 2700.        | 2790.         | 2788.       | 2610.         | 2790.        | 1176.      | 382.       | 1568.        | 2790.      | 2790.       | 2700.        | 27288.          | 147.8         | 48.2         |
| 1973  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2122.        | 2790.      | 2790.       | 2700.        | 32272.          | 175.3         | 57.1         |
| 1974  | 2790. | 2700.        | 2790.         | 2790.       | 949.          | 0.           | 0.         | 0.         | 306.         | 2790.      | 2790.       | 2700.        | 20605.          | 111.9         | 36.5         |
| 1975  | 2790. | 2700.        | 2763.         | 167.        | 0.            | 0.           | 0.         | 0.         | 1260.        | 2592.      | 2790.       | 2700.        | 17762.          | 96.5          | 31.4         |
| 1077  | 2790. | 2700.        | 2790.         | 1067.       | 2520          | 1206         | 0.         | 180.       | 2700.        | 2790.      | 2/90.       | 2700.        | 20507.          | 111.1         | 36.Z         |
| 1078  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700       | 2549       | 2429         | 2790       | 2790        | 2430.        | 1//03.          | 90.0<br>175 7 | 57 2         |
| 1979  | 2790  | 2700         | 950           | 2790        | 2520          | 2790         | 1422       | 2160       | 2700         | 2790       | 2790        | 2700         | 29102           | 158.1         | 51.5         |
| 1980  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 1615.      | 0.         | 0.           | 0.         | 39.         | 9.           | 18133.          | 98.2          | 32.0         |
| 1981  | 0.    | 0.           | 0.            | 0.          | 0.            | 0.           | 0.         | 0.         | 0.           | 0.         | 0.          | 1330.        | 1330.           | 7.2           | 2.4          |
| 1982  | Ο.    | 0.           | Ο.            | Ο.          | 0.            | Ο.           | 1957.      | 409.       | 2700.        | 2790.      | 2790.       | 2700.        | 13346.          | 72.5          | 23.6         |
| 1983  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2782.      | 2213.        | 2764.      | 2790.       | 2700.        | 32329.          | 175.6         | 57.2         |
| 1984  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32940.          | 178.5         | 58.1         |
| 1985  | 2790. | 2700.        | 2790.         | 2790.       | 2512.         | 1028.        | 1352.      | 0.         | 59.          | 48.        | 1620.       | 2700.        | 20389.          | 110.8         | 36.1         |
| 1986  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 1525.        | 0.         | 0.         | 0.           | 0.         | 1937.       | 2700.        | 19752.          | 107.3         | 35.0         |
| 1000  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 593.         | 0.         | 0.          | 2202.        | 24665.          | 150 /         | 43.7         |
| 1020  | 2/90. | 2700.<br>720 | 2/90.<br>1014 | 400.<br>900 | 2010.<br>2122 | 2/30.<br>838 | ∠/00.<br>∩ | 2/32.<br>N | 130.<br>V    | ∡80.<br>67 | 4/43.       | 2700.<br>807 | 2//03.<br>10492 | 56 0          | 49.U<br>18 6 |
| 1990  | 2154  | 2700         | 2790          | 2790        | 2520          | 2543         | 268        | 0.         | 0.           | 07.        | 1010.<br>75 | 1875         | 17715           | 96.2          | 31.4         |
| 1991  | 2790  | 2700         | 2790          | 2790        | 2520          | 2790         | 2700-      | 2790       | 2700         | 2790-      | 2790        | 2700         | 32850           | 178.5         | 58.1         |
| 1992  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2599.        | 2280.      | 646.       | 922.         | 2790.      | 2790.       | 2700.        | 28407.          | 153.9         | 50.1         |
| 1993  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 1774.       | 2700.        | 31834.          | 173.0         | 56.3         |
| 1994  | 2790. | 1335.        | 0.            | 78.         | 1412.         | 2404.        | 58.        | 229.       | 2193.        | 2790.      | 2790.       | 2700.        | 18779.          | 102.0         | 33.2         |
| 1995  | 2790. | 2700.        | 2790.         | 2790.       | 2520.         | 2790.        | 2700.      | 2790.      | 1365.        | 2790.      | 2790.       | 2700.        | 31515.          | 171.2         | 55.8         |
| 1996  | 2790. | 2700.        | 2790.         | 2790.       | 2610.         | 2790.        | 2700.      | 2790.      | 2700.        | 2790.      | 2790.       | 2700.        | 32940.          | 178.5         | 58.1         |

Table 7. –Continued

| WtrYr | Oct   | Nov   | Dec   | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Annl   | acrft | mgd  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|------|
| 1997  | 2790. | 2700. | 2776. | 371.  | ο.    | ο.    | 0.    | ο.    | 1485. | 2790. | 2790. | 2700. | 18402. | 100.0 | 32.6 |
| 1998  | 2790. | 2700. | 2790. | 2790. | 2520. | 2790. | 2700. | 2790. | 1747. | 288.  | 2430. | 2700. | 29035. | 157.7 | 51.4 |
| 1999  | 2790. | 2700. | 2337. | 360.  | 1012. | 0.    | Ο.    | Ο.    | 1800. | 2790. | 2755. | 2700. | 19244. | 104.6 | 34.1 |
| 2000  | 2790. | 2700. | 2790. | 2790. | 2439. | 66.   | Ο.    | Ο.    | 0.    | 181.  | 0.    | 2130. | 15886. | 86.1  | 28.0 |
| 2001  | 2790. | 2513. | Ο.    | 0.    | 0.    | Ο.    | Ο.    | Ο.    | Ο.    | 1616. | 2790. | 2700. | 12409. | 67.4  | 22.0 |
| 2002  | 2790. | 2700. | 2790. | 2790. | 2197. | 1807. | Ο.    | Ο.    | 1080. | 2790. | 2790. | 2700. | 24434. | 132.7 | 43.2 |
| 2003  | 2790. | 2700. | 2790. | 2790. | 2520. | 2790. | 2366. | 78.   | 1019. | 2790. | 2790. | 2700. | 28123. | 152.8 | 49.8 |
| 2004  | 2790. | 2700. | 2766. | 697.  | 2515. | 1703. | Ο.    | 90.   | 814.  | 2471. | 2790. | 2700. | 22036. | 119.4 | 38.9 |
| 2005  | 2790. | 2700. | 2790. | 2790. | 2520. | 2790. | 2700. | 2790. | 2700. | 2790. | 2790. | 2700. | 32850. | 178.5 | 58.1 |
| 2006  | 2790. | 2700. | 2790. | 2790. | 2520. | 1104. | 0.    | 0.    | 0.    | 0.    | 0.    | 0.    | 14694. | 79.8  | 26.0 |
|       |       |       |       |       |       |       |       |       |       |       |       | mean  | 23812. | 129.3 | 42.1 |

max 32940. 178.5 58.1 min 1330. 7.2 2.4 Table 8. SJR near Christmas: Diversion statistics - # of days Diversion occurs Minimum River Flow = 300. cfs Diversion up to 150. cfs (Scenario A6 Annual) 1942-2001 SIMULATED DISCHARGES BY RAO'S MODEL: PROJECT CONDITIONS 2004

| WtrYr | Total | FullDiv | <50%Div | 50to <ful< th=""><th>NoDiv</th><th>check</th></ful<> | NoDiv | check |
|-------|-------|---------|---------|------------------------------------------------------|-------|-------|
| 1942  | 364   | 364     | 0       | 0                                                    | 1     | 365   |
| 1943  | 255   | 212     | 21      | 22                                                   | 110   | 365   |
| 1944  | 307   | 262     | 31      | 14                                                   | 59    | 366   |
| 10/5  | 270   | 202     | 7       | 21                                                   | 95    | 365   |
| 1040  | 270   | 200     | 24      | 3                                                    | 30    | 305   |
| 1946  | 2//   | 244     | 24      | 9                                                    | 88    | 365   |
| 1947  | 358   | 337     | 10      | 5                                                    | /     | 365   |
| 1948  | 335   | 312     | 17      | 6                                                    | 31    | 366   |
| 1949  | 264   | 245     | 6       | 13                                                   | 101   | 365   |
| 1950  | 299   | 197     | 38      | 64                                                   | 66    | 365   |
| 1951  | 343   | 319     | 11      | 13                                                   | 22    | 365   |
| 1952  | 366   | 361     | 0       | 5                                                    | 0     | 366   |
| 1953  | 365   | 346     | 12      | 7                                                    | 0     | 365   |
| 1954  | 340   | 317     | 17      | 6                                                    | 25    | 365   |
| 1955  | 264   | 231     | 17      | 16                                                   | 101   | 365   |
| 1956  | 234   | 201     | 12      | 21                                                   | 132   | 366   |
| 1957  | 365   | 364     | 0       | 1                                                    | 0     | 365   |
| 1958  | 365   | 364     | 0       | 1                                                    | 0     | 365   |
| 1959  | 365   | 361     | 0       | 4                                                    | 0     | 365   |
| 1960  | 366   | 366     | 0       | 0                                                    | 0     | 366   |
| 1961  | 258   | 230     | 17      | 11                                                   | 107   | 365   |
| 1962  | 160   | 134     | 16      | 10                                                   | 205   | 365   |
| 1963  | 335   | 295     | 21      | 19                                                   | 30    | 365   |
| 1964  | 366   | 346     | 12      | 8                                                    | 0     | 366   |
| 1965  | 293   | 227     | 28      | 38                                                   | 72    | 365   |
| 1966  | 365   | 365     | 0       | 0                                                    | 0     | 365   |
| 1967  | 219   | 192     | 13      | 14                                                   | 146   | 365   |
| 1968  | 185   | 167     | 12      |                                                      | 181   | 366   |
| 1969  | 353   | 339     |         | 6                                                    | 12    | 365   |
| 1970  | 363   | 327     | 14      | 22                                                   | 2     | 365   |
| 1971  | 198   | 161     | 23      | 14                                                   | 167   | 365   |
| 1972  | 268   | 187     | 38      | 43                                                   | 98    | 366   |
| 1973  | 365   | 337     | 8       | 20                                                   | 0     | 365   |
| 1974  | 253   | 225     | 23      |                                                      | 112   | 365   |
| 1975  | 261   | 222     | 20      | 9                                                    | 104   | 365   |
| 1976  | 238   | 232     | 20      | 7                                                    | 128   | 366   |
| 1077  | 210   | 150     | 22      | ,<br>27                                              | 152   | 365   |
| 1079  | 240   | 217     | 15      | 57                                                   | 25    | 365   |
| 1070  | 250   | 317     | 14      | 14                                                   | 25    | 305   |
| 1000  | 350   | 344     | 14      | 14                                                   | 13    | 365   |
| 1980  | 323   | 246     | 39      | 38                                                   | 43    | 366   |
| 1981  | 66    | 2       | 37      | 27                                                   | 299   | 365   |
| 1982  | 242   | 200     | 10      | 32                                                   | 123   | 365   |
| 1983  | 361   | 347     | 8       | 6                                                    | 4     | 365   |
| 1984  | 359   | 344     | 9       | 6                                                    | /     | 366   |
| 1985  | 280   | 231     | 25      | 24                                                   | 85    | 365   |
| 1986  | 255   | 241     | 6       | 8                                                    | 110   | 365   |
| 1987  | 329   | 275     | 28      | 26                                                   | 36    | 365   |
| 1988  | 366   | 337     | 3       | 26                                                   | 0     | 366   |
| 1989  | 232   | 168     | 47      | 17                                                   | 133   | 365   |
| 1990  | 303   | 248     | 17      | 38                                                   | 62    | 365   |
| 1991  | 354   | 323     | 23      | 8                                                    | 11    | 365   |
| 1992  | 246   | 215     | 14      | 17                                                   | 120   | 366   |
| 1993  | 365   | 350     | 3       | 12                                                   | 0     | 365   |
| 1994  | 283   | 211     | 49      | 23                                                   | 82    | 365   |
| 1995  | 365   | 365     | 0       | 0                                                    | 0     | 365   |
| 1996  | 366   | 364     | 0       | 2                                                    | 0     | 366   |
| 1997  | 240   | 205     | 21      | 14                                                   | 125   | 365   |
| 1998  | 365   | 365     | 0       | 0                                                    | 0     | 365   |
| 1999  | 266   | 250     | 6       | 10                                                   | 99    | 365   |
| 2000  | 235   | 214     | 12      | 9                                                    | 131   | 366   |
| 2001  | 206   | 188     | 9       | 9                                                    | 159   | 365   |

|       | 1942- | -2001 | SIMULA: | LED DI | SCHARG. | ES BY | RAO'S I | MODEL: | PROJ | ECT CO | NDITIO | NS 200 | )4    |
|-------|-------|-------|---------|--------|---------|-------|---------|--------|------|--------|--------|--------|-------|
| WtrYr | Oct   | Nov   | Dec     | Jan    | Feb     | Mar   | Apr     | May    | Jun  | Jul    | Aug    | Sep    | Total |
| 1942  | 31    | 30    | 30      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 364   |
| 1943  | 31    | 30    | 31      | 20     | 0       | 7     | 6       | 8      | 30   | 31     | 31     | 30     | 255   |
| 1944  | 31    | 30    | 31      | 31     | 26      | 14    | 25      | 5      | 22   | 31     | 31     | 30     | 307   |
| 1945  | 31    | 30    | 31      | 31     | 28      | 18    | 0       | 0      | 9    | 31     | 31     | 30     | 270   |
| 1946  | 31    | 30    | 31      | 31     | 28      | 9     | 0       | 0      | 25   | 31     | 31     | 30     | 277   |
| 1947  | 31    | 30    | 31      | 29     | 23      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 358   |
| 1948  | 31    | 30    | 31      | 31     | 29      | 31    | 29      | 1      | 30   | 31     | 31     | 30     | 335   |
| 1949  | 31    | 30    | 31      | 31     | 28      | 2     | 0       | 0      | 19   | 31     | 31     | 30     | 264   |
| 1950  | 31    | 30    | 31      | 31     | 24      | 8     | 30      | 10     | 12   | 31     | 31     | 30     | 299   |
| 1951  | 31    | 30    | 31      | 31     | 28      | 16    | 23      | 31     | 30   | 31     | 31     | 30     | 343   |
| 1952  | 31    | 30    | 31      | 31     | 29      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 366   |
| 1953  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1954  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 6      | 30   | 31     | 31     | 30     | 340   |
| 1955  | 31    | 30    | 31      | 31     | 28      | 1     | 4       | 6      | 10   | 31     | 31     | 30     | 264   |
| 1956  | 31    | 30    | 31      | 31     | 15      | 0     | 0       | 0      | 4    | 31     | 31     | 30     | 234   |
| 1957  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1958  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1959  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1960  | 31    | 30    | 31      | 31     | 29      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 366   |
| 1961  | 31    | 30    | 31      | 31     | 28      | 12    | 0       | 0      | 3    | 31     | 31     | 30     | 258   |
| 1962  | 31    | 19    | 0       | 0      | 0       | 10    | 0       | 0      | 8    | 31     | 31     | 30     | 160   |
| 1963  | 31    | 30    | 31      | 31     | 28      | 31    | 23      | 10     | 28   | 31     | 31     | 30     | 335   |
| 1964  | 31    | 30    | 31      | 31     | 29      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 366   |
| 1965  | 31    | 30    | 31      | 27     | 17      | 30    | 16      | 0      | 19   | 31     | 31     | 30     | 293   |
| 1966  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1967  | 31    | 30    | 31      | 2      | 16      | 6     | 0       | 0      | 11   | 31     | 31     | 30     | 219   |
| 1968  | 31    | 21    | 9       | 0      | 4       | 0     | 0       | 2      | 26   | 31     | 31     | 30     | 185   |
| 1969  | 31    | 30    | 31      | 31     | 25      | 22    | 30      | 31     | 30   | 31     | 31     | 30     | 353   |
| 1970  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 29     | 30   | 31     | 31     | 30     | 363   |
| 1971  | 31    | 30    | 10      | 0      | 13      | 16    | 5       | 0      | 1    | 31     | 31     | 30     | 198   |
| 1972  | 31    | 30    | 25      | 0      | 20      | 11    | 19      | 16     | 24   | 31     | 31     | 30     | 268   |
| 1973  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1974  | 31    | 30    | 31      | 31     | 14      | 4     | 0       | 0      | 20   | 31     | 31     | 30     | 253   |
| 1975  | 31    | 30    | 31      | 31     | 7       | 0     | 5       | 7      | 27   | 31     | 31     | 30     | 261   |
| 1976  | 31    | 30    | 31      | 1      | 0       | 0     | 6       | 17     | 30   | 31     | 31     | 30     | 238   |
| 1977  | 31    | 30    | 31      | 22     | 9       | 0     | 0       | 0      | 0    | 28     | 31     | 30     | 212   |
| 1978  | 31    | 30    | 31      | 31     | 28      | 31    | 17      | 24     | 25   | 31     | 31     | 30     | 340   |
| 1979  | 31    | 30    | 25      | 31     | 28      | 31    | 23      | 29     | 30   | 31     | 31     | 30     | 350   |
| 1980  | 31    | 30    | 31      | 31     | 29      | 31    | 6       | 18     | 24   | 31     | 31     | 30     | 323   |
| 1981  | 19    | 11    | 13      | 0      | 0       | 0     | 0       | 0      | 0    | 0      | 0      | 23     | 66    |
| 1982  | 31    | 25    | 0       | 0      | 0       | 3     | 30      | 31     | 30   | 31     | 31     | 30     | 242   |
| 1983  | 31    | 30    | 31      | 27     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 361   |
| 1984  | 31    | 30    | 31      | 31     | 29      | 27    | 27      | 31     | 30   | 31     | 31     | 30     | 359   |
| 1985  | 31    | 30    | 31      | 27     | 0       | 10    | 21      | 11     | 27   | 31     | 31     | 30     | 280   |
| 1986  | 31    | 30    | 31      | 31     | 22      | 0     | 0       | 0      | 18   | 31     | 31     | 30     | 255   |
| 1987  | 31    | 30    | 31      | 30     | 0       | 24    | 30      | 31     | 30   | 31     | 31     | 30     | 329   |
| 1988  | 31    | 30    | 31      | 31     | 29      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 366   |
| 1989  | 31    | 27    | 17      | 10     | 28      | 15    | 0       | 0      | 12   | 31     | 31     | 30     | 232   |
| 1990  | 31    | 30    | 31      | 31     | 23      | 31    | 21      | 0      | 13   | 31     | 31     | 30     | 303   |
| 1991  | 31    | 30    | 31      | 31     | 20      | 28    | 30      | 31     | 30   | 31     | 31     | 30     | 354   |
| 1992  | 31    | 30    | 31      | 27     | 0       | 0     | 7       | 0      | 28   | 31     | 31     | 30     | 246   |
| 1993  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1994  | 31    | 29    | 0       | 8      | 26      | 31    | 10      | 27     | 29   | 31     | 31     | 30     | 283   |
| 1995  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1996  | 31    | 30    | 31      | 31     | 29      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 366   |
| 1997  | 31    | 30    | 30      | 0      | 0       | 0     | 7       | 20     | 30   | 31     | 31     | 30     | 240   |
| 1998  | 31    | 30    | 31      | 31     | 28      | 31    | 30      | 31     | 30   | 31     | 31     | 30     | 365   |
| 1999  | 31    | 30    | 31      | 31     | 28      | 3     | 0       | 0      | 20   | 31     | 31     | 30     | 266   |
| 2000  | 31    | 30    | 31      | 31     | 29      | 8     | 0       | 0      | 0    | 14     | 31     | 30     | 235   |
| 2001  | 31    | 23    | 0       | 0      | 0       | 2     | 9       | 19     | 30   | 31     | 31     | 30     | 206   |

Table 9. SJR near Christmas: Diversion statistics - # of days Diversion occurs Minimum River Flow = 300. cfs Diversion up to 150. cfs (Scenario A6 Monthly) 1942-2001 SIMULATED DISCHARGES BY RAO'S MODEL: PROJECT CONDITIONS 2004 Table 10. SJR near Christmas: Diversion statistics - Diversion in cfs-days Minimum River Flow = 300. cfs Diversion up to 150. cfs (Scenario A6 Discharges) 1942-2001 SIMULATED DISCHARGES BY RAO'S MODEL: PROJECT CONDITIONS 2004

| WtrYr | Oct   | Nov           | Dec           | Jan   | Feb           | Mar          | Apr           | May          | Jun   | Jul           | Aug           | Sep   | Annl            | acrft          | mgd  |
|-------|-------|---------------|---------------|-------|---------------|--------------|---------------|--------------|-------|---------------|---------------|-------|-----------------|----------------|------|
| 1942  | 4650. | 4500.         | 4500.         | 4650. | 4200.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54600.          | 296.6          | 96.6 |
| 1943  | 4650. | 4500.         | 4650.         | 2030. | 0.            | 387.         | 318.          | 571.         | 4128. | 4650.         | 4650.         | 4500. | 35034.          | 190.3          | 62.0 |
| 1944  | 4650. | 4500.         | 4650.         | 4650. | 3238.         | 1629.        | 1243.         | 300.         | 3286. | 4650.         | 4650.         | 4500. | 41946.          | 227.3          | 74.0 |
| 1945  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 2028.        | 0.            | 0.           | 1070. | 4650.         | 4650.         | 4500. | 39548.          | 214.9          | 70.0 |
| 1946  | 4650. | 4500.         | 4650.         | 4650. | 3331.         | 412.         | 0.            | 0.           | 2619. | 4650.         | 4650.         | 4500. | 38612.          | 209.8          | 68.3 |
| 1947  | 4650. | 4500.         | 4650.         | 3314. | 2241.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 51455.          | 279.5          | 91.1 |
| 1948  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 4650.        | 3426.         | 6.           | 3081. | 4650.         | 4650.         | 4500. | 47763.          | 258.8          | 84.3 |
| 1949  | 4650. | 4500.         | 4650.         | 4650. | 3569.         | 204          | 0.            | 0.           | 2604. | 4650.         | 4650.         | 4500. | 38441.          | 208.8          | 68.0 |
| 1950  | 4650. | 4500.         | 4650.         | 4650. | 4200          | 394.<br>1462 | 44//.<br>2704 | 8/3.<br>4650 | 4500  | 3631.<br>4650 | 2470.<br>4650 | 4437. | 38430.<br>49766 | 208.8          | 88 1 |
| 1952  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 4472.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54722.          | 296.5          | 96.6 |
| 1953  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 3066.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 53166.          | 288.8          | 94.1 |
| 1954  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4650.        | 2987.         | 388.         | 4500. | 4650.         | 4650.         | 4500. | 48975.          | 266.1          | 86.7 |
| 1955  | 4650. | 4500.         | 4650.         | 4650. | 2963.         | 7.           | 99.           | 561.         | 942.  | 4650.         | 4650.         | 4500. | 36822.          | 200.0          | 65.2 |
| 1956  | 4650. | 4500.         | 4650.         | 4207. | 1441.         | ο.           | Ο.            | ο.           | 176.  | 4293.         | 4650.         | 4500. | 33067.          | 179.2          | 58.4 |
| 1957  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4637.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54737.          | 297.4          | 96.9 |
| 1958  | 4650. | 4500.         | 4640.         | 4650. | 4200.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54740.          | 297.4          | 96.9 |
| 1959  | 4650. | 4500.         | 4604.         | 4627. | 4200.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54681.          | 297.1          | 96.8 |
| 1960  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54900.          | 297.5          | 96.9 |
| 1961  | 4650. | 4500.         | 4650.         | 4650. | 4081.         | 375.         | 0.            | 0.           | 80.   | 4281.         | 4650.         | 4500. | 36417.          | 197.8          | 64.5 |
| 1962  | 4650. | 1637.         | 0.            | 0.    | 0.            | 457.         | 0.            | 0.           | 1200. | 4650.         | 4650.         | 4500. | 21744.          | 118.1          | 38.5 |
| 1963  | 4650. | 4500.         | 4650.         | 4535. | 4186.         | 4650.        | 2827.         | 653.         | 2432. | 4650.         | 4650.         | 4500. | 46883.          | 254.7          | 83.0 |
| 1964  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 4650.        | 4500.         | 3767.        | 3902. | 4650.         | 4650.         | 4500. | 53419.          | 289.4          | 94.3 |
| 1965  | 4650. | 4500.         | 4650.         | 3228. | 4200          | 3519.        | 1366.         | 0.           | ZI37. | 4093.         | 4650.         | 4500. | 39537.          | 214.8          | 70.0 |
| 1967  | 4650. | 4500.         | 4050.         | 4050. | 4200.<br>2123 | 238          | 4500.         | 4050.        | 4500. | 4650.         | 4650.         | 4500. | 30873           | 297.5<br>167 7 | 54 6 |
| 1969  | 4650  | 2518          | 1023          | 51.   | 17            | 230.         | 0.            | 11           | 3900  | 4650          | 4650          | 4500. | 25010           | 140 4          | 45 7 |
| 1969  | 4650. | 4500.         | 4650.         | 4650. | 2762          | 3191.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 51853.          | 281.7          | 91.8 |
| 1970  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4650.        | 4500.         | 2840.        | 3836. | 4650.         | 4650.         | 4500. | 52276.          | 284.0          | 92.5 |
| 1971  | 4650. | 4500.         | 783.          | 0.    | 1539.         | 944.         | 114.          | 0.           | 29.   | 4646.         | 4650.         | 4500. | 26355.          | 143.2          | 46.6 |
| 1972  | 4433. | 4458.         | 2463.         | 0.    | 1794.         | 512.         | 2622.         | 2091.        | 2190. | 4650.         | 4650.         | 4500. | 34363.          | 186.2          | 60.7 |
| 1973  | 4650. | 4449.         | 3788.         | 4650. | 4200.         | 4367.        | 4397.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 53451.          | 290.4          | 94.6 |
| 1974  | 4650. | 4500.         | 4650.         | 4650. | 1368.         | 84.          | 0.            | 0.           | 1471. | 4650.         | 4650.         | 4500. | 35173.          | 191.1          | 62.3 |
| 1975  | 4650. | 4500.         | 4650.         | 4596. | 320.          | 0.           | 179.          | 817.         | 3104. | 4650.         | 4650.         | 4500. | 36616.          | 198.9          | 64.8 |
| 1976  | 4650. | 4500.         | 3993.         | з.    | 0.            | 0.           | 680.          | 2446.        | 4500. | 4650.         | 4650.         | 4500. | 34572.          | 187.3          | 61.0 |
| 1977  | 4650. | 4500.         | 4334.         | 1804. | 622.          | 0.           | 0.            | 0.           | 0.    | 2672.         | 4650.         | 4500. | 27732.          | 150.7          | 49.1 |
| 1978  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4650.        | 1547.         | 2513.        | 3750. | 4650.         | 4650.         | 4500. | 48910.          | 265.7          | 86.6 |
| 1979  | 4650. | 4500.         | 3092.         | 4650. | 4200.         | 4650.        | 2615.         | 3806.        | 4500. | 4650.         | 4650.         | 4500. | 50463.          | 274.2          | 89.3 |
| 1980  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 3582.        | 44.           | 1462.        | 1822. | 3757.         | 4650.         | 4386. | 42503.          | 230.3          | 75.0 |
| 1002  | 1214  | 924.          | 680.          | 0.    | 0.            | 205          | .0            | 4402         | 4500  | 0.            | 0.            | 1749. | 4543.           | 24./<br>196.6  | 8.0  |
| 1002  | 4214. | 2701.<br>4500 | 4650          | 29/1  | 4200          | 305.         | 4433.         | 4402.        | 4500. | 4050.         | 4650.         | 4500. | 54355.<br>520/1 | 100.0          | 00.0 |
| 1984  | 4650  | 4500.         | 4650          | 4650  | 4350          | 2030.        | 3903          | 4635         | 4500. | 4650          | 4650          | 4500. | 52576           | 287.0          | 92.8 |
| 1985  | 4650. | 3964.         | 4650.         | 3108. | 1350.         | 1483.        | 2096.         | 1378.        | 3124. | 4650.         | 4650.         | 4500. | 38253.          | 207.8          | 67.7 |
| 1986  | 4650. | 4500.         | 4650.         | 4650. | 2600.         | 0.           | 0.            | 0.           | 2545. | 4650.         | 4650.         | 4500. | 37395.          | 203.2          | 66.2 |
| 1987  | 4650. | 4500.         | 3676.         | 3073. | 0.            | 1968.        | 4500.         | 4509.        | 4500. | 4650.         | 4650.         | 4500. | 45176.          | 245.4          | 80.0 |
| 1988  | 4650. | 4500.         | 4650.         | 4650. | 4349.         | 4186.        | 4500.         | 4630.        | 4121. | 4263.         | 4650.         | 4500. | 53649.          | 290.7          | 94.7 |
| 1989  | 4650. | 3076.         | 1150.         | 1500. | 3675.         | 696.         | Ο.            | 0.           | 351.  | 4650.         | 4650.         | 4500. | 28898.          | 157.0          | 51.1 |
| 1990  | 4650. | 4500.         | 4650.         | 4522. | 2177.         | 3839.        | 2008.         | 0.           | 1945. | 4650.         | 4650.         | 4500. | 42091.          | 228.7          | 74.5 |
| 1991  | 4650. | 4500.         | 4650.         | 4650. | 1823.         | 2846.        | 4444.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 50513.          | 274.4          | 89.4 |
| 1992  | 4650. | 4500.         | 4650.         | 3303. | 0.            | 0.           | 488.          | 0.           | 3250. | 4650.         | 4650.         | 4500. | 34641.          | 187.7          | 61.1 |
| 1993  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 3803.         | 4500. | 53903.          | 292.8          | 95.4 |
| 1994  | 4650. | 2793.         | 0.            | 663.  | 2929.         | 4201.        | 1352.         | 1772.        | 3684. | 4650.         | 4650.         | 4500. | 35844.          | 194.7          | 63.4 |
| 1995  | 4650. | 4500.         | 4650.         | 4650. | 4200.         | 4650.        | 4500.         | 4650.        | 4500. | 4650.         | 4650.         | 4500. | 54750.          | 297.5          | 96.9 |
| 1005  | 4650. | 4500.         | 4650.         | 4650. | 4350.         | 4650.        | 4500.         | 4638.        | 4500. | 4650.         | 4650.         | 4500. | 54888.          | 297.4          | 96.9 |
| 1000  | 4030. | 4500.         | 30/5.<br>46F0 | U.    | 4200          | U.           | 154.          | 1650.        | 4404. | 403U.         | 405U.         | 4500. | 53038.          | 1/9.5<br>207 E | 20.5 |
| 1000  | 4650  | 4500.         | 4650          | 4546  | 3700          | -1030.<br>ΔΩ | -1000-<br>N   | -020-<br>0   | 3000  | 4650          | 4650          | 4500. | 38804           | 29/03          | 68 9 |
| 2000  | 4650  | 4500          | 4650          | 4650  | 4344          | 488          | 0.<br>n       | ۰<br>۱       |       | 1073          | 4640          | 4500  | 33495           | 181 5          | 59 1 |
| 2001  | 4650  | 2891          | 0.            | 0.    | 0.            | 300.         | 985.          | 2411.        | 4500  | 4650          | 4650          | 4500  | 29537           | 160.5          | 52.3 |
|       |       |               | ••            | ••    | ••            |              |               | •            |       |               |               |       | ,               |                |      |
|       |       |               |               |       |               |              |               |              |       |               |               | mean  | 42709.          | 231.9          | 75.5 |
|       |       |               |               |       |               |              |               |              |       |               |               | m     | E1000           | 207 5          | 96 9 |

max 54900. 297.5 96.9 min 4543. 24.7 8.0

# SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The investigations described in this report determined the potential additional water supply yield, in addition to existing withdrawals, of the SJR at SR 50 based on MFLs compliance as a constraint. Two data series were analyzed in the evaluations: 1) USGS historic discharge data for 1933-2006, and 2) simulated data from the SJRWMD USJRB watershed model (Rao 2004 and 2009) for project conditions 2004. Because the construction of the USJRB Project has just recently been completed (with the exception of a few components), the USGS historic data do not reflect the project benefits that include augmentation of low flows and increased discharge volumes that result from curtailing discharge diversion to the Indian River Lagoon. Therefore, the results based on the USGS data are considered conservative. SJRWMD is developing an HSPF model for the USJRB for the ultimate (2010) configuration of the project. However, model results are not currently available.

Discharge diversions (DD) for water supply (at SR 50) were considered only when discharges in the river exceed certain minimum values (Minimum River Flow, MRF). Four MRF values were assumed for the evaluations: MRF = 300, 200, 100, and 50 cfs. Further, each MRF was evaluated for five DD values: DD = up to 30, 50, 70, 90, 110 cfs. The four MRF and the five DD values assumed for the evaluations resulted in 20 scenarios. A few additional (special case) scenarios were also evaluated. For a given MRF, the DD values given in the foregoing are maximum values. For example, if MRF = 300 cfs and DD = 90 cfs, but the actual river flow is 310 cfs, then the diverted discharge was only 10 cfs; a DD of 90 cfs would occur only when the river flow was equal to or greater than 390 cfs. Time series of discharge data for a given MRF and DD (i.e., for a given scenario) were developed from the original (i.e., no diversion) USGS or model data by a FORTRAN program.

Four MFLs (discharges and stages) are recommended for SJR at SR 50: 1) Minimum frequent high (MFH); 2) Minimum average (MA); 3) Minimum frequent low (MFL), and; 4) Minimum infrequent low (MIL). Compliance with these MFLs was evaluated by standard statistical procedures only for discharges. MFLs compliance for stages was not evaluated because there is no satisfactory method to compute the time series of stage data that would reflect MRFs and DDs. Based on evaluations performed by SJRWMD (HSW Engineering, Inc. 2006, Mace 2007), withdrawals within the range of the MRFs considered in the evaluation described in this document would provide for adequate environmental protection during low-flow periods, meet recommended MFLs for the St. Johns River at SR 50, and allow for development of water supplies from the river.

## Potential water supply yield evaluation methods and results

Potential additional water supply yield of the St. Johns River at SR 50 was determined by three approaches or methods.

**Method I and Results:** USGS 1933-2006 historic data were analyzed in this method. Diversion of discharges was assumed to occur when river flows are above MRF, up to a maximum value of the DD for the scenario. Twenty scenarios were evaluated by this method, and the results of MFLs compliance and the potential water supply yield are as follows:

| Table A. | SJR at SR 50: | Summary | of MFLs con | npliance | (Method I) |
|----------|---------------|---------|-------------|----------|------------|
|          |               |         |             |          | (          |

| MRF (cfs) | Γ  | Discharge | e for Div | ersion (cfs) | )          |
|-----------|----|-----------|-----------|--------------|------------|
|           | 30 | 50        | 70        | 90           | 110        |
| 300       | Y  | Y         | Y         | Y            | N(MA)      |
| 200       | Y  | Y         | Y         | N(MA)        | N(MA)      |
| 100       | Y  | Y         | Y         | N(MA)        | N(MA, MFL) |
| 50        | Y  | Y         | Y         | N(MA)        | N(MA, MFL) |

Y = All MFLs met; N = MFLs in the parentheses not met

Table B. SJR at SR 50: Potential water supply yield, mgd(Mean of diversion discharges for the period analyzed)

| MRF (cfs) | D    | ischarge | Diversi | ion (cfs) |      |
|-----------|------|----------|---------|-----------|------|
|           | 30   | 50       | 70      | 90        | 110  |
| 300       | 14.2 | 23.8     | 33.0    | 42.1      | 51.1 |
| 200       | 15.7 | 26.0     | 36.0    | 45.9      | 55.6 |
| 100       | 17.4 | 28.6     | 39.7    | 50.5      | 61.2 |
| 50        | 18.5 | 30.4     | 42.0    | 53.4      | 64.6 |

The water supply yields shown in bold are infeasible because MFLs are not met for these scenarios.

Maximum yield by this method was 42.1 mgd (from the scenario with MRF = 300 cfs and DD = 90 cfs).

**Method II and results:** USGS 1933 – 2006 historic data were also analyzed in this method, but discharge diversions were assumed to occur at two levels (tiers) of MRFs, that is, additional diversion was made assuming a second higher MRF. This method was applied to two scenarios, as described below.

All of the MFLs were met for Scenario II-1, and the potential water supply yield for this scenario was 57.3 mgd. One of the MFLs, the MA, was not met for Scenario II-2.

**Method III and results:** This method analyzed the 1942 - 2001 simulated data for the USJRB Project Conditions 2004. The four borderline scenarios for which MFLs were not met by Method I (e.g., MRF = 300 cfs and DD = 110 cfs, Table A) were re-evaluated by Method III. The MA was not met by Method I for these scenarios. With the project conditions simulated data, the MFLs were met for all of the four scenarios re-evaluated. The potential average yields for the four scenarios by Method III were as follows.

Scenario III-1: 56.2 mgd (MRF = 300 cfs; DD = 110 cfs) Scenario III-2: 49.8 mgd (MRF = 200 cfs; DD = 90 cfs) Scenario III-3: 54.0 mgd (MRF = 100 cfs; DD = 90 cfs) Scenario III-4: 56.1 mgd (MRF = 50 cfs; DD = 90 cfs)

Scenario III-1 produced the highest potential average yield of the four scenarios, and also indicated some MFLs 'free-board' (i.e., MA would actually not be met at a higher DD). By an iterative process, DD was gradually increased, and it was determined that the limiting higher value of DD at which the MA would be just met was 150 cfs. The potential additional average yield for this scenario (MRF = 300 cfs and DD = 150 cfs) was 75.5 mgd.

**Maximum average yields by the three methods:** Maximum additional average water supply yields that may be obtained by the three methods were:

Method I: 42.1 mgd Method II: 57.3 mgd Method III: 75.5 mgd

The maximum of these three methods (Method III) showed about an 80% increased yield over Method I (from 42.1 mgd to 75.5 mgd), and about a 30% increased yield over Method II (from 57.3 mgd to 75.5 mgd). This result clearly demonstrated that the USJRB Project greatly enhances the water supply potential by its creation of water management and marsh conservation areas and flow regulation through the project area. By applying a two-tier withdrawal method to discharges under project conditions (similar to Method II with USGS data), water supply withdrawals under Method III can be further increased.

# Discharge diversions during drought periods

Potential water supply yields of the SJR at SR 50 for different scenarios presented in the foregoing were the average yields for the periods of evaluation; 72 years for the USGS data and 60 years for the model data. Actual yields for individual years varied. For the periods of analysis, the annual yields varied from 2.4 to 58.1 mgd for Method I, 2.4 to 83.9 mgd for Method II, and 8.0 to 96.9 mgd for Method III. Because of the MRF constraint, water for diversion would not be available for several continuous days during low flow periods. The present analyses showed that, if a drought similar to the extreme historic drought of 1980-1982 occurred, water for diversion would not be available for a continuous period of almost 23 months depending upon the magnitude of the MRF selected for design. There were 12 other drought years during which no water diversion would be possible for continuous periods of 4 to 8 months. Thus, even though the USJRB project greatly enhances the water supply potential of the SJR at SR 50, this increase is only in average volumes, but does not provide higher discharges during the drought conditions.

The drought characteristics of the river and the need to meet MFLs at SR 50 have important implications for water supply facilities design. Because the proposed withdrawals would be made only when river flows exceed certain minimum discharges (i.e., MRFs), water available for diversion would be limited during some drought periods; thus, the St. Johns River becomes an unreliable source under these conditions. Reliability must be provided by raw water or treated water storage or by integrated development with other more reliable sources of supply including groundwater.

# Conclusions

The following conclusions are reached based on data evaluations presented in this report.

- 1. Average additional potential water supply yield of the SJR at SR 50 based on MFLs compliance as a constraint was: a) 42.1 mgd based on the historic USGS discharge data (1933-2006), with diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs; b) 57.3 mgd based on the historic USGS discharge data (1933-2006), with diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs, and additional diversion discharges up to a maximum of 90 cfs when river flows exceed 300 cfs, and additional diversion discharges up to a maximum of 40 cfs when river flows exceed 600 cfs, and; c) 75.5 mgd based on the 1942-2001 simulated data for the USRB Project Conditions 2004, with diversion discharges up to a maximum of 150 cfs when river flows exceed 300 cfs. This yield could be further increased by additional diversion when river flows exceed 600 cfs.
- 2. Yearly water supply yield of the SJR at SR 50 can vary widely due to variation of annual/seasonal rainfall. Typically, the annual yield ranges for the three average yields given in the foregoing (i.e., Cases a, b, and c) are, 2.4 to 58.1 mgd, 2.4 to 83.9 mgd, and 8.0 to 96.9 mgd, respectively.

- 3. No water for diversion would be available for prolonged periods (several months to years) during severe droughts. This condition occurred because water supply discharges were diverted from the SJR only when river flows exceeded certain minimum discharge (e.g., 300 cfs), and the river flow was below this minimum during severe droughts for prolonged periods. Therefore, the MRF will be an important water supply facilities design parameter. If the MRF is not maintained, three MFLs, the MA, the MFL, and the MIL, might not be met.
- 4. It appears, the USJRB project would increase the potential water supply yield of the SJR at SR 50 by about 80% over the pre-project conditions (42.1 to 75.5 mgd) because of low flow augmentation and other water management practices as a result of the USJRB project. However, because of the MRF requirements to support ecological preservation, no increase in water supply withdrawals is possible during some drought conditions (i.e., water available for diversion would be limited during some drought periods because the proposed withdrawals would be made only when river flows exceed certain minimum discharges).

# References

Bicknell, Brian R., John C. Imhoff, John L. Kittle, Jr., Thomas H. Jobes, and Anthony S. Donigian, Jr. 2001. *Hydrological Simulation Program – Fortran, HSPF Version 12, User's Manual*. Athens, Georgia: United States Environmental Protection Agency.

Chow, Ven Te. 1964. *Frequency Analysis*. In Handbook of Applied Hydrology. New York, NY: McGraw-Hill Book Company.

Crawford, N.H., and R.K. Linsley. 1966. *Digital simulation in hydrology: Stanford Watershed Model IV*. Technical Report No. 39. Stanford, CA: Department of Civil Engineering, Stanford University.

Enfield, D.B., A. M. Mestas-Nunez, and P.J. Trimble. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. The AGU.

Environmental Protection Agency. 2001. BASINS - Better Assessment Science Integrating point and Nonpoint Sources, Version 3.0. Athens, Georgia.

Golden Software, Inc. 2005. *Grapher Six: 2D and 3D Graphing for Scientists and Engineers*. Golden, Colorado.

Hall, G.B., and A. Borah. 1998. *Minimum surface water levels determined for the Greater Lake Washington Basin, Brevard County*. Memorandum to Jeff Elledge. Palatka Fla.: St. Johns River Water Management District.

HSW Engineering, Inc. 2006. Evaluation of the effects of the proposed minimum flows and levels regime on water resource values on the St. Johns River between SR 528 and SR 46. Tampa, Florida.

Mace, J.W., 2007. Minimum flows and levels determination: St. Johns River at State Road 50, Orange and Brevard Counties. Technical Publication SJ2007-1. Palatka, Fla.: St. Johns River Water Management District.

Miller, S.J., M.A. Lee, E.F. Lowe, and A.K. Borah. 1996a. *Environmental water management plan for the blue cypress water management area: Upper St. Johns River basin project.* Technical Memorandum No. 13. Palatka, Fla.: St. Johns River Water Management District.

Miller, S.J., A.K. Borah, M.A. Lee, E.F. Lowe, and D. V. Rao. 1996b. *Environmental water management plan for the upper St. Johns River basin project*. Un-published report. Palatka, Fla.: St. Johns River Water Management District.

Miller, S.J., T. Tremwel, and M. Minno. 2003. 2003 environmental water management plan for the Upper St. Johns River Basin Project. Technical Memorandum No. 48. Palatka, Fla.: St. Johns River Water Management District.

Neitsch, S.L., J.G. Arnold, J.R. Kiniry, and J.R. Williams. 2005. *Soil and water assessment tool, Theoretical documentation, Version 2005.* Temple, TX: Grassland, Soil and water research laboratory, Agricultural Research Service.

Rao, D.V. 1985. *The mean annual, 10-year, 25-year, and 100-year flood profiles for the upper St. Johns River under the existing conditions*. Technical Publication SJ 85-3. Palatka, Fla.: St. Johns River Water Management District.

Rao, D.V., and C.C. Tai. 1987. An evaluation of Lake Washington temporary weir for surface water management phase I: Hydraulic/hydrologic analyses. Technical Publication SJ87-3. Palatka Fla.: St. Johns River Water Management District.

Rao, D.V., A.K. Borah, and S.J. Miller. 1994. *Selection of an optimal site for the Lake Washington weir, Brevard County, Florida*. Technical Publication SJ94-5. Palatka, Fla.: St. Johns River Water Management District.

Rao, D.V. 2004 (Draft). A hydrologic simulation model for the Upper St. Johns River Basin, East Central Florida. Division of Engineering. Palatka Fla.: St. Johns River Water Management District. (A hard copy of the report is available at the library, SJRWMD. Interested readers may request for a CD of the report by contacting the librarian).

Rao, D.V. 2009 (In preparation). *The Upper St. Johns River Basin, East Central Florida: An evaluation of basin hydrology for pre-project and project conditions 2004 by longterm model simulations.* Special Publication SJ2007-SPxx. Palatka Fla.: St. Johns River Water Management District.

Rao, D. V. 2009 (In preparation). North Atlantic sea surface temperatures and rainfall/streamflow occurrences in Northeast Florida. Special Publication SJ2009-xx. Palatka, Fla.: St. Johns River Water Management District.

Suphunvorranop, T. and C.C. Tai. 1982. *Upper St. Johns Hydrologic Model – User's manual*. Technical Publication SJ 82-4. Palatka, Fla.: St. Johns River Water Management District.

Tai, C.C. 1978. "Upper St. Johns River Basin Water Management Model." In *ASCE Hydraulics Division Specialty conference on verification of mathematical and physical models in hydraulic engineering*. College Park, Maryland, pp. 729-736.

U. S. Army Corps of Engineers. 2003. Proposed modifications to project features north of the Fellsmere Grade (CC#5H). Central and Southern Florida Flood Control Project, Upper St. Johns River Basin and related areas, Brevard County Florida. Final

Supplementary Environmental Impact Statement. Jacksonville District, Jacksonville, Florida.

Williams, J.R., and W.V. LaSeur. 1976. "Water yield model using SCS curve numbers." In *Journal of the Hydraulics Division*, Vol. 102, HY9. American Society of Civil Engineers, New York.



#### Figure 3. St. Johns River near Christmas (at S.R. 50) Discharge hydrograph (USGS daily discharge data: 1934-2006)



#### Figure 4. St. Johns River near Christmas (at S.R. 50) Discharge-duration curve (USGS 1934-2005 daily discharge data)



Figure 5. St. Johns River near Christmas (at S.R. 50) Stage hydrograph (USGS daily stage data: 1934-2005)

#### Figure 6. St. Johns River near Christmas (at S.R. 50) Stage-duration curve (USGS 1934-2005 daily stage data)





Figure 7. The North Atlantic Ocean



Figure 8. North Atlantic Sea Surface Temperatures and NE Florida Index Rainfall 10-year moving averages (Detrended data)

→ North Atlantic Warm Region MO (Rao) → AMO (NOAA) → Rainfall



Figure 9. North Atlantic Sea Surface Temperatures and NE Florida Index Rainfall Wet Season (June - November): 10-year moving averages (Detrended data)



# Figure 10. North Atlantic SSTs and discharges for the St. Johns River near Christmas 10-year moving averages



#### Figure 11. St. Johns River near Christmas (at S.R. 50) Mass curve of discharges (1934-2005 USGS Water Years)



#### Figure 12. St. Johns River near Christmas (at S.R. 50) Hydrograph of annual mean discharges (USGS Data: 1934-2005 Calendar Years)



#### Figure 13. St. Johns River near Christmas (at S.R. 50) Hydrograph of annual mean discharges (USGS Data: 1934-2005 Water Years)



Figure 14. The Upper St. Johns River Basin Project Area

# APPENDIX A

Rao's USJRB Watershed Model: A brief description

# The USJRB Hydrologic Simulation Model

The Upper St. Johns River Basin hydrologic simulation model (denoted as USJHM, Upper St. Johns Hydrologic Model, henceforth), developed in the late 1970s/early 1980s, was essentially a simplified version of the well-known Stanford Watershed model (Crawford and Linsley 1966), with the runoff simulation procedure based on a watershed model introduced in 1976 by the Agricultural Research Service (ARS), U.S. Department of Agriculture. The ARS model was a simplified continuous simulation model to predict daily, monthly, and annual runoff with reasonable accuracy for watersheds throughout the United States (Williams and LaSeur 1976). It has a one-day time step, and was based on the SCS runoff curve number procedure and a soil moisture accounting technique for computing daily runoff and infiltration. The model developers asserted that 'it was designed to have general applicability, computational efficiency, simple inputs, and good prediction accuracy.' Practicing engineers throughout the US extensively use the SCS method because of its simplicity and the ready availability of input data. Williams and LaSeur (1976) stress the virtues of the SCS runoff curve number method by stating: (1) It is a reliable procedure that has been used for many years in the United States; (2) it is computationally efficient; (3) the required inputs are generally available; and (4) it relates runoff to soil type, land use, and management practices.

The ARS originally developed the model as a surface water model, but later expanded it into a water quality model. Its current version is known as SWAT (Soil and Water Assessment Tool, Neitsch et al. 2005). EPA recognizes SWAT and HSPF equally for developing TMDLs (Total Maximum Daily Loads), and applications of SWAT, and HSPF, are now available through the EPA's BASINS program (Better Assessment Science Integrating point and Non-point Sources, Version 3.0, Environmental Protection Agency 2001).

In the late 1970s, Dr. C. Charles Tai, the then Director of the Division Engineering, SJRWMD, developed an initial version of the USJHM for the pre-project conditions (Tai 1978; Suphunvorranop and Tai. 1982). The task of developing the full model, however, was assigned to Rao (the author of this report). Rao made further improvements to the pre-project conditions (then called existing conditions) model originally developed by Tai by detailed calibration and parameter optimization and introducing additional modeling concepts/procedures. Two versions of the model were developed: 1) Pre-development conditions; and 2) the USJRB project conditions. The pre-development conditions model represented approximately Year 1900 conditions by eliminating roads, levees, and other developments in the floodplain and extending the floodplain to its maximum limits based on the USGS contour information. This model produced information, such as floodplain acreages, stages, and storages for the mean annual, and other floods of different recurrence intervals (e.g., 100-years), for comparison with the developed basin conditions. The project conditions version of the model was used extensively during 1977-1984 to evaluate innumerable USJRB plan alternatives while developing a Basic Design Concept and also while finalizing the Project with the USACE. During 1980-2000, the model was used for several other basin evaluations: environmental, flood

control, MFLs development and water supply (Rao 1985; Rao and Tai 1987; Rao, Borah, and Miller 1995; Miller et al. 1996a; Miller et al. 1996b, and; Hall and Borah 1998).

During 2000-2005, Rao fully updated both the pre-project and project conditions versions of the model by incorporating the latest model input data available through the highly sophisticated GIS database of the SJRWMD (Rao 2004 and 2009). The updated input data included land use and soils data and revised sub-basin boundaries. The models were re-calibrated and validated, including writing additional model code to incorporate other modeling concepts. Input data files were developed for long-term simulations covering a 60-year period (1942-2001).

While the basic runoff and infiltration methodologies were drawn from the ARS model, the complex USJRB processes that included specific agricultural practices, the maze of water management and marsh conservation areas and the controlled movement of flow through these areas, the simulation of vast floodplain with the embedded lakes like Lakes Washington, Winder and Poinsett, and the simulation of tributary flows, were all modeled by specific code writing. That is the greatest challenge posed to modelers when generalized models such as HSPF or SWAT are applied to basins like the USJRB. The modeler must determine how to model certain hydrologic processes specific to the basin. This process was more direct in the case of USJHM because the necessary code could be readily written. If the selected model (e.g., HSPF) has no provision for modeling certain hydrologic processes specific to the basin, they are either to be approximated, or omitted, which might result in unsatisfactory simulation. The USJHM was peer reviewed by SJRWMD in-house staff and a consultant, Camp, Dresser, and McKee, Inc. Some of the comments from the Camp, Dresser, and McKee peer reviewer were as follows.

- A key feature of the USJRB models is that the developers were able to develop special computer code to explicitly (simulate) the complex special water regulation conditions that exist in the basin. <u>If other models were used, it may have been necessary to use rules that are more approximate.</u>
- CDM has found that the USJRB model has been developed with a sufficient level of detail for its intended purpose. <u>There are custom routines built into the model</u> that simulate the unique agricultural practices of the USJRB and the model has been sufficiently calibrated.
- The procedures used to simulate the basin hydrology are similar to those used in other nationally recognized models and appear to be conceptually accurate for the modeling of the hydrologic processes in the USJRB. <u>It would be difficult to find a model that explicitly simulates processes included in the USJRB models (e.g., irrigation withdrawals and simulation of runoff from storage areas that are partially inundated).</u>
- It is clear that with the construction of the improvements in the USJRB, the hydrologic conditions are quite complex. It would likely be difficult to simulate the control structures and control strategy explicitly in other models (e.g., HSPF).

(Underlining in the above bullets is done for emphasis by the author of this report)

The modeling approach used to arrive at a satisfactory simulation for the USJRB was as follows:

- 1. Set up and calibrate the pre-project conditions model first, choosing an appropriate calibration period. Period 1978-1985 was chosen to calibrate the pre-project conditions model.
- 2. Validate the pre-project conditions model as follows. Since long-term observed discharge and/or stage data are available for a number of locations in the basin, and it is generally ascertained that the historic land use changes did not significantly affect the basin hydrology (i.e., volumes of discharge, see Figure 11), optimize any model parameters as appropriate, to obtain a good match of simulated and observed data duration curves (stage and discharge) for the available period of data for pre-project conditions. It is assumed that pre-project conditions end in 1993.
- **3**. Use the pre-project conditions model to develop the project conditions model by incorporating the basin changes and other water control procedures that took place as a result of the project. Retain the applicable model parameters and the hydrologic concepts/procedures determined for the pre-project conditions model. Calibrate project conditions model (The period 1994-2001 was used for model calibration).

This approach yielded quite satisfactory simulations for the USJRB, and a comparison of pre-project and project conditions results also illustrated the benefits derived from the project. An example of model performance is presented in the model simulation results for the SJR near Christmas (Figures A1 – A20). This is the downstream most station for calibration, and the basin has a drainage area of 1,539 square miles at this station; thus, the results for this station reflect the model performance practically for the entire USJRB. The upstream stations for which model calibration for pre-project conditions was performed are (refer to Figures 2 and 14):

- 1. SJR at SR 60 (Stages)
- 2. Blue Cypress Lake (Stages)
- 3. SJR near Melbourne (Discharges)
- 4. SJR near Cocoa (Discharges and stages)

**Simulation of duration curves.** The stage and discharge duration curves for pre-project conditions (1942-1993 period) were optimized interactively, that is, making sure that both stage and discharge duration curves have a good match, simultaneously, with the duration curves from the observed data. The overall stage and discharge duration curves show a good match between the simulated and observed conditions (Figures A-1 and A-5). The lower values in the 60-100% exceedance range (which greatly influence the MFLs and the water supply potential) were further examined in Figures A-2 and A-6. The low stages in the 60-100% exceedance range matched with an error typically less than 0.2 ft (Figure A-2). The discharges below 400 cfs matched with an error of 0 to 40 cfs (Figure A-6). Project conditions duration curves showed that both the project

conditions stages and discharges would be higher than the pre-project/USGS values in the 35-100% exceedance range (Figures A-3, A-4, A-7 and A-8); the improvement occurs for stages below 7.5 ft NGVD and discharges below 1,250 cfs. The stages increased by about 0.6 ft, and discharges by about 150 cfs.

**Simulation of hydrographs.** A good match of simulated and observed data duration curves also led to a highly satisfactory simulation of discharge hydrographs (Figures A-9 through A-14) and a good simulation of stage hydrographs (Figures A-15 through A-20). Satisfactory simulation of historic hydrographs plays a crucial role in accurate evaluation of MFLs, because MFLs are duration-based events (Table 1).



#### St. Johns River near Christmas Stage-duration curves: 1942-1993 data

Figure A-1: Comparison of stage-duration curves: Pre-project conditions vs. USGS




Figure A-2: Comparison of stage-duration curves: Pre-project conditions vs. USGS (60 to 100% range)





Figure A-3: Comparison of stage-duration curves: USGS, Pre-project and Project conditions



St. Johns River near Christmas Stage-duration curves: 1942-2001 data





St. Johns River near Christmas Flow-duration curves: 1942-1993 data

Figure A-5: Comparison of discharge-duration curves: Pre-project conditions vs. USGS



## St. Johns River near Christmas Flow-duration curves: 1942-1993 data

Figure A-6: Comparison of discharge-duration curves: Pre-project conditions vs. USGS (60 to 100% range)



### St. Johns River near Christmas Flow-duration curves: 1942-2001 data

Figure A-7: Comparison of discharge-duration curves: USGS, Pre-project and Project conditions



St. Johns River near Christmas Flow-duration curves: 1942-2001 data



Percent time discharge exceeded

Figure A-8: Comparison of discharge-duration curves: USGS, Pre-project and Project conditions (60-100% range)

1**\**₼∩





Figure A-9: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1942-1949)



St. Johns River near Christmas Discharge hydrographs: 1950-1958

Figure A-10: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1950-1958)



St. Johns River near Christmas Discharge hydrographs: 1959-1970

Figure A-11: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1959-1970)



St. Johns River near Christmas Discharge hydrographs: 1971-1982

Figure A-12: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1971-1982)





Figure A-13: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1983-1993)





Figure A-14: Comparison of discharge hydrographs: USGS, Pre-project and Project conditions (1994-2001)





Figure A-15: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1942-1949)



St. Johns River near Christmas Stage hydrographs: 1950-1958

Figure A-16: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1950-1958)



St. Johns River near Christmas Stage hydrographs: 1959-1970

Figure A-17: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1959-1970)



St. Johns River near Christmas Stage hydrographs: 1971-1982

Figure A-18: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1971-1982)





Figure A-19: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1983-1993)





Figure A-20: Comparison of stage hydrographs: USGS, Pre-project and Project conditions (1994-2001)

## APPENDIX I

MFLs evaluations for the St. Johns River at the SR 50 Bridge 1933-2005 USGS Discharges

Table I-1. SJR near Christmas: Highest Discharges, cfs (USGS)

Highest values exceeded continuously for the following number of days in year ending May 31

| year | 1        | 7        | 14       | 30      | 60      | 90      | 120     | 183     | 1 year         |
|------|----------|----------|----------|---------|---------|---------|---------|---------|----------------|
| 1934 | 4700.00  | 4400.00  | 3850.00  | 3650.00 | 2420.00 | 1750.00 | 1590.00 | 654.00  | 36.00          |
| 1935 | 4600.00  | 4300.00  | 3940.00  | 3270.00 | 2820.00 | 1860.00 | 1400.00 | 1300.00 | 31.00          |
| 1936 | 1860.00  | 1440.00  | 1300.00  | 1220.00 | 985.00  | 883.00  | 698.00  | 698.00  | 0.00           |
| 1937 | 3620.00  | 3380.00  | 3060.00  | 2820.00 | 2430.00 | 2070.00 | 1320.00 | 615.00  | 118.00         |
| 1938 | 1240.00  | 940.00   | 816.00   | 768.00  | 475.00  | 352.00  | 308.00  | 235.00  | 0.00           |
| 1939 | 2860.00  | 2690.00  | 2490.00  | 2400.00 | 1950.00 | 1800.00 | 1400.00 | 768.00  | 0.00           |
| 1940 | 2880.00  | 2600.00  | 2180.00  | 1990.00 | 1600.00 | 648.00  | 475.00  | 272.00  | 0.00           |
| 1941 | 5270.00  | 5050.00  | 4640.00  | 3720.00 | 3020.00 | 2480.00 | 2030.00 | 2030.00 | 430.00         |
| 1942 | 2350.00  | 2120.00  | 1910.00  | 1720.00 | 1270.00 | 1090.00 | 1090.00 | 226.00  | 22.00          |
| 1943 | 3700.00  | 3600.00  | 3200.00  | 2900.00 | 2550.00 | 1910.00 | 1260.00 | 448.00  | 15.00          |
| 1944 | 4270.00  | 3790.00  | 3160.00  | 2670.00 | 1540.00 | 1500.00 | 1500.00 | 786.00  | 0.00           |
| 1945 | 9230.00  | 8520.00  | 6540.00  | 3960.00 | 2080.00 | 1460.00 | 1460.00 | 985.00  | 70.00          |
| 1946 | 3500.00  | 2840.00  | 2450.00  | 2120.00 | 1740.00 | 1460.00 | 991.00  | 289.00  | 110.00         |
| 1947 | 10700.00 | 10100.00 | 9810.00  | 7820.00 | 3850.00 | 2440.00 | 2440.00 | 2260.00 | 119.00         |
| 1948 | 9890.00  | 9890.00  | 8770.00  | 6440.00 | 2550.00 | 1740.00 | 1260.00 | 589.00  | 70.00          |
| 1949 | 4910 00  | 4820 00  | 4530 00  | 4330.00 | 1600.00 | 2240.00 | £22 00  | 176 00  | 70.00<br>66.00 |
| 1951 | 4850 00  | 3920.00  | 3030.00  | 2590.00 | 1640 00 | 1600.00 | 1020 00 | 629 00  | 186 00         |
| 1952 | 5720.00  | 5550.00  | 5100.00  | 3510.00 | 1870.00 | 1420.00 | 961.00  | 356.00  | 0.00           |
| 1953 | 11600.00 | 11200.00 | 10200.00 | 9340.00 | 6170.00 | 3230.00 | 2740.00 | 1290.00 | 130.00         |
| 1954 | 3330.00  | 2850.00  | 2600.00  | 2380.00 | 1990.00 | 1600.00 | 1410.00 | 1410.00 | 167.00         |
| 1955 | 2380.00  | 2270.00  | 2150.00  | 2010.00 | 1420.00 | 1130.00 | 861.00  | 479.00  | 39.00          |
| 1956 | 10100.00 | 8410.00  | 7840.00  | 4900.00 | 2200.00 | 1530.00 | 901.00  | 200.00  | 0.00           |
| 1957 | 4290.00  | 3620.00  | 3180.00  | 2910.00 | 2310.00 | 1950.00 | 1220.00 | 715.00  | 652.00         |
| 1958 | 4900.00  | 4240.00  | 3370.00  | 2540.00 | 1420.00 | 1020.00 | 585.00  | 218.00  | 170.00         |
| 1959 | 9850.00  | 8780.00  | 6730.00  | 4060.00 | 2530.00 | 1990.00 | 1650.00 | 1450.00 | 738.00         |
| 1960 | 10900.00 | 10300.00 | 9340.00  | 7260.00 | 4370.00 | 3740.00 | 3390.00 | 1180.00 | 0.00           |
| 1961 | 2400.00  | 1560.00  | 858.00   | 423.00  | 350.00  | 239.00  | 239.00  | 98.00   | 15.00          |
| 1962 | 3310.00  | 3080.00  | 2960.00  | 2420.00 | 1600.00 | 1300.00 | 809.00  | 454.00  | 15.00          |
| 1963 | 4380.00  | 3310.00  | 2470.00  | 2340.00 | 1780.00 | 1750.00 | 1730.00 | 1060.00 | 132.00         |
| 1964 | 8860.00  | 8210.00  | 6740.00  | 4580.00 | 1970.00 | 875.00  | 762.00  | 280.00  | 0.00           |
| 1965 | 4480.00  | 3900.00  | 3550.00  | 2690.00 | 1130.00 | 881.00  | 553.00  | 486.00  | 50.00          |
| 1960 | 4370.00  | 3000.00  | 3100.00  | 2870.00 | 2360.00 | 1080 00 | 1970.00 | 190.00  | 30.00          |
| 1968 | 9040 00  | 7850 00  | 7310 00  | 6650 00 | 3190 00 | 1410 00 | 980.00  | 888 00  | 28.00          |
| 1969 | 7150.00  | 6700.00  | 5600.00  | 4500.00 | 3450.00 | 2800.00 | 2470.00 | 1920.00 | 326.00         |
| 1970 | 1080.00  | 764.00   | 503.00   | 394.00  | 330.00  | 330.00  | 280.00  | 124.00  | 59.00          |
| 1971 | 1720.00  | 1120.00  | 1040.00  | 848.00  | 661.00  | 525.00  | 388.00  | 388.00  | 57.00          |
| 1972 | 2160.00  | 1960.00  | 1870.00  | 1570.00 | 1460.00 | 944.00  | 742.00  | 427.00  | 0.00           |
| 1973 | 3130.00  | 3030.00  | 2850.00  | 2790.00 | 2100.00 | 1710.00 | 1390.00 | 661.00  | 69.00          |
| 1974 | 5880.00  | 5350.00  | 4930.00  | 4160.00 | 3470.00 | 3080.00 | 2400.00 | 417.00  | 37.00          |
| 1975 | 1930.00  | 1730.00  | 1510.00  | 1380.00 | 1180.00 | 925.00  | 925.00  | 359.00  | 21.00          |
| 1976 | 5440.00  | 5130.00  | 4580.00  | 3380.00 | 3040.00 | 2020.00 | 1740.00 | 904.00  | 0.00           |
| 1977 | 2230.00  | 1940.00  | 1810.00  | 1700.00 | 1350.00 | 1300.00 | 1140.00 | 510.00  | 9.50           |
| 1978 | 5160.00  | 4970.00  | 4720.00  | 4260.00 | 3390.00 | 1950.00 | 1070.00 | 368.00  | 211.00         |
| 1979 | 6890.00  | 6600.00  | 6150.00  | 4320.00 | 2850.00 | 1770.00 | 1480.00 | 941.00  | 165.00         |
| 1980 | 322.00   | 235.00   | 194.00   | 127.00  | 95.00   | 56.00   | 52.00   | 15.00   | 0.00           |
| 1000 | 1920.00  | 1240.00  | 618.00   | 218.00  | 181.00  | 129.00  | 129.00  | 109.00  | 2.20           |
| 1002 | 3740.00  | 2280.00  | 3140.00  | 4340.00 | 3750.00 | 3350.00 | 2690.00 | 689.00  | 385.00         |
| 1984 | 2180 00  | 2050.00  | 1890 00  | 1710 00 | 1280 00 | 957 00  | 902 00  | 702 00  | 292.00         |
| 1985 | 4420.00  | 4080.00  | 3930.00  | 3860.00 | 3040.00 | 1910.00 | 1180.00 | 957.00  | 32.00          |
| 1986 | 3070.00  | 2260.00  | 1660.00  | 1510.00 | 1100.00 | 899.00  | 651.00  | 415.00  | 24.00          |
| 1987 | 4750.00  | 4700.00  | 4510.00  | 3960.00 | 2950.00 | 1980.00 | 1620.00 | 930.00  | 158.00         |
| 1988 | 1490.00  | 993.00   | 698.00   | 589.00  | 445.00  | 356.00  | 213.00  | 147.00  | 0.00           |
| 1989 | 2710.00  | 2420.00  | 2180.00  | 2060.00 | 1170.00 | 1170.00 | 626.00  | 304.00  | 67.00          |
| 1990 | 2710.00  | 2520.00  | 2270.00  | 2170.00 | 1810.00 | 1210.00 | 839.00  | 507.00  | 65.00          |
| 1991 | 4920.00  | 4700.00  | 4280.00  | 3440.00 | 2950.00 | 2650.00 | 2340.00 | 1700.00 | 173.00         |
| 1992 | 5760.00  | 5490.00  | 4920.00  | 3900.00 | 3230.00 | 2080.00 | 1500.00 | 725.00  | 0.00           |
| 1993 | 1210.00  | 1120.00  | 952.00   | 807.00  | 539.00  | 306.00  | 281.00  | 252.00  | 171.00         |
| 1994 | 4860.00  | 4620.00  | 4460.00  | 3970.00 | 3250.00 | 3000.00 | 2910.00 | 1870.00 | 251.00         |
| 1995 | 6510.00  | 5970.00  | 5290.00  | 4580.00 | 4160.00 | 3440.00 | 2600.00 | 1210.00 | 260.00         |
| 1996 | 1800.00  | 1440.00  | 1170.00  | 881.00  | 760.00  | 760.00  | 656.00  | 643.00  | 0.00           |

Table I-1 -Continued

| Highe<br>31 | est values | s exceeded | l continuo | ously for | the follo | wing numb | er of day | s in year | ending May |
|-------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|------------|
| year        | 1          | 7          | 14         | 30        | 60        | 90        | 120       | 183       | 1 year     |
| 1997        | 5460.00    | 5110.00    | 4950.00    | 4150.00   | 3580.00   | 3360.00   | 3340.00   | 1440.00   | 61.00      |
| 1998        | 2170.00    | 1920.00    | 1850.00    | 1670.00   | 1190.00   | 710.00    | 491.00    | 228.00    | 0.00       |
| 1999        | 6290.00    | 6150.00    | 5730.00    | 4400.00   | 3190.00   | 1810.00   | 1150.00   | 475.00    | 0.00       |
| 2000        | 1990.00    | 1780.00    | 1560.00    | 1140.00   | 503.00    | 272.00    | 181.00    | 72.00     | 0.00       |
| 2001        | 5790.00    | 4380.00    | 4210.00    | 3970.00   | 3120.00   | 2460.00   | 1860.00   | 481.00    | 0.00       |
| 2002        | 6120.00    | 5440.00    | 5120.00    | 4820.00   | 4230.00   | 2950.00   | 1230.00   | 479.00    | 45.00      |
| 2003        | 3750.00    | 3600.00    | 3430.00    | 3390.00   | 2990.00   | 1620.00   | 851.00    | 380.00    | 71.00      |
| 2004        | 7550.00    | 7240.00    | 7150.00    | 6630.00   | 4350.00   | 1980.00   | 1350.00   | 716.00    | 0.00       |
| 2005        | 7200.00    | 6290.00    | 6040.00    | 5150.00   | 2820.00   | 1940.00   | 1600.00   | 1600.00   | 11.00      |
|             |            |            |            |           |           |           |           |           |            |
| mean        | 4672.11    | 4241.00    | 3802.49    | 3130.90   | 2190.33   | 1604.51   | 1255.58   | 697.62    | 89.75      |
| max         | 11600.00   | 11200.00   | 10200.00   | 9340.00   | 6170.00   | 3740.00   | 3390.00   | 2260.00   | 738.00     |
| min         | 322.00     | 235.00     | 194.00     | 127.00    | 95.00     | 56.00     | 52.00     | 15.00     | 0.00       |
|             |            |            |            |           |           |           |           |           |            |

Table I-2. SJR near Christmas: Lowest discharges, cfs (USGS)

Lowest values not exceeded continuously for the following number of days in year ending Sep 30

| Year | 1      | 7      | 14     | 30               | 60       | 90      | 120     | 183     | 1 Year   |
|------|--------|--------|--------|------------------|----------|---------|---------|---------|----------|
| 1934 | 367.00 | 444.00 | 570.00 | 640.00           | 735.00   | 985.00  | 1220.00 | 1980.00 | 4700.00  |
| 1935 | 31.00  | 43.00  | 64.00  | 84.00            | 99.00    | 129.00  | 221.00  | 528.00  | 3600.00  |
| 1936 | 596.00 | 634.00 | 698.00 | 823.00           | 1490.00  | 1490.00 | 1700.00 | 3350.00 | 4600.00  |
| 1937 | 208.00 | 214.00 | 221.00 | 228.00           | 320.00   | 339.00  | 381.00  | 528.00  | 1320.00  |
| 1938 | 118.00 | 126.00 | 165.00 | 195.00           | 250.00   | 407.00  | 746.00  | 1240.00 | 3620.00  |
| 1939 | 0.00   | 2.00   | 9.00   | 34.00            | 49.00    | 87.00   | 160.00  | 535.00  | 2860.00  |
| 1940 | 150.00 | 168.00 | 222.00 | 315.00           | 513.00   | 793.00  | 1420.00 | 1510.00 | 2740.00  |
| 1941 | 272.00 | 292.00 | 292.00 | 400.00           | 790.00   | 1990.00 | 2320.00 | 2390.00 | 5270.00  |
| 1942 | 765.00 | 790.00 | 912.00 | 1030.00          | 1480.00  | 1850.00 | 2350.00 | 2350.00 | 4200.00  |
| 1943 | 15.00  | 19.00  | 27.00  | 30.00            | 51.00    | 99.00   | 154.00  | 170.00  | 3700.00  |
| 1944 | 46.00  | 56.00  | 65.00  | 84.00            | 224.00   | 348.00  | 348.00  | 648.00  | 3300.00  |
| 1945 | 73.00  | 75.00  | 76.00  | 107 00           | 152 00   | 240 00  | 397 00  | 701 00  | 5250.00  |
| 1940 | 111 00 | 128 00 | 206.00 | 298 00           | 550 00   | 240.00  | 1170 00 | 1490 00 | 9810 00  |
| 1948 | 62 00  | 74 00  | 114 00 | 149 00           | 180 00   | 294 00  | 550 00  | 1620 00 | 10700 00 |
| 1949 | 69.00  | 72.00  | 74.00  | 78.00            | 127.00   | 280.00  | 368.00  | 944.00  | 9890.00  |
| 1950 | 66.00  | 72.00  | 76.00  | 86.00            | 99.00    | 116.00  | 142.00  | 376.00  | 6600.00  |
| 1951 | 88.00  | 96.00  | 105.00 | 267.00           | 370.00   | 381.00  | 414.00  | 850.00  | 4910.00  |
| 1952 | 106.00 | 116.00 | 124.00 | 143.00           | 235.00   | 324.00  | 532.00  | 1570.00 | 4850.00  |
| 1953 | 198.00 | 203.00 | 213.00 | 227.00           | 292.00   | 861.00  | 1790.00 | 2600.00 | 10000.00 |
| 1954 | 130.00 | 139.00 | 165.00 | 242.00           | 375.00   | 604.00  | 1290.00 | 2860.00 | 11600.00 |
| 1955 | 126.00 | 145.00 | 147.00 | 194.00           | 276.00   | 465.00  | 726.00  | 934.00  | 2980.00  |
| 1956 | 25.00  | 30.00  | 31.00  | 45.00            | 81.00    | 108.00  | 139.00  | 230.00  | 2410.00  |
| 1957 | 434.00 | 480.00 | 532.00 | 680.00           | 832.00   | 996.00  | 1050.00 | 1300.00 | 10100.00 |
| 1958 | 218.00 | 239.00 | 298.00 | 393.00           | 466.00   | 466.00  | 666.00  | 3140.00 | 3990.00  |
| 1959 | 170.00 | 198.00 | 269.00 | 409.00           | 742.00   | 745.00  | 851.00  | 3460.00 | 4900.00  |
| 1960 | 780.00 | 830.00 | 872.00 | 932.00           | 1340.00  | 1990.00 | 2990.00 | 8150.00 | 10900.00 |
| 1961 | 98.00  | 111.00 | 127.00 | 160.00           | 236.00   | 292.00  | 402.00  | 533.00  | 10700.00 |
| 1962 | 132.00 | 22.00  | 24.00  | 32.00            | 53.00    | 87.00   | 129.00  | 1470 00 | 3060.00  |
| 1963 | 132.00 | 154.00 | 180.00 | 247.00           | 288.00   | 490.00  | 678.00  | 2160.00 | 3310.00  |
| 1065 | 135.00 | 167.00 | 187.00 | 124 00           | 250.00   | 542.00  | 444.00  | 2160.00 | 4680.00  |
| 1966 | 486.00 | 528.00 | 612.00 | 721.00           | 979.00   | 1290.00 | 1550.00 | 4370.00 | 4480.00  |
| 1967 | 28.00  | 29.00  | 36.00  | 43.00            | 104.00   | 350.00  | 488.00  | 715.00  | 3840.00  |
| 1968 | 32.00  | 43.00  | 50.00  | 88.00            | 98.00    | 223.00  | 223.00  | 266.00  | 9040.00  |
| 1969 | 306.00 | 336.00 | 434.00 | 598.00           | 1060.00  | 1370.00 | 1550.00 | 2300.00 | 4160.00  |
| 1970 | 103.00 | 115.00 | 160.00 | 280.00           | 454.00   | 583.00  | 739.00  | 1200.00 | 7150.00  |
| 1971 | 57.00  | 64.00  | 73.00  | 95.00            | 103.00   | 171.00  | 226.00  | 384.00  | 1720.00  |
| 1972 | 217.00 | 223.00 | 247.00 | 288.00           | 586.00   | 796.00  | 832.00  | 876.00  | 2020.00  |
| 1973 | 320.00 | 350.00 | 386.00 | 586.00           | 670.00   | 828.00  | 956.00  | 1790.00 | 2900.00  |
| 1974 | 69.00  | 77.00  | 83.00  | 107.00           | 126.00   | 183.00  | 222.00  | 1060.00 | 5880.00  |
| 1975 | 37.00  | 39.00  | 46.00  | 63.00            | 80.00    | 118.00  | 144.00  | 558.00  | 5100.00  |
| 1976 | 21.00  | 26.00  | 27.00  | 39.00            | 80.00    | 156.00  | 190.00  | 1060.00 | 5440.00  |
| 1070 | 9.50   | 22.00  | 34.00  | 44.00            | 66.00    | 69.00   | 100.00  | 449.00  | 4270.00  |
| 1978 | 308.00 | 351.00 | 402.00 | 483.00           | 568.00   | 1070.00 | 1310 00 | 2230.00 | 5160.00  |
| 1980 | 52 00  | 240.00 | 204.00 | 408.00           | 206 00   | 242 00  | 322 00  | 2010.00 | 6890.00  |
| 1981 | 2.20   | 6.40   | 8.60   | 14.00            | 44.00    | 90.00   | 160.00  | 160.00  | 522.00   |
| 1982 | 88.00  | 88.00  | 92.00  | 124.00           | 200.00   | 285.00  | 285.00  | 299.00  | 5740.00  |
| 1983 | 292.00 | 351.00 | 432.00 | 553.00           | 808.00   | 808.00  | 891.00  | 4420.00 | 4420.00  |
| 1984 | 445.00 | 496.00 | 537.00 | 778.00           | 1140.00  | 1720.00 | 1720.00 | 1910.00 | 2360.00  |
| 1985 | 129.00 | 147.00 | 187.00 | 211.00           | 320.00   | 324.00  | 648.00  | 648.00  | 3940.00  |
| 1986 | 24.00  | 28.00  | 36.00  | 61.00            | 134.00   | 257.00  | 283.00  | 883.00  | 4420.00  |
| 1987 | 158.00 | 168.00 | 187.00 | 245.00           | 281.00   | 334.00  | 687.00  | 3070.00 | 3070.00  |
| 1988 | 146.00 | 163.00 | 180.00 | 224.00           | 356.00   | 503.00  | 716.00  | 2040.00 | 4750.00  |
| 1989 | 70.00  | 77.00  | 90.00  | 108.00           | 150.00   | 201.00  | 315.00  | 416.00  | 1490.00  |
| 1990 | 65.00  | 70.00  | 70.00  | 101.00           | 124.00   | 286.00  | 286.00  | 460.00  | 2710.00  |
| 1991 | 507.00 | 540.00 | 565.00 | 655.00           | 1050.00  | 1150.00 | 1400.00 | 1800.00 | 3110.00  |
| 1992 | 173.00 | 190.00 | 214.00 | 279.00           | 570.00   | 785.00  | 785.00  | 1200.00 | 4920.00  |
| 1004 | 281.00 | 328.00 | 353.00 | 460.00           | 604.00   | 838.00  | 1210.00 | 2100.00 | 5760.00  |
| 1005 | 260 00 | 301 00 | 320 00 | 466 00           | 500.00   | 420.00  | 370.00  | 2000 00 | 4050.00  |
| 1996 | 574 00 | 501.00 | 751 00 | 400.00<br>995 NA | 1010 00  | 1270 00 | 1640 00 | 2510 00 | 4000.00  |
| ±290 | 571.00 | 000.00 | ,      | 222.00           | TOTO .00 | TT,0.00 | 1010.00 | 2310.00 | 0010.00  |

#### Table I-2 -Continued

Lowest values not exceeded continuously for the following number of days in year ending Sep  $30\,$ 

| Year | 1       | 7      | 14     | 30      | 60      | 90      | 120     | 183     | 1 Year   |
|------|---------|--------|--------|---------|---------|---------|---------|---------|----------|
| 1997 | -40.00  | 25.00  | 36.00  | 139.00  | 163.00  | 197.00  | 260.00  | 555.00  | 2150.00  |
| 1998 | 92.00   | 164.00 | 242.00 | 403.00  | 840.00  | 1190.00 | 1370.00 | 3940.00 | 5460.00  |
| 1999 | -137.00 | -44.00 | -3.70  | 89.00   | 167.00  | 248.00  | 381.00  | 552.00  | 3270.00  |
| 2000 | -76.00  | -17.00 | 2.50   | 19.00   | 97.00   | 99.00   | 174.00  | 368.00  | 6290.00  |
| 2001 | -2.70   | 28.00  | 36.00  | 62.00   | 112.00  | 161.00  | 241.00  | 255.00  | 5790.00  |
| 2002 | 43.00   | 65.00  | 67.00  | 103.00  | 195.00  | 354.00  | 1070.00 | 1070.00 | 6120.00  |
| 2003 | 132.00  | 154.00 | 187.00 | 267.00  | 403.00  | 792.00  | 990.00  | 1650.00 | 5070.00  |
| 2004 | 71.00   | 92.00  | 94.00  | 190.00  | 363.00  | 393.00  | 475.00  | 848.00  | 7240.00  |
| 2005 | 454.00  | 514.00 | 554.00 | 658.00  | 1020.00 | 1080.00 | 1890.00 | 1890.00 | 7550.00  |
| mean | 165.31  | 188.62 | 216.14 | 282.65  | 423.32  | 586.65  | 796.40  | 1495.57 | 5224.06  |
| max  | 780.00  | 830.00 | 912.00 | 1030.00 | 1490.00 | 1990.00 | 2990.00 | 8150.00 | 11600.00 |
| min  | -137.00 | -44.00 | -3.70  | 14.00   | 44.00   | 69.00   | 106.00  | 158.00  | 522.00   |

| LOWEST | MEAN VZ | ALUES FOR | THE FOLLO | WING NUMBE      | ER OF CONS      | SECUTIVE        | DAYS IN Y | EAR ENDING       | SEPT 30 |
|--------|---------|-----------|-----------|-----------------|-----------------|-----------------|-----------|------------------|---------|
| YEAR   | 1       | L 7       | 14        | 30              | 60              | 90              | 120       | 183              | 1 YEAR  |
| 1934   | 367.00  | 406.14    | 461.86    | 522.77          | 570.78          | 654.19          | 707.93    | 1007.50          | 1882.85 |
| 1935   | 31.00   | 35.71     | 45.71     | 55.23           | 59.32           | 71.28           | 97.47     | 185.75           | 674.97  |
| 1936   | 596.00  | 609.57    | 632.29    | 695.90          | 928.87          | 1062.58         | 1090.34   | 1267.15          | 1933.71 |
| 1937   | 208.00  | 210.57    | 213.29    | 218.57          | 250.13          | 254.67          | 275.01    | 329.43           | 572.93  |
| 1938   | 118.00  | 120.29    | 132.14    | 150.57          | 172.88          | 216.89          | 308.56    | 432.78           | 1229.92 |
| 1939   | 0.00    | 0.71      | 3.00      | 10.30           | 18.98           | 33.50           | 51.36     | 95.66            | 515.65  |
| 1940   | 150.00  | 159.00    | 174.86    | 210.43          | 275.10          | 368.14          | 536.92    | 672.81           | 1140.71 |
| 1941   | 272.00  | 280.29    | 283.14    | 316.03          | 462.30          | 751.34          | 1020.51   | 1390.93          | 1876.10 |
| 1942   | 765.00  | 782.86    | 822.21    | 897.13          | 1116.90         | 1320.60         | 1390.37   | 1417.45          | 1836.86 |
| 1943   | 15.00   | 16.71     | 19.43     | 22.93           | 27.75           | 41.43           | 58.33     | 72.38            | 671.07  |
| 1944   | 46.00   | ) 49.14   | 55.43     | 66.63           | 118.40          | 126.72          | 133.90    | 210.60           | 974.55  |
| 1945   | 73.00   | 73.86     | 5 74.50   | 76.37           | 85.32           | 102.93          | 161.62    | 393.27           | 1808.52 |
| 1946   | 70.00   | 73.57     | 78.57     | 90.33           | 109.23          | 132.68          | 179.08    | 282.42           | 1174.91 |
| 1947   | 111.00  | 120.14    | 150.93    | 199.33          | 306.78          | 420.34          | 531.63    | 583.54           | 1442.79 |
| 1948   | 62.00   | 66.43     | 79.86     | 103.47          | 113.75          | 149.08          | 206.14    | 520.66           | 2194.10 |
| 1949   | 69.00   | 70.29     | 71.07     | 72.70           | 80.80           | 106.90          | 145.09    | 301.45           | 1679.90 |
| 1950   | 66.00   | 70.29     | 72.79     | 75.93           | 77.03           | 83.09           | 90.48     | 137.05           | 1076.56 |
| 1951   | 88.00   | 91.86     | 97.36     | 225.23          | 272.73          | 291.63          | 292.51    | . 390.27         | 1046.82 |
| 1952   | 106.00  | 0 110.43  | 113.86    | 122.43          | 139.73          | 169.17          | 223.96    | 398.04           | 1011.80 |
| 1953   | 198.00  | 200.86    | 204.50    | 208.20          | 224.28          | 319.44          | 515.92    | 593.26           | 2010.08 |
| 1954   | 130.00  | 133.00    | 142.79    | 171.37          | 239.17          | 325.96          | 474.53    | 1036.03          | 2569.22 |
| 1955   | 126.00  | ) 133.29  | 136.71    | 150.67          | 181.90          | 247.00          | 324.38    | 484.15           | 1084.01 |
| 1956   | 25.00   | 27.86     | 29.00     | 32.37           | 47.40           | 61.34           | 70.97     | 94.10            | 514.29  |
| 1957   | 434.00  | 458.14    | 482.79    | 579.30          | 630.98          | 632.58          | 685.74    | 763.99           | 1922.85 |
| 1958   | 218.00  | 228.14    | 248.79    | 296.47          | 322.70          | 348.58          | 402.62    | 824.12           | 1367.95 |
| 1959   | 170.00  | 184.29    | 209.36    | 279.57          | 423.47          | 433.88          | 495.68    | 882.52           | 1387.57 |
| 1960   | 780.00  | 803.14    | 826.14    | 868.77          | 1004.55         | 1201.59         | 1560.36   | 2249.72          | 2978.36 |
| 1961   | 98.00   | 104.43    | 112.36    | 127.20          | 163.13          | 194.03          | 229.05    | 275.41           | 1491.05 |
| 1962   | 15.00   | 17.71     | 18.64     | 22.17           | 29.35           | 40.24           | 49.07     | 58.83            | 373.94  |
| 1963   | 132.00  |           | 157.21    | 185.03          | 209.83          | 273.14          | 340.63    | 446.02           | 936.63  |
| 1964   | 135.00  | 152.71    | 162.07    | 1/5.0/          | 180.48          | 206.16          | 246.52    | 5/2.68           | 1/93.61 |
| 1965   | 50.00   | 57.71     | E 61.79   | 79.67           | 138.73          | 232.02          | 327.73    | 369.60           | 789.14  |
| 1067   | 480.00  | 0 508.71  | - 540.30  | 001.90<br>24 22 | 694.53<br>FF 07 | 848.02          | 9/2.02    | 1389.39          | 1175 56 |
| 1069   | 20.00   | 20.14     | 12 12     | 54.55           | 55.97           | 103.07          | 105 14    | 121 16           | 1501 04 |
| 1060   | 306 00  | 37.00     | 7 42.43   | 122 17          | 579 30          | 92.59<br>704 13 | 105.14    | 131.10<br>075 17 | 1201.94 |
| 1970   | 103 00  | 107 43    | 124 43    | 173 87          | 264 07          | 322 93          | 370 05    | 503 53           | 1842 65 |
| 1971   | 57 00   | 61 00     | 64 71     | 72 50           | 77 68           | 93 33           | 115 25    | 145 69           | 291 64  |
| 1972   | 217 00  | 220 43    | 226 50    | 243 03          | 291 28          | 351 76          | 435 97    | 483 58           | 844 09  |
| 1973   | 320.00  | 332.29    | 348.71    | 423.37          | 508.02          | 580.69          | 661.15    | 844.07           | 1011.65 |
| 1974   | 69.00   | 73.57     | 76.21     | 86.37           | 101.77          | 116.19          | 130.09    | 281.03           | 1755.81 |
| 1975   | 37.00   | 38.00     | 39.86     | 46.50           | 52.25           | 66.98           | 81.03     | 150.48           | 804.82  |
| 1976   | 21.00   | 23.71     | 24.07     | 27.50           | 43.47           | 66.98           | 81.68     | 243.38           | 1248.84 |
| 1977   | 9.50    | 15.07     | 20.46     | 35.83           | 44.55           | 42.85           | 48.60     | 107.67           | 633.12  |
| 1978   | 308.00  | 328.14    | 355.21    | 403.07          | 475.10          | 584.20          | 789.32    | 1099.33          | 1653.18 |
| 1979   | 211.00  | 229.00    | 238.43    | 304.73          | 443.87          | 648.07          | 768.78    | 920.44           | 1361.79 |
| 1980   | 52.00   | 53.43     | 57.07     | 74.47           | 113.93          | 129.67          | 146.88    | 199.43           | 1045.64 |
| 1981   | 2.20    | 0 4.13    | 5.63      | 6.71            | 11.06           | 23.06           | 22.00     | 40.81            | 84.36   |
| 1982   | 88.00   | 88.00     | 89.00     | 98.73           | 155.72          | 148.73          | 161.23    | 162.18           | 1492.25 |
| 1983   | 292.00  | 319.00    | 366.14    | 440.77          | 528.68          | 521.63          | 567.55    | 1106.95          | 1480.53 |
| 1984   | 445.00  | 471.57    | 494.86    | 576.03          | 712.02          | 837.50          | 927.44    | 1090.88          | 1385.05 |
| 1985   | 129.00  | 137.29    | 153.79    | 162.70          | 197.38          | 201.59          | 240.69    | 279.50           | 788.65  |
| 1986   | 24.00   | 25.86     | 5 29.14   | 39.20           | 64.15           | 110.71          | 150.27    | 244.30           | 1220.81 |
| 1987   | 158.00  | 163.86    | 5 174.71  | 194.43          | 197.28          | 219.58          | 295.20    | 627.78           | 786.57  |
| 1988   | 146.00  | 152.14    | 161.86    | 182.60          | 236.90          | 302.47          | 376.48    | 638.34           | 1552.49 |
| 1989   | 70.00   | 72.71     | 79.00     | 87.67           | 107.82          | 128.39          | 155.78    | 212.24           | 327.77  |
| 1990   | 65.00   | 67.57     | 68.00     | 75.30           | 81.42           | 111.49          | 124.06    | 193.78           | 726.29  |
| 1991   | 507.00  | 524.57    | 540.64    | 562.80          | 711.23          | 760.19          | 839.69    | 1040.91          | 1684.56 |
| 1992   | 173.00  | ) 181.14  | 190.07    | 223.83          | 297.43          | 375.20          | 392.73    | 544.04           | 1603.50 |
| 1993   | 281.00  | 305.57    | 316.57    | 374.03          | 458.58          | 533.00          | 637.20    | 990.84           | 1479.22 |
| 1994   | 171.00  | 175.86    | 177.29    | 183.67          | 208.18          | 236.96          | 291.10    | 332.33           | 891.24  |
| 1995   | 260.00  | 280.57    | 291.43    | 352.70          | 458.25          | 576.04          | 672.88    | 961.17           | 2319.44 |
| 1996   | 574.00  | J 657.14  | £ 671.64  | 800.30          | 854.02          | 925.39          | 963.93    | 1096.93          | 1846.83 |

Table I-3. SJR near Christmas: Lowest mean discharges, cfs (USGS)

| LOWEST | MEAN  | VALUES | FOR           | THE | FOLLOWING | NUMBER | OF   | CONSI | ECUTIVE | DAYS  | IN Y  | EAR  | ENDING | SEPT 3 | 0 |
|--------|-------|--------|---------------|-----|-----------|--------|------|-------|---------|-------|-------|------|--------|--------|---|
| YEAR   |       | 1      | 7             |     | 14        | 30     |      | 60    | 9       | 0     | 120   | )    | 183    | 1 YEA  | R |
| 1997   | -40.  | 00 -   | -3.19         |     | 6.86      | 39.27  | 42   | .69   | 63.9    | 2 9   | 95.96 | 51   | 76.00  | 709.5  | 1 |
| 1998   | 92.   | 00 13  | 31.29         | 1   | .63.86 2  | 40.97  | 336  | .05   | 455.8   | 9 59  | 93.02 | 2 12 | 58.64  | 2221.2 | 7 |
| 1999   | -137. | 00 -8  | 32.29         | -   | 72.40 -   | 36.97  | 3    | .23   | 42.2    | 2 9   | 92.26 | 51   | 77.52  | 621.1  | 9 |
| 2000   | -76.  | 00 -4  | <b>17.8</b> 6 | -   | 33.54 -   | 16.25  | 13   | .71   | 27.8    | 8 5   | 51.00 | ) 1  | 08.24  | 1174.1 | 8 |
| 2001   | -2.   | 70     | 8.74          |     | 17.01     | 27.71  | 55   | .50   | 72.3    | 7 6   | 55.17 | ,    | 76.12  | 780.2  | 0 |
| 2002   | 43.   | 00 !   | 51.71         |     | 56.00     | 68.40  | 99   | .22   | 142.8   | 6 25  | 56.67 | / 3  | 62.78  | 2011.5 | 3 |
| 2003   | 132.  | 00 14  | 41.86         | 1   | 53.71 1   | 82.17  | 248  | .93   | 370.5   | 9 46  | 58.93 | 86   | 51.98  | 1471.2 | 2 |
| 2004   | 71.   | 00     | 79.00         |     | 81.71 1   | 05.83  | 138  | .85   | 178.5   | 9 22  | 25.16 | 52   | 97.95  | 1031.2 | 5 |
| 2005   | 454.  | 00 48  | 36.57         | 5   | 10.86 5   | 65.53  | 700  | .13   | 778.5   | 8 95  | 53.43 | 39   | 58.52  | 2299.1 | 2 |
|        |       |        |               |     |           |        |      |       |         |       |       |      |        |        |   |
| MEAN   | 165.  | 31 1   | 77.22         | 1   | .89.08 2  | 20.33  | 273  | .78   | 330.1   | 6 39  | 97.90 | ) 5  | 57.44  | 1308.9 | 2 |
| MAX    | 780.  | 00 80  | 03.14         | 8   | 26.14 8   | 97.13  | 1116 | .90   | 1320.6  | 0 156 | 50.36 | 5 22 | 49.72  | 2978.3 | 6 |
| MIN    | -137. | 00 -8  | 32.29         | -   | 72.40 -   | 36.97  | 3    | .23   | 23.0    | 6 2   | 22.00 | )    | 40.81  | 84.3   | 6 |
|        |       |        |               |     |           |        |      |       |         |       |       |      |        |        |   |

### Table I-3. -Continued

Table I-4. SJR near Christmas: Discharge data for MFLs plots, cfs (USGS)

|       | MFH     |       | MIL     | MFL     | MA      |
|-------|---------|-------|---------|---------|---------|
| weib  | 30      | weib  | 60      | 120     | 183     |
|       |         |       |         |         |         |
| 1.37  | 9340.00 | 98.63 | 1490.00 | 2990.00 | 2249.72 |
| 2.74  | 7820.00 | 97.26 | 1480.00 | 2350.00 | 1417.45 |
| 4.11  | 7260.00 | 95.89 | 1340.00 | 2320.00 | 1390.93 |
| 5.48  | 6650.00 | 94.52 | 1140.00 | 1890.00 | 1389.39 |
| 6.85  | 6630.00 | 93.15 | 1060.00 | 1790.00 | 1267.15 |
| 8.22  | 6440.00 | 91.78 | 1050.00 | 1720.00 | 1258.64 |
| 9.59  | 5150.00 | 90.41 | 1020.00 | 1700.00 | 1106.95 |
| 10.96 | 4900.00 | 89.04 | 1010.00 | 1690.00 | 1099.33 |
| 12.33 | 4820.00 | 87.67 | 979.00  | 1640.00 | 1096.93 |
| 13.70 | 4580.00 | 86.30 | 840.00  | 1550.00 | 1090.88 |
| 15.07 | 4580.00 | 84.93 | 832.00  | 1550.00 | 1040.91 |
| 16.44 | 4500.00 | 83.56 | 808.00  | 1420.00 | 1036.03 |
| 17.81 | 4400.00 | 82.19 | 790.00  | 1400.00 | 1007.50 |
| 19.18 | 4340.00 | 80.82 | 757.00  | 1370.00 | 990.84  |
| 20.55 | 4330.00 | 79.45 | 742.00  | 1310.00 | 975.17  |
| 21.92 | 4320.00 | 78.08 | 735.00  | 1290.00 | 961.17  |
| 23.29 | 4260.00 | 76.71 | 670.00  | 1220.00 | 958.52  |
| 24.66 | 4160.00 | 75.34 | 668.00  | 1210.00 | 920.44  |
| 26.03 | 4150.00 | 73.97 | 631.00  | 1170.00 | 882.52  |
| 27.40 | 4060.00 | 72.60 | 604.00  | 1170.00 | 844.07  |
| 28.77 | 3970.00 | 71.23 | 586.00  | 1070.00 | 824.12  |
| 30.14 | 3970.00 | 69.86 | 570.00  | 1050.00 | 763.99  |
| 31.51 | 3960.00 | 68.49 | 550.00  | 990.00  | 672.81  |
| 32.88 | 3960.00 | 67.12 | 513.00  | 956.00  | 651.98  |
| 34.25 | 3900.00 | 65.75 | 466.00  | 904.00  | 638.34  |
| 35.62 | 3860.00 | 64.38 | 454.00  | 891.00  | 627.78  |
| 36.99 | 3720.00 | 63.01 | 403.00  | 851.00  | 593.26  |
| 38.36 | 3650.00 | 61.64 | 375.00  | 832.00  | 583.54  |
| 39.73 | 3510.00 | 60.27 | 370.00  | 785.00  | 572.68  |
| 41.10 | 3440.00 | 58.90 | 363.00  | 746.00  | 544.04  |
| 42.47 | 3390.00 | 57.53 | 356.00  | 739.00  | 520.66  |
| 43.84 | 3380.00 | 56.16 | 320.00  | 726.00  | 503.53  |
| 45.21 | 3270.00 | 54.79 | 320.00  | 716.00  | 484.15  |
| 46.58 | 3100.00 | 53.42 | 306.00  | 687.00  | 483.58  |
| 47.95 | 2910.00 | 52.05 | 293.00  | 678.00  | 446.02  |
| 49.32 | 2900.00 | 50.68 | 292.00  | 666.00  | 432.78  |
| 50.68 | 2870.00 | 49.32 | 288.00  | 648.00  | 398.04  |
| 52.05 | 2820.00 | 47.95 | 281.00  | 570.00  | 393.27  |
| 53.42 | 2790.00 | 46.58 | 276.00  | 550.00  | 390.27  |
| 54.79 | 2690.00 | 45.21 | 250.00  | 534.00  | 369.60  |
| 56.16 | 2670.00 | 43.84 | 250.00  | 532.00  | 362.78  |
| 57.53 | 2590.00 | 42.47 | 236.00  | 488.00  | 332.33  |
| 58.90 | 2540.00 | 41.10 | 235.00  | 475.00  | 329.43  |
| 60.27 | 2420.00 | 39.73 | 224.00  | 444.00  | 301.45  |
| 61.64 | 2400.00 | 38.36 | 206.00  | 414.00  | 297.95  |
| 63.01 | 2380.00 | 36.99 | 200.00  | 402.00  | 290.84  |
| 64.38 | 2340.00 | 35.62 | 195.00  | 387.00  | 282.42  |
| 65.75 | 2190.00 | 34.25 | 180.00  | 381.00  | 281.03  |
| 67.12 | 2170.00 | 32.88 | 167.00  | 381.00  | 279.50  |
| 68.49 | 2120.00 | 31.51 | 163.00  | 368.00  | 275.41  |

Table I-4. -Continued

|       | MFH     |       | MIL    | MFL    | MA     |
|-------|---------|-------|--------|--------|--------|
| weib  | 30      | weib  | 60     | 120    | 183    |
| 69.86 | 2120.00 | 30.14 | 152.00 | 348.00 | 244.30 |
| 71.23 | 2060.00 | 28.77 | 150.00 | 322.00 | 243.38 |
| 72.60 | 2010.00 | 27.40 | 134.00 | 315.00 | 212.24 |
| 73.97 | 1990.00 | 26.03 | 127.00 | 286.00 | 210.60 |
| 75.34 | 1720.00 | 24.66 | 126.00 | 285.00 | 199.43 |
| 76.71 | 1710.00 | 23.29 | 124.00 | 283.00 | 193.78 |
| 78.08 | 1700.00 | 21.92 | 116.00 | 260.00 | 185.75 |
| 79.45 | 1670.00 | 20.55 | 112.00 | 241.00 | 177.52 |
| 80.82 | 1570.00 | 19.18 | 104.00 | 226.00 | 176.00 |
| 82.19 | 1510.00 | 17.81 | 103.00 | 223.00 | 162.18 |
| 83.56 | 1380.00 | 16.44 | 99.00  | 222.00 | 150.48 |
| 84.93 | 1220.00 | 15.07 | 99.00  | 221.00 | 145.69 |
| 86.30 | 1140.00 | 13.70 | 98.00  | 190.00 | 137.05 |
| 87.67 | 881.00  | 12.33 | 97.00  | 174.00 | 131.16 |
| 89.04 | 848.00  | 10.96 | 81.00  | 160.00 | 108.24 |
| 90.41 | 807.00  | 9.59  | 80.00  | 160.00 | 107.67 |
| 91.78 | 768.00  | 8.22  | 80.00  | 154.00 | 95.66  |
| 93.15 | 589.00  | 6.85  | 66.00  | 144.00 | 94.10  |
| 94.52 | 423.00  | 5.48  | 53.00  | 142.00 | 76.12  |
| 95.89 | 394.00  | 4.11  | 51.00  | 139.00 | 72.38  |
| 97.26 | 218.00  | 2.74  | 49.00  | 129.00 | 58.83  |
| 98.63 | 127.00  | 1.37  | 44.00  | 106.00 | 40.81  |



Figure I - 1. Flow duration



Figure I - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure I - 3. MFLs evaluation for the Minimum Average discharge



Figure I – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure I - 5. MFLs evaluation for the Minimum Infrequent Low discharge

# APPENDIX II

MFLs graphs for the St. Johns River at the SR 50 Bridge 1933-2005 USGS Stages



Figure II – 1. Stage duration



Figure II -2. MFLs evaluation for the Minimum Frequent High level


Figure II – 3. MFLs evaluation for the Minimum Average level



Figure II – 4. MFLs evaluation for the Minimum Frequent Low level



Figure II – 5. MFLs evaluation for the Minimum Infrequent Low level

# **APPENDIX III**

MFLs analysis to determine absolute Minimum River Flow 1933-2006 USGS Discharges



Figure III -1. Flow duration



Figure III – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure III – 3. MFLs evaluation for the Minimum Average discharge



Figure III – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure III – 5. MFLs evaluation for the Minimum Infrequent Low discharge (MRF = 0 cfs)



Figure III – 6. MFLs evaluation for the Minimum Infrequent Low discharge (MRF = 45 cfs)

## **APPENDIX A5**

MFLs analysis for Scenario A5 1933-2006 USGS Discharges

MRF = 300 cfs; DD = 110 cfs



Figure A5 - 1. Flow duration



Figure A5 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure A5 - 3. MFLs evaluation for the Minimum Average discharge



Figure A5 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure A5 - 5. MFLs evaluation for the Minimum Infrequent Low discharge

## **APPENDIX A4**

MFLs analysis for Scenario A4 1933-2006 USGS Discharges

MRF = 300 cfs; DD = 90 cfs



Figure A4 - 1. Flow duration



Figure A4 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure A4 - 3. MFLs evaluation for the Minimum Average discharge



Figure A4 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure A4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

### **APPENDIX B5**

MFLs analysis for Scenario B5 1933-2006USGS Discharges

MRF = 200 cfs; DD = 100 cfs



Figure B5 - 1. Flow duration



Figure B5 – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure B5 – 3. MFLs evaluation for the Minimum Average discharge



Figure B5 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure B5 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

### **APPENDIX B4**

MFLs analysis for Scenario B4 1933-2006 USGS Discharges

MRF = 200 cfs; DD = 90 cfs



Figure B4 - 1. Flow duration



Figure B4 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure B4 – 3. MFLs evaluation for the Minimum Average discharge



Figure B4 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure B4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

#### **APPENDIX B3**

MFLs analysis for Scenario B3 1933-2006 USGS Discharges

MRF = 200 cfs; DD = 70 cfs

Only MA evaluated



Figure B3 – 1. MFLs evaluation for the Minimum Average discharge
## **APPENDIX C5**

MFLs analysis for Scenario C5 1933-2006 USGS Discharges

MRF = 100 cfs; DD = 110 cfs



Figure C5 - 1. Flow duration



Figure C5 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure C5 - 3. MFLs evaluation for the Minimum Average discharge



Figure C5 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure C5 - 5. MFLs evaluation for the Minimum Infrequent Low discharge

# **APPENDIX C4**

MFLs analysis for Scenario C4 1933-2006 USGS Discharges

MRF = 100 cfs; DD = 90 cfs



Figure C4 - 1. Flow duration



Figure C4 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure C4 – 3. MFLs evaluation for the Minimum Average discharge



Figure C4 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure C4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

# **APPENDIX C3**

MFLs analysis for Scenario C3 1933-2006 USGS Discharges

MRF = 100 cfs; DD = 70 cfs

Only MA evaluated



Figure C3 – 1. MFLs evaluation for the Minimum Average discharge

## **APPENDIX D5**

MFLs analysis for Scenario D5 1933-2006 USGS Discharges

MRF = 50 cfs; DD = 50 cfs







Figure D5 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure D5 - 3. MFLs evaluation for the Minimum Average discharge



Figure D5 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure D5 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

### **APPENDIX D4**

MFLs analysis for Scenario D4 1933-2006 USGS Discharges

MRF = 50 cfs; DD = 90 cfs



Figure D4 - 1. Flow duration



Figure D4 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure D4 - 3. MFLs evaluation for the Minimum Average discharge



Figure D4 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure D4 – 5. MFLs evaluation for the Minimum Infrequent Low discharge

## **APPENDIX D3**

MFLs analysis for Scenario D3 1933-2006 USGS Discharges

MRF = 50 cfs; DD = 70 cfs

Only MA evaluated



Figure D3 – 1. MFLs evaluation for the Minimum Average discharge

# **APPENDIX A4A**

MFLs analysis for Scenario A4A 1933-2006 USGS Discharges

MRF = 300/600 cfs; DD = up to 90/130 cfs



Figure A4A – 1. Flow duration



Figure A4A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure A4A – 3. MFLs evaluation for the Minimum Average discharge



Figure A4A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure A4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

## **APPENDIX D3A**

MFLs analysis for Scenario D3A 1933-2006 USGS Discharges

MRF = 50/400 cfs; DD = 70/100 cfs



Figure D3A - 1. Flow duration


Figure D3A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure D3A – 3. MFLs evaluation for the Minimum Average discharge



Figure D3A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure D3A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

## **APPENDIX A5A**

Rao' Upper St. Johns Model: Project conditions 2004

MFLs analysis for Scenario A5A 1942-2001 Simulated discharges

MRF = 300 cfs; DD = 110 cfs



Figure A5A – 1. Flow duration



Figure A5A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure A5A – 3. MFLs evaluation for the Minimum Average discharge



Figure A5A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure A5A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

### **APPENDIX B4A**

Rao' Upper St. Johns Model: Project conditions 2004

MFLs analysis for Scenario B4A 1942-2001 Simulated discharges

MRF = 200 cfs; DD = 90 cfs



Figure B4A – 1. Flow duration



Figure B4A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure B4A – 3. MFLs evaluation for the Minimum Average discharge



Figure B4A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure B4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

# **APPENDIX C4A**

Rao' Upper St. Johns Model: Project conditions 2004

MFLs analysis for Scenario C4A 1942-2001 Simulated discharges

MRF = 100 cfs; DD = 90 cfs

**BCI** Engineers and Scientists 175







Figure C4A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure C4A – 3. MFLs evaluation for the Minimum Average discharge



Figure C4A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure C4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

## **APPENDIX D4A**

Rao' Upper St. Johns Model: Project conditions 2004

MFLs analysis for Scenario D4A 1942-2001 Simulated discharges

MRF = 50 cfs; DD = 90 cfs



Figure D4A – 1. Flow duration



Figure D4A – 2. MFLs evaluation for the Minimum Frequent High discharge



Figure D4A – 3. MFLs evaluation for the Minimum Average discharge



Figure D4A – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure D4A – 5. MFLs evaluation for the Minimum Infrequent Low discharge

#### **APPENDIX A6**

Rao' Upper St. Johns Model: Project conditions 2004

MFLs analysis for Scenario A6 1942-2001 Simulated discharges

MRF = 300 cfs; DD = 150 cfs



Figure A6 - 1. Flow duration



Figure A6 - 2. MFLs evaluation for the Minimum Frequent High discharge



Figure A6 - 3. MFLs evaluation for the Minimum Average discharge



Figure A6 – 4. MFLs evaluation for the Minimum Frequent Low discharge



Figure A6 – 5. MFLs evaluation for the Minimum Infrequent Low discharge