SPECIAL PUBLICATION 2013-SP7

DEVELOPMENT OF 1995 AND 2010 AGRICULTURAL GEODATABASES AND IRRIGATION ESTIMATES: AUGUST 2013

St. Johns River Water Management District

Development of 1995 and 2010 Agricultural Geodatabases and Irrigation Estimates

August 2013

Prepared By:

Soil and Water Engineering Technology, Inc.

Table of Contents

List of l	Figures	iii
List of '	Гables	iv
Executi	ve Summary	. v
Section	1 Introduction	1
1.1	Background	1
1.2	Description of the Study Area	3
1.3	Objectives	3
1.3.1	Task Breakdown	5
Section	2 Data Collection	. 6
2.1	Literature Review	6
2.2	Mobile Irrigation Lab data	6
2.3	Ag Statistics Data	6
2.4	GIS Data	7
2.5	Historical Water Use Data	7
Section	3 Geodatabase Development	. 8
3.1	Preliminary GIS Processing	11
3.1.1	Description of GIS Data within the SJRWMD study area	.12
3.1.2	Description of GIS Data within the SWFWMD study area	.12
3.1.3	Description of GIS Data within the SFWMD study area	.12
3.1.4	Description of GIS Data within the SRWMD study area	.12
3.1.5	Description of GIS Data within the Georgia study area	.13
3.2	GIS Overlay Procedures	13
3.3	Data Processing and Categorization	15
3.3.1	Ag Lands Geodatabase Preparation	.15
3.3.2	Irrigated Lands Geodatabase Preparation	15
3.4	Final Overlays and Formatting	20
3.4.1	Predominant Soil Type	20
3.4.2	Zip Code	20
3.4.3	Nearest Source of Rainfall/ET data	20
3.4.4	Depth to Water Table	.22

Section	4	Irrigation Estimates 2	4	
4.1	Crop	p Irrigation Demand Model Selection2	4	
4.2	4.2 AFSIRS Model Setup25			
4.3	Una	djusted AFSIRS Results – Net Irrigation Requirements2	.7	
4.4	Adjı	sted AFSIRS Results – Gross Irrigation Requirements2	7	
4.4.1	l Fa	rm Irrigation Rating Method Theory2	28	
4.4.2	2 M	IL Data Analysis and O&M Classes2	29	
4.4.3	3 G:	ross Irrigation Requirements	52	
4.5	Oth	er Non-Irrigation Water Uses	3	
4.6	Irrig	ation Water Use Estimates Summary3	4	
Section	5	CFACT Development 3	5	
5.1	CFA	ACT Overview	5	
5.2	Croj	p & Irrigation System Compatibility	6	
5.3	Irrig	ation Application Efficiency Assumptions3	6	
5.4	5.4 Cost Assumptions			
5.5 CI	FACT	T Test Case	7	
5.6 Fu	ıll-Da	taset CFACT Runs – Preliminary Results	9	
Section	6	Summary and Conclusions4	1	
6.1	GIS	Processing Summary	-1	
6.2	Irrig	ation Estimates Summary4	-1	
6.3	CFA	ACT Summary4	-2	
6.4	Con	clusions4	.3	
Section	7	References 4	5	
Append	lix A	GIS Processing Summaries5	6	
Append	lix B	Irrigation Demand Summaries5	7	
Append	lix C	CFACT Input Assumptions 5	8	
Append	lix D	Expansion of Methodologies to the NFSEG Model	9	

List of Figures

Figure 1	Study Area	2
Figure 2	Study Area (Subdivided)4	1
Figure 3	GIS Workflow Schematic)
Figure 4	Comparison of GIS Data Sources for a Typical Farm)
Figure 5	Hierarchy-Based Data Aggregation Example14	1
Figure 6	Comparison of GIS-Derived and Ag Census Irrigated Land	3
Figure 7	1995 and 2010 Ag and Irrigation Land Geodatabase)
Figure 8	Daily Rainfall and ET Data Locations	l
Figure 9	Extent of Depth to Water Coverage	3
Figure 10	Number of MIL Records by Crop Type and Irrigation System)
Figure 11	Grouping of MIL Reports by ZIP Code	l
Figure 12	2 Cost-Water Savings for CFACT County-Scale Demonstration Simulation	3
Figure 13	39 Cost-Water Savings for CFACT Full-Scale Demonstration Simulation)

List of Tables

Table 1 Project Task Breakdown	5
Table 2 Data Availability and Source Attribute Matrix	11
Table 3 GIS Overlay Source Code System	14
Table 4 Final List of Irrigation Systems from GIS Overlay Procedure	15
Table 5 Final List of Crop Types from GIS Overlay Procedure	16
Table 6 AFSIRS Irrigation Types and Parameters	26
Table 7 Irrigation Application Efficiency for various O&M Classes	29
Table 8 Gross Annual Irrigation Requirements for the 2010 Irrigated Lands Geodatabase	32
Table 9 FIRM Variables	36
Table 10 Water Savings Options Cost Assumptions	37

Executive Summary

There are two principal objectives for the current study: (1) Develop the base assumptions of irrigation efficiencies and cost factors associated with the various types of irrigation systems and crops grown within the study area, and (2) develop an Irrigated Land Geodatabase and associated farm-level irrigation estimates for 1995 and 2010 conditions.

The first objective was developed with the intention of identifying the most cost effective dependable BMPs in the District for saving water. The GIS component of the input data will be used to identify opportunities for cost-share funding and potential project partnerships. This work can also be used to help quantify the amount of funds that should be appropriated for these projects, and an overall Ag water conservation cost-share program. Once funded, the successes and/or failures of the BMPs should be tracked and evaluated. This will support refinements of the input assumptions and help guide future District efforts to promote water conservation with Agriculture (Ag).

The second objective was developed with the intention of providing estimates of irrigation for use in the District's groundwater modeling efforts. Applied irrigation can significantly increase groundwater recharge, especially if the producer does not carefully try to avoid losing water to deep percolation below the crop root zone. Recharge is a critical component to any long-term regional groundwater model.

To the extent possible, this project was designed to maintain the integrity of the input data sets with as few assumptions as possible. Random spot checking of the GIS coverages have revealed instances where the line work could be improved or the database corrected based on aerial imagery alone. However, to keep these results true to their original source, no efforts were made to manually modify the data. Readers should bear this in mind when comparing the results from this project to other efforts.

At the field-level, Ag irrigation is difficult to characterize with any degree of certainty because of many factors that change year-to-year and season-to-season. However, from a wider perspective, this uncertainty can be managed by tensioning the data to published values. Developing the GIS coverages and irrigation estimates for such a large study area is an important step forward in better understanding Ag water use, which in turn will help our ability to predict future Ag water requirements and develop water conservation strategies.

Section 1 Introduction

Agricultural (Ag) water use represents a major portion of Florida's conservation potential. The St. Johns River Water Management District (SJRWMD) hired Royal Consulting Services, Inc. (RCS) to evaluate the amount of potential Ag water conservation in the areas of Peninsular Florida and Southeast Georgia (**Figure 1**). This area is analogous to the USGS 'Mega Model' extent (Sepulveda, 2012). This study uses a Linear Programming (LP) model to optimize water conservation relative to cost. The LP tool is modeled after the District's similar work estimating conservation potential for public supply utilities at the account-level. This work will be an ongoing collaborative approach, using input from producers, FDACS, universities, industry experts, and District staff.

This initial phase of the work is focused on developing the base assumptions to be used in the LP tool, and to develop parcel-level Geographic Information Systems (GIS) coverage of irrigated areas representing conditions in 1995 and 2010. Additionally, the amount of irrigation used for each parcel will be estimated. This information is essential to the development of groundwater model because it is a key input to the calculation of groundwater recharge, and represents the bulk of Ag water use (pumpage, surface water withdrawals).

1.1 Background

SJRWMD developed several water conservation planning tools based on LP methods for evaluating the water conservation potential of an optimized selection of Best Management Practices (BMPs) for public supply utilities. Two versions of these tools have been featured in the Florida water Resources Journal in the August Water Conservation Issues for years 2011 and 2012. (Castaneda Blush 2011, Castaneda Blush 2012)The tools generally rely on current regional end-use and efficiency studies, paired with account level historical consumption data (where available), and generally-accepted water use estimates to project the potential for water savings and associated costs. The LP planning tools analyze historical water use for each permit holder or utility account individually for both indoor and outdoor use to optimize the selection of water conservation BMPs. The LP tool executes optimization routines to identify and estimate the costs and benefits of water conservation at the parcel level. This parcel level resolution provides the ability for a utility conservation coordinator to customize and optimize water conservation programs on a customer-by-customer basis.

Recognizing the vast potential for additional water savings within the Ag sector, SJRWMD hired RCS to study to apply these principles to Ag irrigation. The LP tool used for public supply utilities was thus modified to fit the various factors involving Ag irrigation water use. The name of this tool is the Comparative Farm Agricultural (Water) Conservation Tool (CFACT). The CFACT is currently set up to optimize the cost-benefit ratio of improving irrigation water management practices or installing compatible new irrigation systems altogether.

Figure 1 Study Area

1.2 Description of the Study Area

The 'MegaModel', formally known as the United States Geological Survey (USGS) Peninsular Florida Model, was used as the overall study area (for development of 1995 and 2010 agricultural irrigation estimates). However, the CFACT was developed with specific focus on the SJRWMD boundary for this project.

The MegaModel was initially developed in 2002 to simulate groundwater flow in the intermediate and Floridan aquifer systems (Sepúlveda, 2002). Encompassing roughly 56,495 square miles (64% land, 36% water), the model extends from Lake Okeechobee in the south to as far north as the southern portion of Georgia. The model encompasses all or portions of 46 counties in Florida and 12 counties in Georgia (see **Figure 2**). The overall study area was divided into five sections: SJRWMD, the Southwest Florida Water Management District (SWFWMD), the Suwannee River Water Management District (SRWMD), the South Florida Water Management District (SFWMD), and Georgia

1.3 Objectives

There are two principal objectives for the current study: (1) Develop the base assumptions of irrigation efficiencies and cost factors associated with the various types of irrigation systems and crops grown within the study area, and (2) develop an Irrigated Land Geodatabase (ILG) and associated farm-level irrigation estimates for 1995 and 2010 conditions.

The assumptions developed in the first objective will form the basis for the first fully-functional version of the CFACT. Due to the many variables related to Ag irrigation (system type, crops, region, cultivation practices, etc.) and the immense size of the study area (approx. 56,500 square miles), it will be necessary to categorize and simplify To the extent possible, detailed assumptions will be developed for predominant crops and irrigation systems. However, the purpose of the current phase of the CFACT is to develop planning-level estimates that will be used to identify key areas (regions, crops, and/or irrigation systems on the whole) for focusing future water conservation efforts. Furthermore, the structure of the CFACT will be designed to accommodate adding more detail at a later date.

The second objective will utilize available GIS information (e.g., coverages of irrigated areas, land use, crop satellite imagery, and consumptive/water use permitting data) to develop a comprehensive compilation of irrigated land in the study area. While emphasis will be placed on developing the ILG, non-irrigated areas will be picked up in the process and included as a secondary data set (the Ag Land geodatabase, or ALG). For the irrigated areas, monthly estimates of irrigation water use will be prepared to represent average, dry, and wet years.

This project was developed in collaboration with data, input, and overall guidance from several entities in addition to SJRWMD:

- Florida Department of Agricultural and Consumer Services (FDACS)
- University of Florida Institute of Food and Agricultural Sciences (UF-IFAS)
- Other Water Management Districts
- Other industry experts and producers

Figure 2 Study Area (Subdivided)

1.3.1 Task Breakdown

This project was divided into six tasks as indicated in **Table 1**. Initially, the work proceeded in this order. After the initial data gathering for Task 2-4 was complete, a 'test case' was run that utilized data from an early version of the ALG. The lessons learned from this exercise highlighted the importance of compiling and synthesizing the GIS data to facilitate the irrigation estimating portion of the project (an essential input to the CFACT).

Task No.	Task Description
1	Project coordination and meetings
2	Review of CFAC Tool
3	Literature Review
4	MIL Data Analysis and Assumptions of Costs, Savings, and Benefits
5	Development of Agricultural Lands Geo-DataBase and Water Use Estimates
6	Project Reporting

Table 1 Project Task Breakdown

Section 2 Data Collection

The data collection effort consisted of a literature review, data provided directly from other source (e.g., SJRWMD, FDACS), and data downloaded from websites (e.g., GIS coverages, Ag census).

2.1 Literature Review

A listing of the references collected in the literature review is included in the references section. Throughout this report, these references are cited in italics using the numbering in the References section.

The literature review effort initially started with an effort to compile the necessary information to support the CFACT. Such information included both broad-based reviews of irrigation BMPs as well as crop-specific growing practices. For all of the crops and irrigation systems within the study area, it was desired to have information on irrigation efficiency, new system costs, operation and maintenance (O&M) costs, fertilizer and other chemical costs, feasibility of growing a particular crop with a given irrigation system, and more. Since it was not feasible to collect this information for every specific crop and variety, crop groups were established to lump similar crops together.

The literature review was also used for estimating irrigation requirements. For annual crops, the literature collected was used to define typical planting and harvesting dates for a given season. To this end, the study area was divided into Central Florida and North Florida (112).

2.2 Mobile Irrigation Lab data

FDACS provided the results from 3,380 Mobile Irrigation Lab (MIL) audits throughout Florida. The data includes both preliminary and follow-up site visits. This information includes a zip code, acreage, irrigation system, crop, source info (e.g., well and pump info), and list of problems (e.g., leaks, ponding, etc.). As will be discussed in Section 5, the MIL data were used to help characterize the initial O&M class (pro-active, reactive, or deferred management styles), which is linked to the overall irrigation efficiency for a given system.

2.3 Ag Statistics Data

The National Agricultural Statistics Service (NASS) makes estimates of agricultural production typically at the county level (some recent surveys report information by zip code level). Annual estimates are typically less comprehensive than the more formal 5-yr. Census of Agriculture For this project, the most recent Ag Census available was for 2007. One of the items included in the Ag Census is the total acreage of irrigated land for a given county. However, less detail in terms of crop type are recorded in the Ag Census. Therefore, the 2010 county-level statistics ("Quick Stats") were used to obtain a more refined list of crops grown in a particular county.

The Census of Agriculture data are limited in applicability to this project because the areas used for Agricultural production can vary substantially from year to year. Therefore, as will be discussed in Section 3, the AgCensus data were used only as a guide to help define crops and acreages in areas with too little or too vague information.

2.4 GIS Data

SJRWMD provided a set of preliminary GIS coverages that would be used for this project. The most valuable sets of data were polygons of irrigated areas for SJRWMD (1995 and 2010) and Georgia. The irrigated areas polygons were digitized from aerials and later field-verified. Other coverages provided by SJRWMD include the MegaModel domain (a.ka. 'the study area'), 1995 Land Use (FL only), 2010 Land Use (SJRWMD only), Water Use Permitting point and polygon data, and the 2010 Cropland Data Layer from NASS.

2.5 Historical Water Use Data

SJRWMD provided a spreadsheet with self-reported monthly water use (January 2007 to June 2012) for all permitted Agricultural water users in their District. This data, commonly referred to as the "EN-50 data", was compiled on a source-by-source basis (e.g., by well or surface water pump) and then summed together by permit ID. The resulting monthly total permit water use was then joined to the District's consumptive (water) use permitting (CUP) polygon GIS coverage. However, the crop or irrigation system type is not specified in the District's CUP polygon coverage. Therefore, to use the EN-50 data for the development of the CFACT it was necessary to cross-reference this information during the GIS overlay procedure (discussed in Section 3).

Similar to the NASS Ag statistics data, the EN-50 was problematic for a number of reasons. Using either the 'project acreage' from the EN-50 data or the GIS-derived irrigated acreage (see Section 3), the calculated per-acre monthly water use estimates varied drastically among similar crops (up to two orders of magnitude). Potential causes for this apparent discrepancy include errors in recording the meter readings themselves, poorly calibrated meters, and changes in irrigated areas from year-to-year or season to season. Also, it should be noted that the 'project acreage' specified in an SJRWMD Consumptive Water Use Permit (CUP) or a SWFMWD Water Use Permit (WUP) is typically the build-out farm acreage and does not necessarily reflect what is being irrigated.

Section 3 Geodatabase Development

Currently there is no sole source for GIS data that can be used to define the crop types, acreages and irrigation system throughout the study area. The development of the 1995 and 2010 ILGs was based on a series of GIS overlays of best-available information. A generalized workflow schematic of this process is shown in **Figure 3**.

Once the data were compiled and overlain, it was necessary to develop a series of assumptions and lookup tables to define a uniform crop and irrigation system type for each polygon (i.e., unique parcel of land derived from overlay procedure). Once the merged data was formatted consistently, the resulting ALGs and ILGs were compared to the 2007 Ag Census (*89, 90, and 91*) and adjustments were made for areas lacking in GIS information. Lastly, the final 1995 and 2010 ILGs were joined with other GIS coverages (e.g., soil types, locations of rain and evapotranspiration data sets, etc.) to facilitate the integration with the CFACT and pre-processing for the irrigation water use estimating.

Four main categories of data were identified to be potentially useful for establishing the geodatabase of Ag land within the study area. These layers are listed below, in order of utility to this project and overall reliability.

- (1) <u>Irrigated Areas.</u> This type of GIS coverage would generally be assembled by the water management district. This level of data is more detailed than the typical CUP polygons commonly available, and represents the actual irrigated areas.
- (2) <u>Land Use / Land Cover</u>. For the state of Florida, this data utilizes the Florida Land Use and Cover Classification System (FLUCCS) and is available at various yearly intervals (depending on the water management district). However, this classification system is not used in Georgia. Similar data for Georgia uses a different classification system, but Ag Land categories are too vague to define the crop type.
- (3) <u>USDA NASS satellite imagery</u>. Prepared by the USDA National Agricultural Statistics Service (NASS), this data source was developed using infra-red satellite imagery and is available for the entire study area for 2008 and 2010.
- (4) <u>CUP polygons</u>. This type of GIS coverage is developed and maintained by the water management district. Generally, the polygon area for this type of coverage represents the permittee's total site area, whether it is irrigated or not.

Figure 4 shows an example of how these data appear when overlaid together. In most situations, the irrigated areas polygons is the most reliable source of information. As expected, the CUP polygons pick up the entire project site. The FLUCCS data is useful at identifying all agricultural areas (irrigated or not) and does a good job of excluding wetland areas. The NASS data is generally less reliable spatially, however, it has more detailed definitions of crop type than the FLUCCS data.

Figure 3 GIS Workflow Schematic

Green: Irrigated Areas (SJRWMD) Yellow: Land Use / Land Cover Lt Green: NASS satellite imagery Red Hatch: CUP polygons

St. Johns River Water Management District Development of 1995 and 2010 Agricultural Geodatabases and Irrigation Estimates

Figure 4 Comparison of GIS Data Sources for a Typical Farm

3.1 Preliminary GIS Processing

The first step for developing the geodatabases was to collect and compile the four categories of input coverages from all available sources. Since the study area encompasses such a large area, it is not surprising that the availability of information varies widely among these regions. Because most of this information is available from water management district websites, the data were categorized into five groups: SJRWMD, SWFWMD, SFWMD, SRWMD, and Georgia.

Table 2 summarizes the sources of data available for each of the five data groups, and the type of information that it can provide. Irrigated areas layers are the most useful information because it provides information on both crop type and irrigation system, and this information has been digitized from aerial imagery and, to some degree, field-verified.

Data Group	Сгор Туре	Irrigation System	Water Use Records	SW/GW Source	Well and/or Pump Details ²
SJRWMD	1,2,3	1	4	5	5
SWFWMD ³	2,3,5*,6	5*,6	6	5	6
SFWMD	2,3,6	6	6	5	5
SRWMD 2,3,6 6		6	5	6	
Georgia 1,2,3 1		-	-	-	

Table 2 Data Availability and Source Attribute Matrix¹

¹The numbers in this table refer to the following GIS data sources: (1) Irrigated Areas, (2) Land Use / Land Cover, (3) NASS satellite imagery, (4) CUP polygons, (5) CUP point data, (6) in the absence of any other source of data, crop and irrigation system is available in permitting records but must be extracted on a case-by-case basis or with water management district assistance. ²Well and/or Pump details vary by data group. Not all information may be readily available.

³For source 5, a point coverage was provided by SJRWMD for a region in south-central Florida portion of the SWFWMD jurisdiction that includes crop and irrigation system information.

Details of the availability of input GIS coverage for each data group are discussed below. A table is provided in **Tables A-1 and A-2 of Appendix A** that lists the specific source of data and how it was obtained (for the 1995 and 2010 data sets, respectively). After the data was collected from each of the five data groups, it was projected to a consistent geographic projection (NAD83 HARN UTM Zone 17, meters) and checked for topologic errors and overlapping/duplicate polygons. If necessary, overlapping/duplicate polygons and errors in topology were corrected using the "Clean" routine available in the ET Geo WizardsTM GIS toolset (http://www.ian-ko.com/).

3.1.1 Description of GIS Data within the SJRWMD study area

Of the five data source groups, the data for the SJRWMD portion of the study area is the most complete. Irrigated areas coverage for both 1995 and 2010 were provided by SJRWMD for this project. While it was known in advance that these coverages would singularly be used to define the geographic extent of the irrigated areas, the overlay process was still carried out for the purpose of filling missing or vague crop descriptions (e.g., polygons coded as "unknown", "plowed", etc.). In addition, the overlay process was used to assign the irrigated areas to a permit ID, which allowed the assignment of crop and irrigation system type to the EN-50 data.

3.1.2 Description of GIS Data within the SWFWMD study area

SWFWMD maintains very detailed water use permitting records, including a shapefile of irrigated areas. However, the version of the file publicly available does not include a crop or irrigation system type. Using the permit number, this information can be determined on a permit-by-permit basis through the SWFWMD Water Management Information System (WMIS) database.

SJRWMD provided a GIS point coverage of Ag wells within the SWFWMD with more information than what is available to download from the website, including a crop and irrigation system type. However, this GIS coverage only includes Polk, Highlands, Hardee and portions of Lake and Sumter counties. After discussing the project with SWFMWD's GIS department it was learned that this information could be extracted more efficiently by SWFWMD staff. A public records request for this information was submitted, but the data was not received in time to incorporate into this study. However, the point data that was provided by SJRWMD was used to define the crop and irrigation system based on a permit ID lookup routine.

3.1.3 Description of GIS Data within the SFWMD study area

There was no irrigated areas coverage available for SFWMD. Therefore, the only means to automatically assign a crop or irrigation system type to a given polygon is based on the Land Use and NASS coverages. However, a CUP polygon file is available that could be used to look up the crop and irrigation system information from permitting records. Unlike SWFWMD, a review of online SFWMD permit records do not suggest that crop and irrigation system is coded into their records. Scanned copies of the actual permits, however, do include this information (typically). Populating this information by downloading and reading each permit within the model domain would be a very tedious effort and is outside the scope of the current work.

3.1.4 Description of GIS Data within the SRWMD study area

Of the four Florida water management districts within the study area, the least amount of information is available for SRWMD. A GIS point coverage was provided by SRWMD that, for newer permits, shows the location of wells and the permit ID. Older permits, however, have a point placed in the center of a particular project's Section-Township-Range. Crop and irrigation system information may be available from paper copies of the permits, but this information is not online and obtaining it constitutes a very long and tedious effort that is outside the scope of the current work. Thus, the definition of crop and irrigation system type within the SRWMD will be based solely on the Land Use and NASS coverages.

3.1.5 Description of GIS Data within the Georgia study area

A coverage of irrigated areas for the entire state of Georgia was provided by SJRWMD for this project. This coverage includes the crop and irrigation system. The land use/land cover data available for Georgia uses a different classification system than the FLUCCS used for Florida. The categories for Ag land use in the Georgia classification system are too vague to provide any meaningful information, and as such this coverage was not used for this project. Similar to the way the data for the SJRWMD was handled, the overlay process was carried out to help define vague or missing crop types using the NASS data.

3.2 GIS Overlay Procedures

Initially, it was envisioned that the overlay process would be carried out individually for each of the five data groups. However, the overlay of up to four dense GIS coverage for such large extents yields extremely large file sizes and processing times. To keep file sizes more manageable, intermittent steps were taken to reduce the number of fields in the resulting shapefile and the overlay operations were carried out on a county-by-county basis for each source group.

The overlay procedure used was a series of nested GIS unions. The first coverage (typically irrigated areas) was unioned with Land Use. The output from this procedure was then unioned with the NASS data, and so on. To facilitate the processing of the data after the overlays were complete, a coding system was developed that would allow for the identification of which layers were present for each polygon. This coding system would later be used to filter out certain results (i.e., areas that were present in only the CUP polygons were not included in the irrigated areas database).

Table 3 shows how the source coding system was used. In the final overlay coverage, if a particular polygon is located within the Irrigated Areas layer, (Source 1000), a value of 1000 is added to the source code. If that same polygon is also present in the Land Use layer (Source 100), a value of 100 is added again. This same procedure is repeated for the other two sources, except that values of 10 and/or 1 are added to the source code. To illustrate, if a particular polygon was common to all four data sources, the source code would be 1111. If a particular polygon was found only in Source 1000, the source code would be 1000. These codes were very helpful in filtering out irrigated areas in instances where an Irrigated Areas layer was not available.

The resulting final GIS overlays consisted of millions of small polygons. In areas with an Irrigation Layer, the large contiguous parcels were subdivided based on changes in any of the other three sources, making the data unnecessarily cumbersome (see **Figure 5**). Further, the CFACT model is set up to process one parcel at a time, not many bits and pieces. To retain the original geometry of the most valuable sources of information, a hierarchy-based series of GIS dissolve functions were run on the final overlay dataset. The first dissolve aggregated the Irrigation Layers (Source codes of 1000 or more) back to its original geometry. The remaining pieces were then dissolved by Land Use (source codes between 100 and 111) to retain what was left of its original geometry. A final dissolve was then made to aggregate the NASS data (source codes 10 & 11), leaving only the bits and pieces left from the CUP polygon (source code 1). The resulting hierarchy-dissolved polygons were assigned a unique identification value, and this 'Unique ID' coverage was set aside and used in later processing steps.

Source 1000 Irrigated Areas Layer	Source 100 Land Use (FLUCCS 2000)	Source 10 NASS	Source 1 WUP	Source Code
		10	1	1111
	100	10	0	1110
	100	0	1	1101
1000		U	0	1100
1000	0	10	1	111
		10	0	1010
		0	1	1001
			0	1000
		10	1	0111
	100		0	0110
		0	1	0101
0			0	0100
U		10	1	0011
	0		0	0010
	U	0	1	0001
			0	0000

Table 3 GIS Overlay Source Code System

Figure 5 Hierarchy-Based Data Aggregation Example

3.3 Data Processing and Categorization

3.3.1 Ag Lands Geodatabase Preparation

The source codes were used to define rules for how the crop and irrigation system fields were populated. For example, Source Codes 1000 or more (Irrigation Layer) were set to use the attribute column from the Irrigation Layer, unless a missing value or "na" is encountered and then the crop type from the next-best source of data was used (Land Use or NASS data). To accommodate for farms where two or more annual crops are typically grown in a year, the database was set up to have up to three crop type and three irrigation system entries for each polygon.

Following this step, the polygons were joined with the Unique ID polygons discussed in the previous section. Next, the resulting coverage was dissolved by the Unique ID, permit ID, crop types 1-3 and irrigation system types 1-3. To elaborate, all polygons that have the same values for those attributes were combined into one record. This operation reduced the number of polygons considerably without losing any of the potentially valuable information. In addition, a lookup table of Unique ID and Permit ID was created. This lookup table was used to assign a Permit ID to all polygons with the same Unique ID. It is in this way that many of the polygons defined in the SJRWMD Irrigated Areas Layer were able to be linked to the EN-50 data.

After these final steps, the 1995 and 2010 ALGs were complete. The ALGs are an inventory of all land within the model domain that is considered to be Ag from one of the four sources. No manual refinement or re-digitizing was attempted to improve the accuracy of this information.

3.3.2 Irrigated Lands Geodatabase Preparation

The first step to developing a refined subset of the ALGs representing the land that is irrigated was to export the data to a spreadsheet. Next, the three crop and irrigation systems fields were concatenated into one text value ('crop string'). All unique crop strings were extracted and then assigned a consistently formatted crop and irrigation system entry. By doing this, polygons with unspecified, vague, or missing crop and/or irrigation system information could use the next best source of information from the overlay procedure. **Table 4 and Table 5** list the final list of irrigation systems and crops that were generated from the data.

Center Pivot	Pipeline Seepage	Wheel Roll	
Flood	Reclaimed - Impact Sprinkler	Over-Plant Sprinkler	
Hand	Reclaimed - Micro Spray	LT Drip/Over-Plant Sprinkler	
Impact Sprinkler	Sprayhead Sprinkler	LT Drip w/Plastic	
Linear	Short-Term (ST) Drip	Pipeline Seepage w/Plastic	
Long-Term (LT) Drip	Stationary Guns	Container Nursery Sprinkler	
Micro Spray	Traveling Gun		
none	Unspecified		

Table 4 F	inal List of	Irrigation	Systems	from GIS	S Overlay	Procedure
			J		2	

Abandoned Tree Crops	Liriope	Sweet Potatoes
Alfalfa	Mangos	Tomatoes
Animal Feeding Operations	Melons	Tree Fern
Aquaculture	Millet	Turf Grass
Asparagus Fern	Misc. Vegetables	Turnips
Aspidistra	Mushrooms	Unknown
Beans	Mustard Greens	Unspecified Crop
Beets	Nurseries and Vineyards	Unspecified Field Crop
Blueberries	Oats	Unspecified Nurseries and Vineyards
Broccoli	Oats/Corn	Unspecified Row Crop
Cabbage	Okra	Unspecified Row Crop/Pasture
Caladiums	Onions	Unspecified Tree Crop
Cantaloupe	Ornamentals	Water Mgmt Area
Chestnuts	Parsley	Watercress
Chinese Cabbage	Pasture	Watermelons
Citrus	Peaches	Weeping Willow
Clover	Peanuts	Winter Wheat
Collard Greens	Peas	Winter Wheat/Sorghum
Container Nursery	Pecans	Winter Wheat/Soybeans
Coontie Fern	Peppers	
Corn	Persimmons	
Cotton	Pine	
Cucurbits	Pittosporum	
Cut Foliage	Plowed	
Dairies	Potatoes	
Developed	Potatoes/Cabbage	
Developed - Cabbage	Produce	
Dry Beans	Radish	
Fallow	Rice	
Fennels	Rotation	
Field Corn	Rotation - Sorghum	
Field Nursery	Rotation - Soybeans	
Floriculture	Rye	
Grapes	Shade Ferns	
Greenhouse	Small Grains	
Greens	Sod	
Hammock Ferns	Sorghum	
Hay	Soybeans	
Herbs	Soybeans/Oats	
Horse Farms	Specialty Farms	
IFAS Research Fields	Spinach	
Inactive	Squash]
Kale	Strawberries]
Leatherleaf	Sugar Cane]
Lettuce	Sunflowers]
Ligustrum	Sweet Corn]
		-

Table 5 Final List of Crop Types from GIS Overlay Procedure

The resulting attribute table for this GIS coverage was then analyzed in a spreadsheet. The crop string lookup table was used to assign each individual polygon a consistent crop and irrigation system type. Once this was complete, the data was summarized on a county-by-county basis and compared with the Ag Census data. A separate spreadsheet was set up for each County with filters to allow a user to help 'calibrate' the GIS data to match the Census. **Table A-3** in Appendix A present a detailed breakdown of this analysis, which was performed only for the 2010 geodatabase and only for counties located entirely within one source group.

While it is was demonstrated that aggressive source code filters and crop-specific adjustments could be applied to obtain a better match with the data on a county-by-county basis, the only filters that were used were applied for the entire source group. For instance, small wetlands can theoretically be removed from the Irrigated Areas dataset by requiring that that Source Code 100 (Land Use) be present for the area to be defined as 'irrigated'. While such an operation works very well in open areas, this operation causes problems for Ag operations in areas obscured by trees that aren't classified as FLUCCS Ag land uses. Since aggressive filters and exclusions like this must be applied with such attention to detail, only basic source code requirements and obvious crop type or irrigation system exclusions were applied for defining the Irrigated Lands subset geodatabase. The rules used for each data source group are discussed below:

SJRWMD:	'Irrigated Lands' are restricted to only the shapes defined by the Source 1000 (Irrigated Areas) layer. In addition, a definite irrigation system must be included in the data. Crop values indicating inactive land (e.g., inactive, developed, fallow, etc.) were excluded.
SWFWMD:	'Irrigated Lands' are restricted to only the shapes defined by the Source 1000 (Irrigated Areas) layer. Since irrigation system is not provided in this data, the 'Irrigation Y or N' filter was not applied. Crop values "fallow" and "unknown" were excluded.
SFWMD:	No Source 1000 (Irrigated Areas) layer available. 'Irrigated Lands' were restricted to the intersection of the Source 1 (CUP polygons) with the Source 100 (Land Use) and Source 10 (NASS). In other words, source codes 0111, 0101, and 0011. Crop values "fallow" and "abandoned tree crops" were excluded.
SRWMD:	No Source 1000 (Irrigated Areas) layer available. 'Irrigated Lands' were restricted to the intersection of Source 100 (Land Use) and Source 10 (NASS). In other words, source codes 0111 and 0110. No crop values were excluded.
Georgia:	'Irrigated Lands' are restricted to only the shapes defined by the Source 1000 (Irrigated Areas) layer. In addition, a definite irrigation system must be included in the data. No crop values were excluded.

In addition to the above, crop and irrigation systems adjustments were set up to be applied outside of GIS so they could be modified later without the need for GIS processing (Table C-3). These adjustments were made specifically for certain source groups, and in some cases, specific counties. No crop adjustments were made to the SJRWMD or Georgia datasets.

These crop adjustments differ from the Source Code filtering discussed above because the adjustments do not alter the GIS data. For example, take the case of the 10% of pasture land that

was assumed to be irrigated within the SFWMD. The data provide no means to distinguish between which parcels are irrigated and which are not. To apply the adjustment, the calculated acreage (and thus the irrigation demand) is multiplied by 10% for each parcel. This spreads the irrigation demand out equally, as opposed to the other option which would be select entire parcels at random.

Figure 6 shows a history of the irrigated land for all counties located entirely within the study area, as reported by the Ag Census data (*98, 99, 100, 101, 102, and 105*). The unadjusted GIS-derived coverages are 1.5 to 2 times greater than the Ag census data. The adjusted 1995 ILG is in very good agreement with the extrapolated line between the 1992 and 1997 census. The 2010 ILG is 11.4% greater than the 2007 census, which is well within a reasonable range considering the many reasons why there could be discrepancies. The coverages used to develop the GIS coverage are essentially slices of one moment in time, whereas the census covers the whole year. Some fields are left fallow in some years and started back up later.

Figure 6 Comparison of GIS-Derived and Ag Census Irrigated Land

A full county-by-county comparison of the adjusted GIS-derived and Ag Census irrigated areas is provided in **Tables A-4 and A-5** of Appendix A, for both 1995 and 2010 datasets and for all of the counties within the model domain, regardless of whether a county is present in more than one of the five data groups.

Figure 7 shows a comparison of the 1995 and 2010 ILGs and ALGs.

Figure 7 1995 and 2010 Ag and Irrigation Land Geodatabase

3.4 Final Overlays and Formatting

The final step in this process was to overlay and join additional information to the 1995 and 2010 ILGs. The following data were attached to each polygon:

- Predominant Soil Type
- Zip Code
- Nearest Source of Daily Rain and ET data
- Depth to Water (average)

3.4.1 Predominant Soil Type

A model-wide soil coverage was developed by merging multiple data sets from the 5 data groups and formatted to a consistent data structure. Soil data for Georgia was obtained from the USDA NRCS GeoSpatial Data Gateway website (datagateway.nrcs.usda.gov).

The more detailed Soil Survey Geographic (SSURGO) coverage was used for all counties except for where the data was unavailable electronically (11 counties in Georgia). In these cases, the less-detailed State Soil Geographic (STATSGO) coverage was used.

The predominant soil type was defined for each of the ILG polygons by intersecting the two coverages and then analyzing the attribute table in a spreadsheet. The resulting predominant soil table was then incorporated into the original ILG.

3.4.2 Zip Code

A model-wide coverage of US Postal ZIP codes was also intersected with the ILGs. To account for polygons residing in one or more zip code regions, the predominant zip code for each polygon was computed in the same way as the soils data.

3.4.3 Nearest Source of Rainfall/ET data

SJRWMD provided two time-variable GIS coverage of daily rainfall and ET values. The District obtained this data from the NASA Land Data Assimilation Systems (NLDAS) website (<u>ldas.gsfc.nasa.gov/nldas/NLDASnews.php</u>). The rainfall and ET coverages are composed of daily values from July 1989 to January 2013 on a 12 by 12 kilometer grid for the entire study area and beyond (**Figure 8**). The data for each point was converted into a daily time series spanning 21 years (1992 to 2012).

According to SJRWMD, the rainfall data was not adjusted but the ET data was adjusted to better match the higher-quality ET estimates available for the District from the USGS (<u>fl.water.usgs.gov/et/</u>). The USGS ET data was not available for the entire study area, which is why it was not used in the place of the NLDAS data. In addition, the ET data near the coast was very erratic and suspect. Therefore, based on guidance from SJRWMD, the ET points within 25 km of the coast were excluded from the dataset.

The nearest rainfall and ET station was assigned to each polygon of the ILGs.

Figure 8 Daily Rainfall and ET Data Locations

3.4.4 Depth to Water Table

SJRWMD also provided a coverage of depth to the water table that was used for the District's GWRAPPS program (version 1.4). This data consists of 115 by 115-meter gridded data encompassing the entire District and parts of adjoining WMDs (**Figure 9**). This coverage was joined for the development of the irrigation water demand modeling (see next Section). For the portion of the study area outside of the depth-to-water coverage of 3 feet was used. In the model, if a particular crop's root zone extends into this user-specified depth-to-water, a portion of the crop's water requirements is assumed to be satisfied from the water table. In the AFSIRS database, the only crops that have root zones deeper than 3 feet are alfalfa, citrus, and other tree crops.

Royal Consulting Services, Inc.

St. Johns River Water Management District Development of 1995 and 2010 Agricultural Geodatabases and Irrigation Estimates

Figure 9 Extent of Depth to Water Coverage

Section 4 Irrigation Estimates

The ILGs were developed thinking ahead to the requirements that would be necessary for estimating the irrigation water use. At the onset of this project, it was envisioned that the SJRWMD EN-50 data would be used whenever available and that a crop water demand model would be used to estimate water use for parcels without this information.

However, a closer inspection of the EN-50 data identified numerous potential ways this could introduce errors that would adversely impact the CFACT model. As mentioned in the previous section regarding the comparison of the GIS-derived irrigated lands and the Ag census data, the GIS coverage is one fixed moment in time. The areas associated with the EN-50 may vary with time. Unless the cropped area is recorded and verified for each month or season, it will be problematic to compare the per-acre water use to results from a crop irrigation model. If the actual water use data were used with the CFACT optimization tool, the model would automatically select the farms with an apparent high per-acre water use because the savings would be inflated relative to the area-based costs for the improvements. Thus to 'level the playing field', it was decided that regardless of the existence of the EN-50 data, a crop irrigation demand model would be used to estimate water use for the entire study area.

The EN-50 data may still be used in the groundwater modeling effort by attaching the data to the Irrigated Areas polygons, or by replacing the coverage entirely. Since the EN-50 data are already in a format that can be used by a groundwater model (in terms of well pumpage), no manipulation of this data using the GIS analysis in this project would be required. However, using the EN-50 data still leaves the question of how to estimate the corresponding recharge.

For the remainder of this report, all water use estimates refer to the results from the crop irrigation demand modeling.

4.1 Crop Irrigation Demand Model Selection

There are two main methods for computing crop irrigation requirements that are commonly used for Florida, the Blaney-Criddle (B-C) method and Agricultural Field-Scale Irrigation Requirements Simulation (AFSIRS) model. While there are variations between districts, the B-C model is used for permitting purposes by SWFWMD, SFWMD, and SJRWMD. The SJRWMD CUP Handbook states that the Blaney-Criddle (B-C) method should be used, but SJRWMD encourages the use of their online GIS-Based Water Resources and Agricultural Permitting and Planning System (GWRAPPS) program, which is essentially a user interface for AFSIRS.

The B-C method is a monthly analysis that was developed by the Soil Conservation Service (USDA, 1970). The details of this procedure are provided in Appendix A of the Part 623 of the National Engineering Handbook (80). The application of the B-C method is also discussed briefly in the SJRWMD CUP Handbook. The main advantages of the B-C method are the relatively simple approach, extensive documentation, and low input data requirements.

AFSIRS was originally developed in 1990 by the University of Florida and was later updated in 2008 (*14, 25, and 26*). The AFSIRS model simulates a daily soil water balance and attempts to predict the timing and magnitude of irrigation events based on soil moisture conditions and an irrigation water management (IWM) strategy. While the AFSIRS model is traditionally more cumbersome and data-

intensive than the B-C method, the integration of the GWRAPPS user interface makes this model fairly intuitive and easy to use.

AFSIRS was selected as the model used to estimate crop irrigation demands. One clear advantage of AFSIRS over the B-C model is the time step. Because AFSIRS uses daily time steps, it has the potential to mimic the relationship between weather conditions and irrigation application. The B-C model only considers monthly rainfall totals and thus makes no distinction for day-to-day weather patterns (i.e., a month with 30 days with 0.5 inches of rain per day would be treated the same as a month with only one 15-inch rain event).

For both the CFACT model and groundwater modeling, the goal of the irrigation estimating is to mimic actual water use as accurately as possible. AFSIRS represents a very ideal IWM scenario whereby the conditions of a uniform soil are known at the start of each day, and, in advance, exactly how much it will rain that day. In reality, soil moisture monitoring is not widespread and many other factors go into the decision to irrigate. A farmer endeavors to develop an IWM that is most economically viable and this varies widely by crop type and a number of other factors. In this sense it is logical to assume that a higher-value crop and/or crops at water-sensitive stages would have a completely different IWM strategy than a low value crop. However, the more precise, daily time step nature of the AFSIRS model offers a greater potential for refinement to better mimic actual water use for a given crop, location, and soil type.

A recompiled version of AFSIRS was provided by SJRWMD for this project. The model code was revised to enable batch processing (up to about 25,000 runs at a time), to run one year at a time, and to produce a customized monthly output. The model was set to run in 'Net' irrigation mode with the intention that irrigation application efficiency would be factored during processing of the model results.

4.2 AFSIRS Model Setup

The application of the AFSIRS model to the ILGs required converting and/or assembling the following data elements:

• <u>Soil Type</u>: The AFSIRS model was originally set up with 766 of the major soil types in Florida. The predominant SSURGO soil types in the ILG, which greatly exceeds this number, had to thus be categorized. For most soils, this was accomplished easily because the soil descriptions matched identically. However, for rarer soils and the soils in Georgia, a representative soil was selected based on the soil texture in the descriptions (e.g., 'sand', 'loamy sand', etc.). A more precise way to handle this data would be to develop county-specific AFSIRS soil databases because the parameters used by AFSIRS (soil profile depth and available water content) vary for the same soil between the counties. An alternative approach would be to reconfigure the batch model to accept custom soil parameters. Either approach would be a fairly extensive effort and was outside the scope of this project.

- <u>Crop Type</u>: Similar to the conversion of the soil types to conform to the AFSIRS database, the crop types were assigned an AFSIRS crop type (see **Exhibit B-1 in Appendix B**). For crops not in the AFSIRS database, a similar crop was assumed based on the literature. **Tables B-2 and B-3** in Appendix D provides details on how the crop types were categorized into the AFSIRS format.
- <u>Growing Season</u>: AFSIRS simulates crops as either perennials (year-round irrigation season) or annuals (seasonal). For the annuals, AFSIRS requires user-defined planting and harvesting dates. Tables B-2 and B-3 also show the assumed planting and harvesting dates, along with the reference that was used to define this period. Since crop planting dates and duration of the growing season data are presented as ranges, median values were selected.

Multiple simulations were executed for double-and triple cropped systems, one model run per crop. Each county in the study area was designated as either in the North and Central zone (*112*) because growing seasons vary by location (see **Table B-4** in Appendix D). In reality, there are a multitude of crop/planting data combinations that change from year to year based on market prices, weather, and other factors.

The pre-processing program used to set up the batch AFSIRS input files allows for up to three growing periods per crop. The model results are later merged to obtain a monthly time series for each polygon.

• <u>Irrigation System</u>: Similar to the conversion of the soil types to conform to the AFSIRS database, the irrigation systems were assigned an AFSIRS irrigation system type. **Table 6** below is a summary of the AFSIRS irrigation types and their corresponding parameters.

AFSIRS Code	Irrigation Application Efficiency (EFF)	Fraction of Soil Surface Irrigated (ARZI)	Fraction of ET extracted from irrigated root zone (EXIR)	Description
1	1	1	1	User-specified system
2	0.85	0.5	0.4	Micro, Drip
3	0.8	0.5	0.4	Micro, Spray
4	0.7	1	1	Multiple Sprinkler
5	0.2	0.3	0.7	Sprinkler, Container Nursery
6	0.7	1	0.7	Sprinkler, Large Guns
7	0.6	1	1	Seepage, Subirrigation
8	0.5	1	0.7	Crown Flood (Citrus)
9	0.5	1	1	Flood (Rice)

Table 6 AFSIRS Irrigation Types and Parameters

- <u>Irrigation Management Option</u>: AFSIRS determines the timing and magnitude of irrigation events based on a daily soil water balance and an assumed management option. The model has three options:
 - Normal Irrigation An irrigation event occurs if soil storage reaches the maximum allowable depletion (MAD) for the crop. The soil is irrigated to field capacity for each event. <u>This was the option selected for this project.</u>

- Fixed Depth An irrigation event occurs if soil storage reaches the maximum allowable depletion (MAD) for the crop. A fixed amount of water is applied for each irrigation event.
- Deficit Irrigation An irrigation event occurs if soil storage reaches the maximum allowable depletion (MAD) for the crop. The soil is irrigated to only a fraction of field capacity.

4.3 Unadjusted AFSIRS Results – Net Irrigation Requirements

The output from the batch model includes month-by-month results of the irrigation applied for each simulation. **Tables B-5 and B-6** of Appendix D are a summary of the net irrigation requirements by crop for the 1995 and 2010 data sets, respectively. **Tables B-7 and B-8** of Appendix D provide a more detailed view of this same information, where the net irrigation requirements for each crop are broken down by irrigation system.

4.4 Adjusted AFSIRS Results – Gross Irrigation Requirements

The AFSIRS modeling was performed in 'net' irrigation mode, which means the results are the amount of water needed to prevent undesirable crop water stress assuming a 100% efficient system. The 'gross' irrigation requirement incorporates a system's irrigation efficiency. The term 'irrigation efficiency' is often used to mean two different things. From a water management perspective, it means the amount of water used by the crop divided by the total amount of water withdrawn. This is how the term is applied in consumptive use permitting when the net irrigation requirement is converted to a reasonable gross water demand.

From a farmer's perspective, however, the more meaningful definition of irrigation efficiency is the effectiveness of an irrigation practice at improving crop yield or market value. In this light, the entire practice of irrigation functions as a sort of safeguard that protects the farmer's investment from reduced yields associated with dry weather. Drainage systems, fertilization, pest control, and other Ag practices essentially serve the same function. The costs, benefits, and potential downside of all these practices are only part of the complex balancing act that an Ag producer must manage to be successful (other factors include highly variable market prices, cultivation logistics, and more). While this study is focused on the water management definition, it is helpful to remember that a farmer's decision to irrigate or not on any given day is more complicated than the simple soil moisture content trigger used by AFSIRS.

The conversion of AFSIRS-computed crop irrigation requirement to an estimate of the amount of water actually applied by the producer must incorporate the effectiveness of the irrigation system to deliver water to the crop as well as irrigation water management practices. For this reason, the NRCS Farm Irrigation Rating Method (FIRM) was used.

4.4.1 Farm Irrigation Rating Method Theory

The Farm Irrigation Rating Method (FIRM) is typically used in irrigation audits to assess the actual efficiency of existing systems and evaluate the potential benefits from improved maintenance practices or design. To understand how FIRM works, it is necessary to understand the basic theory regarding irrigation efficiency. Irrigation efficiency is commonly broken into three parts:

- Storage efficiency (Es),
- Conveyance efficiency (Ec), and
- Application efficiency (Ea).

The overall efficiency of a system is the product of these three parts. Most studies focus on Ea exclusively as the other two variables are very site-specific. Nonetheless, Es and Ec can be significant in many situations (e.g., irrigation ponds, open irrigation supply ditches).

FIRM operates solely within the Ea term. The Ea term is considered to be the product of the 'potential' irrigation application efficiency (Ep) for a given irrigation system and a management factor (Fm). FIRM is essentially a rational methodology for computing Fm based on a number of factors, such as:

- Flow measurement practices and irrigation scheduling
- Maintenance of the system (e.g., replacing sprinkler heads regularly)
- Experience and skill of the operator
- Site and System conditions (e.g. application uniformity, pressure variations, etc.)

FIRM was run for the major classes of irrigation systems to determine appropriate Fm factors for three classes of O&M: deferred, reactive, and proactive. The deferred class corresponds to poorly managed and maintained systems where poor uniformity or management leads to over-watering the entire crop in favor of meeting the water requirements of trouble areas (e.g., edges of the field, sandy spots, etc.). The proactive, on the other hand, corresponds to a very well managed and maintained system, with one or more BMPs such as irrigation scheduling, soil moisture or crop stress monitoring, full-time irrigation system operators, and a well-designed system located in a suitable field. The reactive class falls somewhere between the deferred and proactive classes. **Table 7** lists the values for the irrigation application efficiency for new systems ('potential' irrigation application efficiency) and the three classes of O&M. A more detailed description of how these numbers were derived is provided in Section 5.

	Efficie	ency at Ma	intenance	Levels
Existing System	New	Proactive	Reactive	Deferred
Subsurface Drip	90%	88%	72%	63%
Surface Drip	90%	88%	72%	63%
Micro Spray	85%	83%	68%	56%
Center Pivot	85%	79%	65%	56%
Impact sprinkler	75%	70%	57%	50%
Sprayhead sprinkler	75%	70%	57%	50%
Linear Move	85%	79%	65%	56%
Traveling gun	70%	65%	53%	46%
Wheel roll	70%	65%	53%	46%
Stationary gun	75%	70%	57%	50%
Pipeline seepage	70%	69%	60%	43%
Flood	60%	57%	49%	38%
Container nursery impact sprinkler	50%	46%	38%	33%

Table 7 Irrigation Application Efficiency for various O&M Classes

*Values compiled from Sources 3, 7, 18, 19, 25, 35, 37

4.4.2 MIL Data Analysis and O&M Classes

Data from the Mobile Irrigation Lab (MIL) reports provided by FDACS were used to define an O&M class to each Irrigated Areas polygons, to the extent afforded by the data. A total of 3,380 MIL records were analyzed to categorize and profile the number and type of problem codes by crop type and irrigation system type. **Table B-9** in Appendix D lists the problem code and problem description included in the MIL reports.

Figure 10 shows the number of MIL audits categorized by crop and irrigation system. The majority of the crop types audited are for citrus and nursery operations (58%) and the remaining 42% is composed of about 22 other crops. Almost all of the MIL audits (98%) were conducted for Micro Spray, Fixed Sprinklers, Center Pivots, and Micro Drip systems.

The MIL reports do not include a farm name or any means to identify a location except for a County and ZIP code. **Figure 11** shows the distribution of MIL reports by zip code. Since data is lacking in many areas of the model domain, a two-tiered approach was used to assign an O&M class to the polygons. In both cases, a minimum number of 20 reports were required to establish a rule. The first tier separates farms by irrigation system type, crop type, and zip code.

Number of Mobile Irrigation Lab Audits- Distribution by Crop Type

Number of Mobile Irrigation Lab Audits - Distribution by Irrigation System Type

Figure 10 Number of MIL Records by Crop Type and Irrigation System

St. Johns River Water Management District Development of 1995 and 2010 Agricultural Geodatabases and Irrigation Estimates

Grape, 19

Figure 11 Grouping of MIL Reports by ZIP Code

Table B-10 in Appendix D provides a listing of the first and second tier categories, the occurrence frequency of each problem code, the average distribution and/or emitter uniformity, and the assumed O&M class for each. Distribution and emitter uniformity is a measure of how even the water is distributed over the crop. Poor uniformity does not directly relate to a lower application efficiency and greater water use in the traditional sense (water used equals the net irrigation requirement divided by application efficiency) because water use is ultimately up to the farmer. However, it is reasonable to assume a farmer would generally over-water certain areas to some extent in favor of meeting the water requirements of their 'trouble spots'.

Polygons that did not fit into either first- or second-tier categories were assumed to have a default O&M class of "reactive".

4.4.3 Gross Irrigation Requirements

Table 8 is an abridged summary of the gross irrigation requirements for the more prevalent crop types within the study area, using the 2010 ILG. The highest per-acre water use among the crops was from nurseries, which is potentially misleading because the area for this type of operation is difficult to define because of varying plant varieties, container spacing, and sizes.

Сгор	Total Area	Average Irrigation	Gross Annual Irrigation Requirement (inches)			
1	(acres)	Efficiency (%)	Wet Year ¹	Average	Dry Year ¹	
Citrus	510,522	68%	7.1	12.6	18.3	
Sod	85,378	53%	21.4	29.0	36.3	
Sugar Cane	85,260	60%	21.8	28.0	37.1	
Pasture	76,223	60%	22.6	29.1	37.2	
Strawberries	27,170	72%	5.7	8.2	11.6	
Unspecified Row Crop	23,521	65%	8.6	11.3	13.7	
Unspecified Row Crop/Pasture	20,976	65%	17.3	22.9	28.3	
Potatoes	19,036	60%	3.8	6.2	8.3	
Нау	17,510	53%	6.4	12.3	17.4	
Winter Wheat	14,363	53%	0.0	0.3	0.4	
Sorghum	11,657	53%	7.0	10.6	14.5	
Rye	10,788	53%	0.2	0.6	1.0	
Sweet Corn	7,452	53%	6.6	9.4	12.0	
Tomatoes	7,009	71%	7.2	9.1	10.7	
Watermelons	6,881	63%	6.4	9.3	11.9	
Container Nursery	6,460	64%	32.4	38.1	44.3	
Field Nursery	5,869	68%	22.2	27.6	33.2	

Table Q	Canada	Annual	Innication	Dogui	amonto	fortha	2010	Innicatad	Landa	Coodatabasa
I able o	Gruss.	Ainuai	Impation	neuun	tements	for the	2010	Impaleu	Lanus	Geogalabase

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

4.5 Other Non-Irrigation Water Uses

The estimates provided in this report pertain to irrigation requirements only. Other water uses on a farm include, but are not limited to:

- Frost Protection
- Crop Establishment (annuals)
- Relief from Other Stress (e.g., heat, salinity)
- Fertigation, Chemigation, and Pesticide Mixing

Incorporating these additional factors is outside the scope of the current work. However, the framework of the ILGs could facilitate such a task, with the addition of more datasets.

Frost protection is used on a variety of crops in areas such as Central Florida where freezes occur fairly regularly but not every year. Citrus, strawberries, and ferns are examples of crops commonly protected from freezes. While strategies vary by crop and the capabilities of a particular irrigation system, the most common method is to apply a constant high supply of water to the plant. As ice is continually formed around the plant, the heat gained from the transition of a liquid to a solid (heat of fusion) helps to protect the plant. It is recommended that 0.25 to 0.40 inches per hour of water be applied so that the heat of fusion and heat of vaporization (liquid to water vapor) balance (*106*). If too little water is applied, the effect can be more damaging than if no water were applied at all. For some farms, the capacity of the irrigation system limits frost protection to a portion of the field. The high water requirements from frost protection have led to very high short-term groundwater drawdown, and more and more farms are adding reuse ponds for this very purpose. Another strategy used, which offers less of a guarantee but at least some measure of protection, is to flood or moisten the ground before the freeze occurs to act as a heat buffer. So in addition to the obvious input requirement of temperature, the many factors related to freeze protection make it inappropriate to estimate this water use given the scope of this project and data collected thus far.

Crop establishment, while seemingly a simple exercise to incorporate into the current irrigation estimates, depends on antecedent weather conditions and the timing of the planting date. While antecedent moisture conditions could potentially be inferred by analyzing the AFSIRS results for a perennial crop in a given area, the planting dates for a particular crop are assumed from the literature and could vary considerably.

Water used to relieve heat or salinity stress can be significant for some farms. Some farms base a portion their irrigation management strategy (or sometimes entirely) on these factors. Crops on sandy soils with low water-holding capacity may require daily applications of water to relieve heat stress. For farms irrigated with saline water, the accumulation of salt within the root zone makes it more difficult for the roots to extract water. If sufficient rains do not occur to periodically flush the root zone and clear out the salinity, the grower must increase the supply of water to the root zone by irrigating more frequently and/or in greater amounts. Site-specific data would be required to incorporate this type of water use, and is outside the scope of the current work.

Water used for fertigation, chemigation, and pesticide mixing is typically small and is ideally scheduled along with regular irrigation events. While certain irrigation systems enable a farm to do these activities using water, it does not necessarily mean it is the method of choice. Granular fertilizers, aerial applications, spray trucks, and other alternatives offer their own unique advantages. Site-specific data would be required to incorporate this type of water use, and is outside the scope of the current work.

4.6 Irrigation Water Use Estimates Summary

The gross irrigation water demands discussed in the previous section were multiplied by the adjusted polygon areas to determine the annual and monthly estimates of irrigation-related water use. The average annual water use from the current work ranges is 886, 1286, and 1688 million gallons per day (mgd) for a wet year, average year, and dry year, respectively.

A comparison of the 2010 irrigation water use estimates and the USGS 2005 Agricultural water use estimates (*86*) is provided on **Table B-11** of Appendix B. Isolating only those counties that reside entirely within the MegaModel and within Florida, the average annual irrigation water use is 814, 1,183, and 1,551 mgd for a wet year, average year, and dry year, respectively. While there are some discrepancies at the county level, overall the numbers are in reasonable agreement. The USGS 2005 Ag Water Use estimate for these same counties was 1,215 which fits between an average and dry year. While there are numerous difference in how these values were calculated and what is included, this comparison does provide some level of assurance that the current values are 'in the ballpark' with previous estimates.

Tables B-12 and B-13 of Appendix B provide a more detailed county-by-county breakdown of the irrigation water use estimates by crop and county, for 1995 and 2010, respectively. As discussed previously, no effort was made to calibrate or change the crop types for each County using the census data. The only adjustments that were made in this analysis were discussed in the previous section, and were applied only to the assumed percentage of irrigated acreages of certain crops. A more detailed county-by-county crop type refinement is beyond the scope of the current work.

Lastly, **Figures B-1 to B-12** of Appendix B shows the average adjusted irrigation amounts for the study area for each month of the year. The adjusted irrigation amount was calculated based on the adjusted polygon area (which include the crop adjustment factors discussed in Section 3) and gross irrigation requirements.

Section 5 CFACT Development

Early in the project, a trial run of the GIS processing and integration with the CFACT model was executed to verify the overall approach and identify the additional data requirements. The county selected for this analysis was Putnam County because it was within the SJRWMD and the version of the CFACT model at the time appeared ready to handle the input. It was during the development of this trial run that the preliminary assumptions for the CFACT model were defined. Following completion of the Irrigated Areas database, these assumptions were expanded to support the wider variety of crop types that were generated during the GIS processing. The pre-processing was also refined to facilitate adding new crops.

For the development of the CFACT discussed in this section, a subset of only SJRWMD parcels from the 2010 ILG was used.

5.1 CFACT Overview

In general, the goal of the CFACT optimization routine is to maximize water savings while minimizing cost. For each parcel, the model first calculates the initial gross irrigation requirement and annual maintenance cost based on the existing irrigation system type, the net irrigation requirement, and the assumed O&M class (proactive, reactive, and deferred). These input parameters are defined by the CFACT input GIS coverage (a subset of the AFSIRS-linked ILG).

Next, the model evaluates the annual water savings that could be gained by implementing a list of available BMPs, which include either improving the O&M class or installing new systems. The annual cost associated with the O&M options is simply taken to be the difference in cost between the initial and the selected O&M class. The cost for new systems is calculated as the difference between the O&M costs (new systems are assumed to have a 'proactive' O&M class), plus the new system cost of the system divided by the assumed service life.

An array of water savings and costs is thus generated by repeating the above calculations for each parcel. To help keep the list applicable to the type of crop being grown, a crop/irrigation system compatibility relationship was applied, which 'turns off' certain incompatible arrangements (e.g., a high pressure traveling gun could damage delicate row crops). The CFACT then iterates through the array of options until an optimal configuration of parcels and options is obtained. The model can currently be configured in one of two ways:

<u>Fixed Budget / Maximize Water Savings</u>: The model ultimately turns options on or off (1 per parcel) within the constraints of the budget, then evaluates the water savings. The model iterates through the array, making adjustments until a maximum water savings value is obtained.

<u>Fixed Water Savings Goal/ Minimize Budget</u>: The model ultimately turns options on or off (1 per parcel) within the constraints of the water savings goal, then evaluates the associated cost. The model iterates through the array, making adjustments until a minimum cost value is obtained.

5.2 Crop & Irrigation System Compatibility

A crop and irrigation system compatibility table was developed by defining categories of crops with similar characteristics as they relate to irrigation. **Table C-1 in Appendix C** provides a breakdown of the assumed compatibilities (Yes, No, or Unlikely) for the various combinations crop groups and irrigation systems.

The 'unlikely' category was assigned to combinations that, while not totally infeasible, are not commonly used due to practicality issues. For example, take the case of citrus. Most of the citrus grown in the SJRWMD uses micro spray irrigation, according to the GIS analysis, probably because it is very efficient and provides the best measure of frost protection. For the citrus crop matrix, a 'no' category for center pivots and linear move systems was applied because it is impractical for most mature citrus trees because the limbs would need to be trimmed back very frequently to allow the machine to pass through the field. Moreover, such a system would provide no means of cold protection. Stationary and traveling gun was classified as 'unlikely' because while it may not be optimal, using these systems for citrus would not pose the same O&M challenges that center pivots or linear move system combinations. Depending on the number of parcels being analyzed in the CFACT, it may be advantageous to reduce the number of computations by omitting the unlikely group.

A second table was developed for all of the crop types from the 2010 GIS data as well as some other crops grown throughout Florida. A more expansive list than what was needed was developed to allow for additional crops in the future. **Table C-2** of Appendix C provides the final crop and irrigation system compatibility matrix.

5.3 Irrigation Application Efficiency Assumptions

The assumed irrigation application efficiency assumptions previously presented in Table 6 were derived from the literature. Details of this analysis are provided in **Table C-3** of Appendix C. The final relationship for each irrigation system type was derived by first choosing a value from the literature near the upper-end of the spectrum and calling this the 'Potential' or 'New System' efficiency. Then using this number, FIRM was applied to obtain the efficiency for the proactive, reactive, and deferred O&M classes. FIRM variables that were modified to represent the differences between the O&M classes is provided in **Table 9**.

FIRM variable	Proactive	Reactive	Deferred
Md – Measuring Devices	Each Field	Farm Delivery	Farm Delivery
S – Irrigation Scheduling	Monitoring <u>and</u> Scheduling	Scheduling <u>or</u> Monitoring	None
I – Irrigation Operator	Full-time, trained	Full-time, untrained	Part-time, trained
M – Maintenance	Excellent	Good	Fair

Table 9 FIRM Variables

5.4 Cost Assumptions

As FIRM analysis was conducted to compute the factors affecting irrigation efficiency, the costs to do these things were also tallied based on assumptions derived from the literature. The corresponding breakdown for each of the irrigation systems is also given in Table C-3. **Table 10** is a summary of the final cost assumptions used in the CFACT.

Irrigation System	Service Life (years)	New Installati on Costs (\$/ac)	New Installation Costs Prorated Over Service Life (\$/ac/year)	Proactive (\$/ac/year)	Reactive (\$/ac/year)	Deferred (\$/ac/year)
Subsurface Drip	7.5	\$1,000	\$133	\$187	\$130	\$96
Surface Drip	7.5	\$1,000	\$133	\$183	\$120	\$88
Micro Spray	7.5	\$1,000	\$133	\$181	\$131	\$88
Center Pivot	15	\$400	\$27	\$79	\$57	\$28
Impact sprinkler	7.5	\$1,600	\$213	\$194	\$146	\$100
Sprayhead sprinkler	7.5	\$1,600	\$213	\$181	\$129	\$95
Linear Move	15	\$500	\$33	\$84	\$61	\$31
Traveling gun	10	\$350	\$35	\$163	\$116	\$86
Wheel roll	15	\$350	\$23	\$163	\$116	\$86
Stationary gun	15	\$350	\$23	\$160	\$114	\$85
Pipeline seepage	15	\$65	\$4	\$104	\$63	\$43
Flood	15	\$65	\$4	\$104	\$63	\$43
Container nursery impact sprinkler	15	\$1,600	\$107	\$309	\$209	\$130

Table 10 Water Savings Options Cost Assumptions

5.5 CFACT Test Case

Early in the development of this project, a county-scale test case of the CFACT model was prepared using Putnam County as the example. This county was selected mainly because there was sufficient MIL data available to characterize various irrigation practices and crops.

The Putnam County dataset was simulated in the CFACT model by aggregating the parcel data by irrigation type and crop. This simplification was made to reduce run times so that several approaches to the data could be tested. For example, the model can be used to maximize water savings given a fixed budget or minimize the cost to achieve a particular water savings goal.

Figure 12 shows a graph of the results when a range of fixed budgets were assumed to determine the potential water savings. It is important to bear in mind that these results are preliminary and will be refined as the project continues. For fixed budgets of \$100,000 or less, the CFACT is limited by the cost of the potential water savings practices. The water saved per dollar spent substantially improves for fixed budgets ranging between \$100,000 and \$0.75 million because the most effective water saving practices are selected. Beyond this, water savings flattens out until a fixed budget of about \$2 million is used, indicating that the most costly water savings practices are utilized.

Figure 12 Cost-Water Savings for CFACT County-Scale Demonstration Simulation

5.6 Full-Dataset CFACT Runs - Preliminary Results

Following the completion of the study area wide GIS processing and irrigation estimates, the SJRWMD polygons were extracted from the 2010 ILG and used as input to the CFACT model. The model was run by creating 32 groups according to the predominant crop and irrigation system combinations, which accounts for roughly 95% of the irrigated acreage within SJRWMD.

Figure 13 illustrates the relationship between water savings and cost for this scenario. In general the two trends agree, however, the full dataset version is more erratic than the Putnam County data. This is the result of the data aggregation process and the way the CFACT model is set up, which treats each parcel as an 'all or nothing' type approach 'The same holds true for the county-scale analysis, only to a smaller extent. For this reason, the graphs on Figures 12 and 13 are provided only to demonstrate one of the ways the CFACT can be applied. Ideally, the CFACT could be set up to consider partial BMPs as alternatives. However this would greatly increase the number of options the program must consider during the optimization routine, quite possibly increasing solver time to that of running the detailed parcel data in the first place.

Figure 13 Cost-Water Savings for CFACT Full-Scale Demonstration Simulation

Section 6 Summary and Conclusions

This project successfully completed the two stated objectives to the extent afforded by the available data. During the process of collecting and assimilating the data necessary to develop the CFACT and develop the irrigation estimates, several areas were identified that need improvement. While a very good starting point, the deliverables for this project have limitations that will be discussed in the following sections.

6.1 GIS Processing Summary

From a GIS perspective, the Ag Lands and Irrigated Lands Geodatabases represent a considerable improvement in accuracy compared to solely using the NASS data, which was the only model-wide input dataset available. Areas that were defined using limited data (e.g., SFWMD, SRWMD) were more aggressively tensioned to the Ag Census data, whereas areas with detailed and field-verified input coverages were left unaltered.

The GIS coverages would be best improved upon by using aerial imagery (for the 1995 or 2010 time periods) and digitizing fields. Ideally, this would be carried out with time-variable imagery (some irrigated areas are apparent only for a particular season) and with the Ag Lands and Irrigated Lands as a backdrop. These coverages will facilitate editing and often will provide a link to permitting information for a particular parcel. An example of how editing would be facilitated is the removal of wetland areas (as defined by FLUCCS) using the Source Codes.

Even with improved definition of the irrigated layers through aerial imagery, the GIS coverages still represent only one moment in time. For residential and commercial land uses, this 'snapshot' does not typically pose too great a problem. Ag land use and irrigation can vary significantly from season to season or year to year. However, in theory, the effect of this problem is diminished as the focus is placed on larger areas at a time (e.g., County-wide, District-wide).

6.2 Irrigation Estimates Summary

The AFSIRS modeling provides an estimate of the Irrigated Demand for each parcel in the model domain. Thus, a dataset exists by which changes to the various input assumptions or other model adjustments can be compared that is relevant to the study area. The variables that are recommended for such an analysis include, but are not limited to:

- Irrigation Management The results could be compared to the fixed depth or deficit irrigation options, which would in a sense evaluate these as BMPs to help save water.
- Depth to Water While a practical and reasonable simplification at the time, the constant depth to water table assumption within AFSIRS is somewhat questionable because water tables typically fluctuate with rainfall patterns. Analyses by making global changes to depth to water would help to quantify the effect on model results, at a large scale.
- Weather Input As the Irrigated Lands coverage is refined, the effect of climate change on rainfall patterns could be identified. How the rain falls is critical to irrigation management (both real world and modeled in AFSIRS). Longer periods with no rain and bigger rain events would ultimately lead to greater irrigation demands.

With additional refinements to the GIS coverages and better selection of input parameters, there would still be limitations to using a model such as AFSIRS. AFSIRS simulates the soil water balance and schedules irrigations accordingly, translating to a real-world situation where irrigation controllers are linked to a soil moisture sensor placed in the field. This is rarely the case for typical irrigation management. While the effect of human error is emulated within FIRM efficiency calculations, this spreads the error out over the entire season. In reality, a producer will be more willing to save water and wait for rain at certain times in a season.

Even with this fundamental limitation, AFSIRS remains the most precise irrigation demand model of those commonly used in Florida, and thus the best suited for attempting to mimic actual water use patterns.

If an effort is made to tension AFSIRS to actual water use, the assumed areas corresponding to the withdrawals should be carefully inspected for the time period the data are evaluated. Supply points serving more than one type of use (e.g., irrigation and equipment washing) should be adjusted or omitted. Adjusting the crop coefficients will change the rate of water removal from the soil water column, and thus cause a change to irrigation practices. An alternative and perhaps more direct way of attempting to tension to actual use would be to interview producers or review permitting forms to better understand the factors that drive their decisions.

6.3 CFACT Summary

The CFACT model is also considered to be a starting point. Refinement of the irrigation efficiency and cost calculations should be an ongoing effort as more data collected and new systems emerge. The following is a list of features that are recommended for addition or improvement. The data requirements to implement these features are typically extensive and would be impractical to attempt to characterize these on a large scale, and thus were not incorporated in this phase of the model development.

- 1. <u>Pumping cost calculations</u> In many situations, switching from a high-pressure system to a lower pressure system is a cost effective option. To incorporate this into the CFACT, each farm must have the following information:
 - Source type: Surface water or groundwater defined. This could be accomplished by joining a CUP withdrawal point coverage.
 - Operating pressures: This may be extracted from the literature review, with typical values assigned.
 - Power Type: Diesel or Electric.
 - Pump details: Pump efficiency, horsepower, total dynamic head, etc.
- 2. <u>Reduced Fertilizer, Pesticide, and other Chemical Costs</u> The change from one irrigation system to another may provide the opportunity to apply chemicals with water, which may or may not be of value to the producer. The type of chemicals used, how they are applied

(broadcast, banding, aerial, spray trucks, etc.), and how much is used varies drastically to meet the site-specific needs of the farm. Since this level of detail is not provided in the NASS statistics, the only way to obtain this reliable information would be from interviews with farmers and/or experts for a particular crop in a particular region. Moreover, the strategy for irrigation water management would be changed if a producer/farmer switched to fertigation or chemigation because water must be used to apply the chemical even in rainy weather.

- 3. <u>Benefits from a Resource Perspective</u> The water-savings computed by the CFACT model represents a direct benefit to the resource at large. Secondary benefits may include reduced power consumption from less pumping (and/or operating at a lower pressure) and a reduced nutrient concentration in runoff or water leaching below the root zone. Incorporating these benefits into the analysis would require completing the analysis in items 1 and 2 above.
- 4. <u>Crop- and Region-Specific Water Conservation BMPs</u> The applicability of the CFACT could be greatly improved by developing suites of BMPs that are applicable to a particular crop in a particular region. For example, the practices involved in growing citrus on a sand ridge are drastically different than growing citrus on flatwood soils. This could be accomplished by restructuring the CFACT and developing a more rigorous preprocessing routine. For each parcel, the model would look at the existing system and develop a list of specific BMPs that could be implemented. The factors included in the O&M classes could then broken down separately and more site-specific irrigation efficiency adjustments can be made.

These limitations and suggestions for enhancement may call for the development of a more sitespecific optimization tool to determine the best path toward water conservation for each farm. The structure of the existing regional CFACT model is fairly robust and would be able to manage the incorporation of crop-specific BMPs as they become available, allowing the model to become a smarter and a more useful tool.

6.4 Conclusions

To the extent possible, this project was designed to maintain the integrity of the input data sets with as few assumptions as possible. Random spot-checking of the GIS coverages have revealed instances where the farm boundaries could be improved or the database corrected based on aerial imagery alone. However, to keep these results true to their original source, no efforts were made to manually modify the data. Readers should bear this in mind when comparing the results from this project to other efforts. Even though additional refinements could be made, this project established three milestones.

First, the compilation of Ag and Irrigated land for the entire study area (which encompasses most of Florida) represents the synthesis and standardization of many types of different data (land use, NASS crop data layer, soils, depth to water, etc.). A GIS coverage of this magnitude and detail could be leveraged in many ways beyond the objectives of this study. For example, this coverage would be useful in sub-regional surface or groundwater modeling because changes to a site's drainage system could potentially be inferred by the growing season of that particular crop. The

coverage could also be used to help develop public-private partnerships and innovative ways to meet growing water demands.

The second milestone is the development of the AFSIRS runs for all of the parcels within the study area. The summaries of net and gross irrigation requirements generated could be used as a convenient reference guide. Furthermore, the model pre-processing spreadsheets were set up to allow for easy manipulation of some of the key model assumptions and parameters (depth to water, irrigation management strategy, etc.). This allows for a unique opportunity to perform sensitivity analyses and model-to-model comparisons (e.g., AFSIRS vs. Blaney-Criddle) on actual farm sites. With careful processing of the EN-50 data, AFSIRS could be refined to develop an irrigation water management strategy that produces a better match with actual water use. Such refinements could then be plugged in globally to make sure a refinement to one type of crop in a particular location does not adversely affect the irrigation estimates elsewhere in the study area.

The third and final milestone is the completion of the assumptions used by the preliminary version of the CFACT. While the cost and efficiency assumptions will likely be refined in the future, having these base assumptions, along with the complete input data set, allows for fine-tuning of the model's optimization routine. Meanwhile, efforts can continue to refine the existing cost assumptions and develop new cost-benefit relationships.

At the field-level, Ag irrigation is difficult to characterize with any degree of certainty because of many factors that change year-to-year and season-to-season. However, from a wider perspective, this uncertainty can be managed by tensioning the data to published values. Developing the GIS coverages and irrigation estimates for such a large study area is an important step forward in better understanding Ag water use, which in turn will help our ability to predict future Ag water requirements and develop water conservation strategies.

Section 7 References

1.	J. Buchanon and T. Cross, 2002. <i>Irrigation Cost Analysis Handbook</i> . Agricultural Extension Service, The University of Tennessee, Publication PB1721. Revised August 2005.
2.	K. Wagner, 2012. <i>Status and Trends of Irrigated Agriculture in Texas</i> . Texas A&M AgriLife Research Extension, Publication TWRI EM-115.
3.	Texas Water Development Board (TWDB), 2005. Water Conservation Best Management Practices (BMP) Guide for Agriculture in Texas. TWDB Report 362. April 2005.
4.	FEES and H. Whiffen, 1991. <i>Energy Use in Irrigation</i> . Energy Efficiency and Environmental News, the newsletter of the Florida Energy Extension Service, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: November 1991.
6.	D. York, L. Parsons, and L Walker-Coleman. 2013. <i>Agricultural Reuse: Using Reclaimed Water to Irrigate Edible Crops in Florida</i> . Florida Department of Environmental Protection. Accessed February 2013. http://www.dep.state.fl.us/water/wqssp/docs/Crops.pdf
7.	CH2MHILL. 1991. Cost Analysis of Agricultural Irrigation Water Conservation Measures. Prepared for the Southwest Florida Water Management District. April 1991
8.	A. Trippensee, P. Byrne, W. Boggess, and A. Smajstrla, 1995. <i>Management Effect on Irrigation Water Use for Potato Farms of North Florida</i> . St. Johns River Water Management District Special Publication SJ95-SP5
9.	Almas, L.K., Amosson, S.H., Marek, T., and Colette, W.A., 2003. <i>Economic Feasibility of Precision Irrigation in the Northern Texas High Plains</i> . Prepared for the Southern Agricultural Ecomoincs Association Annual Meeting, Mobile, Alabama, February 1-5, 2003.
10.	Seo, S., Segarra, E., Mitchell, P.D., and Leatham, D.J., 2006. <i>Irrigation Technology Adoption in the Texas High Plains: A Real Options Approach</i> . Prepared for the American Agricultural Economics Association Annual Meeting, Long Beach, California, July 23-26, 2006
11.	Clark, G.A., Stanley, C.D., Zazueta, F.Z., and Albregts, E.E., 1999. Farm Ponds in Florida Irrigation Systems. University of Florida Institute of Food and Agricultural Sciences
	(UF/IFAS) Publication BUL257. Original publication date April 1999. Revised March 2011.

13. Hodges, A.W., Lynee, G.D., Rahmani, M., and Casey, C.F., 1994. Adoption of Energy and Water-Conserving Irrigation Technologies in Florida. University of Florida – Florida Cooperative Extension Service Fact Sheet EES 103. March 1994. Smajstra, A.G., and Zazueta, F.S., 1995. Estimating Crop Irrigation Requirements for Irrigation 14. System Design and Consumptive Use Permitting. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication AE 257. Original publication date March 1995. Revised March 2011 by Dorota Haman. 15. Wright, D.L., Whitty, E.B., and Chambliss, C.G., 1992. Water Use and Irrigation Management of Agronomic Crops. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SS-AGR-155. Original publication date April 1992. Last revised July 2011. Martin, D.L., Dorn, T.W., Melvin, S.R., Corr, A.J., and Kranz, W.L., 2011. Evaluating Energy 16. Use for Pumping Irrigation Water. Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO, February 22-23, 2011. 17. Schaible, G.D. and Aillery, M.P., 2012. Water Conservation in Irrigated Agriculture: Trends and Challenges in the Face of Emerging Demands. United States Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) Economic Information Bulletin Number 99. September 2012. 18. NRCS, 1997. National Engineering Handbook Part 652: Irrigation Guide. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) National Engineering Handbook, Part 652. September, 1997. 19. Smajstrla, A.G., Boman, B.J., Clark, G.A., Haman, D.Z., D.S. Harrison, Izuno, F.T., Pitts, D.J., and Zazueta, F.S., 1991. Efficiencies of Florida Agricultural Irrigation Systems. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication BUL247. Original publication date June 1991. Last revised July 2002. 20. G. Hochmuth and E. Hanlon, 2012. *Calculating Recommended Fertilizer Rates for Vegetables* Grown in Raised-Bed, Mulched Cultural Systems. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SL 303. Original publication date August 2009. Revised August 2012. R. Mylavarapu, D. Wright, G. Kidder, C.G. Chambliss, 2012. UF/IFAS Standardized 21. Fertilization Recommendations for Agronomic Crops. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SL 303. Last Revised August 2009. Reviewed June 2012. 22. G. Hochmuth and E. Hanlon, 2010. Principles of Sound Fertilizer Recommendations. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SL 315. February 2010.

23.	A.G. Smajstrla, B.J. Boman, G.A. Clark, D.Z. Haman, D.S. Harrison, F.T. Izuno, D.J. Pitts and F.S. Zazueta, 1991. <i>Efficiencies of Florida Agricultural Irrigation Systems</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication BUL 247. Original Publication: June, 1991. Reviewed: July 2002.
24.	Foster, J., Myer, R., Adesogan, A.T., Carter, J., Sollenberger, L., and Blount, A., 2011. Annual Warm-Season Legumes for Florida and the US Gulf Coast: Forage Yield, Nutritional Composition, and Feeding Value. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication AN259. Original Publication: January, 2011
25.	Jacobs, J.M., and Dukes, M.D., 2007. <i>Revision of AFSIRS Crop Water Simulation Model.</i> <i>Summary (Task 39).</i> St. Johns River Water Management District Special Publication SJ2008-SP19.
26.	Smajstrla, A.G., 1990. Technical Manual Agricultural Field Scale Irrigation Requirements Simulation (AFSIRS) Model. Version 5.5. St. Johns River Water Management District Special Publication SJ2008-SP17.
27.	Crane, J.H., Balerdi, C.F., Maguire, I., 1983. <i>Avocado Growing in the Florida Home Landscape</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication CIR1034. Original Publication: March 1983. Last Revised August 2007. Last Reviewed: December 2010.
28.	Mossler, M.A., and Crane, J.H., 2001. <i>Florida Crop/Pest Management Profile: Avocado</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication CIR1271. Original Publication: September 2001. Last Revised October 2008. Last Reviewed: March 2012.
29.	Mossler, M.A., and Crane, J.H., 2009. <i>Florida Crop/Pest Management Profile: Mango</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication CIR1401. Original Publication: March 2002. Last Revised November 2009.
30.	Crane, J.H., Balerdi, C.F>, and Maguire, I., 2003. <i>Mango Growing in the Florida Home Landscape</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication HS2. Original Publication: April 1994. Last Revised: May 2003. Last Reviewed: November 2009.
31.	Dukes, M.D., Zotarelli, L., Morgan, K.T., 2010. Use of Irrigation Technologies for Vegetable Crops in Florida. HortTechnology, February 2010 Issue pp.133-142.
32.	FDACS, 2013. <i>Florida Agriculture by the Numbers, 2012.</i> Prepared by the Florida Department of Agriculture and Consumer Services and the National Agricultural Statistics Service (NASS). Estimates current as of May 2012.

33 Zekri, M., Obreza, T., and Shumann, A., 2005. Increasing Efficiency and Reducing Costs of Citrus Nutritional Programs. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SL222. Original Publication: January 2005. Last Reviewed: August 2012. 34a Muraro, R.P., 2011. Summary of 2010-2011 Citrus Budgets for the Southwest Florida Production Region. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) CREC website: www.crec.ifas.ufl.edu/extension/economics September 2011. 13 pages. 34b Muraro, R.P., 2011. Summary of 2010-2011 Citrus Budgets for the Central Florida Production Region. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) CREC website: www.crec.ifas.ufl.edu/extension/economics September 2011. 13 pages. 34c Muraro, R.P., 2011. Summary of 2010-2011 Citrus Budgets for the Indian River Production Region. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) CREC website: www.crec.ifas.ufl.edu/extension/economics September 2011. 13 pages. 35a NRCS, 2006. Florida Supplement to National Engineering Handbook Part 652 Irrigation Guide: Chapter 1 Introduction. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) publication 210-vi-NEH, FL Amendment, FL-12, January 2006 (FL652.0100 to FL652.0104). 35b NRCS, 2001. Florida Supplement to National Engineering Handbook Part 652 Irrigation Guide: FL652.0904 Irrigation System Evaluation Procedures. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) publication 210-vi-NEH, FL Amendment, FL-5, July 2001 (FL652.0904). 35c NRCS, 2003. Florida Supplement to National Engineering Handbook Part 652 Irrigation Guide: FL652.1501 Farm Irrigation Rating method, FIRM. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) publication 210-vi-NEH, FL Amendment, FL-11, September 2003 (FL652.0904). 36 NRCS, 2003. Florida Supplement to National Engineering Handbook Part 650 Engineering Software: Farm Irrigation Rating Method – Florida (FIRM-FL) Version 1.0. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) publication 210-vi-NEH, FL Amendment, FL-20-B-2, July 2001. 37 SJRWMD, 2012. Applicant's Handbook: Consumptive Uses of Water Chapter 40C-2, F.A.C. Prepared by the St. Johns River Water Management District, September 16, 2012. 38 Smajstrla, A.G., Clark, G.A., Haman, D.Z., and Zaxueta, F.S. Design of Agricultural Irrigation Systems in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Publication SL222.

39	Pitts, D.J., and Smajstrla, A.G., 1989. Irrigation Systems for Crop Production in Florida: Descriptions and Costs. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Circular 821.
40	Strong, N., 2013. Forest Farming Shiitake Mushrooms. University of Florida Center for Subtoprocial Agroforestry. http://smallfarms.ifas.ufl.edu/other_enterprises/pdf/FarmingShiitake.pdf
41	Olsen, C., and Landrum, L., 2013. <i>Shiitake Mushroom Production</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Taylor County Extension and the North Florida Research and Education Center. http://smallfarms.ifas.ufl.edu/other_enterprises/pdf/ShiitakeMushroomProduction.
42	Crane, J.H., 2008. <i>Papaya Growing in the Florida Home Landscape</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Fact Sheet HS11. Original Publication: January 1986. Last Revised: October 2008.
43	Brinen, G.H., 2013. <i>Growing Peaches and Nectarines</i> . University of Florida Institute of Food and Agricultural Sciences Alachua County Extension Fact Sheet #10. http://alachua.ifas.ufl.edu/pdfs/lawn_and_garden/fact_sheets/growing_peaches.pdf
44	Ferguson, J., Chaparro, J., Williamson, J.G., Rouse, R., and Mizell, R., 2007. <i>Florida Subtropical Peaches: Production Practices.</i> University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS348. Original Publication: July 2007.
45	Arnold, C.E., and Crocker, T.E., 1990. <i>Pecan Production in Florida</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Circular 280-D. Original Publication: April 1990. Last Reviewed: August 1998.
46	Andersen, P.C., and Crocker, T.E., 2012. <i>The Pecan Tree</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS982. Original Publication: May 2004. Last Revised: August 2012.
47	Mossler, M.A., 2009. <i>Florida Crop/Pest Management Profile: Pecan</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document PI217. Original Publication: August 2009. Last Revised: September 2009. Last Reviewed: August 2012.
48	Brouwer, C., Prins, K., Kay, M., and Heibloem, H., 1998. Irrigation Water Management Training Manual No. 5: Irrigation Methods. Food and Agriculture Organization (FAO) of the United Nations. http://www.fao.org/docrep/S8684E/S8684E00.htm
49	Hochmuth G.J. and Hanlon, E.A., 2000. <i>IFAS Standardized Fertilizer Recommendations for Vegetable Crops</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Circular 1152. Original Publication: 1989. Last Revised: 1995

Dukes, M.D., Zotarelli, G.D., Liu, G.D., and Simonne, E.H., 2012. Chapter 3: Principles and 50 Practices of Irrigation Management for Vegetables. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document AE260. 51 Olson, S.M., Dittmar, P.J., Vallad, G.E., Webb, S.E., and Smith, S.A., 2012. Chapter 7: Cole Crop Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS724. 52 Lamberts, M.L., McAvoy, E.J., Sui, D.D., Whidden, A.J., and Snodgrass, C.A., 2012. Chapter 8: Production of Major Asian Vegetables in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS740. 53 Olson, S.M., Dittmar, P.J., Roberts, P.D., Webb, S.E., and Smith, S.A., 2012. Chapter 9: Cucurbit Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS725. 54 Williamson, J.G., Lyrene, P.M., and Olmstead, J.W., 2012. Protecting Blueberries from Freezes in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS968. Original Publication: May 2004. Last Revised: January 2012. 55 Williamson, J.G., Olmstead, J.W., and Lyrene, P.M., 2012. Florida's Commercial Blueberry Industry. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS742. Original Publication: March 1997. Last Revised: February 2012. Stephens, J.M., 2009. Brussels Sprouts — Brassica oleracea L. (Gemmifera group). University of 56 Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS567. Original Publication: May 1994. Last Revised: February 2009. Last Reviewed: January 2012. 57 Santos, B.M., P.J. Dittmar, S. Zhang, S.E. Webb, S.A. Smith, E.J. McAvoy and Ozores-Hampton, M., 2012. Chapter 10: Eggplant Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS726. 58 S.M. Olson, P.J. Dittmar, S.E. Webb, S. Zhang, S.A. Smith, E.J. McAvoy and Ozores-Hampton, M., 2012. Chapter 11: Legume Production in Florida: Snapbean, Lima Bean, Southernpea and Snowpea. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS727. 59 B.M. Santos, P.J. Dittmar, R.N. Raid and Webb., S.E., 2012. Chapter 12: Lettuce, Endive, and Escarole Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS728. 60 B.M. Santos, P.J. Dittmar, S.M. Olson, S.E. Webb and Zhang, S. Chapter 13: Okra Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS729.

61 S.M. Olson, P.J. Dittmar, N.A. Peres and S.E. Webb, 2012. Chapter 14: Onion, Leek, and Chive Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS730. S.M. Olson, P.J. Dittmar, G.E. Vallad, S.E. Webb, E.J. McAvoy, S.A. Smith, M. Ozores-62 Hampton and Santos, B.M., 2012. Chapter 16: Pepper Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS732. 63 T. E. Crocker, A. J. Rose, J.G. Williamson and Andersen, P.C., 1994. Deciduous Fruit for the Home Garden in Central Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document CIR 1221. 64 M. Ozores-Hampton, P.J. Dittmar, R.N. Raid, S.E. Webb and McAvoy, E.J., 2012. Chapter 18: Radish Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS734. L. Zotarelli, P.D. Roberts, P.J. Dittmar, S.E. Webb, S.A. Smith, B.M. Santos, Olson, S.M., 65 2012. Chapter 17: Potato Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS733. S.M. Olson, P.J. Dittmar, S.E. Webb and Raid, R.N., 2012. Chapter 19: Spinach Production in 66 *Florida*. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS735. 67 B.M. Santos, N.A. Peres, J.F. Price, V.M. Whitaker, P.J. Dittmar, S.M. Olson and Smith, S.A., 2012. Chapter 20: Strawberry Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS736. M. Ozores-Hampton, P.J. Dittmar, S.M. Olson, S.E. Webb, S.A. Smith, R.N. Raid and 68 McAvoy, E.J., 2012. Chapter 21: Sweet Corn Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS737. 69 S.M. Olson, M.L. Lamberts, P.J. Dittmar, S. Zhang and Webb, S.E., 2012. Chapter 22: Sweetpotato Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS738. 70 Stephens, J.M., 2009. Watercress - Nasturtium officinale R. Br. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS567. Original Publication: May 1994. Last Revised: March 2009. Last Reviewed: February 2012. 71 S.M. Olson, P.J. Dittmar, G.E. Vallad, S.E. Webb, S.A. Smith, E.J. McAvoy, B.M. Santos and Ozores-Hampton, M., 2012. Chapter 23: Tomato Production in Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document HS739.

72 Wright, D., Marois, J., Rich, J., and Sprenkel, R., 2011. Field Corn Production Guide. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-85. Original Publication: January 2004. Last Revised: July 2011. 73 Wright, D.L., 2010. Production of Biofuel Crops in Florida: Peanut. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-295. Original Publication: January 2008. Last Revised: November 2010. 74 Alvarez, J., and Snyder, G.H., 2004. The Rice Effect: Sugarcane Production in Florida Following Rice. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document FE474. Original Publication: May 2004. Last Reviewed: August 2009. 75 Baucum, L.E., and Rice, R.W., 2006. An Overview of Florida Sugarcane. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-232. Original Publication: July 1992. Last Revised: April 2006. 76 T. A. Lang, T.A., Daroub, S.H., and Lentini, R. S., 2002. Water Management for Florida Sugarcane Production. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-231. Original Publication: August 1993. Last Revised: May 2002. 77 Scofield, D., Allen, G., and Main, M., 2007. An Overview and Informal Key of the Ferns of Florida. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document CIR1471. Original Publication: May 2005. Last Revised: June 2007. Last Reviewed: October 2011. Schoellhorn, R., Emino, E., Alvarez, E., and Frank, M., 2013. Warm Climate Production 78 Guidelines for Specialty Cut Flowers: Sunflower. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Commercial Floriculture Update ENHFL04-015. http://hort.ifas.ufl.edu/floriculture/pdfs/crop_production/Sunflower04015.pdf 79 St. Johns River Water Management District, 1987. Technical Memorandum: 30 Year Mean Blaney-Criddle Supplemental Irrigation Requirements. SJRWMD Special Publication SJ87-SP4. 80 NRCS, 1997. National Engineering Handbook Part 623: Chapter 2 Irrigation Water Requirements. United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) National Engineering Handbook, Part 623. September, 1997. 81 NASS, 1997. Usual Planting and Harvesting Dates for U.S. Field Crops. United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Agricultural Handbook Number 628. Brown, S.P., Stephens, J.M., Treadwell, D., Webb S., Gevens, A., Dunn R.A., Kidder G., 82 Short D., and Simone, G.W., 2010. Florida Vegetable Gardening Guide. University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SP 103. Original Publication: December 1999. Last Revised: December 2010. Last Reviewed: February 2012.

83	Newman Y.C., Adesogan, A.T., and Wasdin J., 2012. <i>Silage Crops for Dairy and Beef Cattle.</i> University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-69. Original Publication: February 2000. Last Revised: August 2012.
84	Newman, Y., Erickson, J., Vermerris, W., and Wright, D., 2010. <i>Forage Sorghum (Sorghum bicolor): Overview and Management.</i> University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document SS-AGR-33. Original Publication: July 2010. Last Reviewed: February 2013.
85	Intera, 2011. Adaptation of the USGS MegaModel for the Prediction of 2030 Groundwater Impacts. Prepared for the St. Johns River Water Management District. Special Publication SJ2012-SP9.
86	Marella, R.L., 2009. Water Withdrawals, Use, and Trends in Florida, 2005. United States Geological Survey (USGS) Scientific Investigations Report 2009-5125.
87	Borisova, T., and Carriker, R.R., 2009. <i>Water Use in Florida</i> . University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) Document FE797. Original Publication: April 2009.
88	NRCS and FDACS, 2013. <i>Mobile Irrigation Lab (MIL) Handbook</i> . Prepared by the Natural Resources Conservation Service and Florida Department of Agriculture and Consumer Services. January 2013.
89	NASS, 2009. 2007 Census of Agriculture Florida State and County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) document AC-07-A-9.
90	NASS, 2009. 2007 Census of Agriculture Georgia State and County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) document AC-07-A-10.
91	NASS, 2010. 2007 Census of Agriculture Farm and Ranch Irrigation Survey (2008). Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) document AC-07-SS-1.
92	Sepúlveda, N., 2002. Simulation of Ground-Water Flow in the Intermediate and Floridan Aquifer Systems in Peninsular Florida. United States Geological Survey (USGA) Water-Resources Investigations Report 02-4009.
93	R.L. Stanley, G.G. Chambliss, A. R. S. Blount, and M. B. Adjei, 2002. <i>Alfalfa and Cool-Season Clovers</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication SS-AGR-173. Original publication date August 2002. Revised March 2010.

94	D.L. Wright, J.R. Rich, J.J. Marois, R.K. Sprenkel, and J.A. Ferrel, 2002. <i>Soybean Production in Florida</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication SS-AGR-182. Original publication date September 2002. Revised November 2008 and July 2011.
95	Robert Hochmuth, David Dinkins, Michael Sweat, and Eric Simonne, 2003. <i>Extension Programs in Northeastern Florida Help Growers Produce Quality Strawberries by improving Water and Nutrient Management</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication HS-956. Original publication date August 2003. Revised February 2011.
96	D.N. Maynard, <i>Watermelon Production in Florida</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication HS-190. Revised October 2006.
97	Kelly T. Morgan, Lincoln Zotarelli, and Michael D. Dukes. 2010. Use of Irrigation Technologies for Citrus Trees in Florida, HorTechnology, February 2010.
98	NASS, 2009. 2007 Census of Agriculture Florida State and County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) document AC-07-A-9.
99	NASS. 1992 Florida Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 8.
100	NASS. 2002 Florida Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 10.
101	NASS. 2002 Georgia Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 10.
102	NASS. 1992 Georgia Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 8.
103	NASS. 2007 Alabama Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 10.
104	NASS. 2007 South Carolina Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 10.
105	NASS. 2007 Georgia Census of Agriculture – County Data. Prepared by the United States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Table 10.
106	L.R. Parsons, and B.J. 2003. Boman, <i>Microsprinkler Irrigation for Cold Protection of Florida Citrus</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication HS- 931. Original publish date November 2003. Revised June 2013.

107	James T. Midcap, Robert J. Black, Sylvester A. Rose. 1990. <i>Ligustrum or Privet</i> . University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication ENH-45. Original publish date June 1990. Revised March 1991 and October 2003.
108	Juanita Popenoe, PhD, 2008. Ligustrum, Privet Ligustrum japonicum. University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Extension. Original publish date June 2008.
109	Juanita Popenoe, PhD, 2008. Lily-turf Liriope muscari. University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Extension. Original publish date January 2008.
110	E.P. Miller and T.E. Crocker, 1994. Oriental Persimmons in Florida. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: April 1994.
111	Mark A. Mossler, 2001. <i>Florida Crop/Pest Management Profile: Muckmelon.</i> University of Florida Institute of Food and Agricultural Sciences (UF-IFAS) Publication CIR 1272. Original publication date September 2001. Revised April 2010 and September 2012.
112	UF/IFAS, 2013. Florida Gardening Regions map. http://solutionsforyourlife.ufl.edu/lawn_and_garden/garden_map.shtml

Appendix A GIS Processing Summaries

Table A-1 Summary of GIS Overlay Sources by Data Group for 1995 geodatabase

Data Component	Data Component Original Filename		Updated/Merged Filename	Comments
		SJRWMD		
Irrigated Areas	1995_SJRWMD_Ag_Layer.shp	Provided by SJRWMD	1995_SJRWMD_Ag_Layer_CLEAN.shp	3 minor errors/overlaps/duplicates corrected
Land Use / Land Cover	SJRWMD_1995_LULC.shp	Provided by SJRWMD	1995_LULC_Merged_LVL2000_clean.shp	Merged data with other data groups. Only FLUCCS level 2000 (Agricultural) records were included.
NASS	CDL_2008_clip_20130624214449_6142957 65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	Statewide (FL and GA) datasets were reclassified extracting only Ag land uses and then converted to polygons and merged together.
CUP Polygons	Ag_CUP_Boundaries_Joined_to_EN50s_2 007_to_2012.shp	Provided by SJRWMD	SJRWMD_CUPs_FINAL.shp	Overlaps and duplicates removed (e.g., water control districts with multiple permitted users within the boundary)
	1	SwFwMD	I	1
Irrigated Areas	WUP_IRR_AREA_PERMITTED_EXT.sh	SWFWMD GIS Data Website	SWF IRR areas CLEAN proj.shp	396 minor errors/overlaps/duplicates corrected
Land Use / Land Cover	multiple zipped input files (e.g. lu95-kissi_sw.exe)	SWFWMD GIS Data Website (intially provided by SJRWMD)	1995_LULC_Merged_LVL2000_clean.shp	The coverage provided by SJRWMD was incomplete. 34 Zip files of tiled land use data were extracted and merged together for the SWFWMD boundary. Merged data with other data groups. Only FLUCCS level 2000 (Agricultural) records were included.
NASS	CDL_2008_clip_20130624214449_6142957 65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	Statewide (FL and GA) datasets were reclassified extracting only Ag land uses and then converted to polygons and merged together.
CUP Polygons	WUP_BOUNDARY_PERMITTED_EXT.	SWFWMD GIS Data Website	SWF_WUPs_FINAL.shp	Only agricultural permits were extracted. Overlaps and duplicates removed

Table A-1 Summary of GIS Overlay Sources by Data Group for 1995 geodatabase

Data Component	Original Filename	Source	Updated/Merged Filename	Comments			
SFWMD							
Irrigated Areas	na	na	na	na			
Land Use / Land Cover	SFWMD_1995_LULC.shp	Provided by SJRWMD	1995_LULC_Merged_LVL2000_clean.shp	Merged data with other data groups. Only FLUCCS level 2000 (Agricultural) records were included.			
NASS	CDL_2008_clip_20130624214449_6142957 65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	Statewide (FL and GA) datasets were reclassified extracting only Ag land uses and then converted to polygons and merged together.			
CUP Polygons	SFWMD_ALL_Permit_Boundaries.shp	Provided by SJRWMD	SFWMD_WUP_clean.shp	Only agricultural permits were extracted. Overlaps and duplicates removed			
	•	SRWMD	1				
Irrigated Areas	na	na	na	na			
Land Use / Land Cover	SRWMD_1995_LULC.shp	Provided by SJRWMD	1995_LULC_Merged_LVL2000_clean.shp	Merged data with other data groups. Only FLUCCS level 2000 (Agricultural) records were included.			
NASS	CDL_2008_clip_20130624214449_6142957 65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	Statewide (FL and GA) datasets were reclassified extracting only Ag land uses and then converted to polygons and merged together.			
CUP Polygons	na	na	na	na			
Georgia							
Irrigated Areas	GA_statewide_IrrAreas.shp	Provided by SJRWMD	GA_statewide_IrrAreas_clipped_CLEAN.sh p	17 minor errors/overlaps/duplicates corrected			
Land Use / Land Cover	na	na	na	na			
NASS	CDL_2008_clip_20130624214449_6142957 65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	Statewide (FL and GA) datasets were reclassified extracting only Ag land uses and then converted to polygons and merged together.			
CUP Polygons	na	na	na	na			

NASS CropScape website: http://nassgeodata.gmu.edu/CropScape/

SWFWMD GIS Data website: http://www.swfwmd.state.fl.us/data/gis/layer_library/

SFWMD GIS Data website: http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?

SRWMD GIS Data website: http://www.srwmd.state.fl.us/index.aspx?NID=319

Table A-2 Summary of GIS Overlay Sources by Data Group for 2010 geodatabase

Data Component	Original Filename	Source	Updated/Merged Filename	Comments			
SJRWMD							
				70 minor errors/overlaps/duplicates			
Irrigated Areas	AgLayer2010.shp	Provided by SJRWMD	SJRWMD_AgLayer2010_FINAL.shp	corrected			
				Merged data with other data groups. Only			
			2010_LULC_Merge_LVL2000CLEAN.sh	FLUCCS level 2000 (Agricultural) records			
Land Use / Land Cover	SJRWMD_2009_LULC.shp	Provided by SJRWMD	р	were included.			
				Statewide (FL and GA) datasets were			
				reclassified extracting only Ag land uses and			
		Provided by SJRWMD		then converted to polygons and merged			
NASS	cdl_30m_r_fl_2010_utm17 (Grid)	(data is from NASS)	MM_2010_CDL_poly_CLEAN.shp	together.			
				Overlaps and duplicates removed (e.g., water			
	Ag_CUP_Boundaries_Joined_to_EN50s_2			control districts with multiple permitted users			
CUP Polygons	007_to_2012.shp	Provided by SJRWMD	SJRWMD_CUPs_FINAL.shp	within the boundary)			
		SWFWMD					
	WUP_IRR_AREA_PERMITTED_EXT.sh			396 minor errors/overlaps/duplicates			
Irrigated Areas	р	SWFWMD GIS Data Website	SWF_IRR_areas_CLEAN_proj.shp	corrected			
				34 Zip files of tiled land use data were			
				extracted and merged together for the			
				SWFWMD boundary. Merged data with			
	multiple zipped input files		2010_LULC_Merge_LVL2000CLEAN.sh	other data groups. Only FLUCCS level 2000			
Land Use / Land Cover	(e.g. lu10-kissi_sw.exe)	SWFWMD GIS Data Website	р	(Agricultural) records were included.			
				Statewide (FL and GA) datasets were			
		Duonidad ha SIDWAD		reclassified extracting only Ag land uses and			
NIASS	cdl 30m r fl 2010 utm17 (Grid)	(data is from NASS)	MM 2010 CDL poly CLEAN sho	together			
11733	WID BOUNDARY DERMITTED EXT	(data is nom inASS)	MM_2010_CDL_poly_CLEAR.snp	Oply agricultural parmits were extracted			
CLIP Polygons	shp	SWEWMD GIS Data Website	SW/F W/I/Ps FINIAL sho	Overlaps and duplicates removed			
COTTOIygons	311p		owr_wers_rittaii	overaps and dupneates removed			
		SWFWMD		[
Irrigated Areas	na	na	na	na			
				Merged data with other data groups. Only			
			2010_LULC_Merge_LVL2000CLEAN.sh	FLUCCS level 2000 (Agricultural) records			
Land Use / Land Cover	lscndclu08_v1dot1.gdb	SFWMD GIS data website	p	were included.			
				statewide (FL and GA) datasets were			
		Drovided by SIDW/MD		then approximate to polypoing and manad			
NIASS	cdl 30m r fl 2010 utm17 (Crid)	(data is from NASS)	MM 2010 CDL poly CLEAN she	together			
11/1/00	cu_join_i_i_2010_uuin7 (Offd)	(data is nom inASS)	whw_2010_CDL_poty_CLEAN.snp	Oply agricultural permits were extracted			
CLIP Polygons	SEWMD ALL Permit Boundaries sho	Provided by SIRWMD	SEWMD WITE clean sho	Overlaps and duplicates removed			
COLLOYGOUS	or wind_nill_remnt_boundaries.snp	1 IOVIDED BY SJKWMD	SI WIND_WOI_clean.shp	overlaps and dupicates removed			

Table A-2 Summary of GIS Overlay Sources by Data Group for 2010 geodatabase

Data Component	Original Filename	Source	Updated/Merged Filename	Comments			
SRWMD							
Irrigated Areas	na	na	na	na			
				Merged data with other data groups. Only			
			2010_LULC_Merge_LVL2000CLEAN.sh	FLUCCS level 2000 (Agricultural) records			
Land Use / Land Cover	landcov04.shp	SRWMD GIS Data website	р	were included.			
				Statewide (FL and GA) datasets were			
				reclassified extracting only Ag land uses and			
		Provided by SJRWMD		then converted to polygons and merged			
NASS	cdl_30m_r_fl_2010_utm17 (Grid)	(data is from NASS)	MM_2010_CDL_poly_CLEAN.shp	together.			
CUP Polygons	na	na	na	na			
		Georgia					
			GA_statewide_IrrAreas_clipped_CLEAN.sh 17 minor errors/overlaps/dupl				
Irrigated Areas	GA_statewide_IrrAreas.shp	Provided by SJRWMD	р	corrected			
Land Use / Land Cover	na	na	na	na			
				Statewide (FL and GA) datasets were			
				reclassified extracting only Ag land uses and			
	CDL_2008_clip_20130624214449_6142957			then converted to polygons and merged			
NASS	65.tif	NASS CropScape website	MM_2008_CDL_poly_CLEAN.shp	together.			
CUP Polygons	na	na	na	na			

NASS CropScape website: http://nassgeodata.gmu.edu/CropScape/

SWFWMD GIS Data website: http://www.swfwmd.state.fl.us/data/gis/layer_library/

SFWMD GIS Data website: http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?

SRWMD GIS Data website: http://www.srwmd.state.fl.us/index.aspx?NID=319

Table A-3 Adjustment Factors and Partial Comparison of GIS-derived 2010 Irrigated Area and 2007 Ag Census Irrigated Area

County	Data Group(s)	GIS Source Code Filter(s) (by data group)	Irrigation System Filter (by data group)	Crop-Specific adjustment(s) (by data group)	Crop-Specific adjustment(s) (County-Specific)	2010 GIS Irrigated Area (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
GEORGIA								
Echols	GA	All 1000 values	D :C 1		none	2,234	3,962	-1,728
Charlton*	GA	(Irrigation Layer)	Remove unspecified or none	none	none	0	111	-111
					Georgia Subtotals ¹	2,234	4,073	-1,839
			Suwanne River Water Manager	nent District				•
Bradford	SR				none	1,294	156	1,138
Hamilton	SR				none	5,815	5,518	297
Suwannee	SR	110, 111	NA - no data available to determine Irrigation System	Hay, Sod, Soybeans, & Peanuts @ 20%	none	18,288	20,096	-1,808
Columbia	SR	(Area in common between Land Use and NASS)			none	5,823	2,693	3,130
Union	SR				none	1,619	1,036	583
Gilchrist	SR				none	7,195	7,808	-613
					SRWMD Subtotals ¹	40,034	37,307	2,727
			St. Johns River Water Managen	nent District				•
Nassau	SJR				none	826	270	556
Duval	SJR				none	1,302	2,024	-722
Clay	SJR				none	435	913	-478
St. Johns	SJR		Remove unspecified or none		none	21,372	14,359	7,013
Putnam	SJR	All 1000 values		none	none	10,320	4,620	5,700
Flagler	SJR	(Irrigation Layer)			none	7,550	6,812	738
Volusia	SJR				none	9,529	9,068	461
Seminole	SJR				none	3,160	1,829	1,331
Brevard	SJR				none	21,546	20,486	1,060
Indian_River	SJR				none	64,821	66,866	-2,045
					SJRWMD Subtotals ¹	140,862	127,247	13,615
			Southwest Florida Water Manage	ement District				•
Citrus	SWF				none	1,515	1,375	140
Sumter	SWF				none	4,896	2,013	2,883
Hernando	SWF				none	3,110	1,488	1,622
Pasco	SWF				none	10,884	10,599	285
Pinellas	SWF	All 1000 values	NA - data to determine Irrigation	Peanuts, Rye, Sorghum, and Hay @ 10%	none	21	189	-168
Hillsborough	SWF	(Irrigation Layer)	System is only available for some		none	29,017	29,923	-906
Manatee	SWF		counties		none	59,036	50,791	8,245
Hardee	SWF				citrus @ 50%	42,263	44,141	-1,878
Sarasota	SWF				none	9,677	2,348	7,329
DeSoto	SWF				citrus @ 50%	61,485	56,162	5,323
					SWFWMD Subtotals ¹	221,903	199,029	22,874
South Florida Water Management District								
St. Lucie	SF	111, 101, 11 (Annuclear the CUR and a characteristic CUR)	NA - no data available to determine	Destars (2) 100/	Sod, Sugar Cane @ 10%	75,512	69,302	6,210
Martin	SF	(Area shared by CUP poly and Land Use or CUP poly and NASS)	Irrigation System	Pasture @ 10%	none	62,776	48,521	14,255
					SFWMD Subtotals ¹	138,288	117,823	20,465
1						,		· · · · ·

¹This analyis includes only the counties that reside entirely in one of the 5 source data groups (* indicated 'most')

Grand Total 543,322 48

485,479

County	Data Group(s)	2010 GIS Irrigated	2007 Ag Census Irrigated	Diff. (acres)			
A11		Area (acres)	Land (acres)	4.469			
Alachua	SJR & SR	8,919	15,38/	-4,468			
Baker	SJR & SR	200	699	-499			
Berrien	GA	280	14,482	-14,202			
Bradford	SR	1,294	156	1,138			
Brevard	SJR	21,546	20,486	1,060			
Citrus	SWF	1,515	1,375	140			
Clay	SJR	435	913	-478			
Clinch	GA	2,146	1,819	327			
Columbia	SR	5,823	2,693	3,130			
Desoto	SWF	61,485	56,162	5,323			
Duval	SJR	1,302	2,024	-722			
Echols	ĞA	2,234	3,962	-1,728			
Flagler	SJR	7,550	6,812	738			
Gilchrist	SR	7,195	7,808	-613			
Hamilton	SR	5.815	5.518	297			
Hardee	SWF	42.263	44 141	-1.878			
Hernando	SWE	3 110	1 488	1,670			
Highlands	SF & SWE	93.475	73 71 3	19.762			
Hillsborough	SW/F	29.017	20.023	906			
Indian River	SIR	64.821	66 866	- 900			
Lafavotto	SP	3.875	7 426	3 5 5 1			
Lalayette	SIR & SW/F	17 128	15.013	2 115			
Lake	GA	1 652	8 4 3 4	6 782			
Lanci	SR & SW/E	26.980	14 488	12 492			
Lowndes	GA	4 953	4 169	784			
Manatee	SR	59.036	50 791	8 245			
Marion	SIR & SWF	11 706	9 666	2 040			
Martin	SE	62 776	48 521	14 255			
Nassau	SIR	826	270	556			
Okeechobee	SIR & SE	40 703	20 545	20.158			
Orange	SIR & SF	8 654	11 870	-3 216			
Osceola	SIR & SF	22.741	31 420	-8 679			
Pasco	SWF	10.884	10 599	285			
Pinellas	SWF	21	189	-168			
Polk	SF & SWF	117 165	98 404	18 761			
Putnam	SIR	10 320	4 620	5 700			
Sarasota	SWF	9.677	2.348	7.329			
Seminole	SIR	3.160	1.829	1.331			
St. Johns	SIR	21.372	14.359	7.013			
St Lucie	SF	75.512	69.302	6.210			
Sumter	SWF	4.896	2.013	2.883			
Suwannee	SR	18.288	20.096	-1.808			
Union	SR	1.619	1.036	583			
Volusia	SIR	9,529	9,068	461			
	Total:	903.897	810.903				
Counties Partially Located in MegaModel Extent							
Charlotte	SWF	25,103	na	na			
Glades	SF	24,088	na	na			
Palm Beach	SF	1,480	na	na			
Dixie	SR	1,771	na	na			
Madison	SR	5,908	na	na			

Table A-4 Model-Wide Comparison of GIS-derived 2010 Irrigated Area and 2007 Ag Census Irrigated Area

County	Data Group(s)	1995 GIS Irrigated	1992 Ag Census Irrigated	Diff. (acres)			
		Area (acres)	Land (acres)	, , , , , , , , , , , , , , , , , , ,			
Alachua	SJR & SR	10,314	/,3/1	2,943			
Baker	SJR & SR	456	456	0			
Berrien	GA	548	10,502	-9,954			
Bradford	SR	987	553	434			
Brevard	SJR	55,473	24,958	30,515			
Citrus	SWF	1,287	658	629			
Clay	SJR	460	1,293	-833			
Clinch	GA	2,446	149	2,297			
Columbia	SR	4,686	2,597	2,089			
Desoto	SWF	58,577	58,806	-229			
Duval	SJR	1,236	1,203	33			
Echols	GA	2,947	1,353	1,594			
Flagler	SJR	8,538	4,744	3,794			
Gilchrist	SR	5,450	6,440	-990			
Hamilton	SR	6,068	3,591	2,477			
Hardee	SWF	43,923	53,777	-9,854			
Hernando	SWF	7,231	521	6,710			
Highlands	SF & SWF	123.071	83.301	39,770			
Hillsborough	SWF	40.621	45.709	-5.088			
Indian River	SIR	85.837	77 493	8 344			
Lafavette	SR	3 586	3 198	388			
Lake	SIR & SWF	31,821	24 373	7 448			
Lanier	GA	2 275	5 888	-3.613			
Lour	SR & SWE	2,273	9,805	14 737			
Levy	GA GA	6.004	2,053	4.032			
Magataa	SP	70,504	54 569	4,032			
Manatee	SID & SWE	14 752	54,506	0.525			
Marion	SJKØSWF	(2,900	5,217	9,555			
Martin		02,890	38,742	4,148			
Nassau		1,960	33	1,927			
Okeechobee	SJR & SF	23,105	27,062	-4,55/			
Orange	SJR & SF	20,493	25,249	-4,/56			
Osceola	SJK & SF	40,996	14,4/4	26,522			
Pasco	SWF	23,683	11,024	12,659			
Pinellas	SWF	31	288	-25/			
Polk	SF & SWF	123,014	116,/34	6,280			
Putnam	SJR	10,010	9,560	450			
Sarasota	SWF	10,072	5,207	4,865			
Seminole	SJR	4,426	3,155	1,271			
St_Johns	SJR	25,409	24,208	1,201			
St_Lucie	SF	90,670	138,133	-47,463			
Sumter	SWF	6,097	3,974	2,123			
Suwannee	SR	11,770	12,869	-1,099			
Union	SR	849	470	379			
Volusia	SJR	13,393	8,460	4,933			
	Total: 1,082,779 950,918						
Counties Partially Located in MegaModel Extent							
Charlotte	SWF	32,355	na	na			
Glades	SF	14,677	na	na			
Palm_Beach	SF	1,661	na	na			
Dixie	SR	885	na	na			
Madison	SR	4,159	na	na			

Table A-5 Model-Wide Comparison of GIS-derived 1995 Irrigated Area and 1992 Ag Census Irrigated Area

Appendix B Irrigation Demand Summaries

Table B-2 Crop Growing Season Definition - NORTH REGION

	Crop1									С	rop2						Crop3				1
"AF_CROP"				Plar	nting	Harve	esting				Planting	9	Harvesting				P	Planting	На	arvesting	
Сгор	AFCrop	Begin Date Se	eason Length	Begin Mo	Begin Day E	ind mo	End Day	AFCrop	Begin Date Se	eason Length <mark>B</mark>	Begin Mo Beg	gin Day End	l mo End Day	AFCrop	Begin Date	e Season Length	Begin M	o Begin D	ay End mo	End Day	Source
Abandoned Tree Crops	(0 na	na	0	0	0	C	0			0	0	0	0	0	0	0	0	0	0 0	١
Animal Feeding Operations	(0 na	na	0	0	0	C) 0			0	0	0	0	0	0	0	0	0	0 0)
Aquaculture	(0 na	na	0	0	0	C	0			0	0	0	0	0	0	0	0	0	0 0)
Asparagus Fern	ę	5 р	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	١
Aspidistra	8	8 p	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	١
Blueberries	:	3 р	р	· 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	١
Broccoli	2	1 1-Aug	82	. 8	1	10	22	2 21	1-Dec	82	12	1	2 2	21	0	0	0	0	0	0 0	<mark>)</mark> 51
Cabbage	23	3 1-Aug	97	8	1	11	6	23	1-Dec	97	12	1	3	8	0	0	0	0	0	0 0	<mark>)</mark> 51
Cantaloupe	27	7 15-Mar	80	3	15	6	3	0			0	0	0	0	0	0	0	0	0	0 0	92 <mark>(</mark>
Chestnuts	12	2 р	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	د
Citrus	4	4 p	р	· 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Clover	2	7 22-Oct	110	10	22	2	ç	0			0	0	0	0	0	0	0	0	0	0 0	<mark>)</mark> 93
Collard Greens	23	3 1-Aug	80	8	1	10	20	23	1-Dec	80	12	1	2 1	9	0	0	0	0	0	0 0	<mark>)</mark> 51
Container Nursery	8	8 p	р	· 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Coontie Fern	į	5 p	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	د ا
Corn	29	9 1-Mar	77	3	1	5	17	0			0	0	0	0	0	0	0	0	0	0 0	ک 68
Cotton	30	0 1-May	167	5	1	10	15	0			0	0	0	0	0	0	0	0	0	0 0	81 ر
Cucurbits	3.	1 1-Mar	52	. 3	1	4	22	2 31	1-Aug	52	8	1	9 2	2	0	0	0	0	0	0 0	<mark>)</mark> 53
Dairies	(0 na	na	0	0	0	C	0 0			0	0	0	0	0	0	0	0	0	0 0	ر
Developed	(0 na	na	0	0	0	C	0 0			0	0	0	0	0	0	0	0	0	0 0	ار
DevelopedCabbage	23	3 1-Aug	97	8	1	11	6	6 23	1-Dec	97	12	1	3	8	0	0	0	0	0	0 0	<mark>)</mark> 51
Dry Beans	19	9 1-Apr	70	4	1	6	10) 19	15-Aug	70	8	15	10 2	24	0	0	0	0	0	0 0	<mark>)</mark> 58
Fallow	(0 na	na	0	0	0	C) 0			0	0	0	0	0	0	0	0	0	0 0	ر
Field Corn	28	8 1-Apr	135	4	1	8	14	0			0	0	0	0	0	0	0	0	0	0 0	72,81
Field Nursery	ę	9 p	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Grapes	-	7 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Greenhouse	(0 na	na	0	0	0	C) 0			0	0	0	0	0	0	0	0	0	0 0	ر
Greens	3!	5 1-Aug	80	8	1	10	20) 35	1-Dec	80	12	1	2 1	9	0	0	0	0	0	0 0	<mark>ر</mark> 51
Hammock Ferns	Į	5 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Hay	1(q 0	q	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	נ
Horse Farms	(0 na	na	0	0	0	С	0 0			0	0	0	0	0	0	0	0	0	0 0	ر.
IFAS Research Fields	(0 na	na	0	0	0	C) 0			0	0	0	0	0	0	0	0	0	0 0	ر
Inactive	(0 na	na	0	0	0	C	0 0			0	0	0	0	0	0	0	0	0	0 0	ر
Leatherleaf	Į	5 p	q	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	<mark>ر</mark>
Ligustrum	8	8 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	د
Liriope	5	8 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Mangos	1'	1 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Millet	39	9 1-Mar	180	3	1	8	28	0			0	0	0	0	0	0	0	0	0	0 0	83 <mark>ر</mark>
Misc. Vegetables	33	3 1-Aug	97	8	1	11	6	6 23	1-Dec	97	12	1	3	8	0	0	0	0	0	0 0	<mark>ر</mark> 51
Nurseries and Vineyards	9	g 9	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ر
Oats	4(0 15-Nov	90	11	15	2	13	0			0	0	0	0	0	0	0	0	0	0 0	80,83
OatsCorn	4(0 15-Nov	90	11	15	2	13	28	1-Apr	135	4	1	8 1	4	0	0	0	0	0	0 0	80,83,72,81
Onions	4	1 15-Oct	115	10	15	2	7	0			0	0	0	0	0	0	0	0	0	0 0	<u>ر الم</u>
Ornamentals	(9 p	q	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	د ا
Pasture	1(0 p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	5
Peaches	1	1 p	۲ ۵	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	<mark>ر</mark>
Peanuts	43	3 22-Apr	155	4	22	9	24	0			0	0	0	0	0	0	0	0	0	0 0	81
Peas	44	4 1-Jan	70	1	1	3	12	44	15-Apr	85	4	15	7	9	0	0	0	0	0	0 0	58
Pecans	1:	2 p	n	. 1	1	12	31	0	p.		0	0	0	0	0	0	0	0	0	0 0	<u> </u>
Persimmons	12	1 n	n	. 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	ار
Pine		0 na	na	0	0	0	() 0			0	0	0	0	0	0	0	0	0	0 0	5
Pittosporum	5	8 n		1	1	12	.31	0			0	0	0	0	0	0	0	0	0	0 0	<mark>ر</mark>
Plowed		0 na	na	0	0	0		0			0	0	0	0	0	0	0	0	0	0 0	.
Potatoes	4	6 15-lan	97	1	15	4	22	0			0	0	0	0	0	0	0	0	0	0 0	65
PotatoesCabbage		6 15-lan	97	1	15	4	22	23	1-Διισ	97	8	1	11	6	0	0	0	0	0	0 0	65 51
· · · · · · · · · · · · · · · · · · · ·	-+(15 Juli	51		10	T T		- 20	1 Aug	57	0		• •	~		-	-	-	·	0	

Table B-2 Crop Growing Season Definition - NORTH REGION

	Crop1									Cro	p2						(Crop3				
"AF_CROP"				Planti	ing	Harvesting					Planting	9	Harvesting					Pla	Inting	Har	vesting	
Сгор	AFCrop	Begin Date	Season Length	Begin Mo B	egin Day I	End mo End Da	ay AF	Crop B	egin Date Sea	<mark>ason Length</mark> Be	gin Mo Beg	gin Day Er	nd mo End I	Day	AFCrop	Begin Date	Season Length	Begin Mo	Begin Day	End mo	End Day	Source
produce	33	1-Apr	70	4	1	6	10	19	15-Aug	70	8	15	10	24	0	0	(0 C) 0		0 0	58
Radish	47	1-Sep	30	9	1	10	1	47	15-Nov	30	11	15	12	15	47	1-Feb	30) 2	2 1	:	3 3	64
Rice	48	15-Apr	125	4	15	8	18	0			0	0	0	0	0	0	(0 C) 0		0 0	81
rotation	49	15-Nov	90	11	15	2	13	28	1-Apr	135	4	1	8	14	0	0	(0 C) 0		0 0	80,83,72,81
rotationSorghum	49	15-Nov	90	11	15	2	13	51	1-Apr	180	4	1	9	28	0	0	(0 C) 0		0 0	83,80
rotationSoybeans	49	15-Nov	90	11	15	2	13	52	15-May	140	5	15	10	2	0	0	(0 C) 0		0 0	83,80,94
Rye	60	15-Nov	120	11	15	3	15	0			0	0	0	0	0	0	(0 C) 0		0 0	83
Shade Ferns	5	р	р	1	1	12	31	0			0	0	0	0	0	0	(0 C) 0		0 0	
Sod	13	р	р	1	1	12	31	0			0	0	0	0	0	0	(0 C) 0		0 0	
Sorghum	51	1-Apr	180	4	1	9	28	0	0	0	0	0	0	0	0	0	(0 C) 0		0 0	83,80
Soybeans	52	15-May	140	5	15	10	2	0			0	0	0	0	0	0	(0 C) 0		0 0	94,80
SoybeansOats	52	15-May	140	5	15	10	2	40	15-Nov	90	11	15	2	13	0	0	(0 C) 0		0 0	94,80,83
Specialty Farms	50	1-Aug	97	8	1	11	6	50	1-Dec	97	12	1	3	8	0	0	(0 C) 0		0 0	51
Spinach	53	15-Sep	55	9	15	11	9	53	1-Dec	55	12	1	1	25	53	15-Feb	55	5 2	2 15		4 11	66
Squash	54	1-Mar	45	3	1	4	15	54	1-Aug	45	8	1	9	15	0	0	(0 0) 0		0 0	53
Strawberries	55	15-Oct	240	10	15	6	12	0			0	0	0	0	0	0	(0 C) 0		0 0	95
Sugar Cane	14	p	р	1	1	12	31	0			0	0	0	0	0	0	(0 C) 0		0 0	
Sweet Corn	29	1-Mar	77	3	1	5	17	0			0	0	0	0	0	0	(0 C) 0		0 0	68
Sweet Potatoes	46	1-Apr	120	4	1	7	30	0			0	0	0	0	0	0	() O) 0		0 0	69
Tomatoes	59	 15-Jul	80	7	15	10	3	59	1-Mar	80	3	1	5	20	0	0	(0 C) 0		0 0	71
Tree Fern	5	a	D	1	1	12	31	0			0	0	0	0	0	0	(0 C) 0		0 0	
unknown	0	F	F	0	0	0	0	0			0	0	0	0	0	0	() 0) 0		0 0	
Unspecified Crop	0			0	0	0	0	0			0	0	0	0	0	0	() O) 0		0 0	
Unspecified Field Crop	33	15-Nov	90	11	15	2	13	28	1-Apr	135	4	1	8	14	0	0	() () 0		0 0	80.83.72.81
Unspecified Nurseries and Vinevards	9	ŋ	p	1	1	12	31	0	F		0	0	0	0	0	0	() ()) 0		0 0	,, ,-
Unspecified Row Crop	33	1-Aug	97	8	1	11	6	23	1-Dec	97	12	1	3	8	0	0	() () 0		0 0	51
Unspecified Row Crop/Pasture	33	<u>a</u>	g	1	1	12	31	0			0	0	0	0	0	0	(0 C) 0		0 0	
Unspecified Tree Crop	11	<u>م</u> ۵	<u>р</u>	1	1	12	31	0			0	0	0	0	0	0	(0 0) 0		0 0	
Water Mgmt Area	0	P	F	0	0	0	0	0			0	0	0	0	0	0	() 0) 0		0 0	
Watermelons	37	15-Mar	90	3	15	6	13	0			0	0	0	0	0	0	() 0) 0		0 0	
Weeiping Willow	0			0	0	0	0	0			0	0	0	0	0	0	() 0) 0		0 0	96
Winter Wheat	60	15-Nov	90	11	15	2	13	0			0	0	0	0	0	0	() ()) 0		0 0	80.83
Winter WheatSorghum	60	15-Nov	90	11	15	2	13	51	1-Apr	180	4	1	9	28	0	0	() 0) 0		0 0	83.80
Winter WheatSovbeans	60	15-Nov	90	11	15	2	13	52	15-May	140	5	15	10	2	0	0	(0 C) 0		0 0	83.80.94
Caladiums	9	ŋ	D	1	1	12	31	0	/		0	0	0	0	0	0	(0 C) 0		0 0	, , -
Peppers	45	1-Sep	70	9	1	11	10	45	15-Feb	70	2	15	4	26	0	0	() 0) 0		0 0	62
Alfalfa	1	0	0	1	1	12	31	0			0	0	0	0	0	0	() 0) 0		0 0	
Sunflowers	56	15-Feb	240	2	15	10	13	0			0	0	0	0	0	0	() 0) 0		0 0	78
Unspecified Field C*	33	15-Nov	90	11	15	2	13	28	1-Apr	135	4	1	8	14	0	0	(0 C) 0		0 0	80.83.72.81
Cut Foliage	5	n	n	1	1	12	31	0	27101	100	0	0	0	0	0	0) ()) 0		0 0	
Tomato	59	15-Jul	80	7	15	10	3	59	1-Mar	80	3	1	5	20	0	0	(0 C) 0		0 0	71
Unspecified Row Cro*	33	1-Aug	97	8	1	11	6	23	1-Dec	97	12	1	3	8	0	0	() ()) ()		0 0	51
Unspecified Tree Cr*	11	0	p	1	1	12	31	0			0	0	0	0	0	0	() 0) 0		0 0	
Nurseries and Vinev*	9	n	n P	1	1	12	31	0			0	0	0	0	0	0	() ()) 0		0 0	
Small Grains	49	15-Nov	90	11	15	2	13	0			0	0	0	0	0	0	(<u> </u>) 0		0 0	83.80
Beets	20	15-Sep	60	9	15	11	14	20	15-Feb	60	2	15	4	16	0	0	() 0) 0		0 0	82
Animal Feeding Oper*	0			0	0	0	0	0			0	0	0	0	0	0	() 0) 0		0 0	
Herbs	35	1-Aug	80	8	1	10	20	35	1-Dec	80	12	1	2	19	0	0	(0 0) 0		0 0	51
Chinese Cabbage	23	1-Aug	97	8	1	11	6	23	1-Dec	97	12	1	3	8	0	0	() ()) ()		0 0	51
Watercress	0	na	na	0	0	0	0	0	2000		0	0	0	0	0	0	() ()) ()		0 0	
Beans	19	1-Apr	70	4	1	6	10	19	15-Aug	70	8	15	10	24	0	0	() ()) 0		0 0	58
Turf grass	13	n <u>n</u>	, o		1	12	31	.0	20 / 105	70	0	0	0		0	0	() ()) 0		0 0	
Kennels	.0	P	P	0	0	0	0	0			0	0	0	0	0	0	() ()) 0		0 0	
Melons	37	15-Mar	90	3	15	6	13	0			0	0	0	0	0	0) ()) 0		0 0	
Parsley	35	1-Δμα	20	8	1	10	20	35	1-Dec	80	12	1	2	10	0	0) ()) 0		0 0	51
	55	1 Aug		0	1	10			I DCC	00	14	1	-		0	0	(0	0		~ 0	51

Table B-2 Crop Growing Season Definition - NORTH REGION

			Cron1																		A
			(Crop1						(Crop2						Crop3				
"AF_CROP"				Plar	nting	Harve	esting				Plan	ting	Harvesting				Р	Planting	Harve	esting	
Crop	AFCrop	Begin Date	Season Length	Begin Mo	Begin Day	End mo	End Day	AFCrop	Begin Date	Season Length	Begin Mo	Begin Day End	mo End Day	AFCrop	Begin Date	Season Length	Begin M	o Begin Da	y End mo	End Day	Source
Lettuce	23	3 1-Aug	97	7 8	1	11	6	5 23	1-Dec	97	12	1	3	3	0	0	0	0	0 0	0	51
Floriculture	56	3 15-Feb	240) 2	15	10	13	0)		0	0	0	C	0	0	0	0	0 0	0	78
Mushroom	C)		0	0	0	C	0 0)		0	0	0	C	0	0	0	0	0 0	0	/
Kale	23	3 1-Aug	97	7 8	1	11	6	23	1-Dec	97	12	1	3	В	0	0	0	0	0 0	0	51
Mustard Greens	35	5 1-Aug	80) 8	1	10	20	35	1-Dec	80	12	1	2 1	9	0	0	0	0	0 0	0	51
Okra	50	15-Mar	65	5 3	15	5	19	50	15-Jun	97	6	15	9 2	C	0	0	0	0	0 0	0	82
Turnips	50	1-Feb	50) 2	1	3	23	50	1-Aug	50	8	1	9 2	D	0	0	0	0	0 0	0	82

Table B-3 Crop Growing Season Definition - CENTRAL REGION

	Crop1									(Crop2						Crop3				
"AF_CROP"				Planting	g	Harves	sting				Planting		Harvesting					Planting	Ha	rvesting	
Crop	AFCrop	Begin Date	Season Length	Begin Mo Beg	gin Day E	nd mo E	nd Day	AFCrop	Begin Date	Season Length	Begin Mo Beg	jin Day End	l mo End Day	AFCrop	Begin Date	Season Length	Begin N	/lo Begin D	ay End mo	End Day	source
Abandoned Tree Crops		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0)
Animal Feeding Operations		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0)
Aquaculture		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0)
Asparagus Fern		5		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Aspidistra		8		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Blueberries		3		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Broccoli	2	21 1-Se	p 8	2 9	1	11	22	21	1-Jan	82	2 1	1	3 2	4	0	0	0	0	0	0 0	51
Cabbage	2	23 1-Se	p 9'	7 9	1	12	7	23	1-Jan	9	7 1	1	4	8	0	0	0	0	0	0 0	51
Cantaloupe	2	27 1-Fe	b 8	0 2	1	4	22	0			0	0	0	0	0	0	0	0	0	0 0	92
Chestnuts	1 1	2	· · ·	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Citrus		4		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Clover	2	27 22-00	-t 11	0 10	22	2	9	0			0	0	0	0	0	0	0	0	0	0 0	93
Collard Greens	2	23 1-Se	n 8	0 9	1	11	20	23	1-lan	80) 1	1	3 2	2	0	0	0	0	0	0 0	
Container Nurserv		8	<u>P</u> 0	1	1	12	31	0	1 3011		0	0	0	0	0	0	0	0	0	0 0	
Coontie Fern		5		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Corn	2	9 1-Ma	ar 7	7 3	1	5	17	0			0	0	0	0	0	0	0	0	0	0 0	68
Cotton	1 2		V 16	7 5	1	10	17	0			0	0	0	0	0	0	0	0	0	0 0	81
Cucurbits	1 3		h 5	2 2	1	3	25	31	15-Sen	51) Q	15	11	6	0	0	0	0	0	0 0	53
Dairies		0	S J.		0	0	20	0	13.966	5.	0	0	0	0	0	0	0	0	0	0 0	00
Developed	1	0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0	
Developed Developed Cabbage	2	0 23 1_Au	α Q	7 8	1	11	6	23	1-Dec	0.	7 12	1	3	8	0	0	0	0	0	0 0	51
Dry Boons		0 1 Ma	g 3 Dr 7	7 0	1	5	10	23	1-Dec		0	1		0	0	0	0	0	0	0 0	59
Eallow	'		11 7	0 3	0	0	10	19	T-26h	//	9	0		0	0	0	0	0	0	0 0	50
Fallow		0	vr 10	U E 4	1	0	14	0			0	0	0	0	0	0	0	0	0	0 0	708.01
		o 1-Ap	<u>) 13</u>	5 4	1	10	14	0			0	0	0	0	0	0	0	0	0	0 0	/2001
		9		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Grapes		7		1	0	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Greeniouse			- 0	0	0	0	0	0	1 1			0	0		0	0	0	0	0	0 0	54
Greens	3	5 <u>1-5e</u>	p 8	9	1	10	20	35	T-J9U	18		0	3 2	2	0	0	0	0	0	0 0	51
		5		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	
Hay	1	0		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0	
Horse Farms		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0	
IFAS Research Fields		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0	
Inactive		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0	
		5		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
		8		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Liriope		8		1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Mangos		8	p	p 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Millet	3	9 15-Fe	b 18	0 2	15	8	14	0			0	0	0	0	0	0	0	0	0	0 0	83
Misc. Vegetables	3	3 1-Se	p 9	7 9	1	12	7	23	1-Jan	9	7 1	1	4	8	0	0	0	0	0	0 0	51
Nurseries and Vineyards		9	p	p 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Oats	4	0 1-De	ec 9	0 12	1	3	1	0			0	0	0	0	0	0	0	0	0	0 0	80,83
OatsCorn	4	0 1-De	ec 9	0 12	1	3	1	28	1-Apr	13	5 4	1	8 1	4	0	0	0	0	0	0 0	80,83,72,81
Onions	4	1 15-Oc	ct 11	<mark>5</mark> 10	15	2	7	0			0	0	0	0	0	0	0	0	0	0 0	61
Ornamentals		9	p	<mark>p 1</mark>	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Pasture	1	0	p	<mark>p 1</mark>	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Peaches	1	1	p	<mark>p 1</mark>	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Peanuts	4	3 22-Ap	or 15.	5 4	22	9	24	0			0	0	0	0	0	0	0	0	0	0 0	81
Peas	4	4 15-No	v 7	0 11	15	1	24	44	1-Mar	8	5 3	1	5 2	5	0	0	0	0	0	0 0	58
Pecans	1	2	р	p 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Persimmons	1	1	р	p 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Pine		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0)
Pittosporum		8	р	p 1	1	12	31	0			0	0	0	0	0	0	0	0	0	0 0)
Plowed		0		0	0	0	0	0			0	0	0	0	0	0	0	0	0	0 0)
Potatoes	4	6 1-Ja	n 9	7 1	1	4	8	0			0	0	0	0	0	0	0	0	0	0 0) 65
PotatoesCabbage	4	6 1-Ja	n 9	7 1	1	4	8	23	1-Aug	9	7 8	1	11	6	0	0	0	0	0	0 0	65,51
produce	3	3 1-Ma	ar 7	0 3	1	5	10	19	1-Sep	7(9	1	11 1	0	0	0	0	0	0	0 0	58

Table B-3 Crop Growing Season Definition - CENTRAL REGION

	Crop1									С	rop2						Crop	3				
"AF_CROP"	1			Plantir	ng	Harvesti	ing				Plan	iting	Harvesting					Plantin	ig	Harvestir	ng	
Crop	AFCrop	Begin Date	Season Length	Begin Mo Be	egin Day	End mo En	nd Day	AFCrop	Begin Date S	eason Length	Begin Mo	Begin Day E	nd mo End Da	iy A	AFCrop Beg	gin Date Sea	ison Length Be	egin Mo Be	egin Day En	nd mo End	d Day	source
Radish	47	1-Sep	30	9	1	10	1	47	15-Nov	30	11	15	12	15	47	1-Feb	30	2	1	3	3	64
Rice	48	15-Apr	125	4	15	8	18	0			0	0	0	0	0	0	0	0	0	0	0	81
rotation	49	1-Dec	90	12	1	3	1	28	1-Apr	135	4	1	8	14	0	0	0	0	0	0	0	80,83,72,81
rotationSorghum	49	1-Dec	90	12	1	3	1	51	15-Mar	180	3	15	9	11	0	0	0	0	0	0	0	83,80
rotationSoybeans	49	1-Dec	90	12	1	3	1	52	15-May	140	5	15	10	2	0	0	0	0	0	0	0	83,80,94
Rye	60	1-Dec	120	12	1	3	31	0	,		0	0	0	0	0	0	0	0	0	0	0	83
Shade Ferns	5	р	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	Г
Sod	13	p	p	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	
Sorghum	51	15-Mar	180	3	15	9	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	83,80
Soybeans	52	15-May	140	5	15	10	2	0			0	0	0	0	0	0	0	0	0	0	0	94,80
SoybeansOats	52	15-May	140	5	15	10	2	40	1-Dec	90	12	1	3	1	0	0	0	0	0	0	0	94,80,83
Specialty Farms	50	1-Sep	97	9	1	12	7	50	1-Jan	97	1	1	4	8	0	0	0	0	0	0	0	
Spinach	53	15-Sep	55	9	15	11	9	53	1-Dec	55	12	1	1	25	53	15-Feb	55	2	15	4	11	66
Squash	54	1-Feb	45	2	1	3	18	54	22-Aug	45	8	22	10	6	0	0	0	0	0	0	0	53
Strawberries	55	30-Sep	200	9	30	4	18	0			0	0	0	0	0	0	0	0	0	0	0	67
Sugar Cane	14	<u> </u>	n	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	
Sweet Corn	29	 1-Mar	77	3	1	5	17	0			0	0	0	0	0	0	0	0	0	0	0	68
Sweet Potatoes	46	1-Mar	120	3	1	6	29	0			0	0	0	0	0	0	0	0	0	0	0	60
Tomatoes	59	<u>15-Διισ</u>	80	8	15	11	20	59	15-lan	80	1	15	4	5	0	0	0	0	0	0	0	00
Tree Fern	5	<u>13 Aug</u>	0	1	1	12	31	0	13 3411	00	0	0	0	0	0	0	0	0	0	0	0	l
unknown	0	P	P	0	0	0	01	0			0	0	0	0	0	0	0	0	0	0	0	l
	0			0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	
	33	1-Dec	00	12	1	3	1	28	1-Apr	135	4	1	8	14	0	0	0	0	0	0	0	80 83 72 81
Unspecified Nurseries and Vinevards	35	<u> 1 Dec</u>		1	1	12	31	0	тдрі	133		0	0	0	0	0	0	0	0	0	0	00,00,72,01
	33	<u>۲</u> 1-Sen	<u>م</u> 97	9	1	12	7	23	1-lan	97	1	1	4	8	0	0	0	0	0	0	0	51
Unspecified Pow Crop/Pasture	33	<u>1-36</u>		<u>5</u> 1	1	12	7	23	T-1011	57	0	0	4	0	0	0	0	0	0	0	0	51
	11	<u> </u>	<u>р</u>	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	i
Water Momt Area	0	P	<u></u> Р	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	i
Watermolons	37	15 Eob	00	2	15	5	16	0			0	0	0	0	0	0	0	0	0	0	0	i
		T2-LED	90	2	10	0	10	0			0	0	0	0	0	0	0	0	0	0	0	06
Weeping Willow	60	1 Doc	00	12	1	3	1	0			0	0	0	0	0	0	0	0	0	0	0	90.93
Winter Wheat	60	1 Dec	90	12	1	3	1	51	15 Mar	190	3	15	0	11	0	0	0	0	0	0	0	00,03 90,93
Winter WheatSovbeans	60	1-Dec	90	12	1	3	1	52	15-May	100	5	15	10	2	0	0	0	0	0	0	0	83.80.04
	00	I-DEC	90	12	1	12	21	JZ	13-ividy	140	0	15	10	2	0	0	0	0	0	0	0	03,00,94
Penners	3	<u>μ</u>	ρ 70	8	15	12	24	45	15-Eob	70	2	15	1	26	0	0	0	0	0	0	0	62
Alfalfa	45	13-Aug	70		10	10	24	40	13-160	70	2	15	4	20	0	0	0	0	0	0	0	02
Allalla	56	μ	240	1	15	12	12	0			0	0	0	0	0	0	0	0	0	0	0	70
Upprovided Field C*	22	1 Dec	240	12	10	10	13	20	1 Apr	125	0	1	0	14	0	0	0	0	0	0	0	00 02 72 01
Out Foliogo	33	I-Dec	90	12	1	12	21	20	т-Арі	122	4	1	0	14	0	0	0	0	0	0	0	00,03,72,01
	50	15 Aug	<u>هم</u>	0	15	12	31	50	1E Jap	20	1	15	1	5	0	0	0	0	0	0	0	1
Linenceified Devicere*	59	15-Aug	80	<u> </u>	15	10	3 7	29	1. Jan	80	1	15	4	0	0	0	0	0	0	0	0	54
	33	T-Seb	97	9	1	12	1	23	T-J9U	97		1	4	0	0	0	0	0	0	0	0	51
Nurseries and Vincut	11	p	þ	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	I
	9	<u>р</u>	<u>р</u>	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	00.00
Small Grains	49	15-INOV	90	11	15		13	0	45 100	<u> </u>	0	0	0	10	0	0	0	0	0	0	0	83,80
Beets	20	15-Oct	60	10	15	12	14	20	15-Jan	60	1	15	3	16	0	0	0	0	0	0	0	82
Animal Feeding Oper*	0	4.6	00	0	0	0	0	0	4.1		0	0	0	0	0	0	0	0	0	0	0	
Herbs	35	1-Sep	08	9	1	11	20	35	1-Jan	08	1	1	3	22	0	0	0	0	0	0	0	51
	23	1-Sep	97	9	1	12	7	23	1-Jan	97	1	1	4	8	0	0	0	0	0	0	0	51
	0			0	0	0	0	0			0	0	U	0	0	0	0	0	0	0	0	I
Beans	19	1-Mar	70	3	1	5	10	19	1-Sep	70	9	1	11	10	0	0	0	0	0	0	0	58
Turf grass	13	р	р	1	1	12	31	0			0	0	0	0	0	0	0	0	0	0	0	I
Kennels	0			0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	I
Melons	37	15-Feb	90	2	15	5	16	0			0	0	0	0	0	0	0	0	0	0	0	I
Parsley	35	1-Sep	80	9	1	11	20	35	1-Jan	80	1	1	3	22	0	0	0	0	0	0	0	51
Lettuce	23	1-Sep	97	9	1	12	7	23	1-Jan	97	1	1	4	8	0	0	0	0	0	0	0	51
Floriculture	56	15-Feb	240	2	15	10	13	0			0	0	0	0	0	0	0	0	0	0	0	78

Table B-3 Crop Growing Season Definition - CENTRAL REGION

			Cr	op1						Crop2					(Crop3			
"AF_CROP"				Planting	ŀ	larvesting				Planting	Н	larvesting				Pla	anting	Harvesting	
Сгор	AFCrop	Begin Date Seasor	n Length	Begin Mo Begin	Day End m	D End Day	AFCrop	Begin Date	Season Length	Begin Mo Beg	in Day End mo	End Day	AFCrop	Begin Date	Season Length	Begin Mo	Begin Day End	I mo End Day	source
Mushroom		0		0	0	0 0) ()		0	0	0 (0	0	0 (0 0	0	0
Kale	2	3 1-Sep	97	9	1	12 7	23	s 1-Jan	9	7 1	1	4 8		0	0	0 (0 0	0	<mark>0</mark> 51
Mustard Greens	3	5 1-Sep	80	9	1	11 20) 35	5 1-Jan	8	<mark>0</mark> 1	1	3 22		0	0	0 (0 0	0	<mark>0</mark> 51
Okra	5	0 15-Mar	65	3	15	5 19	9 50	15-Jun	9	6	15	9 20		0	0	0 (0 0	0	0 82
Turnips	5	0 1-Feb	50	2	1	3 23	3 50	1-Oct	5	0 10	1	11 20		0	0	0 (0 0	0	0 82

Zone	COUNTY	Zone	COUNTY
Central	Brevard	North	Alachua
Central	Charlotte	North	Baker
Central	Citrus	North	Berrien
Central	Clay	North	Bradford
Central	Desoto	North	Brantley
Central	Duval	North	Brooks
Central	Flagler	North	Camden
Central	Glades	North	Charlton
Central	Hardee	North	Clinch
Central	Hendry	North	Columbia
Central	Hernando	North	Cook
Central	Highlands	North	Dixie
Central	Hillsborough	North	Echols
Central	Indian River	North	Gilchrist
Central	Lake	North	Glynn
Central	Manatee	North	Hamilton
Central	Marion	North	Lafayette
Central	Martin	North	Lanier
Central	Okeechobee	North	Levy
Central	Orange	North	Lowndes
Central	Osceola	North	Madison
Central	Palm Beach	North	Nassau
Central	Pasco	North	Suwannee
Central	Pinellas	North	Taylor
Central	Polk	North	Union
Central	Putnam	North	Ware
Central	Sarasota		
Central	Seminole		
Central	St Johns		
Central	St Lucie		
Central	Sumter		
Central	Volusia		

Table B-4 Designation of North/South Growing Regions by County

	Annual Net I	rrigation Requim	ent, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Alfalfa	3.3	5.6	6.8
Asparagus Fern	14.8	18.5	23.2
Aspidistra	26.7	30.2	34.9
Beans	5.9	7.9	9.7
Beets	3.1	3.8	4.8
Blueberries	13.1	17.2	21.2
Broccoli	3.7	5.1	6.4
Cabbage	5.3	6.8	8.3
Cantaloupe	3.1	4.6	6.3
Chestnuts	3.3	6.3	8.3
Chinese Cabbage	5.5	6.8	8.2
Citrus	4.1	7.3	10.4
Collard Greens	4.5	5.9	7.2
Container Nursery	20.0	23.2	26.5
Corn	3.8	5.0	6.0
Cotton	2.8	4.3	5.7
Cucurbits	3.6	5.1	6.1
Cut Foliage	14.1	17.8	21.5
Dry Beans	9.2	10.8	12.5
Field Corn	6.7	8.5	10.4
Field Nursery	15.8	19.6	23.5
Floriculture	12.4	15.6	18.5
Grapes	2.5	4.3	5.8
Greens	3.3	4.6	6.2
Hammock Ferns	8.6	12.6	16.9
Hay	4.2	7.1	9.2
Herbs	5.4	6.7	7.8
Kale	5.5	6.8	8.2
Leatherleaf	14.5	18.3	23.0
Lettuce	2.6	3.7	4.5
Melons	6.2	7.8	9.0
Millet	5.1	7.6	10.1
Misc. Vegetables	4.3	5.8	7.3
Mustard Greens	4.2	5.4	6.8
Nurseries and Viney*	21.0	23.7	26.4
Oats	0.0	0.1	0.1
Okra	6.9	8.8	10.8
Ornamentals	20.4	23.3	26.7
Parsley	2.8	3.9	5.0
Pasture	15.4	19.2	23.7
Peaches	4.2	7.2	9.6
Peanuts	3.4	5.0	6.5

Table B-5 1995 Irrigated Lands Net Irrigation Summary Statistics by Crop Type

	Annual Net I	rrigation Requim	ent, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Peas	7.1	9.3	11.7
Pecans	3.9	6.6	8.8
Peppers	5.7	7.5	9.2
Persimmons	3.3	6.4	8.6
Potatoes	2.2	3.6	4.8
produce	5.5	6.9	8.1
rotation	4.8	7.3	9.9
Rye	0.1	0.3	0.5
Small Grains	0.1	0.6	0.8
Sod	11.3	15.4	19.3
Sorghum	3.3	5.0	6.7
Soybeans	2.9	4.6	5.9
Specialty Farms	6.1	7.3	8.5
Squash	2.3	3.4	4.3
Strawberries	5.0	6.6	8.8
Sugar Cane	14.6	18.2	23.5
Sunflowers	5.0	6.6	8.2
Sweet Corn	3.3	4.8	6.4
Tomato	8.3	9.6	10.9
Tomatoes	4.1	5.8	7.0
Turf grass	13.4	17.8	23.5
Turnips	3.2	4.0	5.4
Unspecified Field C*	2.1	4.5	6.4
Unspecified Row Cro*	6.1	7.7	9.4
Unspecified Row Crop	5.6	7.3	8.8
Unspecified Tree Cr*	3.1	5.5	7.4
Watermelons	3.9	5.7	7.3
Winter Wheat	0.0	0.1	0.2

Table B-5 1995 Irrigated Lands Net Irrigation Summary Statistics by Crop Type

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

Table B-6 2010 Irrigated Lands Net Irrigation Summary Statistics by Crop Type

	Annual	Net Irrigation Requim	ent, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Alfalfa	5.2	9.0	12.1
Asparagus Fern	14.5	18.4	23.1
Aspidistra	26.4	29.9	34.5
Blueberries	13.0	17.0	20.9
Broccoli	4.4	5.7	7.1
Cabbage	5.4	6.9	8.4
Cantaloupe	2.6	4.3	6.2
Chestnuts	3.3	6.3	8.3
Citrus	4.8	8.5	12.4
Clover	1.6	2.3	2.8
Collard Greens	1.8	2.7	3.5
Container Nursery	20.0	23.5	27.5
Coontie Fern	15.7	18.9	23.2
Corn	3.7	4.9	6.0
Cotton	3.3	4.8	6.1
Cucurbits	3.6	5.1	6.1
DevelopedCabbage	5.4	6.5	8.2
Dry Beans	6.2	8.1	9.6
Field Corn	7.0	10.1	12.9
Field Nursery	14.8	18.4	22.1
Grapes	2.9	4.9	6.6
Greens	3.9	5.2	6.7
Hammock Ferns	14.3	18.2	23.3
Hay	3.4	6.5	9.2
Leatherleaf	14.7	18.5	23.2
Ligustrum	25.8	29.7	34.0
Liriope	25.9	29.1	33.5
Mangos	18.9	22.9	26.8
Millet	5.0	7.5	10.0
Misc. Vegetables	3.9	5.3	6.5
Nurseries and Vineyards	21.2	23.9	26.5
Oats	0.0	0.1	0.2
OatsCorn	4.2	6.4	8.6
Onions	1.6	2.0	2.3
Ornamentals	20.0	22.9	26.6
Pasture	13.4	17.4	22.2
Peaches	4.4	7.9	11.1
Peanuts	3.4	4.9	6.4
Peas	7.0	9.4	11.8
Pecans	5.8	9.3	12.3
Peppers	6.4	8.3	9.8
Persimmons	3.3	6.3	8.3

Table B-6 2010 Irrigated Lands Net Irrigation Summary Statistics by Crop Type

	Annual	Net Irrigation Requim	ent, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Pittosporum	26.0	29.5	34.1
Potatoes	2.3	3.7	5.0
PotatoesCabbage	6.1	7.8	9.3
produce	5.5	6.9	8.1
Radish	2.4	3.2	3.9
Rice	9.8	12.7	16.0
rotation	4.7	7.2	9.8
rotationSorghum	2.7	5.2	7.9
rotationSoybeans	2.6	4.9	6.1
Rye	0.1	0.3	0.5
Shade Ferns	13.1	17.4	22.1
Sod	11.4	15.4	19.3
Sorghum	3.7	5.7	7.8
Soybeans	2.9	4.6	5.9
SoybeansOats	3.3	5.1	6.5
Specialty Farms	6.1	7.4	8.5
Spinach	4.2	5.4	6.5
Squash	2.8	3.8	4.6
Strawberries	4.1	5.9	8.3
Sugar Cane	13.1	16.8	22.3
Sweet Corn	3.5	5.0	6.4
Sweet Potatoes	8.0	10.3	13.0
Tomatoes	5.1	6.4	7.6
Tree Fern	13.9	18.2	23.1
Unspecified Field Crop	4.2	6.1	8.1
Unspecified Nurseries and Vineyards	13.7	17.6	21.8
Unspecified Row Crop	5.6	7.3	8.9
Unspecified Row Crop/Pasture	11.2	14.9	18.4
Unspecified Tree Crop	4.7	7.9	10.9
Watermelons	3.9	5.7	7.3
Winter Wheat	0.0	0.1	0.2
Winter WheatSorghum	2.7	4.5	6.1
Winter WheatSoybeans	2.7	4.2	5.4

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

	Annual Net I	rrigation Requim	ient, Inches
Crop	Wet Year ¹	Average Year	Dry Year ¹
Alfalfa			
Micro Spray	3.25	5.56	6.82
Asparagus Fern			
Impact Sprinkler	14.76	18.49	23.11
LT Drip	10.48	14.04	17.48
Sprayhead Sprinkler	20.65	24.69	29.97
Aspidistra			
Impact Sprinkler	26.65	30.17	34.85
Beans			
Impact Sprinkler	5.89	7.90	9.70
Beets			
Pipeline Seepage	3.14	3.85	4.81
Blueberries			
Impact Sprinkler	10.92	14.89	18.74
LT Drip	11.13	15.22	18.72
LT Drip/OP Sprinkler	12.34	16.44	20.43
Micro Spray	10.85	14.98	19.05
OP Sprinkler	17.26	21.34	25.83
Sprayhead Sprinkler	17.47	22.20	26.23
Subsurface Drip	11.45	15.41	19.43
Broccoli			
Impact Sprinkler	1.82	2.84	3.57
Pipeline Seepage	4.37	5.81	7.38
Cabbage			
Flood	3.33	4.70	5.68
Pipeline Seepage	5.38	6.82	8.36
Cantaloupe			
Sprayhead Sprinkler	3.24	4.60	5.98
Subsurface Drip	2.53	4.31	6.26
Traveling Gun	4.08	5.43	6.95
Chestnuts			
Micro Spray	3.27	6.28	8.29
Chinese Cabbage			
Pipeline Seepage	5.54	6.80	8.23

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Citrus			·
Center Pivot	11.30	15.55	19.07
Flood	15.97	19.22	22.98
Impact Sprinkler	6.95	10.52	13.80
LT Drip	4.20	7.28	10.07
LT Drip/OP Sprinkler	3.76	6.84	8.73
Micro Spray	3.79	6.98	10.07
OP Sprinkler	12.24	16.62	20.89
Pipeline Seepage	15.89	20.09	24.28
Sprayhead Sprinkler	12.15	16.62	21.75
Stationary Guns	6.01	9.01	11.85
Traveling Gun	5.40	8.43	10.91
Collard Greens			
Pipeline Seepage	4.49	5.88	7.22
Container Nursery			
Containter Nursery	20.41	23.62	26.90
LT Drip	17.24	20.61	24.20
LT Drip/OP Sprinkler	15.51	19.53	22.73
Micro Spray	16.30	20.18	23.73
OP Sprinkler	20.96	23.76	26.77
Sprayhead Sprinkler	20.36	23.18	25.37
Surface Drip	16.27	20.05	23.79
Corn			
Traveling Gun	3.77	4.96	6.03
Cotton			
Traveling Gun	2.84	4.26	5.70
Cucurbits			
Micro Spray	1.44	2.66	3.45
Pipeline Seepage	3.98	5.53	6.59
Cut Foliage			
Impact Sprinkler	13.87	18.24	22.85
Traveling Gun	14.26	17.47	20.40
Dry Beans			
Center Pivot	9.42	10.97	12.70
Micro Spray	3.72	5.71	6.53

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Field Corn		0	
Center Pivot	4.84	6.84	8.75
Impact Sprinkler	4.10	5.40	6.62
Linear	4.13	6.79	9.52
OP Sprinkler	6.49	8.93	10.46
Pipeline Seepage	8.81	10.77	12.85
Traveling Gun	3.44	5.04	6.61
Field Nursery			
Flood	16.10	20.02	24.68
Impact Sprinkler	16.00	19.66	23.81
LT Drip	12.81	16.43	19.92
Micro Spray	13.29	17.27	20.82
OP Sprinkler	22.05	25.90	29.65
Pipeline Seepage	17.53	21.42	25.76
Sprayhead Sprinkler	22.70	26.57	31.72
ST Drip	10.24	14.26	17.71
Stationary Guns	16.83	20.88	24.82
Traveling Gun	15.67	19.29	22.09
Floriculture			
Sprinkler - CTR Nursery	12.40	15.61	18.46
Grapes			
Impact Sprinkler	2.57	5.11	6.85
LT Drip	2.44	4.27	5.67
Micro Spray	2.47	4.02	5.28
Greens			
Traveling Gun	3.26	4.59	6.17
Hammock Ferns			
Micro Spray	8.63	12.59	16.88
Нау			
Center Pivot	7.90	10.91	14.87
Linear	8.43	12.53	15.39
Micro Spray	2.03	4.52	5.77
Pipeline Seepage	13.55	17.02	21.70
Stationary Guns	4.73	8.10	10.06
Traveling Gun	2.83	5.56	7.51
Herbs			
Pipeline Seepage	5.43	6.68	7.80
Kale			
Pipeline Seepage	5.54	6.80	8.23

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Leatherleaf		U	
Impact Sprinkler	14.41	18.27	22.97
Micro Spray	13.76	17.21	21.37
Sprayhead Sprinkler	20.24	24.40	29.56
Lettuce			
Traveling Gun	2.59	3.67	4.49
Melons			
Pipeline Seepage	6.18	7.81	9.02
Millet			
Traveling Gun	5.12	7.61	10.09
Misc. Vegetables			
Flood	1.49	2.77	3.97
Impact Sprinkler	2.00	3.36	4.78
Pipeline Seepage	6.03	7.62	9.30
Mustard Greens			
Pipeline Seepage	4.15	5.37	6.80
Nurseries and Viney*			
Container nursery impact sprinkler	20.99	23.74	26.37
Oats			
Traveling Gun	0.00	0.10	0.12
Okra			
Impact Sprinkler	6.90	8.81	10.84
Ornamentals			
Container nursery impact sprinkler	20.39	23.33	26.71
Parsley			
Impact Sprinkler	2.81	3.90	4.98
Pasture			
Center Pivot	6.95	10.18	13.49
Flood	12.70	15.60	18.73
Impact Sprinkler	2.59	5.66	7.95
Linear	7.34	10.29	14.82
Micro Spray	1.93	4.25	5.52
Pipeline Seepage	15.82	19.66	24.22
ST Drip	1.18	3.37	4.54
Traveling Gun	2.96	5.66	7.62
Peaches			
LT Drip	4.18	7.04	9.42
Micro Spray	4.25	7.32	9.76

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Peanuts			
Impact Sprinkler	2.49	3.99	5.68
Linear	5.33	7.41	9.50
Pipeline Seepage	7.90	9.84	11.88
Sprayhead Sprinkler	5.65	7.79	9.48
Traveling Gun	3.44	5.02	6.52
Peas			
Center Pivot	7.07	9.35	11.75
Impact Sprinkler	5.22	6.82	8.62
Micro Spray	5.58	7.52	8.99
Traveling Gun	3.74	5.40	6.82
Pecans			
Impact Sprinkler	5.65	8.90	11.60
LT Drip	2.86	5.46	7.71
Micro Spray	3.31	6.10	8.63
Pipeline Seepage	9.16	13.74	16.44
Sprayhead Sprinkler	9.91	13.46	16.64
Subsurface Drip	3.28	5.81	7.95
Peppers			
Pipeline Seepage	6.41	8.32	9.80
Sprayhead Sprinkler	5.05	6.74	8.67
Persimmons			
Micro Spray	3.27	6.40	8.59
Potatoes			
Flood	1.03	2.04	3.19
Pipeline Seepage	2.24	3.65	4.84
Traveling Gun	1.35	2.26	2.90
Wheel Roll	2.19	3.32	4.25
produce			
LT Drip	4.96	6.36	7.52
Sprayhead Sprinkler	9.61	11.11	12.52
ST Drip	4.96	6.41	7.57
Traveling Gun	5.71	7.30	8.58
rotation			
Center Pivot	6.72	9.30	12.19
LT Drip	3.15	5.52	7.54
ST Drip	2.78	5.16	6.96
Traveling Gun	3.42	5.86	8.37
Rye			
Traveling Gun	0.08	0.31	0.51

	Annual Net Irrigation Requiment, Inches		ent, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Small Grains			
Center Pivot	0.16	0.66	0.87
Linear	0.00	0.66	1.17
Traveling Gun	0.00	0.24	0.34
Sod			
Center Pivot	15.86	20.46	24.69
Flood	15.13	18.48	21.81
Impact Sprinkler	11.57	14.61	17.95
Linear	16.03	20.36	25.21
Micro Spray	10.91	15.23	19.12
OP Sprinkler	15.96	20.19	24.05
Pipeline Seepage	15.31	19.41	23.56
Sprayhead Sprinkler	15.91	20.24	24.16
Stationary Guns	12.46	16.56	20.64
Traveling Gun	11.30	15.40	19.32
Wheel Roll	15.16	19.81	23.66
Sorghum			
Pipeline Seepage	8.65	11.48	14.60
Traveling Gun	3.20	4.94	6.59
Soybeans			
Traveling Gun	2.89	4.58	5.88
Specialty Farms			
Container nursery impact sprinkler	6.91	7.86	8.77
LT Drip	2.94	4.43	5.90
Micro Spray	2.73	4.05	5.56
OP Sprinkler	6.49	8.32	10.41
Pipeline Seepage	7.48	9.28	11.48
Squash			
Center Pivot	2.21	3.40	4.31
Pipeline Seepage	2.57	3.60	4.58
Stationary Guns	1.94	2.68	3.11
Traveling Gun	1.53	2.37	3.08
Strawberries			
LT Drip	4.37	6.04	8.36
LT Drip/OP Sprinkler	4.14	5.73	8.06
Micro Spray	3.27	4.90	7.23
OP Sprinkler	7.93	9.54	11.69
Pipeline Seepage	10.79	13.62	16.51
Surface Drip	4.21	5.78	7.88

Annual Net Irrigation Requiment, Inc			ient, Inches
Crop	Wet Year ¹	Average Year	Dry Year ¹
Sugar Cane			
Pipeline Seepage	14.61	18.16	23.52
Sunflowers			
LT Drip	4.98	6.60	8.21
Sweet Corn			
Impact Sprinkler	3.69	4.76	6.01
LT Drip	2.48	3.77	4.88
Sprayhead Sprinkler	6.81	7.38	8.24
Traveling Gun	3.15	4.74	6.32
Wheel Roll	5.01	6.24	7.62
Tomato			
Pipeline Seepage	8.26	9.63	10.91
Tomatoes			
Micro Spray	2.04	4.02	5.17
OP Sprinkler	5.26	6.83	8.17
Pipeline Seepage	6.09	7.95	9.31
Surface Drip	2.23	3.79	4.90
Turf grass			
Impact Sprinkler	13.38	17.78	23.52
Turnips			
Pipeline Seepage	3.17	4.00	5.38
Unspecified Field C*			
Impact Sprinkler	3.16	4.69	6.30
LT Drip	3.56	5.18	6.39
Micro Spray	3.79	5.24	6.82
Traveling Gun	2.08	4.47	6.36
Unspecified Row Cro*			
Center Pivot	6.11	7.75	9.41
Unspecified Row Crop			
Center Pivot	5.69	7.34	8.93
LT Drip	2.11	3.21	4.55
Micro Spray	2.76	4.59	6.06
OP Sprinkler	6.84	8.65	10.19
Unspecified Tree Cr*			
Micro Spray	3.60	6.27	8.40
Subsurface Drip	3.12	5.50	7.34

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Watermelons			
LT Drip/OP Sprinkler	2.42	4.18	5.59
Micro Spray	2.51	4.55	6.18
Pipeline Seepage	6.52	8.23	9.81
ST Drip	2.79	4.62	6.23
Traveling Gun	3.41	5.22	6.72
Winter Wheat			
Traveling Gun	0.01	0.12	0.17

Table B-7 1995 Irrigated Lands Net Irrigation by Crop and Irrigation System

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

	Annual Net Irrigation Requiment, Inch		, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Alfalfa			
Micro Spray			
Asparagus Fern	5.21	8.98	12.05
Impact Sprinkler			
Micro Spray	14.50	18.40	23.08
Aspidistra	9.05	12.64	16.11
Impact Sprinkler			
Micro Spray	26.64	30.15	34.76
Sprayhead Sprinkler*	15.68	19.34	23.53
Blueberries	20.14	23.16	26.63
Impact Sprinkler			
LT Drip	10.88	14.77	18.49
LT Drip/OP Sprinkler	11.17	15.23	18.70
Micro Spray	12.34	16.44	20.43
OP Sprinkler	17.26	21.34	25.83
Sprayhead Sprinkler*	17.62	22.29	26.16
Subsurface Drip	11.39	15.29	18.95
Broccoli			
Pipeline seepage	4.90	6.26	7.77
Traveling gun	1.40	2.39	3.36
Cabbage			
Pipeline seepage	5.46	6.93	8.51
Traveling gun	2.38	3.37	4.44
Cantaloupe			
Subsurface Drip	2.60	4.27	6.18
Chestnuts			
Micro Spray	3.27	6.28	8.29
Citrus			
Center Pivot	11.30	15.55	19.07
Flood	15.30	18.66	22.55
Impact Sprinkler	6.92	10.39	13.81
LT Drip	6.04	10.19	13.72
LT Drip/OP Sprinkler	5.99	10.43	13.75
Micro Spray	4.68	8.41	12.29
OP Sprinkler	12.24	16.62	20.89
Pipeline seepage	13.03	17.44	21.69
Reclaimed - Micro S*	6.31	11.22	14.04
Sprayhead Sprinkler*	11.94	16.42	20.76
Stationary Guns	7.08	11.13	14.97
Traveling gun	7.22	11.27	15.18

	Annual Net Irrigation Requiment, Inches		nt, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Clover			
Traveling gun	1.56	2.25	2.77
Collard Greens			
Traveling gun	1.82	2.73	3.53
Container Nursery			
Impact Sprinkler	27.15	30.76	35.05
LT Drip	17.24	20.61	24.20
LT Drip/OP Sprinkler	15.51	19.53	22.73
Micro Spray	16.57	20.36	24.21
OP Sprinkler	20.96	23.76	26.77
Sprayhead Sprinkler*	20.45	23.85	27.30
ST Drip	16.22	20.09	23.96
Surface Drip	15.77	19.26	23.67
Coontie Fern			
Impact Sprinkler	15.66	18.88	23.23
Corn			
Traveling gun	3.72	4.94	6.03
Cotton			
Pipeline seepage	8.42	10.33	12.23
Traveling gun	1.62	2.98	4.01
Cucurbits			
Micro Spray	1.44	2.66	3.45
Pipeline seepage	3.91	5.39	6.49
DevelopedCabbage			
Pipeline seepage	5.37	6.51	8.18
Dry Beans			
Center Pivot	6.22	8.15	9.70
Micro Spray	3.72	5.71	6.53
Field Corn			
Impact Sprinkler	3.13	5.89	8.76
OP Sprinkler	6.49	8.93	10.46
Pipeline seepage	7.70	10.97	14.25

	Annual Net Irrigation Requiment, Inches		nt, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Field Nursery			
Flood	17.55	21.37	25.76
Impact Sprinkler	15.75	19.39	23.47
LT Drip	12.70	16.22	19.59
Micro Spray	12.74	16.32	19.93
OP Sprinkler	22.05	25.90	29.65
Pipeline seepage	14.89	18.98	23.30
Sprayhead Sprinkler*	22.55	26.62	31.48
ST Drip	10.24	14.26	17.71
Stationary Guns	16.83	20.88	24.82
Traveling gun	15.34	18.90	21.80
Grapes			
Impact Sprinkler	2.32	4.90	6.51
LT Drip	2.93	4.78	6.47
Micro Spray	3.29	5.85	7.82
Subsurface Drip	2.27	3.59	4.93
Greens			
Pipeline seepage	3.94	5.23	6.77
Traveling gun	1.93	2.93	4.16
Hammock Ferns			
Impact Sprinkler	14.26	18.24	23.27
Нау			
Center Pivot	9.22	12.57	15.40
Impact Sprinkler	5.06	8.24	11.67
Linear	8.70	11.88	15.22
Micro Spray	2.89	6.41	8.82
Pipeline seepage	16.84	21.36	25.60
Reclaimed - Impact *	10.28	15.40	19.53
Stationary Guns	4.73	8.39	10.70
Traveling gun	3.39	6.53	9.22
Leatherleaf			
Impact Sprinkler	14.67	18.44	23.15
LT Drip	14.12	17.07	20.80
Sprayhead Sprinkler*	18.43	22.67	28.04
Stationary Guns	16.36	19.51	24.01
Ligustrum			
Impact Sprinkler	25.80	29.67	34.04
Liriope			
Impact Sprinkler	26.76	30.07	34.57
Sprayhead Sprinkler*	20.41	23.08	26.27

	Annual Net Irrigation Requiment, Inches		
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Mangos			
Flood	18.86	22.90	26.82
Millet			
Traveling gun	4.99	7.47	9.99
Misc. Vegetables			
Impact Sprinkler	3.04	4.37	5.44
LT Drip	2.53	3.98	4.91
Pipeline seepage	5.99	7.52	9.15
Nurseries and Vineyards			
Container nursery impact sprinkler	21.20	23.90	26.52
Oats			
Traveling gun	0.02	0.14	0.18
OatsCorn			
Traveling gun	4.18	6.41	8.64
Onions			
Impact Sprinkler	0.79	1.11	1.31
Pipeline seepage	2.38	2.80	3.25
Ornamentals			
Container nursery impact sprinkler	20.54	23.23	26.71
Flood	17.98	22.10	26.58
Impact Sprinkler	16.06	19.52	23.47
LT Drip	12.22	15.70	18.71
Micro Spray	12.35	16.67	20.78
Pipeline seepage	18.00	22.36	26.88
Sprayhead Sprinkler*	23.05	27.22	32.05
Pasture			
Center Pivot	6.44	10.07	12.83
Flood	14.84	17.67	20.74
Impact Sprinkler	3.93	6.74	9.33
Linear	7.15	10.46	13.91
Micro Spray	3.22	6.81	9.43
Pipeline seepage	13.80	17.80	22.73
Sprayhead Sprinkler*	8.74	12.58	15.92
ST Drip	2.36	6.30	9.33
Traveling gun	2.92	6.15	8.70
Peaches			
LT Drip	3.62	7.28	10.73
Micro Spray	5.66	8.88	11.55
Peanuts			
Traveling gun	3.35	4.90	6.38

	Annual Net Irrigation Requiment, Inches		nt, Inches
Crop	Wet Year ¹	Average Year	Dry Year ¹
Peas			
Center Pivot	7.02	9.40	11.82
Impact Sprinkler	6.09	8.38	10.56
Micro Spray	5.58	7.52	8.99
Pecans			
LT Drip	3.73	6.85	9.55
Micro Spray	3.45	6.17	9.02
Sprayhead Sprinkler*	9.85	13.42	16.53
Subsurface Drip	4.52	8.22	11.19
Traveling gun	4.84	7.10	9.14
Peppers			
Pipeline seepage	6.41	8.32	9.80
Persimmons			
Micro Spray	3.27	6.28	8.29
Pittosporum			
Container nursery impact sprinkler	20.32	23.02	26.25
Impact Sprinkler	26.68	30.20	34.79
LT Drip	15.70	19.94	24.00
Micro Spray	15.96	19.91	24.43
Sprayhead Sprinkler*	20.18	22.93	26.26
Potatoes			
Pipeline seepage	2.26	3.72	4.97
PotatoesCabbage			
Pipeline seepage	6.14	7.80	9.31
produce			
Center Pivot	9.23	10.81	12.11
LT Drip	5.03	6.44	7.59
Sprayhead Sprinkler*	9.50	11.03	12.41
ST Drip	4.74	6.38	7.55
Traveling gun	5.54	7.15	8.46
Radish			
Pipeline seepage	2.42	3.21	3.89
Rice			
Flood	9.81	12.71	16.03
rotation			
Center Pivot	6.68	9.31	12.19
LT Drip	3.18	5.55	7.61
Traveling gun	3.45	5.87	8.37
rotationSorghum			
Traveling gun	2.69	5.23	7.89

	Annual Net Irrigation Requiment, Inches								
Сгор	Wet Year ¹	Average Year	Dry Year ¹						
rotationSoybeans		~	·						
Traveling gun	2.61	4.85	6.11						
Rye									
Traveling gun	0.09	0.33	0.53						
Shade Ferns									
Impact Sprinkler	13.09	17.41	22.10						
LT Drip	13.29	17.99	21.64						
Sod									
Center Pivot	15.63	20.01	23.90						
Flood	13.34	17.17	20.83						
Impact Sprinkler	5.13	9.13	11.45						
Linear	14.60	19.10	23.61						
Micro Spray	10.91	15.23	19.12						
OP Sprinkler	15.96	20.19	24.05						
Pipeline seepage	14.62	18.93	23.10						
Sprayhead Sprinkler*	15.72	20.12	24.05						
Stationary Guns	12.46	16.56	20.64						
Traveling gun	11.29	15.33	19.23						
Wheel Roll	16.46	21.10	25.15						
Sorghum									
Pipeline seepage	9.04	12.30	15.89						
Traveling gun	3.46	5.35	7.35						
Soybeans									
Traveling gun	2.91	4.59	5.87						
SoybeansOats									
Traveling gun	3.29	5.14	6.49						
Specialty Farms									
Container nursery impact sprinkler	6.50	7.76	8.71						
LT Drip	2.94	4.43	5.90						
Micro Spray	2.73	4.05	5.56						
OP Sprinkler	6.49	8.32	10.41						
Pipeline seepage	7.48	9.28	11.48						
Spinach									
Pipeline seepage	4.19	5.39	6.53						
Squash									
Center Pivot	2.91	3.80	4.61						
Pipeline seepage	2.56	3.97	4.83						
Stationary Guns	1.94	2.68	3.11						

	Annual Net Irrigation Requiment, Inches							
Сгор	Wet Year ¹	Average Year	Dry Year ¹					
Strawberries		0						
Impact Sprinkler	3.97	5.50	7.11					
LT Drip	4.37	6.04	8.36					
LT Drip/OP Sprinkler	4.14	5.73	8.06					
Micro Spray	3.27	4.90	7.23					
OP Sprinkler	7.93	9.54	11.69					
ST Drip	4.30	6.12	7.73					
Surface Drip	3.99	5.83	8.21					
Sugar Cane								
Pipeline seepage	13.06	16.78	22.25					
Sweet Corn								
Traveling gun	3.47	4.96	6.38					
Sweet Potatoes								
Pipeline seepage	8.05	10.31	12.98					
Tomatoes								
Micro Spray	2.04	4.02	5.17					
OP Sprinkler	5.26	6.83	8.17					
Pipeline seepage	6.09	7.95	9.31					
Surface Drip	5.17	6.43	7.55					
Tree Fern								
Impact Sprinkler	13.94	18.16	23.11					
Unspecified Field Crop								
Center Pivot	7.45	9.68	12.13					
Flood	9.28	11.41	13.74					
Impact Sprinkler	3.25	5.00	6.37					
Micro Spray	3.44	5.87	7.57					
Pipeline seepage	8.90	12.43	15.62					
Traveling gun	4.14	6.03	8.01					
Unspecified Nurseries and Vineyards								
Impact Sprinkler	15.96	19.76	24.25					
LT Drip	12.09	15.98	20.06					
Micro Spray	13.55	17.25	21.27					
Unspecified Row Crop								
Center Pivot	5.65	7.39	8.97					
Impact Sprinkler	2.24	3.37	4.41					
Micro Spray	2.71	4.52	5.98					
OP Sprinkler	6.84	8.65	10.19					
Pipeline seepage	5.91	7.68	8.98					
Traveling gun	2.02	2.79	3.43					
Unspecified Row Crop/Pasture								
Center Pivot	11.22	14.90	18.38					

	Annual N	et Irrigation Requime	nt, Inches
Сгор	Wet Year ¹	Average Year	Dry Year ¹
Unspecified Tree Crop			
Flood	13.33	16.58	18.97
LT Drip	4.33	7.65	10.88
Micro Spray	5.42	9.15	12.05
Pipeline seepage	15.79	20.03	24.07
Subsurface Drip	4.57	7.75	10.83
Traveling gun	4.37	6.02	7.97
Watermelons			
Impact Sprinkler	4.31	6.00	7.49
LT Drip/OP Sprinkler	2.42	4.18	5.59
Micro Spray	2.51	4.55	6.18
Pipeline seepage	6.52	8.45	10.29
ST Drip	2.67	4.51	6.19
Traveling gun	3.36	5.05	6.41
Winter Wheat			
Traveling gun	0.00	0.14	0.24
Winter WheatSorghum			
Traveling gun	2.65	4.47	6.14
Winter WheatSoybeans			
Traveling gun	2.75	4.17	5.42

Table B-8 2010 Irrigated Lands Net Irrigation Summary Statistics by Crop and Irrigation System

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

Code	Count	Problem Definition
		PRESSURE AND IRRIGATION RATE
1	28	Under-sized pump for number and type of sprinkler heads or emitters
2	305	Pressure loss between pump and sprinklers/emitters due to inadequate pipe size
3	92	Higher pressure than manufacturer's specifications
4	547	Lower pressure than manufacturer's specifications
5	41	Low pressure due to water supply
6	386	Different pressure between manifolds
7	141	Wetted area not adequate for crop requirement
8	31	Application rate > soil infiltration rate (ponding)
9	16	Air in pipelines
11	303	Pressure variation due to elevation differences
12	717	Missing/malfunctioning pressure gauge/regulator/filter
13	55	Mixed Crops or container with different water requirements in the same zone
	Ger	neric List -PRESSURE AND IRRIGATION RATE
101	4	Too High or Low Pressure at Pump Station
102	0	Too High or Low Flow at Pump Station
103	28	Uneven pressure distribution across manifold(s) and/or lateral(s)
104	22	Uneven irrigation distribution across lateral(s)
		EMITTERS AND/OR SPRINKLERS
20	765	Mixed sprinkler/emitter sizes & unmatched precipitation in the same zone
21	528	Mixed sprinkler/emitter brands or types in the same zone
22	329	Poor emitter/sprinkler uniformity due to worn orifice
23	221	Poor overlap due to improper sprinkler/emitter alignment or spacing
24	101	Various riser heights in same zone
25	100	Emitter/sprinkler spacing varies in same zone
26	406	Missing/malfunctioning emitters or sprinklers
27	518	End Gun is out of adjustment or not operating
	Ge	neric List -EMITTERS AND/OR SPRINKLERS
201	95	Mixed sprinkler/emitter sizes
202	93	Mixed sprinkler/emitter brands
203	120	Missing and/or broken emitters or sprinklers
204	7	Wrong emitter or sprinkler size and/or spacing for type and/or layout of crop

Table B- 9 MIL Problem Code Description and Count

Code	Count	Problem Definition									
		MAINTENANCE									
30	881	Leaks and broken valves, pipe, laterals lines (Poly-tubing), emitters, sprinklers									
31	108	Clogged filter or filter screen									
32	42	Sprinkler heads not properly adjusted, causing overflow on paved areas									
33	1148	Clogged emitters/nozzles (due to biological, chemical or physical factors)									
34	141	Leaning sprinklers/emitters causing non-uniform distribution									
35	59	Malfunctioning valves									
36	36	Control box in need of repair									
37	155	Boot Leak									
38	27	System has no booster pump									
40	328	Stream of water blocked by vegetation									
41	149	Variable crop spacing and stage of growth									
42	5	Poor drainage, requiring water control									
44	1	Uncatagorized									
45	0	Uncatagorized									
		Generic List -MAINTENANCE									
301	18	Pump Station Engine and/or Pump leaks or malfunctions									
302	15	Filter leaks, clogged, or malfunctions									
303	123	Pipe Leaks in Irrigation System									
304	10	Valve(s) Malfunction(s) or Leak(s) in Irrigation System									
305	91	Emitters and/or Sprinklers leaks, clogged, or malfunctioning									
		OPERATION AND/OR MANAGEMENT									
50	154	Operating time too long									
51	10	Operating time too short									
52	57	Operating time too frequent									
53	623	No rain shut-off device									
54	698	No soil moisture measuring device or rain gage									
55	1191	No irrigation water management plan									
56	240	No tachometer									
57	3	Contamination of water with oil and fuel									
63	0	Uncatagorized									
	Gene	ric List -OPERATION AND/OR MANAGEMENT									
501	12	Irrigation System Running too Long									
502	0	Irrigation System not Running Long Enough									
503	9	Inappropriate Irrigation Frequency									
504	0	Inappropriate Irrigation System for type of crop									
505	0	Abandoned and/or Inoperable Irrigation System									

Table B- 9 MIL Problem Code Description and Count

Table B-10 Frequency of MIL Problem Codes for Frequently Audited Crops, Irrigation Systems, and ZIP Codes

						1			D .	C.	C	C	C		C	C
		Crop	2.0		Avo	ocado			Berries	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus
		I. C.	Micro-		т				Fixed	D.				MC C		
		Trigation System	Spray		1	fixed Sprinkle	er	22170	Sprinkler	Drip		20770	20704	Micro Spray	22077	22012
	Problem Code / Description		na	na	33030	33031	55054	33170	na	na	na 102	32778	32/84	32948	32966	33913
1		otal Number of Reports		24	26	34	25	24	29	5	183	23	22	66	46	<u>39</u>
1	emitters	•	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%
2		Size	0%	0%	0%	0%	0%	0%	0%	0%	9%	0%	0%	0%	0%	<u> </u>
3	Higher pressure than manufactu	irer's specifications	0%	0%	0%	0%	0%	0%	0%	0%	1%0	9%	0%	0%	9%	0%
4	Lower pressure than manufactu	rer's specifications	0%	8%	0%	0%	0%	8%	14%	40%	21%	4%	0%	12%	20%	3%0 200/
5	Low pressure due to wa	iter supply	0%	0%	0%	0%	0%	0%	0%0 20/	20%	2%0	0%	0%	0%	0%	38%
0	Different pressure betwee	en manifolds	0% 50/	0%	0%	0%	0%	0%	3 %0	20%	38%	48%	9%	20%	1/%	25%
/	Wetted area not adequate for o	crop requirement	5%	1/%	0%	3% 00/	0%	21%	0%	0%	4%	0%	0%	0%	0%	0%
8	Application rate > soil infiltrati	on rate (ponding)	0%	8%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%	<u> </u>
9	Air in pipeline	S 1: CC	0%	0%	0%	0%	12%	0%	0%	0%	0%	0%	0%	0%	0%	0%
11	Pressure variation due to eleva	ation differences	0%	0%	0%	0%	0%	0%	34%	0%	40%	/4%	45%	0%	0%	0%
12	Missing/malfunctioning pressure g	gauge/regulator/filter	41%	21%	42%	15%	0%	13%	3%	0%	18%	39%	9%	20%	11%	64%
13	the same zone		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
20	same zone		0%	0%	8%	52%	0%	25%	0%	40%	39%	39%	2/%	64%	39%	0%
21	21 Mixed sprinkler/emitter brands or types in the same zone			8%	2/%	56%	24%	4%	0%	40%	11%	0%	0%	52%	33%	5%
22	22 Poor emitter/sprinkler uniformity due to worn orifice		0%	0%	4%	3%	0%	0%	0%	0%	8%	4%	0%	5%	7%	0%
23	23 spacing		0%	8%	19%	6%	16%	0%	14%	0%	1%	0%	0%	5%	0%	0%
24	24 Various riser heights in same zone		0%	0%	0%	21%	0%	0%	14%	0%	0%	0%	0%	0%	0%	0%
25	Emitter/sprinkler spacing var	ies in same zone	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	5%	2%	0%
26	Missing/malfunctioning emitt	ters or sprinklers	0%	0%	4%	0%	0%	0%	0%	20%	23%	43%	32%	26%	3/%	0%
27	End Gun is out of adjustment	or not operating	0%	0%	0%	0%	0%	13%	3%	40%	1%	0%	0%	6%	0%	0%
30	emitters, sprinkl	ers	68%	25%	38%	18%	8%	21%	0%	20%	46%	65%	18%	33%	1/%	33%
31	Clogged filter or filte:	r screen	0%	0%	0%	0%	0%	0%	0%	0%	5%	4%	0%	24%	11%	0%
32	paved areas	<u></u>	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%
33	physical factors	s)	50%	13%	4%	4/%	0%	29%	1/%	60%	62%	5/%	45%	41%	41%	21%
34	Leaning sprinklers/emitters causing n	on-uniform distribution	91%	8%	12%	0%	0%	4%	/%	0%	1%	0%	0%	2%	0%	0%
36	Control box in need o	of repair	0%	0%	0%	0%	0%	13%	0%	0%	0%	0%	0%	0%	0%	0%
35	Malfunctioning va	alves	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	15%
3/	Boot Leak		9%	13%	2/%	<u>68%</u>	12%	0%	0%	0%	0%	0%	0%	0%	0%	0%
38	System has no booste	er pump	0%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%
40	Stream of water blocked b	by vegetation	0%	63%	62%	/9%	/6%	38%	0%	0%	5%	35%	0%	8%	0%	54%
41	Variable crop spacing and st	tage of growth	0%	0%	0%	0%	0%	0%	0%	40%	5%	0%	0%	5%	4%	<u> </u>
42	Poor drainage, requiring v	vater control	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
44	Uncatagorized	1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
50	Operating time too	long	23%	33%	23%	4/%	16%	21%	0%	0%	1%	0%	0%	<u>5%</u>	13%	0%
51	Operating time too	short	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%
52	Operating time too f	requent	5%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%
53	No rain shut-off device		50%	/5%	100%	85%	88%	/1%	20/	0%	8%	17%	0%	0%	0%	0%
54	No soil moisture measuring de	68%	92%	96%	88%	96%	96%	3%	40%	13%	0%	0%	2%	0%	0%	
55	No irrigation water manag	gement plan	11%	96%	96%	68%	100%	96%	/2%	20%	42%	30%	14%	0%	9%	0%

Table B-10 Frequency of MIL Problem Codes for Frequently Audited Crops, Irrigation Systems, and ZIP Codes

		Crop		1	Ave	ocado			Berries	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus
			Micro-						Fixed							
		Irrigation System	Spray		-	Fixed Sprinkl	er		Sprinkler	Drip		Micro Spray				
	Problem Code / Description	ZIP Code	na	na	33030	33031	33034	33170	na	na	na	32778	32784	32948	32966	33913
56	56 No tachometer		50%	88%	100%	53%	88%	63%	0%	0%	0%	0%	0%	0%	0%	21%
57	Contamination of water wit	h oil and fuel	0%	0%	0%	3%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%
101	Too High or Low Pressure at	Pump Station	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	2%	0%	0%
103	lateral(s)		0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	5%	17%	0%
104	Uneven irrigation distribution	across lateral(s)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	5%	15%	0%
201	Mixed sprinkler/emitt	er sizes	0%	83%	50%	24%	24%	63%	0%	0%	1%	0%	0%	2%	7%	0%
202	Mixed sprinkler/emitte	r brands	0%	92%	54%	29%	24%	63%	0%	0%	1%	0%	0%	0%	0%	0%
203	Missing and/or broken emitte	rs or sprinklers	55%	58%	15%	24%	48%	67%	0%	0%	0%	0%	0%	21%	11%	0%
204	layout of crop		0%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%
301	Pump Station Engine and/or Pump	leaks or malfunctions	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	14%	11%	0%
302	Filter leaks, clogged, or m	alfunctions	0%	0%	0%	0%	0%	0%	0%	40%	1%	0%	0%	3%	2%	0%
303	Pipe Leaks in Irrigation	n System	0%	13%	15%	6%	24%	25%	0%	0%	5%	4%	9%	12%	7%	0%
304	Valve(s) Malfunction(s) or Leak(s)	in Irrigation System	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	5%	7%	0%
305	Emitters and/or Sprinklers leaks, clog	ged, or malfunctioning	0%	0%	0%	0%	0%	0%	0%	20%	3%	39%	23%	36%	7%	0%
501	Irrigation System Running	g too Long	0%	8%	0%	0%	0%	8%	0%	0%	1%	0%	0%	0%	9%	0%
503	Inappropriate Irrigation	Frequency	0%	0%	0%	0%	0%	0%	0%	40%	0%	0%	0%	0%	0%	0%
	Average Distribution Unifo	rmity		54.9	57.8	54.6	63.8	53.3	81.7							
	Average Emitter Uniform	77.3							67.0	79.8	73.1	88.1	74.1	76.5	76.7	
	Uniformity Rating			poor	poor	poor	poor	poor	good	poor	fair	fair	good	fair	fair	fair
	O&M Class		Reactive	Deferred	Deferred	Deferred	Deferred	Deferred	Reactive	Reactive	Reactive	Reactive	Proactive	Reactive	Reactive	Reactive

																Nursery -
		Сгор	Citrus		Cut F	oliage		Enclosed								
		Irrigation System					Micro	Spray					Fixed S	prinkler		Fixed Sprinkler
	Problem Code / Description	ZIP Code	33930	33975	34142	34143	34711	34714	34945	34987	34994	na	32130	32180	32190	na
	Te	otal Number of Reports	119	49	243	40	29	20	100	26	20	61	33	82	55	44
1	emitters		0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
2	inadequate pipe s	size	8%	78%	52%	98%	0%	0%	1%	19%	0%	0%	0%	0%	0%	0%
3	B Higher pressure than manufacturer's specifications		0%	0%	1%	0%	0%	0%	1%	0%	0%	2%	15%	10%	15%	2%
4	Lower pressure than manufactur	rer's specifications	35%	57%	44%	60%	7%	5%	15%	23%	95%	15%	18%	13%	5%	5%
5	Low pressure due to wa	ter supply	8%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
6	Different pressure betwee	n manifolds	26%	45%	22%	5%	41%	20%	6%	27%	95%	0%	0%	0%	0%	0%
7	7 Wetted area not adequate for crop requirement			0%	0%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	2%
8	Application rate > soil infiltrati	on rate (ponding)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
9	Air in pipeline	S	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
11	Pressure variation due to eleva	ation differences	0%	0%	0%	0%	66%	70%	0%	0%	0%	25%	12%	5%	11%	0%
12	Missing/malfunctioning pressure g	auge/regulator/filter	98%	31%	35%	90%	45%	35%	24%	0%	0%	8%	3%	4%	4%	2%
13	the same zone	2	1%	0%	0%	0%	0%	0%	1%	0%	0%	2%	0%	0%	0%	0%
20	same zone		1%	53%	4%	10%	28%	20%	39%	19%	100%	48%	55%	57%	49%	9%
21	1 Mixed sprinkler/emitter brands or types in the same zone		61%	0%	22%	0%	0%	0%	46%	8%	95%	28%	33%	39%	35%	9%
22	22 Poor emitter/sprinkler uniformity due to worn orifice		0%	16%	2%	0%	0%	0%	20%	54%	85%	54%	58%	79%	62%	5%
23	23 spacing		0%	0%	0%	0%	0%	0%	3%	4%	0%	33%	24%	48%	36%	18%
24	Various riser heights in s	same zone	0%	0%	0%	0%	0%	0%	3%	0%	0%	13%	24%	27%	24%	0%
25	Emitter/sprinkler spacing var	ies in same zone	1%	0%	0%	0%	0%	0%	1%	0%	0%	25%	15%	13%	15%	7%
26	Missing/malfunctioning emitt	ers or sprinklers	3%	6%	4%	5%	31%	20%	34%	35%	5%	13%	15%	12%	5%	9%
27	End Gun is out of adjustment	or not operating	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	5%
30	emitters, sprinkle	ers	61%	84%	32%	58%	72%	95%	25%	50%	95%	15%	15%	4%	11%	16%
31	Clogged filter or filter	r screen	0%	0%	13%	0%	3%	35%	7%	0%	20%	0%	0%	0%	0%	0%
32	paved areas		0%	0%	0%	0%	0%	0%	1%	0%	0%	2%	3%	0%	11%	11%
33	physical factors	3)	11%	16%	23%	18%	76%	60%	43%	65%	95%	15%	3%	11%	11%	57%
34	Leaning sprinklers/emitters causing n	on-uniform distribution	0%	0%	0%	0%	0%	0%	0%	0%	0%	11%	12%	4%	2%	11%
36	Control box in need of	of repair	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%
35	Malfunctioning va	llves	15%	12%	7%	8%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
37	Boot Leak		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%
38	System has no booste	r pump	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
40	Stream of water blocked b	y vegetation	7%	24%	19%	10%	0%	0%	1%	8%	95%	34%	21%	22%	18%	2%
41	Variable crop spacing and st	age of growth	13%	33%	17%	10%	0%	0%	20%	0%	0%	2%	9%	6%	0%	0%
42	Poor drainage, requiring w	vater control	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
44	Uncatagorized		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
50	Operating time too	long	0%	8%	0%	0%	0%	0%	2%	0%	0%	7%	0%	0%	0%	0%
51	Operating time too short		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
52	2 Operating time too frequent		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
53	53 No rain shut-off device		0%	0%	0%	0%	0%	0%	0%	0%	0%	72%	61%	68%	65%	5%
54	No soil moisture measuring de	evice or rain gage	0%	0%	0%	0%	0%	0%	4%	46%	95%	70%	76%	83%	75%	2%
55	55 No irrigation water management plan		0%	0%	0%	0%	21%	35%	0%	19%	95%	80%	73%	93%	98%	80%

																Nursery -
		Сгор	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus	Citrus		Cut I	Foliage		Enclosed
		1												0		Fixed
		Irrigation System			Micro Spray								Fixed Sprinkler			
	Problem Code / Description	ZIP Code	33930	33975	34142	34143	34711	34714	34945	34987	34994	na	32130	32180	32190	na
56	No tachomete	r	32%	0%	4%	20%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
57	Contamination of water with	th oil and fuel	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
101	Too High or Low Pressure a	t Pump Station	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%
103	lateral(s)		0%	0%	0%	0%	0%	0%	4%	8%	0%	0%	0%	0%	0%	5%
104	Uneven irrigation distribution	across lateral(s)	0%	0%	0%	0%	0%	0%	1%	8%	0%	0%	0%	0%	0%	0%
201	Mixed sprinkler/emit	ter sizes	0%	0%	0%	0%	3%	0%	6%	4%	0%	0%	0%	0%	0%	0%
202	Mixed sprinkler/emitted	0%	0%	0%	0%	0%	0%	5%	15%	0%	0%	0%	0%	0%	0%	
203	03 Missing and/or broken emitters or sprinklers		0%	0%	0%	0%	0%	0%	8%	4%	0%	0%	0%	0%	0%	0%
204	layout of crop)	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
301	Pump Station Engine and/or Pump	leaks or malfunctions	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	1%	0%	0%
302	Filter leaks, clogged, or m	nalfunctions	0%	0%	0%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%
303	Pipe Leaks in Irrigation	n System	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
304	Valve(s) Malfunction(s) or Leak(s)	in Irrigation System	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
305	Emitters and/or Sprinklers leaks, clog	gged, or malfunctioning	0%	0%	0%	0%	0%	20%	12%	19%	5%	0%	0%	0%	0%	0%
501	Irrigation System Runnin	g too Long	0%	0%	0%	0%	0%	0%	1%	4%	0%	0%	0%	0%	0%	0%
503	Inappropriate Irrigation	Frequency	0%	0%	0%	0%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%
	Average Distribution Unife	ormity										67.0	70.1	64.7	66.7	70.0
Average Emitter Uniformity				76.7	83.7	83.6	84.8	78.9	81.1	78.8	71.2					
Uniformity Rating			good	fair	good	good	good	fair	good	fair	fair	poor	good	poor	poor	poor
	O&M Class			Reactive	Proactive	Proactive	Proactive	Reactive	Proactive	Reactive	Reactive	Deferred	Reactive	Deferred	Deferred	Reactive

										Trees -	Fruits -		
		Crop					Ornamental	Other					
											Micro	Micro	
		Irrigation System	Micro	o Spray			Fixed S	prinkler			Spray	Spray	All other
	Problem Code / Description	ZIP Code	na	33470	na	33170	33187	33332	33446	33470	na	na	MIL Data
	Тс	otal Number of Reports	139	46	159	29	38	67	24	59	25	22	1283
1	emitters	_	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	1%
2	inadequate pipe s	size	7%	4%	7%	0%	0%	12%	17%	20%	0%	0%	1%
3	Higher pressure than manufactu	rer's specifications	2%	0%	2%	0%	0%	0%	0%	0%	0%	5%	4%
4	Lower pressure than manufactur	rer's specifications	11%	13%	17%	0%	0%	9%	21%	5%	0%	0%	11%
5	Low pressure due to wa	ter supply	0%	0%	0%	0%	0%	3%	0%	5%	0%	0%	0%
6	Different pressure between manifolds		1%	0%	0%	3%	0%	0%	0%	0%	0%	0%	9%
7	Wetted area not adequate for c	2%	0%	11%	86%	66%	0%	0%	0%	0%	0%	3%	
8	Application rate > soil infiltration	0%	0%	0%	3%	5%	0%	0%	0%	0%	5%	2%	
9	Air in pipelines	S	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%
11	Pressure variation due to eleva	ation differences	14%	0%	3%	0%	0%	0%	0%	0%	16%	0%	8%
12	Missing/malfunctioning pressure g	auge/regulator/filter	8%	0%	6%	0%	3%	0%	0%	0%	20%	14%	20%
13	the same zone	2	5%	0%	8%	0%	16%	6%	25%	7%	4%	14%	1%
20	same zone		40%	28%	22%	14%	8%	40%	42%	41%	28%	14%	14%
21	Mixed sprinkler/emitter brands or t	ypes in the same zone	3%	0%	6%	28%	0%	0%	0%	0%	0%	14%	9%
22	Poor emitter/sprinkler uniformity	3%	0%	6%	0%	11%	4%	0%	0%	0%	9%	5%	
23	spacing		1%	4%	9%	3%	0%	9%	4%	2%	0%	5%	6%
24	Various riser heights in same zone		0%	0%	1%	21%	16%	0%	0%	2%	0%	0%	2%
25	Emitter/sprinkler spacing vari	ies in same zone	1%	0%	0%	7%	0%	0%	4%	0%	0%	9%	3%
26	Missing/malfunctioning emitt	ers or sprinklers	16%	4%	3%	10%	0%	3%	13%	2%	16%	23%	12%
27	End Gun is out of adjustment	or not operating	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	38%
30	emitters, sprinkle	ers	30%	2%	1%	7%	11%	0%	0%	0%	44%	36%	22%
31	Clogged filter or filter	r screen	4%	0%	0%	0%	0%	0%	0%	0%	0%	9%	1%
32	paved areas		1%	0%	9%	0%	0%	0%	0%	0%	0%	0%	1%
33	physical factors	3)	62%	28%	35%	93%	89%	12%	33%	12%	68%	32%	31%
34	Leaning sprinklers/emitters causing ne	on-uniform distribution	1%	0%	2%	48%	21%	0%	8%	7%	8%	50%	4%
36	Control box in need of	of repair	0%	0%	4%	34%	0%	0%	0%	0%	0%	0%	1%
35	Malfunctioning va	lves	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
37	Boot Leak		0%	0%	7%	38%	26%	0%	0%	0%	0%	0%	7%
38	System has no booste	r pump	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%
40	Stream of water blocked b	y vegetation	0%	0%	1%	0%	0%	0%	0%	3%	0%	9%	3%
41	Variable crop spacing and st	age of growth	4%	0%	0%	0%	0%	0%	0%	0%	0%	9%	1%
42	Poor drainage, requiring w	vater control	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
44	Uncatagorized		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
50	Operating time too	long	1%	0%	5%	3%	42%	0%	0%	0%	0%	5%	5%
51	Operating time too short		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%
52	Operating time too fr	requent	5%	0%	1%	3%	11%	0%	0%	0%	0%	0%	3%
53	No rain shut-off de	evice	22%	0%	14%	97%	84%	0%	0%	0%	12%	27%	16%
54	No soil moisture measuring device or rain gage		13%	0%	18%	100%	84%	0%	0%	0%	12%	32%	16%
55	No irrigation water manag	gement plan	26%	0%	42%	100%	100%	0%	0%	0%	44%	27%	37%

											Trees -	Fruits -	
		Crop				Nurse	ry - Open				Ornamental	Other	
											Micro	Micro	
		Irrigation System	Micr	o Spray			Fixed	Sprinkler			Spray	Spray	All other
	Problem Code / Description	ZIP Code	na	33470	na	33170	33187	33332	33446	33470	na	na	MIL Data
56	No tachometer	r	1%	0%	3%	0%	16%	0%	0%	0%	0%	5%	4%
57	Contamination of water wit	h oil and fuel	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%
101	Too High or Low Pressure at	t Pump Station	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
103	lateral(s)		0%	0%	0%	0%	0%	0%	0%	0%	0%	5%	1%
104	Uneven irrigation distribution	across lateral(s)	0%	0%	0%	0%	0%	1%	0%	0%	0%	14%	0%
201	Mixed sprinkler/emitt	ter sizes	1%	0%	1%	0%	5%	0%	0%	0%	20%	14%	1%
202	Mixed sprinkler/emitte	0%	0%	1%	0%	5%	0%	0%	0%	0%	0%	1%	
203	Missing and/or broken emitte	ers or sprinklers	2%	0%	1%	0%	18%	0%	0%	0%	4%	23%	1%
204	layout of crop		0%	0%	1%	0%	0%	0%	0%	2%	0%	0%	0%
301	Pump Station Engine and/or Pump	leaks or malfunctions	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
302	Filter leaks, clogged, or m	alfunctions	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
303	Pipe Leaks in Irrigation	n System	0%	0%	0%	0%	0%	0%	0%	2%	8%	0%	6%
304	Valve(s) Malfunction(s) or Leak(s)	in Irrigation System	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
305	Emitters and/or Sprinklers leaks, clog	gged, or malfunctioning	1%	0%	1%	0%	5%	0%	0%	0%	12%	18%	1%
501	Irrigation System Runnin	g too Long	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
503	Inappropriate Irrigation	Frequency	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Average Distribution Unife	ormity			70.2	70.1	64.1	68.3	65.8	68.8			
	Average Emitter Uniform	79.6	74.0							83.0	77.9		
	Uniformity Rating	fair	fair	good	good	poor	poor	poor	poor	good	fair		
	O&M Class	Reactive	Reactive	Proactive	Reactive	Defered	Reactuve	Reactuve	Reactuve	Proactive	Reactive	Reactive	
	2010 Irrigated Areas												
--------------	-----------------------	--------------	-----------------------	-------------									
	Wet Year ¹	Average Year	Dry Year ¹	USGS 2005									
County	(mgd)	(mgd)	(mgd)	(Source 86)									
Alachua	5.7	8.3	10.8	23.5									
Baker	0.2	0.3	0.3	2.5									
Bradford	0.7	1.0	1.3	1.0									
Brevard	36.4	44.3	53.1	48.5									
Citrus	2.4	3.2	3.8	1.5									
Clay	0.8	0.9	1.1	2.3									
Columbia	2.9	4.1	5.3	4.5									
Desoto	35.0	67.1	97.4	40.0									
Dixie	0.4	0.7	0.9	1.9									
Duval	2.3	2.9	3.6	2.1									
Flagler	7.9	10.5	12.9	9.3									
Gilchrist	3.9	5.7	7.7	12.9									
Hamilton	3.9	5.6	7.0	19.3									
Hardee	24.9	42.5	56.9	26.2									
Hernando	3.9	5.2	6.4	2.0									
Highlands	87.7	129.2	168.1	105.5									
Hillsborough	20.9	29.6	38.5	48.4									
Indian_River	38.9	59.5	81.1	157.6									
Lafayette	1.6	2.4	3.1	7.0									
Lake	16.7	24.9	31.5	19.9									
Levy	32.8	44.6	55.3	21.2									
Manatee	41.7	59.9	77.3	73.6									
Marion	16.3	22.0	26.5	6.4									
Martin	93.0	123.1	163.7	90.1									
Nassau	0.2	0.4	0.5	0.0									
Okeechobee	77.4	103.2	135.5	50.0									
Orange	6.5	10.2	12.8	29.8									
Osceola	22.3	30.7	38.0	100.3									
Pasco	8.4	12.6	16.5	9.5									
Pinellas	0.1	0.1	0.1	0.3									
Polk	88.7	143.6	188.8	67.9									
Putnam	10.4	13.8	17.5	8.9									
Sarasota	7.2	10.1	13.3	3.5									
Seminole	6.3	7.9	9.3	8.4									
St_Johns	16.7	23.2	29.0	15.0									
St_Lucie	56.1	87.7	123.1	147.2									
Sumter	3.7	5.0	6.2	6.3									
Suwannee	7.7	11.2	14.2	20.7									
Union	1.1	1.6	2.2	1.7									
Volusia	20.1	24.9	30.6	17.7									
Total	813.8	1183.3	1551.1	1214.5									

Table B-11 Comparison of 2010 Irrigated Water Usewith 2005 USGS Ag Water Use Estimates

		2010 Irrigated Areas			
Coupty	Wet Year ¹ (mgd)	Average Year	Dry Year ¹	USGS 2005 (Source 86)	
Flo	orida Counties not	Completely within the	MegaModel	(300100 00)	
11		completely within the	lingamouci	1	
Charlotte	16.1	28.6	40.3	26.2	
Madison	3.2	4.6	5.8	11.3	
Glades	41.5	53.8	70.4	93.3	
Palm_Beach	1.6	2.3	3.2	792.5	
	Georgia				
Berrien	0.2	0.3	0.4	na	
Clinch	2.5	3.4	4.2	na	
Echols	1.4	2.0	2.5	na	
Lanier	1.5	2.2	2.8	na	
Lowndes	3.9	5.7	7.3	na	

Table B-11 Comparison of 2010 Irrigated Water Usewith 2005 USGS Ag Water Use Estimates

¹Wct year calculated as the average of the 20th percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80th percentile irrigation requirement.

		1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹	
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)	
Alachua	10318.5	10.81	15.05	18.99	
Sod	4804.9	7.50	10.32	12.87	
Sorghum	2017.5	1.03	1.56	2.05	
Peanuts	567.5	0.19	0.30	0.44	
Pecans	542.4	0.19	0.36	0.52	
Potatoes	440.5	0.15	0.22	0.30	
Corn	336.1	0.17	0.23	0.30	
Rye	306.1	0.00	0.01	0.01	
Blueberries	254.8	0.38	0.52	0.64	
Pasture	217.3	0.28	0.38	0.49	
Container Nursery	144.2	0.56	0.65	0.73	
Millet	118.4	0.08	0.12	0.16	
Sweet Corn	110.8	0.08	0.10	0.12	
Watermelons	82.5	0.03	0.04	0.05	
Cantaloupe	82.1	0.05	0.06	0.08	
Soybeans	81.3	0.03	0.04	0.06	
Unspecified Row Crop	48.4	0.02	0.03	0.04	
Citrus	38.1	0.02	0.03	0.04	
Misc. Vegetables	31.6	0.01	0.01	0.02	
Oats	25.5	0.00	0.00	0.00	
Peas	17.8	0.01	0.01	0.02	
Strawberries	15.3	0.02	0.03	0.03	
Winter Wheat	14.2	0.00	0.00	0.00	
Cabbage	7.1	0.00	0.01	0.01	
Chestnuts	5.6	0.00	0.00	0.01	
Field Nursery	5.0	0.01	0.01	0.01	
Grapes	1.8	0.00	0.00	0.00	
Persimmons	1.7	0.00	0.00	0.00	
Baker	501.6	1.53	1.73	1.92	
Container Nursery	303.4	1.23	1.37	1.50	
Field Nursery	74.6	0.15	0.17	0.20	
Field Corn	65.7	0.05	0.07	0.08	
Cut Foliage	42.6	0.09	0.11	0.13	
Peanuts	10.1	0.01	0.01	0.01	
Peaches	2.1	0.00	0.00	0.00	
Sunflowers	2.0	0.00	0.00	0.00	
Tomato	1.1	0.00	0.00	0.00	
Unspecified Field C*	0.0	0.00	0.00	0.00	
Berrien	548.0	0.28	0.40	0.51	
Pecans	357.3	0.17	0.27	0.36	
produce	190.7	0.10	0.13	0.15	

Table B-12 Breakdowr	of 1995 Irrigated Water	Use by County and Crop
----------------------	-------------------------	------------------------

		1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹	
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)	
Bradford	1007.5	0.90	1.21	1.53	
Sod	345.7	0.57	0.76	0.95	
Sorghum	243.9	0.14	0.21	0.28	
Corn	177.0	0.10	0.12	0.15	
Rye	88.1	0.00	0.01	0.01	
Peanuts	47.1	0.02	0.03	0.04	
Unspecified Row Crop	27.9	0.01	0.02	0.02	
Unspecified Field C*	20.6	0.01	0.01	0.02	
Pecans	20.1	0.01	0.01	0.02	
Millet	15.4	0.01	0.02	0.02	
Pasture	8.2	0.02	0.02	0.02	
Soybeans	8.0	0.00	0.00	0.01	
Oats	4.6	0.00	0.00	0.00	
Winter Wheat	0.8	0.00	0.00	0.00	
Brevard	55472.6	85.99	107.45	131.06	
Pasture	30164.6	60.06	72.04	86.33	
Citrus	9722.5	9.17	12.21	15.20	
Sod	7745.0	11.20	14.67	18.03	
Sorghum	3839.4	4.51	5.59	7.06	
Field Corn	3561.9	0.00	1.73	3.04	
Field Nursery	292.0	0.51	0.61	0.72	
Container Nursery	136.1	0.52	0.59	0.66	
Cantaloupe	6.1	0.00	0.00	0.00	
Leatherleaf	5.0	0.01	0.01	0.01	
Charlotte	34497.8	16.33	31.49	47.38	
Citrus	29895.0	10.90	24.14	38.00	
Unspecified Row Cro*	2055.5	1.34	1.75	2.13	
Sod	783.1	1.39	1.94	2.57	
Pasture	671.9	1.16	1.61	2.10	
Sugar Cane	590.9	0.97	1.33	1.72	
Unspecified Row Crop	300.1	0.21	0.26	0.32	
Unspecified Tree Cr*	87.6	0.02	0.05	0.07	
Ornamentals	82.1	0.33	0.38	0.43	
Watermelons	31.6	0.02	0.03	0.03	

		1995 Irrigated	ated Areas			
		Wet Year ¹	Average Year	Dry Year ¹		
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)		
Citrus	1605.2	2.20	2.89	3.45		
Sod	922.1	1.76	2.28	2.70		
Unspecified Row Cro*	165.5	0.12	0.15	0.18		
Unspecified Tree Cr*	153.0	0.06	0.10	0.12		
Strawberries	147.0	0.06	0.09	0.11		
Blueberries	135.4	0.18	0.24	0.29		
Rye	45.4	0.00	0.01	0.01		
Peanuts	23.4	0.01	0.02	0.02		
Unspecified Row Crop	9.0	0.01	0.01	0.01		
Citrus	4.5	0.00	0.00	0.00		
Clay	460.2	0.85	1.09	1.28		
Pasture	348.2	0.63	0.82	0.98		
Field Nursery	94.9	0.16	0.19	0.22		
Container Nursery	17.0	0.07	0.08	0.08		
Clinch	2445.8	2.89	3.95	4.83		
Blueberries	2387.0	2.86	3.89	4.76		
rotation	58.9	0.03	0.05	0.07		
Columbia	4686.2	5.59	7.71	9.89		
Sod	3159.8	4.99	6.82	8.67		
Sorghum	779.6	0.31	0.49	0.70		
Rye	218.3	0.00	0.01	0.02		
Corn	202.2	0.11	0.14	0.17		
Peanuts	176.6	0.08	0.11	0.15		
Millet	44.6	0.03	0.05	0.06		
Pecans	42.4	0.01	0.02	0.03		
Soybeans	34.8	0.01	0.02	0.02		
Pasture	20.9	0.04	0.05	0.06		
Oats	5.4	0.00	0.00	0.00		
Winter Wheat	1.5	0.00	0.00	0.00		
Desoto	64329.5	27.87	56.16	82.51		
Citrus	54816.0	18.53	43.13	66.26		
Unspecified Row Cro*	5701.6	3.72	4.94	5.98		
Sod	3062.7	4.90	7.12	9.06		
Unspecified Row Crop	253.9	0.16	0.21	0.27		
Watermelons	215.5	0.09	0.14	0.18		
Sugar Cane	198.3	0.37	0.48	0.59		
Unspecified Tree Cr*	60.0	0.01	0.04	0.05		
Nurseries and Viney*	21.3	0.08	0.10	0.11		
Pasture	0.2	0.00	0.00	0.00		

		1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹	
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)	
Dixie	885.3	0.83	1.20	1.60	
Sod	427.2	0.67	0.92	1.21	
Sorghum	333.6	0.11	0.20	0.28	
Peanuts	53.0	0.02	0.04	0.05	
Corn	28.5	0.01	0.02	0.02	
Soybeans	15.1	0.00	0.01	0.01	
Rye	12.7	0.00	0.00	0.00	
Millet	9.7	0.01	0.01	0.01	
Oats	1.8	0.00	0.00	0.00	
Dry Beans	1.5	0.00	0.00	0.00	
Pasture	1.5	0.00	0.00	0.00	
Winter Wheat	0.8	0.00	0.00	0.00	
Duval	1230.9	2.18	2.83	3.47	
Sod	981.8	1.81	2.36	2.90	
Field Nursery	229.2	0.32	0.41	0.49	
Container Nursery	12.2	0.05	0.06	0.06	
Grapes	5.6	0.00	0.00	0.00	
Pecans	2.1	0.00	0.00	0.00	
Echols	2943.6	1.86	2.59	3.22	
rotation	1760.3	1.13	1.67	2.15	
produce	1119.0	0.71	0.89	1.03	
Pasture	64.3	0.02	0.04	0.04	
Flagler	8663.8	5.02	7.00	8.76	
Potatoes	5522.7	1.60	2.57	3.31	
Cabbage	1234.3	0.84	1.09	1.33	
Sod	771.0	1.38	1.80	2.24	
Misc. Vegetables	384.7	0.28	0.35	0.43	
Pasture	172.7	0.35	0.47	0.58	
Citrus	165.1	0.05	0.10	0.14	
Broccoli	87.7	0.05	0.06	0.08	
Container Nursery	82.9	0.32	0.37	0.42	
Watermelons	80.1	0.06	0.07	0.09	
Small Grains	62.7	0.00	0.00	0.00	
Beets	62.6	0.02	0.03	0.04	
Field Nursery	17.6	0.02	0.03	0.04	
Blueberries	12.5	0.03	0.04	0.04	
Pecans	7.2	0.00	0.00	0.01	

		1995 Irrigated	Areas	
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Gilchrist	5450.1	6.81	9.41	12.32
Sod	4173.4	6.44	8.81	11.49
Sorghum	486.6	0.17	0.29	0.40
Rye	334.1	0.00	0.01	0.03
Peanuts	194.6	0.07	0.12	0.16
Corn	133.7	0.06	0.09	0.11
Millet	57.5	0.04	0.06	0.08
Soybeans	41.9	0.01	0.02	0.03
Oats	12.9	0.00	0.00	0.00
Dry Beans	6.8	0.01	0.01	0.01
Winter Wheat	2.8	0.00	0.00	0.00
Cotton	2.3	0.00	0.00	0.00
Pasture	1.9	0.00	0.00	0.01
Unspecified Row Crop	0.7	0.00	0.00	0.00
Peas	0.5	0.00	0.00	0.00
Pecans	0.3	0.00	0.00	0.00
Glades	14690.3	16.47	22.79	29.47
Citrus	8492.3	3.57	7.03	10.20
Pasture	4906.7	10.38	12.67	15.49
Sugar Cane	1040.3	2.21	2.70	3.29
Unspecified Row Crop	132.2	0.10	0.12	0.15
Sod	105.8	0.20	0.25	0.33
Unspecified Field C*	13.0	0.01	0.01	0.02
Hamilton	6067.6	4.08	5.66	7.08
Peas	2343.8	1.89	2.50	3.17
Sorghum	996.5	0.42	0.67	0.92
Rye	834.0	0.01	0.04	0.06
Sod	653.2	1.12	1.49	1.75
Soybeans	503.3	0.22	0.36	0.44
Peanuts	266.7	0.14	0.21	0.27
Corn	226.8	0.12	0.16	0.18
Pecans	113.6	0.03	0.06	0.09
Millet	47.6	0.04	0.05	0.07
Pasture	46.0	0.09	0.11	0.13
Oats	23.7	0.00	0.00	0.00
Unspecified Row Crop	6.0	0.00	0.00	0.00
Winter Wheat	3.3	0.00	0.00	0.00
Dry Beans	2.1	0.00	0.00	0.00
Cotton	1.0	0.00	0.00	0.00

Table B-12 Breakdown of 199	5 Irrigated Water	Use by County	and Crop
-----------------------------	-------------------	---------------	----------

	1995 Irrigated Areas				
County / Crop	Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)	
Hardee	43720.5	22.49	37.24	49.77	
Citrus	33540.9	14.07	25.90	36.09	
Watermelons	2412.6	0.96	1.48	1.89	
Pasture	1768.9	1.80	2.52	3.10	
Tomatoes	1311.9	0.90	1.18	1.38	
Unspecified Row Cro*	1278.4	0.84	1.10	1.32	
Sod	948.1	1.73	2.23	2.63	
Unspecified Row Crop	759.9	0.19	0.33	0.43	
Cucurbits	570.0	0.28	0.39	0.46	
Container Nursery	449.4	0.98	1.16	1.33	
Strawberries	160.1	0.07	0.10	0.14	
Blueberries	140.5	0.24	0.31	0.36	
Peppers	108.3	0.09	0.11	0.13	
Field Nursery	84.4	0.21	0.25	0.28	
Squash	64.0	0.02	0.03	0.04	
Unspecified Tree Cr*	55.8	0.02	0.03	0.04	
Hay	40.9	0.01	0.02	0.03	
Nurseries and Viney*	21.8	0.09	0.10	0.11	
Peas	4.6	0.00	0.00	0.00	
Hernando	8293.3	8.98	12.11	15.15	
Sod	3171.1	5.91	7.78	9.48	
Strawberries	2606.6	1.21	1.69	2.32	
Unspecified Row Cro*	743.7	0.46	0.60	0.76	
Blueberries	724.5	0.90	1.20	1.52	
Citrus	572.7	0.25	0.46	0.62	
Unspecified Tree Cr*	299.7	0.11	0.19	0.24	
Peanuts	132.2	0.04	0.07	0.09	
Nurseries and Viney*	19.2	0.08	0.09	0.10	
Unspecified Row Crop	11.3	0.01	0.01	0.01	
Millet	9.2	0.01	0.01	0.02	
Specialty Farms	3.2	0.00	0.01	0.01	

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Highlands	128750.2	85.56	131.51	173.24
Citrus	79598.9	36.46	64.67	89.79
Watermelons	15056.5	7.71	10.96	14.04
Sod	11794.7	18.40	25.46	32.20
Unspecified Row Crop	7823.8	4.84	6.74	7.99
Pasture	6254.3	11.49	14.48	17.64
Unspecified Tree Cr*	5246.4	1.53	2.82	3.98
Sugar Cane	1808.0	3.76	4.55	5.36
Unspecified Field C*	426.3	0.16	0.30	0.43
Container Nursery	281.9	0.51	0.62	0.74
Blueberries	205.6	0.23	0.32	0.40
Field Nursery	177.2	0.31	0.41	0.47
Nurseries and Viney*	36.3	0.14	0.16	0.19
Squash	35.5	0.01	0.01	0.01
Peanuts	4.6	0.00	0.00	0.00
Hillsborough	43406.8	25.99	39.64	51.39
Citrus	34660.1	13.75	24.65	33.51
Unspecified Row Crop	1685.2	1.22	1.50	1.85
Sod	1616.7	2.89	3.68	4.54
Unspecified Row Cro*	1370.8	1.04	1.26	1.54
Nurseries and Viney*	1100.2	4.43	5.04	5.62
Unspecified Tree Cr*	1047.4	0.34	0.57	0.78
Sugar Cane	751.9	1.46	1.82	2.16
Strawberries	479.0	0.20	0.28	0.40
Squash	209.0	0.04	0.07	0.10
Millet	206.1	0.16	0.23	0.30
Container Nursery	112.0	0.29	0.33	0.36
Field Nursery	58.1	0.10	0.11	0.14
Herbs	39.6	0.03	0.03	0.04
Peanuts	25.0	0.01	0.01	0.02
Cantaloupe	18.8	0.00	0.01	0.01
Potatoes	12.4	0.01	0.01	0.01
Specialty Farms	8.1	0.01	0.01	0.02
Blueberries	6.5	0.01	0.01	0.01

Table B-12 Breakdown of 1995 Irrigated Wa	ater Use by County and Crop
---	-----------------------------

	1995 Irrigated Areas			
County / Crop	Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Indian_River	85836.5	73.80	101.13	133.39
Citrus	74579.5	53.11	74.89	101.72
Pasture	8305.3	18.16	21.78	25.77
Sod	2658.6	2.07	3.89	5.18
Field Nursery	146.2	0.21	0.26	0.33
Нау	55.1	0.09	0.12	0.15
Container Nursery	34.6	0.13	0.15	0.18
Sweet Corn	32.6	0.01	0.01	0.02
Asparagus Fern	16.1	0.02	0.02	0.03
Peppers	8.3	0.01	0.01	0.01
Unspecified Row Crop	0.3	0.00	0.00	0.00
Lafayette	3586.0	2.41	3.36	4.27
Peas	949.9	0.74	0.99	1.24
Sorghum	821.6	0.33	0.51	0.66
Sod	594.6	0.94	1.27	1.59
Rye	361.3	0.00	0.01	0.01
Peanuts	242.1	0.11	0.16	0.21
Soybeans	211.0	0.08	0.12	0.17
Corn	156.4	0.08	0.11	0.13
Pecans	132.2	0.04	0.07	0.11
Millet	49.3	0.03	0.05	0.07
Oats	27.9	0.00	0.00	0.00
Pasture	25.4	0.05	0.06	0.07
Dry Beans	5.4	0.01	0.01	0.01
Unspecified Row Crop	3.8	0.00	0.00	0.00
Container Nursery	2.3	0.00	0.00	0.01
Winter Wheat	2.3	0.00	0.00	0.00
Cotton	0.5	0.00	0.00	0.00

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Lake	31988.7	28.67	43.89	56.15
Citrus	22938.9	15.18	25.81	34.00
Sod	2047.0	3.03	4.49	5.70
Container Nursery	1472.9	5.96	6.99	7.97
Pasture	1471.7	1.88	2.62	3.38
Misc. Vegetables	1163.6	0.00	0.28	0.47
Field Nursery	791.9	1.24	1.56	1.84
Peaches	576.3	0.16	0.37	0.54
Squash	538.9	0.12	0.18	0.22
Leatherleaf	352.4	0.52	0.75	0.96
Unspecified Tree Cr*	87.8	0.05	0.09	0.11
Asparagus Fern	86.9	0.17	0.21	0.27
Нау	85.3	0.11	0.14	0.17
Watermelons	85.3	0.03	0.05	0.07
Grapes	79.9	0.03	0.06	0.08
Blueberries	59.8	0.06	0.09	0.12
Unspecified Row Cro*	58.7	0.03	0.05	0.05
Sweet Corn	24.1	0.01	0.02	0.03
Turf grass	19.2	0.03	0.04	0.06
Beans	17.3	0.01	0.02	0.02
Hammock Ferns	10.1	0.01	0.01	0.02
Cut Foliage	9.9	0.02	0.02	0.03
Pecans	5.3	0.00	0.01	0.01
Aspidistra	3.7	0.02	0.02	0.02
Field Corn	2.1	0.00	0.00	0.00
Unspecified Field C*	0.0	0.00	0.00	0.00
Lanier	2274.8	2.07	2.90	3.68
rotation	910.3	0.61	0.88	1.21
Sod	662.0	1.17	1.52	1.83
Pecans	594.1	0.26	0.43	0.56
Peaches	86.5	0.02	0.05	0.07
produce	16.5	0.01	0.01	0.01
Pasture	5.4	0.00	0.00	0.00

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Levy	25120.4	40.48	54.84	67.52
Sod	23947.9	39.97	54.12	66.57
Unspecified Row Cro*	488.0	0.21	0.29	0.38
Peanuts	277.8	0.12	0.19	0.25
Rye	94.0	0.00	0.01	0.01
Millet	85.4	0.06	0.09	0.12
Sorghum	62.5	0.03	0.04	0.06
Corn	52.7	0.03	0.04	0.05
Oats	37.8	0.00	0.00	0.00
Peas	33.1	0.03	0.04	0.04
Unspecified Row Crop	15.7	0.00	0.01	0.01
Dry Beans	12.4	0.01	0.02	0.02
Container Nursery	5.4	0.01	0.01	0.01
Soybeans	2.5	0.00	0.00	0.00
Cotton	1.5	0.00	0.00	0.00
Citrus	1.3	0.00	0.00	0.00
Pasture	0.8	0.00	0.00	0.00
Winter Wheat	0.8	0.00	0.00	0.00
Pecans	0.8	0.00	0.00	0.00
Lowndes	6093.6	4.76	6.84	8.84
rotation	3419.6	1.92	3.03	4.26
Pecans	1625.9	1.87	2.61	3.19
produce	811.0	0.49	0.63	0.73
Field Nursery	95.3	0.23	0.28	0.31
Sod	67.3	0.12	0.15	0.18
Container Nursery	40.8	0.11	0.12	0.14
Pasture	33.8	0.01	0.03	0.04
Madison	4159.5	3.14	4.33	5.46
Peas	1464.7	1.27	1.63	2.07
Soybeans	984.2	0.49	0.82	1.06
Sod	460.0	0.86	1.13	1.33
Rye	446.9	0.01	0.02	0.03
Sorghum	377.7	0.24	0.36	0.47
Peanuts	160.3	0.09	0.14	0.19
Corn	113.3	0.06	0.08	0.09
Pecans	81.6	0.03	0.05	0.07
Pasture	35.6	0.07	0.09	0.11
Unspecified Row Crop	13.0	0.01	0.01	0.01
Oats	11.2	0.00	0.00	0.00
Millet	8.9	0.01	0.01	0.01
Cotton	1.9	0.00	0.00	0.00

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Manatee	77955.8	41.43	63.40	82.46
Citrus	59982.7	26.63	44.79	59.73
Unspecified Row Crop	8172.8	6.41	7.85	9.51
Unspecified Row Cro*	5875.7	4.50	5.61	6.82
Unspecified Tree Cr*	1408.3	0.37	0.70	1.02
Sod	741.7	1.37	1.80	2.18
Herbs	374.6	0.31	0.35	0.42
Sugar Cane	349.8	0.67	0.84	0.99
Millet	288.0	0.28	0.35	0.46
Strawberries	284.3	0.14	0.19	0.26
Watermelons	211.0	0.12	0.19	0.24
Nurseries and Viney*	134.0	0.53	0.61	0.68
Peanuts	110.6	0.06	0.08	0.10
Specialty Farms	22.4	0.03	0.04	0.04
Marion	17333.7	20.20	27.25	32.95
Sod	8702.7	14.65	19.69	23.68
Small Grains	2194.4	0.07	0.18	0.25
Citrus	1621.4	1.37	2.05	2.65
Peanuts	1220.5	0.60	0.90	1.14
Strawberries	785.6	0.37	0.45	0.56
Specialty Farms	735.7	1.00	1.12	1.25
Pasture	478.5	0.80	1.07	1.27
Нау	377.0	0.32	0.49	0.61
Unspecified Row Cro*	279.9	0.17	0.22	0.25
Watermelons	276.4	0.22	0.27	0.31
Potatoes	204.7	0.03	0.06	0.09
Greens	67.7	0.03	0.04	0.06
Misc. Vegetables	62.4	0.03	0.05	0.06
Field Nursery	57.6	0.08	0.10	0.12
Blueberries	57.0	0.07	0.10	0.12
Container Nursery	36.8	0.15	0.17	0.19
Melons	30.5	0.02	0.03	0.03
Nurseries and Viney*	30.2	0.13	0.14	0.16
Leatherleaf	28.3	0.05	0.07	0.08
Parsley	25.3	0.01	0.01	0.02
Rye	20.9	0.00	0.00	0.01
Lettuce	19.1	0.01	0.01	0.01
Peaches	8.9	0.01	0.01	0.01
Pecans	6.3	0.00	0.00	0.01
Grapes	3.7	0.00	0.00	0.00
Unspecified Tree Cr*	2.3	0.00	0.00	0.00
Unspecified Field C*	0.0	0.00	0.00	0.00

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Martin	62880.9	42.29	59.38	83.88
Citrus	41057.1	16.11	26.66	41.92
Sugar Cane	8192.8	15.76	19.28	24.95
Sweet Corn	6579.3	3.24	4.52	6.07
Unspecified Row Crop	4627.3	2.45	3.39	4.13
Pasture	1614.6	3.30	3.82	4.68
Container Nursery	732.1	1.18	1.42	1.79
Ornamentals	48.6	0.19	0.21	0.25
Floriculture	17.9	0.04	0.05	0.06
Sod	10.5	0.02	0.02	0.03
Dry Beans	0.5	0.00	0.00	0.00
Nassau	1959.7	1.63	2.11	2.63
Field Corn	1679.9	1.24	1.62	2.05
Field Nursery	258.9	0.35	0.44	0.52
Container Nursery	8.7	0.04	0.04	0.05
Grapes	4.7	0.00	0.00	0.00
Peas	4.1	0.00	0.00	0.00
Sweet Corn	3.4	0.00	0.00	0.00
Unspecified Field C*	0.0	0.00	0.00	0.00
Okeechobee	23830.2	18.21	26.61	36.19
Citrus	18111.4	7.31	13.34	20.20
Pasture	3997.7	8.68	10.54	12.62
Sod	778.0	1.36	1.64	2.04
Unspecified Field C*	725.2	0.51	0.67	0.83
Sugar Cane	102.2	0.24	0.29	0.33
Unspecified Row Crop	82.0	0.06	0.07	0.09
Container Nursery	31.3	0.05	0.06	0.08
Sweet Corn	2.3	0.00	0.00	0.00
Orange	20328.1	8.40	15.24	20.60
Misc. Vegetables	10541.2	0.08	2.27	4.31
Citrus	8318.0	4.89	8.72	11.28
Container Nursery	531.2	2.11	2.49	2.86
Sod	231.3	0.30	0.46	0.58
Field Corn	181.1	0.20	0.24	0.30
Watermelons	155.7	0.09	0.13	0.17
Нау	110.2	0.02	0.07	0.11
Ornamentals	103.8	0.41	0.48	0.54
Field Nursery	68.9	0.13	0.16	0.20
Pasture	61.3	0.11	0.15	0.18
Leatherleaf	20.5	0.04	0.05	0.07
Aspidistra	4.9	0.02	0.02	0.02
Unspecified Field C*	0.0	0.00	0.00	0.00

	1995 Irrigated Areas			
County / Crop	Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Osceola	41327.6	29.46	40.93	50.87
Unspecified Row Crop	20990.0	13.16	17.80	22.21
Citrus	15267.7	6.98	11.46	14.64
Pasture	4450.5	8.77	10.90	13.09
Unspecified Tree Cr*	326.0	0.11	0.18	0.21
Sod	280.3	0.41	0.56	0.71
Unspecified Field C*	8.4	0.00	0.01	0.01
Ornamentals	4.7	0.02	0.02	0.02
Palm_Beach	1660.9	0.54	0.98	1.41
Sweet Corn	1253.6	0.24	0.59	0.93
Unspecified Row Crop	305.4	0.20	0.25	0.28
Sugar Cane	67.4	0.10	0.13	0.17
Citrus	34.4	0.01	0.02	0.03
Pasco	27721.4	27.12	38.11	46.84
Sod	11972.1	19.16	25.83	31.18
Citrus	8222.2	3.79	6.37	8.17
Unspecified Tree Cr*	3046.8	1.08	1.84	2.29
Strawberries	2116.9	1.07	1.41	1.90
Unspecified Row Cro*	978.2	0.67	0.86	1.05
Blueberries	891.9	1.07	1.40	1.75
Peanuts	191.0	0.07	0.09	0.11
Millet	116.2	0.09	0.13	0.17
Unspecified Row Crop	74.4	0.05	0.07	0.08
Squash	66.4	0.02	0.03	0.03
Sorghum	32.1	0.01	0.02	0.03
Nurseries and Viney*	13.2	0.06	0.06	0.07
Pinellas	71.8	0.18	0.20	0.22
Nurseries and Viney*	37.8	0.16	0.18	0.19
Strawberries	30.6	0.01	0.02	0.03
Unspecified Tree Cr*	3.3	0.00	0.00	0.00

		1995 Irrigate	d Areas	
County / Crop	Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Polk	122949.2	75.92	120.00	153.28
Citrus	99619.7	49.31	83.40	106.80
Pasture	9726.7	7.35	11.00	14.28
Sod	7416.4	12.67	16.99	21.69
Unspecified Row Crop	1393.5	0.64	0.91	1.11
Blueberries	1378.0	2.45	3.15	3.87
Watermelons	879.0	0.47	0.67	0.88
Field Nursery	818.6	1.20	1.57	1.88
Container Nursery	560.9	1.07	1.30	1.52
Unspecified Row Cro*	213.6	0.15	0.19	0.22
Specialty Farms	204.4	0.16	0.20	0.25
Unspecified Tree Cr*	199.6	0.07	0.12	0.16
Strawberries	183.1	0.16	0.19	0.25
Tomatoes	114.4	0.08	0.10	0.12
Нау	78.1	0.01	0.03	0.04
Alfalfa	62.1	0.02	0.04	0.05
Field Corn	55.8	0.05	0.06	0.08
Potatoes	18.2	0.01	0.01	0.02
Nurseries and Viney*	10.5	0.04	0.05	0.06
Dry Beans	8.3	0.00	0.01	0.01

8.3

0.00

Table B-12 Breakdown of 1995 Irrigated Water Use by County and Crop

Grapes

0.00

0.00

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Putnam	10113.3	8.01	10.88	14.01
Potatoes	5934.6	1.34	2.36	3.28
Asparagus Fern	1123.1	2.29	2.98	3.78
Leatherleaf	754.0	1.52	2.01	2.55
Hay	500.1	0.32	0.41	0.65
Container Nursery	313.7	1.22	1.38	1.54
Cabbage	270.9	0.18	0.22	0.27
Squash	232.3	0.07	0.09	0.13
Field Nursery	160.9	0.28	0.34	0.42
Citrus	160.8	0.12	0.19	0.27
Peanuts	137.8	0.07	0.13	0.17
Pecans	134.9	0.11	0.17	0.21
Misc. Vegetables	70.6	0.05	0.06	0.07
Kale	69.4	0.05	0.06	0.07
Blueberries	59.2	0.06	0.09	0.11
Aspidistra	57.2	0.23	0.25	0.30
Collard Greens	55.8	0.03	0.03	0.05
Sod	36.3	0.06	0.08	0.10
Mustard Greens	15.1	0.01	0.01	0.01
Beets	10.8	0.00	0.00	0.01
Grapes	7.7	0.00	0.00	0.00
Chinese Cabbage	5.3	0.00	0.00	0.01
Cut Foliage	2.8	0.01	0.01	0.01
Sarasota	13435.9	6.20	10.39	14.35
Citrus	9424.8	3.37	6.64	9.73
Unspecified Row Cro*	2423.8	1.79	2.32	2.81
Unspecified Tree Cr*	923.7	0.24	0.45	0.65
Unspecified Row Crop	333.3	0.25	0.32	0.39
Sugar Cane	135.5	0.28	0.34	0.39
Specialty Farms	105.9	0.16	0.18	0.20
Millet	72.9	0.05	0.08	0.10
Nurseries and Viney*	16.1	0.07	0.07	0.08

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Seminole	4448.8	5.15	7.05	8.97
Citrus	2643.5	1.34	2.34	3.29
Field Nursery	899.0	1.81	2.26	2.79
Sod	370.7	0.62	0.84	1.03
Container Nursery	290.0	1.17	1.34	1.52
Watermelons	80.0	0.07	0.08	0.09
Pasture	62.3	0.10	0.13	0.15
Sweet Corn	51.4	0.03	0.03	0.04
Unspecified Field C*	19.9	0.01	0.01	0.01
Unspecified Row Crop	19.7	0.00	0.01	0.01
Grapes	9.9	0.00	0.01	0.01
Okra	2.5	0.00	0.00	0.00
Unspecified Tree Cr*	0.0	0.00	0.00	0.00
St_Johns	25490.7	9.43	14.44	18.77
Potatoes	21823.7	6.06	9.94	13.09
Cabbage	1257.3	0.83	1.05	1.29
Pasture	642.4	0.70	1.10	1.50
Collard Greens	498.1	0.27	0.36	0.44
Sod	381.1	0.79	0.98	1.19
Misc. Vegetables	349.8	0.26	0.33	0.39
Field Corn	325.4	0.24	0.35	0.45
Turnips	81.7	0.03	0.04	0.05
Field Nursery	62.3	0.09	0.11	0.14
Container Nursery	37.7	0.14	0.17	0.19
Broccoli	20.8	0.01	0.01	0.02
Beets	6.6	0.00	0.00	0.00
Blueberries	3.8	0.01	0.01	0.01
St_Lucie	90902.6	44.58	72.36	106.95
Citrus	86329.4	37.61	63.73	96.28
Pasture	2243.1	4.89	5.90	7.31
Unspecified Row Crop	1418.9	0.84	1.17	1.39
Sugar Cane	435.0	0.85	1.06	1.35
Sweet Corn	317.1	0.14	0.20	0.25
Container Nursery	64.9	0.10	0.13	0.16
Unspecified Tree Cr*	64.4	0.02	0.04	0.06
Ornamentals	29.8	0.12	0.14	0.16

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Sumter	8716.9	8.57	11.44	13.79
Unspecified Row Cro*	2528.6	1.63	2.10	2.47
Sod	1960.6	3.59	4.77	5.60
Strawberries	1292.3	0.62	0.83	1.13
Millet	1143.4	0.97	1.45	1.83
Unspecified Row Crop	417.4	0.23	0.30	0.38
Watermelons	295.0	0.14	0.22	0.28
Peanuts	279.8	0.12	0.17	0.23
Sorghum	267.1	0.18	0.25	0.33
Nurseries and Viney*	161.6	0.68	0.78	0.86
Specialty Farms	152.1	0.22	0.25	0.28
Citrus	144.9	0.08	0.15	0.21
Blueberries	53.9	0.11	0.14	0.17
Unspecified Tree Cr*	14.5	0.00	0.01	0.01
Нау	5.2	0.00	0.01	0.01
Rye	0.4	0.00	0.00	0.00
Pasture	0.3	0.00	0.00	0.00
Suwannee	11769.0	10.03	13.67	16.90
Sod	3105.3	5.34	7.13	8.69
Peas	2493.1	2.00	2.68	3.34
Sorghum	1783.5	0.97	1.42	1.82
Soybeans	1209.5	0.45	0.69	0.87
Rye	1124.7	0.02	0.05	0.08
Peanuts	876.1	0.50	0.69	0.85
Corn	528.5	0.30	0.38	0.46
Pecans	255.9	0.09	0.15	0.21
Millet	165.4	0.12	0.18	0.24
Pasture	102.9	0.20	0.26	0.30
Oats	58.0	0.00	0.00	0.00
Potatoes	49.1	0.02	0.03	0.04
Unspecified Row Crop	9.1	0.00	0.01	0.01
Cantaloupe	3.1	0.00	0.00	0.00
Winter Wheat	2.0	0.00	0.00	0.00
Cotton	1.6	0.00	0.00	0.00
Ornamentals	1.5	0.01	0.01	0.01

Table B-12 Breakdown of 199	5 Irrigated Water	Use by County	and Crop
-----------------------------	-------------------	---------------	----------

	1995 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Union	848.7	0.90	1.24	1.59
Sod	475.1	0.75	1.01	1.29
Rye	86.0	0.00	0.01	0.01
Sorghum	74.4	0.03	0.05	0.08
Corn	71.1	0.04	0.05	0.06
Peanuts	65.3	0.03	0.04	0.05
Unspecified Row Crop	25.5	0.01	0.02	0.02
Pasture	23.3	0.03	0.05	0.06
Millet	11.8	0.01	0.01	0.02
Pecans	8.7	0.00	0.01	0.01
Oats	4.1	0.00	0.00	0.00
Winter Wheat	3.1	0.00	0.00	0.00
Soybeans	0.3	0.00	0.00	0.00
Volusia	13397.6	24.60	30.92	38.45
Leatherleaf	3886.4	8.39	10.45	13.06
Citrus	3008.2	1.83	2.84	3.89
Asparagus Fern	2359.1	5.26	6.49	8.08
Sod	1539.4	2.61	3.41	4.32
Field Nursery	796.3	1.50	1.84	2.24
Container Nursery	795.0	3.21	3.63	4.10
Pasture	640.8	0.91	1.21	1.55
Aspidistra	203.0	0.79	0.90	1.04
Collard Greens	57.8	0.04	0.05	0.05
Misc. Vegetables	31.0	0.02	0.03	0.04
Squash	27.4	0.01	0.01	0.02
Нау	25.3	0.02	0.03	0.04
Tomato	8.4	0.01	0.01	0.01
Grapes	5.7	0.00	0.00	0.00
Unspecified Field C*	5.0	0.00	0.00	0.00
Broccoli	3.0	0.00	0.00	0.00
Blueberries	2.5	0.00	0.01	0.01
Sweet Corn	2.1	0.00	0.00	0.00
Peas	1.0	0.00	0.00	0.00

 1 Wct year calculated as the average of the 20^{th} percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80^{th} percentile irrigation requirement.

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Alachua				
Sorghum	2267.6	1.19	1.77	2.35
Sod	1569.2	2.42	3.36	4.21
Winter Wheat	779.2	0.00	0.01	0.03
Tomatoes	774.5	0.47	0.56	0.66
Rye	659.7	0.00	0.02	0.02
Hay	595.2	0.19	0.48	0.66
Pecans	489.2	0.16	0.30	0.44
Blueberries	453.7	0.59	0.82	1.03
Pasture	253.9	0.13	0.23	0.34
Peanuts	211.9	0.08	0.13	0.18
Peas	172.3	0.13	0.18	0.22
Unspecified Field Crop	153.2	0.06	0.10	0.14
Soybeans	127.9	0.04	0.06	0.09
Millet	114.3	0.08	0.11	0.15
Corn	81.9	0.04	0.06	0.07
Container Nursery	28.5	0.10	0.11	0.12
Citrus	19.6	0.01	0.01	0.02
Unspecified Row Crop	11.9	0.00	0.00	0.00
Unspecified Tree Crop	8.1	0.00	0.01	0.01
Misc. Vegetables	7.2	0.00	0.00	0.00
Greens	6.9	0.00	0.00	0.00
Strawberries	6.4	0.00	0.01	0.01
Chestnuts	5.6	0.00	0.00	0.01
Field Nursery	4.3	0.01	0.01	0.01
Grapes	4.0	0.00	0.00	0.00
Persimmons	1.3	0.00	0.00	0.00
Oats	1.1	0.00	0.00	0.00
Winter WheatSoybeans	0.7	0.00	0.00	0.00
Baker				
Field Nursery	97.6	0.13	0.16	0.19
Pasture	35.8	0.01	0.03	0.04
Нау	29.2	0.01	0.02	0.03
Collard Greens	14.6	0.00	0.01	0.01
Container Nursery	14.4	0.05	0.06	0.06
Broccoli	4.3	0.00	0.00	0.00
Unspecified Row Crop	1.8	0.00	0.00	0.00
Cabbage	1.5	0.00	0.00	0.00
Corn	0.4	0.00	0.00	0.00
Grapes	0.0	0.00	0.00	0.00
Berrien				
Pecans	274.8	0.18	0.27	0.35
produce	5.5	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Bradford				
Sorghum	306.7	0.15	0.24	0.32
Rye	263.9	0.00	0.02	0.03
Нау	185.2	0.11	0.17	0.23
Sod	166.8	0.28	0.37	0.46
Winter Wheat	139.3	0.00	0.00	0.01
Corn	62.6	0.03	0.04	0.05
Peas	62.2	0.05	0.07	0.08
Soybeans	39.5	0.01	0.02	0.03
Peanuts	32.3	0.01	0.02	0.03
Millet	22.9	0.02	0.02	0.03
Cotton	5.8	0.00	0.00	0.00
Tomatoes	5.5	0.00	0.00	0.00
Oats	1.7	0.00	0.00	0.00
Brevard				
Pasture	12100.7	24.44	29.39	34.95
Citrus	3981.5	5.91	7.41	9.06
Watermelons	2937.8	1.27	1.67	2.09
Sod	2090.0	4.04	4.96	5.97
Unspecified Field Crop	195.7	0.28	0.34	0.41
Field Nursery	132.4	0.20	0.24	0.29
Container Nursery	83.4	0.20	0.23	0.26
Ornamentals	8.1	0.01	0.01	0.02
Unspecified Tree Crop	2.6	0.01	0.01	0.01
Blueberries	2.5	0.00	0.00	0.01
Mangos	1.7	0.00	0.01	0.01
Charlotte				
Citrus	19226.1	9.16	19.07	28.07
Unspecified Row Crop/Pastur	4057.3	4.71	6.49	8.39
Unspecified Row Crop	762.6	0.62	0.79	0.95
Pasture	602.7	0.91	1.32	1.78
Unspecified Field Crop	290.9	0.18	0.27	0.36
Nurseries and Vineyards	123.0	0.45	0.53	0.61
Ornamentals	24.1	0.10	0.11	0.13
Нау	16.1	0.01	0.02	0.02

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Drv Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Citrus				
Sod	1208.9	2.09	2.78	3.32
Strawberries	143.9	0.06	0.08	0.11
Unspecified Row Crop/Pastur	67.1	0.11	0.14	0.16
Нау	42.8	0.04	0.06	0.07
Unspecified Tree Crop	20.7	0.02	0.02	0.03
Peanuts	15.5	0.01	0.01	0.02
Nurseries and Vineyards	11.5	0.05	0.05	0.06
Rye	5.0	0.00	0.00	0.00
Clay				
Field Nursery	263.8	0.35	0.44	0.53
Container Nursery	136.8	0.36	0.42	0.47
Pasture	25.8	0.05	0.06	0.08
Ornamentals	2.0	0.00	0.00	0.00
Grapes	0.3	0.00	0.00	0.00
Clinch				
Blueberries	2096.8	2.49	3.39	4.15
rotation	54.5	0.03	0.05	0.07
Columbia				
Winter Wheat	1125.6	0.00	0.04	0.07
Rye	912.9	0.00	0.04	0.08
Sorghum	888.5	0.35	0.57	0.79
Sod	870.1	1.41	1.90	2.39
Tomatoes	800.0	0.53	0.61	0.67
Нау	515.6	0.21	0.43	0.64
Soybeans	279.4	0.09	0.14	0.19
Peas	207.2	0.16	0.22	0.27
Peanuts	123.6	0.05	0.08	0.11
Corn	63.3	0.03	0.04	0.05
Millet	29.7	0.02	0.03	0.04
Winter WheatSoybeans	5.0	0.00	0.00	0.00
Winter WheatSorghum	1.3	0.00	0.00	0.00
Desoto				
Citrus	51556.2	23.80	51.52	77.56
Unspecified Row Crop/Pastur	8228.5	9.67	13.43	17.03
Unspecified Row Crop	758.0	0.43	0.59	0.74
Нау	492.5	0.12	0.42	0.71
Nurseries and Vineyards	231.2	0.92	1.05	1.20
Tomatoes	172.4	0.04	0.08	0.10
Unspecified Tree Crop	15.0	0.00	0.01	0.02
Pasture	0.5	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Dixie				
Winter Wheat	659.2	0.00	0.01	0.01
Rye	526.4	0.00	0.01	0.02
Sorghum	257.0	0.12	0.19	0.26
Sod	138.2	0.21	0.29	0.39
Нау	95.2	0.05	0.09	0.13
Peas	38.5	0.03	0.04	0.05
Peanuts	23.6	0.01	0.02	0.02
Pecans	12.5	0.00	0.01	0.01
Corn	7.4	0.00	0.00	0.01
Soybeans	7.3	0.00	0.00	0.00
Millet	3.5	0.00	0.00	0.01
Oats	1.1	0.00	0.00	0.00
Cantaloupe	0.9	0.00	0.00	0.00
Duval				
Sod	981.8	1.79	2.32	2.85
Field Nursery	250.9	0.35	0.45	0.54
Container Nursery	52.4	0.14	0.16	0.18
Grapes	7.5	0.00	0.00	0.00
Pasture	0.0	0.00	0.00	0.00
Echols				
rotation	1198.2	0.73	1.10	1.42
produce	968.2	0.67	0.82	0.95
Pasture	64.1	0.02	0.06	0.08
Flagler				
Sod	2856.1	5.51	7.08	8.58
Potatoes	2835.1	0.79	1.28	1.65
Cabbage	664.1	0.45	0.58	0.71
Pasture	509.1	0.38	0.54	0.67
Greens	190.3	0.10	0.13	0.17
Field Nursery	151.3	0.21	0.27	0.33
Sorghum	140.2	0.18	0.23	0.28
Нау	132.1	0.28	0.35	0.42
Strawberries	50.5	0.02	0.02	0.03
Unspecified Row Crop	8.2	0.00	0.01	0.01
Pecans	7.2	0.00	0.00	0.00
Container Nursery	5.9	0.01	0.01	0.01
PotatoesCabbage	0.0	0.00	0.00	0.00

2010 Irrigated Areas				
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Gilchrist				
Sod	1800.3	2.77	3.78	4.92
Winter Wheat	1564.4	0.00	0.02	0.03
Rye	1397.4	0.00	0.04	0.09
Sorghum	907.8	0.38	0.65	0.93
Нау	723.3	0.30	0.61	0.87
Peanuts	300.2	0.12	0.19	0.26
Peas	228.2	0.18	0.24	0.31
Tomatoes	122.4	0.07	0.08	0.10
Corn	51.2	0.02	0.03	0.04
Millet	37.6	0.03	0.04	0.06
Soybeans	31.6	0.01	0.02	0.02
Potatoes	29.7	0.01	0.02	0.02
Oats	0.8	0.00	0.00	0.00
Glades				
Sugar Cane	16096.0	28.39	37.07	48.76
Pasture	4904.5	8.78	10.93	13.94
Sod	1947.9	3.66	4.58	5.92
Citrus	1115.4	0.67	1.22	1.78
Container Nursery	11.8	0.02	0.02	0.03
Sweet Corn	7.6	0.00	0.01	0.01
Нау	0.4	0.00	0.00	0.00
Hamilton				
Sweet Potatoes	1491.1	1.50	1.90	2.41
Peas	1055.6	0.85	1.13	1.42
Soybeans	966.8	0.42	0.70	0.87
Rye	394.4	0.01	0.02	0.03
Нау	297.4	0.13	0.29	0.39
Winter Wheat	274.8	0.00	0.00	0.00
Sod	267.8	0.47	0.63	0.73
Sorghum	264.3	0.11	0.21	0.29
Pecans	256.2	0.13	0.23	0.31
Peanuts	238.4	0.12	0.18	0.23
Millet	162.4	0.10	0.17	0.23
Corn	84.0	0.04	0.06	0.07
Potatoes	50.9	0.02	0.03	0.04
OatsCorn	7.2	0.00	0.01	0.01
Oats	3.0	0.00	0.00	0.00
SoybeansOats	2.2	0.00	0.00	0.00
Unspecified Row Crop	2.0	0.00	0.00	0.00
Cantaloupe	1.9	0.00	0.00	0.00
Winter WheatSorghum	0.6	0.00	0.00	0.00
Pasture	0.3	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Hardee				
Citrus	30702.3	17.07	31.15	42.75
Watermelons	2254.3	0.87	1.36	1.72
Pasture	1768.9	1.51	2.37	3.08
Tomatoes	1311.9	0.90	1.18	1.38
Sod	868.4	1.23	1.69	2.05
Unspecified Row Crop/Pastur	762.3	0.96	1.29	1.62
Unspecified Row Crop	760.0	0.19	0.33	0.43
Нау	669.4	0.21	0.63	0.98
Cucurbits	570.0	0.28	0.39	0.46
Container Nursery	449.4	0.98	1.16	1.33
Strawberries	160.1	0.07	0.10	0.14
Blueberries	140.5	0.24	0.31	0.36
Peppers	108.3	0.09	0.11	0.13
Field Nursery	84.4	0.21	0.25	0.28
Squash	64.0	0.02	0.03	0.04
Unspecified Tree Crop	24.7	0.01	0.02	0.02
Nurseries and Vineyards	21.8	0.09	0.10	0.11
Peas	4.6	0.00	0.00	0.00
Hernando				
Sod	1015.7	1.81	2.42	3.04
Peas	489.5	0.40	0.51	0.62
Citrus	373.4	0.26	0.41	0.56
Unspecified Row Crop/Pastur	344.9	0.44	0.56	0.70
Нау	299.5	0.17	0.31	0.43
Sorghum	214.0	0.17	0.23	0.27
Nurseries and Vineyards	123.4	0.52	0.58	0.64
Rye	111.6	0.00	0.02	0.03
Peanuts	77.5	0.04	0.06	0.07
Unspecified Tree Crop	28.5	0.01	0.02	0.03
Blueberries	22.0	0.03	0.04	0.05
Unspecified Row Crop	9.6	0.01	0.01	0.01

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Highlands				
Citrus	65363.7	46.69	76.10	102.25
Sugar Cane	13889.6	23.25	29.81	37.11
Pasture	6760.8	11.02	14.04	17.47
Unspecified Row Crop	2212.1	1.21	1.75	2.11
Tomatoes	2069.7	0.00	0.38	0.60
Sod	1576.0	2.83	3.66	4.48
Nurseries and Vineyards	334.3	1.26	1.46	1.67
Container Nursery	316.5	0.57	0.70	0.82
Нау	278.9	0.00	0.16	0.26
Blueberries	205.6	0.23	0.32	0.40
Field Nursery	177.2	0.31	0.40	0.47
Specialty Farms	96.0	0.12	0.15	0.17
Unspecified Row Crop/Pastur	74.2	0.08	0.12	0.15
Squash	35.5	0.01	0.01	0.01
Ornamentals	22.4	0.09	0.10	0.12
Unspecified Tree Crop	16.2	0.00	0.01	0.02
Unspecified Field Crop	11.8	0.00	0.01	0.01
Sweet Corn	2.4	0.00	0.00	0.00
Hillsborough				
Citrus	11078.5	7.29	11.78	15.99
Strawberries	9611.2	4.14	5.98	8.36
Unspecified Row Crop	2186.5	1.61	1.99	2.46
Nurseries and Vineyards	1058.5	4.39	4.93	5.47
Squash	984.3	0.32	0.44	0.51
Unspecified Row Crop/Pastur	935.1	1.27	1.66	2.00
Hay	914.4	0.50	0.89	1.26
Unspecified Tree Crop	754.5	0.39	0.65	0.88
Peanuts	364.6	0.15	0.21	0.27
Sod	210.6	0.32	0.41	0.50
Cantaloupe	162.9	0.03	0.06	0.09
Container Nursery	112.0	0.29	0.33	0.36
Sorghum	90.6	0.05	0.07	0.10
Rye	69.4	0.01	0.02	0.03
Specialty Farms	62.0	0.09	0.10	0.11
Field Nursery	58.1	0.10	0.11	0.14
Blueberries	11.3	0.01	0.02	0.02

Table B-13 Breakdowr	of 2010 Irrigated Water	Use by County and Crop
----------------------	-------------------------	------------------------

	2010 Irrigated Areas			
County / Crop	Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Indian_River				
Citrus	46625.4	18.89	31.29	45.42
Pasture	15199.0	18.05	24.68	30.93
Sod	1815.7	0.29	1.52	2.25
Field Nursery	1107.0	1.55	1.92	2.38
Container Nursery	47.5	0.09	0.10	0.12
Unspecified Field Crop	13.2	0.01	0.01	0.01
Misc. Vegetables	11.9	0.00	0.01	0.01
Sugar Cane	0.9	0.00	0.00	0.00
Lafayette				
Rye	1378.3	0.00	0.02	0.02
Peas	633.1	0.49	0.66	0.83
Нау	353.1	0.17	0.33	0.46
Soybeans	347.7	0.13	0.19	0.26
Pecans	307.6	0.12	0.23	0.31
Peanuts	202.2	0.09	0.13	0.17
Sweet Potatoes	194.7	0.19	0.24	0.30
Sod	181.1	0.30	0.39	0.48
Sorghum	87.7	0.04	0.06	0.09
Potatoes	86.3	0.03	0.05	0.06
Corn	59.8	0.03	0.04	0.05
Millet	18.2	0.01	0.02	0.03
OatsCorn	9.2	0.00	0.01	0.01
Winter Wheat	7.4	0.00	0.00	0.00
Oats	7.4	0.00	0.00	0.00
SoybeansOats	0.8	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Lake				
Citrus	9886.6	6.64	11.34	14.88
Container Nursery	2004.8	4.26	5.20	6.02
Нау	1303.7	0.81	1.41	1.82
Pasture	1044.7	1.59	2.21	2.83
Sod	856.1	1.08	1.71	2.21
Field Nursery	660.8	1.05	1.33	1.61
Blueberries	176.4	0.26	0.36	0.44
Leatherleaf	149.1	0.30	0.40	0.51
Grapes	93.7	0.04	0.07	0.09
Watermelons	91.4	0.04	0.06	0.07
Unspecified Row Crop/Pastur	62.0	0.09	0.12	0.14
Shade Ferns	55.4	0.09	0.13	0.16
Unspecified Field Crop	54.7	0.03	0.04	0.06
Peaches	47.2	0.02	0.04	0.05
Peanuts	45.2	0.00	0.01	0.02
Hammock Ferns	36.3	0.07	0.09	0.11
Ornamentals	33.0	0.07	0.09	0.10
Misc. Vegetables	32.6	0.02	0.02	0.03
Tree Fern	28.6	0.05	0.07	0.08
Pecans	23.5	0.01	0.02	0.03
Asparagus Fern	20.1	0.04	0.05	0.07
Peas	14.0	0.01	0.02	0.02
Pittosporum	9.7	0.03	0.04	0.05
Aspidistra	8.5	0.03	0.04	0.04
Unspecified Nurseries and Vin	7.9	0.01	0.01	0.02
Strawberries	3.5	0.00	0.00	0.00
Field Corn	3.1	0.00	0.00	0.00
Unspecified Tree Crop	2.2	0.00	0.00	0.00
Unspecified Row Crop	0.4	0.00	0.00	0.00
Lanier				
rotation	690.8	0.47	0.68	0.91
Sod	465.3	0.82	1.07	1.27
Pecans	412.0	0.21	0.36	0.47
Peaches	71.2	0.03	0.06	0.09
produce	8.0	0.00	0.00	0.01
Pasture	4.0	0.00	0.00	0.00
rotationSorghum	0.7	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Drv Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Levy	, , ,			
Sod	17689.2	30.29	40.82	50.25
Winter Wheat	4027.7	0.00	0.04	0.03
Sorghum	2154.4	1.03	1.55	2.20
Tomatoes	1503.0	0.88	1.15	1.38
Нау	832.2	0.39	0.75	1.04
Rye	407.7	0.01	0.04	0.05
Peanuts	223.2	0.09	0.14	0.19
Sweet Potatoes	91.2	0.09	0.12	0.13
Corn	19.4	0.01	0.01	0.02
Peas	18.2	0.02	0.02	0.02
Soybeans	8.7	0.00	0.00	0.01
Millet	8.6	0.01	0.01	0.01
Potatoes	1.8	0.00	0.00	0.00
Oats	1.1	0.00	0.00	0.00
Pasture	0.8	0.00	0.00	0.00
Lowndes				
rotation	2945.0	1.70	2.65	3.69
Pecans	1200.1	1.41	1.96	2.39
produce	783.5	0.46	0.59	0.69
Field Nursery	75.0	0.17	0.21	0.24
Sod	52.8	0.09	0.12	0.14
Container Nursery	36.0	0.10	0.11	0.12
Pasture	28.0	0.02	0.03	0.04
rotationSoybeans	1.3	0.00	0.00	0.00
Madison				
Sweet Potatoes	1311.1	1.33	1.73	2.18
Winter Wheat	1258.6	0.00	0.04	0.06
Soybeans	1052.1	0.54	0.88	1.14
Peas	831.1	0.73	0.93	1.18
Rye	772.4	0.01	0.03	0.05
Нау	268.5	0.14	0.28	0.38
Sod	199.5	0.37	0.49	0.58
Peanuts	145.0	0.07	0.12	0.16
Millet	24.6	0.02	0.03	0.03
Corn	23.9	0.01	0.02	0.02
Sorghum	17.8	0.01	0.01	0.02
Pecans	0.9	0.00	0.00	0.00
Container Nursery	0.9	0.00	0.00	0.00
OatsCorn	0.9	0.00	0.00	0.00
Ornamentals	0.7	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Manatee				
Citrus	29619.0	18.55	30.33	40.73
Unspecified Row Crop	10378.4	8.21	10.14	12.29
Strawberries	7876.7	4.46	5.85	7.87
Unspecified Row Crop/Pastur	4091.4	5.52	7.20	8.68
Squash	3674.6	1.33	1.67	1.98
Нау	1284.4	0.68	1.26	1.82
Peanuts	791.5	0.33	0.46	0.58
Nurseries and Vineyards	594.3	2.45	2.76	3.09
Unspecified Tree Crop	191.3	0.08	0.15	0.21
Sorghum	31.9	0.02	0.03	0.04
Clover	27.8	0.01	0.01	0.01
Peas	20.2	0.02	0.03	0.03
Oats	12.2	0.00	0.00	0.00
Rye	2.4	0.00	0.00	0.00
Marion				
Sod	7288.7	12.05	16.14	19.37
Нау	1940.2	1.80	2.48	3.00
Citrus	1023.7	0.89	1.32	1.70
Peanuts	248.4	0.13	0.19	0.24
Field Nursery	222.4	0.33	0.42	0.50
Container Nursery	153.4	0.34	0.40	0.46
Pasture	150.8	0.10	0.16	0.21
Blueberries	140.0	0.20	0.27	0.34
Peas	118.4	0.11	0.14	0.15
Specialty Farms	84.1	0.11	0.12	0.14
Rye	64.8	0.00	0.01	0.02
Unspecified Field Crop	63.3	0.05	0.07	0.08
Sorghum	46.5	0.02	0.04	0.04
Nurseries and Vineyards	31.5	0.13	0.15	0.17
Pecans	27.6	0.02	0.02	0.03
Misc. Vegetables	15.8	0.01	0.01	0.01
Strawberries	7.7	0.00	0.01	0.01
Oats	7.7	0.00	0.00	0.00
Unspecified Tree Crop	5.3	0.00	0.00	0.00
Grapes	2.1	0.00	0.00	0.00
Unspecified Row Crop/Pastur	1.8	0.00	0.00	0.00
Peaches	0.5	0.00	0.00	0.00
Field Corn	0.0	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Martin				
Sugar Cane	50103.8	77.06	100.61	132.87
Citrus	9515.7	4.93	8.33	13.24
Sweet Corn	4554.4	2.53	3.52	4.45
Unspecified Row Crop	2149.0	1.24	1.70	2.02
Pasture	1203.1	1.91	2.40	3.15
Sweet Potatoes	803.9	0.84	1.10	1.31
Unspecified Field Crop	779.7	0.54	0.72	0.90
Sod	756.1	1.35	1.62	2.07
Container Nursery	658.6	1.02	1.26	1.61
Ornamentals	400.3	1.57	1.78	2.06
Dry Beans	22.9	0.02	0.02	0.03
Unspecified Tree Crop	16.0	0.01	0.01	0.02
Rice	0.4	0.00	0.00	0.00
Nassau				
Cotton	730.6	0.02	0.13	0.20
Container Nursery	92.9	0.18	0.22	0.26
Field Nursery	2.6	0.00	0.00	0.01
Нау	0.0	0.00	0.00	0.00
Pecans	0.0	0.00	0.00	0.00
Misc. Vegetables	0.0	0.00	0.00	0.00
Okeechobee				
Sod	25916.8	44.72	58.32	73.98
Citrus	22596.7	15.43	24.14	36.28
Pasture	7377.2	16.93	20.27	24. 70
Sugar Cane	149.1	0.28	0.35	0.43
Unspecified Row Crop	35.8	0.03	0.03	0.04
Unspecified Field Crop	25.3	0.01	0.02	0.03
Unspecified Tree Crop	19.6	0.00	0.01	0.02
Container Nursery	12.4	0.02	0.03	0.03
Sweet Corn	1.3	0.00	0.00	0.00
Ornamentals	0.7	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Orange				
Citrus	4646.3	2.89	5.11	6.57
Pasture	1496.9	0.52	1.13	1.56
Container Nursery	567.8	1.41	1.67	1.95
Watermelons	484.4	0.33	0.45	0.55
Ornamentals	251.3	0.67	0.81	0.96
Sod	248.1	0.30	0.40	0.49
Нау	210.0	0.10	0.20	0.28
Field Nursery	118.3	0.19	0.24	0.29
Unspecified Tree Crop	65.6	0.04	0.07	0.09
Blueberries	36.2	0.04	0.07	0.09
Unspecified Nurseries and Vin	2.9	0.00	0.00	0.01
Misc. Vegetables	1.4	0.00	0.00	0.00
Osceola				
Citrus	12661.4	4.98	8.66	11.22
Pasture	8025.8	15.36	19.49	23.58
Unspecified Field Crop	769.3	0.50	0.68	0.88
Sod	611.3	0.96	1.27	1.56
Unspecified Row Crop	527.3	0.36	0.46	0.58
Ornamentals	18.5	0.08	0.09	0.10
Нау	13.2	0.01	0.01	0.02
Container Nursery	11.3	0.02	0.02	0.03
Sugar Cane	1.3	0.00	0.00	0.00
Unspecified Tree Crop	1.0	0.00	0.00	0.00
Palm_Beach				
Sugar Cane	1417.5	1.50	2.13	3.03
Container Nursery	30.9	0.05	0.06	0.07
Ornamentals	14.8	0.06	0.06	0.07
Specialty Farms	12.7	0.01	0.02	0.02
Sod	4.2	0.01	0.01	0.01
Pasture	0.0	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Dry Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Pasco				
Citrus	4865.4	3.36	5.33	7.06
Strawberries	1925.6	1.00	1.30	1.74
Нау	1866.9	0.94	1.90	2.69
Sod	1115.4	1.83	2.40	2.97
Unspecified Row Crop/Pastur	402.2	0.53	0.71	0.88
Unspecified Tree Crop	296.7	0.18	0.26	0.33
Peanuts	131.9	0.05	0.07	0.09
Nurseries and Vineyards	105.0	0.44	0.48	0.52
Peas	75.0	0.07	0.09	0.11
Rye	62.6	0.00	0.01	0.02
Sorghum	18.1	0.01	0.01	0.02
Blueberries	13.4	0.02	0.02	0.03
Unspecified Row Crop	5.6	0.00	0.00	0.01
Pinellas				
Nurseries and Vineyards	19.2	0.08	0.09	0.09
Нау	1.7	0.00	0.00	0.00
Polk				
Citrus	98067.1	70.81	118.39	156.84
Pasture	9795.3	7.30	11.10	14.50
Sod	1725.9	2.51	3.50	4.48
Blueberries	1378.0	2.45	3.15	3.87
Unspecified Row Crop	1246.6	0.55	0.79	0.98
Field Nursery	818.6	1.20	1.57	1.88
Watermelons	818.4	0.45	0.63	0.82
Unspecified Row Crop/Pastur	603.0	0.69	0.97	1.20
Container Nursery	560.9	1.07	1.30	1.52
Нау	420.9	0.23	0.40	0.52
Unspecified Tree Crop	280.3	0.13	0.23	0.31
Specialty Farms	204.4	0.16	0.20	0.25
Strawberries	193.0	0.16	0.20	0.25
Nurseries and Vineyards	182.2	0.74	0.85	0.94
Tomatoes	114.5	0.08	0.10	0.12
Alfalfa	62.1	0.04	0.06	0.08
Field Corn	55.8	0.05	0.06	0.08
Ornamentals	23.7	0.10	0.11	0.12
Dry Beans	8.3	0.00	0.01	0.01
Grapes	8.3	0.00	0.01	0.01

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Drv Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Putnam				
Potatoes	4394.7	0.97	1.73	2.41
Asparagus Fern	1049.3	2.18	2.84	3.61
Sod	1032.4	1.94	2.46	2.95
Нау	568.1	0.35	0.44	0.72
Sorghum	410.0	0.48	0.65	0.85
Container Nursery	373.2	0.70	0.85	1.02
Leatherleaf	360.6	0.74	0.96	1.22
Greens	339.2	0.16	0.21	0.28
Citrus	298.5	0.19	0.31	0.46
Aspidistra	273.2	1.09	1.23	1.42
Pecans	162.7	0.06	0.11	0.16
Pittosporum	157.0	0.63	0.70	0.81
Blueberries	154.9	0.22	0.30	0.38
Field Nursery	118.9	0.19	0.24	0.29
Broccoli	111.6	0.06	0.07	0.09
Cabbage	105.4	0.06	0.08	0.10
Spinach	91.0	0.05	0.06	0.07
Shade Ferns	86.7	0.17	0.23	0.29
Pasture	75.8	0.07	0.10	0.14
Grapes	59.6	0.02	0.03	0.04
Field Corn	33.7	0.03	0.05	0.06
Hammock Ferns	25.2	0.05	0.06	0.08
Misc. Vegetables	22.0	0.01	0.02	0.02
Liriope	5.6	0.02	0.02	0.03
Onions	3.5	0.00	0.00	0.00
Unspecified Field Crop	2.8	0.00	0.00	0.01
Unspecified Row Crop	2.0	0.00	0.00	0.00
PotatoesCabbage	0.0	0.00	0.00	0.00
Sarasota				
Strawberries	4288.7	2.26	2.98	4.01
Citrus	3068.3	1.70	3.09	4.32
Unspecified Row Crop/Pastur	1191.9	1.62	2.07	2.55
Nurseries and Vineyards	299.5	1.24	1.40	1.55
Нау	198.4	0.07	0.17	0.26
Unspecified Row Crop	189.0	0.14	0.18	0.22
Peanuts	153.8	0.06	0.08	0.11
Squash	143.9	0.05	0.06	0.08
Unspecified Tree Crop	120.2	0.05	0.10	0.14
Sorghum	22.5	0.01	0.02	0.02
Specialty Farms	1.2	0.00	0.00	0.00

	2010 Irrigated Areas			
		Wet Year ¹	Average Year	Drv Year ¹
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)
Seminole				
Pasture	1545.2	3.87	4.71	5.41
Field Nursery	691.1	1.18	1.50	1.83
Citrus	372.2	0.21	0.35	0.47
Container Nursery	260.7	0.68	0.79	0.92
Sod	255.7	0.34	0.50	0.61
Unspecified Nurseries and Vin	21.0	0.03	0.04	0.04
Ornamentals	1.2	0.00	0.00	0.00
St_Johns				
Potatoes	11163.7	2.85	5.08	6.72
Sod	3509.8	6.53	8.46	10.32
Sorghum	1656.5	1.78	2.47	3.21
Pasture	1462.5	2.67	3.46	4.20
Cabbage	1360.5	0.94	1.19	1.46
Greens	745.2	0.37	0.50	0.64
PotatoesCabbage	359.9	0.28	0.35	0.42
Misc. Vegetables	243.5	0.21	0.25	0.30
Field Nursery	171.7	0.22	0.31	0.38
Broccoli	165.1	0.10	0.13	0.16
Field Corn	151.4	0.14	0.21	0.27
Нау	115.6	0.16	0.22	0.28
Container Nursery	84.7	0.23	0.26	0.30
Asparagus Fern	79.7	0.15	0.21	0.25
Radish	46.5	0.01	0.02	0.02
Unspecified Tree Crop	32.6	0.06	0.08	0.10
Ligustrum	4.5	0.02	0.02	0.02
Onions	3.4	0.00	0.00	0.00
DevelopedCabbage	0.0	0.00	0.00	0.00
St_Lucie				
Citrus	83020.0	40.71	67.82	98.13
Sugar Cane	3601.7	7.08	8.77	11.19
Sweet Corn	2886.0	1.46	2.06	2.62
Unspecified Row Crop	2272.4	1.24	1.75	2.11
Pasture	1343.1	2.78	3.42	4.29
Sweet Potatoes	1049.1	0.95	1.39	1.71
Sod	754.9	0.99	1.32	1.69
Unspecified Tree Crop	348.9	0.11	0.21	0.31
Ornamentals	142.4	0.58	0.66	0.75
Container Nursery	117.9	0.19	0.23	0.29
Dry Beans	15.8	0.01	0.01	0.02
Specialty Farms	9.0	0.01	0.01	0.01
Unspecified Field Crop	1.4	0.00	0.00	0.00
Appendix B

Table B-13 Breakdown of 2010 Irrigated Water Use by County and Crop

	2010 Irrigated Areas										
		Wet Year ¹	Average Year	Dry Year ¹ (mgd)							
County / Crop	Area (acres)	(mgd)	(mgd)								
Sumter											
Strawberries	2902.5	1.37	1.87	2.49							
Нау	537.6	0.27	0.53	0.68							
Watermelons	295.0	0.14	0.22	0.28							
Sorghum	255.3	0.14	0.21	0.27							
Nurseries and Vineyards	245.7	1.03	1.19	1.30							
Peanuts	245.7	0.12	0.18	0.23							
Unspecified Row Crop/Pastur	154.1	0.21	0.28	0.33							
Sod	116.6	0.23	0.29	0.35							
Cantaloupe	56.5	0.01	0.02	0.03							
Blueberries	43.0	0.10	0.12	0.14							
Citrus	42.1	0.04	0.05	0.07							
Unspecified Row Crop	1.8	0.00	0.00	0.00							
Suwannee											
Winter Wheat	4493.9	0.00	0.06	0.08							
Rye	3530.2	0.07	0.18	0.27							
Peas	1826.5	1.48	1.98	2.47							
Нау	1760.2	0.88	1.68	2.39							
Soybeans	1594.3	0.68	1.04	1.30							
Sorghum	1355.6	0.88	1.27	1.62							
Sod	1123.7	1.95	2.59	3.14							
Sweet Potatoes	836.6	0.85	1.05	1.32							
Peanuts	720.2	0.39	0.54	0.68							
Potatoes	473.8	0.20	0.27	0.36							
Corn	178.1	0.10	0.13	0.15							
Millet	144.3	0.11	0.16	0.20							
Tomatoes	110.7	0.07	0.08	0.09							
Pecans	109.7	0.06	0.11	0.14							
Oats	20.7	0.00	0.00	0.00							
OatsCorn	3.4	0.00	0.00	0.00							
Cantaloupe	3.1	0.00	0.00	0.00							
SoybeansOats	1.7	0.00	0.00	0.00							
Pasture	0.7	0.00	0.00	0.00							

Appendix B

Table B-13 Breakdowr	of 2010 Irrigated Water	Use by County and Crop
----------------------	-------------------------	------------------------

	2010 Irrigated Areas										
		Wet Year ¹	Average Year	Dry Year ¹							
County / Crop	Area (acres)	(mgd)	(mgd)	(mgd)							
Union											
Нау	548.4	0.28	0.49	0.69							
Sod	363.7	0.58	0.79	1.00							
Sorghum	264.2	0.11	0.18	0.26							
Rye	229.2	0.00	0.01	0.02							
Peas	62.4	0.05	0.07	0.08							
Peanuts	45.4	0.02	0.03	0.04							
Winter Wheat	32.7	0.00	0.00	0.00							
Tomatoes	24.9	0.01	0.02	0.02							
Corn	23.8	0.01	0.02	0.02							
Millet	14.3	0.01	0.01	0.02							
Soybeans	9.8	0.00	0.00	0.01							
Volusia											
Leatherleaf	3036.0	6.60	8.24	10.30							
Sod	1727.3	2.77	3.67	4.68							
Asparagus Fern	1268.9	2.74	3.43	4.28							
Pittosporum	869.8	3.40	3.84	4.41							
Citrus	796.8	0.56	0.81	1.12							
Field Nursery	662.9	1.07	1.33	1.63							
Pasture	443.4	0.72	0.96	1.21							
Aspidistra	361.1	1.39	1.58	1.81							
Container Nursery	235.2	0.60	0.70	0.81							
Liriope	31.2	0.12	0.13	0.15							
Shade Ferns	28.6	0.06	0.07	0.09							
Hammock Ferns	17.9	0.04	0.05	0.06							
Unspecified Nurseries and Vin	8.3	0.01	0.02	0.02							
Ligustrum	4.3	0.02	0.02	0.02							
Cucurbits	3.3	0.00	0.00	0.00							
Coontie Fern	2.4	0.01	0.01	0.01							
Grapes	2.2	0.00	0.00	0.00							
Blueberries	1.7	0.00	0.00	0.00							
Нау	0.0	0.00	0.00	0.00							

¹Wct year calculated as the average of the 20^{th} percentile irrigation requirements of each polygon based on the 21-year simulation period. Dry year was calculated similarly for the 80^{th} percentile irrigation requirement.

Figure B-1 Adjusted Applied Irrigation Average January – 2010 ILG

Figure B-2 Adjusted Applied Irrigation Average February – 2010 ILG

Figure B-3 Adjusted Applied Irrigation Average March – 2010 ILG

Figure B-4 Adjusted Applied Irrigation Average April – 2010 ILG

Figure B-51 Adjusted Applied Irrigation Average May – 2010 ILG

Figure B-6 Adjusted Applied Irrigation Average June – 2010 ILG

Figure B-7 Adjusted Applied Irrigation Average July – 2010 ILG

Figure B-8 Adjusted Applied Irrigation Average August – 2010 ILG

Figure B-9 Adjusted Applied Irrigation Average September – 2010 ILG

Figure B-10 Adjusted Applied Irrigation Average October- 2010 ILG

Royal Consulting Services, Inc.

Figure B-11 Adjusted Applied Irrigation Average November – 2010 ILG

Figure B-12 Adjusted Applied Irrigation Average December – 2010 ILG

Appendix C CFACT Input Assumptions

Table C-1 Irrigation System Applicability by General Category

	Irrigation System														
Irrigation Applicability Categories	Long Term Subsurface Drip (> 6" Deep)	Long Term Surface Drip	Short Term Surface Drip (Tape)	Micro Spray	Nursery Container Drip or Spray	Fixed Under Foliage Sprinkler	Fixed Overhead Sprinkler	Center Pivot	Linear Move & Traveling Boom	Wheel Roll	Traveling Gun	Stationary Gun	Pipeline Furrow	Seepage (Ditches)	Flooding
Perennials		1 1				0 1					- 0	1 2			
Citrus	Unlikely	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Large Tree Fruit and Nut	Yes	Yes	No	Yes	No	Yes	No	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Medium & Small Fruit & Nut Trees	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Fruit & Nut Bushes	Yes	Yes	No	Yes	No	Yes	Yes	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
B&B Landscape Trees	No	Yes	No	Yes	No	Yes	Unlikely	No	No	No	No	No	No	Unlikely	Unlikely
Vineyard Crops (Trellised)	No	Yes	Unlikely	Yes	No	No	Yes	No	No	No	No	No	No	No	No
Annuals															
Annual Fruit & Nut	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Unlikely	Yes	Unlikely	No
Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No
Row Crops - Leafy Greens & Spices	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Row Crops - Melons	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Aquatic or Flooded Crops	No	No	No	No	No	No	No	No	No	No	No	No	No	Unlikely	Yes
Cane Crops	Yes	No	No	No	No	No	No	Yes	Yes	No	Yes	No	Unlikely	Yes	No
Root Crops	Unlikely	No	No	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Sod	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No
Container Plants	No	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No
Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Mushrooms	No	No	Yes	Yes	No	No	Yes	No	No	No	No	No	No	No	No

Appendix C

Table C-2 Irrigation System Applicability by Crop

	Irrigation Applicability	Long Term	Long Term Surface	Short Term			Fixed Under	Fixed								
	Category	Subsurface Drip	Drip	Surface Drip	Micro Spray	Nursery Container	Foliage Sprinkler	Overhead	Center Pivot		Wheel Roll &				Seepage	
Assumptions		(> 6" Deep)	1	Таре		Drip/Spray	0 1	Sprinkler		Linear Move	Traveling Boom	Traveling Gun	Stationary gun	Pipeline Furrow	(Ditches)	Flooding
Citrus	Citrus	Unlikely	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Avocados	Large Tree Fruit and Nut	Yes	Yes	No	Yes	No	Yes	No	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Mushrooms	Large Tree Fruit and Nut	Yes	res	N0 Vec	Yes	No	Yes	INO Vec	No	No	No	Unlikely	No	No	Unlikely	No
	Medium & Small Eruit & Nu	Vec	Vec	No	Vec	No	No	Vec	No	No	No	Unlikely	Unlikely	Unlikely	Holikely	Uplikely
Papavas	Appual Fruit & Nut	No	No	Ves	Ves	No	Ves	Ves	Ves	Ves	No	Ves	Unlikely	Ves	Unlikely	No
Peaches	Medium & Small Fruit & Nu	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Pecans	Large Tree Fruit and Nut	Yes	Yes	No	Yes	No	Yes	No	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Plums	Medium & Small Fruit & Nu	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Alfalfa	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Beans	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Beans, Green	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Beans, Dry	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Beets	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Blueberries	Fruit & Nut Bushes	Yes	Yes	No	Yes	No	Yes	Yes	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Broccoli	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Brussel Sprouts	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cabbage	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cantaloupe	Row Crops - Melons	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Carrots	Root Crops	Unlikely	No	No	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cauliflower	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cline Vestelle	Row Crops - Leafy Greens &	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Chinese Vegetables	Row Crops - Leary Greens &	No	INO No	res	No No	No No	INO No	Von	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No No
Eccelent	Row Crops - Standard	No	No	INO Vec	No	No	No	Vec	Vec	Vec	Vec	No	No	Vec	Lolikely	No
Escarole	Row Crops - Delicate	Vec	No	Vec	No	No	No	Vec	Vec	Vec	Vec	No	No	Vec	Unlikely	No
Grapes	Vinevard Crops (Trellised)	No	Ves	Unlikely	Ves	No	No	Ves	No	No	No	No	No	No	No	No
Greens. Herbs	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No
Peppers	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Peppers, Green	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Lettuce	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Melons	Row Crops - Melons	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Peas	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Potatoes	Root Crops	Unlikely	No	No	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Radish	Root Crops	Unlikely	No	No	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Small Vegetables	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Spinach	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Squash	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Sweet Corn	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Sweet Potato	Root Crops	Unlikely	No	No	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
l omatoes Waterpress	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No Nu	Yes	Unlikely	No
Watermalana	Aquatic or Flooded Crops	NO Ualibala	No	No	No	No	No	No	No	No	No Vez	No	INO Unlinela	No	Unlikely	Yes
Barley	Row Crops - Meions	No	No	No	No	No	No	No	Vec	Vec	No	Tes Vec	Vec	No	Vec	No
Clover	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Corn Grain	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cotton	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikelv	Yes	Unlikelv	No
Grain	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Grains, Small	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Hay	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Millet	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Millet, Forge	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Millet, Grain	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Oats	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Onions	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No
Onions, Dry	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No
Unions, Green	Row Crops - High Value	Yes	Yes	Yes	Yes	NO No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	INO No
Direc Der Lord	Row Crops - Standard	INO No	No	No	No.	No	INO No	1 CS Voc	I es Voc	I CS	I CS Voc	1 es	Unlikely	1 es	1 es Voc	INO No
Rice Elooded	Aquatic or Flooded Cross	No	No	No	No	No	No	No	No	No	1 CS	No	No	No	1 es Unlikely	Ves
Sorohum	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Sovbean	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Sugarcane	Cane Crops	Yes	No	No	No	No	No	No	Yes	Yes	No	Yes	No	Unlikelv	Yes	No
Sunflower	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Tobacco	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No

Appendix C

Table C-2 Irrigation System Applicability by Crop

	Irrigation Applicability	Long Term	Long Term Surface	Short Term			Fixed Under	Fixed								
	Category	Subsurface Drip	Drip	Surface Drip	Micro Spray	Nursery Container	Foliage Sprinkler	Overhead	Center Pivot		Wheel Roll &				Seepage	
Assumptions		(> 6° Deep)		Tape	5 T	Drip/Spray		Sprinkler		Linear Move	Traveling Boom	Traveling Gun	Stationary gun	Pipeline Furrow	(Ditches)	Flooding
Wheat	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Floriculture	Container Plants	No	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No
Fern	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Field ornamentals	B&B Landscape Trees	No	Yes	No	Yes	No	Yes	Unlikely	No	No	No	No	No	No	Unlikely	Unlikely
Container ornamentals	Container Plants	No	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No
Grass	Sod	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No
Okra	Row Crops - High Value	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Unlikely	Unlikely	Yes	Unlikely	No
Strawberries	Row Crops - Delicate	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Unlikely	No
Asparagus Fern	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Aspidistra	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Chestnuts	Medium & Small Fruit & Nu	n Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Collard Greens	Row Crops - Leafy Greens 8	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Container Nursery	B&B Landscape Trees	No	Yes	No	Yes	No	Yes	Unlikely	No	No	No	No	No	No	Unlikely	Unlikely
Coontie Fern	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Cotton	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Cucurbits	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Field Corn	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Field Nursery	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Greenhouse Nursery	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Greens	Row Crops - Leafy Greens 8	Unlikely	No	Yes	No	No	No	Unlikely	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Hammock Ferns	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Hay	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Leatherleaf	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Ligustrum	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Liriope	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Misc. Vegetables	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Ornamentals	Container Plants	No	No	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No	No
Pasture	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Persimmons	Medium & Small Fruit & Nu	u Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikelv	Unlikely
Pittosporum	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Shade Ferns	Medium & Small Fruit & Nu	Yes	Yes	No	Yes	No	Yes	Yes	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Sod	Sod	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No
Sorghum	Row Crops - Standard	No	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Unlikely	Yes	Yes	No
Sugar Cane	Cane Crops	Yes	No	No	No	No	No	No	Yes	Yes	No	Yes	No	Unlikely	Yes	No
Tree Fern	Greenhouse & Shadehouse	No	No	No	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
Unspecified Field Crop	Pasture and Forage	No	No	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	No
Unspecified Nurseries and Vinevards	Vinevard Crops (Trellised)	No	Yes	Unlikely	Yes	No	No	Yes	No	No	No	No	No	No	No	No
Unspecified Row Crop	Row Crops - Standard	No	No	No	No	No	No	Ves	Ves	Ves	Ves	Ves	Unlikely	Ves	Ves	No
Unspecified Tree Crop	Medium & Small Ervit & Nu	Ves	Vec	No	Ves	No	Vec	Vec	No	No	No	Unlikely	Unlikely	Unlikely	Unlikely	Unlikely
Onspecifica Tree Grop	Incolum & Small Fruit & Nu	1 1 6 3	103	110	103	110	103	103	140	110	140	Chinkely	Chinkery	Omikery	Chinkery	Officery

Appendix C

Table C-3 Irrigation System Efficiency and Cost Assumptions

Subsurface Drip

Source Index	Range	Comment								
19, table 1	70-90, average 85	application efficiency (Ea) 70-90%, ave 85%								
25, table 1	70-90, average 85	attainable efficiency								
37, Section 12.5.2	90	System efficiency factor used in permitting								
7, Table 4-1	80	potetial application efficiecy (citrus)								
25,	new systems 88 to 94, old 70 to 85	new systems 88 to 94, old 0.7 to 0.85								

IRM analysis assumptions											
			Irrigation					Farm			
			Scheduling	Irrigation	Maintenance		Sol	Conveyance	% Root Zone		
New/Potential Application Efficiency:	90%	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	Wetted (A)	Delivery (D)	
proactive efficiency	88%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	1	10% variance	
reactive efficiency	72%	farm delivery	Mon. only	full-time untrain	good	Unrestricted (1.00)	1	1	1	15% variance	
deferred efficiency	63%	farm delivery	none	part-time untrain	fair	Unrestricted (1.00)	1	1	1	20% variance	

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance	% Root Zone	
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	Wetted (A)	Delivery (D)
proactive cost	\$ 187.00	\$ 13.00	\$ 20.00	\$ 120.00	\$ 34.00	ş -	ş -	\$ -	Ş -	ş -
reactive cost	\$ 130.00	\$ 4.00	\$ 11.00	\$ 93.00	\$ 22.00	ş -	ş -	Ş -	ş -	\$ -
deferred cost	\$ 96.00	\$ 4.00	Ş -	\$ 74.40	\$ 17.60	ş -	Ş -	Ş -	Ş -	\$ -
Source(s): Base Cost (blue cells) - Source 7, Table 8C1. Exceptions are provided belo	w:									

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Surface Drip

Source Index	Range	Comment
19, table 1	70-90, average 85	application efficiency (Ea)
25, table 1	70-90, average 85	attainable efficiency
37, Section 12.5.2	90	System efficiency factor used in permitting
7, Table 4-1	80	potetial application efficiecy (tomatoes)
25,	new systems 88 to 94, old 70 to 85	new systems 88 to 94, old 0.7 to 0.85
31	80-90%	

FIRM analysis assumptions

New/Potential Application Efficiency:	90%	Md	S	I	М	W	Sc	F	А	D
proactive efficiency	88%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	1	10% variance
reactive efficiency	72%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	15% variance
deferred efficiency	63%	farm delivery	none	part-time untrain	fair	Unrestricted (1.00)	1	1	1	20% variance

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance	% Root Zone	
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	Wetted (A)	Delivery (D)
proactive cost	\$ 183.00	\$ 13.00	\$ 20.00	\$ 120.00	\$ 30.00	ş -	ş -	\$ -	ş -	ş -
reactive cost	\$ 120.00	\$ 4.00	\$ 11.00	\$ 93.00	\$ 12.00	ş -	Ş -	Ş -	ş -	\$ -
deferred cost	\$ 88.00	\$ 4.00	Ş -	\$ 74.40	\$ 9.60	ş -	Ş -	Ş -	ş -	ş -
Source(s): Base Cost (blue cells) - Source 7, Table 8C2. Exceptions are provided below:										
Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)										

Micro Spray

1 2		
Source Index	Range	Comment
19, table 1	70-85, average 80	application efficiency (Ea)
25, table 1	70-85, average 80	attainable efficiency
37, Section 12.5.2	90	System efficiency factor used in permitting
7, Table 4-1	80	potetial application efficiecy (citrus)
25,	new systems 88 to 94, old 70 to 85	new systems 88 to 94, old 0.7 to 0.85
35, Table FL6B-1	80	spray for orchard crops

FIRM analysis assumpions

New/Potential Application Efficiency:	85%	Md	S	Ι	М	W	Sc	F	А	D
proactive efficiency	83%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	1	10% variance
reactive efficiency	68%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	15% variance
deferred efficiency	56%	farm delivery	none	part-time untrai	fair	Unrestricted (1.00)	1	1	1	20% variance

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance	% Root Zone	
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	Wetted (A)	Delivery (D)
proactive cost	\$ 181.00	\$ 7.00	\$ 32.00	\$ 108.00	\$ 34.00	ş -	ş -	Ş -	Ş -	\$ -
reactive cost	\$ 131.00	\$ 3.00	\$ 22.00	\$ 84.00	\$ 22.00	ş -	Ş -	Ş -	ş -	\$ -
deferred cost	\$ 87.80	\$ 3.00	ş -	\$ 67.20	\$ 17.60	ş -	ş -	Ş -	ş -	Ş -

Source(s): Base Cost (blue cells) - Source 7, Table 7C. Exceptions are provided below: Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Center Pivot

Source Index	Range	Comment
19, table 1	70-85, average 75	application efficiency (Ea)
25, table 1	70-85, average 75	attainable efficiency
37, Section 12.5.2	80	System efficiency factor used in permitting
3, pg 47	50-95	varies by sprayhead type
35, Table FL6c-1	85	center pivot design sheet

FIRM analysis assumpions

New/Potential Application Efficiency:	85%	Md	S	Ι	М	W	Sc	F	U / C*	D
proactive efficiency	79%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	65%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	56%	farm delivery	none	part-time untrain	fair	Unrestricted (1.00)	1	1	1	press variance 30%

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (facotr = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 79.00	\$ 7.00	\$ 32.00	\$ 20.00	\$ 20.00	ş -	ş -	ş -	\$ -	\$ -
reactive cost	\$ 56.50	\$ 3.00	\$ 22.00	\$ 15.50	\$ 16.00	ş -	Ş -	Ş -	ş -	\$ -
deferred cost	\$ 28.20	\$ 3.00	ş -	\$ 12.40	\$ 12.80	ş -	ş -	Ş -	ş -	\$ -

Source(s): Base Cost (blue cells) - Source 5C (assumed similar to seepage irrigation). Other Exceptions are provided below:

Source 39 Table 2 suggests that these irrigation operation costs are similar per unit of water applied, therefore, irrigation operation labor was set to 50% the estimates for seepage

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Pro-active maintenance costs assumed to be 5% of system initial cost (\$400/acre). Reactive cost was assumed to be 80% of the proactive cost

Impact Sprinkler

Source Index	Range	Comment
19, table 1	65-75, average 70	application efficiency (Ea), traveling gun
25, table 1	65-75, average 70	attainable efficiency (Ea), traveling gun
37, Section 12.5.2	70	System efficiency factor used in permitting, traveling gun
7, table 4-1	70	potetial application efficiecy (citrus, containter and field-grown ornamentals)

FIRM analysis assumptions

New/Potential Application Efficiency:	75%	Md	S	Ι	М	W	Sc	F	U / C*	D
proactive efficiency	70%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	57%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	50%	farm delivery	none	part-time untrai	fair	Unrestricted (1.00)	1	1	1	press variance 30%

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (facotr = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
Total	tal	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost \$	194.00	\$ 7.00	\$ 32.00	\$ 117.00	\$ 38.00	ş -	Ş -	Ş -	ş -	\$ -
reactive cost \$	146.00	\$ 3.00	\$ 22.00	\$ 91.00	\$ 30.00	ş -	Ş -	Ş -	Ş -	\$ -
deferred cost \$	99.80	\$ 3.00	\$ -	\$ 72.80	\$ 24.00	ş -	ş -	\$ -	ş -	ş -

Source(s): Base Cost (blue cells) - Source 7 Table 3C. Other Exceptions are provided below:

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Sprayhead Sprinkler

Source Index	Range	Comment
19, table 1	70-80, average 75	application efficiency (Ea), solid set systems
25, table 1	70-80, average 75	attainable efficiency, solid set
37, Section 12.5.2	70	System efficiency factor used in permitting, overhead sprinkler
7, table 4-4	70	potetial application efficiecy
31	60-80%	
35, Table FL6A-1	75	solid set
18, Table 6-4	60-75	

FIRM analysis assumptions

New/Potential Application Efficiency:	75%	Md	S	I	М	W	Sc	F	U / C*	D
proactive efficiency	70%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	57%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	50%	farm delivery	none	part-time untrair	fair	Unrestricted (1.00)	1	1	1	press variance 30%
	1 1011			1.(2 0.05)						

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (facotr = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 181.00	\$ 7.00	\$ 20.00	\$ 120.00	\$ 34.00	ş -	Ş -	\$ -	ş -	\$ -
reactive cost	\$ 129.00	\$ 3.00	\$ 11.00	\$ 93.00	\$ 22.00	\$ -	ş -	ş -	ş -	\$ -
deferred cost	\$ 95.00	\$ 3.00	\$ -	\$ 74.40	\$ 17.60	ş -	ş -	Ş -	ş -	\$ -
Source(s): Base Cost (blue cells) - Source 7 Table 1C Other Exceptions are provider	t below:									

Source(s): Base Cost (blue cens) - Source / Table IC. Other Exceptions are provided below:

Linear Move

Source Index	Range	Comment
19, table 1	70-85, average 85	application efficiency (Ea)
25, table 1	70-85, average 75	attainable efficiency
37, Section 12.5.2	80	System efficiency factor used in permitting, center pivot
18, Table 6-4	80-87	

FIRM analysis assumptions

New/Potential Application Efficiency:	85%	Md	S	Ι	М	W	Sc	F	U / C*	D
proactive efficiency	79%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	65%	farm delivery	scheduling	full-time untrair	ngood	Unrestricted (1.00)	1	1	. 1	press variance 30%
deferred efficiency	56%	farm delivery	none	part-time untrai	r fair	Unrestricted (1.00)	1	1	. 1	press variance 30%

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (factor = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 84.00	\$ 7.00	\$ 32.00	\$ 20.00	\$ 25.00	ş -	ş -	Ş -	Ş -	\$ -
reactive cost	\$ 60.50	\$ 3.00	\$ 22.00	\$ 15.50	\$ 20.00	ş -	ş -	Ş -	Ş -	ş -
deferred cost	\$ 31.40	\$ 3.00	Ş -	\$ 12.40	\$ 16.00	ş -	ş -	Ş -	Ş -	Ş -

Source(s): Base Cost (blue cells) - Source 5C (assumed similar to seepage irrigation). Other Exceptions are provided below:

Source 39 Table 2 suggests that these irrigation operation costs are similar per unit of water applied, therefore, irrigation operation labor was set to 50% the estimates for seepage.

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Pro-active maintenance costs assumed to be 5% of system initial cost (\$400/acre). Reactive cost was assumed to be 80% of the proactive cost.

Traveling Gun

Source Index	Range	Comment
19, table 1	65-75, average 70	application efficiency (Ea)
25, table 1	65-75, average 70	attainable efficiency
37, Section 12.5.2	70	System efficiency factor used in permitting
35, Table FL6c-1	65	center pivot design sheet
18, Part 652.0602 (b)1.(ii)	60-75	

FIRM analysis assumptions

New/Potential Application Efficience	<u>/:</u> 70%	Md	S	I	М	W	Sc	F	U / C*	D
proactive efficience	y 65%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficient	y 53%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficient	y 46%	farm delivery	none	part-time untrai	fair	Unrestricted (1.00)	1	1	1	press variance 30%

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (factor = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation Scheduling	Irrigation	Maintenance		Sol	Farm Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 163.00	\$ 13.00	\$ 17.00	\$ 120.00	\$ 13.00	ş -	ş -	Ş -	ş -	ş -
reactive cost	\$ 116.00	\$ 7.00	\$ 10.00	\$ 93.00	\$ 6.00	ş -	Ş -	Ş -	ş -	ş -
deferred cost	\$ 86.20	\$ 7.00	ş -	\$ 74.40	\$ 4.80	ş -	ş -	Ş -	ş -	ş -
ource(s): Base Cost (blue cells) - Source 7 Table 6C2. Other Exceptions are provided below:										

Wheel rol	(assumed similar to	traveling gun)
	100000000000000000000000000000000000000	

Source Index	Range	Comment
19, table 1	65-75, average 70	application efficiency (Ea), traveling gun
25, table 1	65-75, average 70	attainable efficiency (Ea), traveling gun
37, Section 12.5.2	70	System efficiency factor used in permitting, traveling gun
18, Part 652.0602 (b)1.(ii)	60-75	

FIRM analysis assumptions

New/Potential Application Efficiency:	70%	Md	S	I	М	W	Sc	F	U / C*	D
proactive efficiency	65%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	0	press variance < 20%
reactive efficiency	53%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	46%	farm delivery	none	part-time untrai	fair	Unrestricted (1.00)	1	1	1	press variance 30%

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (facotr = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 163.00	\$ 13.00	\$ 17.00	\$ 120.00	\$ 13.00	ş -	Ş -	Ş -	Ş -	\$ -
reactive cost	\$ 116.00	\$ 7.00	\$ 10.00	\$ 93.00	\$ 6.00	ş -	ş -	Ş -	ş -	\$ -
deferred cost	\$ 86.20	\$ 7.00	Ş -	\$ 74.40	\$ 4.80	ş -	ş -	Ş -	ş -	\$ -
	11.1									

Source(s): Base Cost (blue cells) - Source 7 Table 6C2. Other Exceptions are provided below:

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Stationary gun

Source Index	Range	Comment
19, table 1	70-80, average 75	application efficiency (Ea), solid set systems
25, table 1	70-80, average 75	attainable efficiency, solid set
37, Section 12.5.2	70	System efficiency factor used in permitting, traveling gun
7, Table 4-1 & 4-4	65	potetial application efficiecy (citrus, strawberry)

FIRM analysis assumptions

New/Potential Application Efficiency:	75%	Md	S	I	М	W	Sc	F	U / C*	D
proactive efficiency	70%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	57%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	50%	farm delivery	none	part-time untrai	fair	Unrestricted (1.00)	1	1	1	press variance 30%
					-					

*For this analysis, uniformity was set to 85% or greater (factor =1) and climate effect was set to warm-normal ET, moderate droplet size, 7 mph wind (facotr = 0.95)

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / C*	Delivery (D)
proactive cost	\$ 160.00	\$ 13.00	\$ 17.00	\$ 117.00	\$ 13.00	ş -	ş -	Ş -	ş -	\$ -
reactive cost	\$ 114.00	\$ 7.00	\$ 10.00	\$ 91.00	\$ 6.00	ş -	Ş -	Ş -	ş -	\$ -
deferred cost	\$ 84.60	\$ 7.00	Ş -	\$ 72.80	\$ 4.80	ş -	ş -	Ş -	ş -	\$ -
ource(s): Base Cost (blue cells) - Source 7 Table 6C2. Other Exceptions are provided below:										

Pipeline seepage

Source Index	Range	Comment						
19, table 1	30-70	application efficiency (Ea), semi-closed flow-through						
25, table 1	30-70	attainable efficiency (Ea), semi-closed flow-through						
37, Section 12.5.2	60	System efficiency factor used in permitting						
7, Table 4-1	50	potetial application efficiecy						
31	20-50%							
35, FL652.0605e	50	semi-enclosed subsurface						

FIRM analysis assumpions

New/Potential Application Efficiency	70%	Md	S	I	М	W	Sc	F	U / L*	D
proactive efficiency	69%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	1	peaks delivered daily 100%
reactive efficiency	60%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	peaks delivered daily 100%
deferred efficiency	43%	farm delivery	none	part-time untrain	fair	Unrestricted (1.00)	1	1	1	peaks delivered daily 100%

*For this analysis, uniformity was set to irrigation laterals at the Recommended Spacing and on Uniform Soil. Land surface assumed poor for deferred maintenance program.

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / L*	Delivery (D)
proactive cost	\$ 104.00	\$ 8.00	\$ 12.00	\$ 40.00	\$ 44.00	ş -	ş -	Ş -	Ş -	ş -
reactive cost	\$ 63.00	\$ 4.00	\$ 10.00	\$ 31.00	\$ 18.00	Ş -	Ş -	Ş -	Ş -	\$ -
deferred cost	\$ 43.20	\$ 4.00	Ş -	\$ 24.80	\$ 14.40	ş -	ş -	Ş -	Ş -	ş -
	11 1									

Source(s): Base Cost (blue cells) - Source 7 Table 5C. Other Exceptions are provided below:

Where data absent, deferred maintenance items were estimated at 80% of the reactive maintenance cost (relates to I & M)

Flood

Source Index	Range	Comment
19, table 1	25-75	application efficiency (Ea), crown flood
25, table 1	25-75	attainable efficiency (Ea), crown flood
37, Section 12.5.2	50	System efficiency factor used in permitting

FIRM analysis assumpions

			Irrigation Scheduling	Irrigation	Maintenance		Sol	Farm Conveyance		
New/Potential Application Efficiency:	60%	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / L*	Delivery (D)
proactive efficiency	57%	each field	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1	1	flood 36 hurs
reactive efficiency	49%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	flood 36 hurs
deferred efficiency	38%	farm delivery	none	part-time untrair	fair	Unrestricted (1.00)	1	1	1	flood 36 hurs

*For this analysis, uniformity was set to the average of range of recommended values. Fair ground surface.

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / L*	Delivery (D)
proactive cost	\$ 104.00	\$ 8.00	\$ 12.00	\$ 40.00	\$ 44.00	ş -	Ş -	Ş -	ş -	\$ -
reactive cost	\$ 63.00	\$ 4.00	\$ 10.00	\$ 31.00	\$ 18.00	ş -	Ş -	\$ -	\$ -	\$ -
deferred cost	\$ 43.20	\$ 4.00	ş -	\$ 24.80	\$ 14.40	ş -	Ş -	\$ -	\$ -	\$ -
ource(s): Base Cost (blue cells) - Source 7 Table 5C assuming similar costs to seenage irritogion Other Exceptions are provided below:										

Container nursery impact sprinkler

Source Index	Citation	Comment
19, table 1	15-50, average 20	application efficiency (Ea), solid set for container nurseries
25, table 1	15-50, average 20	attainable efficiency (Ea), solid set for container nurseries

FIRM analysis assumptions (assumed similar to traveling gun)

New/Potential Application Efficiency:	50%	Md	S	I	М	W	Sc	F	U / C*	D
proactive efficiency	46%	each zone	Mon.&Sch	full-time, trained	excellent	Unrestricted (1.00)	1	1		press variance < 20%
reactive efficiency	38%	farm delivery	scheduling	full-time untrain	good	Unrestricted (1.00)	1	1	1	press variance 30%
deferred efficiency	33%	farm delivery	none	part-time untrain	fair	Unrestricted (1.00)	1	1	1	press variance 30%

*For this analysis, uniformity was set to the average of range of recommended values. Fair ground surface.

Associated Management Costs w/FIRM Assumptions (annual \$/acre)										
			Irrigation					Farm		
			Scheduling	Irrigation	Maintenance		Sol	Conveyance		
	Total	Meters (Md)	(S)	Operator (I)	(M)	Water Availability (W)	Condition	(F)	U / L*	Delivery (D)
proactive cost	\$ 309.00	\$ 26.00	\$ 91.00	\$ 120.00	\$ 72.00	Ş -	Ş -	Ş -	Ş -	ş -
reactive cost	\$ 209.00	\$ 8.00	\$ 48.00	\$ 93.00	\$ 60.00	ş -	Ş -	Ş -	ş -	\$ -
deferred cost	\$ 130.40	\$ 8.00	Ş -	\$ 74.40	\$ 48.00	ş -	Ş -	\$ -	ş -	\$ -
Source(s): Base Cost (blue cells) - Source 7 Table 4C assuming similar costs to seepag	e irrigation Other Exceptions	re provided belo	- WP							

Source(s): Base Cost (blue cells) - Source 7 Table 4C assuming similar costs to seepage irrigation. Other Exceptions are provided bel

Appendix D Expansion of Methodologies to the NFSEG Model

Royal Consulting Services, Inc.

MEMORANDUM

To: Max Castaneda, SJRWMDFrom: Tim DesmaraisRe: Task 7 Expansion of Methodologies to North Florida/Southeast Georgia

Date: 08/16/2013

C: Tom Blush, SJRWMD

The purpose of this memorandum is to present the results and discuss the assumptions that were made to develop an Irrigated Land Geodatabase (ILG) and determine the irrigation requirements for additional Agricultural (Ag) areas located to the north of the MegaModel boundary, which was the study area for Tasks 1-6 of this project. The ILG for the expanded area was developed following the same procedure used for the MegaModel, with a few exceptions that will be discussed herein.

Figure 1 shows the expanded study area, which includes 20 counties in the Florida panhandle, 15 counties in southeast Alabama, 145 counties in Georgia, and 32 counties in South Carolina. All counties were analyzed in their entirety so that the ILG could be compared to the Ag Census data. The total land area included in this analysis is roughly 99,390 square miles, not including the counties in Figure 1 that are shaded in blue.

GIS Processing

Table 1 shows the availability in terms of the four sources of data that were overlain previously to define the Ag Land Geodatabase (ALG). The irrigated areas coverage for Georgia used for the MegaModel processing included the entire state. No information except the NASS cropland coverage was available for Alabama and South Carolina. For these counties, the spatial extent of the irrigated areas is the same as the NASS coverage. For the Florida panhandle counties, the irrigated areas were defined as the intersection of FLUCCS land use and the NASS coverage.

Ultimately the Georgia irrigated areas were used in their original form, except that less descriptive crop types in the Georgia irrigated areas coverage (e.g., "rotation") were assigned a crop type coming from the NASS data. Crop adjustment factors were applied to the rest of the study area (Florida panhandle, Alabama, and South Carolina) to obtain a reasonable match with the Ag Census Data.

Tables 2a to 2d present a county-by-county comparison of the GIS-derived ILG and the Ag Census data for each state. **Tables 3a to 3c** list the crop adjustment factors that were applied for Alabama, Florida, and South Carolina (respectively).

The resulting ILGs are presented for each state in **Figures 2a** to **2d**. The difference in input data coverages is difficult to discern in these figures due to the parcel-level scale of the data and large extent of the areas processed. **Figure 3** shows an example of each of the four states at a scale of 1 inch equals 2000 feet. At this scale, the differences related to the available GIS input data become quite clear. Alabama and South Carolina, which only used the NASS grid data for input, are characterized by a dense pixilated coverage. The Florida panhandle region is very similar, except many of the corners are rounded off and better captures the landscape, which is the result of incorporating the FLUCCS land use data. The GIS coverage for Georgia is very detailed and consists of large contiguous polygons.

After processing of the ILGs, each polygon was assigned a predominant soil type, nearest ET stations, and nearest rainfall station. An irrigation system was assumed for Alabama, the Florida panhandle, and South Carolina based on the predominant irrigation system for the particular crop. For Georgia, the irrigation system information was provided in the input Irrigated areas coverage.

Irrigation Estimates - AFSIRS Modeling

Irrigation estimates were made using batch-mode version of AFSIRS described for the MegaModel analysis. Crops and irrigation systems were fit into the existing AFSIRS databases. All of the input assumptions from the MegaModel effort were carried over this work, except for the soil data. The AFSIRS soil database was set up for prevalent Florida soil types. In the MegaModel run, the soil types from the very few irrigated parcels in Georgia were manually assumed an equivalent AFSIRS soil type. However, considering the scale of the expanded study area, three new soil databases were developed – one for Alabama, Georgia, and South Carolina. These databases were prepared for only the list of predominant soils that was developed from the GIS processing. These datasets were prepared by extracting information about the soil profile for each soil type using the Soil Survey databases (NRCS Geospatial Data Gateway website). Each soil type is defined into several soil profiles. For each soil profile, the depth of the soil profile, the low estimated available water content, and high estimated water content was extracted and put into the format needed by AFSIRS.

The simulations were thus separated by state, which coincides with the GIS processing. The list of crops and growing seasons was expanded a bit, and new crops were assigned a representative AFSIRS crop code and a typical growing season was assumed.

Tables 4a to **4d** provide a county-by-county breakdown of the total adjusted irrigated acreage, and average daily irrigation demand for wet (20th percentile), normal, and dry (80th percentile) rainfall years. The overall summary is as follows:

Data Crown / State	Adjusted Irrigated	Wet Year ¹	Average Year	Dry Year ¹
Data Group / State	Area (acres)	(mgd)	(mgd)	(mgd)
Alabama	46,370	22	38	54
Florida	53,644	28	48	68
Georgia	1,363,966	971	1,397	1,786
South Carolina	114,766	46	81	115

The GIS output was set up to be linked to the gross irrigation requirements (in inches) summarized in a variety of ways. Each parcel has two fields for an area calculation: the geometric

area of the polygon and the adjusted irrigated area. It was set up this way to allow for manipulation of the crop adjustment factors and updating the results without the need to re-run AFSIRS. To compute volumes of water, the gross irrigation demand should be multiplied by the adjusted irrigated area. The geometric polygon area field can be used for translating the data to a model grid because it can be used to proportion the flow among multiple grid cells.

Summary and Conclusions

The resulting set of ILG for each state incorporate the best-available information. The irrigated areas for Alabama and South Carolina rely solely on the NASS data. The irrigated areas for the panhandle portion of Florida are one step better, incorporating FLUCCS. The irrigated areas for Georgia were based on manually digitized polygons and thus Georgia is considered to be the most accurate coverage from a geometry perspective.

The data for Alabama, South Carolina, and the panhandle portion of Florida were roughly tensioned to the Ag Census data. To do this, crop adjustment factors were defined that reduced the geometric area by a certain factor. No adjustments were made to the Georgia dataset.

Not surprisingly, the largest discrepancy between the ILGs and the Ag Census data is for Georgia. The total irrigated for the ILG is roughly 35% greater than the Ag Census. Tensioning Georgia's data is not recommended because at one point or another, these fields could be irrigated. The Ag Census data is for the calendar year of 2007. The input irrigated areas coverage for Georgia does not specify the time frame it represents, but considering the amount of effort that must have been spent on this, it is more than likely that it includes parcels that were not irrigated in 2007.

While the accuracy of the ILGs at present could be improved, this task achieved the important task of assembling all of the information and at least making preliminary estimates of irrigation requirements. From this point, model-wide estimates can be made and refined (in terms of the GIS geometry and AFSIRS modeling) where necessary.

Figures

Royal Consulting Services, Inc.

Page 11

Tables

Data Group	Crop Type	Irrigation System
Alabama	3	-
South Carolina	3	-
Florida	2,3	-
Georgia	1,2,3	1

Table 1 Data Availability and Source Attribute Matrix¹

¹The numbers in this table refer to the following GIS data sources: (1) Irrigated Areas, (2) Land Use / Land Cover, and (3) NASS satellite imagery.

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
		ALABA	MA	
Barbour	AL	3,024	2,785	239
Bullock	AL	3,257	(D)	na
Chambers	AL	255	338	-83
Dale	AL	3,062	2,602	460
Elmore	AL	2,504	2,010	494
Geneva	AL	3,458	2,953	505
Henry	AL	4,567	4,995	-428
Houston	AL	13,701	13,368	333
Lee	AL	1,019	793	226
Macon	AL	3,148	2,562	586
Montgomery	AL	1,487	629	858
Pike	AL	3,189	2,414	775
Randolph	AL	207	217	-10
Russell	AL	2,803	2,560	243
Tallapoosa	AL	688	(D)	na
	Total	46,370	38,226	

Table 2a Alabama GIS-derived ILG and 2007 Ag Census Irrigated Area

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)				
	FLORIDA							
Bay	FL	1,163	(D)	na				
Calhoun	FL	1,793	1,455	338				
Dixie	FL	2,493	2,957	-464				
Escambia	FL	3,515	2,552	963				
Gadsden	FL	2,135	2,209	-74				
Holmes	FL	3,366	2,033	1,333				
Jackson	FL	21,027	20,275	752				
Jefferson	FL	3,022	2,148	874				
Lafayette	FL	5,514	7,426	-1,912				
Leon	FL	726	1,467	-741				
Liberty	FL	425	(D)	na				
Madison	FL	4,331	3,119	1,212				
Okaloosa	FL	507	421	86				
Santa Rosa	FL	1,307	2,562	-1,255				
Wakulla	FL	566	282	284				
Walton	FL	608	718	-110				
Washington	FL	1,145	888	257				
	Total	53,644	50,512	•				

Table 2b Florida Panhandle GIS-derived ILG and 2007 Ag Census Irrigated Area

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
GEORGIA				
Appling	GA	7,911	9,092	-1,181
Atkinson	GA	7,337	5,617	1,720
Bacon	GA	6,860	5,996	864
Baker	GA	40,600	21,999	18,601
Banks	GA	6	672	-666
BenHill	GA	7,694	7,966	-272
Berrien	GA	15,848	14,482	1,366
Bibb	GA	166	128	38
Bleckley	GA	13,282	17,543	-4,261
Brantley	GA	728	351	377
Brooks	GA	21,786	19,064	2,722
Bryan	GA	122	(D)	na
Bulloch	GA	17,599	7,762	9,837
Burke	GA	25,669	17,693	7,976
Butts	GA	45	125	-80
Calhoun	GA	29,062	30,346	-1,284
Candler	GA	6,454	3,721	2,733
Carroll	GA	297	662	-365
Chatham	GA	44	149	-105
Cherokee	GA	72	148	-76
Clarke	GA	107	117	-10
Clay	GA	7,631	9,417	-1,786
Clinch	GA	3,292	1,819	1,473
Cobb	GA	7	46	-39
Coffee	GA	26,065	17,971	8,094
Colquitt	GA	47,928	44,075	3,853
Columbia	GA	45	79	-34
Cook	GA	16,077	10,845	5,232
Coweta	GA	207	464	-257
Crawford	GA	6,693	4,458	2,235
Crisp	GA	29,631	17,330	12,301
Dawson	GA	177	83	94
Decatur	GA	71,148	47,946	23,202
Dodge	GA	15,998	13,510	2,488
Dooly	GA	45,583	37,215	8,368
Dougherty	GA	18,731	15,225	3,506
Early	GA	53,178	33,053	20,125
Echols	GA	2,892	3,962	-1,070
Effingham	GA	1,144	44	1,100
Elbert	GA	322	66	256
Emanuel	GA	5,135	7,626	-2,491

Table 2c Georgia GIS-derived ILG and 2007 Ag Census Irrigated Area

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
GEORGIA	1 (/			
Evans	GA	7,074	2,802	4,272
Fayette	GA	164	97	67
Forsyth	GA	149	208	-59
Franklin	GA	161	532	-371
Fulton	GA	11	268	-257
Glascock	GA	89	107	-18
Grady	GA	16,199	8,028	8,171
Greene	GA	46	451	-405
Gwinnett	GA	60	257	-197
Habersham	GA	272	293	-21
Hall	GA	108	170	-62
Hancock	GA	312	94	218
Harris	GA	21	136	-115
Hart	GA	934	1,542	-608
Henry	GA	206	158	48
Houston	GA	10,499	4,479	6,020
Irwin	GA	33,509	30,577	2,932
Jackson	GA	114	617	-503
Jasper	GA	165	294	-129
JeffDavis	GA	11,060	9,259	1,801
Jefferson	GA	19,862	14,587	5,275
Jenkins	GA	8,313	9,978	-1,665
Johnson	GA	2,046	1,614	432
Jones	GA	72	308	-236
Lamar	GA	577	1,282	-705
Lanier	GA	6,516	8,434	-1,918
Laurens	GA	8,590	6,408	2,182
Lee	GA	42,099	15,757	26,342
Liberty	GA	32	46	-14
Long	GA	997	475	522
Lowndes	GA	8,032	4,169	3,863
Lumpkin	GA	105	66	39
Macon	GA	28,232	16,905	11,327
Marion	GA	5,978	3,389	2,589
McDuffie	GA	798	506	292
Meriwether	GA	326	765	-439
Miller	GA	59,710	37,704	22,006
Mitchell	GA	81,812	47,675	34,137
Monroe	GA	148	150	-2
Montgomery	GA	2,115	2,581	-466
Morgan	GA	986	1,817	-831
Muscogee	GA	3	(D)	na

Table 2c (Cont) Georgia GIS-derived ILG and 2007 Ag Census Irrigated Area

Page 16

County	Data	Adjusted ILG	G 2007 Ag Census Irrigated Land Diff. (ac	
GEORGIA	Group(s)	(acres)	(acres)	
Newton	GA	212	214	2
Oconee	GA	710	964	-254
Odethorpe	GA	353	774	421
Paulding	GA	2	10	-421
Peach	GA	12 020	5.635	-0
Dierce	GA	10.965	8 280	2,685
Dilto	GA	1 1 6 5	771	2,085
Duladui	GA	1,105	//1	0.120
Pulaski	GA	21,855	12,090	9,139
Putnam	GA	361	517	-150
Quitman	GA	505	(D)	na
Rabun	GA	21	550	-529
Randolph	GA	29,775	15,/53	14,022
Richmond	GA	113	37	76
Schley	GA	2,176	1,330	846
Screven	GA	21,247	13,568	7,679
Seminole	GA	50,473	45,798	4,675
Stewart	GA	5,139	384	4,755
Sumter	GA	46,995	31,879	15,116
Talbot	GA	14	66	-52
Tattnall	GA	18,483	12,510	5,973
Taylor	GA	3,936	4,364	-428
Telfair	GA	8,101	7,325	776
Terrell	GA	29,725	29,111	614
Thomas	GA	13,448	12,479	969
Tift	GA	24,208	28,825	-4,617
Toombs	GA	12,529	10,749	1,780
Towns	GA	6	(D)	na
Treutlen	GA	1,426	4,982	-3,556
Troup	GA	1	(D)	na
Turner	GA	32,358	22,175	10,183
Twiggs	GA	2,430	2,115	315
Union	GA	77	42	35
Upson	GA	922	644	278
Walton	GA	916	843	73
Ware	GA	4,244	2,545	1,699
Washington	GA	7,319	2,267	5,052
Wavne	GA	4,626	4,614	12
Webster	GA	12,238	3,296	8,942
Wheeler	GA	4,552	4,128	424
White	GA	36	140	-104
Wilcox	GA	17,801	21,429	-3,628

Table 2c (Cont) Georgia GIS-derived ILG and 2007 Ag Census Irrigated Area

Table 2c	(Cont)	Georgia	GIS-derived	ILG and	2007 Ag	Census I	rrigated Area
----------	--------	---------	--------------------	---------	---------	----------	---------------

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
GEORGIA				
Wilkes	GA	26	390	-364
Wilkinson	GA	75	16	59
Worth	GA	48,326	30,187	18,139
	Total	1,363,966	1,008,254	

County	Data Group(s)	Adjusted ILG (acres)	2007 Ag Census Irrigated Land (acres)	Diff. (acres)
	•	South Ca	rolina	
Abbeville	SC	576	1,477	-901
Aiken	SC	3,384	3,153	231
Allendale	SC	6,949	6,584	365
Anderson	SC	884	664	220
Bamberg	SC	4,927	5,486	-559
Barnwell	SC	4,062	3,871	191
Beaufort	SC	2,104	2,430	-326
Berkeley	SC	1,391	623	768
Calhoun	SC	8,292	10,030	-1,738
Charleston	SC	2,424	1,304	1,120
Chester	SC	1,954	(D)	na
Clarendon	SC	4,709	2,761	1,948
Colleton	SC	2,489	2,630	-141
Dorchester	SC	1,999	1,845	154
Edgefield	SC	4,272	4,986	-714
Fairfield	SC	905	224	681
Greenwood	SC	466	115	351
Hampton	SC	2,848	2,812	36
Jasper	SC	1,040	(D)	na
Kershaw	SC	1,672	1,438	234
Lancaster	SC	756	258	498
Laurens	SC	1,074	435	639
Lexington	SC	10,516	11,078	-562
McCormick	SC	210	(D)	na
Newberry	SC	1,718	1,438	280
Oconee	SC	1,331	309	1,022
Orangeburg	SC	22,032	23,570	-1,538
Pickens	SC	359	779	-420
Richland	SC	3,031	1,425	1,606
Saluda	SC	5,570	4,160	1,410
Sumter	SC	10,179	9,486	693
Union	SC	643	117	526
	Total	114,766	105,488	

Table 2d South Carolina GIS-derived ILG and 2007 Ag Census Irrigated Area

County / State	Сгор	Area Adjustment Factor	County / State	Сгор	Area Adjustment Factor
Barbour	Peanuts	0.25	Macon	Peanuts	0.1
Bullock	Peanuts	0.1	Macon	Cotton	0.1
Bullock	Cotton	0.1	Macon	Soybeans	0.1
Bullock	Soybeans	0.1	Montgomery	Peanuts	0.1
Bullock	Corn	0.1	Montgomery	Cotton	0.1
Chambers	Peanuts	1	Montgomery	Soybeans	0.1
Dale	Peanuts	0.25	Pike	Peanuts	0.5
Dale	Cotton	0.25	Pike	Cotton	0.5
Elmore	Peanuts	0.1	Randolph	Peanuts	1
Elmore	Cotton	0.1	Russell	Peanuts	1
Geneva	Peanuts	0.05	Tallapoosa	Peanuts	1
Geneva	Cotton	0.05		Statewide	
Henry	Peanuts	0.25	Statewide	Peanuts	0.3
Henry	Cotton	0.25	Statewide	Cotton	0.3
Houston	Peanuts	0.25	Statewide	Corn	0.3
Lee	Peanuts	0.25	Statewide	Soybeans	0.3
Lee	Cotton	0.25	Statewide	OtherHay_NonAlfalfa	0

Table 3a Alabama Crop Adjustment Factors

9

Table 3b Florida Crop Adjustment Factors

County / State	Сгор	Area Adjustment Factor	County / State	Сгор	Area Adjustme Factor
Calhoun	Cotton	0.15	Holmes	DblCropSoybeans_Oats	0.05
Calhoun	Peanuts	0.15	Holmes	Oats	0.05
Calhoun	Pasture	0.15	Holmes	Peanuts	0.05
Calhoun	OtherHay_NonAlfalfa	0.15	Holmes	Cotton	0.05
Calhoun	Soybeans	0.15	Holmes	OtherHay_NonAlfalfa	0.05
Calhoun	Corn	0.15	Holmes	Pasture	0.05
Calhoun	DblCropWinWht_Soybeans	0.15	Holmes	Soybeans	0.05
Escambia	Cotton	0.05	Holmes	Corn	0.05
Escambia	Peanuts	0.05	Madison	Peanuts	0.2
Escambia	Pasture	0.05	Madison	Corn	0.2
Escambia	OtherHay_NonAlfalfa	0.05	Madison	OtherHay_NonAlfalfa	0.2
Escambia	Corn	0.05	Madison	Peas	0.2
Escambia	Soybeans	0.05	Madison	Soybeans	0.2
Escambia	Sod_GrassSeed	0.05	Madison	Millet	0.2
Escambia	DblCropWinWht_Soybeans	0.05	Washington	Pasture	0.2
Gadsden	OtherHay_NonAlfalfa	0.25	Washington	Peanuts	0.2
Gadsden	Peanuts	0.25	Washington	OtherHay_NonAlfalfa	0.2
Gadsden	Pasture	0.25	Washington	Corn	0.2
Gadsden	Cotton	0.25	Washington	Cotton	0.2
Gadsden	Corn	0.25	Washington	Soybeans	0.2
Jackson	Peanuts	0.4	Washington	DblCropSoybeans_Oats	0.2
Jackson	Cotton	0.4		Statewide	•
Jackson	Pasture	0.4	Statewide	Fallow	0
Jackson	OtherHay_NonAlfalfa	0.4	Statewide	Peanuts	0.5
Jackson	Corn	0.4	Statewide	Cotton	0.5
Jackson	Fallow	0.4	Statewide	Pasture	0.5
Jackson	Soybeans	0.4	Statewide	OtherHay_NonAlfalfa	0.5
Jefferson	Peanuts	0.25	Statewide	Aquaculture	0
Jefferson	Corn	0.25	Statewide	Horse Farms	0
Jefferson	OtherHay_NonAlfalfa	0.25	<u>.</u>		
Jefferson	Soybeans	0.25			

Area Area County / County / Adjustment Adjustment Crop Crop State State Factor Factor 0.1 Calhoun Corn 0.5 Aiken Peaches Sovbeans 0.1 Calhoun 0.5 Aiken Soybeans Corn 0.1 Berkeley Corn 0.25 Aiken Aiken DblCropWinWht Soybeans 0.25 0.1 Berkeley Soybeans 0.25 Aiken Cotton 0.1 Berkeley Cotton 0.25 0.25 Allendale Corn Colleton Corn Allendale Soybeans 0.25 Colleton Soybeans 0.25 Allendale DblCropWinWht_Soybeans 0.25 Colleton Cotton 0.25 0.25 Bamberg Corn 0.25 Colleton DblCropSoybeans_Oats 0.25 Bamberg Cotton 0.25 Colleton DblCropWinWht_Soybeans Soybeans 0.25 Colleton 0.25 Bamberg Peanuts 0.25 0.25 Bamberg DblCropWinWht_Soybeans Dorchester Soybeans Clarendon DblCropWinWht_Soybeans 0.1 Dorchester Corn 0.25 Clarendon Corn 0.1 Dorchester Cotton 0.25 0.25 Clarendon Soybeans 0.1 Dorchester DblCropWinWht_Soybeans Cotton 0.25 Clarendon 0.1 Dorchester Peanuts DblCropWinWht Soybeans 0.25 0.25 Sumter Hampton Sod GrassSeed Sumter Corn 0.25 Hampton DblCropWinWht_Soybeans 0.25 Soybeans 0.25 0.5 Sumter Hampton Peanuts Orangeburg Corn 0.5 Sod GrassSeed 0.25 Jasper 0.25 0.5 Corn Orangeburg Cotton Jasper 0.5 Orangeburg Soybeans Jasper Soybeans 0.25 DblCropWinWht_Soybeans 0.5 0.25 Orangeburg Kershaw Corn 0.5 Kershaw Sovbeans 0.25 Orangeburg Peanuts DblCropWinWht_Soybeans Hampton Cotton 0.1 Kershaw 0.25 Hampton Corn 0.1 Kershaw 0.25 Pecans Hampton Sovbeans 0.1 Kershaw Sod GrassSeed 0.25 0.25 DblCropWinWht_Soybeans Edgefield Peaches Newberry 0.25 Richland 0.25 Corn Newberry Corn 0.25 Richland DblCropWinWht_Soybeans 0.25 Newberry Peaches 0.25 0.25 Richland Soybeans 0.25 Newberry WinterWheat Saluda Peaches 0.5 Newberry Sovbeans 0.25 Barnwell Soybeans 0.25 Newberry DblCropWinWht_Sorghum 0.25 Barnwell Corn 0.25 Newberry DblCropBarley_Sorghum 0.25 Barnwell Cotton 0.25 Newberry DblCropBarley_Corn 0.25 Barnwell 0.25 0.25 Peaches Newberry Cotton Barnwell DblCropWinWht_Soybeans 0.25 Newberry DblCropSoybeans_Oats 0.25 Calhoun 0.5 Newberry DblCropWinWht_Corn 0.25 Cotton

Table 3c South Carolina Crop Adjustment Factors

0.5

Peanuts

Calhoun

Table 3c (cont.) South Carolina Crop Adjustment Factors

County / State	Сгор	Area Adjustment Factor
Anderson	WinterWheat	0.25
Anderson	DblCropWinWht_Soybeans	0.25
Anderson	Soybeans	0.25
Anderson	Corn	0.25
Anderson	Sorghum	0.25
Anderson	Barley	0.25
Anderson	DblCropWinWht_Sorghum	0.25
Lancaster	DblCropWinWht_Soybeans	0.25
Lancaster	Corn	0.25
Lancaster	Soybeans	0.25
Lancaster	Sod_GrassSeed	0.25
Lancaster	WinterWheat	0.25

County / State	Сгор	Area Adjustment Factor
	Statewide	
Statewide	Peanuts	0.3
Statewide	Cotton	0.3
Statewide	Corn	0.3
Statewide	Soybeans	0.3
Statewide	OtherHay_NonAlfalfa	0

	Alabama Irrigated Areas			
County	Adjusted Irrigaed Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Barbour	3,024	1.36	2.40	3.39
Bullock	3,257	2.00	3.11	4.10
Chambers	255	0.05	0.09	0.13
Dale	3,062	1.36	2.38	3.36
Elmore	2,504	1.30	2.18	2.99
Geneva	3,458	1.32	2.43	3.58
Henry	4,567	2.45	4.03	5.38
Houston	13,701	4.68	9.49	14.29
Lee	1,019	0.85	1.26	1.69
Macon	3,148	2.58	4.04	5.49
Montgomery	1,487	0.59	1.02	1.40
Pike	3,189	1.18	2.03	2.80
Randolph	207	0.05	0.11	0.15
Russell	2,803	1.71	3.01	4.29
Tallapoosa	688	0.34	0.62	0.87
Total	46,370	21.8	38.2	53.9

Table 4a Alabama Irrigation Estimates by County

	Florida Panhandle Irrigated Areas			
County	Adjusted Irrigaed Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Bay	1,163	1.55	2.18	2.92
Calhoun	1,793	0.90	1.64	2.31
Dixie	2,493	0.64	1.30	1.93
Escambia	3,515	1.51	3.01	4.57
Gadsden	2,135	1.96	2.83	3.57
Holmes	3,366	1.50	2.71	3.97
Jackson	21,027	11.52	20.21	29.34
Jefferson	3,022	1.51	2.22	2.80
Lafayette	5,514	1.50	3.01	4.29
Leon	726	0.43	0.63	0.80
Liberty	425	0.22	0.35	0.47
Madison	4,331	1.67	2.80	3.81
Okaloosa	507	0.27	0.44	0.65
Santa Rosa	1,307	1.13	1.76	2.42
Wakulla	566	0.41	0.59	0.75
Walton	608	0.53	0.86	1.24
Washington	1,145	0.80	1.34	1.94
Total	53,644	28.1	47.9	67.8

Table 4b Florida Panhandle Irrigation Estimates by County

	Georgia Irrigated Areas			
County	Adjusted Irrigaed Area	Wet Year ¹	Average Year (mod)	Dry Year ¹ (mgd)
Appling	7 911	5 43	7 52	9 59
Atkinson	7,337	6.10	8.05	9.96
Bacon	6.860	6.31	8.40	10.72
Baker	40.600	28.27	40.17	51.71
Banks	6	0.00	0.00	0.00
BenHill	7.694	5.58	7.83	9.76
Berrien	15.848	11.20	15.82	20.52
Bibb	166	0.06	0.14	0.19
Bleckley	13,282	9.06	13.63	17.85
Brantley	728	0.42	0.57	0.74
Brooks	21,786	13.06	18.78	24.09
Bryan	122	0.15	0.21	0.26
Bulloch	17,599	10.43	17.40	23.14
Burke	25,669	17.52	26.56	34.22
Butts	45	0.06	0.08	0.09
Calhoun	29,062	18.43	26.28	33.41
Candler	6,454	3.85	6.25	8.19
Carroll	297	0.41	0.54	0.66
Chatham	44	0.06	0.08	0.10
Cherokee	72	0.07	0.10	0.12
Clarke	107	0.22	0.28	0.31
Clay	7,631	5.71	7.88	9.93
Clinch	3,292	2.90	4.37	5.56
Cobb	7	0.01	0.01	0.02
Coffee	26,065	17.70	24.72	30.95
Colquitt	47,928	31.69	46.49	58.21
Columbia	45	0.07	0.09	0.11
Cook	16,077	13.01	17.92	22.35
Coweta	207	0.04	0.08	0.10
Crawford	6,693	5.16	8.05	10.66
Crisp	29,631	23.71	32.71	41.94
Dawson	177	0.08	0.15	0.22
Decatur	71,148	47.03	67.79	85.39
Dodge	15,998	13.25	18.77	23.90
Dooly	45,583	38.31	51.48	64.90
Dougherty	18,731	19.73	26.99	34.28

Table 4c Georgia Irrigation Estimates by County

	Georgia Irrigated Areas			
County	Adjusted Irrigaed Area	Wet Year ¹	Average Year	Dry Year ¹
Early	53 178	34.01	49.95	64 01
Echols	2.892	1 50	2.08	2.60
Effingham	1 144	1.30	1.72	2.00
Elbert	322	0.20	0.30	0.41
Emanuel	5 1 3 5	4.87	6.54	8.23
Evans	7.074	4.48	7.28	9.59
Favette	164	0.08	0.15	0.22
Forsyth	149	0.11	0.15	0.21
Franklin	161	0.08	0.12	0.16
Fulton	11	0.02	0.02	0.02
Glascock	89	0.07	0.10	0.13
Grady	16,199	8.97	13.62	17.69
Greene	46	0.07	0.09	0.11
Gwinnett	60	0.07	0.10	0.12
Habersham	272	0.14	0.27	0.39
Hall	108	0.03	0.06	0.08
Hancock	312	0.15	0.29	0.42
Harris	21	0.04	0.04	0.05
Hart	934	0.68	0.91	1.20
Henry	206	0.18	0.24	0.32
Houston	10,499	9.93	13.22	16.59
Irwin	33,509	25.02	34.50	43.52
Jackson	114	0.11	0.15	0.19
Jasper	165	0.21	0.30	0.37
JeffDavis	11,060	9.63	12.92	15.67
Jefferson	19,862	15.85	21.93	27.46
Jenkins	8,313	6.65	9.52	12.21
Johnson	2,046	1.82	2.48	3.14
Jones	72	0.06	0.10	0.14
Lamar	577	0.59	0.83	1.04
Lanier	6,516	5.04	7.05	8.85
Laurens	8,590	7.34	10.15	13.02
Lee	42,099	31.84	43.84	55.16
Liberty	32	0.01	0.03	0.04
Long	997	0.58	0.96	1.27
Lowndes	8,032	4.14	6.44	8.40

Table 4c (cont.) Georgia Irrigation Estimates by County

	Georgia Irrigated Areas			
County	Adjusted Irrigaed Area	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Lumpkin	105	0.06	0.09	0.13
Macon	28.232	26.31	36.03	46.49
Marion	5.978	3.61	5.58	7.72
McDuffie	798	1.00	1.29	1.56
Meriwether	326	0.07	0.25	0.33
Miller	59,710	36.59	56.59	73.27
Mitchell	81,812	52.16	78.77	102.80
Monroe	148	0.14	0.22	0.29
Montgomery	2,115	1.81	2.44	3.11
Morgan	986	0.88	1.33	1.71
Muscogee	3	0.01	0.01	0.01
Newton	212	0.14	0.24	0.34
Oconee	710	0.95	1.33	1.55
Oglethorpe	353	0.33	0.47	0.59
Paulding	2	0.00	0.00	0.01
Peach	12,020	6.74	10.93	15.17
Pierce	10,965	6.86	9.48	11.88
Pike	1,165	0.59	1.12	1.60
Pulaski	21,835	21.51	27.35	33.65
Putnam	361	0.23	0.39	0.52
Quitman	505	0.35	0.48	0.62
Rabun	21	0.01	0.02	0.03
Randolph	29,775	20.47	29.22	37.44
Richmond	113	0.06	0.13	0.18
Schley	2,176	1.49	2.17	2.93
Screven	21,247	11.86	20.83	27.86
Seminole	50,473	30.56	46.43	59.94
Stewart	5,139	3.33	5.04	6.71
Sumter	46,995	38.45	53.04	67.57
Talbot	14	0.01	0.02	0.02
Tattnall	18,483	9.82	16.20	21.71
Taylor	3,936	3.30	4.80	6.35
Telfair	8,101	6.29	9.14	11.55
Terrell	29,725	20.10	28.38	36.46
Thomas	13,448	6.53	10.19	13.28
Tift	24,208	17.77	25.43	32.72

Table 4c (cont.) Georgia Irrigation Estimates by County

	Georgia Irrigated Areas			
County	Adjusted Irrigaed Area (acres)	Wet Year ¹ (mgd)	Average Year (mgd)	Dry Year ¹ (mgd)
Toombs	12,529	9.37	12.85	16.04
Towns	6	0.00	0.01	0.01
Treutlen	1,426	1.67	2.20	2.74
Troup	1	0.00	0.00	0.00
Turner	32,358	22.15	31.91	40.33
Twiggs	2,430	2.22	3.05	3.78
Union	77	0.03	0.05	0.07
Upson	922	0.38	0.90	1.42
Walton	916	1.00	1.49	1.87
Ware	4,244	2.48	3.48	4.47
Washington	7,319	7.05	9.65	12.21
Wayne	4,626	2.75	3.99	5.06
Webster	12,238	8.39	12.34	16.10
Wheeler	4,552	4.36	5.85	7.30
White	36	0.03	0.04	0.05
Wilcox	17,801	14.52	20.02	24.91
Wilkes	26	0.04	0.05	0.06
Wilkinson	75	0.06	0.09	0.12
Worth	48,326	33.64	48.86	61.80
Total	1,363,966	971	1,397	1,786

Table 4c (cont.) Georgia Irrigation Estimates by County

	South Carolina Irrigated Areas			
	Adjusted Irrigaed Area	Wet Year ¹	Average Year	Dry Year ¹
County	(acres)	(mgd)	(mgd)	(mgd)
Abbeville	576	0.23	0.37	0.54
Aiken	3,384	1.15	2.10	2.97
Allendale	6,949	3.25	5.55	7.48
Anderson	884	0.40	0.67	1.03
Bamberg	4,927	2.40	3.86	5.16
Barnwell	4,062	1.30	2.45	3.53
Beaufort	2,104	0.83	1.52	2.17
Berkeley	1,391	0.50	0.80	1.09
Calhoun	8,292	2.30	4.97	7.77
Charleston	2,424	0.81	1.41	2.02
Chester	1,954	0.75	1.29	1.89
Clarendon	4,709	2.02	3.40	4.81
Colleton	2,489	1.11	1.75	2.34
Dorchester	1,999	0.52	1.02	1.49
Edgefield	4,272	1.48	3.07	4.39
Fairfield	905	0.34	0.55	0.77
Greenwood	466	0.23	0.39	0.57
Hampton	2,848	1.35	2.32	3.12
Jasper	1,040	0.69	1.09	1.41
Kershaw	1,672	0.78	1.23	1.71
Lancaster	756	0.48	0.70	0.95
Laurens	1,074	0.45	0.75	1.13
Lexington	10,516	4.49	7.29	10.60
McCormick	210	0.08	0.16	0.24
Newberry	1,718	0.90	1.44	2.08
Oconee	1,331	0.55	1.02	1.54
Orangeburg	22,032	7.67	14.05	20.41
Pickens	359	0.06	0.13	0.20
Richland	3,031	1.51	2.54	3.68
Saluda	5,570	2.13	4.27	6.18
Sumter	10,179	4.90	7.97	11.44
Union	643	0.35	0.57	0.76
Total	114,766	46.02	80.67	115.47

Table 4d South Carolina Irrigation Estimates by County