# Special Publication SJ 85-SP1 <br> ESMIMATION OF THE ZONE OF INELUENCE <br> OF TEE PORT MALABAR WELL FIELD PORT MALABAR, FLORIDA FOR VARIED WITHDRAWALS USING A NUMERICAI MODEL 

## BY

Kevin Rohrer
Hydrologist

Department of Water Resources
St. Johns River Water Management District Post Office Box 1429
palatka, FL 32078-1429
September 1984
June 1985 (Revised)
Project Number 2033102
Page
List of Figures ..... 1
List of Tables ..... 2
Abstract ..... 3
I. Introduction ..... 5
II. Description of the Modeled Area ..... 6
Geologic Setting ..... 6
III. Description of the Model ..... 9
IV. Aquifer ResponseDrawdown Analysis for Production Well
Capacity (5.2 MGD) ..... 13
Drawdown Analysis for Well Field
Capacity (8.2 MGD) ..... 13
Drawdown Analysis for Average Monthly
Withdrawals (2.5 MGD) ..... 17
V. Discussion and Conclusion ..... 19
VI. References ..... 20
VII. Appendix A
Input Data for Production Well Capacity ..... A-1

## LIST OF EIGURES

Figure ..... Page
1 Map Showing Port Nalabar's Well Field at ..... 7
Port Malabar, Florida
2 Drawdown Contours from Pumping 5.2 MGD inShallow Rock Aquifer in Port MalabarWell Field14
3 Drawdown Contours from Pumping 8.2 MGD inShallow Rock Aquifer in Port MalabarWell Field 154 Drawdown Contours from Pumping 2.5 MGD inShallow kock Aquifer in Port MalabarWell Field 18
Table Page
1 Geologic Log of Test Well 73-1,Port Malabar, Florida8
2 Transmissivity Values for Production Wells
in Gailon Per Day Per Foot ..... 10
3 Modeled Production Well Withdrawal Rates ..... 12
4 Calculated Head and Drawdowns in Pumping Wells ..... 16
5 Average Monthly Pumpage in Million Gallonsper Day from January 1983 to May 198417

The St. Johns River Water Management District, at the request of the City of Palm Bayp provided technical assistance in defining the zone of influence for the existing Port Malabar well field. This zone of influence is defined as the area around the well field where drawdown equals or exceeds 0.5 foot. The zone of influence would be used as a means to establish a zoning classification around the well field to ensure water quality protection from potential contamination related to existing and future land uses.

A two-dimensional ground water flow model was used to predict the areal extent of the well field cone of depression in response to three pumping scenarios. The 0.5 foot drawdown contour was used to delineate the zone of influence. Three zones of influence were calculated. One is the result of pumping the production capacity of 5.2 mg , the second is the result of pumping the well field at a maximum design capacity of 8.2 mgd (Geraghty and Miller, 1975), and a third condition was based on monthly average withdrawals from the well field (2.5 mgd). These capacities bracket the amount of water permitted by the SJRWMD ( 5.5 mgd ).

Based on the model, the 0.5 fout contour for all three of the withdrawal rates extends into Harris Corporation property boundary, on which an identified area of ground water source of volatile organic compounds is located.

To further ensure maximum protection from contamination for the purposes of zoning, the extent of the zone of influence for the design capacity ( 8.2 mg ) could be extended an additional 600 feet beyond the 0.5 foot contour where the influence of the well field is minimal. This would provide protection under all conditions.

At the request of the City of Palm Bay, the St. Johns River Water Management District agreed to provide assistance to the city in defining the zone of influence for the existing port Malabar well field. For the purpose of this report, the zone of influence is defined as the area around the well field where drawdown equals or exceeds 0.5 foot.

The well field is owned and operated by General Development Utilities, Inc. (GDO), a subsidiary of General Development Corforation. In a few of GDU's potable water supply wells, it was discovered that high levels of volatile organic compounds were present. In one production well, concentrations as high as 3,943 ppb's have been found ( $\mathrm{CH}_{2} \mathrm{MHill}$, 1984). Citizens of Palm Bay have been concerned about the safety of the water supply and have petitioned the city to ensure the protection of its quality. To ensure water quality, Harris Corporation is taking remedial action to correct potential harm to the water resources.

Port Malabar's public supply well field is located southwest of Palm Bay between Palm Bay Boulevard on the north and Port Malabar Road on the south. Harris Corporation property, the location of the volatile organic compounds ( $\mathrm{CM}_{2} \mathrm{Hill}$, 1984), is located just north of the well field (Figure l). The Harris Corporation facilities cover an area of approximately 150 acres. This property had been a site of other activity prior to Harris Corporation ownership.

## Geoㅣ으도_setting

The surficial sands in the area are separated from the production zone by a semi-confining layer of fine sand, silts, and clays. The reported thickness of the confining layer is variable, ranging from 10 to as much as 40 feet and averaging about 20 feet. The principal aquifer, comprised of sand, shells, silt, and occasional stringers of limestone, ranges from 50 to 100 feet thick and averages about 80 feet (Geraghty and Miller, 1982). Below 100 to 110 feet lie the clays of the Hawthorn formation which form a lower confining unit with a thickness of up to 150 feet thick. A typical geologic well $\log$ for the port Malabar area is given in Table l.


Figure l. Map Showing Port Malabar's Well Field at Port Malabar, Florida

## GEOLOGIC LOG OF TEST WELL 73-1 <br> PORT MALABAR, FLORIDA

Well_73-1 Depth_(feet)
Sand, very fine to fine grained, white ..... 0 - 6
Clay, white to gray ..... 6 - ..... 27
Sand, very fine to medium grained, gray, ..... 27 - 38trace of large shells
Coquina, trace of very fine to medium grained ..... $38-57$and gray clay
Shells and clay, interbedded, gray, trace ..... 57 - ..... 68 of fine grained sand
Shells and sand, very fine to medium grained, ..... 68 - ..... 83light gray, trace of gray clay
Marl, gray, trace of shells ..... 83 - 104
Marl, gray ..... 104 - 118
Marl and limestone, phosphatic, trace of ..... 118 - 128 white clay
Clay, green, soft ..... 128 - 129
Total depth ..... 129

The USGS Finite-Difference Flow Model for Aquifer Simulation in Two Dimensions (Trescott et al, 1976) was used to simulate the imposed stress of 18 wells withdrawing at a design capacity of 5.2 mgd, maximum design capacity of 8.2 mgd , and monthly average withdrawals from the well field ( 2.5 mg ) . The ground water flow system at Port Malabar was conceptualized in this model as a leaky artesian system. Sources of water include the water-table aquifer and the constant head boundary located along the western periphery of the grid. This model requires that the elevation of the water table be fixed and recharge to the lower aquifer is the product of the nead differential between the water table and the lower aquifer and the leakage coefficient of the confining layer. The leakage coefficient is the recharge rate per unit area per unit head differential. A representative value of $0.108 \mathrm{gpd} / \mathrm{ft}^{2}$ was used in this analysis (Geraghty and Miller, 1982). The averaged transmissivity value for the shallow rock aquifer of $12,000 \mathrm{gpd} / \mathrm{ft}$ (Geraghty and Miller, 1982) was used throughout the model except at production wells where transmissivity values were calculated (Table 2).

# TRANSMISSIVITY VALUES FOR PRODUCTION WELLS IN GALLONS PER DAY PER FOOT (GERAGHTY AND MILLER) 

## Well_Number

2B 9,800
11
12
13
14
15
16
17
18
19

## Transmissivity

$$
9,800
$$

17.160

12,100
10.200

11,000
9,600
7,600
15,800
10,500
15,600

Water table elevation is estimated to be five feet below land surface. An average confining bed thickness of 20 feet, as reported by Geraghty and Miller (1982), is used throughout the modeled area.

In addition to the constant head boundary located along the western periphery of the model grid, no-flow boundaries were placed along the northern, southern, and eastern sides of the grid. These boundaries were chosen due to lack of data to describe natural flow boundaries. The grid was expanded and boundaries located far enough from the well field so there would be no effect in the area of interest from the no-flow boundary. A variable grid was constructed to maximize resolution on concentrated drawdowns. Simulated withdrawals for the 18 wells were run to steady-state. Under this condition, recharge is balanced by discharge and no change in storage occurs in the aquifer.

Pumping rates used for each of the wells for 5.2 and 8.2 mgd withdrawals are shown in Table 3. The pumping rate 5.2 mgd was derived from Geraghty and Miller (1982). The additional 3 mgd to achieve the 8.2 design capacity was proportionally divided among the 18 wells.

The standard procedure in modeling a ground water system includes refining initial estimates of aquifer properties until the model accurately reproduces an observed water level configuration. The Port Malabar well field lacked water level data with which to do such a calibration. For this reason, a more simplistic approach was taken. Aquifer properties previously defined were used in the model without refinement. The model was then run to obtain a steady-state water level configuration for the study area under unstressed conditions (no pumping). The resulting water level configuration was subsequently used as a starting condition for simulation of stressed conditions (pumping). These simulations were also run to steady-state. The final head differential between the unstressed and stress water levels represent the drawdown associated with the particular pumping conditions used. Therefore, without reliable water levels with which to test the accuracy of the model, these results should not be considered as exact. However, they do provide an estimate of the expected drawdowns given the conditions used.

## TABLE 3

MODELED PRODUCTION WELL WITHDRAWAL RATES
Well_Number
$2 B$
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Withdrawal Capacity of 5.2 mgd Pumping_Rate_in_cfs

| 0.22 | 0.48 |
| :--- | :--- |
| 0.33 | 0.59 |
| 0.33 | 0.59 |
| 0.39 | 0.65 |
| 0.36 | 0.62 |
| 0.33 | 0.59 |
| 0.33 | 0.59 |
| 0.36 | 0.62 |
| 0.56 | 0.82 |
| 0.36 | 0.62 |
| 0.57 | 0.83 |
| 0.40 | 0.66 |
| 0.33 | 0.59 |
| 0.51 | 0.77 |
| 0.56 | 0.82 |
| 0.89 | 1.15 |
| 0.53 | 0.79 |
| 0.61 | 0.87 |

Dawdown_snalysis_for_5_2_Milion_Galions_Per_Day
Drawdowns resulting Erom withdrawals of 5.2 mgd are illustrated in figure 2. The limit of the cone of depression is elliptical in configuration. The influence extencs 11,000 feet (2.1 miles) from north to south; from east to west the cone of influence extends beyond 8,000 feet (1.5 miles). The greatest drawdowns of 25 feet are centered around wells 16 and 17 on the north side of the well field and wells 10 and 15 along Port Malabar Road. As much as 5 feet of drawdown extends into the boundary of Harris Corporation property. The input data for the model, the withdrawal rate of 5.2 mgd , can be found in Appendix A.

Drawdown_Analysis_for_8_2_Million_Gallons_Rer_Day
Withdrawals from the well field at maximum design capacity ( 8.2 mgd ) increased the overall zone of influence by 30 percent in relation to the 5.2 mgd pumping response. The magnitude of drawdown also increased 23 percent at wells 10 and 15 (Figure 3). The extent of the zone of influence is greatest on the south side of the well field. The 0.5 foot contour on the west side of the well field extends the same distance as did the withdrawal of 5.2 mgd. This may be due to the constant head source located on the western boundary of the grid that describes the regional flow in the shallow rock aquifer. Drawdowns simulated from the


Figure 2. Drawdown Contours from Pumping 5.2 mgd in Shallow Rock Aquif in Port Malabar Well Field


Figure 3. Drawdown Contours from Pumping 8.2 mgd in Shallow Rock Aquifer in Port Malabar Well Field.
withdrawal of 8.2 mgd indicate water levels are lowered an additional 15 feet along the southern boundary of Harris Corporation property. The influence of the 5 feet drawdowns are felt over 80 percent of the Harris property.

Steady-state conditions represent the hydro-dynamics of the well field when it reaches equilibrium. The well field may never reach steady-state under real conditions. Therefore, the predicted drawdowns represent a worst case scenario. Levels and drawdowns have been calculated in each of the production wells for 5.2 mgd and $8.2 \mathrm{mgd}(T a b l e 4)$.

TABLE 4
CALCULATED HEAD AND DRAWDOWNS (MSL) IN PUMPING WELLS

| Well <br> Number | 5.2_mgd |  | 8.2_mgd |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Head <br> (ft below msl) | Drawdown (ft) | Head <br> (ft below msl) | Drawdown (ft) |
| 2B | -31.85 | 37.55 | -59.75 | 65.45 |
| 3 | -28.64 | 34.84 | -54.88 | 61.08 |
| 4 | -31.85 | 37.55 | -59.75 | 65.45 |
| 5 | -39.73 | 45.13 | -69.94 | 75.34 |
| 6 | -35.11 | 40.71 | -63.39 | 68.99 |
| 7 | -29.30 | 34.60 | -54.80 | 60.10 |
| 8 | -26.79 | 32.89 | -51.90 | 58.00 |
| 9 | -35.74 | 41.34 | -63.20 | 68.80 |
| 10 | -52.54 | 58.84 | -81.82 | 88.12 |
| 11 | -26.11 | 32.71 | -47.82 | 54.42 |
| 12 | -48.93 | 54.63 | -75.31 | 81.01 |
| 13 | -33.89 | 38.99 | -58.80 | 63.90 |
| 14 | -34.45 | 41.45 | -63.45 | 70.45 |
| 15 | -55.41 | 61.41 | -87.84 | 93.84 |
| 16 | -68.42 | 74.72 | -103.10 | 109.40 |
| 17 | -57.01 | 63.11 | -77.69 | 83.79 |
| 18 | -47.19 | 53.89 | -74.70 | 81.40 |
| 19 | -29.17 | 38.27 | -45.60 | 54.70 |

Drawdown_Analysis_for_2_5_Million_Gallons_Ren_Day
Average monthly withơrawals from GDU between January 1983 and May 1984 (Table 5) indicate 2.5 mg d have been pumped from the well field. This rate is 30 percent of the well field maximum design capacity ( 8.2 mgd ). Further analysis revealed that the zone of influence for the withdrawal of 2.5 mgd was 36 percent smaller than that resulting from the withdrawal of 8.2 mgd and 7 percent smaller than that resulting from a withdrawal of 5.2 mg . Even at this rate ( 2.5 mgd ) the zone of influence extends beyond Harris Corporation's northern boundary (Figure 4).

## TABLE 5

## AVERAGE MONTHLY PUMPAGE IN MGD

 FROM JANUARY 1983 TO MAY 1984| 1983 | January | 2.3 |
| :--- | :--- | ---: |
|  | February | 2.3 |
|  | March | 2.2 |
|  | April | 2.2 |
|  | May | 2.5 |
|  | June | 2.3 |
|  | July | 2.5 |
|  | August | 2.5 |
|  | September | 2.4 |
|  | October | 2.3 |
|  | November | No data |
|  | December |  |
|  |  |  |
|  | January | 2.4 |
|  | February | 2.5 |
|  | March | No data |
|  | April | 3.2 |
|  | May | 3.6 |

Source: Compliance Data, SJRWMD


Figure 4. Drawdown Contours from Pumping 2.5 mgd in Shallow Rock Aquifer in Port Malabar Well Field

## DISCUSSION AND CONCUUSION

Based or the results of the modeling, the zone of influence (0.5 feet) of the well field extends into the property at Harris Corporation whether pumping is at the well field's maximum design capacity ( 8.2 mgd ), the design capacity of the wells ( 5.2 mg ) , or at actual monthiy averaged pumping rates. Withdrawing at maximum design capacity may lower the potentiometric surface as much as 20 feet along the southern property boundary of Harris Corporation.

To define a zone of influence for protection against ground water contamination from Harris Corporation would be futile since contamination of the supply wells has already occurred. However, to ensure greater protection for the well field from future contamination, and to use as a criteria for zoning classification, the extent of the zone of influence ( 0.5 foot contour) for well field design capacity ( 8.2 mg ) could be extended 600 feet beyond the 0.5 foot contour, thus providing maximum protection under worst case conditions.

General Development Utilities, Compliance Data, SJRWMD Permit File No. 2-009-0021.

Geraghty \& Miller, Inc., 1982. Availability of Water from the Port Malabar Well Field, Brevard County, Florida, February 1982.
$\mathrm{CH}_{2} \mathrm{M}$ Hill, 1984. Second Interim Report on the Ground water Contamination Studies at Port Malabar Well Field -- Phase II.

Post, Buckley, Schuh \& Jernigan, Inc., 1981. Harris Ground Water Monitoring Semi-Conductor and Government Systems, Palm Bay, Florida.

Post, Buckley, Schuh \& Jernigan, Inc., 1984. Harris Corporation Ground Water Remediation Program Phase II.

Trescott, P. C., G. F. Pinder, and S. P. Larson, 1976. FiniteDifference Model for Aquifer Simulation in Two Dimensions with Results of Numerical Experiments. U. S. Geological Survey Techniques of Water Resources Investigations, Book 7r Chapter C -1.

NELL FIEIL SIAUPATION -DATA REPRESENTS ORIGIMIONAL INPUT




| $0-1$ | 4 | 0 | $1]$ | 0 | 0 | 3 | 0 | 5 | 0 | 10 | 1] | 0 | 0 | [1 | 0 | 0 | 0 | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (0) | : | \% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 0 | $\bar{\square}$ | 0 | 0 | ! | U | $n$ | 0 | 0 | n | 13 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
| (1) 0 | in | $\checkmark$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C-1 | ! | i | , | J | 0 | 0 | n | 0 | 0 | $1]$ | 7 | 0 | 0 | f | $1]$ | C | n | 0 |
| 00 | U | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 - 1 | 11 | 0 | , | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| 0 (1) | \% | U |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 0 | 0 | is | A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (b)-1 | U | $1)$ | (1) | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | n | $\bar{C}$ | 0 | 0 | $1)$ |
| $0 \quad 0$ | 1. | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (i) -1 | 0 | 0 | $\underline{\sim}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | $n$ | 0 | 0 | 0 | 0 |
| C i) | U | i |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 0 | $i$ | $1]$ | 0 | O | 4 | 0 | 0 | ก | $n$ | 0 | G | 0 | 11 | 0 | $1)$ | 0 | 0 |
| 0 (i) | $\cup$ | U |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 1 | L | U | 0 | 7) | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 9 | 0 | 7 |
| 00 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | $1]$ | 13 |  | $1)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $0 \quad 0$ | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | i) | 1 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 |
| (1) C | i | ! |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| C -1 | J | $\checkmark$ | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ? | 0 | 13 | 0 | 0 | 3 | 0 | 0 |
| 00 | R | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 1 | - | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ? | 0 | 0 |
| 0 - | 3 | U |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $0-1$ | 0 | i | 10 | 0 | 11 | 0 | $n$ | 0 | 0 | $\square$ | 0 | 0 | r | n | 0 | 0 | 0 | $\bigcirc$ |
| 0 | L | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| U-1 | 0 | 1 | 0 | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | ! | 0 | 0 |
| 0 11 | 1) | (! |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (1) -1 | U | 1 | 0 | i) | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | n | 0 | 0 | 0 | 0 |
| ( ${ }^{\text {d }}$ | [] | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

18501850163615301856103613561856185612561856185018561856185018561856185618561856
18561:5618.561256
$18561 \times 56105610561856135618561856185618561856185613561856185618501856185618561856$
1856185618561256
16561851850155618501.5518561856185018561856185618561856185618501856185418561856

15561ヶ561:561: 56
18561656125013501856135618561856155613561856185618561056185618561856185619561856 1850199018301850
1856185510561.551956135618561856185618561850195618161856185018461856185618561856

1856155018501256

18561856105018.56
 1850125613561250

18561656165ㄴ1856

$185618561: 561850$
185612501 S50 $125618561 \times 5613561356155613561356165615561 \times 56105616261856105612561856$ íserisoi sísu
185618561 ك5618561456185618561856183618561856185618561850́185619561856185019561856
18561856135615\%
$185612561 夕 541801850165012501056185618501856185518561856185618561856185018501856$
185618501～361950

1856185010501256
$1 \varepsilon 561 \overline{56145} 16561056125612561856185624451856185618561856185619561856185618561856$
1：5619501ニ561ejo
$165618561 c 5618501856135618561656105611761856135619561516185618561856185618561856$
$18567 \times 5018501650$
1：561،561 55614501256135618501856135613561856195618261956185618261856185618561856
18561こう01～501ヶ56
$18561 \% 56155016561056185618501856132517021356148518561856185618561856185618561956$
1350155613501ニン6
18561 ¢50185614501850185618551850185620551856185618561856185618561856185618561856 1856155013561536
$14561: 561 \mathrm{~F} 515561856135618501856135618561956187214561856185618561856185619561856$
1ध501ヶまう1も561850
18561556125615561856165618561856185318561853185618561856185518561856185618561856
18561を561ヶ5 51356
145614.56165015501856105618561856185618501856185618561856185618561856185618561856

1850185010551350
16561656185014501055105618561856985618561856157818561856185618561856185618561856 1050185015561830
$185618561: 5016561856135513551856185618551856195618561856185618561856185618561856$
185618561c501：56
1056105615561651850135618561856165618561856185618561856185618561856185618561856
कब $185018561 \geqslant 561856$
［1250185610561，561956105619501856185618561956185618561856185618561856185618561856
－1856185013561850
10561856165616561356185618561856135618561856185318561856185618561856185619561856
10561 ＜ $501=5618.56$
$3.342 \mathrm{t}-67$
15
1
 sca sem siij sric

sho sel sua sot


 500 2Co 5011 jut






 5C0 $504051005!10$
 5 BL ，DC $5 \mathrm{Gt} 5 \boldsymbol{5}$

5：in 5je jut 5L



504500 5010 500
300 30


50u sul 5u9 50\%:
$500 \quad 50050050050050050010001000500500500500500500500500500500500$
, 0.0 500 Son 5ub

500500500500



$\begin{array}{lll}206 & 206 & 20 \\ 500 & 5006 & 502 \\ 5000\end{array}$



5005010500500


$500500500500500500500 \quad 500500500500500500500500500500500500 \quad 500$

$\Rightarrow \begin{array}{llll}500 & 50 & 500 & 501 \\ 500 & 500 & 501 & 500\end{array}$
$1500300300360300500 \quad 500 \quad 500500500$

20.000
20.e日U 0
1.40
1350 … 1
600

CO
na on

| 106 | 600 | 600 |
| :--- | :--- | :--- |

        1.6
    $900 \quad 900$
1350
606
606

13-0.33 0.170000
$\begin{array}{rr}13-0.33 & 0.170000\end{array}$
$\frac{13-0.33}{14}-0.39-170000$
$14-0.39 \quad 0.173000$
$13-0.36$ B. 173 ज®ic
$\begin{array}{ll}14-2.33 & 0.17 \mathrm{JiOO} \\ 14-4.33 & 4.1700\end{array}$
$14-1.33 \quad-1700$
13-7.36 0.1701000
$12-4.56 \quad$ U. 170 Juc
$10-0.3 \frac{3}{10}-1 \frac{703110}{0.17 v i 50}$
$\begin{array}{ll}12-0.30 & \text { U.170i)0i } \\ 12-5.57 & 1.17007 \pi\end{array}$
$12-5.57 \quad 1.1700 \pi \pi$
$\begin{array}{ll}12-2.4 j & \frac{1}{6}-170090 \\ 10.170060\end{array}$
$\begin{array}{rr}12-5.51 & \text {-.17060t }\end{array}$
$14-4.55 \quad$ 11. 17000
$\qquad$

