Special Publication SJ 88-SP9

LAKE WEIR EUTROPHICATION STUDY

Final Report for Phases I and II

Prepared By

Principal Investigator: Thomas L. Crisman

Graduate Assistants:

Anne E. Keller Jeffrey K. Jones Henry Meier John R. Beaver

Department of Environmental Engineering Sciences University of Florida, Gainesville

September 1988

TABLE OF CONTENTS

	PAGE
FOREWORD	v
EXECUTIVE SUMMARY	vii
ACKNOWLEDGMENTS	х
LIST OF FIGURES	×i
LIST OF TABLES	×vi
CHAPTER 1: PHYSICAL AND BIOLOGICAL SETTING OF LAKE WEIR	1
Physical Setting	1
Biological Setting	9
CHAPTER 2: HISTORICAL DEVELOPMENT OF LAKE WEIR'S WATERSHED AND ASSOCIATED NUTRIENT INPUTS TO THE LAKE	13
Settlement of Lake Weir	14
Watershed Development	13
Land Clearance	24
Citrus Industry	26
Urbanization	30
Nutrient Budget	37
CHAPTER 3: SECCHI DISK SURVEY	41
Material and Methods	42
Data Analysis and Results	45
Summary	66
CHAPTER 4: LIMNOLOGICAL MONITORING OF LAKE WEIR, FLORIDACURRENT CONDITIONS AND HISTORICAL PERSPECTIVES	68
Field Sampling Methods	68
Submersed Macrophyte Mapping	70

Water Chemistry Analyses	73
Bacteria Methods	73
Zooplankton Methods	74
Benthic Invertebrate Methods	75
Results: Physical Parameters	76
Results: Water Chemistry	87
Results: Bacteria	105
Fathometric Determination of Submergent Plant Biomass	112
Results: Zooplankton	114
Annual Mean Biomass of Zooplankton Components	115
Comparison of Current and Historical Zooplankton Data	118
Comparison of Lake Weir to Mesotrophic Florida Lakes	120
Predicted Versus Observed Zooplankton Biomass in Lake Weir	122
Ciliate Indicator Taxa	126
Seasonality of Zooplankton Components in Lake Weir	126
Relationship Between Zooplank- ton Components and Lake Weir Environmental Variables	139
Comparison of Current and Historical Zooplankton Seasonality	144
Comparison of Zooplankton Seasonality in Lake Weir with Other Florida Lakes	146
Comparison Between Zooplankton Components and Limnological Variables in Florida Lakes	150

Conclusions

Results: Benthic Macroinvertebrates	155
Florida Benthos	169
Results: Fish	176
Crappie Loss	180
Historical Limnological Data For Lake Weir System	187
Comparisons of Historical and Current Limnological Data	189
Water Quality Data	189
Bacteria	195
Phytoplankton	195
Macrophytes	195
Conclusions	202
CHAPTER 5: PALEOLIMNOLOGY OF LAKE WEIR	203
Core Collection	204
Physical Sediment Parameters	204
Phosphorus Levels	213
Subfossil Assemblages	213
Photosynthetic Pigments	216
Lead-210 Isotopic Dating	218
Summary	219
BIBLIOGRAPHY	220
APPENDICES	231
Appendix A: Monthly water chemistry data for 2/87 - 1/88	232
Appendix B: Monthly macroinvertebrate data for 2/87 - 1/88	238
Appendix C: Historical data for Station 3 from the USGS, SJRWMD, FDER, and UF theses	246

iv

FOREWORD

Water quality in Lake Weir has been deteriorating progressively since the early 1970's. Based on nutrient loading models and water column concentrations, water quality in 1969 was deemed to be in the excellent range (oligotrophic) but close to slipping into the middle range (mesotrophic) of the water quality scale. By 1974, however, the lake was definitely in the mesotrophic range and dangerously close to slipping into the lake category of worst water quality (eutrophic). This cultural eutrophication has continued to progress to the point that lake residents have noticed a marked degradation in water quality in the past five years.

The demise of Lake Weir is unquestionably the result of human activity. Between 1970 and 1980 over 350 houses were built in the watershed. Unfortunately, the area lacks a central sewer system, and relies on septic tanks for waste treatment. Other potential contributors to the nutrient levels of the lake are citrus agriculture and runoff from the extensive road system completed since 1970.

The biotic response of Lake Weir to increased nutrient loading has been complex. Between 1970 and 1980 algal abundance increased 40% in response to a progressive enhancement of water column phosphorus concentrations. Since 1980, however, both algal and phosphorus levels in the open water of the lake have declined markedly as aquatic weed populations have expanded in shallow water. These plants trap

v

phosphorus released from the watershed before it can reach the open areas of the lake. Nutrient loading has continued to increase during the last six years but the potential biological problem has shifted from algae to weeds.

Our research is designed to assess the history of cultural eutrophication in Lake Weir, the important causes responsible for deterioration of water quality, the current status of the lake, and using these data, to prepare a strong management plan designed to maintain/restore water quality in the lake. Of immediate concern today is the manner in which aquatic weeds are controlled or eliminated from Lake Weir. If the aquatic weeds were to be controlled too quickly, the nutrients released from this decomposing material would be available for algal uptake thus driving the system towards a eutrophic state exemplified by Lake Apopka.

vi

EXECUTIVE SUMMARY

Lake Weir, a seepage lake isolated from the Floridan aquifer, was historically an oligotrophic system which received most of its nutrients from precipitation. Watershed soils are composed of well-drained, acidic sands. Historically, annual rainfall is typical of central Florida, varying from 40 to 70 inches. Lake surface levels have closely reflected the previous year's rainfall since 1943. Originally, the watershed was dominated by upland pine forests, with strips of wetland hammock vegetation near the lake.

Changes in land clearance, citrus agriculture and urban development over the past century within Lake Weir's watershed were documented from historical records, maps and aerial photographs (Figure 2-6). Specific natural and manmade events which may have made short-term or lasting impacts on the lake's water quality were outlined (Table 2-2). Watershed population and nutrient yield coefficients for specific land use practices were used to estimate total loading of nitrogen and phosphorus to the lake at specific time intervals (Figure 2-11). Increased watershed population and urbanization are clearly responsible for the observed degradation in water quality since 1969.

Statistical analysis of 1300 Secchi disk readings made from 1985 to 1986 by lake residents revealed lower water clarity in areas of higher shoreline population (Figure 3-6). Secchi depths in Lake Weir were influenced mainly by algal concentrations, and hence nutrient loading. After excluding

vii

two Secchi stations which were subjected to other sources of nutrient loading, water clarity at the remaining nearshore stations showed a high negative correlation ($R^2 = 0.88$) with the number of houses immediately onshore (Figure 3-11). The use of Septic systems in the watershed reduces water clarity when shoreline housing density exceeds one house per hectare.

After a full year of limnological monitoring, comparisons between current and historical conditions in Lake Weir proper reveal that nutrient concentrations, chlorophyll a and Secchi depth have not changed significantly since 1970. While trophic state indices calculated from these parameters have increased slightly, Lake Weir is still classified as mesotrophic. The macrophyte community appears to be stable in both extent and species composition, and is typical of moderately productive Florida lakes. Zooplankton biomass in Lake Weir is low compared to other mesotrophic lakes in the state, but only minor changes in community structure have occurred since 1979. Specifically, scuticociliate protozoans and rotifers have markedly increased in abundance indicating a shift toward greater lake productivity. So few phytoplankton or benthic macroinvertebrate data are available from past studies that no real comparisons are possible for these parameters. Overall, Lake Weir appears to be a typical mesotrophic Florida lake that is responding as expected to increased human use and watershed development.

Sediment core samples from six sites in the Lake Weir system were collected to measure historical trends in trophic

viii

state and water quality. Sediment parameters to be studied include: water content, organic and inorganic fractions, phosphorus levels, photosynthetic pigments, and invertebrate species composition. Lead-210 isotopic dating of the sediment will pinpoint the timing of major changes in the lake and will quantify sedimentation rates over time. Accumulation rates of phosphorus, pigments and subfossils at various dated core intervals should reflect the relative impact of concomitant land use practices on Lake Weir. This will provide a more complete picture of historical changes in water quality caused by watershed activities, allowing predictions of future changes with development.

ACKNOWLEDGMENTS

This final report reflects the efforts of many persons who contributed their time and energies to its completion. Funding was provided by St. Johns River Water Management District, Marion County, and the Save Lake Weir Association.

We are indebted to the residents of Lake Weir for their enthusiastic support of the project. We applaud the efforts of Del Wood who supervised the Secchi disk monitoring program. We would especially like to thank Nancy MacCarter, Shirley Little, and Ed Anderson, whose energetic involvement in the Save Lake Weir Association has made a real difference.

The staff of University of Florida's Archives Library was of great assistance in locating historical maps and references. The historical photographs were provided by Jay Dopkin of the University of South Florida's Special Collections. We thank Dr. Armstrong of U.F.'s map library who graciously made aerial photographs of the Florida Citrus Surveys available to us. In addition, the Marion County Tax Assessment Office contributed the aerial photographs for the 1980 and 1985 land use study.

Finally, we are indebted to David Billett and Chris Taylor who assisted with this investigation in the library and in the laboratory, and to Dan Peterson for his help with the captions. We are particularly grateful to Uli Crisman for her laboratory expertise and assistance in the preparation of this document.

х

LIST OF FIGURES

.

1-1	LAKE WEIR WATERSHED MAP	2
1-2	GEOLOGIC MAP OF WEIR WATERSHED	.4
1-3	RAINFALL DATA FOR OCALA 1892-1984	5
1-4	LAKE WEIR WATER LEVELS 1943-1985	6
1-5	CORRESPONDENCE OF RAINFALL AND WATER LEVELS FOR LAKE WEIR	7
1-6	1900 PHOTOGRAPH SOUTHEAST SHORE OF LAKE WEIR	10
1-7	1973 MAP OF LAND USE AND VEGETATION FOR LAKE WEIR WATERSHED	11
2-1	1835 MAP OF LAKE WEIR REGION	15
2-2	1836 MAP OF LAKE WEIR REGION	16
2-3	1883 MAP OF LAKE WEIR WATERSHED SHOWING PROPERTY OWNERSHIP	19
2-4	1888 MAP OF LAKE WEIR REGION	20
2-5	1900 PHOTO SHOWING URBANIZATION AROUND LAKE WEIR	21
2-6	HISTORICAL CHANGES IN LAND USE IN LAKE WEIR WATERSHED 1883-1985	23
2-7	1900 PHOTO SHOWING DEFORESTATION AROUND LAKE WEIR	25
2-8	HISTORICAL CHANGES IN POPULATION OF THE LAKE WEIR WATERSHED 1870-1985	32
2-9	HISTORICAL CHANGES IN ROAD BUILDING AND PAVING 1970-1977	33
2-10	MAP OF LAKE WEIR WATERSHED SHOWING DATES OF MAJOR DREDGING AND BUILDING	35

2-11	HISTORICAL CHANGES IN NITROGEN AND PHOSPHORUS LOADING TO THE LAKE WEIR SYSTEM 1883-1985	39
3-1	MAP OF LAKE WEIR SHOWING SECCHI DISK MONITORING STATIONS	43
3-2	INSTRUCTIONS GIVEN TO SECCHI DISK MONITORING TEAMS	44
3-3	THREE VARIABLES INFLUENCING LIGHT PENETRATION IN LAKES	44
3-4	MAP OF LAKE WEIR SHOWING DISTRIBUTION OF SECCHI STATIONS VERSUS WATER DEPTH	46
3-5	ANNUAL MEAN SECCHI DISK VALUES BY STATION	52
3-6	MAP OF LAKE WEIR SHOWING SECCHI STATIONS WITH ANNUAL MEANS LESS THAN ANNUAL LAKE MEAN	53
3-7	WEEKLY MEAN SECCHI DISK VALUES FOR ALL BASINS OF LAKE WEIR SYSTEM FOR 1985-1986	55
3-8	MAP OF LAKE WEIR SHOWING GROUPING OF SECCHI STATIONS IN CONCENTRIC RINGS	59
3-9	WEEKLY MEAN SECCHI READINGS FOR THE THREE SECTORS OF LAKE WEIR PROPER	61
3-10	NUMBER OF HOUSES IMMEDIATELY ONSHORE FROM EACH OF OUTERMOST RING OF SECCHI STATIONS	64
3-11	RELATIONSHIP BETWEEN MEAN SECCHI DISK VALUES AND NUMBER OF HOUSES ALONG SHORE	65
4-1	BATHYMETRIC MAP OF LAKE WEIR SYSTEM SHOWING ROUTINE MONITORING STATIONS	69
4-2	MAP SHOWING TRANSECTS USED IN THE CONSTRUCTION OF BATHYMETRIC AND MACROPHYTE MAPS FOR LAKE WEIR SYSTEM	71
4-3	CURRENT BATHYMETRIC MAP FOR THE THREE BASINS OF LAKE WEIR SHOWING INDICATING EXTENT OF LITTORAL ZONE	72
4-4	WATER COLUMN DISTRIBUTION OF DISSOLVED OXYGEN BY STATION 1987-1988	77

xii

4-5	WATER COLUMN TEMPERATURE DISTRIBUTION BY STATION 1987-1988	81
46	SECCHI DEPTH VALUES BY STATION 1987-1988	85
4-7	TOTAL PHOSPHORUS VALUES BY STATION 1987-1988	88
4-8	TOTAL KJELDAHL NITROGEN VALUES BY STATION 1987-1988	94
4-9	CHLOROPHYLL A VALUES BY STATION 1987-1988	97
4-10	SPECIFIC CONDUCTIVITY VALUES BY STATION 1987-1988	99
4-11	TOTAL ALKALINITY VALUES BY STATION 1987-1988	102
4-12	BACTERIOPLANKTON ABUNDANCE BY STATION 1987-1988	103
4-13	BACTERIOPLANKTON ABUNDANCE VERSUS WATER TEMPERATURE BY STATION 1987- 1988	110
4-14	PARTITIONING OF ZOOPLANKTON BIOMASS IN LAKE WEIR FOR 1979 AND 1987	121
4-15	MONTHLY BIOMASS OF TOTAL ZOOPLANKTON BY STATION 1987-1988	128
4-16	MONTHLY BIOMASS OF MACROZOOPLANKTON BY STATION 1987-1988	130
4-17	MONTHLY BIOMASS OF MICROZOOPLANKTON BY STATION 1987-1988	131
4-18	MONTHLY BIOMASS OF CLADOCERANS BY STATION 1987-1988	132
4-19	MONTHLY BIOMASS OF CALANOID COPEPODS BY STATION 1987-1988	133
4-20	MONTHLY BIOMASS OF CYCLOPOID COPEPODS BY STATION 1987-1988	135
4-21	MONTHLY BIOMASS OF COPEPOD NAUPLII BY STATION 1987-1988	136

4-22	MONTHLY BIOMASS OF ROTIFERS BY STATION 1987-1988	137
4-23	MONTHLY BIOMASS OF TOTAL CILIATES BY STATION 1987-1988	138
4-24	MONTHLY BIOMASS OF OLIGOTRICH CILIATES BY STATION 1987-1988	140
4-25	MONTHLY BIOMASS OF SCUTICOCILIATE CILIATES BY STATION 1987-1988	141
4-26	MONTHLY BIOMASS OF HAPTORID CILIATES BY STATION 1987-1988	142
4-27	COMPARISON OF SEASONALITY OF MAJOR ZOOFLANKTON COMPONENTS IN LAKE WEIR FOR 1979 AND 1987-1988	145
4-28	COMPARISON OF SEASONALITY OF MAJOR ZOOPLANKTON COMPONENTS IN LAKE WEIR FOR 1987 WITH THAT OF MESOTROPHIC FLORIDA LAKES	147
4-29	ABUNDANCE OF MACROINVERTEBRATE GROUPS AT STATIONS 2,4,5 FOR 1987-1988	161
4-30	ABUNDANCE OF MACROINVERTEBRATE GROUPS AT STATIONS 1,3,6,7 FOR 1987-1988	162
4-31	MONTHLY ABUNDANCE OF MAJOR TAXA OF MACROINVERTEBRATES AT STATIONS 1,2,3,4 FOR 1987-1988	165
4-32	MONTHLY ABUNDANCE OF MAJOR TAXA OF MACROINVERTEBRATES AT STATIONS 5,6,7 FOR 1987–1988	166
4-33	RELATIONSHIP BETWEEN THE ABUNDANCE OF MACROINVERTEBRATES AND CHLOROPHYLL IN FLORIDA LAKES	170
4-34	RELATIONSHIP BETWEEN CHIRONOMID ABUNDANCE AND CHLOROPHYLL IN FLORIDA LAKES	171
4-35	COMPARISON OF MEAN MACROINVERTEBRATE ABUNDANCE FOR THE THREE BASINS OF THE LAKE WEIR SYSTEM WITH THE FIVE LAKES OF THE OKLAWAHA SYSTEM	173

- 4-36 COMPARISON OF MEAN OLIGOCHAETE 174 ABUNDANCE FOR THE THREE BASINS OF THE LAKE WEIR SYSTEM WITH THE FIVE LAKES OF THE OKLAWAHA SYSTEM
- 4-37 COMPARISON OF MEAN CHIRONOMID 175 ABUNDANCE FOR THE THREE BASINS OF THE LAKE WEIR SYSTEM WITH THE FIVE LAKES OF THE OKLAWAHA SYSTEM
- 4-38 POPULATION ESTIMATES OF LARGEMOUTH 179 BASS, BLUEGILL AND REDEAR SUNFISH IN LAKE WEIR 1983-1986
- 4-39 BIOMASS OF BLACK CRAPPIE RELATIVE TO 183 CHLOROPHYLL LEVELS IN FLORIDA LAKES
- 4-40 ANNUAL MEANS OF SECCHI DEPTH, CHLORO- 192 PHYLL, TOTAL KJELDAHL NITROGEN AND TOTAL PHOSPHORUS FOR LAKE WEIR 1969-1987
- 4-41 SEASONAL FLUCTUATIONS IN PHYTOPLANKTON 198 DENSITIES AND CHLOROPHYLL IN LAKE WEIR
- 5-1 LOCATION OF SEDIMENT CORING SITES IN 205 THE LAKE WEIR SYSTEM
- 5-2 PROFILE OF SEDIMENT WEIGHT LOSS 211 PARAMETERS FOR A SEDIMENT CORE FROM LAKE WEIR

LIST OF TABLES

		Page
2-1	HISTORICAL CHANGES IN CITRUS MANAGEMENT PRACTICES IN LAKE WEIR WATERSHED	27
2-2	HISTORICAL EVENTS LIKELY TO HAVE AFFECTED NUTRIENT LOADING TO LAKE WEIR SYSTEM 1880-1988	36
2-3	NITROGEN AND PHOSPHORUS LOADING COEFFICIENTS FOR VARIOUS LAND USE PRACTICES	38
3-1	ANOVA BETWEEN SECCHI DEPTHS AND WEATHER CODE	48
3-2	ANOVA BETWEEN SECCHI DEPTHS AND SEA STATE	49
3-3	ANOVA BETWEEN SECCHI DEPTHS AND TIME OF DAY	50
34	MULTIPLE LINEAR REGRESSIONS OF VARIABLES CONTROLLING SECCHI DISK VALUES	51
3-5	ANOVA BETWEEN SECCHI DEPTHS OF THE THREE BASINS OF THE LAKE WEIR SYSTEM	56
3-6	DUNCANS MULTIPLE RANGE TEST FOR SECCHI DISK VALUES BY STATION	58
3-7	ANOVA BETWEEN SECCHI DEPTHS AND DISTANCE FROM SHORE	60
3-8	ANOVA BETWEEN SECCHI DEPTHS AND SECTORS OF LAKE WEIR PROPER	63
4-1	ANOVA AND DUNCANS MULTIPLE RANGE TEST FOR SIGNIFICANT DIFFERENCES BETWEEN STATIONS FOR PHYSICAL AND CHEMICAL PARAMETERS	91
4-2	ANOVA COMPARISON OF MONTHLY INTERSTATION DIFFERENCES FOR PHYSICAL AND CHEMICAL PARAMETERS	92
4-3	DUNCANS MULTIPLE RANGE TEST OF SIGNIFICANCE OF MONTHLY DIFFERENCES FOR PHYSICAL AND CHEMICAL PARAMETERS	93

4-4	DUNCANS MULTIPLE RANGE TEST OF SIGNIFICANCE OF INTERSTATION DIFFERENCES FOR WATER CHEMISTRY	104
45	MEAN BACTERIOPLANKTON ABUNDANCE BY STATION 1987-1988	107
46	MEAN BACTERIOPLANKTON ABUNDANCE BY MONTH FOR THE LAKE WEIR SYSTEM 1987-1988	108
4-7	ANOVA AND DUNCANS MULTIPLE RANGE TEST OF INTERSTATION AND INTERMONTH DIFFERENCES IN BACTERIOPLANKTON ABUNDANCE 1987-1988	109
4–8	SUMMARY OF MORPHOMETRY, WATER QUALITY AND MACROPHYTE BIOVOLUME FOR THE THREE BASINS OF THE LAKE WEIR SYSTEM	113
4-9	ANNUAL MEAN BIOMASS OF ZOOPLANKTON COMPONENTS BY STATION 1987-1988	116
4-10	COMPARISON OF MEAN ANNUAL BIOMASS OF ZOOPLANKTON COMPONENTS IN LAKE WEIR FOR 1979 AND 1987-1988	119
4-11	ANNUAL MEAN BIOMASS OF MAJOR ZOOPLANKTON COMPONENTS IN MESOTROPHIC FLORIDA LAKES	123
4-12	COMPARISON OF OBSERVED VERSUS PREDICTED BIOMASS OF MAJOR ZOOPLANKTON COMPONENTS IN LAKE WEIR	125
4-13	TROPHIC CONDITIONS ASSOCIATED WITH THE ANNUAL ABUNDANCE OF SELECTED CILIATE SPECIES	127
4-14	RELATIONSHIP BETWEEN ZOOPLANKTON COMPONENTS AND SELECT LIMNOLOGICAL VARIABLES IN LAKE WEIR	143
4-15	RELATIONSHIP BETWEEN ZOOPLANKTON COMPONENTS AND SELECT LIMNOLOGICAL VARIABLES IN MESOTROPHIC FLORIDA LAKES	151
4-16	RELATIONSHIP BETWEEN ZOOPLANKTON COMPONENTS AND SELECT LIMNOLOGICAL VARIABLES IN A SUITE OF DIVERSE FLORIDA LAKE TYPES	152

4-17	ANNUAL MEAN ABUNDANCE OF BENTHIC MACROINVERTEBRATE TAXA BY STATION 1987-1988	156
4-18	ANNUAL MEAN ABUNDANCE OF TOTAL BENTHIC MACROINVERTEBRATES BY STATION 1987-1988	157
4-19	PARTITIONING OF MEAN ANNUAL BENTHIC MACROINVERTEBRATE ABUNDANCE BY FUNCTIONAL GROUPS BY STATION 1987- 1988	163
4-20	LIST OF FISH SPECIES IN LAKE WEIR	177
4-21	PREDICTED NUMBER OF SPECIES IN LAKE WEIR SYSTEM	178
4-22	LIST OF POSSIBLE CAUSES FOR THE LOSS OF BLACK CRAPPIE IN LAKE WEIR	181
4-23	HEAVY METAL CONCENTRATIONS IN FISH AND SEDIMENT SAMPLES FROM LAKE WEIR	186
4-24	LIST OF PAST STUDIES THAT INCLUDED WATER CHEMISTRY DATA FOR LAKE WEIR	188
4-25	SUMMARY OF HISTORICAL AND CURRENT VALUES FOR SELECT WATER QUALITY PARAMETERS IN LAKE WEIR	190
4-26	ANOVA AND DUNCANS MULTIFLE RANGE TEST FOR SIGNIFICANT DIFFERENCES BETWEEN CURRENT AND HISTORICAL WATER QUALITY PARAMETERS	191
4-27	HISTORICAL AND CURRENT TROPHIC STATE INDICES FOR LAKE WEIR	194
4-28	HISTORICAL PHYTOPLANKTON ABUNDANCE AND CHLOROPHYLL VALUES FOR LAKE WEIR	196
4-29	MACROPHYTE SPECIES LIST FOR THE LAKE WEIR SYSTEM 1974-1986	200
5-1	SEDIMENT CORE COLLECTION DATA FOR THE LAKE WEIR SYSTEM	206
5-2	OUTLINE OF PALEOLIMNOLOGICAL ANALYSES TO BE RUN ON INDIVIDUAL CORES	207

CHAPTER ONE: PHYSICAL AND BIOLOGICAL SETTING OF LAKE WEIR

Physical Setting

Located 57 feet above sea level at 21° 01' N--081° 55' W, Lake Weir falls within the intermediate zone between warm temperate and subtropical climates (Beaver et al 1981). This 2100 hectare lake system is comprised of three distinct basins: Little Lake Weir, Sunset Harbor, and Lake Weir proper. Lake Weir proper is nearly circular with a diameter of approximately seven kilometers. The lake has a relatively small vegetated littoral zone; the sides of the lake basin drop off quickly to a flat bottom ranging from six to eight meters in depth.

Lake Weir is a seepage lake with no permanent tributaries. It receives water and nutrients through groundwater seepage, surface runoff, and precipitation (Messer 1975). There is intermittent outflow to the Oklawaha River over a weir structure located on the north shore.

The Lake Weir watershed, defined on the basis of topographic highs surrounding the lake, was determined to be 4500 hectares in area (Figure 1-1). Several small enclosed wetlands occupy topographic lows in the upper watershed. Messer (1975) did not include these in his calculations, and hence arrived at a smaller watershed area. Because of the low nutrient affinity of the soils (Messer 1975), nutrient loading from the entire 4500 hectare watershed may impact the lake.

Figure 1-1. Map of Lake Weir's watershed, as defined by topographic highs surrounding the lake. Wetland areas are denoted.

Soils in the Lake Weir region are well-drained, being comprised of thick layers of acid sands (Brezonik and Messer 1975). These highly permeable soils are well-drained, and erosion is not generally a problem throughout this gently sloping watershed (Brezonik and Messer 1975). Two distinct aquifers are present: the deep Floridan aquifer and a shallow, unconfined aquifer (Figure 1-2).

The lake is thought to be historically an oligotrophic system, being isolated from the phosphate-rich Floridan aquifer by impermeable clays in the Hawthorn Formation (Messer 1975). Lake Weir was originally a sandbottom lake, but much of the basin is now covered by up to a meter of flocculent organic sediment. The lake's trophic state has likely been in the mesotrophic range for the past several decades, but a few indicators have recently slipped closer to the eutrophic range.

Rainfall data have been compiled for Ocala (30 Km NW of Lake Weir) since 1892. Annual precipitation varied from 40 to 75 inches over the past century, showing a cyclical pattern of three to six year intervals (Figure 1-3). Lake surface levels, monitored since 1943 at Oklawaha by the USGS, showed similar fluctuations (Figure 1-4). The lake water elevation reached its lowest recorded levels in 1956 to 1958, being under 54 feet above sea level. Lake water level rebounded to a recorded high of over 59 feet in 1961. On a year by year comparison of variance, trends in lake water levels closely reflected rainfall for the previous year (Figure 1-5). This lag time was probably due to the absence of overland runoff into the lake.

Figure 1-2. Geologic map of Lake Weir watershed showing the Floridan aquifer and an unconfined sand aquifer (adapted from Messer, 1975).

Ч

Figure 1-3. USGS annual rainfall data for Ocala, Fl. Note cyclical pattern.

Total Annual Rainfall (Inches)

ი

Figure 1-4. Lake Weir water surface levels by year, monitored by USGS at Oklawaha. The lowest recorded level occurred in 1957; the highest in 1961. Water levels have been falling since 1983.

Rainfall and Water Levels

Lake Weir, FL, 1943-1985

Figure 1-5. Annual rainfall and mean water levels for Lake Weir, expressed as standard deviations from their mean values since 1943. Note that water levels closely echo rainfall, after a lag time of one year.

~

Standard Deviation From Mean

As lake water level has fluctuated through time, the shoreline has been significantly altered. Comparison of the shoreline in Shackleford's map of 1883 to a recent topographic map showed that the water level had been as high as 61 feet, higher than any level recorded since 1943. Little Lake Weir was directly connected to Lake Weir proper, isolating four islands which now are part of the peninsula. Shackleford noted that US government maps prior to 1883 depicted lower water levels.

Lake level has been dropping since 1983, and is now at one of the lowest recorded levels. Periods of low water can exert a significant short-term nutrient impact on the lake. Because most exchange with the shallow aquifer occurs in the littoral area of the lake, there is less dilution of nutrients by groundwater flushing during low water stage. Further, the shallower water levels are more conducive to sediment mixing and concomitant nutrient recycling. Finally, lower water level temporarily reduces the extent of wetlands and shallow littoral zones, which act as filters to mitigate nutrient loading.

Episodes of low water level may also have long-term beneficial effects on lake water quality. These periods may serve to consolidate littoral sediment, sealing the nutrients from future recycling into the lake water column. Low lake stage also allows the rejuvenation of shoreline vegetation, which ameliorates future nutrient loading from the watershed. Nevertheless, low lake water levels exert a short-term nutrient

impact, and current water quality of Lake Weir may be partially attributable to recent lower water levels.

Biological Setting

The native vegetation around Lake Weir was dominated by pine forests (Shackleford 1883). Yellow pine was reported to be a valuable timber resource throughout that region (Marion County Surveyor's Map of 1888). Hammock associations of live oak, water oak, magnolia, sweetgum, hickory, bay and holly occurred on the peninsula, islands, and in strips along the lake's margin (Shackleford 1883). The Marion County map of 1888 showed wetlands consisting of hammock, bay, cypress, saw grass, and "scrub" north of the lake (Figure 2-4). A photograph taken circa 1900 of Lake Weir's southeastern shoreline shows a dense strip of natural hardwood hammock vegetation (Figure 1-6). Also, stumps of dead cypress trees were present in the shallow littoral area. The Vegetation and Land Use Map (SJRWMD 1973) showed very little mesic hammock or sand pine scrub remaining (Figure 1-7).

Lake Weir's fertile hardwood hammocks were highly regarded for their rich organic soils and great suitability for citrus (Shackleford 1883). Wild oranges found on these lands were were not indigenous, as believed by settlers of the late 1800's, but rather had been introduced to Florida by the Spanish. While the hammock forests provided the best soils for citrus, pine lands could also support citrus agriculture with additional fertilization.

Figure 1-6. Photograph (ca. 1900) of Lake Weir's southeastern shoreline showing dense hardwood hammock vegetation. Note cypress stumps in the foreground.

Legend

- 1 Open land
 - Residential, low density
- 4 Residential, high density
- 12 Improved pasture
- 13 Crop lands
- 14 Citrus groves
- 21 Sand pipes scrub
- 22 Sandfill community
- 25 Mesic Hammock
- 27 Hardwood swamp
- 32 Freshwater marsh
- 34 Lakes and ponds

Figure 1-7. Vegetation and Land Use Map of 1973 by St. Johns River Water Management District. Scale: 1"= 2 mi (1:80,000).

Concerning fish populations, Shackleford (1883) described Lake Weir as being "well stocked with fish, consisting of trout [largemouth bass], bream, perch [crappie], pike, cat, and freshwater mullet." Sportfish populations today are similar, with the notable exception of the loss of crappie. Whether the "freshwater mullet" was indeed mullet remains uncertain, but if resolved would provide evidence for a natural connection to the Oklawaha River.

CHAPTER TWO: HISTORICAL DEVELOPMENT OF LAKE WEIR'S WATERSHED AND ASSOCIATED NUTRIENT INPUTS TO THE LAKE

In order to assess the historical impact of various land use practices on the water quality of Lake Weir, watershed history must be delineated. With such a database, it becomes possible to correlate water quality to the type and degree of development around the lake for a given time period. This information can then be used to establish future land management policies to preserve Lake Weir from further eutrophication.

Eutrophication is an additive process whereby increased nutrient yields due to changes in watershed land use practices will increase nutrient concentrations in a lake. Any practices which introduce nutrients or increase erosion will contribute to nutrient loading. Common disturbances include land clearance, agricultural practices, and urbanization. The amount of rainfall and water level also affect the concentration of nutrients in a lake.

Lake Weir's watershed development over the past century was documented from old maps, aerial photographs, government records, and published reports. We were especially interested in changes in land clearance, citrus agriculture (areal extent and management practices), and urbanization (residential area, human population, dredging, and road construction) as well as historical trends in rainfall and water level. With such an approach we were able to establish a detailed chronology of potential nutrient sources from Lake Weir's watershed.

Settlement of Lake Weir

Lake Weir may have been home to a number of past Indian cultures. Today, at least four prehistoric archaeological sites, including two lithic scatter type sites, are known around Lake Weir (Archaeological Consultants, Inc. 1987). Shackleford (1883) claimed that it was not uncommon to find pottery fragments, arrow heads, spear heads, and other Indian relics.

Spanish missionaries began to frequent this region around 1600. Groups of Timucuan Indians known as the Ocale and Potono Tribes occupied Marion County at that time (Milanich and Fairbanks 1980). The agricultural Timuqua were decimated about 1630 by diseases introduced by Europeans.

Around 1700, the British forced the Creek Indians out of Alabama and Georgia. These peoples relocated into north central Florida and became known as the Seminoles. Some settled around Lake Weir, raising cattle and farming the fertile hammocks. They named the lake Amaskohegan, meaning Bright Moon Lake (Shackleford 1883).

Early maps of the Oklawaha River region were made by the US Army Corps of Engineers during the Seminole Indian Wars of 1818 and 1835-1842. These maps are now preserved in the National Archives. An undated early map (Figure 2-1) described the unnamed lake: "a lake 3 1/2 miles in diameter" with "a bay gall extending [north] from lake to the [Oklawaha] river hammock." The term "gall" probably refers to a forested wetland. An 1836 map (Figure 2-2) showed a stream connecting

Figure 2-1. Map (circa 1835) of the Oklawaha River region of Central Florida by the U.S. Army Corps of Engineers. Lake Weir, in the lower right corner, was described as "a lake 3 1/2 miles in diameter" and the area to the north was labelled "a bay gall extending from the lake to the river hammock."

Figure 2-2. 1836 map of the Oklawaha River region of Central Florida by the U.S. Army Corps of engineers. Note the river connecting "Lake Ware" to the Oklawaha River.

"Lake Ware" north to the Oklawaha River. This suggests that there may have been at least an intermittent stream predating the weir structure and canal of 1938.

Shackleford (1883) stated that the lake was named "in honor of Lieutenant Weir of the US Army who was killed near its borders by the Seminoles during one of their wars with the United States." Like the 1836 map, a Florida map of 1834 in Marion County's Regional Library depicted "Ware's Lake." This indicates that the lieutenant was killed before the Second Seminole Indian War, and that his name may have been "Ware." If this was the case, "Weir" was probably a corruption of "Ware".

The U.S. Army registry listed two men for whom the lake may have been named. The most likely candidate is William F. Ware of Georgia, who was honorably discharged as a Captain on January 15, 1815. He may have come out of retirement in 1818 to join Jackson's Tennessee Volunteers during the First Seminole War. Lake Weir may also be the namesake of Second Lieutenant Lewis Weir of Tennessee who died on November 14, 1809. However, the location of his death was not specified, and his death predates the Seminole Indian wars.

Shackleford (1883) provided a detailed account of Lake Weir's early plantation owners. In 1843, under the "Armed Occupation Act," Col. S.F. Halladay became the first European settler on Lake Weir. The few early settlers experimented unsuccessfully with different forms of agriculture, particularly cotton and various vegetables. By 1870, Lake Weir

was still virtually uninhabited due to its distance from all means of transportation. The nearest steamboat landing and railroad station were in Silver Springs, and the post office was in Ocala.

Captain John L. Carney became the first citrus grower at Lake Weir in 1874 when he purchased 400 acres on Hammock Peninsula and Orange and Lemon Islands (now part of the peninsula dividing Lake Weir from Little Lake Weir). Lake Weir's great suitability for citrus was not appreciated for a few more years, until news of Carney's success brought a rush of entrepreneurs starting in 1880.

The Lake Weir watershed developed rapidly in the 1880's as a number of families purchased and cleared plots of land around the lake, as depicted on the map from Shackleford's book (1883) (Figure 2-3). By 1888, a number of small towns had been incorporated within the watershed (Figure 2-4). Photographs taken circa 1900 show a number of fine houses, stores, and community buildings (Figure 2-5).

Watershed Development

Shackleford (1883) and the 1890's photographs provided baseline hectarage of citrus and land clearance. Subsequent changes in land use within Lake Weir's watershed were measured from aerial photographs using a Micro-plan II digitizing computer. Florida Citrus Survey photos (1:20,000) were used for 1940, 1957, and 1964. More detailed aerial photos (1:7920)

Figure 2-3. 1883 map of Lake Weir showing property divisions (Shackleford, 1883). A plot typically contained one house, a citrus grove, forest, and some cleared land. Note the high water level which divided the peninsula into islands.

Figure 2-4. Portion of Marion County map of 1888 showing Lake Weir and numerous small towns which had been established within its watershed.

Figure 2-5. Photographs taken circa 1900 showing nice houses, buildings, and the new railroad near Lake Weir.

- A. Buffum's house in Stanton (Weirsdale)
- B. Dr. Henry's residence in Eastlake Weir
- C. Lake Weir Printing Office
- D. First old railroad depot in Eastlake Weir
- E. First pumping station at Eastlake Weir
- F. First Eastlake Station (before it burned)

were available for 1980 and 1985, courtesy of Marion County's Tax Assessors Office.

Multiple measurements of Lake Weir's total watershed area (excluding lake surface) averaged 4500 hectares. Variation was less than two percent for the 1980 and 1985 photos, with values ranging from 4481 to 4557 hectares. Error due to measurement was greater in the smaller scale photos, and total watershed area varied from 4000 to 5000 hectares.

Five land use categories were defined for the watershed:

Residential	clusters of four or more houses or buildings, including lawns.
Citrus	plots of viable citrus trees, not stumps or seedlings.
Pasture	all open land: grazing pastures, prairies, miscellaneous borders, some non-citrus agriculture.
Forest	clusters of trees over one hectare, including forested wetlands and a few commercial pine plots.

Wetlands marshes and small ponds.

Pasture area, which was fragmented and difficult to measure, was calculated by subtracting the other land use areas from the mean watershed size of 4500 hectares. This simplified measurement and compensated for differences in watershed size estimates, permitting direct comparison between years.

The results revealed several trends and a few dramatic changes in watershed land use (Figure 2-6). A severe pulse of deforestation occurred after 1883. Forest area continued to decrease from 1940 to 1957, then rebounded slightly to date. Pasture area peaked in 1957 and again in 1985. Citrus was well

Figure 2-6. Historical watershed land use practices for Lake Weir. Pasture area, including all open lands and misc. land uses, was adjusted slightly to bring each year's watershed size to the mean value of 4500 hectares. Land use areas for 1883 were estimated from Shackleford's book. Values for 1940, 1957, and 1964 were computer digitized from Florida Citrus Survey aerial photographs (scale 1:20000). Land uses for 1980 and 1985 were digitized from Marion County tax assessment aerial photos (scale 1:7920).

established by 1983, increased in area through 1964, and was decimated between 1980 and 1985. Residential area increased tenfold from 1940 to 1985, with most of that expansion after 1964. These trends will be discussed in detail in the following sections.

Land use areas smaller than three hectares could not be measured on the small scale photographs. Smaller plots of trees and houses were easier to identify and measure on the larger scale photos of 1980 and 1985. This may account in part for the increase in forest and residential areas (and the relative decrease in citrus) from 1964 to 1980.

A. Land Clearance

Early descriptions of Lake Weir (Shackleford 1883) and Marion County (Surveyor's map of 1888) characterize the region as being covered by pineland and hammock forest, with little natural upland pasture. Two saw mills were in full time operation by the 1880's and 1890's, clearing land for pasture and citrus groves while providing wood for construction of houses. Photographs taken around the turn of the century showed large tracts of cleared land with only a few solitary pine trees surviving (Figure 2-7).

The late 1800's marked the most rapid pulse of deforestation in Lake Weir's history; forest area was reduced to perhaps half of its original area. Forest area declined from 1200 to under 600 hectares between 1940 and 1957 (Figure 2-6).

- Photographs taken circa 1900 showing extensive amount of deforestation around Lake Weir. Note solitary pine trees where pine forest originally stood. A. House in Eastlake Weir (lake in background) Figure 2-7.

 - B. School/Church in Weirsdale
 - C. House in South Weir
 - D. View of Weirsdale (Mr. Douglas' store on left)

After 1957, the areal extent of forest increased slightly with a few commercial tracts of pine.

Pasture acted as a transitional land use between forest and citrus. Pasture area peaked following deforestation activities of the 1940's and was partially replaced by citrus by 1964. Pasture dominated the watershed following the citrus crash in 1983.

B. Citrus Industry

In order to assess the impact of nutrient loading from citrus agriculture on the lake, two factors need to be considered: the total amount of citrus in the watershed at a given time (Figure 2-6) and contemporary citrus management practices (Table 2-1).

The citrus industry was firmly established by 1883, comprising 150,000 orange and lemon trees in 600 hectares of groves surrounding the lake, with many more groves soon to be started. Citrus groves were decimated by the freezes of 1894, but were reestablished by the turn of the century. By 1940, citrus groves covered a quarter of the watershed (Figure 2-6). Citrus expanded and remained a prominent part of the watershed until the freezes of 1983 and 1984. By 1985, less than two percent of the watershed contained viable citrus.

Various methods of land clearance, citrus planting, fertilization, and pest control may have different effects on erosion and nutrient loading to the lake. Shackleford's 1883 book contained an entire chapter describing the best ways to

Table 2-1. Historical changes in citrus management practices within the lake Weir watershed.

- 1600's Spanish introduced sour oranges which were later thought to be indigenous or "wild".
- 1874 Captain John Carney established Lake Weir's first commercial orange grove.
- Many more orange groves were started, totaling 600 1880-1890 hectares of citrus by 1883. Methods of clearing land and planting groves varied with land type. Pineland areas to the south and east of Lake Weir were burned off and young trees were set in large holes. Hammock areas on the islands and peninsula were cleared by hand and sweet orange scions were grafted onto existing wild orange trunks. Highly nitrogenous fertilizers such as manure were most commonly applied; commercial fertilizers were rarely imported to the area. Rows of beans were planted then plowed under to provide nitrogen for young groves. Insects may have been controlled by the spraying of heavy metals (Cu. Cd. As), as was the practice in that era.
- 1894 Freezes obliterated the citrus trees around Lake Weir. Nutrients were possibly released to the lake from the dead trees and soil.
- 1895-1900 All groves were restarted. Heavy nitrogenous fertilization presumably occurred.
- 1940 Citrus groves covered 1200 hectares. Commercial fertilizers containing N and P became common.
- 1945 Commercial herbicides and pesticides containing organo-phosphorus were introduced. Episodes of massive fertilization occurred in Florida.
- 1964 Citrus groves exceeded 1700 hectares.
- 1984 Freezes decimated Lake Weir's citrus to 68 hectares of viable trees. Nutrient release from dead trees and soil may have had a significant impact on the lake.
- 1980's Many citrus owners have switched to fertilizers containing no phosphorus.

plant and manage an orange grove. Comparison of these methods to modern practices may account for changes in the impact of citrus on Lake Weir.

Shackleford (1883) prescribed two different methods for land clearance for citrus groves. In the fertile hammock areas, cleared vegetation was stacked to decompose and release nutrients. The more acidic pineland areas were burned off, creating a much more rapid pulse of nutrients following clearance.

Techniques of planting citrus groves also varied around the lake. Sweet orange scions were often grafted onto the "wild" orange trees which grew in the hammock areas. Many groves were started with young trees from nurseries. Prior to planting, holes seven feet wide would be left exposed for a week to equilibrate so that the trees would all be the same height. This practice would have left large areas subject to erosion in the event of heavy rainfall.

Changing fertilizer types and application rates could have influenced nutrient loading to the lake. Cattle manure and other nitrogenous fertilizers were most commonly used in the 1800's. Manure was applied particularly heavily on pineland groves. Also at that time it was common to plant rows of beans between rows of young citrus trees. The beans, nitrogen fixers, would be plowed under to fertilize the ground.

Phosphorus rich commercial fertilizers were rarely used around Lake Weir during the 1800's, due to the expense and difficulty in transporting them to the lake. Heavy application

of commercial fertilizers became more widespread after World War II. Therefore, current citrus management practices yield more nutrients and provide a higher ratio of phosphorus to nitrogen.

In the 1800's, a common method to control insect damage was to spray heavy metals (such as copper, arsenic or cadmium) as insecticides. It is reasonable to assume that this practice may have been conducted at Lake Weir, though Shackleford (1883) made no mention of it. Commercial pesticides and herbicides were introduced at the end of World War II. These contained organo-phosphorus, which would have increased nutrient loading to the lake.

One other potential source of nutrient loading to the lake occurs after citrus killing freezes as the rotting trees release significant amounts of nutrients. The freeze of 1894 killed over ninety percent of the citrus in central Florida, but there is no detailed record of tree mortality within the Lake Weir watershed. More recently, the freezes of 1983 and 1984 may have made such an impact.

C. Urbanization

Urban growth is another factor which may have affected the lake's water quality. Changes in residential area, human population, road construction, and dredging activities were examined.

At the time of Shackleford's book (1883), Lake Weir's watershed hosted three stores, two saw mills, and two post offices. By 1888, the Lake Weir watershed had ten stores, seven post offices, three hotels, two railroad stations, the Chautauqua Buildings, a bank, and a seminary.

Residential area was absent in 1883 and grew to less than one percent of the total watershed by 1940. Residential area doubled by 1957, doubled again by 1964, and more than doubled again by 1985 (Figure 2-6). The residential areas were concentrated in the vicinity of Oklawaha, Weirsdale, and Sunset Harbor.

Shackleford (1883) reported: "Ten years ago there were no citizens. . .on Lake Weir. Now over one thousand people dwell upon its shores or in its immediate vicinity." His figure included Belleview, which lies just outside the watershed. Judging by the relative growth rates of Belleview and the Weir watershed, it is reasonable to estimate that 300 people lived in the watershed at that time.

Decennial census data were available for Lake Weir starting in 1900. From 1900 to 1940, precinct number nine was the town of Lake Weir (now part of Oklawaha). Frecinct nineteen was Stanton, which was later renamed Weirsdale.

In 1950 and 1960, Marion County was divided into five sections, so population data could not be derived separately for the Weir watershed. The increase in population for this time was probably proportional to the increase in residential area (Figure 2-6).

In 1970 and 1980, Enumeration Districts (E.D.) were initiated, showing Lake Weir's watershed population. Data from 1970 were not available at UF's library. The 1980 E.D. tract included a few areas of low population outside the watershed, so the population was estimated at 4600, instead of 4721.

The population growth rate has accelerated in recent years (Figure 2-8). Such population expansion could have exerted a significant effect on the lake's nutrient loading, especially because there is no central sewage treatment facility. Septic tanks, even if operated properly, release nutrients into the lake. Septic tank contributions were estimated to have an average daily effluent of 475 liters, having concentrations of 36 mg/l N and 8 mg/l P (Messer 1975, Brezonik and Shannon 1971). Messer (1975) assumed that 25% of the N and 10% of the P was transported from shoreline septic tanks to the lake.

Aerial photos showed that increased road construction roughly paralleled the expansion of residential area until 1971 to 1972 when a huge network of roads was built in the northeast corner of the watershed. Road lengths were digitized on the topographic maps of 1970 and 1977. Whereas the length of roads in the entire watershed increased by 45% during this time, there was a 200% increase within the northeast corner (Figure 2-9).

Figure 2-8. Human population within the Lake Weir watershed from 1870 to 1985. Figures for 1870 and 1883 were from Shackleford's book. Decennial census data were availiable for 1900 through 1940, and 1980. All other values were estimated as a function of residential area, as depicted in Figure 2-6.

Lake Weir Watershed Population

Figure 2-9. Length of paved and unpaved roads in the Lake Weir watershed, in km. Distances were computer digitized from 1970 USCS topographic map (photorevised 1980, with 1977 photos). Note the extreme degree of road development which occurred in the northwest watershed between 1970 and 1977.

ω ω Phosphate-rich clays from the Hawthorn Formation are commonly used for road beds in Central Florida, and road construction often leads to increased erosion. Therefore, this episode of development may have impacted the northeast section of the lake.

Dredging is another developmental activity which could affect the lake's water quality (Figure 2-10). Aerial photos showed that the canal between Little Lake Weir and Sunset Harbor was first dredged between 1949 and 1957. This canal was widened and lengthened by 1964. The bridge and canals on Bird Island were also made between 1957 and 1960. By 1972, more cross channels were dredged in the Little Lake Weir canal, and the canal west of Sunset Harbor was dredged. The weir structure and its canal were constructed on the northern shore in April of 1938.

In summary, the history of Lake Weir's watershed has been punctuated by several distinct periods of potential increases in nutrient loading to the lake (Table 2-2). Commencement of citrus agriculture in the 1880's, the citrus-killing freeze of 1894, and rapid deforestation during the 1890's may have significantly increased erosion and nutrient loading. Extremely low lake water level in 1957 may have increased lake nutrient concentrations. Dredging activities in the early 1960's and extensive road construction around 1972 also may be marked by pulses of nutrient loading. Rapid population growth and concomitant urban expansion highlight the 1980's potential sources of nutrients.

Figure 2-10. Map of Lake Weir showing dates of dredging and construction around Lake Weir.

Table 2-2. Summary of historical events in Lake Weir watershed potentially affecting nutrient loading to the lake.

- 1880's Citrus management practices (land clearance, planting, fertilization, insect control).
- 1894 Citrus freeze.

1890-1910 Massive deforestation.

- 1938 Construction of broad-crested weir structure and canal.
- 1940's Massive application of commercial fertilizers containing nitrogen and phosphorus.
- 1945 Introduction of orthophosphate-based herbicides and pesticides.
- 1956-1958 Extremely low lake water levels.

1960-1961 Extremely high lake water levels.

- 1962 Dredging of canals on peninsula and bird island. Bridge built.
- 1972 Extensive road construction in northeastern watershed.
- 1975-1988 Population boom! Condominiums, trailer parks, housing developments. Significant increase in population and residential area.
- 1983-1984 Citrus freeze.

1985-1988 Lake water level falling.

Nutrient Budget

Loading rates of N and P for the Lake Weir watershed were calculated using Brezonik and Messer's (1975) areal yield coefficients (Table 2-3). Their estimates were based on a number of assumptions, but these values are the best available, and provide a basis for comparison between periods in the watershed's development. Brezonik and Messer used a much smaller watershed area and hence arrived at much lower nutrient loading rates.

Human septic input was calculated using Vollenweider's (1968) human nutrient yields of 12 g N and 2.25 g P per person per day. It was assumed that 25 percent of the nitrogen and 10 percent of the phosphorus were transported to the lake.

Annual nitrogen loading to Lake Weir from the watershed doubled from 3 × 107 g in 1883 to 6 × 107 g in 1964, paralleling the increase in citrus area (Figure 2-11). Nitrogen loading decreased after the citrus freezes of 1984, but remained higher than the 1883 value due to the higher watershed population.

Annual phosphorus input from the watershed remained fairly constant at around 2.4 \times 10⁶ g from 1883 to 1964, then increased in 1980 and again in 1985 to 3.3 \times 10⁶ g (Figure 2-12). These figures are conservative, as only ten percent of the phosphorus in human waste was assumed to reach the lake.

Rates of nutrient removal by wetlands adjacent to the lake were not estimated. Brezonik and Messer (1975) speculated that these wetlands acted as nutrient sinks during the growing

Table 2-3. Nitrogen and phosphorus loading coefficients for watershed land use practices and human population at Lake Weir. Land use nutrient loading values were based on Messer 1975. Human septic input was estimated by Brezonik and Shannon (1971), assuming that only 25% of the nitrogen and 10% of the phosphorus was transported to the lake (Messer 1975).

	ANNUAL	YIELD
NUTRIENT SOURCE	NITROGEN	PHOSPHORUS
+ Residential	0 .88 g/m2	0.110 g/m2
+ Citrus	2.24 g/m2	0.018 g/m2
+ Pasture	0.75 g/m2	0.065 g/m2
+ Forest	0.37 g/m2	0.060 g/m2
* Total produced	4380. g/person	821. g/person
* Amount reaching lake	1095. g/person	82.1 g/person

+ Land use

* Human waste

Figure 2-11. Historical annual loading of nitrogen (A) and phosphorus (B) into Lake Weir from the watershed. Nutrient loading coefficients for land use practices and human population are listed in Table 2-3. These values do not include aerial or groundwater nutrient contributions, and do not quantify the nutrient uptake by wetland areas surrounding the lake.

season and nutrient sources during the winter. Later studies have shown that wetland systems in subtropical environments act as nutrient sinks throughout the year. Therefore, the reduction in wetland area around Lake Weir since 1883 would have increased nutrient loading to the lake.

These loading values of N and P do not include input from precipitation or water fowl. Several residents have noted that herring gull populations have increased substantially in recent years, especially during winter. This may also have had a significant nutrient impact.

CHAPTER THREE: SECCHI DISK SURVEY

Much of the public's perception of Lake Weir's cultural eutrophication over recent years has been attributed to increased algal turbidity. This reduction in water clarity has been associated with poorer water quality, given the recreational water use objectives of the lake residents.

Nutrient loading at Lake Weir is largely from non-point sources including various watershed land use practices. It is difficult to separate the impacts of these practices, especially since nutrients can enter the lake through groundwater seepage. Studies of nutrient contributions from nonpoint sources are expensive and time consuming, often involving construction of a lake's complete nutrient budget. Secchi disk surveys may provide a fast, low cost alternative for ranking the relative importance of non-point sources. This chapter reviews a citizen-based Secchi disk survey of Lake Weir.

Secchi disks are used to measure water clarity, which is a function of light penetration through the water column and is often related to water quality (A.P.H.A. 1971). Three factors influence water clarity: dissolved color, sediment turbidity, and algal biomass. Water color and turbidity were not significant variables in Lake Weir. Dissolved water color was low and uniform throughout the lake, and all of the stations were in areas deep enough to minimize resuspension of bottom sediments. Therefore, water clarity was closely related to algal biomass and hence nutrient concentrations in Lake Weir.

Other experimental variables alter the intensity of light impinging on the lake surface, and thus may affect Secchi depth. Weather, sea state, and time of day were recorded for each observation. In addition, instruction sheets were distributed to the participants in order to minimize systematic error which could result from differences between observers' techniques.

Because algal biomass in Lake Weir closely reflected proximal loading of limiting nutrients, Secchi disk depths at different sections of the lake basin could be compared to assess the intensity of nutrient contributions by various land uses practices. Agricultural activities such as citrus groves and grazing pastures have dominated Lake Weir's watershed for almost a century. Residential development around the lake has increased four-fold over the past thirty years, yet all houses in the watershed remain on septic tanks; there is no central sewage treatment facility. Lake Weir is considered to be phosphorus-limited (Messer 1975), and there has been a shift toward higher P:N loading with recent urbanization.

Materials & Methods

Secchi disk depths were monitored weekly for an entire year at 32 stations throughout Lake Weir system (Figure 3-1). Over 1400 Secchi disk readings were recorded from 20 July 1985 to 5 July 1986. This extensive effort was coordinated by Mr. Del Wood. Several teams of residents shared the responsibility of monitoring the stations, which were marked by buoys. The

Figure 3-1. Map of Lake Weir showing the radial pattern of Secchi disk stations by numbers. Station #28 was not included in the data analyses.

stations were set up in a radial pattern to identify "hot spots" of water quality degradation and to isolate their nonpoint sources.

Residents participating in the study were given a list of specific instructions to keep the readings uniform (Figure 3-2). Readings were to be made each Saturday, close to noon, while standing on the sunny side of the boat and not wearing sunglasses.

On at least ten occasions, Mr. Wood personally replicated readings made by the investigators and found almost all of their observations to be within two inches of his own. Although Mr. Wood did not record these observations, he acknowledged that there was no difference between the groups of observers. Therefore, error was assumed to be randomly distributed across the stations.

For each observation, investigators recorded three experimental variables which may have influenced the degree of light penetration into the water column: weather condition, sea state, and time of day (Figure 3-3). Weather was recorded as a code of 1 to 4, with 1 representing a bright sunny day and 4 being heavily overcast. Sea state was a measure of wave amplitude, recorded in inches. Time of day was related to the angle of the sunlight's incidence on the lake surface.

Figure 3-2. Instructions given to Secchi disk monitoring teams. Figure 3-3. Three variables influencing the penetration of light through the water column (and hence, Secchi disk depth).

Data Analyses and Results

The objective of this study was to statistically identify groups of stations having significantly lower Secchi disk depths. In order to accomplish this, experimental variables had to be factored out, then groups of stations having significantly lower water clarity could be related to the type and degree of watershed development immediately onshore.

Four readings which were made after 6:00 p.m. on a single sampling day were omitted, as they were anomalously low. Also, station #28 was eliminated from the study because over half of the readings at this shallow site were on the lake bottom. All other stations were in at least three meters of water (Figure 3-4). In all, 1349 observations were included in the study. These data were entered onto Lotus 123 and were transferred to SAS for statistical analyses.

Analyses of variance were performed to determine whether weather, sea state, or time of day significantly influenced Secchi disk depth. Weather code showed a negative correlation with Secchi depth which proved to be highly significant at all levels (Table 3-1). Sea state analyses showed only calm waters to have significantly greater Secchi depths (Table 3-2). Time of day showed that a highly significant difference existed between the time intervals as a collective group (Table 3-3).

Regression analyses of Secchi disk depth versus the independent variables were run (Table 3-4). Variation due to regression of Secchi depths with time of day and with sea state was not significant at alpha of five percent. However,

Figure 3-4. Map of Lake Weir Secchi disk stations and 3 meter bathymetric contour. Only stations 28 and 25 were in less than 3 m of water.

Table 3-1. ANOVA between Secchi depths for Weather Codes in Lake Weir proper and Lake Weir.

> Weather Code 1 = clear, sunny Weather Code 2 = partly overcast Weather Code 3 = overcast; no sun Weather Code 4 = rain

Secchi depth vs. weather code for Lake Weir proper (m)

Group		#	observ	mean	std devn
Weather	Code	1	548	1.946	0.2092
Weather	Code	2	349	1.909	0.1819
Weather	Code	3	104	1.822	0.1481

Comparison				F value	alpha	
Weather	Code	1	VS	2	45.97	0.0001 **
Weather	Code	1	VS	3	41.34	0.0001 **
Weather	Code	2	VS	3	19.79	0.0001 **

Secchi depth vs. weather code for entire Lake Weir (m)

Group			# obser∨	mean	std devn
Weather Weather Weather Weather	Code Code Code Code	1 2 3 4	751 420 173 5	1.971 1.899 1.818 1.708	0.2591 0.2188 0.1999 0.1291
Compari	son			F value	alpha
Weath 1	vs 2	vs	3 vs 4	23.66	0.0001 **

** significant at alpha = .01

Table 3-2. ANDVA between Secchi depths for groups of Sea States in Lake Weir proper and Lake Weir.

Secchi depth vs. sea state for Lake Weir proper (m)

Group	# obser∨	mean	std devn	
0-1 inches (A) 2-5 inches (B) 6-11 inches (C) 12-17 inches (D) 18+ inches (E)	428 184 178 157 55	1.976 1.903 1.922 1.958 1.930	0.2148 0.2206 0.1744 0.1816 0.1486	_
Comparison		F value	alpha	_
A vs B vs C vs D A vs C A vs C A vs C A A Vs C A vs D A A Vs C B vs C A A A A A B vs C A <td>) vs E</td> <td>5.404 14.790 8.957 0.836 2.382 0.812 6.350 0.736 3.576 0.099 1.093</td> <td>0.0003 0.0001 0.0029 0.3608 0.1234 0.3682 0.0122 0.3918 0.0595 0.7538 0.2971</td> <td>** ** *</td>) vs E	5.404 14.790 8.957 0.836 2.382 0.812 6.350 0.736 3.576 0.099 1.093	0.0003 0.0001 0.0029 0.3608 0.1234 0.3682 0.0122 0.3918 0.0595 0.7538 0.2971	** ** *

Secchi depth vs. sea state for entire Lake Weir (m)

Group	# obser∨	mean	std devn
0-1 inches (A) 2-5 inches (B) 6-11 inches (C) 12-17 inches (D) 18+ inches (E)	566 363 200 165 55	1.969 1.861 1.917 1.945 1.930	0.2705 0.2482 0.2021 0.1884 0.1486
Comparison		F value	alpha
A vs B vs C vs I) vs E	11.240	0.0001 **

* significant at alpha = .05
** significant at alpha = .01

Table 3-3. ANOVA between Secchi depths for specified Time-of-Day intervals in Lake Weir proper and Lake Weir.

Secchi depth vs. time of day for Lake Weir proper (m)

Group	# obser∨	mean	std devn
845-959	73	2.009	0.1552
1000-1059	161	1.992	0.2115
1100-1159	250	1.963	0.2000
1200-1259	243	1.952	0.1892
1300-1359	145	1.914	0.2058
1400-1559	106	1.860	0.2065
1600-1759	24	1.857	0.2373
Comparison		F value	alpha
Betw. all 7 i	ntervals	7.675	0.0001 **

Secchi depth vs. time of day for entire Lake Weir (m)

Group	# obser∨	mean	std devn	
 845-959	136	1.870	0.2831	
1000-1059	398	1.950	0.2945	
1100-1159	287	1.950	0.2140	
1200-1259	244	1.950	0.1896	
1300-1359	152	1.900	0.2121	
1400-1559	106	1.860	0.2065	
1600-1759	24	1.857	0.2373	
Comparison		F value	alpha	
, 			· · · · · · · · · · · · · · · · · · ·	
Betw. all 7 i	ntervals	4.653	0.0001 *	*

****** significant at alpha = .01

Table 3-4 . Multiple regressions of Secchi depth by independent variables Weather Code, Sea State, and Time of Day for Lake Weir. (m) Regression of Secchi depth by Weather Code 2.0478 Intercept Regr Coeff -0.0760 Std Err Y Estim 0.2396 Std Er Rgr Coef 0.0090 0.0500 Corr X vs. Y R-Squared -0.2236 ANOVA for regression Source DF SS MS F of Error Alpha Due to R.14.07024.0702Devn fr R.134777.33800.0574Total134881.4082 4.0702 4.0702 70.8909 0.0001 ** (m) Regression of Secchi depth by Sea State 1.9329 Intercept Regr Coeff -0.0012 Std Er Rgr Coef -0.0012 0.2458 0.0007 Std Err Y Estim Corr X vs. Y •R-Squared -0.0255ANOVA for regression Source of Error DF SS MS F Alpha Due to R. 1 0.0530 0.0530 0.8772 0.3491 Devn fr R. 1347 81.3550 0.0604 Total 1348 81.4080 (m) Regression of Secchi depth by Time of Day Intercept 2.0102 Regr Coeff -0.0001Std Er Rgr Coef Corr X vs. Y 0.2456 Std Err Y Estim 0.0000 R-Squared 0.0023 -0.0477ANOVA for regression Source DF Alpha of Error SS MS F 1 0.1856 0.1856 Due to R. 3:0777 0.0796 Devn fr R. 1347 81.2220 0.0603 Total 1348 81.4076 ****** significant at alpha = .01

regression of Secchi depths by weather code showed a high degree of variation attributable to regression, with an alpha of less than 0.0001. Because weather codes were evenly distributed across all stations, remaining analyses were performed on the raw data.

The annual means were calculated for each station (Figure 3-5). Sixteen stations had a mean Secchi depth less than the overall lakewide average of 1.928 meters. These stations were clustered near the areas of greatest shoreline population (Figure 3-6). All seven stations in the highly populated Little Lake Weir and Sunset Harbor basins were below the lakewide mean. Eight of the nine below-average stations in Lake Weir proper were clustered along the northeastern shore of the lake, adjacent to the town of Oklawaha. The single exception, station #15, was barely below the lakewide mean and was located immediately offshore of the highest concentration of citrus near the lake.

Next, mean Secchi depths of the three lake basins were compared throughout the year (Figure 3-7). Sunset Harbor had a significantly lower Secchi depth throughout the year than Lake Weir proper. Little Lake Weir displayed a high degree of seasonality, unlike the other two basins. Analysis of variance tests confirmed that these lakes were statistically different (Table 3-5).

During summer, Little Lake Weir exhibited the lowest water clarity of the entire system. This may have been due to the higher watershed to lake surface ratio and the shallower water

Lake Weir Annual Mean Secchi Depths

20 July 1985 - 5 July 1986

Station

Figure 3-5. Annual mean Secchi disk depths by station. Each bar represents up to 50 observations. Lakewide mean Secchi depth was 1.93 m.

ς ω

Figure 3-7. Mean Secchi disk depths for each of Lake Weir's three basins at weekly intervals throughout the year.

Table 3-5. ANOVA between secchi depths at Lake Weir proper, Sunset Harbor, and Little Lake Weir.

Secchi depth vs. lake division

(m)			
Group	# obser∨	mean	std dev
Overall	1349	1.928	O.246
Lake Weir proper	1002	1.948	0.204
Sunset Harbor	200	1.838	0.242
Little Lake Weir	147	1.913	0.424

ANOVA Lake Weir proper vs. Sunset Harbor

Source of Error	DF	SS	MS	F	Alpha
Between	1	1.9930	1.9930	45.1075	0.0001 **
Within	1200	53.0200	0.0442		
Total	1201	55.0130			

ANOVA Lake Weir proper vs. Little Lake Weir

Source of Error	DF	SS	MS	F	Alpha	
Between	1	0.1484	0.1484	2.5150	0.1130	
Within	1147	67.6800	0,0590			
Total	1148	67.8284				

ANOVA Little Lake Weir vs. Sunset Harbor

Source of Error	DF	SS	MS	F	Alpha
Between	1	0.4788	0.4788	4.3265	0.0383 *
Within	345	38.1800	0.1107		
Total	346	38.6588			

* significant at alpha = .05
** significant at alpha = .01

-

depth. Thus, nutrients from a proportionately larger watershed would be delivered to a smaller volume of water, yielding higher nutrient concentrations and hence greater algal biomass. During winter, Little Lake Weir showed the greatest water clarity, with Secchi depths greater than three meters on 28 December 1985. Several lake residents have noted the presence of a spring in Little Lake Weir, which could account for a higher degree of groundwater flushing during the winter, and hence greater water clarity.

Because Little Lake Weir, Sunset Harbor, and Lake Weir proper appeared to behave as separate systems, comparisons of stations across the entire system may not be valid. The remaining statistical analyses were performed only on Lake Weir proper.

Duncan's Multiple Range Test was used to identify stations in Lake Weir proper having significantly different water clarity. At an alpha value of five percent, the stations near Oklawaha were significantly lower than the other stations (Table 3-6).

Owing to Lake Weir's nearly circular shape, small littoral area, and uniform station depth around the lake, there is no reason to believe that morphometric factors would exert a bias on Secchi depth from one side of the lake to the other. To determine the influence of proximity to shoreline, stations in Lake Weir were grouped into three concentric rings (Figure 3-8). ANOVA tests revealed no significant differences between these rings (Table 3-7). The middle of the lake (Station #0)

Table 3-6. Duncan's Multiple Range Test for differences between annual Secchi disk means for stations in Lake Weir proper.

.

Alpha = .05

Stations underscored by the same line are not significantly different.

Station: 0 10 16 8 7 17 14 13 18 19 6 5 9 12 11 15 20 3 22 4 2 23 21 1

Table 3-7. ANOVA between Secchi depths for concentric rings of stations at different distances from shoreline.

Secchi depth vs. shoreline proximity for Lake Weir proper (m)

Group 	# obser∨	mean	std devn
Outer Ring (OR)	457	1.937	0.2072
Middle Ring (MR)	249	1.952	0.2011
Inner Ring (IR)	248	1.951	0.2000
Lake Center (C)	48	2.009	0.1779

а
2
7
1 *
)
3
5

* significant at alpha = .05

demonstrated greater water clarity than the three rings, but it was only significantly greater than the outer ring. Therefore, direct comparisons could be made between stations regardless of distance from shore.

Thus, it was possible to compare the effects of shoreline development by partitioning the lake into sectors. The stations which had statistically lower water clarity in Duncan's multiple range test were grouped into the north sector near Oklawaha. Two control sectors of similar but less populated areas were arbitrarily defined. Secchi disk depths in the Oklawaha sector appeared to show higher variance, being generally lower but periodically having greater water clarity (Figure 3-9). The two control sectors showed nearly identical mean Secchi depths throughout the year, with no strong seasonal trends. Analysis of variance confirmed that the Oklawaha sector had significantly lower mean Secchi depths (Table 3-8).

To quantify this relationship between water clarity and human population, mean Secchi disk depths of the outer ring of stations were compared to the number of houses in the proximity. Houses within 1/4 mile of the lake and 3/8 of a mile to either side of a point immediately onshore of each station were counted on the 1985 tax assessment map (Figure 3-10). This shoreline distance was less than the average distance between stations, but these bands slightly overlapped in three areas.

The plot of all eleven stations nearest to shore showed a distinct relationship of decreased water clarity with

Mean Secchi disk depths for three sectors of Lake Weir proper Figure 3-9. at weekly intervals throughout the year. The north sector was defined by the stations which had statistically lower water clarity. The west and south sectors were controls.

Mean Secchi Depth Imeters

Table 3-8. ANOVA of Secchi depths (m) between three sectors in Lake Weir proper.

Group	#	observ	mean	std	dev
North Soctor			1 994	<u>ہ</u>	 774
South Sector		361	1.962	ŏ.	180
West Sector		336	1.965	ο.	197

ANOVA North Sector vs. South Sector

Source of Error	DF	SS	MS	F	Alpha
Between	1	0.7080	0.7080	17.0097	0.0001 **
Within	616	25.6400	0.0416		
Total	617	26.3480			

ANOVA North Sector vs. West Sector

 Source
 OF
 DF
 SS
 MS
 F
 Alpha

 Between
 1
 0.7358
 0.7358
 16.1417
 0.0001 **

 Within
 591
 26.9400
 0.0456
 0.0456

 Total
 592
 27.6758
 16.1417
 0.0001

ANDVA South Sector vs. West Sector

Source

of Error	DF	SS	MS	F	Alpha
Between Within	1 695	0.0010 24.6600	0.0010	0.0275	0.8683
Total	696	24.6610			

* significant at alpha = .05

-

****** significant at alpha = .01

Figure 3-10. Outer rings of Secchi disk stations and annual mean depth (m) and corresponding shoreline area 3/4 mile by 1/4 mile with number of houses contained in each. Houses in areas of overlap ("*") were counted for both stations.

increasing shoreline population (Figure 3-11 A). However, linear regression of these points yielded an R squared value of only 0.53 due to two outliers (stations #2 and #15).

These stations have lower water clarity than other stations with similar numbers of houses. They appear to be picking up signals of nutrient sources not related to septic input. Station #15, as mentioned earlier, was just offshore of a major citrus grove. Station #2 was subjected to increased urban runoff from the northeastern watershed, where a major network of roads had been paved a few years earlier. It is important to note that this curve represents the maximum water clarity in Lake Weir for a given shoreline population; other factors can independently reduce water clarity.

After removing the two outlying points, the correlation was much stronger, having a linear regression R squared value of 0.88 (Figure 3-11 B). Water clarity appears to become less satisfactory for recreational purposes when house density exceeds 40 houses per 3/4 by 1/4 mile band. This density might be considered an acceptable limit for houses with septic tanks.

Summary

Secchi disk depths measure water clarity, which is a composite of dissolved water color, inorganic turbidity and algal biomass. The latter reflects nutrient loading into the lake system. All of the stations in this survey were in areas deep enough to minimize turbidity due to resuspension of bottom sediments by boating or wave action. Therefore, Secchi disk

B. Excluded stations #2 and #15.

depths in this survey were assumed to indicate relative amounts of nutrient loadings to Lake Weir.

Sunset Harbor, Little Lake Weir, and the Oklawaha area of Lake Weir exhibited significant reductions in water clarity. These areas coincided with areas of higher population along the shoreline. Different baseline conditions existed between the lake divisions. Duncan's multiple range test for stations in Lake Weir proper confirmed that the stations near Oklawaha had significantly lower water clarity.

Little Lake Weir and Sunset Harbor appeared to behave as isolated systems. Both had much higher shoreline to surface area ratios and were shallower than Lake Weir proper. Therefore, nutrients would be more concentrated than in the big lake. Little Lake Weir exhibited much greater seasonal changes in water clarity than Lake Weir. Little Lake Weir had many of the lake system's most turbid readings during the spring and summer; yet had by far the highest water clarity during the winter. There may have been increased flushing by groundwater during the winter months.

Reduction in water clarity was closely correlated to shoreline population, with an R-squared value of 0.88 after excluding stations #2 and #15, which were subject to other sources of nutrient loading. Septic tank input seems to have been responsible for this effect. Weirsdale appeared to have no significant impact on water clarity. Distance of development from the lake may have been a major factor governing the nutrient impact.

CHAPTER FOUR: LIMNOLOGICAL MONITORING OF LAKE WEIR, FLORIDA--CURRENT CONDITIONS AND HISTORICAL PERSPECTIVES

MATERIALS AND METHODS

Field Sampling Methods

Monthly water samples for chemical analyses and plankton counts, and sediment samples for macroinvertebrate counts were collected at 7 stations (Figure 4-1). Five stations were established in Lake Weir, and a midlake station was used in both Sunset Harbor and Little Lake Weir. Dissolved oxygen and water temperature were measured at 1 m intervals at each station. Secchi disk transparency and bottom depth were recorded at each station.

Water chemistry samples were taken from 0.5 m depth in acid-washed nalgene bottles, acid-preserved (Total Phosphorus, Total Kjeldhal Nitrogen) or not (Orthophosphate, alkalinity, pH, conductivity) as required for the various analyses and put on ice. Plankton samples were taken from water column composites of Kemmerer bottle samplings at 1 m intervals and were stored in 80 ml glass bottles. Zooplankton and phytoplankton were preserved with Lugol's solution. Bacterial samples were preserved with 4 ml of formalin (in 80 ml sample). Water samples to be used for protozoan counts were preserved with bromothymol blue and HgCl₂. Macroinvertebrate samples were taken in triplicate at each station with a petit ponar grab (0.02 m²), sieved in the field (600 um mesh) and preserved

Figure 4-1. Bathymetric map of Lake Weir developed from fathometric tracings, 1988. Seven stations for monthly limnological monitoring are marked.

t

in 70% ethanol containing Rose bengal. Upon returning to the laboratory, chemistry and plankton samples were stored at 4 C until analyzed.

Submersed Macrophyte Mapping

Fathometric tracings were made along nine transects in Lake Weir, twelve transects in Sunset Harbor and ten transects in Little Lake Weir (Figure 4-2) to estimate the percent of the water column infested by submersed macrophytes (Maceina and Shireman 1980). Biovolume (Maceina and Shireman 1980), is the percent of the water column occupied by submersed plants. It provides data on the presence and location of submersed macrophytes. Along with water chemistry, biovolume measurements help to identify factors controlling the spread of macrophytes in a lake. For example, if plants are absent below a particular depth, it may be due to a physical limit on littoral zone expansion based on basin morphometry. Such a physical limitation is likely in lakes where low to moderate water column chlorophyll <u>a</u> (0-10 ug/L) concentrations are measured. When high levels of chlorophyll <u>a</u> are present, the growth of submersed plants may be limited solely by algal shading. The extent of the littoral zone may also have an impact on the accuracy of lake trophic state indicators based on water column chlorophyll a levels or nutrient concentrations (Canfield et al. 1984). A current bathymetric map of each basin was drafted depicting the extent of the littoral zone (Figure 4-3).

Figure 4-2 Transects used for bathymetric tracing's Lake Weir, Sunset Harbor and Little Lake Weir, Summer 1987.

.

Water Chemistry Analyses

Water samples were analyzed for total phosphorus (EPA method 365.2), ortho-phosphate (EPA method 362.2), total Kjeldahl nitrogen (EPA 351.2), nitrate (EPA method 353.2), Chlorophyll <u>a</u> concentration (A.P.H.A. method 1002G), alkalinity (EPA method 310.1), and pH (A.P.H.A. method 423).

Standards were run before and after each analysis (where applicable). Samples were run in duplicate. Reference standards obtained from EPA were also run with samples for TKN, TP and nitrate analyses. Values determined for these reference standards all fell within the 95% confidence intervals established by EPA. Chemistry data were analyzed for significant differences between stations and months using ANOVA and Duncan's multiple range test.

Bacteria

Water was prepared for bacteria counts by filtering samples through 0.2 um Nuclepore filters stained with Irgalan black. Counts were made on duplicate 1 ml subsamples for February, March, May, June, July and August 1987, and on triplicate subsamples for all other months, using direct-count epifluorescence (Hobbie et al. 1977). At least five fields and 200 cells were counted per filter. Acridine orange (0.01% final concentration) was the fluorescing agent. ANDVA and Duncan's multiple range tests were performed on station and monthly means of bacteria densities to determine if any were significantly different from the rest.

Zooplankton

Zooplankton communities were sampled approximately monthly at the seven lake stations. Water samples were taken at 1 m intervals from the surface to the bottom of the water column (exclusive of the sediments) with a 2.2 liter Kemmerer bottle and pooled.

Rotifer and crustacean populations were determined by passing 3 liter portions from this composite through an 80 um mesh Wisconsin plankton net and the concentrate was preserved with 2 ml of Lugol's solution. One ml aliquots from this concentrate were enumerated in a Sedgwick-Rafter chamber at 100x. If the total tally was less than 150 organisms, an additional aliquot was counted. Identification followed the keys of Ruttner-Kolisko (1974), Edmondson (1959), and Deevey and Deevey (1971). Dry weight biomass of rotifers and crustaceans was assigned by using published conversion factors (Dumont et al. 1975, Maslin 1969) as well as values empirically determined in this laboratory (Bays 1983).

Subsamples (76 ml) for ciliated protozoa were also taken from this composite, stained with several drops of bromothymol blue and preserved with 2 ml saturated HgCl₂. Appropriate aliquots were settled into Utermohl chambers and enumerated. The volume examined varied seasonally but was always between 3 ml and 10 ml, with each count representing at least 150 individual ciliates.

Biomass values were obtained using previously published volumes for individual taxa (Beaver & Crisman 1982) or direct

measurement, and then the volumes were converted to dry weight biomass using a .279 pg d.w. um³ conversion factor (Gates et al. 1982). Ciliate taxonomy was based on Kahl (1930-1935), Maeda (1986), and Maede and Carey (1985). Prior to analyses, plankton counts and chemical variables were normalized by a LOG (n+1) transformation.

Benthic Invertebrates

Macroinvertebrate samples were taken in triplicate at each station with a petit ponar grab (0.02 m²), sieved in the field (600 um mesh) and preserved in 70% ethanol containing Rose bengal. Upon returning to the laboratory, samples were stored at 4°C until analyzed.

In the laboratory, macroinvertebrate samples were sorted in white enamel pans under a magnifying glass with fluorescent lighting. Picked specimens were kept in glass vials with 70% ethanol. Specimens were enumerated and identified to the generic level using keys of Pennak (1978), Parrish (1968), Merritt and Cummins (1984) and Brigham et al. (1982).

The mean number of organisms of the three grab samples collected at each station each month was recorded. The collected invertebrates were also categorized into functional groups based on their mode of food acquisition (Merritt and Cummins, 1984). Data were transformed (log) prior to analysis to conform to the assumption of ANOVA that the variances be homogeneous (Sokal and Fohlf, 1969). Statistical analyses of proportions used arcsine transformed data.

RESULTS AND DISCUSSION

Physical Parameters

Dissolved oxygen levels in the water column remained above 5 mg/L at all seven stations except during March, September and November (Figure 4-4). In the latter months, oxygen concentrations declined to 3-4 mg/L in water deeper than two meters at stations 2, 3, 6 and 7. Periods of oxygen stratification were brief, probably being limited by wind mixing action.

Lake water temperatures ranged from a low of 14°C in January to a high of 30°C in June, and were essentially uniform throughout the water column during the entire year (Figure 4-5). Neither dissolved oxygen levels nor temperature would be considered limiting factors as far as fish reproduction or survival are concerned.

During the past year, Secchi depths were lowest during May (1.00-1.31 m) and September (1.18-1.40 m) at all sampling stations (Figure 4-6). Station 6 (Sunset Harbor) had a Secchi depth of 1.10 m in May, the lowest value for all stations and months. The greater relative impacts of boating, septic tank input and erosion in this smaller basin than are evident in Lake Weir itself may explain the poor Secchi transparency. The highest reading (2.20 m) was taken in March at station 7 (Little Lake Weir). While this basin is the smallest of the Lake Weir system and might be expected to respond to human impacts more dramatically than the other two basins, lake

Figure 4-4 Water column dissolved oxygen (mg/L) isopleths for Lake Weir, Florida, 1987-1988.

_

1925 19:7

.

Figure 4-4 Continued.

Figure 4-4 Continued.

-

Figure 4-4 Continued.

-

Station 3.

•

• ..

Figure 4-5 Continued.

-

Figure 4-6. Seasonal Secchi depths (m) for the seven sampling stations in Lake Weir, Florida, 1987-1988.

Figure 4-6. Continued.

residents have noted the presence of several springs in Little Lake Weir which they feel have pronounced flows during some periods. This may account for the high Secchi depth in March.

Secchi depths measured by lake residents as part of the Secchi Disk Program of 1985-1986 revealed that water clarity in northeastern Lake Weir (our Station 2) was significantly lower than it was in the rest of the lake (Stations 1, 3-5). During 1987-1988 there were no significant differences in Secchi depths among stations. The lack of agreement among data from these 3 years is probably due to the large number of Secchi depth measurements taken at each station during the earlier 2 years. Citizens took over 1300 Secchi depths at 31 stations in 1985 and 1986, while our monitoring data included only one measurement per month at each of seven stations. A larger sample number provides more degrees of freedom in statistical analyses and thereby resolution of smaller differences.

Water Chemistry

Seasonal fluctuations in water chemistry are depicted in Figures 4-7 through 4-10. All seven stations exhibited peaks of total phosphorus in August, while fall and winter values were generally lower. At stations 6 (Sunset Harbor) and 7 (Little Lake Weir), the August values for TP were 72 and 140 ug/L, respectively, while January had the lowest level of TP (10.3 ug/L) at station 6 and February had the lowest TP at station 7 (22 ug/L). For Lake Weir (station 3), TP was measurable for all months except January 1988 (Figure 4-7). During

Figure 4-7. Seasonal levels of Total Phsophorus in Lake Weir, Florida, February 1987-Janaury 1988. (Asterisk indicates value below detection limits -- 0.01 mg/L.)

Figure 4-7. Continued. (Asterisk indicates value below detection limits--0.01 mg/L.)
late winter and spring, TP was at its lowest measured levels (15-22 ug/L) at station 3. Regarding the Lake Weir perimeter stations (1,2,4 and 5), August TP values were highest (72-740 ug/L), as in the center lake station, and spring and fall were lower (10-70 ug/L). There were no significant differences between stations (Table 4-1). However, results of ANOVA and Duncan's multiple range test indicated that there were statistically significant differences between months (Tables 4-2, 4-3). These differences supported the observations (Figure 4-7) that levels of total phosphorus were higher in summer and winter than during the rest of the year.

Total Kjeldahl nitrogen (TKN) levels (Figure 4-8) exhibited no obvious patterns among the mid-lake stations (3, 6 and 7). Station 3, in the middle of Lake Weir, was highest in January and February (840-900 ug/L), perhaps due to inputs from migrating waterfowl which were abundant in the middle of Lake Weir during that time. In Little Lake Weir and Sunset Harbor (stations 6 and 7) TKN levels were generally highest during spring and fall, but overall were more variable than those measured at station 3. For all three mid-lake stations, TKN levels fluctuated around low points during summer (680-810 ug/L) and increased in late fall.

At stations 1, 2, 4 and 5 in Lake Weir, TKN decreased in late spring (690-850 ug/L) and remained low until October. Total nitrogen was generally highest in spring and fall at these four stations. There were no significant differences in TKN between stations, but ANOVA and Duncan's multiple range

Table 4-1. Results of analyses of differences between sampling stations for current chemistry data in Lake Weir, FL by ANOVA and Duncan's procedure.

Parameter	N	E	Significance
Secchi depth	77	0.13	n.s.
Chlorophyll <u>a</u>	77	0.51	n.s.
Conductivity	77	0.97	n.s.
Total Kjeldahl nitrogen	77	0.93	n.s.
Total phosphate	71	0.19	n.s.
Orthophosphate	66	0.07	n.s.
Total alkalinity	77	106.92	* *
рH	76	7.11	**

n.s.≠not significant.

*=significant at $p \le 0.05$. **=significant at $p \le 0.01$. Table 4-2. Results of ANOVA for monthly comparisons of water chemistry at the seven sampling stations in Lake Weir, Florida.

Parameter	N	F	Significance
Secchi	11	13.37	**
Chlorophyll <u>a</u>	11	10.82	**
Specific conductivity	11	104.87	* *
Total Kjeldhal nitrogen	9	3.24	*
Total phosphorus	11	33.21	**
Orthophosphate	10	88.46	**
Total alkalinity	11	0.54	n.s.

****** $p \leq 0.01$; ***** $p \leq 0.05$; n.s.= not significant.

Table 4-3. Results of Duncan's multiple range test for chemistry by month. Months connected by underlines were not significantly different.

Secchi depth

3 <u>2 1 12 10 11 7 8</u> 6 9 5

Chlorophyll a

<u>6 8 12 1 5 7 9</u> 11 10 3 2

Specific conductivity

<u>7 8 6</u> 9 11 10 5 1 12 3 2

Total Kjeldhal nitrogen

<u>5 11 12 3 6</u> 1 9 10 2

Total phosphorus

8 7 11 12 9 10 1 5 2 6 3

Orthophosphate

-

<u>11 12</u> 5 7 6 9 10 3 2 8

Figure 4-8 . Seasonal levels of Total Kjeldahl Nitrogen in Lake Weir, Florida, February 1987-January 1988.

Figure 4-8. Continued.

test identified some significant monthly differences (Table 4-3). However, these do not follow any pattern.

Station 3 had chlorophyll <u>a</u> peaks (Figure 4-9) during May (10.2 ug/L), August (9.34 ug/L) and January (8.79 ug/L). Chlorophyll <u>a</u> (Chla) levels peaked in June (7.4-12.2 ug/L), Julv (9.04-10.42 ug/L) and again in December (8.35-9.40 ug/L) at stations 6 and 7. High summer Chla values reflect the summer production peak which is common in Florida lakes, as ideal conditions for phytoplankton growth occur then. At stations 1, 2, 4 and 5, chlorophyll <u>a</u> concentrations generally peaked in June (9.00-10.30) and were lowest in February (3.10-4.20). The effect of higher Chla concentrations is seen in decreased Secchi depths during May and September at most stations.

As with other chemistry parameters, there were no significant differences between chlorophyll <u>a</u> levels at the seven stations. However, Duncan's multiple range test identified monthly differences (Table 4-3). Chlorophyll <u>a</u> was highest during summer months, December, and January.

Specific conductivity was highest from June to September (155-173 ug/L) for all seven sampling stations (Figure 4-10). Conductivity is affected by dissolved solids contained in rainwater or run-off from the watershed. Since Florida lakes usually receive considerable rainfall during frequent summer thunderstorms, it is not surprising that conductivity was highest in the summer at all three mid-lake stations. Perimeter Lake Weir stations (1, 2, 4 and 5) followed the same trend

Figure 4-9. Seasonal levels of Chlorophyll <u>a</u> in Lake Weir, Florida, February 1987-January 1988.

Figure 4-9. Continued.

-

Figure 4-10 Seasonal fluctuations in specific conductivity (umhos/cm) at the seven sampling stations in Lake Weir, Florida, 1987-1988.

. . •, .

Feb-87 War-87 Way-67 Jun-87 Jul-87 Aug-87 Sep-87 Oct-87 Nov-87 Dec-87 Jan-8

Figure 4-10Continued.

as the mid-lake stations, with highest conductivity levels measured from May through September. ANOVA and Duncan's multiple range test supported these observations.

Total alkalinity was lowest in May at stations 1-6 (Figure 4-11) increasing from a low of 13-14 mg/L CaCO₃ to a high in January of 17.5-18.0 mg/L CaCO₃. The total alkalinity of Little Lake Weir (station 7) was significantly lower than that of the other basins, with a low of 3.5 mg/L in May and a high of 7.0 in January. There were no significant differences in total alkalinity when compared on a monthly basis (Tables 4-2, 4-3).

The pH varied from a low of 5.74 in Little Lake Weir (Station 7) during May, to a high of 7.59 at Station 3 in June. Overall, pH was highest between June and October at all seven stations, with Station 7 being significantly lower than the other six (Table 4-4).

Annual means for water chemistry parameters were analyzed by ANOVA and Duncan's multiple range test to determine whether there were station or monthly differences. Total phosphorus (TP), orthophosphate (OP), total Kjeldahl nitrogen (TKN), nitrate (NIT), chlorophyll <u>a</u> (Chla), conductivity (Cond.) and total alkalinity (Totalk) by station (Tables 4-2, 4-3) were included. Nitrate measurements for 75% of the samples were below detection limits (BDL). Orthophosphate levels were also too low to detect for 75-80% of the samples.

Inter-station comparisons showed that only Station 7 (Little Lake Weir) was significantly different from the others,

as the mid-lake stations, with highest conductivity levels measured from May through September. ANOVA and Duncan's multiple range test supported these observations.

Total alkalinity was lowest in May at stations 1-6 (Figure 4-11) increasing from a low of 13-14 mg/L CaCO₃ to a high in January of 17.5-18.0 mg/L CaCO₃. The total alkalinity of Little Lake Weir (station 7) was significantly lower than that of the other basins, with a low of 3.5 mg/L in May and a high of 7.0 in January. There were no significant differences in total alkalinity when compared on a monthly basis (Tables 4-2, 4-3).

The pH varied from a low of 5.74 in Little Lake Weir (Station 7) during May, to a high of 7.59 at Station 3 in June. Overall, pH was highest between June and October at all seven stations, with Station 7 being significantly lower than the other six (Table 4-4).

Annual means for water chemistry parameters were analyzed by ANOVA and Duncan's multiple range test to determine whether there were station or monthly differences. Total phosphorus (TP), orthophosphate (OP), total Kjeldahl nitrogen (TKN), nitrate (NIT), chlorophyll <u>a</u> (Chla), conductivity (Cond.) and total alkalinity (Totalk) by station (Tables 4-2, 4-3) were included. Nitrate measurements for 75% of the samples were below detection limits (0.05 mg/L). Orthophosphate levels were also too low to detect (<0.01 mg/L) for 75-80% of the samples.

Inter-station comparisons showed that only Station 7 (Little Lake Weir) was significantly different from the others,

Figure 4-11 Seasonal levels of Total Alkalinity in Lake Weir, Florida, February 1987-January 1988.

fab-67 bbar-67 bbar-67 bas-67 bas-67 bag-67 Sap-67 Oct-67 bbar-57 Dac-67 bas-68

Figure 4-11 Continued.

Table 4-4. Results of Duncan's multiple range test for significant differences between water chemistry data at the seven sampling stations in Lake Weir, FL. (Stations that are connected by the same underline are not significantly different).

Total Alkalinity

Station

<u>4 6 3 5 1 2 7</u>

pН

Station

<u>5 1 4 3 6 2 7</u>

and only for total alkalinity and pH (Table 4-4). Values for TP, TKN, Chla and Totalk were similar to data reported for 1986-1987 by the St. Johns River Water Management District. Bacteria

Water column bacterial densities (Figure 4-12; Tables 4-5, 4-6) were generally highest in spring and fall (1.19-1.50 X 10° /mL) with the lowest values in summer and winter (0.83-1.09 X 10⁴/mL). Results of ANDVA and Duncan's procedure indicated that bacterial densities at stations 1-5 in Lake Weir were not significantly different from each other, but were significantly lower than both the Sunset Harbor (6) and Little Lake Weir (7) stations (Table 4-7). This may be the result of increased nutrient availability in the smaller basins due to greater human activities along their immediate shorelines. An analysis of the impact of season on mean bacteria density lakewide did not show any clear trends (Table 4-7). However, on a stationby-station basis, there was a relationship between lake temperature and bacterial densities (Figure 4-13). With increasing water temperature, bacteria levels increased until water reached about 24-25 C. Above that temperature, bacterial density decreased until late summer or fall when the water temperature dropped again to 24-25 C. A similar pattern was observed in other Florida lakes (Crisman <u>et al</u>. 1984). Whether this decline in bacterial density at temperatures above 25 C is a direct result of water temperature, increased microzooplankton grazing or some other factor is unknown.

 + Station 2 Station 3 Δ Station 4 ×
 Figure 4-12 Monthly water column bacteria densities (no.cells/ml x 10⁶) at the
 seven sampling stations in Lake Weir, Florida, 1987-1988.

Station	N	Mean <u>× 10*</u>	<u>S.D.</u>
1	27	0.94	0.20
2	27	1.06	0,30
3	27	1.05	0.33
4	27	1.05	0,25
5	27	1.05	0.33
6	27	1.36	0.89
7	27	1.64	0.58
			ین پوری شما رضه این برده برده برده در در برما در بر بروه در بر بروه در برد

Table 4-5. Mean (S.D.) bacterial density (No./mL) by station in Lake Weir, FL 1987-1988.

Table	4-6.	Lakewide	e me	an (s.d.)	bacterial	density	(No./mL)	by
month	in La	ke Weir,	FL	1987	-1988	-			

Month	N	Mean <u>× 104</u>	TEMP C
February	14	1.03(0.26)	19.0
March	14	1.09(0.26)	25.5
May	14	1.24(0.25)	25.0
June	14	1.19(0.24)	27.0
July	14	0.99(0.16)	29.5
August	14	1.05(0.28)	29.5
September	21	1.40(0.95)	27.6
October	21	1.50(0.54)	20.0
November	21	1.41(0.55)	21.3
December	21	0.83(0.37)	17.9
January	21	0.87(0.37)	14.5

Table 4-7. Results of inter-station and inter-month comparisons of bacterial density (No./mL) in Lake Weir, FL by ANDVA and Duncan's procedure. Numbers connected by the same line are not significantly different.

							<i>.</i>				
<u>Farameter</u>	<u>N</u>			E			Significance				
Station		187)		7	.64			ο.	01	
Station	7	7	6	5		₹.	4	2	1		
										-	
Month		27	•		11	.54			C	0.01	
Month	10	9	11	5	6	3	8	2	7	1	12
			· ···· ···· ····								

Figure 4-13 Bacteria density vs. water temperature at the center lake stations in Lake Weir, Florida, 1987-1988.

Figure 4-13 Continued.

Fathometric Determination of Submergent Plant Biomass

Biovolume, the percent of submersed plant infestation of the water column, was low in all three lake basins (Figure 4-3). Macrophytes occupied 8% of the water column in Lake Weir, 14% in Sunset Harbor and 15.5% in Little Lake Weir. Plants were essentially absent below 3.5 m (Table 4-8). Only 16% of Lake Weir was shallower than 3.5 m, while 51% of Sunset Harbor and 56% of Little Lake Weir were that shallow. These data suggest that basin morphometry is limiting the extent of the littoral zone in the big lake, and that algal shading is likely to prevent the movement of macrophytes into deeper water in Sunset Harbor and Little Lake Weir.

In lakes with a high biovolume (percent vertical plant infestation), trophic state indices based on water column nutrient or chlorophyll <u>a</u> concentrations may be inaccurate because they do not account for nutrient levels in plant tissue (Canfield <u>et al</u>. 1984). Since percent vertical plant infestation is low in all three basins, water column chlorophyll <u>a</u> concentrations can be used as accurate indicators of trophic state.

The distributions of individual submersed macrophyte species were not mapped but appeared to be generally the same as in recent FGFWFC surveys. There was a relatively dense growth of <u>Websteria</u> near the east side of Bird Island, and <u>Potamogeton</u> and <u>Chara</u> were noted along much of the shoreline in Sunset Harbor. <u>Potamogeton</u> and <u>Bacopa</u> were prevalent on the shallower north and south shores of Lake Weir.

Table 4-8. Summary of morphometric characteristics, mean annual water quality data and biovolume (percent vertical plant infestation) values for Lake Weir, Sunset Harbor and Little Lake Weir, FL.

	<u>Lake Weir</u>	<u>Sunset Harbor</u>	Little Lake Weir
<u>Parameter</u>			
Secchi depth (m)	1.54	1.59	1.56
TP A (ug/L)	51.0	45.5	45.5
TKN ^e (ug/L)	760	722	838
Chlorophyll <u>a</u> (ug/L)	6.9	7.55	6.23
Surface area (hectares)	2,086	350	151
Maximum depth (m)	8.4	6.7	5.5
Mean depth (m)	4.27	2.13	1.95
Lake volume (m ³ x 10 ⁴)	89	7.45	2.95
Biovolume (%)	8	14	15.4

In contrast to the two larger basins, Little Lake Weir contained not only <u>Potamogeton</u> and <u>Bacopa</u>, but was infested with <u>Utricularia</u> from the shoreline to 3.5 m depth. Whether the presence of the latter species in Little Lake Weir reflects a nitrogen imbalance in the lake or just that the species is able to survive in the more sheltered environment of Little Lake Weir is not clear. However, there was no significant difference in nitrogen or phosphorus levels among the three lakes (Table 4-1).

Zooplankton

Numerous investigations of temperate and subtropical lakes have documented changes in zooplankton community structure associated with increasing eutrophication. Typically, total zooplankton biomass increases with lake productivity and is accompanied by species replacements within the Cladocera and Copepoda (O'Brien & de Noyelles 1974, Hall et al. 1970). The importance of macrozooplankton decreases and the community shifts to dominance by microzooplankton, especially rotifers and ciliated protozoa (Gannon & Stemberger 1978, Bays & Crisman 1983). Within the macrozooplankton, calanoid copepods decrease in proportional abundance (McNaught 1975, Gliwicz 1969) while small-bodied cladocerans and cyclopoid copepods dominate the zooplankton communities of eutrophic lakes (Brooks 1969).

Compositional shifts in zooplankton community structure associated with eutrophication are believed to be controlled by increasing predation pressure (Brooks 1969). Since planktiv-

orous fish abundance increases with lake productivity (Larkin & Northcote 1969), large-bodied zooplankton are often eliminated due to their higher susceptibility to vertebrate predation.

Invertebrate predators such as <u>Chaoborus</u> and cyclopoid copepods also increase with eutrophication and may alter zooplankton community size structure through selective predation (Zaret 1980).

In addition to the observed shifts in zooplankton community structure associated with eutrophication, ciliated protozoan populations have been shown to be altered by lake productivity changes. Oligotrophic lakes are usually dominated by large-bodied oligotrichs which graze both bacteria and nannoplankton but are replaced by small-bodied scuticociliates which are specialized on bacteria (Beaver & Crisman 1982, Beaver & Crisman 1988a).

This aspect of this report examines the zooplankton and protozooplankton community of Lake Weir, and contrasts the present community with historical measures of these communities. In addition, the zooplankton population of Lake Weir will be compared with other mesotrophic Florida lakes as well as other Florida lakes of different trophic states.

A. Annual Mean Biomass Values of Zooplankton Components

The average biomass of zooplankton components are given in Table 4-9. Total biomass ranged from 126 ug d.w. 1^{-1} at Station 2 to 156.7 ug d.w. 1^{-1} at Station 4. ANOVA indicated no significant differences between stations and the lake average for total zooplankton biomass was 145.0 ug 1^{-1} .

 $^{-1}$ Table 4-9. Annual mean biomass values (ug $l_{\rm }$) of zooplankton components in Lake Weir.

	STATION									
<u>CONPONENT</u>	1	2	3	4	5	6	1	Lake mean	<u>% Composition</u>	
Total zooplankton	138.2	126.9	147.6	156.7	146.3	144.7	154.8	145.0		
Macrozooplankton	27.3	25.4	24.5	39.1	42.7	36.9	43.2	34.2	23.6	
Microzooplankton	110.9	101.5	123.1	117.6	103.6	107.8	111.5	110.8	76.4	
Cladocera	6.1	3.2	1.9	10.2	8.7	6.1	1.7	5.4	3.7	
Calanoida	15.2	16.8	13.0	18.8	22.9	17.8	19.2	17.7	12.2	
Cyclopoda	6.0	5.5	9.6	10.1	11.2	12.9	22.4 *	11.1	7.7	
Nauplii	10.3	8.5	9.2	9.8	11.3	9.5	11.0	9.9	6.8	
Rotifera	38.6	42.0	47.2	52.0	39.8	46.6	37.0	43.3	29.9	
Ciliata	62.1	50.9	66.7	55.8	52.5	51.7	63.4	57.6	39.7	
Oligotrichida	21.0	18.7	24.8	18.5	20.0	18.5	34.1 *	22.2	15.3	
Scuticociliatida	13.6	12.7	15.7	14.1	11.5	8.9	9.5	12.3	8.5	
Haptorida	5.0	5.1	6.0	4.9	5.4	3.7	8.1	5.5	3.8	

* significantly different (ANOVA, $p \, < \, 0.05)$ from other stations

-

Macrozooplankton (adult copepods, copepodites, cladocerans) biomass ranged from 24.5 ug d.w. 1^{-1} at Station 3 to 43.2 ug d.w. 1^{-1} at Station 7. In general, macrozooplankton biomass decreased in Lake weir from south to north but no significant differences were noted between stations.

Microzooplankton (nauplii, rotifers, ciliates) biomass displayed very little variation between stations (range 101.9 – 123.1, $\times = 110.8$ ug d.w. 1⁻¹), with the highest biomass found at the midlake station. The contribution of microzooplankton biomass to total zooplankton biomass averaged 76.4% for the lake.

Cladocerans were relatively rare in Lake Weir and had the smallest mean biomass of any zooplankton component. No intralake distribution patterns were evident although cladoceran biomass was exceptionally low at Stations 3 and 7.

Likewise, calanoid copepods did not display much variation by station (range 13.0 - 22.9, x = 17.7 ug d.w. 1⁻¹). They were, however, the dominant crustacean group comprising 12.2% of the total zooplankton biomass. The only calanoid copepod found in Lake Weir was <u>Diaptomus dorsalis</u>.

Cyclopoid copepods tended to be the least abundant at the north end of the lake and most abundant at the south end of the lake. Station 7 displayed significantly higher cyclopoid biomass (22.4 ug d.w. 1⁻¹) when compared to the remaining stations. The dominant cyclopoid found in Lake Weir was <u>Tropocyclops prasinus</u>, a relatively small-bodied copepod.

Copepod nauplii were frequently abundant but because of their small size contributed only negligibly to total zooplankton biomass (6.8%). No distribution patterns were evident for this component.

Rotifers were a co-dominant with ciliated protozoa in the Lake Weir zooplankton community. They comprised 29.9% of the total zooplankton biomass. Average values ranged from 37.0 ug d.w. 1^{-1} at Station 7 to 52.0 ug d.w. 1^{-1} at Station 4. The lake wide average was 43.3 ug d.w. 1^{-1} and no significant differences were noted between stations.

Total ciliate biomass varied little between stations. This taxonomic group was the major contributor to biomass in the lake with a mean value of 57.6 ug d.w. 1⁻¹. The three dominant orders of ciliates - Oligotrichida, Scuticociliatida, and Haptorida - generally differed little between stations. One exception to this trend was oligotrich biomass at Station 7 which was significantly higher when contrasted with other stations.

B. <u>Comparison of the Present Lake Weir Zooplankton Assemblage</u> with <u>Historical Data</u>

Fortunately, the zooplankton analysis made for this report can be directly compared with the community in 1979. Bays (1983) and Beaver (1980) monitored Station 3 monthly in Lake Weir during that calendar year, and the methodology they employed was almost identical to that used in the present study.

The annual mean biomass values for major zooplankton components at Station 3 in 1979 and 1987 are presented in Table 4-10. Total zooplankton biomass was only slightly higher in

Table 4-10. Historical comparison of the mean annual biomass of various components of the Lake Weir zooplankton community at Station 3. Data for 1979 taken from Bays (1983) and Beaver (1980). Biomass values in ug/L (\pm SE).

<u>CONPOHENT</u>	<u>1979</u>	<u>1987</u>	<u>X CHANGE</u>
Total zooplankton	135.9 <u>+</u> 15.9	147.6 <u>+</u> 23.2	+ 8.6
Macrozooplankton	33.8 <u>+</u> 5.9	24.5 <u>+</u> 7.6	- 27.5
Nicrozooplankton	102.1 <u>+</u> 14.0	123.1 <u>+</u> 18.2	+ 20.6
Cladocera	** 6.8 <u>+</u> 2.4	**` 1.9 <u>+</u> 0.8	- 72.1
Calanoida	6.5 <u>+</u> 1.7	13.0 <u>+</u> 5.0	+100.0
Cyclopoda	** 20.5 <u>+</u> 5.3	** 9.6 <u>+</u> 3.5	- 53.2
Nauplii	* 24.8 <u>+</u> 4.5	* 9.2 <u>+</u> 1.3	- 62.9
Rotifera	** 23.2 <u>+</u> 6.3	** 4 7.2 <u>+</u> 13.3	+103.4
Ciliata Biomass	54.0 <u>+</u> 8.1	66.7 <u>+</u> 25.9	+ 23.5
Ciliata Abundance	25.3 <u>+</u> 4.5	36.5 ± 4.7	+ 44.3
Oligotrichida	23.0 <u>+</u> 5.6	24.8 <u>+</u> 3.9	+ 7.8
Scuticociliatida	* 7.3 <u>+</u> 1.7	* 15.7 <u>+</u> 2.6	+115.1
Haptorida	10.8 <u>+</u> 3.6	6.0 <u>+</u> 1.6	- 44.4

* significantly different (t-test, p < 0.05)
** significantly different (t-test, p < 0.10)</pre>

1987 than in 1979. Macrozooplankton biomass, however, was 27.5% lower in the present study and microzooplankton 20.6% higher. Cladoceran biomass was reduced by 72.1%, but since April values are missing and this season is traditionally high in Cladocera, this conclusion should be considered provisional. Calanoid biomass increased 100% between the two years while cyclopoids and nauplii were down 53.2% and 62.9%, respectively.

Rotifer biomass was 103.4% higher in 1987 while ciliate biomass increased a modest 23.5%. Within the Ciliata, oligotrichs increased 7.8% and the scuticociliates were up 115.1%. Haptorid ciliates were down 44.4%.

Expressing these changes on a percentage basis reveals that microzooplankton (nauplii, rotifers, ciliates) constituted 75.1% of the zooplankton community in 1979 and 83.4% of the population in 1987 (Figure 4-14). The major contributor to this compositional shift in biomass appears to be rotifers which increased from 17.1% to 32.0% of total zooplankton biomass. Although cladocerans and copepods appear to be less important in 1987, it is important to note that the missing April sample probably substantially underestimates their significance. Nauplii were considerably reduced in their contribution to total zooplankton biomass in 1987 compared to 1979.

C. <u>Comparison of Zooplankton Community Structure in Lake Weir</u> with <u>Comparable Mesotrophic Florida Systems</u>

Seven mesotrophic lakes were selected for a detailed comparison of Lake Weir with Florida lakes of similar trophy. These lakes were chosen because of their complete data bases of

ANNUAL MEAN COMPOSITION - 1975

all zooplankton components, as well as their similarity in sampling and analytical regimes to the present study (Bays 1983, Beaver 1980).

Comparison of the values calculated for other mesotrophic systems in Table 4-11 with Lake Weir values from Table 4-9 indicates that in general Lake Weir possesses a relatively depauperate zooplankton assemblage. The alke averages for the major zooplankton components in Lake Weir were lower than means calculated for the other mesotrophic lakes in 11 of the 13 comparisons. Lake Weir did have substantially more scuticociliate biomass than most mesotrophic Florida systems and slightly above average rotifer compliment.

The relative absence of cladocerans, calanoid copepods, and nauplii greatly contribute to the reduced total zooplankton biomass. Expressed on a percentage composition basis, rotifers are proportionally more important to the Lake Weir zooplankton community than most mesotrophic Florida lakes.

Of the seven lakes used for comparison, Lake Weir most closely resembles Lake Placid in several respects. This Highlands County lake had similar nutrient concentrations, color, pH, and was morphometrically like Lake Weir - relatively large and deep for a Florida lake. The zooplankton populations of both systems appear to be impoverished compared to other mesotrophic lakes.

D. <u>Estimates of Zooplankton Biomass from Equations Derived for</u> Florida Lakes

Beaver & Crisman (1988a) and Bays & Crisman (1983) have derived predictive equations for estimating ciliate, rotifer,

Table4-11 Annual biomass distribution of major zooplankton components in 7 mesotrophic Florida lakes. Data calculated from Bays (1983) and Beaver (1980). Location of lakes given in Beaver & Crisman (1982).

<u>Component</u>	A	B	C	D	B	F	G	<u>MBAN</u>
Total zooplankton	505.7	308.7	184.0	212.5	279.8	248.6	98.0	262.5
Macrozooplankton	269.6	157.7	64.8	89.9	62.6	23.7	17.8	98.0
Microzooplankton	236.1	151.0	119.2	122.6	217.8	225.0	80.2	164.5
Cladocera	130.6	34.0	18.3	57.3	21.9	7.6	4.5	39.2
Calanoida	74.1	108.1	31.2	17.3	18.9	4.2	65.7	45.6
Cyclopoda	64.9	15.6	15.2	15.2	21.8	11.9	9.5	22.0
Nauplii	77.5	37.5	26.6	21.0	33.0	20.8	9.8	32.3
Rotifera	56.9	45.4	31.7	27.4	56.8	59.4	6.0	40.5
Ciliata	101.7	68.1	60.9	74.2	127.5	144.8	64.4	91.7
Oligotrichida	23.8	14.1	22.4	23.8	56.8	55.7	17.8	30.6
Scuticociliatida	8.9	3.7	2.5	7.8	2.6	4.1	3.4	4.7
Haptorida	4.7	39.3	9.6	23.8	30.3	22.5	13.3	20.5

Lake code:

-

Å	Ξ	Francis	E	Ξ	Santa Fe
B	2	Ocean Pond	F	2	East Lake Tohopelagika
C	:	Placid	G	:	Washington
D	Ξ	Sampson			

crustacean, microzooplankton, macrozooplankton, and total zooplankton biomasses. These equations, which are based on annual mean chlorophyll <u>a</u> concentrations, were developed from a 39 lake data base ranging from softwater oligotrophic to hypereutrophic, and allow an assessment of the response of the major zooplankton components in Lake Weir to trophic conditions relative to other Florida lakes.

The lake means for the various zooplankton components and chlorophyll <u>a</u> concentrations in Lake Weir were used for analysis (Table 4-12). The equation for total zooplankton biomass over-predicted the actual biomass by 51.6%. Similarly, macrozooplankton was overestimated by 170.9% while microzooplankton was much more accurate with only a 18.6% underestimation.

All crustacean components, especially calanoid copepods, are underestimated by the equations although predicted nauplii biomass was very close to the actual value. Rotifer biomass was underpredicted by 151.3%. As a whole, observed ciliate concentrations were reasonably close to those predicted by the equations although total ciliate abundance was underestimated by 52.2% and scuticociliate biomass were overestimated by 52.2% and 86.4%, respectively.

These results are in agreement with the trends previously established in this report - Lake Weir exhibits a low zooplankton biomass for its trophic state primarily due to a greatly reduced macrozooplankton population.
COMPONENT	OBSERVED VALUE	PREDICTED VALUE	EQUATION SOURCE *
Total zooplankton	53.9	81.7	Bays & Crisman (1983)
Macrozooplankton	15.1	40.9	•
Microzooplankton	38.9	31.6	*
Cladocera	2.4	9.1	•
Calanoida	7.8	59.1	•
Cyclopoida	4.9	10.2	•
Nauplii	4.4	5.3	
Rotifera	19.1	7.6	
Ciliata Biomass	57.6	65.9	Beaver & Crisman 1988a
Ciliata Abundance	31.8	20.9	•
Oligotrichida	22.2	17.8	
Scuticociliatida	12.3	6.6	•
Haptorida	5.5	5.8	

-1

Table 4-12. Comparison of the observed biomass of zooplankton components in Lake Weir with those predicted by equations empirically derived for Florida lakes.

.

* for Bays & Crisman (1983) equations express biomass in ug C l
-1
for Beaver & Crisman (1988a) equations express biomass in ug d.w l

-

E. <u>Ciliate Indicator Taxa</u>

Beaver & Crisman (1988a) have developed a statistical relationship between the annual mean abundance of select ciliate species with lake trophic state. In this scheme, the average abundance of these taxa increased predictably with increasing lake productivity as measured by mean chlorophyll <u>a</u> concentrations. Multilinear regression analysis indicated that 92% of the variation in chlorophyll <u>a</u> densities in Florida lakes could be explained by the mean abundances of <u>Vorticella</u> microstoma and Mesodinium pulex.

Application of this index to the mean abundance of these species in Lake Weir indicated that this system would be characterized as mesotrophic (Table 4-13). The abundances of <u>V</u>. <u>microstoma</u> ranged from 48 cells 1^{-1} at Station 7 to 1263 cells 1^{-1} at Station 2. The lake wide average was 893 cells 1^{-1} . All of the values with the exception of Station 7 were well within the range recommended for mesotrophic lakes.

The results produced for <u>M. pulex</u> were similar, with all stations characterized as mesotrophic except Station 7 whose abundances classify as eutrophic. Concentrations for <u>M. pulex</u> ranged from 3154 cells 1^{-1} at Station 6 to 5999 cells 1^{-1} at Station 7 with a lake average of 4191 cells 1^{-1} .

F. Seasonality of Major Zooplankton Components Lake Weir in 1987

Total zooplankton biomass in Lake Weir generally peaked in July (Figure 4-15). Values at that time ranged from 235.2 ug d.w. 1^{-1} (Station 2) to 347.0 ug d.w. 1^{-1} (Station 6). Most stations recorded their highest biomass in July with the

Table 4-13. Trophic conditions associated with the mean annual abundance of select ciliate species in Lake Weir (0 = oligotrophic, M = mesotrophic, K = eutrophic).

.

	STATION						
<u>Ciliate species</u>	1	2	3	4	5	6	7
Vorticella microstoma	Ħ	Ħ	H	· H	H	H	0
Mesodinium pulex	Ħ	H	R	Ħ	N	Ħ	E

-

Figure 4-15. Monthly biomass (ug d.w./1) of total zooplankton in Lake Weir in 1987.

exception of the midlake station, which had a biomass peak in March equal to that in July, and Station 4 which had a higher total zooplankton biomass in May.

The temporal distribution of macrozooplankton biomass was extremely variable on a station to station basis (Figure 4-16). Most stations did have peak abundance during spring (March, May) while others recorded pulses during the fall or midsummer. The highest macrozooplankton biomass (115.0 ug d.w. 1⁻¹) was recorded at Station 7 in March.

Microzooplankton biomass showed a clear seasonality when compared to macrozooplankton. Each station consistently recorded biomass peaks during the summer, usually during July (Figure 4-17). Station 3 also had a secondary microzooplankton peak in March. Populations tended to be relatively depressed at other seasons. The highest microzooplankton biomass observed was 273.6 ug d.w. 1⁻¹ at Station 1.

Cladocerans were usually the most abundant during the spring months and occasionally displayed secondary peaks during the fall (Figure 4-18). Unfortunately, April samples were not take and, therefore, interpretation of the seasonal trends for this taxonomic group is hampered. The largest cladoceran biomass encountered was 71.9 ug d.w. 1^{-1} at Station 4 in May. The cladoceran community was invariably dominated by <u>Eubosmina tubicen</u>.

Calanoid copepods generally began to increase in spring and maintained high levels until the fall decline (Figure 4-19). The timing of the biomass peaks for this group were quite

Figure 4-16. Monthly biomass (ug d.w. 1^{-1}) of macrozooplankton in Lake Weir in 1987.

.

Figure 4-17. Monthly biomass (ug d.w. 1⁻¹) of microzooplankton in Lake Weir in 1987.

Figure 4-18 Monthly biomass (ug d.w. 1^{-1}) of cladocerans in Lake Weir in 1987. Note variable scale.

Figure 4-19 Monthly biomass (ug d.w. 1⁻¹) of calanoid copepods in Lake Weir in 1987. Note larger scale for station 4.

variable. The highest biomass detected for this group was 80.0 ug d.w. 1^{-1} in October at Station 4.

Cyclopoid copepods usually peaked in March and sometime late summer or early fall (Figure 4-20). Since April data is missing interpretation is once again meaningless.

Nauplii populations displayed a consistent seasonality regardless of station (Figure 4-21). Populations increased during spring and then declined during summer. A large November biomass pulse was noted at most stations. The highest biomass attained by nauplii was 38.6 ug d.w. 1⁻¹ at Station 6 in May.

Rotifer populations displayed a clear seasonality with midsummer pulses occurring at all station (Figure 4-22). These periods of high rotifer biomass were characterized by surges in all rotifer species with their populations dominated by <u>Hexarthra mira</u> and <u>Colletheca libera</u>. The highest rotifer biomass (141.2 ug d.w. 1⁻¹) recorded in Lake Weir, however, was in March at Station 3 and was attributable to a bloom of <u>H. mira</u>.

Total ciliate biomass usually tracked rotifers with peaks recorded during July (Figure 4-23). Populations remained depressed at other times of the year. the highest ciliate biomass observed in Lake Weir was 167.5 ug d.w. 1⁻¹ in July at Station 1. Midsummer ciliate communities were characterized by elevated densities of most species. Myxotrophic ciliates (those with endosymbiotic zoochlorellae) peaked in July and composed an average of 30.0% of total ciliate biomass. Two myxotrophic ciliate species, <u>Coleps hirtus</u> and <u>Strobilidium</u> cf

Figure 4-20. Monthly biomass (ug d.w. 1⁻¹) of cyclopoid copepods in Lake Weir in 1987. Note larger scale for Station 7.

Figure 4-21. Monthly biomass (ug d.w. 1⁻¹) of copepod nauplii in Lake Weir in 1987. Note larger scale for station 7.

Figure 4-22. Monthly biomass (ug d.w. 1⁻¹) of rotifers in Lake Weir in 1987.

Figure 4-23. Monthly biomass (ug d.w. 1^{-1}) of total ciliates in Lake Weir in 1987.

oculatum, were the most abundant. These ciliates are known to inhabit the metalimnion and hypolimnion, respectively. A similar midsummer maxima of myxotrophic ciliates has been noted for highly colored Florida systems, and has been ascribed to the development of thermal stratification and nutrient limiting conditions in the water column (Beaver et al. 1988).

Oligotrich ciliates were frequently abundant during the first part of the year and occasionally increased until the midsummer biomass peak (Figure 4-24). Scuticociliate populations tended to peak in June prior to total zooplankton, microzooplankton, rotifers, and total ciliate biomass (Figure 4-25). Populations of this order then declined to varying extents during summer and often a secondary peak was noted in fall. Haptorid ciliates tended to peak in the early summer but peaks were also seen during the fall at Stations 2 and 3 (Figure 4-26).

G. <u>Relationship between Major Zooplankton Components and</u> <u>Environmental Variables in Lake Weir</u>

Pearson product-moment correlations of major zooplankton components with limnological variables are presented in Table 4-14. Chlorophyll <u>a</u> was positively correlated only with scuticociliate biomass (r=0.37) and negatively correlated with cyclopoids (r= -0.33) and oligotrichs (r= -0.21). Total phosphorus concentrations were positively related to rotifers (r=0.33) and negatively correlated with cladocerans (r= -0.35) and oligotrichs (r= -0.42).

Temperature displayed the strongest and best relationship with zooplankton components. Total zooplankton biomass

Figure 4-24. Monthly biomass (ug d.w. 1^{-1}) of oligotrich ciliates in Lake Weir in 1987. Note larger scale for Stations 3 and 7.

Figure 4-25. Monthly biomass (ug d.w. 1^{-1}) of scuticociliate ciliates in Lake Weir in 1987.

Figure 4-26. Monthly biomass (ug d.w. 1^{-1}) of haptorid ciliates in Lake Weir in 1987. Note larger scale for station 7.

	Chl.a (n-76)	TP (n-68)	Temperature	Secchi disk	рН (л-76)	Bacteria
COMPONENT	<u> </u>		(1-77)	(1-77)	(1-70)	(u-ii)
Total zooplankton	NS	NS	0.52	NS	NS	NS
Macrozooplankton	NS	NS	0.45	NS	NS	NS
Microzooplankton	NS	NS	0.43	NS	NS	NS
Cladocera	NS	-0.35	NS	NS	-0.32	NS
Calanioda	NS	NS	0.58	NS	NS	NS
Cyclopoda	-0.33	NS	NS	NS	NS	NS
Nauplii	NS	NS	-0.30	NS	-0.34	NS
Rotifera	NS	0.33	NS	NS	0.39	NS
Ciliata	NS	NS	0.42	NS	NS	NS
Oligotrichida	-0.21	-0.42	0.32	NS	NS	NS
Scuticociliatida	0.37	NS	0.36	NS	0.41	NS
Haptorida	NS	NS	NS	NS	NS	NS

Table 4-14. Significant correlations (p < 0.05) between major zooplankton components in Lake Weir with selected limnological variables. Coefficients are Pearson product-moment type.

-

(r=0.52) as well as the two major size classes, macrozooplankton (r=0.45) and microzooplankton (r=0.43), were moderately related to increasing water temperature.

Although pH was positively related to rotifers (r=0.39) and scuticociliate biomass (r=0.41), it was negatively correlated with cladocerans (r= -0.32) and nauplii (-0.34). No significant relationship was demonstrated between either secchi disk transparency or bacterial abundances and major zooplankton components.

H. Comparison of Seasonality in 1987 with Historical Data

Total zooplankton biomass at Station 3 peaked in September during 1979 whereas it peaked in March and July in 1987 (Figure 4-27). Macrozooplankton biomass displayed a bimodal seasonality in both years with peaks occurring in March and September in 1979 and March and August in 1987. Microzooplankton also displayed a bimodal seasonality with highest values recorded at approximately the same periods as macrozooplankton.

It is unclear whether seasonality in the cladocerans differed between years because of the missing April point. However, it appears that the major pulse during both years occurred during the spring with a much reduced secondary peak in fall. Messer (1975) found this bimodal pattern in cladoceran abundance in 1974 in Lake Weir.

Calanoid copepods exhibited only a fall peak in 1979 but had biomass maxima in both spring and late summer in 1987. Cyclopoid copepods displayed similar population peaks during spring and late summer and fall in both years, but the

Figure 4-27. Comparison of seasonality of the major zooplankton components in Lake Weir at station 3 in 1979 (dashed line) and 1987 (solid line). Biomass in ug d.w. 1^{-1}

magnitude was much greater in 1987. During 1974, Messer (1975) noted a similar pattern for total copepod abundance. Nauplii displayed a clear bimodality in 1979 with two major peaks in January and August. this trend was not observed during 1987 with only a moderate elevation noted in fall.

Rotifers showed only one peak in July 1979 but during 1987 had a major peak in July as well as in March. Similarly, Messer (1975) reported midsummer maxima in rotifer abundance during 1974 at three stations in Lake Weir. Total ciliate biomass was highest in January and September of 1979 but the peaks occurred in July and November in 1987.

Oligotrich seasonality appears much the same between years with higher values recorded in the first half of the year followed by declining populations through summer and fall. Scuticociliate populations exhibited a major pulse in June and a smaller peak in October of 1979. During the present study, their populations increased in spring but were maintained at higher levels during summer with other major peaks in September and November. Haptorid ciliates peaked in September and December of 1979 but peaked in June and November of 1987.

I. <u>Comparison of Seasonality in Lake Weir with other</u> <u>Mesotrophic Florida Systems</u>

Comparison of the seasonality of major zooplankton groups in Lake Weir with other Florida systems was accomplished by computing monthly mean values for each component in seven mesotrophic lakes discussed earlier (Figure 4-28).

Total zooplankton biomass in mesotrophic Florida lakes usually peaked in spring, summer, and fall. In Lake Weir,

Figure 4-28. Seasonality of the major zooplankton components in Lake Weir in 1987 (solid line) and the monthly mean of seven comparable mesotrophic Florida systems (dashed line). Biomass in ug d.w. 1⁻¹. Lake Weir values are the lake means.

however, a midsummer peak was noted. Macrozooplankton biomass in mesotrophic Florida systems showed one pronounced spring maxima with populations beginning to increase during winter. No clear trend was apparent for macrozooplankton in Lake Weir, but the missing April point confounds complete interpretation. Microzooplankton peaked in July in both Lake Weir and other mesotrophic lakes, but the fall maxima in other mesotrophic systems was not seen in Lake Weir.

Cladoceran seasonality showed a clear seasonality in mesotrophic lakes with the largest biomasses encountered during spring and a small peak in fall. This pattern is consistent with those described for other mesotrophic Florida systems (Shireman & Martin 1978, Blancher 1984, Elmore et al. 1984), and was also true for Lake Weir but the missing April sample prohibits firm conclusions.

Calanoid copepods tended to peak during the end of winter and spring in mesotrophic Florida lakes (Shireman & Martin 1978, Blancher 1984, Elmore et al. 1984) but no pattern is evident in Lake Weir for this taxa. Cyclopoid copepods peaked throughout spring and again in fall in the mesotrophic subset and other mesotrophic systems (Shireman & Martin 1978, Elmore et al. 1984). This trend was observed in Lake weir. Nauplii displayed peaks during July and October in the generalized cycle but exhibited comparatively little variation in Lake Weir. Other mesotrophic Florida lakes often show elevated nauplii populations in late summer or early fall (Shireman & Martin 1978, blancher, 1984, Elmore et al. 1984).

Rotifers generally peaked in both July and throughout fall in mesotrophic Florida lakes. Lake Weir experienced rotifer maxima in July but the peak was shortlived and populations quickly declined and did not surge in the fall. The July pulse in Lake Weir was approximately 50% higher than the average midsummer peak for the comparison systems. Rotifer maxima in other Florida systems frequently occurs during the summer months but have been noted during other seasons (Shireman & Martin 1978, Blancher 1984, Elmore et al. 1984).

The generalized pattern for total ciliate biomass indicates that these lakes experienced prolonged maxima during fall. In contrast, Lake Weir had only a single brief biomass peak during July. The generalized oligotrich cycle for mesotrophic lakes is inverse to the pattern observed in Lake Weir. Most mesotrophic systems have depressed populations during the first half of the year and then gradually increase from July until November. Lake Weir had elevated oligotrich densities in the first half of the year with a decrease beginning in August and continuing down.

The scuticociliates in Lake Weir peaked in July and then gradually declined until fall. In the mesotrophic lakes, scuticociliate populations peaked in March, June, and September and were usually 4 to 5 times less than the biomass maxima in Lake Weir. The pattern described for Lake Weir for scuticociliate biomass and total ciliate biomass is most similar to that described for eutrophic/hypereutrophic Florida lakes, however, in the latter lake group, the biomass values were

usually an order of magnitude greater than that found in Lake Weir (Beaver & Crisman 1988b).

The haptorid biomass cycle is in basic agreement with that noted for Lake Weir. In the generalized pattern, the primary pulse came during spring with some systems having a secondary maxima in fall while in Lake Weir it occurred only in July.

J. <u>Correlations between Major Zooplankton Components and</u> <u>Limnological Variables in Other Florida Lakes</u>

A comparable correlation matrix developed for the seven comparison mesotrophic systems indicates that, as in Lake Weir, few strong relationships exist between environmental variables and the biomass of zooplankton groups (Table 4-15).

Both correlation analyses share a weak but significant relationship between scuticociliate biomass and chlorophyll <u>a</u>. Total phosphorus was negatively correlated with microzooplankton, nauplii, rotifers, and oligotrichs and weakly correlated with cladocerans. Temperature was also weakly to moderately related to several zooplankton components in mesotrophic systems. pH was negatively correlated with total zooplankton, macrozooplankton, cladocerans and calanoids.

Comparison of the above correlation matrices with one developed from a 20 lake data set spanning the entire trophic gradient (Table 4-16), indicates that periods of high productivity (as measured by chlorophyll <u>a</u>, total phosphorus, total nitrogen, and pH) are frequently associated with increases in most zooplankton compartments. This pattern is inversely related to the size of the zooplankton group, suggesting that high productivity may have a more direct and detectable effect

Table 4-15. Significant correlations (p < 0.05) between major zooplankton components in seven mesotrophic Florida lakes with selected limnological variables. Coefficients are Pearson product-moment type. Data for correlation analysis taken from Bays (1983) and Beaver (1980).

CONPONENT	Chl. a (n=84)	TP (n=80)	Temperature (n=84)	Secchi disk	pĦ (n=81)	Bacteria
Total zooplankton	NS	NS	NS	ND	-0.26	ND
Macrozooplankton	NS	NS	-0.25	ND	-0.40	ND
Hicrozooplankton	NS	-0.32	0.25	ND	NS	ND
Cladocera	NS	0.23	-0.26	ND	-0.31	ND
Calancida	NS	NS	NS	ND	-0.42	ND
Cyclopoda	0.24	NS	NS	ND	NS	ND
Nauplii	NS	-0.45	NS	ND	NS	ND
Rotifera	NS	-0.31	NS	ND	NS	ND
Ciliata	NS	NS	0.32	ND	NS	ND
Oligotricbida	NS	-0.22	0.30	ND	NS	ND
Scuticociliatida	0.24	NS	0.54	ND	NS	ND
Haptorida	NS	NS	NS	ND	NS	ND

<u>CONPONENT</u>	Chl. a	TP	TN	lemp.	pH
Total zooplankton	0.63	0.42	0.25	NS	0.28
Macrozooplankton	NS	NS	NS	-0.23	-0.12
Hicrozooplankton	0.70	0.44	0.35	0.17	0.35
Cladocera	-0.13	NS	-0.28	-0.35	-0.24
Calanoida	NS	NS	NS	-0.15	-0.14
Cyclopoda	0.17	0.14	NS	NS	NS
Nauplii	0.41	NS	0.20	NS	0.21
Rotifera	0.45	NS	0.21	0.15	0.13
Ciliata	0.71	0.53	0.42	0.20	0.37
Oligotrichida	0.47	0.46	0.22	0.23	0.24
Scuticociliatida	0.72	0.56	0.54	0.29	0.53
Haptorida	0.28	0.21	NS	-0.13	NS

Table 4-16. Significant correlations (p <0.05) of major zooplankton components in Florida lakes with limnological variables. Coefficients are Pearson product-moment type (n=238).

on small-bodied opportunistic plankters with high reproductive capacity. In contrast to the mesotrophic trend, temperature has only a weak effect when Florida systems are considered as a whole.

It has been inferred from field studies in Florida lakes that many interrelated limnological factors control the abundance and composition of zooplankton communities. Included among these factors are predation (Bays & Crisman 1983, blancher 1984, Elmore 1983, Elmore et al. 1983), competition (Elmore 1983, Elmore et al. 1983, Foran 1986a, 1986b), food availability (Beaver & Crisman 1981, 1982, 1988b, Elmore et al. 1984, Brezonik et al. 1984) and temperature (Blancher 1984, Foran 1986a, 1986b).

It is clear from this study that temperature exerts a variable but significant influence on zooplankton communities in Florida lakes. Foran (1986a, 1986b) concluded that the absence of large-bodied cladocerans in subtropical lakes is due to the competitive advantage accrued to smaller species at elevated temperatures typical of these systems. The spring cladoceran maxima observed in Lake Weir and other Florida lakes coincides with increasing water temperature and is believed to be a response to increased reproductive and growth rates, and their rapid early summer decline has been ascribed to intense predation from young-of-the-year fish (Bays & Crisman 1983).

Among the copepods, <u>Diaptomus dorsalis</u> usually dominates the copepod communities of eutrophic lakes due to its reduced susceptibility to vertebrate predation (Elmore et al. 1983),

and excluded from less productive systems by superior competition from <u>D. mississippiensis</u> and <u>D. floridanus</u> (Elmore 1983).

Finally, food quality and quantity likely influences the temporal and spatial distribution of zooplankton species in Florida lakes (Beaver & Crisman 1981, 1982, 1988b, Bays & Crisman 1983, Brezonik et al. 1984). The results of the correlation analysis suggest that food is the primary factor regulating zooplankton populations when Florida lakes are considered as a whole.

K. Conclusions of Zooplankton Study

Based on the data accumulated to date, the zooplankton community of Lake Weir would be classified as a mesotrophic assemblage. The biomass of most major zooplankton components were relatively depressed when contrasted with lakes of similar trophy. This trend was most notable within the macrozooplankton since cladoceran and copepod adult biomass were very low compared to other mesotrophic Florida lakes.

Historical comparison with the zooplankton community in 1979 indicates only minor taxonomic changes have occurred. It is important to note, however, that scuticociliate ciliates and rotifers have markedly increased since 1979, and the elevated abundance of these taxa is strongly associated with increased eutrophication in Florida lakes (Beaver & Crisman 1982, 1988a, Bays & Crisman 1983).

Benthic Invertebrates

Benthic macroinvertebrate communities in seven profundal bottom areas (i.e., areas without rooted vegetation) in Lake Weir were sampled at approximately monthly intervals for a year. Benthic invertebrate community abundance and distribution were analyzed to evaluate the water quality of Lake Weir.

Substrate type at the stations fell into three main groups:

A. Fine sand - Stations 1, 2, 5, and 6.

B. Coarse sand - Station 4.

C. Organic "muck" (no sand) - Stations 3 and 7. Fine sand passed through the 600 um mesh; coarse sand was retained by the sieve bucket.

Thirty-three samples were collected at each station from February, 1987 to January, 1988; making a total of 231 samples collected and analyzed for Lake Weir, Sunset Harbor and Little Lake Weir.

Annual mean densities and taxa obtained at each of the seven stations are summarized in Table 4-17, and presented in full in Appendix B. Annual mean abundance of macroinverte-brates was greatest at station 6 $(4,072/m^2)$ and least at station 1 $(1,280/m^2)$. With the exception of station 1, all the sand bottom stations had significantly greater mean densities than the stations (3 and 7) with organic "muck" substrate stations (Table 4-18).

Station	1	2	3	4	5	6	7
Insecta						····	
Diptera							
Chiropogidae							
Chironomus sp.	35	37	798	159	56	1175	80
Crvptochironomus sp.	3	7	6	68	32	69	27
Tanytarsus sp.	44	37	41	54	37	119	132
Cladotanytarsus sp.	44	127	32	245	227	113	28
Coelotanpus sp.	98	71	19	77	219	156	65
Procladius sp.	41	68	51	47	63	95	66
Harnischia sp.	36	35	2	10	15	37	24
Polypedilum sp.	3	0	2	8	0	53	65
Pseudochironomus sp.	2	23	0	53	12	80	0
Total Chironomidae	307	405	951	721	661	1897	487
Chaoboridae							
Chaoborus sp.	441	513	360	23	86	340	534
Ceratopogonidae							
Palpomyia sp.	3	12	5	15	10	168	10
Ephemeroptera							
Hexagenia sp. 1	19	9	0	16	146	242	104
Misc. Insects	1	3	0	7	7	3	2
Amphipoda							
Hyalella sp.	286	1356	780	1942	2239	786	71
Oligochaeta T	177	237	195	331	275	349	153
Mollusca	10	100	1	95	63	109	7
Hirudinea	6	48	43	36	92	74	15
Nematoda	30	129	64	82	112	104	30
Total Organisms	1280	2812	2399	3268	3691	<u>4072</u>	1413
Mean No. of sp.	8.6	10.7	7.1	11.4	12.8	13.6	8.1

2 Annual mean densities (number per m) of benthic Table 4-17. macroinvertebrates at seven stations in Lake Weir.

Miscellaneous Insecta : Decetis sp.; Aphylla sp.
Oligochaeta: Tubificidae; Lumbriculidae; Branchiobdella.

3. Mollusca: Viviparus sp.; Elliptio sp.; Physa sp.

		Annual Me	an Abunda	nce at ea	ch static	n 	
	6	5	4	2	3	7	1
Mean density (no./m2)	4.072	3.691	3.268	2.812	2.399	1.413	1.280
	6	5	4	2	1	7	3
Mean No. of species	13.6	12.8	11.4	10.7	8.6	8.1	7.1
<u></u>							

Table 4-18 Macroinvertebrate Annual Mean Abundance at each station over all dates1.

Neans underscored by the same line are not significantly different using Duncan's Multiple Range Test (ANDVA; p = 0.05).

Similarly, the mean number of species were significantly greater at sand bottom stations than at the organic substrate stations (Table 4-18). The highest mean number of species (13.6) was recorded for station 6 while the lowest mean number (7.1) was recorded for station 3.

The most abundant groups of organisms found in Lake Weir were the amphipods, chironomids, chaoborids and oligochaetes, comprising 39.4%, 28.7%, 12.1% and 9.1% of total macroinvertebrate abundance, respectively. The mayfly, <u>Hexagenia</u> sp. was abundant at only stations 5, 6, and 7, with annual mean densities of 146, 242 and 104 individuals/m², respectively (Table 4-17). No <u>Hexagenia</u> individuals were found at station 3 throughout the sampling period. The amphipod, <u>Hyalella</u> sp. was abundant throughout the lake system, with highest mean densities at stations 4 and 5, having 1,942 and 2,239 individuals/m².

The ceratopogonid <u>Palpomyia</u> sp. was abundant only at station 6 with a mean density of 168 individuals/m². A total of nine chironomid genera were recorded for the sample period. All nine genera were found at all 7 stations with the exception of <u>Polypedilum</u> sp. and <u>Pseudochironomus</u> sp., which were absent from stations 2, 6, and 3, 7, respectively. Overall the most abundant chironomid taxa were <u>Chironomus</u> sp., <u>Cladotanytarsus</u> sp., and <u>Coelotanypus</u> sp., comprising 43%, 15%, and 13%, respectively, of total chironomid populations.

Stations 7, 2, and 1 had lower midge abundance than the other stations (Table 4-17). The greatest midge abundance was

obtained at station 6 with an annual mean of 1,897 individuals per m². The lowest abundance of 307 individuals per m² occurred at station 1. Different midge taxa were numerically dominant at different stations. <u>Chironomus</u> sp. was the dominant taxon at stations 3 (83.9%) and 6 (62.9%), and <u>Cladotanytarsus</u> sp. was the dominant taxon at stations 2 (31.4%), 4 (35%) and 5 (34%). <u>Coelotanypus</u> sp. was dominant at stations 1 (32%) and 5 (37%) while <u>Tanytarsus</u> was dominant at station 7 (27%).

<u>Chaoborus</u> sp. was generally abundant at all stations except at stations 4 and 5. Mean density ranged from 23 individuals per m^2 at station 4 to a maximum of 534 individuals per m^2 at station 7 (Table 4-17).

The oligochaetes were fairly abundant at all stations but were more so at stations 4 and 6 with mean annual densities of 331 and 334 individuals per m^2 .

The most common mollusks found in Lake Weir were the bivalve <u>Elliptio</u> sp. and the snail <u>Viviparus</u> sp. <u>Physa</u> sp. was encountered occasionally. Not surprisingly, the "mucky" substrate of stations 3 and 7 had the lowest mean abundance of mollusks with 1 and 7 individuals per m², respectively. The sand bottom stations, with the exception of station 1, had greater mollusk abundances with stations 2, 4, and 6 showing similar mean abundances of 100, 95, and 109 individuals per m².

Looking at the proportions (percent) of the major groups of organisms collected at each of the seven stations, two groups of stations emerge. The first group comprising stations

2, 4, and 5 were dominated by the amphipod <u>Hyalella</u> sp. with 48.2%, 59.4%, and 60.6% of total station macroinvertebrate abundance respectively (Figure 4-29). The second group of stations -- 1, 3, 6, and 7 -- was dominated by the Class Insecta with total insect compositions of 60.1, 54.8, 65.0 and 80.0% (Figure 4-30).

The insect-dominated stations (1, 3, 6, and 7) can be further divided into two subgroups. Chironomids were dominant at stations 3 and 6, representing 39.6% and 46.6% of the total benthic invertebrate population. <u>Chaoborus</u> sp. was dominant at stations 1 and 7, comprising 34.4% and 37.7% of the population.

Macroinvertebrate community structure based on functional feeding groups showed that the collector-gatherer group was the most dominant followed by the predators, filterers and scrapers (Table 4-19). Not surprisingly, no shredders were found at any of the stations since the profundal areas all lacked vegetation. the collector-gatherers were most dominant at stations 1 and 7, ranging in percent abundance from 84.7% at station 4 to 27.9% at station 7. Conversely, the predators were most dominant at stations 1 and 7 and least dominant at station 4, with percent composition ranging from 69.8% at station 7 to 9.6% at station 4 (Table 4-19). The filterers were numerically more dominant at stations 6, 2, and 4 than at the other stations. A maximum of 7.8 percent composition was found at stations 6 and 2, with none at station 3. Again, scrapers were most dominant at station 2 (3.7%) and least dominant at station 3 (0.05%). The stations dominated by the collector-gatherer

Figure 4-29. Macroinvertebrate group abundance in Lake Weir at stations 2, 4 and 5.

*Total Insecta, including Chironomidae.

Figure 4-30. Macroinvertebrate group abundance in Lake Weir at stations 1, 3, 6 and 7.

Perc	ent by der	nsity (no	-2 . m) at	each st	ation	
4	5	2	3	6	1	. 7
94.7 	72.7	70.2	61.5	60.5	44.6	27.9
7	1	3	6	5	2	4
69.8	54.2	34.0	33.6	25.2	22.3	9.6
6	2	4	5	7	1	3
3.8	3.8	3.0	1.4	0.05	0.04	0.0
2	5	4	1	6	7	3
3.7	1.2	1.2	0.9	0.7	0.3	0.05
	Perc 4 84.7 7 69.8 6 3.8 2 3.7	Percent by der 4 5 94.7 72.7 7 1 69.8 54.2 6 2 3.8 3.8 2 5 3.7 1.2	Percent by density (no 4 5 2 84.7 72.7 70.2 7 1 3 69.8 54.2 34.0 6 2 4 3.8 3.8 3.0 2 5 4 3.7 1.2 1.2	Percent by density (no. m ⁻²) at 4 5 2 3 94.7 72.7 70.2 61.5 7 1 3 6 69.8 54.2 34.0 33.6 6 2 4 5 3.8 3.8 3.0 1.4 2 5 4 1 3.7 1.2 1.2 0.9	Percent by density (no. m ⁻²) at each st 4 5 2 3 6 94.7 72.7 70.2 61.5 60.5 7 1 3 6 5 6 2 4 5 7 6 2 4 5 7 3.8 3.8 3.0 1.4 0.05 2 5 4 1 6 3.7 1.2 1.2 0.9 0.7	Percent by density (no. m) at each station 4 5 2 3 6 1 94.7 72.7 70.2 61.5 60.5 44.6 7 1 3 6 5 2 6 2 4 5 7 1 3.8 3.8 3.0 1.4 0.05 0.04 2 5 4 1 6 7 3.7 1.2 1.2 0.9 0.7 0.3

Table 4-19 Macroinvertebrate functional group mean density as a percent of total density (no. m-2) at each station over all dates.1

 \sim

1Means underscored by the same line are not significantly different using Duncan's Multiple Range Test (ANOVA; p = 0.05).

~

feeding group (i.e., stations 2, 4, and 5) were the stations with the highest proportions of the amphipod, <u>Hyalella</u> sp. Also, the stations dominated by the predator feeding group (i.e., stations 7 and 1) were the stations with the highest proportions of <u>Chaoborus</u> sp. The filterers were represented by the pelecypod <u>Elliptio</u> sp. and the scrapers by the snail <u>Viviparus</u> sp.

Total monthly abundances of the major taxa per station show a trend of lowest yearly values from July to December at stations 1-6 (Figures 4-31, 4-32). At station 7, the trend showed a decline in May with values remaining low through January (Figure 4-32). Seasonal patterns in the abundance of individual taxa were not discernible due to high variability in mean monthly numbers.

In a comparison among the mid-lake stations -- 3 (Lake Weir, mucky substrate), 6 (Sunset Harbor, sandy substrate) and 7 (Little Lake Weir, mucky substrate) -- similarities and differences emerge. Station 6 was significantly more productive than stations 3 and 7, having the greatest number of organisms as well as number of taxa (Table 4-18). Whereas stations 3 and 6 were dominated by the midge <u>Chironomus</u> sp., station 7 was dominated by Chaoborus sp.

The chironomid <u>Pseudochironomus</u> sp. was absent from stations 3 and 7. The dominant midge at station 7 was <u>Tanytarsus</u> sp. Overall, station 6 (mid station of Sunset Harbor) was the most productive of all seven stations sampled.

Figure 4-31. Total monthly abundances of major taxa in Lake Weir stations 1, 2, 3 and 4.

Figure 4-32. Total monthly abundances of major taxa in Lake Weir at stations 5, 6 and 7.

Large-scale distribution and abundance patterns of benthic macroinvertebrate communities have been shown to be influenced by factors related to the trophic state of lakes (Vodopich 1980, Cowell and Vodopich 1981, Saether 1985, Hunt 1953). Profundal chironomid and oligochaete communities have been used as indicators of trophic state and/or pollution (Wiederholm 1980, Warwick 1980). The structure of these communities is thought to be determined by differences in tolerance to low oxygen concentration, especially in eutrophic lakes.

Macroinvertebrate community structure at the stations sampled showed two main community types: (a) an amphipoddominated group and (b) an insect-dominated group. Oligochaetes were relatively unimportant at all stations. The relative abundance of amphipods and insects compared to oligochaetes generally indicated good water quality. The greater number of <u>Chironomus</u> at stations 3 and 6 may indicate the presence of a type of organic matter which allows this species to out-compete other chironomids. Similar reasoning may apply to <u>Hyalella</u>. Both <u>Chironomus</u> and <u>Hyalella</u> are considered to collect fine particulate organic matter from the sediments.

Amphipods are sensitive to a wide variety of pollutants and are usually more sensitive to chronic life-cycle toxicants than fish (Macek et al. 1976a, 1976b). <u>Hyalella azteca</u> has been found to be extremely sensitive to Diquat and more sensitive to dichlobenil (herbicides) than any insect larvae tested.

The mayfly, <u>Hexagenia</u> was more abundant at stations 5, 6, and 7 than at the other stations. Since these stations include the sandy and organic "muck" substrates, the relatively impoverished populations of <u>Hexagenia</u> nymphs at stations 1, 2, 3, and 4 (i.e., northern half of Lake Weir) could be due to fish predation and/or distribution of ovipositing adult females. <u>Hexagenia</u> nymphs burrow into soft bottom sediments by digging u-shaped respiratory tubes. Their distribution is generally determined by sediment type and dissolved oxygen concentration of the sediment/water interface.

<u>Hexagenia</u> could be used as an indicator species of the water quality in Lake Weir. Any change that would cause an increase in the oxygen demand of the water and sediments for prolonged periods may drastically deplete dissolved oxygen concentrations, especially during periods of calm weather. This situation would decimate the populations of <u>Hexagenia</u> sp. in Lake Weir. As a result of oxygen depletion, <u>Hexagenia</u> populations have been replaced by worms, midges, and other more tolerant organisms (Wood 1973; Cook and Johnson, 1974).

The taxa found in Lake Weir are very similar to those found in similar Florida lakes (e.g. Kingsley Lake). Factors that may influence seasonal abundances and taxa richness of macroinvertebrate communities include:

- 1. Biotic interactions of competition and predation
- Food quality and abundance (e.g., phytoplankton species and abundance)
- Tolerance of variations in chemical and physical parameters.

Florida Benthos

Interpretation of benthic invertebrate data for Florida lakes is hindered by the lack of a detailed calibration model for the state. As part of an unfunded research project, we have begun to collect all benthos data available from the files of state agencies and universities. We are now in the preliminary analysis phase of this project.

The relationship between total benthos abundance (minus mollusks) and chlorophyll <u>a</u> in Florida lakes is not clear (Figure 4-33). We feel that the apparent lack of a clear relationship reflects the fact that extremely macrophyteinfested lakes have been included in the database, and no attempt has yet been made to account for either substrate organic content and degree of flocculation or differences in sampling methodologies. We are now incorporating these factors into our model construction.

We have also examined the relationship between total chironomid abundance and chlorophyll <u>a</u> for our Florida lake database (Figure 4-34). As mentioned previously for total benthos, we are now incorporating additional environmental and substrate factors with the hope of delineating relationships that may be of value for predicting water quality in Florida lakes.

Our laboratory has collected over four years of benthos data on the Oklawaha lakes. As sampling methodologies were similar between this study and the current investigation at Lake Weir, we can use the former database to predict how the

Florida Benthos versus Chlorophyll

Relationship between total benthic invertebrates Figure 4-33. (minus molluscs) and chlorophyll for Florida lakes.

Florida Chironomids versus Chlorophyli

Figure 4-34. Relationship between total chironomid abundance and chlorophyll for Florida lakes.

benthic invertebrate community of the Lake Weir system may respond to further cultural eutrophication.

Total benthos abundances (minus mollusks) in the three basins of the Lake Weir system were similar to those of the more eutrophic Oklawaha lakes (Figure 4-35). The notable exceptions were Lakes Eustis and Apopka, which displayed the lowest values of both investigations. Oligochaete abundance in the Lake Weir system (Figure 4-36) was comparable to that of the three least productive Oklawaha lakes (Eustis, Griffin, Apopka) and more than five times lower than the most productive lakes (Dora and Beauclair). It appears that annual mean chlorophyll concentrations in the Lake Weir system would have to increase 500% before oligochaetes would be expected to be significantly more abundant.

Finally, chironomid abundance in the three basins of the Lake Weir system approximated that of Lakes Griffin and Dora but was higher than that of the other three lakes (Figure 4-37). Of the three latter lakes, Apopka and Beauclair displayed the most flocculent sediments.

On the basis of our preliminary analysis of benthos in Florida lakes, it appears that the abundance of total benthos, chironomids, and oligochaetes in the Lake Weir system should not change markedly if a moderate rate of cultural eutrophication continues. However, if sediments become flocculent, regardless of a change in annual mean chlorophyll, major changes in chironomid abundance could occur. These observations are considered preliminary and will be tested further as

Oklawaha and Weir Means

Figure 4-35. Mean abundance of total benthos for Sunset Habor (SH), Lake Weir(W), Little Lake Weir (LW), and lakes Eustis (E), Griffin (G), Apopka (A), Dora (D), and Beauclair (B).

Figure 4-36. Mean abundance of Oligochaetes for Sunset Harbor (SH), Lake Weir (W), Little Lake Weir (LW), and lakes Eustis (E), Griffin (G), Apopka (A), Dora (D), and Beauclair (B).

Oklawaha and Weir Means

Figure 4-37. Mean abundance of chironomids for Sunset Harbor (SH), Lake Weir (W), Little Lake Weir (LW), and lakes Eustis (E), Griffin (G), Apopka (A), Dora (D), and Beauclair (B).

our work on analysis of the Florida benthos database continues during the coming year.

Fish

Lake Weir's fish assemblage is typical of many mesotrophic Florida lakes (Keller 1984, FGFWFC 1975-1986). Centrarchids such as bluegill, redear sunfish, black crappie and largemouth bass have been the dominant gamefish species historically (Table 4-20). Forage fish include threadfin shad, brook silversides, mosquitofish, Seminole killifish and golden shiners, while rough fish are represented by gar and mudfish (FGFWFC 1985). In all, 19 species of fish have been identified in Lake Weir. This value corresponds to the predicted number of species for a lake with a pH of 7.15 and a surface area of 2,086 hectares based on regression models (Table 4-21) for Florida lakes (Keller 1984).

Historical records of year class strength and the abundance of particular species are lacking because little routine monitoring of fish occurred prior to 1983 (FGFWFC 1985). At that time, the FGFWFC initiated a fish population survey in response to public concern over the onset of algal blooms and a declining black crappie fishery. This monitoring was continued in 1985 and 1986.

Survey results (Figure 4-38) indicate that the Lake Weir (only the main basin) largemouth bass population has fluctuated somewhat (from 20,722 in 1983 to 13,493 in 1987), as have those of the bluegill and redear sunfish. Such changes are normal

Table 4-20. Lake Weir fish species list*.

SCIENTIFIC NAME

COMMON NAME

<u>Micropterus salmoides floridanus</u> Lepomis macrochirus Lepomis microlophus Lepomis gulosus Lepomis marginatus Pomoxis nigromaculatus Enneacanthus gloriosus Esox niger Erimyzon succetta Notemigonus crysoleucas <u>Fundulus seminolis</u> <u>Gambusia affinis</u> Labidesthes sicculus <u>Amia calva</u> Etheostoma fusiforme Lepisosteus platyrhincus Dorosoma petenense Ictalurus nebulosus Ictalurus natalis

Largemouth bass Bluegill Redear sunfish Warmouth Dollar sunfish Black crappie Bluespotted sunfish Chain pickerel Lake chubsucker Golden shiner Seminole killifish Mosquitofish Brook silverside Bowfin Swamp darter Florida gar Threadfin shad Brown bullhead Yellow bullhead

*FGFWFC 1985.

Table 4-21. Predicted number of fish species in Lake Weir using two regression models[®] based on lake pH and lake surface area.

Model	Predicted No. Species
Y = 0.42 (pH) + 1.34	18.8
Y = 0.75 (SA) + 3.55	20.8

 *From: Keller (1984). *Y represents the square root of the (number of fish species + 0.05).

Figure 4-38.Population estimates of largemouth bass, bluegill and redear sunfish in Lake Weir (proper), Florida, 1983-1986.

responses to food availability, climatic cycles and mortality due to disease or fishing pressure. However, the complete loss of black crappie between 1982 and 1984 is not so easily explained.

Crappie Loss

Interviews with fishermen and data from creel reports indicate that in 1981-1982 almost all of the black crappie caught were large, i.e. older adults. By 1983-1984, the catch had declined dramatically and in the following year there were virtually no crappie at all. Extensive sampling by the FGFWFC with a variety of methods resulted in the capture of only eight crappie individuals between 1983 and 1988. Several hypotheses have been proposed to explain this dramatic loss. They include changes in habitat quality due to eutrophication, the colder than normal winters of 1982 and 1983, food limitations or losses, an influx of heavy metals or pesticides from the citrus groves killed by recent winter freezes, and a species-specific viral or bacterial agent (Table 4-22).

While each sunfish species exhibits some degree of food preference, they are all considered generalists (Werner 1977). That is, their diets overlap considerably. If one food type becomes limited, such fish can switch to another food source. Macroinvertebrates, forage fish and plankton appear to be abundant in recent Lake Weir samples (FGFWFC 1985 and 1986, current study). Thus, since only normal fluctuations in other sunfish generalists (i.e., bluegill and redear sunfish)

Table 4-22. Some possible causes of the loss of black crappie from Lake Weir, FL and results of analyses of each parameter.

Possible Cause	<u>e</u> Finding	<u>Conclusions</u>	Reference
Fish pathogens	<u>Aeromonas</u> , white grubs	Not significant	Bitton <u>et</u> <u>al</u> . (1982); Goldsby and Plumb (1987).
Food			
limitations	abundant forage, plankton, fish, macroinvertebrate	Not a factor	FGFWFC (1983- 1986); Current work.
Habitat			
changes	Good mixture of littoral/pelagic, sandy and soft sediments	Should not , affect reproductive success	Current work.
Winter temperatures	Much colder than usual (1983-84)	Did not affect other crappie populations	FGFWFC-
Pesticides/ heavy/metals	DDE found in several fish samples, but very low. No other pesticides identified. Metals low.	Measured levels not y high, but other pesticic may be present More work suggested.	FDER (1987) les

 Personal communication from Sam McKinney, Ocala office of the FGFWFC. occurred between 1983-86 in Lake Weir, it is not likely that crappie were lost because of food limitations.

The habitat requirements for successful recruitment of sunfish species commonly found in Lake Weir are similar (Carlander 1977). Sunfish build nests in sandy areas along the border between open water and vegetation. They prefer fairly compact sediments which are common along the shoreline of Lake Weir. The open water/plant interface is an important boundary for large size classes of crappie, bluegill and redear sunfish. Black crappie become more pelagic as they mature, while the bluegill and redear sunfish remain in the littoral zone. Since both pelagic and littoral zones are present in Lake Weir, loss of habitat cannot explain the extinction of crappie.

Statistical comparisons between current and historical estimates of Lake Weir's trophic state indicate that while there has been no significant change during the past 20 years (See Tables 4-24, 4-25), recent phosphorus levels are higher and Secchi depth is lower than the annual means of past data. While Lake Weir is still oligo-mesotrophic, there may be a trend toward increasing lake productivity. Data from five Florida lakes (Apopka, Dora, Griffin, Newnan's and Ocean Pond) collected by the Florida Game and Fresh Water Fish Commission demonstrate the adaptability of black crappie to increasing trophic state (Figure 4-39). As chlorophyll <u>a</u> concentration increases so does the biomass of crappie. Therefore, Lake Weir crappie harvest should have increased with any increase in trophic state.

CHLOROPHYLL A (ug/L)

Figure 4-39.Biomass of black crappie relative to lake chlorophyll <u>a</u> levels (Data from FGFWFC Annual Reports).

Extremely cold winters can lead to recruitment failure in fish populations for several reasons. Adults can be killed, the forage base may decline and/or eggs or fry may be adversely affected in early spawning species. Small, shallow lakes are more likely to experience fish losses due to extreme weather than are deeper lakes. In 1983 and 1984, the winters were inordinately cold. Since black crappie spawn in late winter or early spring, it is possible that their recruitment failed in those years due to the cold. Indeed, some decline in other sunfish including largemouth bass and bluegill was detected in population surveys conducted in 1985 and 1986 (FGFWFC 1986). However, crappie populations in nearby shallower lakes were not lost (FGFWFC). It does not appear that cold weather killed the crappies.

A substantial citrus industry has flourished within the Lake Weir watershed since the late 1800's (Shackleford 1883). In the decades since World War II, the use of agricultural pesticides has increased steadily for all crops. Citrus growers have used a variety of these chemicals to boost crop production and minimize harvest effort. Pesticides have included organics such as DDT, aldrin and chlordane as well as compounds containing copper. With continual use, such chemicals accumulate in the trees and soils, and eventually they can begin to leach into lakes with runoff from rain.

Lake sediment, water and fish tissue samples were collected in 1986 by the FGFWFC for analysis of heavy metal and pesticide content. Results of analyses by the FGFWFC, Florida

Department of Health and Rehabilitative Services, and Florida Department of Environmental Regulation (Table 4-23) detected virtually no heavy metals or pesticides in the samples (FGFWFC 1986). Copper ranged from 0.3-0.6 mg/kg wet weight, mercury from 0.09-0.85 mg/kg, zinc from 4.5-10.9 mg/kg and lead from 0.37-0.61 mg/kg. A few samples of largemouth bass had low but detectable amounts of DDE, a degradation product of DDT. The levels encountered, however, were not considered to be hazardous to fish (FGFWFC 1986).

There is nothing to suggest that black crappie are more vulnerable to pesticides than are largemouth bass. Consequently, it seems unlikely that influxes of pesticides from decaying citrus trees or grove soils eliminated the crappie. However, further examination of fish tissue herbicide burdens and levels of previously unmeasured organic compounds may be performed in 1988.

Finally, Auburn University researchers Terry Goldsby and Dr. John Plumb have taken blood, muscle and organ samples from largemouth bass and bluegills to screen for pathological agents. Their findings indicate that parasite burdens may be a factor in the fish deaths occurring in Lake Weir. However, there is no indication of an unusual disease vector, and there was no largescale die-off of crappie.

Both white grubs and bacterial pathogens are common among natural fish populations (Hoffman 1967). It still remains unknown whether a species-specific agent killed the crappie population. We cannot test such a theory without an extant

	مري من					
		(n	ng∕kg	wet wei	.ght)	
Fish Species	Total Length (mm)	Cd	Cu	Hg	۴b	Zn
Largemouth bass	538	0.05	0.6	0.45	0.46	5.4
Largemouth bass	463	BDL-	0.4	0.62	0.46	6.1
Largemouth bass	1320	BDL	0.5	0.85	0.61	4.5
Bluegill	91	BDL	0.4	0.10	0.37	9.5
Bluegill	66	BDL	0.3	0.10	0.40	10.9
Bluegill	79	BDL	0.6	0.09	0.40	9.1
	مناج والمناء والان الإنجار والمنا مؤتم والمناع المناع والمناع والمناع والمناع والمناع		*** **** -*** **** -***	(MDL =	0.03)	
		(7	ng∕kg	dry we	ight)	
Soi l		Cd	Cu	Hg	РЪ	Zn
#1		0.07	3.4	0.04	2.31	11.7
#2		0.05	2.2	0.04	2.31	9.0
#3		0.03	1.1	BDL	1.59	3.7
				(MDL =	0.04)	

Table 4-23. Heavy metal concentrations in fish and hydrosoil samples from Lake Weir (1986).*

* Analyses performed by FGFWFC.

 BDL = Below Detection Limits; MDL = Minimum Detection Limits. population and proposed disease-causing agent. Black crappie were stocked in Lake Weir in 1986 and 1987 (FGFWFC) but have not been detected to date after extensive population sampling efforts. No further stocking or fish sampling is scheduled for 1988.

After examining the possible causes for the dramatic loss of the black crappie fishery, no obvious explanation exists. Extreme fishing pressure, inappropriate use of herbicides or other factors can contribute to fish population changes. But even these suggestions can be ruled out for Lake Weir since neither has occurred. (FDNR and FGFWFC, personal communication). Perhaps a combination of factors led to the loss. If crappie can be re-established by stocking, the problem will be solved although an explanation for their current demise may be lacking. If not, further efforts to identify the factor or factors that killed the crappie will probably continue.

Historical Limnological Data

Data were extracted from various University of Florida theses, and reports unpublished data from the Department of Environmental Regulation, Florida Game and Fresh Water Fish Commission, United States Geological Survey and St. Johns River Water Management District for analysis of trends in water quality changes over the past 30 years (Table 4-24). Means were calculated by year, and station numbers were assigned to correspond to our current sampling stations. Statistical analyses were performed using SAS (1986).

Table 4-24. List of studies containing water chemistry data from Lake Weir from 1968-1987.

<u>Reference</u> *	Study Date	<u>No. Sample</u> Dates	<u>Sample</u> ¤ Station
FGFWFC 1968	1967-1968	26	2,4,6
Shannon 1971	1969-1970	6	3e
FGFWFC 1973	1972-1973	2	3
Messer 1975	1974-1975	12	ुट
Beaver 1980	1979	12	3-
Canfield 1981	1979-1980	3	3-
Garren 1982	1981	1	5
FDER 1987	1975-1986	46	3,5,6=
USGS 1987	1956-1983	40	2

 Complete citation in Literature Cited.

 Stations designated to correspond to current sampling stations in Lake Weir.
 Data used for comparison between historical and current water chemistry parameters.

 Comparisons between current and past records of phytoplankton (Messer 1975), and macrophyte abundance and species lists (Garren 1982, FGFWFC 1985 and 1986) were made using data from several University of Florida theses, and reports by the Florida Game and Fresh Water Fish Commission.

Comparisons of Historical vs Current Data

A. <u>Water Quality</u>

Records of water quality parameters in Lake Weir have been maintained by various agencies since 1956 (Appendix C). However, virtually no measurements of chlorophyll <u>a</u> are available for years prior to 1969, and other parameters were only intermittently recorded over the years (e.g. Secchi depth, turbidity and alkalinity). Numerous samples were taken at multiple stations in some years, while for others only 1 midlake sample was analyzed. Therefore, comparisons between these past data and current conditions in Lake Weir were based on means calculated for 1969, 1975, 1979, 1981, and 1984-1985 from the midlake station, and those from our first year's sampling effort. Data were most abundant for that station, and it is more indicative of overall conditions in Lake Weir due to its location and depth.

Analyses of past and current annual means of chlorophyll <u>a</u>, TKN, TP, and Secchi depth in Lake Weir by ANOVA and Duncan's procedure indicate that there are no significant differences among the years except for Secchi depth (Tables 4-25, 4-26, Figure 4-40). However, the decline in Secchi depth transpar-

Table 4-25. Summary of historical and current values for four water quality indicators at Station 3 in Lake Weir, FL.

Parameter	Histórical Value - <u>Mean + S.D</u> (N)	Current Value <u>Mean + S.D</u> (N)
Chlorophyll <u>a</u> (ug/L)	8.01 <u>+</u> 1.30 (32)	6.78 <u>+</u> 2.69 (11)
Total phosphorus (ug/L)	28.08 <u>+</u> 16.29 (34)	50.60 <u>+</u> 33.18(10)
Total Kjeldahl nitrogen (ug/L)	854.17 <u>+</u> 180.44 (32)	760 <u>+</u> 145.70 (9)
Secchi depth (m)	1.94 <u>+</u> 0.34 (35)	1.54 <u>+</u> 0.22 (11)

"Historical values based on data from 1969, 1975, 1979, 1980, 1984-85.

Table 4-26. Results of comparisons of indicators of historical and current trophic state in Lake Weir by ANOVA and Duncan's procedure. Years connected by the same underline are not significantly different.

Farameter			N		E		Sigr	nificanc	e
Chlorophyll	. <u>a</u>		43		1.44			n,s.	
Total Kjeld nitrogen	lahl		41		1.65			n.s.	
Total phosp	horus	5	44		3.07			n.s.	
Secchi dept	:h		46		4.60			*	
Year	80	79	85	69	75	87	84		
	···· ··· ···								

.....

n.s.=not significant; * Significant at $p \le 0.05$.

ency has not been continuous over the years. Since the human population around Lake Weir has risen continuously, climatic changes such as rain and drought may be as much a factor in determining water clarity as development, septic input, or other human impacts. Sampling frequency, station locations, and analytical methodologies used by various agencies and researchers whose historical data we used may also have dampened our ability to see statistical differences.

Trophic state indices (TSI) were calculated from both historical and current means of Secchi depth, chlorophyll <u>a</u> concentration, total nitrogen and total phosphorus (Table 4-27). These indices take into account the relationship between lake primary production and nutrient concentrations, chlorophyll <u>a</u> levels, and water clarity (Huber <u>et al</u>. 1982). As lake production increases, the TSI rises. Comparisons of these values enabled us to evaluate changes in the overall trophic level of Lake Weir based on several parameters.

Little difference existed between the indices based on past data and those calculated from current measurements. All values placed Lake Weir in the mesotrophic category. However, as with the water chemistry data, the historical TSI for chlorophyll <u>a</u> was slightly lower than the TSI based on current data, while the other TSI rose. The TSI calculated from Secchi depth increased the most.

Table 4-27. Trophic state indices (Huber <u>et al</u>. 1982) calculated from historical and current values for Lake Weir water quality at Station 3.

TSI	Historical <u>Value</u>	Current <u>Value</u>	Trophic* <u>State</u>
Chlorophyll <u>a</u>	46.76	44.55	0-M
Total phosphorus	43.63	51.56	М
Total Kjeldahl nitrogen	52.87	50.77	М
Secchi depth (m)	40.05	47.00	м
Ψ			

* O=oligotrophic, M=mesotrophic;

B. <u>Bacteria</u>

No historical water column bacteria data for Lake Weir have been located to date. Thus, no comparisons between current and past bacteria data are possible.

C. Phytoplankton

A species list for the current sampling period is not available at this time. Messer (1975) collected monthly samples at a midlake station in Lake Weir during 1974-1975. The dominant algal species at that time were the cyanophytes <u>Chroococcus rufescens</u>, <u>Lyngbya diqueti</u>, <u>L. contorta</u>, <u>L.</u> <u>putealis</u>, and <u>Microcystis aeruginosa</u>, and the dinoflagellate <u>Glenodinium quadriens</u> (Table 4-28). There was little relationship between chlorophyll <u>a</u> levels and phytoplankton cell densities (Figure 4-41).

D. <u>Macrophytes</u>

Macrophytes were identified during four surveys conducted on Lake Weir (Messer 1975, Garren 1982, FGFWFC 1985 and 1986). Seventeen species were encountered in 1975, nine in 1982, 15 in 1985, and 17 in 1986. The change in number of species recorded in 1982 (9 species) compared to the other years (15-17 species) is probably the result of less complete sampling and identification during 1982 (Table 4-29). Compared to 14 Florida lakes studied by Garren (1982), the macrophyte community of Lake Weir is similar to that of other neutral pH lakes.

While no detailed survey of macrophyte species has been undertaken at Lake Weir during this study, we have noted the presence of most of the listed species. The emergent plants,

Date	Station •	Mean No. Cells/mL	Dominant Species ¤	Chlorophyll <u>a</u> Concentration =
6-20-74	3 6 7	8,022 9,541 6,573	L L	
7-2-74	3 6 7	5,175 3,680 11,563		5.57 8.25 3.71
7-26-74	3	8,518	L,C	5.40
8-15-74	3 6 7	8,265 3,174 8,268	L,C L,C L,C	1.61
8-29-74	3	8,364	L,C	5.92
	7	3,048	L,C	1.14
9-12-74	3	6,187	L,C,L',L"	4.33
	7	4,710	C,L	2.57
9-30-74	3	8,223	L,C	4.77
	6	4,562	L,C	4.06
	7	3,834	L,C	3.92
10-9-74	उ	11,088	L,C	4.57
	6	9,452	L,M,C	1.51
	7	4,494	L,C	2.03
10-23-74	3	10,169	L,C,M	4.65
	7	5,203	L,S,C,M	3.66
11-21-74	3	7,843	L,C	4.33
	6	5,458	L,C,M	3.55
	7	5,063	L,C,D	3.54
12-27-74	3 6 7	6,320 3,625 5,422	M,L M,L,G C,G,L	27.26

Table 4-28. Historical phytoplankton abundance and chlorophyll <u>a</u> data for Lake Weir, Florida.*
Table 4-28. Continued

Date	Station 🖷	Mean No. Cells/mL	Dominant Species Þ	Chlorophyll <u>a</u> Concentration ~
			anter which shade stars again and there have	
1-19-75	3	8,809	M,L,G,C	7.56
	6	6,650	M, G, L	5.49
	7	2,184	M, L, G, Q	12.76
3-20-75	3	10,946	M.G.L	22.54
	6	8,855	M,G,L	17.57
	7	3,427	M,G	11.31

*From: Messer 1975. • Station numbers were reassigned here to coincide with current monitoring stations. • C = <u>Chroococcus rufescens</u>, D = Pennate Diatom, G = Coccoid Green Alga, L = <u>Lyngbya diqueti</u>, L' = <u>L. contorta</u>, L" = <u>L</u>. <u>putealis</u>, M = <u>Microcystis aeruginosa</u>, Q = <u>Glenodinium</u> <u>quadriens</u>, S = <u>Synedra ulna</u>. • ug/l. Samples are from water column composites at 0, 1, 3, and 5 m (7 m included for station 3).

No. Cells/mL/1000 + Chia (ug/L)

Figure 4-41. Seasonal fluctuations in phytoplankton cell densities and chlorophyll <u>a</u> levels at stations 3, 6 and 7 in Lake Weir, Florida (From: Messer 1975).

Figure 4-41. Continued.

		SURVEY	YEAR*		
	1974	1982	1985	1986	
EMERGENT SPECIES					
<u>Panicum hemitomon</u>	x				
<u>Panicum sp</u> .		¥	X	X	
<u>Cladium jamaicensis</u>	X	~	x	x	
<u>Fuirena scirpoidea</u>	X				
<u>Juncus effusus</u>	X	, v			
Saururus cernus	v	X			
<u>Scirpus</u> <u>sp</u> . Fleocharis elonoata	Ŷ	¥	¥	¥	
Peltandra virginica	x	~	<u>^</u>	~	
Pontederia lanceolata	X		х	х	
<u>Sagittaria</u> <u>lancifolia</u>	x	x	X	x	
<u>Typha latifolia</u>	X				
<u>Typha</u> sp.			X	X	
SUBMERGENT SPECIES					
Hydrilla verticillata	x		x		
Ludwigia sp.	x				
Potamogeton illinoensis	х	х	х	Х	
<u>Utrícularia</u> <u>floridana</u>	x				
<u>Utricularia</u> <u>sp</u> .		X	X	X	
<u>Eleocharis baldwinii</u>		v	v	X	
Vallieperia americana		^	Ŷ	X	
Najas ouadalupensis			x		
Sagittaria subulata			X	x	
Nitella sp.			Х	. <u>X</u>	
<u>Chara</u> sp.			X	X	
FLOATING-LEAVED SPECIES					
Nymphoides aquaticum	x	x			
<u>Nuphar luteum</u>		Х	Х	Х	
Nymphaea <u>odorata</u>	х		Х	X	
FLOATING SPECIES					
<u>Eichhornia</u> crassipes	x				

Table 4-29. Macrophyte composite species list from various studies of Lake Weir.

* Messer (1975); Garren (1982); FGFWFC (1985); FGFWFC (1986).

e.g. <u>Panicum sp.</u>, <u>Juncus sp.</u>, <u>Cladium sp.</u>, <u>Peltandra sp.</u>, <u>Pontederia sp.</u> and <u>Typha sp.</u>, dominate the narrow littoral zone and the channel connecting Sunset Harbor with Little Lake Weir. Submergent plants have been found in conjunction with the emergents and are apparent in the canal, as well as in areas of Sunset Harbor. Water lilies (<u>Nymphaea odorata</u>, <u>Nuphar</u> <u>luteum</u> and <u>Nymphoides aquaticum</u>) have colonized the shoreline in patches, most significantly near Bird Island, in the canal to Little Lake Weir and in various areas of Lake Weir itself. Water hyacinth (<u>Eichhornia crassipes</u>) has infested protected waters connected to the Sunset Harbor-Little Lake Weir canal.

CONCLUSIONS

With the completion of a full year of monitoring, we can now make comparisons between current and historical conditions in Lake Weir. Water quality in the main lake has not changed significantly over the last 20 years, based on nutrient concentrations, chlorophyll <u>a</u> and Secchi depth. While trophic state indices calculated from these parameters have increased slightly, Lake Weir is still classified as mesotrophic. The macrophyte community appears to be stable in both extent and species composition, and is typical of moderately productive Florida lakes. Zooplankton biomass in Lake Weir is low compared to other mesotrophic lakes in the state, but only minor changes in community structure have occurred since 1979. Specifically, scuticociliate protozoans and rotifers have markedly increased in abundance indicating a shift toward greater lake productivity. So few phytoplankton or benthic macroinvertebrate data are available from past studies that no real comparisons are possible for these parameters.

Overall, Lake Weir appears to be a typical mesotrophic Florida lake that is responding as expected to increased human use and watershed development. Further work on the paleolimnological samples will shed new light on the changes in nutrient input from the watershed. This will provide a more complete picture of what has already occurred in the lake, and allow predictions of changes to come.

CHAPTER FIVE: PALEOLIMNOLOGY OF LAKE WEIR

This project employs paleolimnology, the reconstruction of past water quality from lake sediment cores. By correlating historical trends in water quality to concomitant development within the watershed, we may be able to pinpoint the activities which have contributed most heavily to observed changes in water clarity. With such insight, we could determine whether restoration efforts would even be appropriate, and what the most effective management strategies would be.

Other paleolimnological work has been conducted at Lake Weir, chiefly by Thompson (1981), Flannery (1982) and Deevey et al (1986). Additional unpublished data exist in Deevey's laboratory. In addition to estimating accumulation rates of organic and inorganic sediment, chlorophyll <u>a</u>, nutrients and metals, these studies also examined diatom and pollen stratigraphies. The current investigation examines stratigraphic changes in water, organic, and inorganic content of sediment, phosphorus concentrations, ratios of various photosynthetic pigments, and subfossil remains of chydorids, chironomids, and select green algae. Core intervals will be dated by measuring lead-210 isotopic decay with the hope that annual accumulation rates of each of the above parameters can be estimated.

Core Collection

Sediment cores for paleolimnological analyses were collected from six sites in Lake Weir, Sunset Harbor and Little Lake Weir in 1987 and 1988 (Figure 5-1, Table 5-1). Cores were collected using a modified Livingstone piston coring apparatus equipped with 4.1 cm ID cellulose buterate tubes. Appropriate caution was exercised to ensure preservation of the sedimentwater interface. Visual observations of the cores were made in the field and again during sectioning in the lab in order to detect changes in sediment color or texture which might provide insight on the depositional environment.

Each core was sectioned into 0.5 cm intervals to a depth of 30 cm, and into 1.0 cm intervals below that. The upper intervals contained roughly 6 cc while the lower intervals had over 12 cc of sediment. Because the amount of sediment was limited, small portions of alternating intervals were allotted for each analysis in order to conserve material for lead-210 dating. Each core was carefully mapped out for this purpose (Table 5-2).

Physical Sediment Parameters

In order to measure the accumulation rates of nutrients, pigments, or subfossil remains, it is necessary to factor out changing sedimentation rates. This is accomplished by coupling lead-210 isotopic dating with Loss-On-Ignition (LOI) data. LOI procedures, used here to quantify water, organic and inorganic content of the sediment, will be performed on all six cores.

Figure 5-1. Map of Lake Weir, Florida showing six core sites.

	مه المالية			
Core	location	Date	Number of Cores	lenoths(cm)
Е	East Lake Weir	26 Feb 87	1	109
С	Center Lake Weir	26 Feb 87	1	120
N	North Lake Weir	14 Dec 87	2	111, 162
S	South Lake Weir	14 Dec 87	1	119
н	Sunset Harbor	14 Dec 87	2	110, 117
L	Little Lake Weir	6 Mar 88	2	132, 124

Table 5-1. Sediment core collection data for Lake Weir, FL.

Table 5-2. Outline of paleolimnological analyses to be run on the sediment core from north Lake Weir. Analyses were run on alternating intervals to conserve sediment.

۰.

0.

Top of Interval (cm)	Water & Organics (cc)	Fossils (cc)	Phosphate (cc)	Pigments (cc)	Lead-210 Dating (cc)	Sedimen Remaini (cc)
0.0					Тор	
0.5					interval	6
3.0		1.0			taken from	n 5
1.5			1.0		backup	5
2.0	1.0				core	5
2.5				5.0		1
3.0		1.0		5.0		Ŏ
3.5			1.0			5
4.0	1.0					5
4.5					•	6
5.0		1.0				5
5.5			1.0			5
5.0	1.0			5.0		0
65	2			5.0		1
7.0		1.0		0.0		Ē,
75			1.0			5
80	1 0					5
0.0 0 5	1.0					5
0.0		1.0				5
7.0		1.0	1.0	5.0		J Ó
7.0	1.0		1.0	J.U 5 0		0
10.0	1.0			5.0	ΕÓ	0
10.5					5.0	1
11.0		1.0			5.0	0
11.5			1.0		5.0	U O
12.0	1.0				5.0	0
12.0					5.0	1
13.0		1.0			5.0	0
13.5			1.0		5.0	0
14.0	1.0				5.0	0
14.5				5.0		1
15.0		1.0		5.0		0
15.5			1.0			5
16.0	1.0					5
16.5						6
17.0		1.0				5
17.5			1.0			5
18.0	1.0			5.0		Ō
18.5				5.0		1
19.0		1.0				5
19.5			1.0			5
20.0	1.0					5
20.5						6
21.0		1.0				5
21.5			1.0	5.0		Ō
22.0	1.0			5.0		Q
22.5					5.0	1
23.0		1.0			5.0	0
23.5			1.0		5.0	Ō
24.0	2.0				4.0	Ō
24.5					6.0	Ó
25.0		1.0			5.0	Ō
25.5			1.0		5.0	Ō

Top of Interval (cm)	Water & Organics (cc)	Fossils (cc)	Phosphate (cc)	Pigments (cc)	Lead-210 Dating (cc)	Sedimen Remaini (cc)
26.0 26.5 27.0 27.5 28.0 28.5	1.0	1.0	1.0	5.0 5.0	5.0	0 1 0 5 5 6
29.5			1.0			5
30 31 32	1.0	1.0	1.0	10.0		11 1 11
33 34 35 36 37 38	1.0	1.0	1.0		10.0 10.0	12 12 11 11 11 2
39 40 41 42 43	1.0	1.0	1.0	10.0	10.0 10.0	2 1 1 11 12
44 45 46 47 48	1.0	1.0	1.0			12 11 11 11 12
49 50 51 52 53	2.0	1.0	1.0	10.0		12 10 1 11 12
54 55 56 57 58	1.0	1.0	1.0		10.0 10.0	12 11 11 1 2
60 61 62 63	1.0	1.0	1.0	10.0	10.0 10.0	2 1 1 11 12
64 65 66 67 68	1.0	1.0	1.0			12 11 11 11 12
69 70 71 72	1.0	1.0	1.0	10.0	10.0	12 11 1

Table 5-2. (Continued).

٠.

4.

Table 5-2. (Continued).

Top of Interval (cm)	Water & Organics (cc)	Fossils (cc)	Phosphate (cc)	Pigments (cc)	Lead-210 Dating (cc)	Sedimen Remaini (cc)
73					10.0	2
74					10.0	2
75	1.0				10.0	1
76		1.0				11
77			1.0			11
78						12
79						12
80	1.0					11
81		1.0		10.0		1
82			1.0			11
83						12
84				•		12
85	1.0				10.0	1
86	1.0	1.0			10.0	0
87			1.0		10.0	· 1
88	1.0				10.0	1
89						12
90	1.0					11
91		1.0		10.0		1
92	1.0		1.0		10.0	0
93					10.0	2
94	1.0				10.0	1
95	1.0				10.0	1
96		1.0				11
97	1.0		1.0			10
7 8						12
99						12
100	2.0					10
101		1.0		10.0		1
102	1.0		1.0		10.0	Ō
103					10.0	2
104	1.0				10.0	1
105	1.0				10.0	1
106	1.0	1.0				10
107			1.0			11
108	1.0					11
109						12
110	1.0					11

The following discussion deals with the North Core; the others are currently in progress.

Thirty-one samples consisting of 1.0 cc of sediment were removed at 2 cm intervals down to a core depth of 30 cm, and at 5 cm intervals below that. Thirty additional samples were run from alternating intervals throughout the core for LOI and subsequent total phosphorus analysis. Nine additional samples were run at lower intervals to further delineate two inorganic peaks. In all, 70 samples were included in the core's physical profile.

Samples were placed in small porcelain crucibles of known dry weight, and wet weight was measured using a Mettler analytical balance. Water loss was measured after drying the samples at 100°C for 24 hours. The inorganic and organic fractions were determined by weight loss on ignition at 550°C for one hour. Samples were allowed to cool to room temperature in a dessicator before weighing. Replicate samples were run on three select levels, and several samples were reweighed in each step to ensure precision.

While much of the core showed little variation in sediment water, inorganic and organic content, several distinct periods of change were evident (Figure 5-2). These transitional periods may correspond to dates of known watershed disturbances. Lead-210 dating will be necessary to establish this, but for now we may guess the dates of these episodes by assuming the sedimentation rate of 0.5 cm per year. This was

Figure 5-2. Lake Weir sediment water and organic content, determined by Loss-On-Ignition at 100° C for 24 hours and 550° C for 1 hour.

the sedimentation rate determined by lead-210 dating of a Lake Weir core used for a chemistry profile (Deevey unpublished).

Above approximately 15 cm (1958?) there was a 3% increase in water content to 97%. Organic content steadily increased from 54% at 18 cm (1950?) to 65% at 1.5 cm (1985?). This increase in organic sedimentation seems to coincide with the period of greatest population growth within the watershed (Figure 2-8).

Organic fraction was slightly elevated between 42 and 28 cm. Otherwise, water and organic concentrations remained fairly constant down to 88 cm. Below 88 cm these parameters exhibited a higher degree of variation, with two inorganic spikes at 90 and 100 cm. A high degree of clastic material at these levels was confirmed by visual observations of the core.

These intervals may have corresponded to episodes of increased erosion within the watershed, such as periods of deforestation, citrus planting, or railroad building. Because it becomes increasingly more difficult to predict the age of events at lower core levels, lead-210 dating will be necessary to establish any correlation to watershed activity.

The organic fraction was slightly higher below 100 cm. This probably represents the presence of root material from aquatic macrophytes which may have covered the lake bottom during this presumably oligotrophic period. Fibrous plant material was observed in lower intervals of cores S, H, and L (Figure 5-1).

It is important to note that the above observations reflect only the concentrations of water and organic matter, and that the rates of accumulation can be determined only after lead-210 dating has been completed. That is, periods of lower organic concentrations may represent either decreased system productivity or erosional episodes within the watershed.

Phosphorus Levels

Determination of total phosphorus for the core intervals was determined using Anderson's (1976) ignition method. Inorganic residue from the LOI analysis was washed into a 200 ml beaker using 25 ml of 1N HCl and boiled for 15 minutes on a hot plate. Each sample was diluted to exactly 100 ml, and orthophosphate was measured by the perchloric acid method (A.P.H.A. 1971).

This analysis is currently being run on all six cores, and results will be included in the next report. Phosphorus concentrations will be converted to accumulation rates after lead-210 dating has been completed.

Subfossil Assemblages

For subfossil analyses, 1.0 cc of sediment was extracted from the specified core intervals (Table 5-2). This sediment was boiled gently in 30-40 ml of 10% KOH for 30 minutes, while agitating the clumps of material with a glass stirring rod. The sample was then diluted to over 100 ml with distilled water and poured through a 40 um sieve. Water was flushed through

the mesh for nearly a minute. The residue was rinsed with tertiary butyl alcohol (TBA) then was carefully concentrated and backwashed with TBA into a small beaker, and final volume was measured (generally 3-4 ml).

Glass microscope slides were placed on a warm hotplate and a drop of silicon oil (Dow-Corning 200 fluid) was added. A 100 um Eppendorf pipette with a wide aperture disposable tip was used to extract a random sample from the TBA slurry. This was slowly added to the silicon oil, drop by drop as the TBA volatilized. Generally two aliquots (0.2 ml) were added to the slide, but occasionally one was sufficient to achieve the desired density. Dilution factor (percent of total sample) was recorded on the slide to allow quantification of results. Slides were removed from the hotplate, allowed to cool, and coverslips were added. After several hours, clear fingernail polish was used to seal the coverslip.

In order for the sample to yield a statistically significant taxonomic composition, generally at least 100 recognizable fragments are necessary. Often two or three slides from an interval are necessary to produce enough cladoceran remains. When remains are far too scarce for a good distribution of species (as in some of the lower core intervals), it was occasionally necessary to sieve the sample through 80 um mesh to concentrate the larger species for semiquantitative analysis. The 40 um fraction was always retained for future reference.

Chironomid head capsules were picked from the entire remaining sample on a counting wheel under a dissecting scope with an Eppendorf pipette. When necessary the sample was filtered through 80 um mesh as above. Midges were mounted and identified on glass microscope slides. Midges found on the chydorid slides were also identified and counted.

Slide preparation and species counts are currently underway. Preliminary findings show a scarcity of cladocerans and chironomids below 55 cm, suggesting that Lake Weir was historically an oligotrophic system. Two head capsules of <u>Tanytarsus</u>, a midge indicative of oligotrophy, were spotted at 71 cm depth during preliminary analyses. Virtually no planktonic cladocerans were present, thus providing further evidence of the low system productivity.

At 51 cm, the number of chydorids and chironomids increases sharply, showing a mixture of oligotrophic and eutrophic species. <u>Rhynchatalona</u>, an oligotrophic species (Crisman 1980), is the dominant chydorid. Yet several species associated with higher productivity such as <u>Chironomus sp.</u>, <u>Leydiqia acanthercercoides</u>, <u>Alona affinis</u>, and <u>Chydorus</u> <u>sphaericus</u> start to appear. There were many <u>Bosmina</u> remains, yet no <u>Daphnia</u>.

The dominant algae, <u>Botryococcus</u> (a colonial green) is far more abundant at 51 cm than in the lower intervals. Both <u>Peridinium</u>, a dinoflagellate associated with oligotrophic conditions and <u>Pediastrum boryanum</u>, which is associated with

hard water mesotrophic to eutrophic systems (Crisman 1978), are found in abundance at 51 cm.

Hence, it appears that 51 cm marks a period of transition from lower to higher trophic conditions. Further analysis of the upper core intervals will be necessary to delineate shifts in the benthic invertebrate and algal community structures which may be indicative of changing productivity.

Subfossil analyses will be performed only on the North Core. Select intervals from other cores may be examined to elucidate specific transitional episodes. Paleoecological data and interpretations will be presented in the final project report.

Photosynthetic Pigments

Another measure of trophic state is the rate of accumulation of photosynthetic pigments such as chlorophyll <u>a</u> and carotenoids. Chlorophyll <u>a</u> can be estimated by the presence of pheopigments, its degradation products. Also, the relative proportion of chlorophyll derivatives to total carotenoids can identify the dominant algal groups. Because blue-green algae often become more dominant with increasing productivity, this can provide information about a system's trophic state.

Pigments were extracted from 10 g sediment (wet weight) by shaking and centrifuging in 20 ml measures of 90% acetone four consecutive times. The combined extract was brought up to 100 ml with 90% acetone. This 100 ml sample was divided into three

aliquots: 10 ml for chlorophyll derivatives, 20 ml for total carotenoids, and 70 ml for blue-green algal pigments.

Chlorophyll derivatives were measured by absorbance at 665 nm and recorded in standard chlorophyll units (Vallentyne 1955). Absorbance at 665 nm was measured again after acidification of the sample to determine the proportion of native chlorophyll, that which has not been degraded.

Total carotenoids were extracted from the 20 ml aliquot in the same procedure described by Swain (1985). Absorbance of the resulting solution was measured at 448 nm.

Absolute determination of the blue-green algal pigments oscillaxanthin and myxoxanthophyll involves lengthy and detailed chromatographic analyses, but useful results can be obtained quickly from the trichromatic method used by Swain (1985). In this procedure, 40 ml petroleum ether is added to the 70 ml aliquot in a separatory funnel and is swirled. The highly polar pigments remain in the acetone-water hypophase (Swain 1985), which is removed and dried. The pigments are redissolved in ethanol to a known volume of 5 or 10 ml, and absorbance is measured at 412, 504, and 529 nm. The concentration of each pigment and of the contaminating phorbin can then be calculated by Swain's (1985) equations.

Pigment analyses will be run only on the North Core, as historical algal composition should reflect all of Lake Weir proper. Analyses are currently underway, and results will be published in the final project report.

Lead-210 Isotopic Dating

Lead-210 concentrations will be measured on the department's new low-energy, high-purity Germanium gamma-ray spectroscope. This unit allows direct determination of supported and unsupported lead-210 in lake-bottom sediments (Nagy 1988). The samples have had to wait several months while the system has been calibrated.

Nine horizons of the core were selected for lead-210 dating. These intervals immediately followed episodes marked by changes in the core's physical parameters (Figure 5-2). After sediment samples had been extracted for the other four paleolimnological analyses (Table 5-2), all of the remaining sediment from the selected intervals was used for lead-210 dating. The uppermost sediment sample (0-4 cm) was taken from the backup core from North Lake Weir.

Each of the nine horizons spanned 4.0 cm of the core and was equally represented by its component intervals, so as not to bias the age determination. Each sample was comprised of 40 to 50 cc of sediment (wet volume).

After weighing the wet samples, they were dried at 100°C for 24 hours, broken apart, and dried for 24 additional hours. The dried sediment was carefully hammered then pulverized by mortar and pestle, then weighed. Most of the lower samples contained 2-4 g of dried material, but the top two intervals contained less than 1.0 g and may require additional days to count.

Table sugar was ground with mortar and pestle until it no longer shined, and was mixed with the sediment samples. The small plastic petri dishes were filled with the sediment and sugar mixture and sealed with Duco glue. A blank containing only ground sugar was treated similarly.

Historical sedimentation rates will be determined for the North Core by lead-210 dating techniques. Specific intervals in other cores can be dated by stratigraphic correlation to the dated North Core. This can be accomplished by comparing physical sediment profiles and subfossil transition zones.

Core samples were prepared on 2 September 1988 and were sealed for two weeks to allow equilibration of radon gas. Radiometric counting has begun, and will require two days per sample. Results will be reported in the final project report.

Summary of Paleolimnological Investigation

Sediment core samples from six sites in the Lake Weir system were collected for paleolimnological analyses. Historical trends in trophic state and water quality will be reconstructed by physical, chemical and biological parameters of the sediment. These parameters include water content, organic and inorganic fractions, phosphorus, photosynthetic pigments, and subfossil composition.

Physical sediment parameters and phosphorus levels will be run for all six cores. In addition, pigment and subfossil stratigraphy will be delineated on the North Core. Intervals of major ecologic shifts may be cross-examined in other cores.

Lead-210 isotopic dating of the sediment will pinpoint the timing of major changes in the lake and will quantify sedimentation rates over time. Thereby, accumulation rates of phosphorus, pigments and subfossils can be estimated from their concentrations in the sediment.

These accumulation rates should be indicative of trophic state, and hence nutrient loading to the lake. Correlation of trophic conditions within a given core interval to contemporary land use practices may provide insight into the relative impacts of these practices.

BIBLIOGRAPHY

- Anderson, G. and W. Faulkner. 1973. Water resources of Marion County, Florida. FL. Bur. of Geol. Map Ser. No. 55 (Map).
- APHA. 1980. Standard Methods for the Examination of Water and Wastewater. 15th ed. Washington, D.C.
- Baker, L.A., P.L. Brezonik, and C.R. Kratzer. 1981. Nutrient loading-trophic state relationships in Florida lakes. FL. Wat. Res. Res. Cen. Pub. 56. University of Florida, Gainesville, FL.
- Bays, J.S. 1983. Zooplankton and trophic state relationships in Florida lakes. M.S. Thesis. University of Florida, Gainesville, FL.
- Bays, J.S. and T.L. Crisman. 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. Aquat. Sci. 40:1813-1819.
- Beaver, J.R. 1980. The distribution of planktonic ciliated protozoans in 30 Florida lakes of varying trophic state. M.S. Thesis. University of Florida, Gainesville, FL.
- Beaver, J.R. and T.L. Crisman. 1981. Acid precipitation and the response of ciliated protozoans in Florida lakes. Verh. Int. Verein. Limnol. 21:353-358.
- Beaver, J.R. and T.L. Crisman. 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Dceanogr. 27:246-253.
- Beaver, J.R. and T.L. Crisman. 1988a. Analysis of the community structure of planktonic ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia: in press.
- Beaver, J.R. and T.L. Crisman. 1988b. Seasonality of planktonic ciliated protozoa in 20 subtropical Florida lakes of varying trophic state. Hydrobiologia: in press.
- Beaver, J.R., T.L. Crisman, and J.S. Bays. 1981. Thermal regimes of Florida lakes: a comparison with biotic and climatic transitions. Hydrobiologia 83:267-273.
- Beaver, J.R., T.L. Crisman, and R.W. Bienert. 1988. Distribution of planktonic ciliates in highly coloured subtropical lakes: comparison with clearwater ciliate communities and the contribution of myxotrophic taxa to total autotrophic biomass. Freshwat. Biol. 20:51-60.

- Belanger, T.V., D.F. Mikutel, and P.A. Churchill. 1985. Groundwater seepage nutrient loading in a Florida lake. Water Res. 19:773-781.
- Biggar, J. and R. Corey. 1969. Agricultural drainage and eutrophication. Pp. 405-445. <u>In</u> G. Rohlich [ed], Eutrophication: Causes, Consequences, Correctives. N.A.S.: Washington, D.C.
- Binford, M.W. and M. Brenner. 1986. Dilution of ²¹°Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions. Limnol. Oceanogr. 31:584-595.
- Binford, M.W., E.S. Deevey, and T.L. Crisman. 1983. Paleolimnology: an historical perspective on lacustrine ecosystems. Ann. Rev. Ecol. Syst. 14:255-286.
- Bitton, G.B., T.L. Crisman, S.R. Farrah, and J. Bossart. 1982. <u>Aeromonas hydrophila</u> as an indicator of trophic state of Florida lakes. Final Report to the Engineering and Industrial Experimental Station, University of Florida, Gainesville, FL.
- Blancher, E.C. 1984. Zooplankton-trophic state relationships in some North and Central Florida lakes. Hydrobiologia 109:251-263.
- Brezonik, P.L. 1969. Eutrophication: the process and its modeling potential. Pp. 68-110. <u>In</u> Modeling the Eutrophication Process. Workshop proceedings, University of Florida Dept. of Env. Engr. and Federal Water Quality Admin., U.S. Dept. of Interior.
- Brezonik, P.L. 1972. Nitrogen: sources and transformations. pp. 1-50. <u>In</u> H.E. Allen and J.R. Kramer [eds], Nutrients in Natural Waters. John Wiley and Sons, New York.
- Brezonik, P.L. and J.J. Messer. 1975. Analysis of trophic conditions and eutrophication factors in Lake Weir, Florida. <u>In</u> D.E.C.C.- North American Eutrophication Study. EPA Ecological Res. Ser.
- Brezonik, P.L. and R.L. Shannon. 1971. Trophic state of lakes in N. Central Florida. Water Resources Research Center, #13. Gainesville, FL.
- Brezonik, P.L., T.L. Crisman, and R.L. Schulze. 1984. Planktonic communities in Florida softwater lakes of varying pH. Can. J. Fish. Aquat. Sci. 41:46-56.

- Brezonik, P.L., W.H. Morgan, E.E. Shannon, and H.D. Putnam. 1969. Eutrophication factors in North Central Florida lakes. Florida Engineering and Industrial Research Station, Gainesville, FL.
- Brigham, A.R., W.U. Brigham, and A. Grilka, eds. 1982. Aquatic Insects and Oligochaetes and North and South Carolina. Midwest Aquatic Enterprises. Mahomet, IL. 837 pp.
- Brooks, J.L. 1969. Eutrophication and changes in the composition of zooplankton. Pp. 236-255. <u>In</u> G.A. Rohlich [ed], Eutrophication: Causes, Consequences, Correctives. N.A.S., Washington, D.C.
- Brylinsky, M. and K.H. Mann. 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr. 18:1-14.
- Canfield, D.E. Jr. 1981. Chemical and trophic state characteristics of Florida lakes in relation to regional geology. Final report to the Cooperative Fish and Wild-life Unit, University of Florida, Gainesville, FL. 444 pp.
- Canfield, D.E. Jr. 1983. Prediction of chlorophyll <u>a</u> concentrations in Florida lakes: the importance of phosphorus and nitrogen. Water Res. Bull. 19:255-262.
- Canfield, D.E. Jr. and C.E. Watkins, II. 1984. Relationships between zooplankton abundance and chlorophyll <u>a</u> concentrations in Florida lakes. Journal of Freshwater Ecology 2:335-344.
- Canfield, D.E. Jr., J.V. Shireman, et al. 1984. Prediction of chlorophyll <u>a</u> concentrations in Florida lakes: the importance of aquatic macrophytes. Can. J. Fish. Aquat. Sci. 41:497-501.
- Canfield, D.E. Jr., K.A. Langeland, et al. 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci. 40:1713-1718.
- Carlander, K.D. 1977. Handbook of Freshwater Fishery Biology. Volume 2. Iowa State University Press, Ames, IA.
- Carlson, R.E. 1977. A trophic state index for lakes. Limnol. Ocean. 22:361-369.
- Chestnut, T.L. and E.H. Barman, Jr. 1974. Aquatic vascular plants of Lake Apopka, Florida. Fl. Sci. 37:60-64.
- Cook, D.G., and M.G. Johynson. 1974. Benthic macroinvertebrates of the St. Lawrence Great Lakes. J. Fish. Res. Bd. Canada. 31:763-782.

- Cowell, B.C. and D.S. Vodopich. 1981. Distribution and seasonal abundance of benthic macroinvertebrates in a subtropical Florida lake. Hydrobiologia. 78:97-105.
- Crisman, T.L. 1978. Reconstruction of past lacustrine environments based on the remains of aquatic invertebrates. Pp. 69-101. <u>In</u> D. Walker and J.C. Guppy [eds], Biology and Quaternary Environments. Canberra, Aust. Acad. Sci.
- Crisman, T.L. 1980. Chydorid cladoceran assemblages from subtropical Florida. Pp. 657-668. <u>In</u> W.C. Kerfoot [ed], Evolution and Ecology of Zooplankton Communities, University Press of New England, Hanover, N.H.
- Crisman, T.L. 1981. Algal control through trophic-level interactions: a subtropical perspective. Pp. 131-145. <u>In</u> Proceedings of a workshop on algal management and control. Tech. Rpt. E-81-7, U.S. E.P.A.
- Crisman, T.L. 1986a. Eutrophication control with an emphasis on macrophytes and algae. Ecosystem Theory and Application. John Wiley and Sons, New York.
- Crisman, T.L. 1986b. Historical analysis of the cultural eutrophication of Lake Maxinkuckee, Indiana. Report submitted to the Lake Maxinkuckee Association.
- Crisman, T.L. 1986c. The use of subfossil benthic invertebrates in aquatic resource management. Presented at the Tenth ASTM Aquatic Toxicology and Hazard Assessment Symposium, New Drleans, LA, 4-6 May 1986.
- Crisman, T.L., J.A. Foran, J.R. Beaver, A.E. Keller, P.D. Sacco, R.W. Bienert, R.W. Ruble and J.S. Bays. 1986. Algal Control through trophic-level interactions: Investigations at Lakes Wauberg and Newnans, Florida. Report submitted to the Florida Department of Natural Resources.
- Crisman, T.L., J.R. Beaver, and J.S. Bays. 1981. Examination of the relative impact of microzooplankton and macrozooplankton on bacteria in Florida lakes. Verh. Internat. Verein. Limnol. 21:359-362.
- Crisman, T.L., P. Scheuerman, R.W. Bienert, J.R. Beaver, and J.S. Bays. 1984. A preliminary characterization of bacterioplankton seasonality in subtropical Florida lakes. Verh. Internat. Verein. Limnol. 22:620-626.
- Deevey, E.S. 1972. Biogeochemistry of lakes: major substances. Pp. 14-20. <u>In</u> G.E. Likens [ed], Nutrients and eutrophication. Limnol. Oceanogr. Spec. Symposia 1.

- Deevey, E.S. and G.B. Deevey. 1971. The American species of <u>Eubosmina</u> Seligo (Crustacea, Cladocera). Limnol. Oceanogr. 16:201-218.
- Deevey, E.S., M.W. Binford, M. Brenner and T.J. Whitmore. 1986. Sedimentary records of accelerated nutrient loading in Florida lakes. Hydrobiologia 143:49-53.
- Dumont, H.J., I. Vand deVelde and S. Dumont. 1975. The dry weight estimates of biomass in a selection of Cladocera, Copepods and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75-97.
- Edmiston, H.L. and V.B. Myers. 1983. Florida Lakes: A description of lakes, their processes, and means of protection. D.E.R., Tallahassee, FL.
- Edmondson, W.T. 1959. Freshwater Biology. 2nd ed. Wiley-Interscience. London.
- Elmore, J.L. 1983. Factors influencing <u>Diaptomus</u> distributions: an experimental study in subtropical Florida. Limnol. Oceanogr. 28:522-532.
- Elmore, J.L., B.C. Cowell, and D.S. Vodopich. 1984. Biological communities of three subtropical Florida lakes of different trophic character. Arch. Hydrobiol. 100:455-478.
- Elmore, J.L., D.S. Vodopich and J.J. Hoover. 1983. Selective predation by bluegill sunfish (<u>Lepomis macrochirus</u>) on three species of <u>Diaptomus</u> (Copepoda) from subtropical Florida. J. Freshwater Ecol. 2:183-192.
- Engstrom, D.R., E.B. Swain and J.C. Kingston. 1985. A palaeolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments and diatoms. Freshwater Biology. 15:261-288.
- Engstrom, D.R. and E.B. Swain. 1986. The chemistry of lake sediments in time and space. Hydrobiologia. 143:37-44.
- Fellows, C.R. and P.L. Brezonik. 1980. Seepage flow into Florida lakes. Water Res. Bull. 16:635-641.
- Flannery, M.S. 1984. Seasonal variations in water chemistry and zooplankton communities in four macrophyte infested central Florida lakes. M.S. thesis, University of Florida, Gainesville, FL.
- Flannery, M.S., R.D. Snodgrass and T.J. Whitmore. 1982. Deepwater sediments and trophic conditions in Florida lakes. Hydrobiologia 92:597-602.

- Florida Department of Environmental Regulation. Field monitoring of Lake Weir 1975-1980. Database printout.
- Florida Game and Fresh Water Fish Commission. 1968. Annual report for water quality study. Tallahassee, FL.
- Florida Game and Fresh Water Fish Commission. 1969. Annual report for water quality study. Tallahassee, FL.
- Florida Game and Fresh Water Fish Commission. 1973. Final completion report on water quality investigations. Tallahassee, FL.
- Florida Game and Fresh Water Fish Commission. 1985. Central Region. Fish management annual progress report. Ocala, FL.
- Florida Game and Fresh Water Fish Commission. 1986. Central Region. Fish management annual progress report.
- Florida Lakes, Part III. 1969. Gazetteer, Division of Water Resources and Board of Conservation, Tallahassee, FL.
- Foran, J.A. 1986a. A comparison of the life history features of a temperate and subtropical <u>Daphnia</u> species. Dikos 46:185-193.
- Foran, J.A. 1986b. The relationship between temperature, competition and the potential for colonization of a subtropical pond by <u>Daphnia magna</u>. Hydrobiologia. 134:103-112.
- Frey, D.G. 1969. The rationale of paleolimnology. Mitt. Intern. Verein. Limnol. 17:7.
- Fruh, E., K. Stewart, G.F. Lee, and G. Rohlich. 1966. Measurement of eutrophication and trends. Jour. Wat. Poll. Contr. Fed. 38:1237-1258.
- Fuller, A. and B.C. Cowell. 1985. Seasonal variation in benthic invertebrate recolonization of small-scale disturbances in a subtropical Florida lake. Hydrobiologia 124:211-221.
- Gannon, J.E. and R.S. Stemberger. 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Amer. Microsc. Soc. 97:16-35.
- Garren, R.A. 1982. Macrophyte species composition-trophic state relationships in fourteen north and north-central Florida lakes. M.S. thesis, University of Florida, Gainesville, FL.

- Gates, M.A., A. Rogerson and J. Berger. 1982. Dry to wet weight biomass conversion constant for <u>Tetrahymena</u> <u>elliotti</u> (Ciliophora, Protozoa). Oecologia 55:145-148.
- Gliwicz, Z.M. 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. Pol. 17(A):663-708.
- Hall, D.J., W.E. Cooper and E.E. Werner. 1970. An experimental approach to the productive dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15:839-928.
- Hasler, A.D. 1947. Eutrophication of lakes by domestic drainage. Ecology 28:383-395.
- Healy, H.G. 1972. Water levels in artesian and non-artesian aquifers in Florida. 1969-1970. USGS Information Circ. No. 73. Tallahassee, FL.
- Hobbie, J. E., R.J. Daley and S. Jasper. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225-1228.
- Hoffman, G.L. 1967. Parasites of North American Freshwater Fishes. University of California Press, Los Angeles.
- Hunt, B.P. 1953. The life history and economic importance of a burrowing mayfly, <u>Hexagenia limbata</u>, in southern Michigan lakes. Mich. Cons. Dept. Bull. Inst. Fish. Res. No. 4. 151 pp.
- Kahl, A. 1930-1935. Wimpertiere oder Ciliata (Infusoria), Tierwelt Deutschlands 26:18, 21, 25, 30, 886pp. Fischer.
- Keller, A.E. 1984. Fish communities in Florida lakes: relationship to physico-chemical parameters. M.S. Thesis. University of Florida, Gainesville, FL. 107 pp.
- Kenner, W.E. 1964. Maps showing depths of selected lakes in Florida. FL. Geol. Surv. Info. Circ. 40. Tallahassee, FL.
- Kratzer, C.R. and Brezonik, P.L. 1984. Application of nutrient loading models to the analysis of trophic conditions in Lake Okeechobee, Florida. Env. Management 8:109-120.
- Larkin, P.A. and T.L. Northcote. 1969. Fish as indices of eutrophication. <u>In</u>: G.A. Rohlich (ed.) Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington, DC.

Lean, D.R.S. 1973. Phosphorus dynamics in lake water. Science 179:567-680.

- Loehr, R.C. 1974. Characteristics and comparative magnitude of non-point sources. Jour. Wat. Poll. Contr. Fed. 46:1849-1872.
- Macek, K.J., K.S. Buxton, S.K. Derr, J.W. Dean, and S. Sauter. 1976. Chronic toxicity of Atraxine to selected aquatic invertebrates and fishes. EPA-600/3-76-047. U.S. EPA.
- Maeda, M. 1986. An illustrated guide to the species of the families Halteriidae and Strobilidiidae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Tokyo 21:1-67.
- Maeda, M. and P.G. Carey. 1985. An illustrated guide to the species of the family Strombididae (Oligotrichida, Ciliophora), free swimming protozoa common in the aquatic environment. Bull. Ocean Res. Inst. Tokyo 19:1-68.
- Maslin, P.E. 1969. Population dynamics and productivity of zooplankton in two sandhill lakes. Ph.D. dissertation. University of Florida, Gainesville, FL.
- McNaught, D.C. 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verh. Int. Ver. Limnol. 19:724-781.
- Merritt, R.W. and K.W. Cummins. 1984. An Introduction to the Aquatic Insects of North America. Kendall-Hunt Publ. Dubuque, IA. 722 pp.
- Messer, J.J. 1975. An analysis of nutrient loading and trophic conditions in Lake Weir, Florida. Ph.D. Dissertation, University of Florida, Gainesville, FL.
- Nagy, J.W. 1988. Simultaneous determination of supported and unsupported Pb-210 concentrations in lake-bottom sediments using low-energy, high purity Germanium gamma-ray spectroscopy. M.S. Thesis. University of Florida, Gainesville, FL. 51 pp.
- O'Brien, W.J. and F. de Noyelles, Jr. 1974. Relationship between nutrient concentration, phytoplankton density and zooplankton density in nutrient enriched experimental ponds. Hydrobiologia 44:105-125.
- O.E.C.D. 1971. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication.

- Osborne, J.A., M.P. Wanielista, and Y.A. Yousef. 1976. Benthic fauna species diversity in six central Florida lakes in summer. Hydrobiologia 48:125-129.
- Parrish, F.K. [ed]. 1968. Keys to water quality indicative organisms of the South Eastern United States. U.S. EPA Office of Research and Development. Environmental Monitoring and Support Laboratory. Cincinnati, OH.
- Pennak, R.W. 1978. Fresh Water Invertebrates of the United States. Ronald Press. New York, NY. 769 pp.
- Proc. Eutrophication Workshop Southeast, St. Petersburg, FL. 1969. University of Florida Water Resources Publication.
- Rohlich, G.A. [ed]. 1969. Eutrophication: Causes, Consequences, Correctives. National Academy of Sciences. Washington, D.C. 661 pp.
- Ruttner-Kolisko, A. 1974. Plankton rotifers, biology and taxonomy. Die Binnengewassen. 26(suppl):1-146.
- Saether, D.A. 1975. Neartic chironomids as indicators of lake typology. Verh. Internat. Verein. Limnol. 19:3127-3133.
- SAS. 1986. SAS User's Guide. SAS Institute, Inc. Cary, NC.
- Schneider, R.F. and Little, J.A. 1968. Characterization of bottom sediments and selected nitrogen and phosphorus sources in Lake Apopka, Florida. U.S. Dept. of Interior, Fed. Wat. Poll. Contr. Admin., Southeast Water Lab.
- Serruya, C. and Pollingher, U. 1983. Lakes of the Warm Belt. Cambridge University Press, London.
- Shackleford, T.M. 1883. Lake Weir, Florida. History and description. Reprinted in Southern Progress, Vol. 1&2, 1886-1887, pp 9-93.
- Shannon, E.E. 1970. Eutrophication-trophic state relationships in north and central Florida lakes. Ph D. Dissertation, University of Florida, Gainesville, FL. 257 pp.
- Shannon, E.E. and P.L. Brezonik. 1972a. Eutrophication analysis: a multivariate approach. Jour. San. Engr. Div., ASCE.
- Shannon, E.E. and P.L. Brezonik. 1972b. Limnological characteristics of north and central Florida lakes. Limnol. Oceanogr. 17:97-110.
- Shannon, E.E. and P.L. Brezonik. 1972c. Relationships between lake trophic state and nitrogen and phosphorus loading rates. Env. Sci. Tech. 6:719-725.

- Shapiro, J., J.B. Lundquist, and R.E. Carlson. 1975. Involving the public in limnology--an approach to communication. Verh. Internat. Verein. Limnol. 19:866-874.
- Shireman, J.L. and R.G. Martin. 1978. Seasonal and diurnal zooplankton investigations of a south-central Florida lake. Fla. Sci. 41:193-200.
- Sokal, R.R. and F.J. Rohlf. 1969. Biometry. W.H. Freeman. San Francisco, CA. 766 pp.
- St. Johns River Water Management District. Field monitoring of Lake Weir 1984-1987. Database printout.
- Swain, E.B. 1985. Measurement and interpretation of sedimentary pigments. Freshwater Biology. 15:53-75.
- United States Geological Survey. Field monitoring of Lake Weir 1956-1983. Database printout.
- USEPA. 1983. Methods for Chemical Analysis of Water and Wastes. EMSL, Cincinnati. EPA-600/4-79-020.
- Vodopich, D.A. 1980. The influence of sediment type and food availability on the distribution of <u>Procladius culiformis</u> (Linnaeus) (Diptera: Chironomidae) in a subtropical Florida lake. Ph.D. Dissertation, University of South Florida, Tampa, FL.
- Warwick, W.F. 1980. Chironomidae (Diptera) responses to 2800 years of cultural influence: a paleoecological study with special reference to sedimentation, eutrophication, and contamination process. Can. Ent. 112:1193-1238.
- Werner, E.E. 1977. Species packing and niche complimentarity in three sunfishes. Am. Naturalist 3:553-578.
- Westlake, D.F. 1965. Some basic data for the investigations of the productivity of aquatic macrophytes. Memorie 1st. Ital. Idrobiol. 18:229-248.
- Wiederholm. 1980. Use of benthos in lake monitoring. J.W.P.C.F. 52:337-347.
- Wood, K.G. 1973. Decline of Hexagenia (Ephemeroptera) nymphs in Western Lake Erie, pp. 26-32. IN: W.L. Peters and J.G. Peters (eds.). Proceedings of the First International Conference on Ephemeroptera. E.J. Brill, Leiden. The Netherlands. 312 pp.
- Zaret, T.M. 1980. Predation and freshwater communities. Yale University Press, New Haven, CT.

APPENDICES

- A: Monthly water chemistry data for February 1987-January 1988 at the seven sampling stations in Lake Weir, Florida.
- B: Monthly macroinvertebrate data for February 1987-January 1988 at the seven sampling stations in Lake Weir, Florida.
- C: Historical data for Station 3 in Lake Weir, Florida, from the USGS, SJRWMD, FDER, and several University of Florida theses.

APPENDIX A

Monthly water chemistry data for February 1987-January 1988 at the seven sampling stations in Lake Weir, Florida.
OBS	YEAR	MONTH	DAY	SECCHI	CHLA	COND	рн	TKN	NIT	TP	OP	TOTALK	STATION	RPH
1234567890123456789012345678901233333333333344444444455555555555555566666666	888888888888888888888888888888888888888	2356789012123567890121235678901212356789012123567890121235678901212356789012123567890121235678901	73865341069438653410694386534106943865341069438653410694386534106943865341069438653410694386534106943865341069	1.99067550412100032589572000813843160001640587400033260033320005011111111111111111111111111111	10000882002 5000006400854000024005990000280065990000240041500000240055200000400003 06	11111111111111111111111111111111111111	7.67.77.77.77.77.77.77.77.77.77.77.77.77	57600 · 5000000 · 00000000 · 000000000 · 00000000	11 11 11 14 12 10 12 15 11 11 11		12314 .1255 .29912 .0080 .0021032 .05 .8145285 .114133000. 905113111 1120 .00. 810143400 .0 .	0000005280000000240000000000000000000000	11111111111111110000000000000000000000	3.3263802-08 3.1187E-078 2.53187E-08 3.16228E-08 3.11318E-08 3.11318E-08 3.11318E-08 3.311318E-08 3.3131318E-08 3.31338E-08 3.31338E-08 3.31338E-08 3.31338E-08 3.331338E-08 3.331338E-08 3.331332888408 3.3162888208<

5A5

15:43 TUESDAY, FEBRUARY 16, 1988

1

233

~

		: • • •							
VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	SAS MAXIMUM VALUE	STD ERROR OF MEAN	15:43 TUES SUM	DAY, FEBRUARY 18 Variance	, 1988 3 C.V.
SECCHI CHLA COND PH TKN TP TOTALK	11 10 11 11 11 9 10 11	1.58727273 7.76700000 149.90909091 7.30909091 731.66666667 46.0500000 16.77272727	0. 22525945 2. 17237223 17. 86871313 0. 37009335 104. 04326023 20. 37216238 1. 36973786	1. 2000000 4. 2000000 120. 0000000 6. 3000000 585. 0000000 17. 0000000 14. 0000000	1. 9000000 11. 8200000 172. 0000000 7. 6000000 910. 0000000 65. 5000000 19. 0000000 19. 0000000	0.06791828 0.65696442 5.38761972 0.11158734 34.68108674 6.44224340 0.41299151	17, 4600000 77, 6700000 1649, 0000000 80, 4000000 6585, 000000 460, 5000000 184, 5000000	0.050742 4.719201 319.290909 0.136969 10825.000000 415.025000 1.876182	14, 192 27, 969 11, 920 5, 063 14, 220 44, 239 8, 166
SECCHI CHLA COND PH TKN TP TOTALK	11 11 10 9 7 11	1.61707071 7.08818182 151.00000000 7.28800000 743.88888889 38.3333333 16.43636364	0.24941750 1.79627848 17.82694590 0.38513490 75.48914565 18.43908891 1.66569669	1. 1800000 3. 1000000 120. 0000000 6. 2600000 605. 0000000 13. 0000000 13. 0000000	1. 72000000 9. 00000000 171. 0000000 7. 37000000 840. 00000000 58. 00000000 18. 0000000	0.07520221 0.54159834 5.37502643 0.12179035 25.16304855 6.14636297 0.50222645	17. 8100000 77. 9700000 1661. 0000000 72. 8800000 6695. 0000000 345. 0000000 180. 8000000	0.0622071 3.2266164 317.8000000 0.1483287 5678.611111 340.000000 2.7745455	15. 403 25. 342 11. 806 5. 285 10. 148 48. 102 10. 134
SECCHI CHLA COND PH TKN TP TOTALK	11 11 11 11 9 10 11	1. 54000000 6. 87181818 151.27272727 7. 27818182 760.00000000 50.60000000 16.9000000	0. 22458851 2. 69514311 17. 26320312 0. 32024422 70. 17834424 33. 17696657 1. 19247641	1. 1800000 2. 3000000 120. 0000000 6. 45000000 670. 0000000 15. 0000000 14. 0000000	1. 9000000 10. 2000000 172. 0000000 7. 5900000 900. 0000000 120. 0000000 120. 0000000	0.06771378 0.81261622 5.20505158 0.07655727 23.37278141 10.47147802 0.33754517	16. 940000 75. 590000 1664. 000000 80. 2800000 6840. 000000 566. 000000 185. 900000	0.0504400 7.2637964 298.0181818 0.102554 4925.0000000 1100.711111 1.4220000	14. 384 39, 220 11. 412 4. 388 9. 234 65. 367 7. 036
SECCHI CHLA COND PH TKN 3 TP C TOTALK		1. 55000000 7. 16454545 150. 63636364 7. 30181818 768. 88888889 43. 41818182 17. 03636364	0. 22297982 2. 13918379 18. 58640755 0. 36055008 134. 48461292 22. 45447920 1. 25081791	1. 20000000 3. 20000000 120. 00000000 6. 26000000 550. 00000000 15. 00000000 14. 00000000	1. 7000000 9. 8000000 172. 0000000 7. 5200000 950. 0000000 86. 0000000 19. 0000000	0.06723095 0.64498918 5.60401273 0.10870994 44.82820431 6.77028022 0.37713579	17. 0500000 78. 8100000 80. 3200000 6920. 0000000 477. 6000000 187. 4000000	0.049720 4.576107 345.454545 0.129976 18086.111111 504.203636 1.564545	14. 386 29. 858 12. 339 4. 938 17. 491 51. 717 7. 342
SECCHI CHLA COND PH TKN TP TOTALK	11 11 11 11 7 10 11	1.55090909 7.39636364 149.81818182 7.31090909 782.22222222 46.2000000 16.89090909	0. 21163433 2. 23253342 17. 18614664 0. 33723744 112. 89129481 21. 24879082 1. 26921594	1. 20000000 3. 70000000 120. 00000000 6. 35000000 600. 00000000 20. 00000000 14. 00000000	1. 70000000 10. 30000000 173. 00000000 7. 54000000 750. 00000000 72. 00000000 18. 0000000	0.06381015 0.67313415 5.18181818 0.10168091 37.63043160 6.71945765 0.38268300	17.060000 81.360000 1648.000000 80.4200000 7040.0000000 462.000000 185.8000000	0.044789 4.984205 295.363636 0.113729 12744.44444 451.511111 1.610909	13. 646 30. 184 11. 471 4. 613 14. 432 45. 993 7. 514
SECCHI CHLA COND PH TKN TP TOTALK	1 1 1 1 1 1 1 1 7 1 1 1 1	1. 57000000 7. 55272727 150. 63636364 7. 27434345 722. 22222222 45. 5727277 16. 78181818	0.35102706 2.51981781 17.61972036 0.31973000 207.47155093 35.97149124 1.40770606	1. 0000000 3. 5000000 120. 0000000 6. 4100000 230. 0000000 10. 3000000 13. 0000000	1, 93000000 12, 2000000 170, 00000000 7, 50000000 900, 00000000 140, 00000000 18, 50000000	0.10583864 0.75775366 5.31254558 0.09640222 69.15718364 10.84581269 0.42443935	17. 490000 83. 080000 1657. 0000000 80. 2400000 5500. 0000000 501. 3000000 186. 8000000	0, 123220 6, 349482 310, 454545 0, 102227 43044, 444444 1293, 948182 1, 981636	22. 077 33. 363 11. 697 4. 383 28. 727 78. 932 8. 289
SECCHI CHLA COND PH TKN TP TOTALK	11 11 11 11 9 10 11	1. 56181818 6. 23909091 144. 36363636 6. 56545455 837. 77777778 45. 5000000 5. 97272727	0.28706118 2.47934045 17.44289384 0.32268758 83.03279138 21.03152409 0.96962973	1. 2000000 2. 1000000 118. 0000000 5. 74000000 700. 00000000 20. 0000000 3. 5000000	2. 2000000 9. 4000000 172. 0000000 6. 84000000 950. 0000000 72. 0000000 7. 0000000 7. 0000000	0.08715522 0.74754927 5.25923037 0.09729397 27.67759713 6.65707644 0.29235436	17. 1800000 68. 6300000 1588.0000000 72. 2200000 7540.0000000 455.0000000 65.7000000	0.0835364 6.1471291 304.2345435 0.1041273 6894.444444 443.1666667 0.9401818	18, 508 39, 739 12, 083 4, 915 9, 911 46, 267 16, 234
i kan Janat Janat Janat Janat Janat Janat									

;						SAS		15:43 TUES	DAY, FEBRUARY 16, 1
•	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM	STD ERROR OF MEAN	SUM	VARIANCE
	YEAR DAY SECCHI CHLA COND PH TKN NIT TP OP TDTALK STATION	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	88.0000000 19.0000000 1.7000000 8.30142857 142.71428571 7.15714285 703.57142857 32.46666667 16.35714286 4.0000000	0.0000000 0.0000000 0.18138357 0.46092040 3.68394199 0.22253946 152.38969469 29.16030407 4.21024827 2.16024690	BB. 00000000 19. 00000000 1. 4200000 7. 4600000 135. 0000000 6. 67000000 6. 67000000 10. 30000000 10. 30000000 7. 00000000 1. 00000000	ENTH=1 EB. 0000000 19. 0000000 1. 9300000 145. 0000000 7. 31000000 950. 0000000 45. 5000000 19. 0000000 19. 0000000 7. 0000000	0.0000000 0.0000000 0.06855655 0.17421154 1.37237919 0.08411201 57.57789065 16.83570940 1.59132427 0.81649658	616.0000000 133.0000000 11.7000000 58.1100000 777.0000000 4725.0000000 977.4000000 977.4000000 114.5000000 28.0000000	0.000000 0.002900 0.212448 13.571429 0.049524 23222.619048 850.323333 17.726190 4.666667
	YEAR DAY SECCHI CHLA COND PH TKN	7 7 7 7 7 7 7 7 7	0.00000008 87.00000000 24.0000000 1.71428571 3.24285714 119.71428571 7.17857143 678.57142857	0.00000006 0.00000000 0.00000000 0.08997354 0.69247658 0.75592895 0.20391408 222.21825393	0.00000005 M 87.00000000 24.00000000 1.60000000 2.30000000 118.00000000 6.74000000 230.000000000	0.00000021 IDNTH=2 87.00000000 24.00000000 1.90000000 4.20000000 120.00000000 7.33000000 840.00000000	0. 00000002 0. 00000000 0. 00000000 0. 03400680 0. 26173154 0. 28571429 0. 07707228 83 97060524	0.0000006 607.0000000 168.0000000 12.0000000 22.7000000 838.0000000 50.2500000 4750.00000000	0.000000 0.000000 0.000000 0.008095 0.479524 0.571429 0.041581 49380.952381
235	NIT TP OP TOTALK STATION RPH	3 7 7 7 7 7 7 7	15. 3333333 23. 57142857 9. 57142857 14. 51428571 4. 00000000 0. 00000007	5. 03322296 4. 35343324 1. 51185789 3. 60343751 2. 16024690 0. 00000005	10.00000000 19.00000000 8.00000000 4.400000000 1.00000000 0.00000005 M	20.0000000 30.0000000 12.0000000 17.0000000 7.0000000 0.0000018	2: 70573263 1: 64544310 0: 57142857 1: 36197136 0: 81647658 0: 00000002	46.0000000 165.0000000 67.0000000 101.6000000 28.0000000 0.0000005	25. 333333 18. 952381 2. 285714 12. 984762 4. 666667 0. 000000
	DAY SECCHI CHLA COND PH TKN NIT TP OP TOTALK STATION RPH	7777767277776	23.0000000 23.0000000 1.94285714 4.70000000 124.57142857 7.1550000 788.57142857 13.50000000 17.00000000 10.71428571 14.57142857 4.0000000 0.00000008	0.0000000 0.0000000 0.11338934 2.49466097 4.57737708 0.26538651 64.40201121 2.12132034 2.88675135 1.11269728 4.03555625 2.16024690 0.0000007	B7.00000000 23.00000000 1.9000000 2.10000000 120.0000000 6.5000000 12.00000000 12.00000000 12.00000000 13.00000000 9.00000000 6.00000000 1.00000000 0.00000000 0.00000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000	B7.00000000 23.0000000 8.3000000 130.0000000 7.37000000 15.0000000 15.0000000 12.0000000 12.0000000 12.0000000 0.00000022	0.00000000 0.00000000 0.04285714 0.94287322 1.73008592 0.10834359 24.34167223 1.50000000 1.09108945 0.42056004 1.52527689 0.81647658 0.61647658	607.0000000 161.0000000 32.7000000 872.000000 42.7300000 27.0000000 17.0000000 117.0000000 102.0000000 102.0000000 0.0000005	0.0000000 0.0000000 0.0128571 6.2233333 20.9523810 0.0704300 4147.6190476 4.5000000 8.3333333 1.2380952 16.2857143 4.666667 0.0000000
	YEAR DAY SECCHI CHLA COND PH TKN NIT TP OP	777777077	87.0000000 18.0000000 1.18571429 7.78571429 149.28571429 6.25285714 868.57142857 24.42857143 12.42857143	0.00000000 0.00000000 0.08797354 1.36187644 4.47867705 0.237466779 82.95150620 3.40867241 2.22537456	87.00000000 18.00000000 1.00000000 6.20000000 140.00000000 5.74000000 740.0000000 740.00000000 20.00000000 20.00000000 9.00000000	B7. 00000000 1B. 00000000 1. 30000000 10. 20000000 155. 00000000 45000000 950. 30. 00000000 15. 000000000	0.00000000 0.00000000 0.03400680 0.51474847 1.70034010 0.08975401 31.35272233 1.28835707 0.84112008	607.0000000 126.0000000 54.5000000 1045.0000000 43.7700000 6080.0000000 171.0000000 87.0000000	0.0000000 0.0000000 1.8547619 20.2380952 0.363905 6880.9523810 11.6190476 4.9523810
	TOTALK STATION RPH	7 7 7	12,35714286 4.00000000 0.00000066	3. 92337318 2. 16024690 0. 00000052	3: 50000000 1. 0000000 0: 00000035	14:00000000 7.00000000 0:00000182	1.48287548 0.81449658 0.00000020	86.500000 28.000000 0.0000046	15.3928571 4.666667 0.0000000

.

						SAS	•	15:43 TUES	DAY, FEBRUARY
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE
	YEAR DAY SECCHI CHLA COND PH TKN NIT TP OP TOTALK STATION RPH	7 7 7 7 7 7 7 7 7 7 7 7 7 7	87.0000000 16.0000000 1.43714286 9.3000000 167.85714286 7.4200000 770.00000000 19.3333333 19.71428571 11.57142857 15.28571429 4.0000000 0.0000005	$\begin{array}{c} 0. \ 00000000\\ 0. \ 00000000\\ 0. \ 22163892\\ 1. \ 63095064\\ 5. \ 66946710\\ 0. \ 29120440\\ 74. \ 16198487\\ 10. \ 21436876\\ 1. \ 60356745\\ 1. \ 51185789\\ 4. \ 53557368\\ 2. \ 16024690\\ 0. \ 00000005\\ \end{array}$	B7. 00000000 16. 0000000 1. 2500000 7. 4000000 155. 0000000 6. 77000000 150. 0000000 12. 0000000 17. 00000000 11. 00000000 11. 00000000 0. 00000003	87. 0000000 16. 0000000 17. 0000000 170. 0000000 7. 57000000 850. 0000000 31. 0000000 22. 0000000 15. 0000000 15. 0000000 17. 0000000 0. 00000017 10NTH=7	0.00000000 0.00377164 0.61644140 2.14285714 0.11006492 28.03059553 3.89726867 0.66609153 0.57142857 1.7142857 1.7142857 0.81649638 0.0000002	607.0000000 112.0000000 65.1000000 51.7400000 5370.0000000 5370.0000000 538.0000000 138.0000000 138.0000000 107.0000000 28.0000000 28.0000000 28.0000000 28.0000000	$\begin{array}{c} 0. \ 0000000\\ 0. \ 0000000\\ 0. \ 0471238\\ 2. \ 6600000\\ 32. \ 1428571\\ 0. \ 0848000\\ 5500. \ 0000000\\ 104. \ 333333\\ 2. \ 5714286\\ 2. \ 2857143\\ 20. \ 5714286\\ 4. \ 666667\\ 0. \ 0000000\\ \end{array}$
	YEAR DAY SECCHI CHLA COND PH TKN	7 7 7 7 7 7	87.00000000 15.00000000 1.58857143 7.72285714 170.00000000 7.40714286	0.00000000 0.00000000 0.26773299 1.98841522 0.00000000 0.25217152	87.00000000 15.0000000 1.1000000 5.3600000 170.0000000 6.84000000	87.00000000 15.00000000 1.92000000 10.42000000 170.00000000 7.54000000	0.00000000 0.00000000 0.10117356 0.75162590 0.0000000 0.07531188	607.0000000 105.0000000 11.120000 54.0600000 1190.0000000 51.8500000	0.00000000 0.0000000 0.07168095 3.95459048 0.00000000 0.06359048
4c c	NIT TP OP TOTALK STATION RPH	3 3 7 7 7 7 7 7 7 7	11.00000000 60.42857143 12.28571429 16.57142857 4.0000000 0.00000005	0.00000000 9.19886121 1.49602648 4.45747099 2.16024690 0.0000004	11.00000000 48.0000000 10.0000000 6.5000000 1.0000000 0.0000003	11.0000000 72.0000000 14.0000000 19.0000000 7.0000000 0.00000014	0.00000000 3.47684273 0.56544486 1.68476567 0.81647658 0.0000002	33.0000000 423.0000000 86.0000000 116.0000000 28.0000000 0.0000003	0.00000000 84.61904762 2.23807524 19.86904762 4.66666667 0.00000000
	YEAR DAY SECCHI CHLA COND PH	7 7 7 7 7	87.00000000 13.0000000 1.54571429 8.95142857 169.57142857 7.41571429	0.0000000 0.0000000 0.07180725 1.43112843 6.45128263 0.28277536	E7. 00000000 13. 00000000 1. 43000000 7. B0000000 155. 00000000 6. 78000000	87.00000000 13.00000000 1.65000000 11.82000000 173.0000000 7.6000000	0.00000000 0.00000000 0.03467988 0.54091381 2.43835564 0.10687904	607.0000000 91.0000000 10.8200000 62.6600000 1187.0000000 51.9100000	0.0000000 0.0000000 0.00842857 2.04811429 41.61904762 0.07996190
	NIT TP OP TOTALK STATION RPH	1 5 7 7 7 7	10.0000000 98.0000000 3.0000000 15.77142857 4.0000000 0.0000005	30. 59411708 0. 00000000 4. 37596248 2. 16024690 0. 00000005	10.0000000 72.0000000 3.0000000 5.9000000 1.0000000 0.00000003	10.0000000 140.0000000 3.0000000 18.0000000 7.0000000 0.0000017	13. 68210510 0. 00000000 1. 65395835 0. 81649658 0. 00000002	10.0000000 470.0000000 15.0000000 110.4000000 28.000000 0.0000003	936.00000000 0.0000000 19.14904762 4.6666667 0.00000000
	YEAR DAY SECCHI CHLA COND PH TKN NIT	777777777777777777777777777777777777777	87.0000000 24.0000000 1.26571429 7.52857143 163.28571429 7.38571429 697.85714286	0.00000000 0.00223080 0.80770103 6.10230245 0.30259198 63.49915635	87.00000000 24.00000000 1.18000000 6.50000000 153.00000000 6.70000000 585.00000000	87.0000000 24.0000000 1.4000000 8.5000000 170.0000000 7.5200000 800.0000000	0.00000000 0.00000000 0.03108032 0.30528227 2.30645353 0.11436702 24.00042517	607.0000000 168.0000000 52.7000000 1143.0000000 51.7000000 4885.0000000	0.0000000 0.0000000 0.0067619 0.6523810 37.2380752 0.0715619 4032.1428571
	OP TOTALK STATION RPH	7 7 7 7 7 7	56.71428571 11.57142857 15.68571429 4.00000000 0.00000006	6.29058253 1.39727626 4.05480315 2.16024690 0.00000006	50.00000000 10.00000000 6.50000000 1.00000000 0.00000003	68.0000000 14.0000000 17.5000000 7.0000000 0.0000020	2.37761671 0.52812079 1.53257154 0.81649658 0.00000002	377 0000000 81.0000000 107.8000000 28.0000000 0.0000004	39, 5714286 1, 9523810 16, 4414286 4, 6666667 0, 0000000
		, e						·.	

		- ,				SAS		15:43 TUES	DAY, FEBRUARY	16, 198
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	
	YEAR DAY SECCHI CHLA COND PH TKN NIT TP DP TOTALK STATION RPH	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	87.0000000 21.0000000 1.62428571 6.07142857 149.28571429 7.38285714 697.14285714 56.57142857 10.8000000 15.72857143 4.0000000 0.0000006	0,0000000 0,0000000 0.10875924 0.31977024 4.49867705 0.31100452 13.80131119 3.40867241 1.07544512 4.30376358 2.16024690 0.00000007	87.00000000 21.0000000 5.4000000 140.0000000 6.48000000 680.00000000 52.00000000 52.00000000 10.00000000 1.00000000 1.00000000	IDNTH=10 B7. 00000000 21. 0000000 1. 8200000 1. 50000000 155. 0000000 720. 0000000 720. 0000000 60. 0000000 12. 0000000 18. 0000000 18. 0000000 0. 00000021	0.0000000 0.04110713 0.12073738 1.70034010 0.11734844 5.21440331 1.28835707 0.48787795 1.62666773 0.81647638 0.00000003	607.000000 147.000000 11.370000 42.500000 1045.000000 31.680000 4880.000000 4880.000000 376.000000 110.1000000 110.1000000 28.000000 0.0000004	0.0000000 0.01182857 0.102380952 20.23809524 0.09672381 190.47619048 11.61904762 1.2000000 18.52238095 4.66666667 0.0000000	1
237	YEAR DAY SECCHI CHLA COND PH TKN NIT TP OP TOTALK STATION RPH	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	87.0000000 20.0000000 1.61571429 6.6900000 150.00000000 7.14714286 845.71428571 58.28571429 26.71428571 15.60000000 4.00000000 0.0000001	0.0000000 0.0000000 0.12726051 2.22265607 5.77350269 0.35457553 66.29659188 2.62769136 2.92770022 4.14728827 2.16024690 0.0000015	87.00000000 20.0000000 1.48000000 140.0000000 6.35000000 740.00000000 55.00000000 22.00000000 6.20000000 1.00000000 0.00000004	B7. 00000000 20. 0000000 1. 85000000 155. 0000000 7. 35000000 910. 00000000 30. 00000000 17. 4000000 7. 00000000 0. 0000000 7. 0000000	0.0000000 0.04807975 0.84008503 2.18217890 0.13401675 25.05773641 0.77317378 1.10656667 1.56752763 0.81647658 0.0000006	607.000000 140.000000 11.310000 46.8300000 50.030000 5720.000000 5720.000000 408.000000 187.000000 187.000000 197.200000 28.000000 0.000008	0.000000 0.000000 0.0161952 4.9402000 33.333333 0.1257238 4395.2380952 6.9047619 8.5714286 17.200000 4.6666667 0.000000	1
	YEAR DAY SECCHI CHLA CDND PH TKN NIT TP OP TOTALK STATION RPH	7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	87.0000000 16.0000000 1.66428571 8.50833333 140.0000000 7.22857143 824.28571429 57.57142857 24.71428571 15.68571429 4.00000000 0.00000011	0.0000000 0.0000000 0.18146231 1.03973875 0.0000000 0.41981855 58.55400438 3.04724700 3.14718317 4.05809010 2.16024690 0.0000017	B7. 00000000 16. 0000000 1. 32000000 6. 75000000 140. 00000000 52. 00000000 52. 00000000 52. 00000000 52. 00000000 52. 00000000 50. 00000000 1. 00000000 0. 00000003	B7.0000000 16.0000000 1.8300000 9.7100000 140.0000000 7.5000000 900.0000000 60.0000000 30.0000000 17.5000000 7.0000000 17.5000000 17.5000000 0.0000000 10.000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000	0.0000000 0.06858631 0.42447157 0.0000000 0.15867650 22.13133341 1.15175111 1.18952343 1.53381389 0.81649658 0.0000007	607.000000 112.000000 11.650000 51.050000 780.000000 50.600000 5770.000000 403.000000 173.000000 107.800000 28.000000 0.000008	$\begin{array}{c} 0. \ 0000000\\ 0. \ 0000000\\ 0. \ 0329286\\ 1. \ 0810567\\ 0. \ 0000000\\ 0. \ 1762476\\ 3428. \ 5714286\\ 9. \ 2857143\\ 9. \ 2957143\\ 9. \ 9047619\\ 16. \ 4680952\\ 4. \ 6666667\\ 0. \ 0000000\\ \end{array}$	1

APPENDIX B

Monthly macroinvertebrate data for February 1987-January 1988 at the seven sampling stations in Lake Weir, Florida.

. .

Organism	Guild	2/24 Feb	3/23 Mar	5/18 May	6/16 Jun	7/15 Jul	8/13 Rug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1∕19 Jar
Chironomus sp.	CG	33	16	83	199 - 201, 999 - 999 - 976 - 686 - 200 - 200 - 999 - 9	~~~~		و الله الله يقو خل من الله بنة مم عن	میں ہیں وہی ہیں شار ہے ہیں وال مل	16	33	200
Cryptochironomus sp.	Р									16		16
Tanutarsus sp.	CG	200	133	16						16		116
Cladotanytarsus sp.	CG		150				266			50		16
Coelotanypus sp.	Ρ	33	50	33	216	50		66	250	50		333
Procladius sp.	Р	266	16		16		16		33			100
Harnischia sp.	CG	100	150		66						50	33
Polypedilum sp.	CG		16				16					
Pseudochironomus sp.	CG									16	16	
Palpomyia sp.	P											33
Chaoborus sp.	P	1266	616	283	633	366	200	266	250	150	250	566
Hexagenia sp.	CG	16	16				66	16			16	83
Oecetis sp.	Р											
Aphylla sp.	Р										16	
Hyalella sp.	CG	566	666	316	50		100	66		500	350	533
Elliptio sp.	F	16										
Viviparus sp.	SC				16		16	16				16
Physa sp.	SC						16					16
Helobdella sp.	P						33			16		16
Brachiobdella sp.	Р											
Tubificidae	CG	1300	16	66	216	16	183	50	16	50		16
Lumbriculidae	CG								16			
Nematoda	Р	183	50	16		50						33
Totals		3979	1895	813	1213	482	912	480	565	880	731	2126
Total												
Chironomids		632	531	132	298	50	298	66	283	164	99	814

2 Number per M and functional feeding categories for macroinvertebrates found at station 1 in Lake Weir. Each value is the mean of three replicate samples.

4.11

Organism	Guild	2/24 Feb	3/23 Mar	5/18 May	6/16 Jun	7/15 Jul	8/13 Aug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1/19 Jan
Chironomus sp.	CG	16	333	83	، بند هم هم هم نبل نیز در من من م					16	16	33
Cryptochironomus sp.	Р								16	16	33	33
Tanytarsus sp.	CG	166	116	16				16		66		33
Cladotanytarsus sp.	CG	100	33	16	400	66	266		133	133	133	383
Cuelotanypus sp.	P	233	100	16	16	16	83	83	16	183	33	333
Procladius sp.	Р	416	216		16	33	16		33			16
Harnischia sp.	CG	116	233		16					16	50	33
Polypedilum sp.	CG		16				16					
Pseudochironomus sp.	CG			216		16				16	16	16
Palpomyia sp.	Р				66	33					16	16
Chaoborus sp.	Р	2450	2866	16	16	366	200	166	Э	83	16	33
Hexagenia sp.	CG	66	33				66	16			16	83
Orcetis sp.	P				16							
Aphylla sp.	Ρ				16						16	
Hyalella sp.	CG	1750	1000	2400	5200	1016	433	250	800	833	316	916
Elliptio sp.	F	16		33	50	66	50	33	166	66	50	66
Viviparus sp.	SC	16			16	16	16	16	16	83	50	16
Physa sp.	SC					33	16	16	83	133	33	16
Helobdella sp.	Р	33	116	16		33	116		50	16	83	83
Brachiobdella sp.	Р						•					
Tubificidae	CG	26 6	1066	33	100	316	533	100	50	100		50
Lumbriculidae	CG								16			
Nematoda	Р	1350	16	16		50						50
Totals		6994	6144	2861	5928	2060	1811	696	1382	1760	877	2209
Tetal Chironomids		1047	1047	347	448	131	381	99	198	446	281	88 0
C6 = Collector-gather	er; P= P	redator;	SC = Scr	aper; F =	Filterer		******* -** -**					

Number per M and functional feeding categories for macroinvertebrates found at station 2 in Lake Weir. Each value is the mean of three replicate samples.

Chironomus sp. (Cryptochironomus sp.) Tanytarsus sp. (Cladotanutarsus sp.)	CG	 En			• •••	Jui	Hug	Sep	Üct	Nov	Dec	Jan
Cryptochironomus sp. Tanytarsus sp. Cladotaputarsus sp.	n	JU	566	500	783	916	 33	1116	1150	150	933	2583
Tanytarsus sp. l	٢		66							16		16
Cladotaputareus so l	CG	17	133	416						16		16
urannandra sas she e	CG	50	150	250			266			50		16
Coelotanypus sp. f	P	50	50	16	33	50	66	16	250	16	16	333
Procladius sp. 1	P	250	66	50	100	100	16		33			100
Harnischia sp. 1	CĞ	17	150		66						50	33
Polypedilum sp. /	CG		16	16			16					
Pseudochironomus sp. 1	CG									16	16	
Palpomyia sp.	P	0	50									33
Chaoborus sp. I	Р	917	166	183	533	150	283	316	283	483	443	200
Hexagenia sp. (CG	16	16				66	16			16	83
Oecetis sp. 1	P											
Aphylla sp. f	Ρ										16	
Hyalella sp. (CG	683	566	6616	566		16	66	16	500	350	116
Elliptio sp.	F	16										
Viviparus sp.	SC				16		16	16				16
Physa sp.	SC						16					16
Helobdella sp.	P		16				83	116	66	33	50	116
Brachiobdella sp. f	P	83		116	166	133			133	33	83	
Tubificidae	CG	183	583	33	66	33	233	50	16	50		16
Lumbriculidae	CG		150			50	I		16			
Nematoda	P 	183	683	16		50	\					33
Totals		2515	3427	8212	2329	1482	1110	1712	1963	1363	1973	3726
Total												
Chironomids		434	1197	1248	982	1066	397	1132	1433	264	1015	3097

2 Number per M and functional feeding categories for macroinvertebrates found at station 3 in Lake Weir. Each value is the mean of three replicate samples. 2 . Number per M and functional feeding categories for macroinvertebrates found at station 4 in Lake Weir. Each value is the mean of three replicate samples.

Organism	Guild	2724 Feb	3723 Mar	5/18 Maay	6∕16 Jun	7/15 Jul	8∕13 Aug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1/19 Jan
Chironamus sp.	CG	933	83	17	16	16		16		16	 33	616
Cruptochironomus sp.	Ρ	33	100	15	33		16		100	66	83	300
Tanutarsus sp.	CG	417	33	15		15		16		16		100
Cladotanutarsus sp.	CG	633	17		183	33	33	33	33	350	316	1066
Coelotanypus sp.	P	733	50	33	67	50		16	250	16		16
Procladius sp.	P	117	117		33		83		33	16	16	100
Harnischia sp.	CG	100	150		66						50	16
Polypechilum sp.	CG	33	16				16					50
Pseudochironomus sp.	CG		100		133		16			16	83	250
Palpomyia sp.	Р		33	15	50		16					50
Chaoborus sp.	Р	83	616	283	633	366	50	66	250	33	250	16
Hexagenia sp.	CG	183	16				66	16			16	83
Oecetis sp.	P	33				33	16					
Aphylla sp.	Р										16	
Hyalella sp.	CG	3366	2833	1300	4683	1150	733	366	1200	1550	2116	2066
Elliptio sp.	F	17	100	17	66	83	16	66	50	100	66	150
Viviparus sp.	SC	33			16	67	33	16	50		50	66
Physa sp.	SC						16				16	16
Helobdella sp.	Ρ	16		67		15	33	16	50	66	16	116
Brachic bdella sp.	Р	50	67	17	250	100			16			
Tubificidae	CG	750	483	66	267	16	316	116	50	150	16	200
Lumbriculidae	CG	516	117			33	66	16	50			
Nematoda	P	750	50	17	83	50			·			50
Totals		8796	4981	1862	6579	2027	1525	759	2132	2395	3143	5327
Total												
Chironomids		2999	666	80	531	114	164	81	416	496	581	2514

Organism	Guild	2/24 Feb	3/23 Mar	5/18 May	6/16 Jun	7/15 Jul	8/13 Aug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1/19 Jan
Chironomus sp.	CG	33	100	166	183	66				33	16	16
Cryptochironomus sp.	Ρ	66	66						16	16		183
Tanytarsus sp.	CG	. 16	133	216	66	16	16			16		83
Cladotanytarsus sp.	CG	700	33	66	150	50	16	16	133	150	133	1050
Coelotanypus sp.	P	250	200	166	50	350	183	133	250	116	216	500
Procladius sp.	P	333	50	83	33	16	16	33	33	16		83
Harnischia sp.	CG	16	150	33	33	50				16	50	16
Polypedilum sp.	CG		16				16					
Pseudochironomus sp.	CG	66					16	33		16	16	16
Palpomyia sp.	P	16		16	33				16	16		16
Chaoborus sp.	Р	1266	616	283	500	166	200	150	50	150	33	50
Hexagenia sp.	CG	150	316	316	66	66	66	16			33	666
Orcetis sp.	Р				33							
Aphylla sp.	P	16	16								16	
Hyalella sp.	CG	1666	2833	4166	9133	1350	533	333	83	950	1450	2133
Elliptio sp.	F	33	16		16	16			16	150	16	33
Viviparus sp.	SC	66		16	16		33	33		33		16
Physa sp.	SC			66	16		83			16		16
Helobdella sp.	P	50	16	83	133	50	433	100	50	16	33	66
Brachiobdella sp.	Р											
Tubificidae	CG	233	200	66	416	100	516	1333	50	50		66
Lumbriculidae	CG			16			50		16			
Nematoda	P	183	50	66	300	93		300				350
Totals		5159	4811	5824	11177	2329	2177	2480	713	1760	2012	5359
Total Chironomids		1480	748	730	515	548	263	215	432	379	431	1947

2 Number per M and functional feeding categories for macroinvertebrates found at station 5 in Lake Weir. Each value is the mean of three replicate samples.

Organism	Guild	2/24 Feb	3/23 Mar	5∕18 May	6∕16 Jun	7/15 Jul	8/13 Aug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1/19 Jar
Chironomus sp.	 CG	4566	2816	450	1133	1933			16	416	1266	333
Cryptochironomus sp.	P	400	66	16	83				16		16	166
Tanytarsus sp.	CG	100	566	166	183				16	33	50	200
Cladotanytarsus sp.	CG	450	200	166	33		266		33	50	50	316
Coelotanypus sp.	Ρ	33	83	33	166	150	383	166	100	150	466	50
Procladius sp.	Р	166	200	116	183	50	233	33	33	33		100
Harnischia sp.	CG	100	66	33	33	33	33	33		16	166	33
Polypedilum sp.	CG	66	16	166	83		266					
Pseudochironomus sp.	CG	400	50		100		16			16	50	250
Palpomuia sp.	P	883	433	16	33	383			16		83	33
Chaoborus sp.	P	333	50	33	83	1600	366	350	116	400	333	83
Hexagenia sp.	CG	33	633	583	450	216	66	33	50	133	533	83
Decetis so.	ρ				33							
Ambulla sp.	P										16	
Hualella so.	CG	266	783	1516	4400	133	100	116	283	350	483	316
Elliptio sp.	F	100	66		100	66	100	50	166	50	116	50
Viviparus sp.	SC	33	33	66	16	66	16	16			83	16
Phusa so.	SC						16			16		16
Helobdella sp.	P	66		16	150	100	33	50	150	83	33	166
Brachiobdella sp.	P									83		
Tubificidae	ĊG	266	1833	300	866	116	250	50	16	16	50	33
Lumbriculidae	CG	16						16	16			
Nematoda	P	516	500	33	100	50			-			33
Fotals		8793	8394	3709	8228	4896	2144	913	1027	1845	3794	2277
fotal Chironomids		6291	4063	1146	1997	2166	1197	232	214	714	2064	1448

 $^{\it 2}$ Number per M and functional feeding categories for macroinvertebrates found at station 6 in Lake Weir. Each value is the mean of three replicate samples.

Organisa	Guild	2/24 Feb	3/23 Mar	5/18 May	6/16 Jun	7/15 Jul	8/13 Aug	9/24 Sep	10/21 Oct	11/20 Nov	12/16 Dec	1/19 Jai
Chironomus sp.	CG	533	233	16	·	یست شده میش نکه برد. مان خط است منه ها				100	33	20
Cryptochironomus sp.	P	300								16		10
Tanytarsus sp.	CG	1250	100	16				16	33	33		1
Cladotanytarsus sp.	CG	250	16	16			266			16		1
Coelotanypus sp.	Ρ	33	115	83	33	66	33	66	83	100	33	6
Procladius sp.	Ρ	283	162	50	166	33	16		33	33		10
Harnischia sp.	CG	150	66		33			16			50	3:
Polypedilum sp.	CG	616	16	33		66	16					
Pseudochironomus sp.	CG									16	16	
Palpomyia sp.	Р	16	16	33		16					33	3
Chaoborus sp.	P	650	1550	33	616	500	566	383	416	450	483	23
Hexagenia sp.	CG	400	350	66			66	16		116	66	13:
Orcetis sp.	Ρ					16						
Aphylla sp.	Ρ										16	
Hyalella sp.	CG	100	100	83	183		100	66	50	500	33	23
Elliptio sp.	F	33										
Viviparus sp.	SC	16	16		16	16	16	16				1(
Physa sp.	SC						16					1
Helobdella sp.	Р		16	33	16		50	33		16		10
Brachiobdella sp.	P											
Tubificidae	CG	1350	283	66	216	16	33	50	16	50		11
Lumbriculidae	CG								16			
Nematoda	P	216	50	16		50						3:
Totals		6196	3090	544	1279	779	1178	662	647	1446	763	117
Total Chironomids		3415	709	214	232	165	331	98	149	314	132	44
CG = Collector-gather	er; P= P	redator;	SC = Scr	aper; F =	Filterer	•						

2 Number per M and functional feeding categories for macroinvertebrates found at station 7 in Lake Weir. Each value is the mean of three replicate samples. APPENDIX C

Historical data for Station 3 in Lake Weir, Florida, from the USGS, SJRWMD, FDER, and several University of Florida theses.

OBS	YEAR	MONTH	DAY -	SECCHI	TURB	CHLA	TP	TKN	COND	TALK	PH	STATION	SOURCE
10745678901034567890103456789010345	78886666677777777777788888888877778	-9776802244123496789012139222979023278	175555555556449607890485638311465086 2111 2222220485638311465286	1.2.1.2.1.2.7.0 90008443399000 878058602571382831 1.2.1.2.1.2.1.1.2.1.1.2.2.1.2.2.1.2.2.2.1.2	5 340530 	8.04.67.107.73.54.11800000000000000000000000000000000000	0187000000 00000000000000000000000000000	901 6336 17849031 178490331 17953360 19953360 1288490 19953360 128849 128849 128849 128849 128849 128849 1288400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 1289400 128940	1339.600 000000 1339.600 0000000 1339.600 000000000 1339.600 00000000000000 1339.600 000000000000000000000000000000000000	50000 100.24 100	67777	19001000000000000000000000000000000000	8

8A8

14:38 TUESDAY, FEBRUARY

247

			·						SAS YEAR=69				14:38 TUESDAY,	FEBRUA	RY 16	, 1988
	085 M 2 3 4 5 6	0NTH 88 10 12 24	DAY SEC 15 1. 15 2. 15 1. 15 2. 15 2. 15 2. 15 1.	68 64 83 13 13 50 27	TURB 3. 3 1. 6 1. 6 1. 5 1. 3 2. 0	CHLA 7.50 0.12 7.65 3.72 5.11 4.58	TP 24 20 20 20 10	TKN 785 1444 1090 735 731	COND 127.0 145.3 143.0 138.0 127.0 128.0	TALK - - - - - - - - -	PH STA	TION 80 3 3 3 3 3 3 3 3 3	URCE RPH N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	LT OP	τα	TALK - - - -
 OBS 7 8	MONTI	 H DAY 23	8ECCH	I TURI 1. 3	B CHLA 8.2	TP 83 40	TKN 700	COND 133 150	YEAR=75 TALK 11.5 16.0	РН 6. 6 В. 0	STATION 3 3	SOURCE 8 4	RPH 2. 51189E-07 1. 00000E-08	NIT	OP :	TOTAL
9	12	2	· .	·	•	20	• 	145	33. 0 YEAR=79		3	4			- •	•
OBS	MONTH	DAY	SECCHI	TURB	CHLA	ТР	TKN	CON	D TALK	к рн	STATION	SOURCE	RPH	NIT	OP	TOTA
10 11 12 13 14 15 16 17 18 20 21 22	123456789011127	26 24 19 26 27 28 19 24 19 24 18 18	1.70 2.80 1.80 2.80 2.10 1.98 2.98 2.98 2.98 2.98 2.42) }	11.00 10.50 9.00 8.40 8.40 10.60 10.10 11.70 7.60 5.81	59 470 57 135 197 135 198 708 708 708 708 700	401 794 655 1213 1986 840 1419 900 443 805 771 740	155 205 160 174 147 160 155 133 126 139 133 154	13	7.7668782868166 6.767676767	888888888888 888888888888888888888888	កាតាតាលាតាតាតាតា ក្នុង	3.98107E-08 1.58489E-08 2.51189E-07 1.58489E-07 1.99526E-07 1.58489E-07 6.30957E-08 1.58489E-07 2.51189E-08 1.58489E-07 2.51189E-08 2.51189E-08 2.51189E-08	• • • • • • • • •	• • • • • • • •	
OBS	MONTH	DAY	SECCHI	TURB	CHLA	тр		ר א כסאם	YEAR-80 TALK	 РН	statio	N SOURC	E RPH		r OF	 , то:
23 24 25 26	9 3 7 8	15 15 15 6	2.0 1.9 3.0	•	10.80 4.80 6.60 5.45	6.1 25.8 4.7 20.0	651 636 636 570	139. (136. (132. (147. (0 10 5 12 0 14 0 14	7.06 7.23 7.06 8.40	3 3 3 3 3 3	1 1 1 4	8.70964E-0 5.88844E-0 8.70964E-0 3.98107E-0	B . B . B .	• •'	
	MONTH	DAY	SECCHI	TURB	CHLA	 ТР		\ COND	YEAR=84 TALK	 РН	STATION	SOURCE	RPH	NIT		
27 28 29	3 9 12	5 6 3	1.65 1.07 1.21	2.52	6. 72 8. 60 13. 60	9 30 27	1120 1260 820	115 156 140	12 13 11	6. 93	333	7 7 7	1. 17490E-07	•	•	•
OBS	MONTH	DAY	SECCHI	TURB	CHLA	 ТР	 TKN	 солд	YEAR-85 TALK	 РН	STATION .	SOURCE	RPH	NIT	0P	TOTAL
30 31 32 33 34 35	2 5 7 10 12	8 23 11 11 4 6	2.03 1.78 1.52 2.48 2.43 1.91	2.37 1.20 1.20 2.9	7, 50 3, 33 3, 40 4, 80 11, 10	23 19 23 15 16	910 630 560 480 620 670	157 158	11 12 11 20 35	6.89 66.99 7.28 7.88 7.88	000000	7 7 7 7 7 7	1.58489E-07 1.25893E-07 1.25893E-07 6.30957E-08 1.58489E-07 1.58489E-08	• • • •	•	•
085	MONTH	DAY	SECCHI	TURB	CHLA	 TP	 TKN	YE COND	AR=87 - TALK	 PH	STATION	SOURCE	 RPH	NIT	0P	TOTALK
36 37 38 39 40 42 43 43 44 45 46	23567 89 10 11 12 1	24 18 16 13 24 28 16 13 24 20 10 19	1.70 1.90 1.28 1.43 1.43 1.54 1.54 1.63 1.63 1.44	•	2.202 2002 2002 2002 2002 2002 2002 200	20 15 27 122 17 120 52 60 60	840 720 760 700 710 690 740 780 900	120 1300 1700 170 172 165 150 155 140 142		7.21 7.08 6.359 7.502 7.520 7.304 7.30 7.31			6.16373E-08 8.31764E-08 3.54813E-07 2.57040E-08 3.01975E-08 3.16228E-08 3.16228E-08 3.31131E-08 5.01187E-08 4.57088E-08 4.87792-08	11	10 12 11 10 31 12 30 25	17.00 16.00 17.00 17.00 17.00 17.00 17.00 17.00

						SAS	14:38 TUESDAY, FEBRUARY 16, 1988				
	VARIABLE	N	MEAN	STANDARD DEVIATION	MINIMUM VALUE	MAXIMUM VALUE	STD ERROR OF MEAN	SUM	VARIANCE	c. v.	
	SECCHI CHLA TKN TP	6 6 6	1,97833333 6,4466667 976,1666667 17,6666667	0. 36670144 2. 39819654 281. 36198511 6. 12100210	1.5000000 3.7200000 731.0000000 10.0000000	2. 4400000 10. 1200000 1444. 0000000 24. 0000000	0.14978689 0.97903964 114.86334942 2.49888864	11.8700000 38.6800000 5857.0000000 106.0000000	0. 134617 5. 751347 79164. 566667 37. 466667	18. 546 37. 201 28. 823 34. 647	
	BECCHI CHLA TKN TP	1 1 3	1.9000000 B.20000000 900.00000000 47.66666667	32. 19213154	1. 70000000 B. 20000000 700. 00000000 20. 00000000	1. 9000000 8. 2000000 900. 00000000 83. 0000000	18. 58613581	1. 9000000 B. 2000000 900.00000000 143.0000000	: 1036: 3333333	67. 536	
	SECCHI CHLA TKN TP	11 13 12 12	2.12818182 8.71615385 913.91666667 50.0000000	0.42663376 1.97608004 439.87383694 30.60005942	1.70000000 5.81000000 401.00000000 13.00000000	2. 9600000 11. 7000000 1986. 0000000 90. 0000000	0. 12863492 0. 54806399 126. 98063908 8. 83347627	23. 410000 113. 310000 10967. 000000 600. 000000	0, 18202 3, 90489 193488, 99242 936, 36364	20.047 22.671 48.131 61.200	
	BECCHI CHLA TKN TP	3 4 4 4	2.30000000 6.91250000 623.25000000 14.15000000	0.60827623 2.69640965 36.19737560 10.39310669	1. 70000000 4. 8000000 570. 00000000 4. 70000000	3. 00000000 10. 80000000 651. 00000000 25. 80000000	0.35118846 1.34820482 18.09868780 5.19655334	6. 9000000 27. 6500000 2493. 0000000 56. 6000000	0. 3700000 7. 2706250 1310. 2500000 108. 0166667	26. 447 39.008 5. 808 73. 450	
249	BECCHI CHLA TKN TP	3 3 3 3 3	1.31000000 9.70666667 1066.66666667 22.0000000	0.30265492 3.47478537 224.79620400 11.35781669	1.07000000 6.92000000 820.00000000 9.00000000	1. 6500000 13. 6000000 126. 0000000 30. 0000000	0. 17473790 2. 00616827 129. 78614889 6. 55743832	3. 9300000 29. 1200000 3200. 0000000 66. 0000000	0.071600 12.074133 50533.333333 127.000000	23, 103 35, 798 21, 075 51, 626	
	SECCHI CHLA TKN TP	6 5 6	2.05833333 6.06400000 645.0000000 17.0000000	0.35628172 3.26217412 145.70518179 6.35609943	1. 52000000 3. 33000000 480. 00000000 6. 00000000	2. 4800000 11. 1000000 910. 00000000 23. 0000000	0. 14545140 1. 45888862 59. 48389138 2. 59486673	12.3500000 30.3300000 3870.0000000 102.0000000	0. 126737 10. 641780 21230. 000000 40. 400000	17, 307 53, 778 22, 590 37, 387	
	SECCHI CHLA TKN TP	11 11 9 10	1. 54000000 6. 87181818 760. 00000000 50. 60000000	0. 22438851 2. 69514311 70. 17834424 33. 17696657	1.18000000 2.30000000 670.00000000 15.00000000	1. 70000000 10. 20000000 900. 00000000 120. 00000000	0. 06771578 0. 81261622 23. 39278141 10. 49147802	16. 7400000 75. 5700000 6840. 0000000 506. 0000000	0. 0504400 7. 2637964 4925. 0000000 1100. 7111111	14, 584 39, 220 9, 234 65, 567	

					SAS			14:38 TUESDAY	FEBRUARY	16,	1988
OBS	YEAR	MSECCHI	MCHLA	MTKN	MTP	SDSECCHI	SDCHLA	SDTKN	SDTP		
1234567	69 75 79 80 84 85 87	1.97833 1.90000 2.12818 2.30000 1.31000 2.05833 1.54000	6.44667 8.20000 8.71615 6.91230 9.70667 6.06600 6.87182	976. 17 900. 00 913. 92 623. 25 1066. 67 645. 00 760. 00	17.6667 47.6667 50.0000 14.1500 22.0000 17.0000 50.6000	0.366701 0.426634 0.608276 0.302655 0.356282 0.224587	2.37820 1.77608 2.69641 3.47479 3.26217 2.69514	281, 362 439, 874 36, 197 224, 796 145, 705 70, 178	6. 1210 32. 1921 30. 6001 10. 3931 11. 3378 6. 3361 33. 1770		

- .

7

-

.