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CHAPTER I
EXECUTIVE SUMMARY

The management of water resources to meet water supply demands

while maintaining minimum water levels and quality, is of paramount

importance. Florida is almost totally dependent on groundwater for

commercial, industrial, agricultural, and residential needs. Over the

years, Florida's water resource management concerns have been amplified

due to periods of drought and to ever increasing demands for more water.

In the past two decades groundwater models have become common

tools to aid decision makers with problems of resource management.

Traditional deterministic groundwater models require information

throughout the hydrologic system that is never known but must be

estimated. The error inherent in this information may undermine the

quality of the model predictions needed by decision makers.

Furthermore, deterministic models cannot provide information on model

prediction uncertainty.

Recent developments in hydrogeologic modeling have emphasized

stochastic modeling techniques. These models, founded on the principles

of probability theory, provide a systematic method for estimating and

predicting water levels and recharge rates which vary erratically in

space and in time. More importantly, stochastic models calculate

optimal predictions based on finite and limited measurements, and

quantify the accuracy and quality of these predictions.
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As part of The St. Johns River Water Management District's

responsibility to manage water resources within the District, this study

was initiated to develop the capability of forecasting critical low

groundwater levels in space and time. Research efforts were focused to:

1) develop empirical stochastic models capable of forecasting

groundwater levels at point locations in time and throughout

the District in space and time;

2) geostatistically characterize the spatial variability of

groundwater levels, transmissivities, and storativities in

the Floridan aquifer; and

3) identify and evaluate alternative physically-based

stochastic regional groundwater modeling techniques which

are consistent with the quality and quantity of existing

hydrogeologic information available throughout the District,

and which may further aid the District in fulfilling its

goals.

In Chapters V and VI, methods for predicting groundwater levels in

space and time, and methods for obtaining the recurrence interval and

the duration of critical events are identified and presented. Results

from critical event investigations are given for selected wells

distributed throughout the District. Geostatistical information on

regional Floridan aquifer parameters is presented in Chapter IV. Methods

of using this information in physically-based stochastic models are

examined in Chapter VII. Beyond the methods and results already

mentioned, this project produced the following deliverables:

1) 21 stochastic time-series models which can forecast

groundwater levels (with forecast confidence intervals) at
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21 sites distributed throughout the District. For these

models, the prediction uncertainty decreases significantly

when forecast lead times are limited to less than seven

months.

2) A geostatistical model which extrapolates the 21 site

specific groundwater level forecasts over space in order to

provide optimal forecasts (with confidence intervals) of

groundwater levels throughout the District. This model

should be useful for predicting regional water shortages and

it should provide a basis for drought management decisions.

3) District-wide maps of optimal estimates of the spatial

distribution of transmissivity and storativity in the

Floridan aquifer (with confidence intervals). These maps

were developed from geostatistical analysis of available

transmissivity and storativity measurements, and should

provide valuable information for both defining physically-

based deterministic and/or stochastic groundwater model

input parameters, and for designing field studies to gather

additional data.
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CHAPTER II
INTRODUCTION

In the field of groundwater management, the design and operation

of cost-effective well fields to meet water supply demands while

maintaining minimum groundwater levels and quality is of paramount

importance. In the state of Florida, such concerns are magnified by the

almost total dependence on groundwater for commercial, industrial,

agricultural, and residential needs. Further, Florida's tremendous

population growth combined with recent drought periods have strained the

existing water supply systems.

The majority of groundwater management models are physically-based

deterministic models which depend on spatially variable hydrogeologic

parameters such as recharge, transmissivity, and storativity. However,

these variables, as well as system demands, initial conditions, and

boundary conditions, are never precisely known and must be estimated,

usually in an ad-hoc manner, from incomplete and inexact data. The

error inherent in these estimations may undermine management goals.

Stochastic modeling techniques, founded on the principles of

probability theory, provide a systematic method for estimating and

predicting the behavior of unknown spatially variable hydrogeologic

parameters. Recognizing the variability of hydrogeologic variables in

space and time, stochastic techniques, based on well-defined

assumptions, calculate optimal predictions based on finite and limited

measurements, and quantify the accuracy and quality of these
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predictions.

As part of the St. Johns River Water Management District's

(SJRWMD) responsibility to manage the water resources within the

District, this research project was designed to (1) develop empirical

stochastic models capable of forecasting groundwater levels at point

locations in time and throughout the District in space and time, (2)

characterize the spatial variability and correlation structure of

available piezometric head, transmissivity, and storativity measurements

in the Floridan aquifer using geostatistical methods, and (3) identify

and evaluate alternative physically-based stochastic regional

groundwater modeling techniques which are consistent with the quality

and quantity of existing hydrogeologic information available throughout

the District, and which may further aid the District in fulfilling its

goals.

Characterization of temporal potentiometric head fluctuations at

21 wells located throughout the District was conducted using the

techniques of time series analysis (Box and Jenkins 1976). Wells were

selected, from those provided by the District, with lengthy and

continuous records of measured piezometric head at frequent time

intervals. The data was visually summarized using time series plots of

the raw data as well as plots of long-term monthly and annual means and

standard deviations. After analyzing these plots for long-term and

seasonal trends, spectral and autocorrelations analyses were performed

on the detrended series.

These efforts revealed an appropriate form of the time series

model for each well based on the temporal correlation structure of the

potentiometric head values. Parameters for these models were estimated
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using estimation techniques outlined by Box and Jenkins (1976). The

models were verified by examining the statistics of the model residual

series and the statistics of the model forecast errors.

The stochastic time series models described above provide short-

term, temporal piezometric head forecasts for the particular wells being

modeled. To extrapolate these site-specific forecasts over space, and

thus obtain a regional forecast, a geostatistical analysis of the

spatial variability and correlation structure of piezometric head was

conducted. Geostatistical analysis of the raw piezometric head data

detected a distinct nonstationary spatial trend due to the recharge and

discharge patterns within the District. The piezometric head values

were therefore detrended using a temporal differencing procedure and a

steady-state, spatially stationary, geostatistical structure emerged.

The 21 site-specific time series models were then coupled with the

geostatistical model to produce optimal forecasts of May and September

piezometric head levels throughout the District.

An excursion analysis was performed on each of the 21 modeled

wells which did not exhibit a long-term declining trend in piezometric

head level, to estimate probabilities of recurrence intervals of pre-

selected "critical" groundwater levels. Crossing-theory (Nordin and

Rosbjerg 1970; Bras and Rodriguez-Iturbe 1985) was used to estimate the

expected number of excursions below these critical levels in a given

time period and the expected duration of these excursions. Recursion

analysis of these selected wells was performed to determine expected low

piezometric head values over given time intervals.

The spatial variability and correlation structure of available

transmissivity and storativity measurements were analyzed using the
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method of geostatistics. The spatial distribution of point measurements

of these properties cannot be predicted exactly as they vary erratically

in space due to the natural geologic variability and measurement error.

Geostatistical techniques were thus used to obtain optimal (i.e.,

minimum variance/unbiased) estimates of the spatial distribution of

these properties using knowledge of point measurements of the process,

and its mean, variance and correlation scale. Maps of the estimated

spatial distribution of these hydrologic properties were developed,

along with maps of the standard deviation of these estimates. These

maps should provide valuable information for both defining physically-

based deterministic and/or stochastic groundwater model input parameters

and for designing field studies to gather additional data.

A review was conducted of recently developed methods for using

historic piezometric head data, point measurements of hydrogeologic

parameters, and geostatistical information to develop physically-based

stochastic regional groundwater models. Physically-based stochastic

modeling techniques are often preferable to empirical stochastic

modeling techniques (such as time-series methods or traditional

geostatistical analysis) since their parameters are based on measurable

aquifer characteristics (rather than fit from historical data) and their

predictions incorporate the underlying physics of groundwater flow.

However, physically-based stochastic models are typically more

computationally intensive and require significantly more prior

information than empirical models. Results of this review should assist

the District in selecting modeling techniques for future studies which

are most suited to its needs.
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CHAPTER III
HYDROGEOLOGY OF THE ST JOHNS RIVER

WATER MANAGEMENT DISTRICT

Introduction

The St. Johns River Water Management District (SJRWMD), created by

the Florida Legislature in 1972 as one of five water management

districts in the state, includes all or part of nineteen counties in

northeast Florida (McKenzie-Arenberg and Toth 1990). The District is

further divided into five ground water basins. A map of the District

and its five ground water basins is shown in Figure 3.1. Hydrogeologic

information on each of the five ground water basins is available from

SJRWMD technical publications SJ 89-4, SJ 90-8, SJ 90-10, and SJ 90-11

(Mckenzie-Arenberg 1989; Huff and Mckenzie-Arenberg 1990; Mckenzie-

Arenberg and Toth 1990; Mckenzie-Arenberg and Szell 1990).

Ground water resources in the District are provided by three

general aquifer systems defined by the geologic setting. These are the

surficial (unconfined), the intermediate, and the Floridan aquifer

systems. The Floridan aquifer provides the primary source of ground

water for most of the District.

Geologic Setting

The District is located on the Coastal Plain province of the

Southeastern United States. The Coastal Plain province is underlain by a

sequence of unconsolidated to semiconsolidated sedimentary rocks (Bush
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and Johnston 1988). These sediments were laid down upon an eroded

surface of igneous intrusive rocks, metamorphic rocks, and consolidated

sedimentary rocks from the Paleozoic to Early Jurassic age. These

sediments begin as a razoredge where they crop out against the older

metamorphic and igneous rocks of the Appalachian and Piedmont provinces.

From there they thicken seaward to a thickness of approximately 20,000

to 25,000 feet in southern Alabama and south Florida. The underlying

rocks generally dip gently toward the Atlantic Ocean and the Gulf of

Mexico.

The poorly consolidated sedimentary deposits of the Coastal Plain

are easily eroded. When the sediments consist of carbonate rocks

(principally limestone with some dolomite) at or near the surface, karst

topography is developed by the downward-percolating water. A series of

Pleistocene age sandy marine terraces has been developed in much of the

area. The sediments consist of two main facies: (1) generally clastic

rocks containing minor amounts of limestone, and (2) thick continuous

units of shallow-water platform carbonate rocks. In general, limestone

facies of successively younger units (through the end of the Oligocene

age) extend progressively farther and farther updip, overlapping the

older clastic rocks. These carbonate rocks are then overlain, except

where removed by erosion, by clastic facies of Miocene and younger

rocks.

Three categories of sedimentary rocks comprise most of the rocks

underlying the District: Quaternary sedimentary rocks, Pliocene and

Miocene sedimentary rocks, and Oligocene and Eocene sedimentary rocks.

The Floridan aquifer is found in the Oligocene and Eocene layer and in
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the lower Miocene rocks. The intermediate and surficial aquifers are

found in the upper Pliocene rocks and in the Quaternary layer.

The Floridan Aquifer

The Floridan aquifer system is a sequence of hydraulically

connected carbonate rocks of generally high permeability that are of

Tertiary age. The aquifer system generally consists of an upper and

lower aquifer separated by a less permeable confining unit. Where that

confining unit is very thin or nonexistent, as in north Florida and

southwest Georgia, the Floridan is effectively one continuous aquifer.

The two aquifers, the Upper Floridan and the Lower Floridan, are defined

on the basis of permeability and not on time-stratigraphic or rock-

stratigraphic units.

The Floridan aquifer system is overlain by a clastic rock layer of

low-permeability. The degree of confinement of the aquifer system is

determined by the thickness and integrity of this layer. Areas of

recharge, discharge, and groundwater flow in the Floridan are influenced

by the presence or absence of this confining layer.

Within SJRWMD, the base of the Floridan aquifer consists of a bed

of hard brown dolostone approximately 100 ft. thick (Johnson, Frazee,

and Fenzel 1982). This is the Lake City Limestone formation. This

formation is then overlain by the Avon Park Limestone, Ocala Limestone,

and occasionally the Suwannee Limestone formations. In some areas, the

Lower portion of the Hawthorn Formation exists.
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Transmissivitv

Transmissivity 7" defines the rate at which a unit volume of water

will flow across a unit width of aquifer under unit hydraulic gradient

and is expressed in dimensions of volume per length-time. The

transmissivity of the Floridan aquifer is derived from openings ranging

from small fossil hashes to the large cavernous openings common to karst

topography. Thus, transmissivity values within the Floridan aquifer

range from low to very high. Transmissivities are highest (greater than

1,000,000 square feet per day) in major spring areas and unconfined

karst areas of central and northern Florida, where conduit flow is most

likely to occur. Transmissivities of less than 50,000 square feet per

day occur in panhandle Florida and southernmost Florida where the Upper

Floridan is confined by thick clay layers. The aquifer in this area

contains large amounts of micritic limestone that has very low

permeability (Miller 1986). The hydraulic properties of the Lower

Floridan are not as well known, but areas of high transmissivity have

been attributed to paleokarst development.

Transmissivity values can be estimated from aquifer tests,

specific-capacity data, or model simulation. Most transmissivity values

obtained from specific-capacity and aquifer test data are much lower

than model derived values (Bush and Johnston 1988). This is likely due

to a combination of factors including (1) the effects of well losses

during pump tests, (2) the site-specific nature of transmissivity values

derived from pump tests, and (3) the difficulties associated with using

models to calibrate unique transmissivity values by matching observed

hydraulic head distributions. The most common symptom of a non-unique

solution to this calibration problem is for the transmissivities to

III-5



exhibit spatial oscillations which are higher than those anticipated

from a geological standpoint (Neuman and Yakowitz 1979).

Calculated transmissivities, based on pump tests, within the

District range between 1,600 ft2/day in northeast Volusia County to

758,000 ft2/day in Orange County. Model simulated transmissivity values

within the District range from less than 10,000 ft2/day to more than

1,000,000 ft2/day (Bush and Johnston 1988).

Storativitv

Storativity 5 is defined as the volume of water that an aquifer

releases from storage per unit surface area of aquifer per unit decline

in the component of hydraulic head normal to that surface (Freeze and

Cherry 1979). Storativity in confined aquifers is directly proportional

to aquifer thickness, and is defined as the integral of the aquifer

specific storage Ss over depth

b

S -/Ss(z)dz . (3.1)
o

In the Floridan aquifer system, however, reported Storativity

coefficients appear to have no discernable relation to the thickness of

the aquifer on a regional basis. The Storativity values calculated from

aquifer test data range from a low of 0.00001 to a high of 0.02. Most

values fall in the 0.001-0.0001 range. The higher values , 0.01-0.001,

reflect the unconfined and semiconfined nature of parts of the system,

particularly where the aquifer lies very close to land surface (Bush and

Johnston 1988).
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Leakance

Leakance L is defined as the hydraulic conductivity per unit depth

of the overlying or underlying aquifer confining bed, and is usually

given in units of inverse time. The leakance coefficient of the upper

confining unit of the Floridan aquifer ranges from 0.02 per day to

0.0001 per day, based on field-determined leaky aquifer tests.

Digitally simulated estimates of leakance calibrated from measured flow

between the surficial aquifer and the Upper Floridan aquifer range from

2.28xlO"4 per day to 2.28xlO"6 per day. Within the District, the

leakance has been calculated to range from 0.04 per day to 1.3 x 10"7

per day. Generally, leakance values calculated from aquifer test data

are two orders of magnitude larger than those obtained from simulation.

For most test sites, leakance values calculated from aquifer tests are

too large to realistically characterize the true rate of water migration

from the surficial aquifer into the Upper Floridan aquifer. These

values, it has been found, reflect not only the downward leakance from

the surficial aquifer into the Upper Floridan aquifer, but also leakance

into the aquifer from other sources below and adjacent to it.

Furthermore, wells in the Floridan aquifer are usually partially

penetrating, and often intersect local units of low-permeability. Thus,

those leakance values calculated from aquifer tests characterize

leakance from all sources and do not accurately represent downward

leakance.

Regional Flow System

The dominant feature of the Floridan flow system is the springs

which occur in unconfined or semiconfined parts of the Upper Floridan in
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Florida. Spring flow to surface water bodies comprised 88 percent of

the total aquifer discharge prior to groundwater development. The

remaining 12 percent occurred as diffuse upward leakage. Total

redevelopment discharge stood at approximately 21,500 cubic feet per

second (Bush and Johnston 1988).

Recharge to the Floridan aquifer system occurs mostly where the

Upper Floridan is unconfined or semiconfined, and averages 10-20 inches

per year. The high discharge areas are along the coasts, rivers, and

streams. High recharge areas may also appear in the same proximity as

the high discharge areas, indicating a well-developed shallow flow

system within the unconfined to semiconfined areas of the aquifer

system. Within the District, recharge areas are located toward the

center of the state along piezometric highs relative to higher

topographic elevations and coincident with prominent karst or paleobeach

ridges (Johnson, Frazee, and Fenzel 1982). Discharge areas are located

principly in low-lying areas, along the Atlantic coast, or along streams

and rivers.

In those areas of the aquifer system that are tightly confined and

deeply buried, groundwater flow is very sluggish, and discharge to

springs and surfacewater bodies is practically nonexistent. The primary

means of discharge in these areas is by diffuse upward leakage through

the thick confining layers.

Although the regional flow system has not been appreciably altered

by groundwater development, increased pumping has resulted in long-term

regional water-level decline in some areas. This decline has surpassed

10 feet in coastal South Carolina and Georgia, northeast Florida, west-
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central Florida, and panhandle Florida. Local saltwater intrusion as a

result of pumping has occurred in some coastal areas.

The increase in pumping in the Upper Floridan is offset primarily

by reduction of natural discharge and increased recharge rather than a

decrease in aquifer storage. Discharge to springs, streams, and lakes

has been reduced to 95 percent of predevelopment flow and upward leakage

has been reduced to 70 percent of predevelopment conditions. Natural

recharge has been increased by about 12 percent (Bush and Johnston

1988).

The Surficial Aquifer

The surficial aquifer consists of late Miocene, Pleistocene, and

Recent Age deposits (Johnson, Frazee, and Fenzel 1982). It is an

unconfined system ranging from 20 to 200 ft in depth. It is directly

recharged by rainfall, with the top of the aquifer defined by the water

table under atmospheric pressure. The water table marks the line below

which all pore spaces are filled with water (Mckenzie-Arenberg and Szell

1990).

Transmissivity values in the shallow aquifer within the District

range from 240 ft*/day to 40,200 ft2/day. Specific storage values range

from 0.28 (unconfined) to 0.0001 (semi-confined). Ground water flow in

the surficial aquifer usually follows the land surface topography.

The Intermediate Aquifer

The intermediate aquifer lies between the surficial and the

Floridan aquifer, and is usually found within the confining unit of the

Floridan. Composed of clays, and thin water bearing-zones of sand,

III-9



shell, and limestone, the intermediate aquifer is a low-yielding aquifer

throughout most of the district. Where the Floridan aquifer contains

water of marginal quality, however, this aquifer can be an important

source of ground water.
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CHAPTER IV
GEOSTATISTICAL ANALYSIS OF AQUIFER PARAMETERS

Introduction

Geostatistical techniques rely upon the premise that information

about a phenomenon in space can be deduced by sampling and examining a

small representative set of data from an infinitely larger set of

potential observations on the phenomenon (Journel and Huijbregts 1978).

In hydrogeology, available data on hydrogeologic properties is extremely

limited in comparison to the vastness and complex variability of these

properties in space. Exact determination of the spatial distribution of

hydrogeologic properties could only be accomplished with an infinite

sampling set over the space in question. This being obviously

impossible, the hydrogeologist must utilize geostatistical techniques to

obtain reasonable estimates of the spatial distribution of the

phenomenon from a set of relatively few point measurements.

Since geostatistics involves making inferences with limited

available data, it relies heavily on probability theory. For most

phenomena, there exist many possible outcomes or realizations. Each of

these has an associated probability of occurrence. Knowledge of the

range of possible realizations and their probabilities can lead to

confident estimations of future behavior or past states of the

phenomenon.
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Theory

Random Fields

Many hydrogeologic parameters such as piezometric head,

transmissivity, storativity, and leakance exhibit significant spatial

variability over relatively small distances. Examination of these data

indicates, however, that these parameters are not completely disordered

in space. There is some spatial structure which must be taken into

account. For example, transmissivity values measured over a regional

aquifer will vary erratically around the regional mean. However, it is

likely that clusters of high transmissivity measurements and clusters of

low transmissivity measurements will occur in different regions of the

aquifer.

The duality of the random and structured aspects of hydrogeologic

parameters can be conveniently described using random field theory. A

random field Zx is defined as a collection or ensemble of random

variables that vary over space, any one realization of which is observed

at a given time and location. The random field Zx can be expressed as

where Zx is the population mean, or expected value, of the random field

at location x, and £x is the zero-mean random fluctuation or residual at

x. The mean Zx characterizes the large-scale variations of the natural

phenomenon while the residual £x characterizes the usually small-scale

random variations around the mean value. In general, random variables

Z1 and Z2 occurring at locations x, and xz will be statistically
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correlated with one another. This correlation can be dependent on both

the magnitude and direction of the vector h separating the two points,

as well as the absolute locations of the points within the random field.

A complete probabilistic description of the random field Zx

requires knowledge of the joint probability density function between the

random variables at all points in space. For practical applications,

however, where only one realization of the random field is generally

available, this infinite order probability density function will never

be known. Therefore we must settle for more easily obtainable

descriptions of the random field such as its mean, variance, and

covariance or variogram.

The population mean, or expected value, of a random field is

defined as the sum of all the values its random variables may take, each

weighted by the probability with which that value is taken. For a

continuously distributed random field with known probability density

function fz(Zx), the population mean is defined by the following

equation:

J

where E{ } is the expectation operator. A random field is said to

exhibit a stationary mean if the mean does not vary with location, i.e.

E{ZX) = Zx • Z. An estimate of the population mean of a stationary

random field may be calculated from a finite sampling of n random

variables Z, (1 = l,2,...,n) taken from one realization of the random

field using the following equation:
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(4.3)

where Z is the estimated population mean of the stationary random field

**•

The population variance o*(x) of a random field provides a

measure of the expected deviation of each of its random variables from

its respective population mean, and is defined as

J

The population variance is stationary if its value does not vary with

location, i.e., E{(ZX - ZJ
2} = <r2(x) = a2 An estimate of the

A A Z Z

population variance of a stationary random field may be calculated from

a finite sampling of n random variables taken from one realization of

the random field using the following equation:

i.'

The standard deviation az of a random field is simply the square root of

its variance <7Z
2.

The population covariance function of a random field describes the

expected similarity, or spatial correlation, of two values of the random

field Z, and Z2 observed at locations x1 and x2. A high covariance

between the pair of random variables Z, and Z2 indicates that

measurement of one of these random variables provides a significant
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amount of information about the other. Theoretical determination of the

covariance function requires knowledge of the joint probability density

function fj 2(ZVZ2), and is defined as

C1f2(x,,x2) = £{(7, - ZHZ, - Z2)}

• a

= JJ (Z, - Z,)(Z2 - Z2)f,i2(ZrZ2)dZ,dZ2 , (4.6)
-0-0)

where C, 2(x,,,x2) is the covariance of the two values of the random field

Z, and Z2 at locations x1 and x2.

In general, the covariance function depends simultaneously on the

two spatial locations x, and x2. However, if the population covariance

is to be inferred from one realization of the random field, it must be

assumed to be stationary. The covariance function is defined to be

stationary if it depends only on the vector modulus \h\ = |x, - x2|

separating two points in the random field, and not the actual locations

of these points, i.e.,

ch ' ci,2d
xi - *2D '

 ci.2(
xi»xz) ' (4'7)

where Ch is the stationary covariance function expressed as a function

of the separation distance \h\. The population covariance function for

the stationary case may be estimated using the following equation:

N(h) . .
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where Ch is the estimate of the pouplation covariance function and N(h)

is the total number of pairs of points separated by distance \h\ that

have been sampled from a particular realization.

An alternative summary of the spatial correlation of a random

field is the population variogram. The population variogram 2y, 2(x^,xz)

describes the expected variability of two values of the random field Z.,

and Z2 observed at locations x, and x2, and is defined as

JJ

In general, the variogram, like the covariance function, simultaneously

depends on the two spatial locations x, and x2. For the stationary

case, however, the variogram depends only on the vector modulus \h\

separating two points in the random field, and not the actual point

locations:

where 2yh is the variogram expressed as a function of the separation

distance \h\. An estimate of the variogram may be obtained for the

stationary case using the following equation:

, N(h)
z ) 2- (4'u)

where 2yh is the estimate of the population variogram and N(h) is the
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total number of pairs of points separated by distance \h\ that have been

sampled from a particular realization.

A random field is said to be second-order stationary when its

mean, variance, and covariance are all stationary. In this case, the

covariance and variogram functions are equivalent tools for describing

the spatial correlation of the random field Zx, and have the following

relation:

where yh is termed the semi variogram. Thus, while the covariance

function increases with increased correlation, the variogram decreases

with increased correlation.

It should be noted that second-order stationarity implies

stationarity of the variogram, but the converse is not true.

Stationarity of the variogram requires only the statistics of the

increment (Z, - Z2) to be stationary. This is a less restrictive

assumption than second-order stationarity since it allows for a linear

trending mean. Notice also that in (4.8) knowledge of the population

mean is required to estimate the covariance function, while in (4.11)

the differencing procedure employed in estimating the variogram

eliminates the need to estimate the population mean. Thus, it is often

preferable to use the variogram to describe the spatial correlation

structure of a statistically random field, particularly when there is

limited field data available.
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Properties of the Varioqram

The vector h of the variogram 2yh has a modulus of \h\ and a

direction of a. In general, for any direction a the variogram increases

with \h\ from its origin y0=0. This behavior of the variogram is a

representation of the fact that, in general, the expected difference

between any two point values increases as the distance \h\ separating

them increases. For small values of |/j|, the manner in which the

variogram increases characterizes the spatial continuity of the

phenomenon. In a sedimentary deposit, for example, spatial changes in

hydrogeologic properties usually occur very slowly, resulting in

variograms with a gentle, regular growth from zero. In other cases,

such as in fractured media, hydrogeologic properties will change rapidly

over short distances. This results in what will later be defined as the

Nugget Effect. The Pure Nugget Effect occurs when there exists no

spatial correlation regardless of the distance between two samples,

i.e., they are completely independent of each other.

In any given direction a, the variogram may stabilize at a plateau

beyond some distance \h\ = a, called the range or zone of influence.

Beyond this range a, the influence of a sample disappears and the two

quantities zx and zx+h are no longer correlated. In an isotropic

situation, the range is the same in all directions a of space. However,

many geologic deposits are anisotropic, so the range becomes dependent

on a. For instance, if the vertical variogram presents a stronger

variability (i.e., shorter range and higher plateau) than the horizontal

variogram, the horizontal sedimentary character of the phenomenon is

expressed.
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The plateau of constant value beyond the range a of the

semivariogram function is called the "sill," C0, and is equal to the

population variance of the random field

Var{Zx) = a? (4.13)

where y» is the semivariogram value for very large distances (greater

than the zone of influence a). Semivariograms which exhibit both a sill

and a range are called "transition" models, cf. Figure 4.1. Note that

the existence of a sill implies a finite variance which reveals that

second-order stationarity is valid.

Behavior of the variogram near the origin characterizes the

continuity in space of the random field Zx. Four main types of behavior

can be categorized, cf. Figure 4.2.

(a) Parabolic: yh~>1|/j|
2 when /»-0. Parabolic behavior indicates

highly regular spatial variability.

sill

range

IN

Figure 4.1 Typical transition model with sill C0 and range a.
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Figure 4.2 Behavior near the origin of the semivariogram.
(a) Parabolic behavior; (b) linear behavior;
(c) nugget effect; (d) pure nugget effect (after
Journel and Huijbregts 1978).

(b) Linear: yh~>4|/j| when /j-0.

(c) Nugget Effect: yh is discontinuous at /»=0, where y0 = 0.

At a distance 0+£, where £ is very small is relation to data

observation distances, the semivariogram function jumps to

y0+{ = y00, a constant non-zero value called the nugget. As

\h\ increases to distances larger than £, the variability

becomes more continuous (see Figure 4.2c). This discontinuity

of the variogram at the origin is due both to micro-

variabilities (i.e., variability over distances smaller than

the scale of measurement) of the geologic formation and to

human measurement errors.

(d) Pure Nugget Effect: y0 = 0 and yh = y00 = CQ = a* when h>e,

where s is very small in relation to data observation

distances. The pure nugget effect corresponds to the absence

of auto-correlation. For all experimental distances, no

matter how small, the random variables Zx and Zx<-(1 are

uncorrelated. This behavior is very rare.

IV-10



Inter-Correlated Random Fields

Often, a phenomenon can be described by several independent and/or

inter-correlated random fields. It may provide valuable insight to

study the relationship between these random fields, especially if they

are strongly correlated.

An aquifer, for example, can be characterized by the properties of

piezometric head, transmissivity, and storativity. Each property

independently can describe an important aspect of the aquifer, while all

three together can provide a more complete picture of the aquifer's

spatial structure and resource potential. Often, however, information

on all three properties is not available for each data point.

Therefore, it would be useful to use the information provided by one

variable to compensate for missing information on another.

The theoretical development of the probabilistic description of

correlated random fields parallels that of a single random field.

Assuming a set of K inter-correlated stationary random fields, the

following conditions apply:

(i) for each random field Zx
k, the mathematical expectation

exists and is constant,

E{Zx
k) = Zk = constant, for all x;

(11) for each pair of random fields [Zx
k,Zx

k'], the cross-

covariance exists and depends only on the vector ht

Ch
kk< = E{Zx

k-Zx
k;} - ZkZk', for all x; (4.14)
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(iii) a cross-variogram exists,

2yh
kk' = E{[Zx

k - Zx
k
h][Zx

k' - Zx
k;]}, for all x. (4.15)

Properties of the Cross-Variogram

The properties of the cross-variogram are similar to those of the

direct variogram with a few exceptions. The direct variogram is

actually a special case of the cross-variogram. When k'=k, equations

(4.14) and (4.15) revert to the definitions of the covariance and

variogram, Ch and 2yh , equations (4.6) and (4.9).

Whereas a direct semivariogram is always positive, a cross-

semivariogram ykk,(/0 can take negative values. A positive value of the

cross-semivariogram indicates that a positive increase in one of the

variables (k) indicates a positive increase in the other (k'). A

negative value of the cross-semivariogram indicates a negative

correlation between variables, i.e., as k increases, k' decreases.

As with the direct variogram, the cross-variogram is related to

the cross-covariance of second-order stationary random fields by the

equation

2yh
kk< - 2(akk')2 - Ch

kk' - Ch
k'k. (4.16)

Theoretical Variogram Models

To statistically characterize a particular realization of a random

field, it is necessary to perform a structural analysis. It has already

been shown that a variogram provides a description of the variability

structure of a random field. An experimental variogram consists of a
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discontinuous series of formulated data points to which a theoretical

continuous function model must be fit. An experimental variogram is

incomplete without a fitted model. Therefore, every geostatistical

study must begin with the construction of a variogram model. The

variogram models developed to describe a random field can also be

applied to cross-variograms of two intercorrelated random fields.

For a random field Zx with a stationary semivariogram yh, there

exists two main semivariogram characteristics: the behavior at the

origin and the presence or absence of a sill.

Semivariogram models which exhibit a sill are called transition

models. The sill value C0 = a* of a transition model is defined as the

variance of the stationary random field Zx, with the covariance being Ch
= X« - Yh = co ~ V Transition models can be categorized by their

behavior at the origin: linear or parabolic, with or without a nugget.

Parabolic behavior at the origin indicates highly regular

structural variability and is rarely found in hydrogeology. The most

common model used to describe parabolic behavior at the origin is the

gaussian model:

yh = C0-(l - exp(-/»
2/a2)). (4.17)

The sill of the semivariogram is reached asymptotically and the

parameter a governs the rate at which the sill is approached. For a

gaussian model, the magnitude of the pratical range ag = a/3 gives an

indication of the distance over which the random field is correlated,

i.e., ag can be considered the distance at which yag = 0.95C0 - C0

(Journel and Huijbregts 1978).
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Linear behavior at the origin is a frequently encountered type of

behavior in hydrogeology. Two models describing such behavior are the

spherical and exponential models. The spherical model of the

semivariogram yh is defined as:

' 3 h _ 1 /?3

2 a 2 a3 (4.18)

1 = sill hia.

The spherical model effectively reaches its sill at a distance h = a,

beyond which no spatial correlation exists.

The exponential model approaches its sill asymptotically, and is

defined by:

C-(l -

where again the parameter a governs the rate at which the sill is

approached. For the exponential model, the pratical range ae = 3a gives

an indication of the distance over which the random field is correlated,

i.e., ae can be considered the distance at which yae = 0.95C0 - C0

(Journel and Huijbregts 1978). Because of the asymptotic behavior of

the exponential model, it reaches its sill more slowly than the

spherical model.

When there exists a nugget effect y00, then the semivariogram

model yh becomes a nested model composed of the fitted model (for

instance, an exponential model) plus the nugget y00, i.e.:

yh = roo + Vt
1' exp(-V-)) (4-2°)
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David (1977) notes that, in general, geologists tend to use the

spherical model. In geologic problems, and by inference hydrogeologic

problems, the exponential model displays too gentle a growth to

adequately characterize the variability structure of a regionalized

variable.

The three transitional models can be compared by assigning each

model a sill value of C0 = az
2 = 1. It can then be seen (as was

discussed above) that the correlation parameters of the gaussian and

exponential models, ag and ae, can be compared to the correlation

parameter a of the spherical model by the following relationships:

ag = a/3,

ae = 3a.

(4.21)

(4.22)

Figure 4.3 shows the relationship of these three sill models.

Figure 4.3 Three general transition models (after Journel and Huijbregts
1978).
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Two models which do not exhibit a sill are the power and linear

models. These nonstationary models correspond to random fields with

unlimited capacity for spatial variability (Journel and Huijbregts

1978). Neither the variance nor the covariance of the random field Zx

can be defined.

The power model is defined as

yh = h
r 0<r<2, (4.23)

with the limits 0 and 2 excluded from the set of possible values of r.

As r increases between one and two, the behavior of yh at the origin

becomes parabolic, indicating a random field which is very continuous in

its spatial variability. In practice, power models for Kr<2 are seldom

used since they indicate a random field with a linearly trending mean.

Instead, the trend is usually accounted for with a trend function, and

the resulting detrended random field is then modeled as stationary.

A special case of the power model which is frequently used to

describe only incrementally stationary, or intrinsic, random fields is

the linear model

yh = oh (4.24)

where a is the slope at the origin and r = 1. This model, when used for

small distances (/»-0), can also be fitted to spherical and exponential

models that have linear behavior at the origin.
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Models of Anisotropv

A phenomenon is said to be isotropic when its semivariogram

function yh depends only on the modulus \h\ of the vector /?, i.e., the

variability of the phenomenon is the same in every direction. If the

phenomenon's variability is dependent on direction, then it is

anisotropic, and the semivariogram function yh(<r,p) is direction and

vector dependent. The method of modeling an anisotropic semivariogram

depends on the type of anisotropy of the phenomenon: either geometric or

zonal .

For n directional semivariograms, geometric anisotropy is present

if:

(a) each of the n semivariograms can be modeled by n transition

models of the same type;

(b) each of the n semivariograms have the same sill;

(c) the ranges of the n semivariograms form an elliptical -shaped

directional graph in two dimensions or ellipsoidal in three

dimensions, cf. Figure 4.4.

For example, consider two semivariograms in two particular

directions in space, a, and <r2, which follow the above guidelines. The

two semivariograms are unique only in their direction and range. To

transform the two anisotropic models ŷ U,) and yh2(*2) i
nto one

isotropic representative model yh , the two models are equated by the

ratio of their ranges â /â . For the two models

-,h* ' Mai» (4-25)
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Figure 4.4 Semivariogram and directional graph for geometric
anisotropy (after Journel and Huijbregts 1978).
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and

a single spherical model with a range a 2 is derived

«2 2a_

where h' - /?.— , i.e.,

When the anisotropy cannot be reduced by linear transformation, a

model of zonal anisotropy must be used. This model is the one most

currently used in practice (Journel and Huijbregts 1978). A zonal model

of anisotropy is simply a nested structure of anisotropic component

structures. Given a coordinate system of (u,v,w), consider two

semivariogram models yhu , constructed in direction /»u, and yhVH (h^ =

V(/?v
2 + /JM

2))> isotropic for directions hy and /JM at right angles to /)u.

A nested model in three dimensions can be adopted which is just the sum

of the first two:
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Constructing a Varioqram or Cross-Varioqram

When performing a geostatistical analysis on field data, many

factors are involved in constructing a meaningful variogram and/or

cross-variogram. First, there must be enough sampled data to assure

proper statistical analysis. The ideal data sampling configuration for

constructing a variogram is a systematic grid with each data point

separated from its neighbors by a vector h. However, in reality, data

distribution is often somewhat random and unstructured due to the

expense of sampling and availability of existing data. Thus, for

nonaligned data, distinct direction paths for variogram computation will

not contain enough data points for proper analysis. Instead, the data

must be grouped into angle classes and distance classes.

An angle class is defined by the arc [a±da], where a is the

direction angle. The increment d<r is appropriately chosen to facilitate

proper analysis according to the amount of data points available. Each

data value lying within the angle class is associated with every other

value located within the arc. Within the angle class, distance classes

can be created to compensate for lack of uniform spacing of data. Every

data pair that is separated by a distance [h±e(h)] is used to estimate

the value yh, where e(h) is the distance tolerance. Careful analysis of

experimental variograms in four or more directions with appropriate

angle classes can reveal anisotropic behavior.

When angle and distance classes are used, a smoothing of the

experimental variogram relative to the theoretical variogram occurs.

The tolerance e(h) should be large enough to ensure that each distance

class has enough pairs for variogram reliability, yet small enough to

allow at least three or four classes before the sill is reached. For
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each angle and distance class combination, there should be on the order

of 30 to 50 pairs for the computation of a reliable semivariogram data

point yh. The grouping into distance classes creates a smoothing effect

which is most significant at very small distances h. Thus for b/j<O.U,

where L is the dimension of the field of study and b=[l,2,...], the

experimental variogram data points [yh»y2h»*"»ybiJ
 snould be discarded,

since they will not be reliable estimates of the actual variogram.

Journel and Huijbregts (1978) state that an experimental variogram

should only be considered for distances less than half the dimension of

the field of study, i.e., \h\<L/2. This distance L/2 is known as the

limit of reliability. This limit is a result of the fact that at

distances \h\>L/Z, the uncertainty of the variogram estimate is large

and thus virtually any theoretical model can be used to fit the

semivariogram and statistically pass a reliability-of-fit test.

The procedures and rules of thumb discussed above for the

construction of an experimental variogram are also valid for the

construction of the experimental cross-variogram.

Kriqinq Theory

Kriging, after D. G. Krige, a South African mining engineer who

pioneered the use of geostatistics, was first developed as a linear

interpolation tool (Rouhani et al. 1990a). Although many estimation and

interpolation techniques exist, kriging provides the best (i.e., minimum

variance) linear unbiased estimate of the phenomenon being studied as

well as a measure of the accuracy of this estimate. It is a local

estimation technique which requires only the knowledge of the measured

data set and the covariance or variogram of the underlying random field.
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For a second-order stationary random field Zx with mean m and

covariance function Ch, the kriging linear estimator Z0 is a weighted

sum of the n measurements of the random field:

(4-29)

The kriging weights, /l; , are selected to achieve the desired unbiased

minimum variance estimation properties. To ensure that the estimator is

unbiased, the expected value of the estimate Z0 must be equal to the

true expected value m of the random field. Applying the expectation

operator to (4.29) gives:

E{Z0) = £X- E{Z,.} = £4 m. (4.30)
i i

Therefore, to provide an unbiased estimator, it is required that

To achieve the "best" linear estimate possible requires that the

I.' 3 also be selected to minimize the estimation error, or estimation

variance. The estimation variance <rK0
2 is the expected value of the

squared difference between Z0 and Z0. The expectation of the estimation

variance can be written:

E{[Z0 - Z0]
2} = E{Z0

2} - 2E{Z0Z0) + E{Z0
2}. (4.32)
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Substituting (4.29) into (4.32) and taking the expected value gives:

n
_ 2 2 o V"̂  i /- T~* T~* * 5 /« / /
^CO ' aO ~ Z 2^ / l i C Oi + Z^Z^^i^jS'j ' ^

where:

<70
2 is the variance of Z0,

C0l- is the covariance of Z0 and Zxj,

C.j is the covariance of Zxi and Zxj.

Thus, to obtain the best linear unbiased estimate, the estimation

variance (4.33) is minimized by optimal selection of the .̂'s subject to

the unbiasedness constraint expressed in (4.31). This minimization is

easy to achieve using standard lagrangian techniques which adjoin the

constraint to the function being minimized, to form a new objective

function F (David 1977):

^2 oT^ j r . V^T^ i i r x 9., IY^ 1 1 I (A 1A.\- <^ -22^/t,.C0i + ̂ Z^^i^jhj + z^ 2^Ai " M ' v'*"3*;
i-1 i J I i J

By taking the derivatives of the adjoined objective function (4.34) with

respect to the unknowns U,-'s and ̂ ) and setting them equal to 0, a

linear system of equations referred to as the kriging system is

produced:

M - (4.35)
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which in matrix form can be written as [K][X] = [M], where K, X, and M

are defined as:

[K] =

J 0

W [M]

U0n

1

The kriging matrix [K] is symmetric, i.e., C..} = Cjf, and depends only on

the spatial configuration of the sampled data points.

Both the [K] and [M] matrices can be computed from the covariance,

and thus the solution to the kriging equations is [X] » [K]~1[M]. Once

[X] is known, of course, then the kriging linear estimator Z0 of

equation (4.29) can be computed.

The minimum estimation variance as defined in equation (4.33) can

be simplified mathematically by recognizing that

(4.36)

and thus:

(4.37)

The kriging system of [K][X] = [M] which includes the Lagrange

multiplier /u is termed ordinary kriging and does not require prior
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knowledge of the mean value m of the random field Zx (Rouhani et al.

1990a).

It has previously been shown that Ch - a* - yh for a second-order

stationary random field; thus it can be shown that Cfj » o* - ŷ ., where

ŷ . is defined as the semivariogram of Zx, and Zxj. With this equality,

the ordinary kriging system can be rewritten as:

V- =

where (i = I,...,/?).

When the kriging systems are defined with semivariograms, the

estimation variance of ordinary kriging becomes:

- y0o>

where y00 is the nugget effect, if any.

The kriging system has a unique solution and the kriging variance

is non-negative if and only if the covariance matrix [M] is positive

definite. In addition to being an unbiased estimator, kriging is also

an exact interpolator if the measurements are assumed to be error free.

Thus, the estimated value at a sampled point is exactly equal to its

measured value, and the kriging variance is zero.

The kriging system is valid for any support structure, be it

isotropic, anisotropic, nested or not. The kriging system and the

kriging variance do not depend on the particular values of the data, but

IV-25



only on the model structure Ch or yh and the spatial configuration of

the data network.

The influence of neighboring data upon the estimated value is not

linear in relation to their distance from Z0. Although in general it

can be said that the influence of Zxi on Z0 decreases as the distance

between x. and XQ increases, the influence is also dependent on the

relation of the other sample points to the (Z0,Zxi) pair. If no other

sampled data lie between Z0 and Zxj, then Zxi will have a large kriging

weight A. associated with it, and thus will have a significant effect on

Z0. However, if other data lie between Z0 and Zxi, then /I, will take on

a smaller value relative to the >lj's associated with other nearby

measurements Z .. Thus, undue weight will not be given to clusters of
* J

data.

Cokriqinq

As previously discussed, it is often useful to correlate two or

more variables, when there exists a relationship among them, to improve

the quality of the structural variability model. This procedure is

especially useful when there exists more sampled data on one random

field than on another. Once an experimental cross-variogram has been

computed and modeled, then estimated values for one of the random fields

can be interpolated using information from other fields. This procedure

is called cokriging (Journel and Huijbregts 1978; David 1977).

For two random fields, the cokriging estimator is defined as a

linear combination of the available sampled data:

(4-40)
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where n and n' are the number of samples of Zx
k and Zx

k', respectively;

4 and 0j are the associated weight factors for Zx
k and Zx

k',

respectively. The unbiased condition applied to single variable kriging

is similarly required for cokriging for minimum estimation error. Thus,

applying the expectation operator to (4.40) gives:

x? + £ ¥*?'

where mk is the expected value of the random field k, and /nk' is the

expected value of the random field k'. To provide an unbiased cokriging

estimator, the following conditions must be met:

and £0; -0 . ' (4.42)

Cokriging allows an improvement in the estimation of a poorly

sampled variable when there exists a correlation with a more heavily

sampled variable. Rouhani et al. (1990a) state that although it is

theoretically possible to use an unlimited number of variables in

cokriging, in practice, only three or four variables can be handled

efficiently. It is important to note that the cokriging system can be

written in terms of the cross-semivariogram only if the cross-

covariances are symmetric, i.e., Ch
kk' = Ch

k'k.

Loq-Kriqinq

The distributions of hydrogeologic variables such as

transmissivity are often skewed because they are inherently non-

negative. Such variables may not be accurately described using linear
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estimators which often yield both positive and negative results. In

such cases, a simple logarithmic transformation produces symmetrical,

approximately normally distributed values which are often better suited

to linear kriging applications. De Marsily (1986) noted that the use of

logarithms to transform data often produces better-defined

semivariograms with stronger correlations. Log-kriging also preserves

the non-negative and skewed nature of the variable.

Consider the stationary random field Zx with a multivariate

lognormal distribution. It has an expectation m, a covariance Ch, and a

variance a2. To transform the lognormal function to a normal function,

the natural logarithm of Zx is taken, and the random field YK is defined

as Kx = ln(Zx). This new function /x has a multivariate normal

distribution with an expectation of /n', covariance function Ch', and

variance a'2. The moments of these random fields are related by the

following formulae:

m = exp(/n' + <7/2/2), (4.43a)

Ch = /n
2[exp(Ch') - 1] =» a2 = /n2[exp(a/2) - 1] (4.43b)

Once the random field Zx has been lognormalized to Vx, the

semivariogram of the random field Yx can be determined and the linear

kriging estimator YQ can be computed. The kriging estimate of the non-

transformed variable is then defined as:

Z0 = exp[/0 + o'^m. (4.44)
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The corresponding estimation (kriging) variance of the non-

transformed variable can be expressed as:

aK0
2 = /n2exp(<7'2)[l - exp(-<r'K0

2)]. (4.45)

Journel and Huijbregts (1978) note that the estimator Z0 as

defined in equation (4.55) does not always fulfill the nonbiased

condition. To account for this, they suggest multiplying Z0 by a

corrective factor KQ equal to the ratio of the arithmetic mean of Z0 and

the expectation m of the sampled data. Thus the linear estimator

becomes:

Z0 -K0exp[K0 + o\m. (4.46)

This divergence of the estimator Z0 = exp[/0 + a'M
z/2] from the

expectation m is due to the lack of robustness of Z0 with regard to the

multivariate hypothesis. In other words, while the univariate

distribution of Zx can be fitted to a lognormal distribution, its

multivariate distribution is not necessarily lognormal. Furthermore, it

is usually not possible to test the character of the multivariate

distribution of Zx because, in practice, only one realization Zx from a

few data points is available.

Description of Software Packages Used

The geostatistical analysis of the provided data was facilitated

by the use of three computer software packages: SPECTRUM0, GEOPACK
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(Version 1.0) (Yates and Yates 1990), ARC/INFO* and ARC/INFO TIN*.1

SPECTRUM is a coordinate conversion package, GEOPACK is a geostatistical

software package, and ARC/INFO is a geographic information system

software package.

SPECTRUM is an interactive geodetic-to-piane coordinate conversion

software package which allows geodetic coordinate conversion to one of

twelve predefined coordinate systems or one user-defined coordinate

system. It also allows for the choice of three coordinate unit systems:

meters, U.S. survey feet, and international feet.

GEOPACK is an interactive geostatistical software system developed

by S. R. Yates and M. V. Yates, under contract to the U. S.

Environmental Protection Agency's R. S. Kerr Environmental Research

Laboratory, Ada, Oklahoma. GEOPACK is a package of programs for

conducting spatial variability analyses of one or more random fields.

The system is menu driven and provides graphic output in a variety of

forms. GEOPACK includes programs for the computation of basic

statistics, variography, and linear and nonlinear kriging estimation.

The method used by the GEOPACK system in determining the

experimental semivariogram is similar to that outlined in this report

and by Journel and Huijbregts (1978). Semivariogram model fitting can

be performed by using the nonlinear least-squares fitting procedure of

Marquardt (1963). The program also allows for the traditional iterative

method of manually selecting the model coefficients and then visually

inspecting its fit to the experimental semivariogram.

1SPECTRUM° copyright 1990,1991 by RAM-SOFT, Inc., Gainesville, FL, USA.
ARC/INFO and ARC/INFO TIN are registered trademarks of Environmental
Systems Research Institute, Inc., Redlands, CA, USA.

IV-30



The GEOPACK system includes programs for the determination of

ordinary kriging and cokriging estimates along with their associated

estimation variance. The system can also model geometric and zonal

anisotropies. In addition, an option is provided to cross-validate and

optimize the spatial correlation structure by eliminating measured

values, one by one, and comparing kriged estimates to actual measured

values.

ARC/INFO is a geographic information system used to automate,

manipulate, analyze, and display geographic data in digital form.

ARC/INFO TIN is a contouring package which stores, manages, and performs

analyses of three-dimensional surfaces. The acronym TIN stands for

Triangulated Irregular Network - a set of adjacent, nonoverlapping

triangles developed from irregularly spaced points having x, y, and z

values. Each triangle is similar to a facet of a surface. Once a TIN

surface has been created, contour lines can be generated representing

the z values. The two methods available for interpolating contour lines

from a TIN surface are linear and bivariate quintic interpolation. TIN

generated contour maps can then be plotted using the ARCPLOT package of

the ARC/INFO system.

Hydroqeologic Data Description and Analysis

The St. Johns River Water Management District provided location

and hydrogeologic data on 194 wells within the district and surrounding

counties. For each well, the District provided data on latitude,

longitude, and transmissivity. In addition, storativity and leakance

values were provided for some wells.
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Some of the wells were located in clusters of two or more with

each well having the same latitude and longitude designations. In such

instances, it was feasible to combine the information from those well

clusters to describe a single composite well at that location. Thus,

the original list of 194 wells was reduced to 188 wells. Of those 188

wells, 21 wells penetrated the shallow aquifer, 15 wells penetrated the

intermediate aquifer, and 152 wells penetrated the upper Floridan

Aquifer.

Occasionally more than one value of transmissivity, storativity,

or leakance was provided for a particular well. These values

corresponded to multiple tests performed on the same well on separate

occasions. When multiple values were provided, the arithmetic mean of

the sampled values was used to characterize the aquifer at that well

location. Table 4.1 lists the quantity of useful data provided per

aquifer by the District. For the Upper Floridan, 69 values of

storativity were originally provided. For analytical simplicity, it was

assumed that the Upper Floridan is a confined aquifer throughout the

district. Bouwer (1978) states that storativity values for a confined

aquifer lie in the range of 0.01 to 0.00005. Consequently, for

reliability, 7 of the 69 storativity values provided by the District for

Table 4.1 Useful hydrogeologic data provided per aquifer by the St.
Johns River Water Management District.

Aquifer

Shallow
Intermediate
Upper Floridan

Number of
Wells

21
15
152

Number of Wells with Values for
Transmissivity

21
15
152

Storativity Leakance

9 2
9 4
62 32
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the Upper Floridan were discarded for lying outside of this range.

Thus, only 62 storativity values for the Upper Floridan were deemed

useful. Latitude, longitude, transmissivity, storativity, and leakance

data values for each of the 188 wells are listed in Appendix A according

to aquifer penetration.

Upon receiving the well data from the St. Johns River Water

Management District, computer files containing the data were prepared

with the data separated according to aquifer penetration. Using the

SPECTRUM software, the latitude and longitude values for each well were

converted to East Florida state plane coordinates in units of U.S.

Survey feet.

It became immediately obvious that there was not sufficient data

to conduct a variogram analysis for the shallow and intermediate

aquifers. It will be recalled that for each distance and angle class,

it is necessary to have on the order of 30 to 50 data pairs for the

reliable computation of an experimental semivariogram. Additionally, it

is important to have sufficient experimental semivariogram points to

adequately model the variability structure of the phenomenon. For both

the shallow and intermediate aquifers, even when h was set large enough

to allow for a minimum of 10 experimental semivariogram points, each

point only represented an average N' of 14 data pairs. Consequently,

structural analysis was performed only on those wells which penetrated

the Upper Floridan aquifer.

Figures 4.5, 4.6, and 4.7 show the spatial distribution of

transmissivity, storativity, and leakance data, respectively, for the

Upper Floridan aquifer. The sparsity of the leakance data should be

noted. It was decided that there was not sufficient Upper Floridan
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Figure 4.5 Spatial distribution of transmissivity data for Upper
Floridan aquifer.
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Figure 4.6 Spatial distribution of storativity data for Upper Floridan
aquifer.
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Figure 4.7 Spatial distribution of leakance data for Upper Floridan
aquifer.
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aquifer leakance data to perform a reliable structural analysis. With

only 35 leakance values available for analysis, N' was limited to just

13 to 57 pairs. While some experimental semivariogram points were

represented by an adequate N' pairs, there did not exist enough

semivariogram points for the reliable calculation of a structural model.

The GEOPACK software was used to statistically analyze the

hydrogeologic data for the Upper Floridan aquifer. The original

transmissivity and storitivity data was found not to have a normal

distribution. Although a normal distribution is not necessary for

variogram analysis, it does allow for certain simplifying assumptions to

be made in the computation of the experimental variogram. Thus, a

logarithmic transformation of the data was performed.

Experimental variograms of the transformed data were computed

using the GEOPACK variogram package. Semivariogram models were then fit

using GEOPACK's nonlinear least-squares fitting procedure. Estimates

for the model coefficients were thus generated and were then used in a

cross-validation program to optimize the model fit. Plots of the

experimental semivariograms with fitted models were then created for

visual inspection.

Once the spatial variability of the system was evaluated, the

selected semivariogram model was used to perform kriging over a very

large grid covering the District. The GEOPACK ordinary kriging package

was used to prepare the kriging estimates and the kriging variances. If

cokriging was desired, the GEOPACK cokriging package was employed.

The kriging estimate and kriging variance data generated by

GEOPACK was then converted into the correct format for processing in the

ARC/INFO TIN contouring package. If kriging was performed on
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logarithmically transformed data, the inverse transform was performed on

the kriging estimates and variances before mapping. TIN was then used

to create maps of the estimates and their standard deviations which were

computed from the estimate variances.

Results and Discussion

Estimation of Transmissivity in the Upper Floridan Aquifer

A complete structural analysis was first performed on the

transmissivity data from the Upper Floridan aquifer. A statistical
A

analysis of the original data showed it to have a mean value of Z =

45,206 ft2/day, a standard deviation of 98,351 ft2/day, and a skewness

of 5.15. A Kolomogorov-Smirnov test for normal distribution indicated

that the original data was not normally distributed (Figure 4.8) with

the data failing the test at the 99, 95, and 90 percent confidence

levels. It was decided to transform the transmissivity data by taking
A

the natural logarithm of the data, yxi = ln(Zxi). With a mean value of Y

= 9.8611, a standard deviation of 1.24, and a skewness of 0.22, the

transformed data (Figure 4.9) was not rejected by the Kolomogorov-

Smirnov test for normality at the 99, 95, or 90 percent confidence

levels. Table 4.2 lists the districtwide sample statistics for both the

original and the transformed transmissivity data.

A review of the transmissivity data distribution revealed a field

of study length of approximately L = 1,200,000 ft for the district.

Thus, the limit of reliability for variogram calculation was set at L/2

= 600,000 ft. A distance class [h±e(h)] was chosen with h = 6000 ft and

e(h) = 3000 ft, thus allowing for the computation of 100 experimental

semivariogram points. It can be seen in Figure 4.5 that the shape of
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Table 4.2 Sample statistics for Upper Floridan transmissivity data
for St. Johns River Water Management District.

Original Data Transformed Data

Number of Data Values = 152 152
Mean Value = 45,205.63000 9.86107
Median Value = 22,002.50000 9.99891
Standard Deviation = 98,350.77000 1.24002
Variance = 9,609,238,000.00000 1.52752
Skewness = 5.15055 0.22073
Kurtosis = 31.58301 3.19784
Minimum Data Value = 1,216.58000 7.10380
Maximum Data Value = 758,016.00000 13.53850

the district created a roughly rectangular data distribution, with more

data points lying on a north-south axis than on an east-west axis. Due

to this uneven spatial distribution, insufficient data existed in the

east-west direction to allow for the computation of experimental

directional semivariograms. To determine structural anisotropy,

experimental directional semivariograms must be computed along several

axes using angle class increments of d<r $ 45". Given the limitation of

N' > 30 to 50 pairs and the skewed distribution of the transmissivity

data, angle class increments of this size could not be used to produce

reliable experimental directional semivariograms. Thus, it was decided

that only an isotropic experimental variogram should be produced, and

the angle class increment was set to da =90".

It will be recalled that grouping data into distance and angle

classes creates a smoothing effect particularly significant for

distances less than O.U. For this reason, the first point of the

experimental semivariogram, i.e. f3000, was rejected. Otherwise, all the

other experimental semivariogram points met the required limitations.

Figure 4.10 shows the districtwide isotropic experimental semivariogram
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Spherical model fitted to a semivariogram of districtwide
log transformed transmissivity values in the Upper Floridan
aquifer.

computed for all 152 Upper Floridan log-transformed transmissivity data

values.

A cross-validated spherical model with a nugget effect was fitted

to the experimental semivariogram with y00 = 0.5 for the nugget

constant, a sill of C0 = 1.6, and a correlation parameter of a = 101,000

ft. Note that the model sill is close to the sample variance <rz
2 = 1.53

of the districtwide log-transformed data, as expected.

The fitted semivariogram model was then utilized in a kriging

routine to estimate log-transformed transmissivity values over a grid of

12,672 points. The estimation grid consisted of 88 estimation points in

the east-west direction and 144 points in the north-south direction,

with a separation distance in both directions of 10,000 ft. Before the
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kriged values could be used in producing maps, an inverse transformation

of the kriged estimates and variances had to be performed. Employing

(4.45) and (4.46), transmissivity kriged estimates and variances were

produced from the log-transformed data. The mean of the estimated

values Z0 was determined to be 50,742 ft*/d, while the expectation m

estimated from the original data was 45,206 ft2/d. Thus a corrective

factor of KQ = 45,206/50,724 = 0.89 was applied. Figures 4.11 and 4.12

show the resulting transmissivity estimation and standard deviation maps

for the Upper Floridan aquifer based on a districtwide semivariogram.

It should be noted in Figure 4.11 that in regions far from measurement

locations the kriging estimator approaches the sample mean of the data

measurements.

The available data revealed a concentration of very high

transmissivity values in the Orange county region. This cluster of high

transmissivity values noticeably influenced the sample mean m of the

transmissivity measurements taken over the District as a whole.

Consequently, kriging with a single semivariogram over the District

could tend to overestimate transmissivity values in some regions of the

District while underestimating transmissivity values in others if the

mean transmissivity exhibits a noticeable spatial trend . As this

cluster of high values was located in the southern half of the District,

it was decided to divide the District into a northern subdistrict and a

southern subdistrict and to statistically analyze the transmissivity

data in each. Figure 4.13 shows the areas covered by the two

subdistricts.

Statistical analysis of the data in the two subdistricts revealed

skewed distributions in both. Therefore, log transformations of both

IV-42



fi

Units of square ft per day

Less than 50000

50000 to 100000

100000 to 150000

150000 to 200000

200000 to 250000

Greater than 250000

Kilometers

0 10 20 30 40

1 ' l ' ' l ' I

0 10 20 30

Miles

Figure 4.11 Transmissivity estimation map for the Upper Floridan
aquifer based on a districtwide semivariogram.
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Figure 4.12 Standard deviations of transmissivity estimates based
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Figure 4.13 Northern and southern subdistricts.
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Table 4.3 Sample statistics for Upper Floridan transmissivity data
for northern subdistrict.

Original Data Transformed Data

Number of Data Values
Mean Value
Median Value
Standard Deviation
Variance
Skewness
Kurtosis
Minimum Data Value
Maximum Data Value

31,193.29000
24,749.30000
27,583.39000

752,197,700.00000
1.89673
7.80988

1,604.00000
160,026.00000

9.95146
10.11650
0.98589
0.96016
-0.60075
3.03772
7.38043
11.98310

sets of data were performed for the purposes of kriging. Table 4.3

lists the sample statistics for both the original and the transformed

transmissivity data for the northern subdistrict, while Table 4.4 lists

the sample statistics for the southern subdistrict. It should be noted

that the sample mean of the northern subdistrict was about half the

sample mean of the southern subdistrict, reflecting the large influence

of the cluster of high transmissivity values. Also, the sample variance

of the northern subdistrict was significantly lower than the sample

variance of either the southern subdistrict or District as a whole.

Table 4.4 Sample statistics for Upper Floridan transmissivity data
for southern subdistrict.

Original Data Transformed Data

Number of Data Values
Mean Value
Median Value
Standard Deviation
Variance
Skewness
Kurtosis
Minimum Data Value
Maximum Data Value

64
64,472.58000
13,296.65000
146,567.90000

21,146,480,000.00000
3.30317
13.35923

1,217.00000
758,016.00000

64
9.73679
9.49516
1.52223
2.28097
0.64738
2.82378
7.10380
13.53850
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A review of the transmissivity data distribution in the northern

subdistrict revealed a field of study length of approximately L -

720,000 ft. Thus, the limit of reliability was set at L/2 = 360,000 ft.

A distance class [h±e(h)] was chosen with h = 6000 ft and e(h) = 3000

ft, thus allowing for the computation of 60 experimental semivariogram

points. An isotropic experimental semivariogram was produced with an

angle class increment of da = 90°.

Due to the smoothing effect of distance and angle classes, the

first point of the experimental semivariogram, i.e. y3000, was rejected.

Further, points y18000 and y348000 were rejected for having N' less than 30

pairs. Otherwise, all the other experimental semivariogram points met

the required limitations. Figure 4.14 shows the isotropic experimental
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Spherical model fitted to a semivariogram of log
transformed transmissivity values for the northern
subdistrict.
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semivariogram computed for the log-transformed transmissivity data

values of the northern subdistrict.

A cross-validated spherical model with a nugget effect was fitted

to the northern subdistrict experimental semivariogram with a nugget

constant of y00 = 0.34, a sill of C0 = 1.0, and a correlation parameter

of a = 73,000 ft. Once again, note that the model sill is very close to

the sample variance az
2 = 0.96 of the northern subdistrict log-

transformed data. It should also be noted that the sill of the northern

subdistrict is smaller than the sill of the District as a whole,

indicating less data variability in the northern subdistrict. The range

of influence in the northern subdistrict is smaller than for the

District as a whole.

The field of study length in the southern subdistrict was

determined to be L = 620,000, giving a limit of reliability of 310,000

ft. A distance class [h±e(h)] was chosen with h = 10,000 ft and e(h) =

5000 ft and the angle class increment was set to da = 90°. An isotropic

experimental semivariogram was thus produced with 31 points. None of

the experimental semivariogram points were rejected. Figure 4.15 shows

the isotropic experimental semivariogram computed for the log-

transformed transmissivity data values of the southern subdistrict.

A cross-validated spherical model with a nugget effect was fitted

to the southern subdistrict experimental semivariogram. For this model,

the nugget constant was determined to be y00 = 0.33, with the sill set

to CQ = 2.67, and the correlation parameter computed as a = 93,000 ft.

Note that the sill is somewhat larger than the southern subdistrict

sample variance of az* = 2.28. This discrepancy indicates that the log-

transformed transmissivity data in the southern subdistrict may still
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subdistrict.

exhibit some nonstationarity due to the cluster of high data values

around Orange county. This nonstationarity is further revealed by the

"hump" present between lag distances of 60,000 ft and 190,000 ft in the

semivariogram of Figure 4.15. The southern subdistrict sill is much

larger than the sills of the northern subdistrict and the District as a

whole, indicating greater data variability in the southern region of the

District. The southern subdistrict range of influence is larger than

the northern subdistrict range of influence, yet is still somewhat

smaller than that of the District as a whole.

The two fitted semivariogram models for the northern and southern

subdistricts were utilized in a kriging routine to estimate log-

transformed transmissivity values. The estimated values were then
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inversely transformed using (4.45) and (4.46). A corrective factor of

KQ = 0.75 was applied for the northern subdistrict, while a corrective

factor of KQ = 1.00 was applied for the southern subdistrict. Figures

4.16 and 4.17 show the resulting transmissivity estimation and standard

deviation maps for the Upper Floridan aquifer based on the northern and

southern subdistrict semivariograms.

The kriged transmissivity values created from the northern and

southern semivariograms are more variable than those values kriged from

the districtwide semivariogram. Comparison of Figures 4.16 and 4.11

reveals that, compared with kriging over the whole District with a

single variogram, kriging with the northern and southern semivariograms

produced lower estimated transmissivity values in the north and higher

estimated transmissivity values in the south. Additionally, kriging

with the northern and southern semivariograms produced smaller

estimation uncertainty in the north and greater estimation uncertainty

in the south, cf. Figures 4.17 and 4.12.

The radial nature of the estimates and their variance is a result

of modelling the random field as isotropic. The estimation variance is

smallest in areas surrounding clusters of sampled data points and

increases radially outward, as can be seen in Figures 4.12 and 4.17.

The estimation variance is greatest where no sampled data points fall

within the semivariogram correlation distance a of the point of

estimation. It should be noted that the coefficient of variation a^/mQ

(where /n0 is the conditional mean, or estimated value, and aQ is the

estimation standard deviation at point x0) is much greater than one in

several areas of the estimation maps. These large uncertainties are due

to the high variability of the available data.
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Figure 4.16 Transmissivity estimation composite map based on the
northern and southern subdistrict semivariograms.
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Figure 4.17 Standard deviations of transmissivity estimates based
on the northern and southern subdistrict semivariograms.

IV-52



At first glance, the estimated values created from the northern

and southern semivariograms seem more representative of the observed

transmissivity distribution within the District. However, this

observation is purely subjective in light of the fact that the estimates

were produced from only one realization of the random field. In

addition, the northern and southern semivariograms exhibit larger

fluctuations and are less reliable (based on number of data pairs) than

the districtwide semivariogram. The southern semivariogram exhibits a

"hump" which may indicate that the data should be detrended in that

region to produce a more reliable semivariogram. Thus, it is felt that

the districtwide semivariogram produces a more reliable estimation of

the transmissivity distribution within the District.

Figure 4.18 shows model derived estimated transmissivities for the

St. Johns River Water Management District (Bush and Johnston 1988).

These transmissivity estimates were derived using a three-dimensional

finite-difference computer model. The estimation of the

transmissivities was a two-phase process described in detail by Bush and

Johnston (1988). Essentially, transmissivity estimates were calibrated

against the estimated steady-state predevelopment potentiometric surface

of the Floridan aquifer and the estimated discharge to surface water

bodies. The estimates were then adjusted by superimposing average 1980

pumping on the calibrated predevelopment model and then comparing the

observed May 1980 potentiometric surface of the Upper Floridan aquifer

with the modeled potentiometric surface.

The reliability of the model derived transmissivity estimates is

often low due to the insensitivity of model-computed heads to

transmissivity. Comparison of Figure 4.18 with Figure 4.16 shows that,
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Figure 4.18 Model derived transmissivities for the Upper Floridan
aquifer (after Bush and Johnston 1988).
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in general, the model derived transmissivities are an order of magnitude

greater than those estimated using field aquifer tests and

geostatistical analysis. It is felt that geostatistical analysis

provides a more objective and reliable method to estimate the

transmissivity distribution within the District than calibration using

groundwater models.

Estimation of Storativitv in the Upper Floridan Aquifer

A statistical analysis of the storativity data for the Upper

Floridan was performed. Like the transmissivity data, the storativity

data was found to be skewed, cf. Figure 4.19. A log transformation was

performed on the original data to create a data set with an

0.00025 0.00125 .00225 .00325
Storativity

.00425 .00525 .00fc25

Figure 4.19 Histogram of storativity data for the Upper Floridan
aquifer.
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Figure 4.20 Histogram of log-transformed Upper Floridan storativity
data.

approximately normal distribution, cf. Figure 4.20. Table 4.5 lists the

sample statistics for both original and transformed storativity data.

After reviewing the available storativity data and its spatial

distribution, it was determined that experimental semivariogram field of

Table 4.5 Sample statistics for Upper Floridan storativity data.

Number of Data Values =
Mean Value
Median Value
Standard Deviation
Variance =
Skewness =
Kurtosis
Minimum Data Value
Maximum Data Value

Original Data

62
0.00077
0.00048
0.00106
0.00000
3.57884
16.78627
0.00007
0.00620

Transformed Data

62
-7.67607
-7.63484
0.97032
0.92634
0.25273
3.01702
-9.56701
-5.08320
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study length should be set to L = 1,120,000 ft, thus giving a limit of

reliability of 1/2 = 560,000 ft. A distance class was chosen with h =

20,000 ft and e(h) = 10,000 ft and the angle class increment was set to

da = 90°, thus producing an isotropic experimental semivariogram with 28

points. One of these experimental semivariogram points, YIAQOQO* was

rejected with an N' of less than 30 pairs. Figure 4.21 shows the

isotropic experimental semivariogram computed for the log-transformed

storativity data values for the Upper Floridan aquifer.

A cross-validated spherical model with a nugget effect was fitted

to the storativity experimental semivariogram. The nugget constant for

this model was y00 = 0.55, with the sill being C0 = 1.13, and the

correlation parameter determined to be a = 511,000 ft.

Figure 4.21

100 200 300 400

Distance (thousands of feet)

500

Spherical model fitted to a semivariogram of log
transformed storativity values for the Upper
Floridan aquifer.
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The storativity kriglng estimates, determined with this

semivariogram model, were kriged over the same grid as the

transmissivity estimates. Setting KQ - 0.77, the kriged estimates were

inversely transformed, along with the standard deviation values.

Figures 4.22 and 4.23 show the resulting storativity estimation and

standard deviation maps for the Upper Floridan aquifer.

It was decided to investigate the correlation of the storativity

and transmissivity variables in the Upper Floridan aquifer. It was

noticed that the storativity values tended to increase and decrease

directly with the transmissivity values, although this relationship was

in general only approximate. Therefore, it was decided that co-kriging

the storativity values with the transmissivity values may improve

storativity estimations, given that there was twice the available

transmissivity data than available storativity data. A storativity-

transmissivity experimental cross-semivariogram was developed using the

same distance and angle classes used in the development of the

storativity experimental semivariogram. None of the experimental

semivariogram points were rejected, resulting in the experimental cross-

semivariogram shown in Figure 4.24. A cross-validated spherical model

with a nugget effect was fit, with y00 = 0.12, C0 = 0.40, and a =

126,000 ft.

Co-kriging was performed on the storativity and transmissivity

data using the direct storativity and transmissivity semivariograms and

their cross-semivariogram. Setting K0 = 0.84, the co-kriged storativity

estimates were inversely transformed, along with the standard deviation

values. Figures 4.25 and 4.26 show the resulting storativity estimation
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Figure 4.22 Storativity estimation for the Upper Floridan
aquifer.
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Figure 4.23 Standard deviations of storativity estimates.
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Figure 4.24 Spherical model fitted to a cross-semivariogram of log
transformed storativity and transmissivity values for
the Upper Floridan aquifer.

and standard deviation maps for the Upper Floridan aquifer based on

storativity-transmissivity coregionalization.

Comparison of Figures 4.22 and 4.25 shows that the co-kriged

estimates exhibit more variability than the estimates kriged directly

from the storativity data. This is a result of the variability of the

transmissivity data field. Inspection of Figures 4.23 and 4.26 shows

that, in general, co-kriging did not improve the estimation standard

deviations over direct kriging. This indicates a lack of significant

correlation between storativity and transmissivity values. Thus, little

information about storativity in the Floridan aquifer can be derived

from transmissivity data.
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Figure 4.25 Storativity estimation for the Upper Floridan aquifer
based on storativity-transmissivity co-kriging.
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Figure 4.26 Standard deviations of storativity estimates based on
storativity-transmissivity co-kriging.
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Conclusions

In this Chapter, geostatistical analysis of transmissivities and

storativities within the District produced spatial correlation structure

models for each variable. Knowledge of these models allowed the best

linear unbiased estimates of transmissivities and storativities, and the

associated error in those estimates, to be produced throughout the

District. Maps were generated showing the estimated spatial

distribution of transmissivity and storativity, along with maps of the

standard deviations of these estimates. These maps should provide

valuable information for both defining physically-based deterministic

and/or stochastic groundwater model input parameters and for designing

field studies to gather additional data.

Transmissivities and storativities were found to be highly

variable, and in areas with few measurements higher estimation variances

indicate greater uncertainty. Thus, more measurements should be taken

in regions where estimates have the greatest uncertainty. A comparison

of transmissivity estimates obtained through kriging versus estimates

obtained through regional flow modeling shows little resemblance between

the two. However, the accuracy of the flow model estimates are

uncertain since they were obtained by trial and error calibration of a

regional flow model to estimated steady-state predevelopment conditions.
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CHAPTER V
TIME SERIES ANALYSIS OF PIEZOMETRIC HEAD

Introduction

Data that are obtained from sequential observations of a

phenomenon over time, such as monthly piezometric head fluctuations or

daily precipitation, are called time series. Time series analysis

involves building, identifying, fitting and checking stochastic models

for such data series (Box and Jenkins 1976). Analysis of a time series

is helpful in understanding the mechanisms that give rise to an observed

process. Time series analysis is also useful for forecasting future

events based on past behavior. In hydrogeology, time series analysis

can provide a basis for (1) forecasting hydrological events such as

precipitation, streamflow, and groundwater level in time,

(2) optimization and control of the use of water resources.

Theory

Stochastic Processes

It was shown in Chapter IV that spatially variable hydrogeologic

parameters can be characterized as random fields, and that the behavior

of these random fields can be described by their first- and second-order

spatial moments, i.e., the spatial mean, variance, covariance, and

variogram. Likewise, temporally variable hydrogeologic parameters can

be characterized as random processes that may vary over both space and
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time. The temporal variability of the random process at a particular

location can be described by its first- and second-order temporal

moments, i.e., the temporal mean and variance, as well as the temporal

covariance function. The temporal moments are completely analogous to

their spatial counterparts defined in Chapter IV.

Consider a series of observations [z,, z2,..., zt,-..., zn] of the

random process Zt taken at a certain point x0 at times [t,, t2,...,

tk»..-, tn], cf. Figure 5.1. These observations constitute a discrete

time series. For a discrete series, r0 is defined as the time origin,

At as the incremental time unit, and zk as the observation at the frth

time increment tk = r0 + /rAt.

If a time series can be exactly described by a mathematical

function, the time series is said to be deterministic. Future values

of a deterministic time series can be exactly determined without error.

A time series which cannot be exactly described by a mathematical

1
S

Time (t) -̂

Figure 5.1 An example of a discrete time series.
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function may be considered to be a stochastic time series. Its future

values can only be described in terms of a probability distribution

and/or moments of this distribution. Due to the vast scale and

complexity of the physical mechanisms which govern hydrogeologic

phenomena, stochastic time series models are often useful for estimating

future values and behavior of such phenomena.

A time series of random observations [zr zz,..., zn] is only one

particular realization of the series of random variables [Zr Z2,

..., Zn] generated by the random process Zt at a particular location x0.

As discussed in Chapter IV for random fields, the complete probabilistic

structure of a random process can only be determined from the infinite

ensemble of distributions of all possible series generated by the random

process. In practice, however, only one set of observations is

generally available. Therefore, we must assume the random process to be

stationary in time and that its probability structure can be estimated

from the statistical properties of the one realization that is

available.

To describe the past behavior of a stochastic process and to

predict future behavior, a probability or stochastic model is developed.

A stochastic model can be used to calculate the probability of a future

value lying between two specified limits, or confidence intervals.

Several established classes of stochastic models have been developed to

describe the behavior of stochastic time series. Various analytical

tools are utilized to determine which class of stochastic model should

be employed to describe a process. Some of these tools are the mean and

variance of the process, the autocovariance function, the

autocorrelation function, the partial autocorrelation function, and the
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spectrum. This chapter will discuss these tools and the general classes

of stochastic models.

Moments of Stationary Stochastic Processes

As defined in Chapter IV, a process which is in a particular state

of statistical equilibrium is called a stationary process. Strict

stationarity for a temporally variable random process implies that all

joint probability density functions and associated first- and second-

order moments of the process are unaffected by a change of time origin

r0. Thus, a stationary stochastic process is said to have a temporally

constant expected value, or mean, Z which defines the level about which

it fluctuates in time:

«
E{Zt) = J Ztfz(Zt)dZt = Z, (5.1)

where fz(Zt) is the process probability function. The temporally

constant variance of the process is defined by

a

a* = E{(Zt - Zt)
2} - J (Zt - Zt)

2fz(Zt)dZt, (5.2)

which measures the spread of the time series about its mean.

A random process is said to exhibit a stationary mean if the mean

does not vary with location, i.e., E{Zt) = Zt = Z. Since stationarity

implies that the probability distribution fz(Zt) is the same for all

times t, its shape can be inferred from a histogram of the observed time

series [z,, z2,..., zn], which is just one realization of the random
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process. Additionally, the mean of the stochastic process can be

estimated from the mean of the observed time series

— 1 n

Z = -5>t , (5.3)
"t-1

and the variance of the process can be estimated from the variance of

the time series

(5.4)
n-l£

Under the stationarity assumption, the joint probability

distribution fzlz2(*t1,Zt2) is implied to be the same for all times trt2,

separated by a constant time interval /r, or lag k. The nature of this

joint distribution can be inferred from the covariance between zt

and zt+k, called the autocovariance or covariance Ck at lag k, defined as

E{(Zt - Z ) ( Z t + k - Z ) }

Q o>

JJ <Zti - '«>(** -

Similarly, the autocorrelation pk at lag k measures the correlation

between Zt and Zt+k, and is defined by

:{(zt - Z)
2}f{(zt+k - Z)

2}
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where

C0 = E{(Zt - Z)(Zt - Z)} = E{(Zt - Z)
2} (5.7)

It becomes obvious that the autocovariance Ck is related to the

autocorrelation pk by the following relationship:

(5.8)

With n successive observations [z,, z2,..., zn] of a stationary

process, the relationship expressed in equation (5.8) can be rewritten

with the autocovariance and autocorrelation matrices:

'n-1

'n-2

n-1

Pi
1

Pn-1 Pn-Z Pn-3

Both the autocovariance and autocorrelation matrices are symmetric with

constant elements on any diagonal and are positive-definite.

The following properties result from the definitions of the

autocovariance and autocorrelation coefficients:

/><,=

'-k

_ 2

(5.9)
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A strong correlation is indicated by values of pk near ±1, while a weak

correlation is indicated by values of />k near 0. If Zt and Zt+k are

independent and uncorrelated, then />k = 0.

The correlation, or linear dependence, between two values Zt and

Zt+k a distance k apart is measured by the autocorrelation coefficient /?k

at lag k. This correlation can also be inferred from the autocovariance

coefficient Ck at lag k. The plot of />k versus the lag k is called the

autocorrelation function, or correlation function, of the stochastic

process. The autocovariance function, or covariance function, is

similarly defined as the plot of Ck versus the lag k. It should be

noted that given the relationship Ck = Pkaz
2> the autocorrelation

coefficient pk is dimensionless by definition. Thus the autocorrelation

function is independent of the unit scale of the time series, making it

a very useful analytical tool.

Figure 5.2 shows the autocorrelation function as it relates to the

diagonals of the autocorrelation matrix. The autocorrelation function

is symmetric about zero with />k = />_k, thus in practice only the plot of

the positive half of the autocorrelation function is necessary.

If the probability distribution of a process is a multivariate

normal distribution, the process is called a Gaussian process. A

Gaussian stationary process, then, is completely characterized by its

mean Z, variance az
2, and autocorrelation function pk, or equally by its

mean Z and autocovariance function Ck. The autocorrelation function (or

the autocovariance function) is essential in identifying the model which

generates the stochastic process.

As the theoretical autocorrelation function describes a conceptual

process, it can only be estimated from the experimental autocorrelation
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0.1 -0.1 0.2 04 0.8 1.0

Figure 5.2 An autocorrelation matrix and the resulting autocorrelation
function (after Box and Jenkins 1976).

function. Consider the finite time series [zr z2,..., zn] of n

observations. The estimate of the /rth lag autocorrelation />k is

Ck
A, - — , (5-10)

where

n-k

n-l t_
(Zt - Z)(Zt.k - Z) , fc = 0,1,2,...,/T (5.11)

is the estimate of the autocovariance Ck and C0 = a* as defined in
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equation (5.4). To obtain a useful estimate of the autocorrelation

function, it is necessary to have at least thirty to fifty pairs of

observations separated by lag k.

The experimental correlation values estimated with equation (5.10)

will differ somewhat from the theoretical correlation values. A measure

of this difference is the variance of the estimated autocorrelation

coefficient given by Box and Jenkins (1976):

VAR{pk) - 1 £ (Pv
2
 + Pv+kPv^ - 4/v/v̂  + 2pv

2
a
2} - (5.12)

n v__o

Given a process for which the autocorrelation coefficients />k are

effectively zero when k > q, the variance approximation simplifies to

VAR{pk) - -̂
n v-1

k > q. (5.13)

To compute VAR{pk) for lags greater than <j, the estimated

autocorrelations />k for k = 1,2,...,(7 are substituted for the

theoretical autocorrelations pk in equation (5.13). The square root of

(5.13) approximates the standard deviation of pk and is termed the

large-lag standard error of the autocorrelation estimate.

The correlation between two values Zt and Zt+k is sometimes

influenced by the correlation between the values Zt and Zt+j, where

j = 1 , 2,...,/c-l. The autocorrelation coefficient pk, consequently,

can then be expressed as a weighted linear combination of the j previous

autocorrelation coefficients:
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r̂-\ ,
(5.14)

where #kk is called the partial autocorrelation coefficient. The other

coefficients 0kj, where j = 1, 2,..., fc-1, are used only to calculate

the partial autocorrelation coefficients and are disregarded. Equation

(5.14) leads to a set of linear equations called the Yule-Walker

equations (Box and Jenkins 1976). Since both pk and pk_, are known, then

0kj can be determined from this set of linear equations.

Once the partial autocorrelation coefficients #kk have been

determined for k lags, the plot of the resulting matrix

2̂2

'nn

results in the partial autocorrelation function. Analogous to the

autocorrelation function, the partial autocorrelation function is

symmetric about zero with ̂ kk = #.k.k.

To estimate the theoretical partial autocorrelation function, the

experimental partial autocorrelation coefficients k̂k are computed, with

equation (5.14) becoming

k

£ (5.15)
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which can be solved for ^ki given estimates />k. For a useful estimate

of the partial autocorrelation function, it is necessary to have at

least 50 observations and the partial autocorrelations k̂k computed for

k = 1,2,...,K where K is not larger than n/4. Like the autocorrelation

function, the partial autocorrelation function is useful in determining

the model which describes the stochastic generating mechanism of the

process.

Box and Jenkins (1976) state that it has been shown that the

estimated partial autocorrelations are approximately independently

distributed. Given a time series of n observations for which the

partial autocorrelation coefficients 0kk are effectively zero when

k > p, the variance of #kk can then be estimated as

VAR(4) - - , k > p. (5.16)
n

Thus, the standard error of the partial autocorrelation estimate k̂|c is

just the square root of (5.16).

The Spectral Density Function and Spectrum

Another way of analyzing a time series is based on the assumption

that its behavior can be described with different frequency properties.

The spectral density function, then, is a tool used in the analysis of

the frequency domain of the stochastic process. In order to understand

the spectral density function, the frequency of the periodic variation

of a time series must first be considered.

Consider a zero mean time series which contains a periodic

component at a known frequency. To describe this periodicity, the

V-ll



following model is employed:

Zt = Rcos(ot + 6) + et , (5.17)

where u is called the frequency of the periodic variation, R is called

the amplitude, 9 is called the phase, and et is denotes a stationary

random residual (Chatfield 1989). This model is a simple model

describing the behavior of a time series containing only one periodic

frequency. To describe a stochastic process displaying variations

caused by k different frequencies, (5.17) can be generalized to

Zt -^/?.cos((y jt +e.}) +e t , (5.18)
j-1

where R.} is the amplitude at frequency a..

Recalling the mathematical relationship of cos(0t + 0) = cos0tcos0

- sin<ytsin0, (5.18) can be rewritten as

Zt - ]T (a^os^t + 6jSin<^t) + et , (5.19)

where aj = R.cosd-t and b.} = -flj.sinflj. When the process does not have a

zero mean, the mean m is added to the right side of (5.19).

When fc - « for any discrete stationary process with zero mean

measured at unit intervals, (5.19) becomes

Zt - Jcos6*di/(6>) + Jsinojtdv(<u) , (5.20)
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where u(a) and v(a) are uncorrelated continuous processes which are

defined for all a in the range (0,it) (Chatfield 1989). Although k

approaches infinity, the integrals are taken from 0 to it due to the

periodic repetition of frequencies about it.

Chatfield (1989) states that to since u(a) and v(a) in (5.20) have

no direct practical interest, the spectral density function F(o) is

introduced. The spectral density function is related to u(a) and v(o)

and arises from the Wiener-Khintchine theorem which states that for any

stationary stochastic process with autocovariance function Ck, there

exists a monotonically increasing function F(a) such that

•»
Ck - Jcos6*c/F(<u) . (5.21)

0

For a unit time interval, the highest possible frequency is a multiple

of n and so all variation is accounted for by frequencies between 0 and

it. Thus the variance of the stochastic process is equal to

t
a* = F(it) = C0 = JdF(w) . (5.22)

0

Differentiating f(it) leads to

i
) , (5.23)

where

f(«) - ̂ L^L . (5.24)
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The function f(o) is called the power spectral density function, or

spectrum for short. It becomes obvious that the variance of the process

is related to f(o) by

f
2 Jf(<u)d6> . (5.25)

The spectrum f(o) represents the contribution to the process

variance of components with frequencies in the (0,#+d0) range. A peak

in the plot of the spectrum, then, will indicate an important

contribution to the variance at that frequency. The total area under

the plot of f(a) is equal to the variance of the process.

To determine the spectrum from the autocovariance function Ck, the

inverse of (5.23) is taken:

f (*). = - £ Cke-
iuk , (5.26)

so that f(a) is the Fourier transform of the autocovariance function.

Equivalently, since Ck = C_k, (5.26) can be written as

1 C0
k-1

(5.27)

The spectrum can be estimated from the experimental autocovariance

function by replacing the theoretical autocovariances Ck with the

estimated autocovariances Ck. Further, the spectrum can be determined

from the experimental autocorrelation function by making the

substitution Ck = C0pk, resulting in the experimental spectrum f(a):
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1 +
k-1

(5.28)

The autocorrelation function (or autocovariance function) and the

spectrum are equivalent ways of describing a stationary stochastic

process and are complimentary to each other. While the autocorrelation

function expresses the time-domain behavior of the process, the spectrum

expresses the frequency-domain behavior. Like the autocorrelation

function, the spectrum is useful in identifying the model which drives

the generating mechanism of the process.

General Modeling Basics

Before discussing particular stochastic process models, it is

necessary to define a few modeling basics. Stochastic models can be

generally defined as either stationary or nonstationary. Stationary

models assume that the process remains in statistical equilibrium about

a constant mean level. The covariance of any two values Zt and Zt+k of a

process described by a stationary model depends only on the time lag k

and not on the actual times t and t+k (Cryer 1986). Nonstationary

models assume that the statistical properties of the process are time

dependent.

In the process of defining stochastic models, a couple of simple

operators shall be employed. The backward shift operator B is defined

by BZt = Zt.,,; thus 13% = Zt.m. The backward shift operator is linear

and it is easy to see that for constants b and c

B(bZt + cat) = b[BZt] + c[flat] = 6Zt_, + cat., . (5.29)
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Another important operator is the backward difference operator V

defined as

VZt = Zt - Zt., = (1 - B)Zt. (5.30)

The backward difference operator is useful in detrending a process,

i.e., changing a nonstationary process into a stationary process of zero

mean.

An important concept in stochastic modeling is the white noise

process. A series of random variables at, at.1f at.2,... from a white

noise process is normally distributed and has zero mean and a variance

<ra
2. White noise is purely random and exhibits no correlation between

values. A frequency analysis of white noise shows that all frequencies

contribute equally to the variance az
2 of the process (Cryer 1986).

The Autoregressive Process Model

A stochastic model very useful in describing certain common series

is the autoregressive model. In the autoregressive model, the current

value of the process is described by a finite linear combination of

previous values of the process and a white noise residual at. Consider

a stationary gaussian process represented by Zt, Zt.r Zt.2,... at

equally spaced times t, t-1, t-2, ____ Defining Zt = Zt - m as the

deviations of the process about its mean, then:

Zt = ̂ Ẑ  + 4>Zt.2 + ... + 4/t-p + at (5.31)

is called an autoregressive process of order p, or an AR(p) process;

V-16



termed autoregressive because the process is regressed on previous

values of itself. The weight coefficients #,, ̂ 2,..., ̂ P>
 are finite in

number and can be defined by the autoregressive operator $(B) of order p

by

(5.32)

Thus, the autoregressive model can be written as

- a

or

Zt = f
 1

(5.33a)

(5.33b)

The AR(p) model has p+2 parameters Z, 0,

be estimated from the time series data.

To determine the values for ̂ , ̂ 2,

multiply (5.31) by Zt.k to obtain

...,̂ p, and aa
2 which must

, it is enough to

t-A-p + ?t-A ' (5.34)

By taking the expected values of (5.34), and noting that at is

independent of Zt.k (Cryer 1986), the autoregressive operator

coefficients #k can be expressed in terms of the autocovariance

coefficients Ck:

k > 0.
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On then dividing (5.35) by C0, the autocorrelation function pk satisfies

the difference equation:

k-P k > 0. (5.36)

which is analogous to the original (5.31) for the process Zt.

By substituting k - l,2,...,p in (5.36), a set of linear Yule-

Walker equations for $v 2̂,..., #p, in terms of the autocorrelation

function are obtained which can be written in matrix form as

[PI Pi - - - 1

PI
•

•

•

Pp.,

Pi
1

Pp-2

P2 '

Pi •

Pp-3 •

• • Pp-1

• ' Pp-2

. . 1

from which the #k are easily determined. Estimates for the

autocorrelation parameters can be obtained by substituting estimates

for pk in (5.36) and solving the resulting equations.

Of particular importance are the first- and second- order

autoregressive processes. The first-order autoregressive process,

AR(1), is

Zt = (5.37)

For the process to be stationary, ̂  must satisfy the condition

-1 < ̂  < 1 (Box and Jenkins 1976). Given (5.36), the first-order
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autocorrelation function is

k > 0 . (5.38)

With pQ • 1, the solution to first-order difference equation is

pk = ̂  * * 0 , (5.39)

and in particular

P, - *, • (5.40)

When 0 * ^ * 1 (positive), the autocorrelation function decays

exponentially to zero while the spectrum is dominated by low

frequencies, cf. Figure 5.3. When -1 $ ̂  < 0 (negative), the

autocorrelation function decays exponentially to zero while oscillating

in sign and the spectrum is dominated by higher frequencies. Note that

a is in units of « so that 0 $ a/it * 1.

The second-order autoregressive process AR(2) is written as

Zt = * _ , + ^Zt.2 + at . (5.41)

For stationarity, Box and Jenkins (1976) show that the roots of <fi(B) = 0

must lie outside of the unit circle, which results in the parameters ̂

and 02 having the following restrictions:

<f>2 + *i < l

42 - ^ < 1 (5.42)

-1 < 4>2 < 1
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Figure 5.3 Realizations from AR(1) processes and their corresponding
theoretical autocorrelation functions and spectrums (after
Box and Jenkins 1976).
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The second-order autocorrelation function can be written as

which, when solved for ̂  and #2, give

(5.44.)
1-P,Z

A - 0.2
(5.44b)

1 - PI

Whereas the autocorrelation function indicates the general form of

the stochastic model, the partial autocorrelation function is useful in

determining the order. For an autoregressive process of order p, the

partial autocorrelation function displays a cutoff after lag p, i.e.,

the parameter k̂k will be nonzero for k * p and zero for k > p.

Figure 5.4 shows the four general shapes of the autocorrelation

function of the AR(2) process with their corresponding partial

autocorrelation functions. Note that the partial autocorrelation

function coefficient #kk is zero for k > p. When both autocorrelation

coefficients ̂  and ̂ 2 are positive, the autocorrelation function decays

exponentially to zero while the partial autocorrelation function

exhibits positive coefficients ̂ n and #22. When ̂  is positive and ̂2

is negative, the autocorrelation function decays exponentially to zero

while oscillating in sign and the partial autocorrelation function has a

negative #n and a positive #22. When ̂  is negative and #2 is positive,
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Figure 5.4 Typical autocorrelation functions pk and partial
autocorrelation functions ̂ k for various AR(2) processes
(after Box and Jenkins 1976).
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the autocorrelation function decays in a damped sine wave and the

partial autocorrelation function exhibits negative coefficients #„ and

<t>22. When both autocorrelation coefficients ̂  and ̂ 2 are negative, the

autocorrelation function decays in a damped sine wave while oscillating

in sign and the partial autocorrelation function has a positive ̂ n and

a negative <p22.

It should be noted that the experimental autocorrelation function

and partial autocorrelation function may never truly approach zero as

they are only estimates of the theoretical functions. Thus, the

standard error can be used to determine when pk or ̂ kk effectively

becomes zero. When pk or #kk is greater than two standard errors, it

can be assumed to be nonzero. Those estimated values which are much

smaller than two standard errors can be assumed to be effectively zero.

Values close to two standard errors require consideration as to their

relevancy to the process. Figure 5.5 shows a partial autocorrelation

function for a autoregressive process which is definitely of order 1 and

possibly of order 2. Final determination of order is sometimes

subjective and depends on the accuracy of forecasted values generated by

a fitted model.

The Moving Average Process Model

Another stochastic model very useful in describing certain common

series is the moving average model. In the moving average model, the

current value of the process is described by a finite linear combination

of previous white noise values at. The finite moving average model is

equivalent to an infinite autoregressive model (Bras and Rodriguez-

Iturbe 1985). A moving average process of order q is represented by
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Figure 5.5 Estimated partial autocorrelation function together with two
standard error limits calculated for an AR(1) model (after
Box and Jenkins 1976).

at - M-i (5.45)

= (1 - 0,fi -...- 3

Box and Jenkins (1976) show that the roots of the equation 6(B) = 0 must

lie outside of the unit circle for stationarity of the moving average

model.

The autocovariance function Ck of a MA(g) process is derived by

multiplying both sides of (5.45) by Zt.k and then taking the

expectation. Recalling that white noise has a zero mean and a variance

of oa
2, the variance of the process becomes

C0 = az
2 = (1 + 6,2 + ft,2 +...+ 0qVa

2 • (5.46)
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When k is nonzero, the autocovariance function becomes

••• + 3,-lc0qK2 * - 1,2,...,<7

I k > q
(5.47)

To compute the autocorrelation function pk it is enough to divide

the autocovariance function by the process variance CQ:

1 + 6? + ...

k = 1,2,...,<7

k > q

(5.48)

Unlike the autoregressive process parameters, the moving average

parameters cannot be solved using the Yule-Walker equations, but require

iterative least-squares procedures (Box and Jenkins 1976). Initial

estimates for the moving average parameters can be obtained by

substituting estimates p^ for />k in (5.48) and solving the resulting

equations.

Of considerable practical importance are the first- and second-

order moving average processes. The first-order moving average model

MA(1) has the form

a - (5.49a)

or alternatively

(5.49b)
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The MA(1) process is stationary for all dr but it is necessary that

10,1 < 1 in order to associate present events with past happenings in a

sensible manner (Box and Jenkins 1976). When jdj > 1, then the present

events are only associated with the present and future events of the

process, an undesirable condition. This aspect of the modeling of time

series is called invertibility and is discussed in further detail in Box

and Jenkins (1976).

From (5.46), the variance of the process is defined as

and the autocorrelation function as

(5.51)

k * 2 .

From (5.51) it can be seen that the solution for 0, takes the form of

the quadratic equation

a
6* + — + 1 - 0 . (5.52)

Thus, for stationarity, fl, can assume one of two values, the roots of

the quadratic. However, for invertibility, Box and Jenkins (1976) show

that only one of the roots is valid.

The autocorrelation function pk of a MA(1) process has a cutoff

after the first lag while the partial autocorrelation function tails off

V-26



and is dominated by a damped exponential. In general, p1 is positive

for a negative d} and the spectrum is dominated by low frequencies.

When 0} is positive , />, is negative with the spectrum dominated by high

frequencies.

The second-order moving average process is defined as

and is stationary for all values of 0, and 62. However, the MA(2) is

invertible for only those values which conform to the following

conditions:

02 + 6, < I

dz - 0, < 1 (5.54)

-1 < 92 < 1

which are parallel to the stationarity conditions of an AR(2) process.

From (5.46), the variance of the MA(2) process is defined as

C0 » (1 + 6* + 02
2)aa

2 , (5.55)

and the corresponding autocorrelation function as

*6* + 6

~ (5.56b)
* 21 + 8 + 02
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^ - 0 k * 3 . (5.56c)

Values of 0, and Q2 must be determined by solving the nonlinear

equations (5.56).

It should be noted from this discussion that there exists a

duality between moving average and autocorrelation processes. Figure

5.6 shows the four general shapes of the autocorrelation function of the

MA(2) process with their corresponding partial autocorrelation

functions. When compared to Figure 5.4, it can be seen that the

autocorrelation function of a moving average process behaves similarly

to the partial autocorrelation function of the corresponding

autoregressive process, and vice versa. Also, the spectrum of a moving

average process has an inverse relationship to the spectrum of the

corresponding autoregressive process (Box and Jenkins 1976).

The Mixed Autoregressive-Moving Average Process Model

Processes that cannot be modeled exclusively by either the

autoregressive or the moving average models may sometimes be represented

by a combination of the two. The autoregressive-moving average model

ARMA(p,(?) takes the form

(5.58)

This relationship defines a stationary model when the roots of <t>(B) - 0

lie outside the unit circle. It also defines an invertible model when

the roots of 6(B) = 0 lie outside the unit circle.
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Figure 5.6 Typical autocorrelation functions pk and partial
autocorrelation functions Ak for various MA(2) processes
(after Box and Jenkins 1976).
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Following the same procedure as for the autoregressive and moving

average models, the autocorrelation function for the ARMA(p,</) model is

developed to be

(5.59a)

or

<t>(B)pk = 0 k * q + 1. (5.59b)

In identifying mixed series, it should be noted that the

autocorrelation function will behave differently according to whether

q - p is positive or negative. If q - p < 0 the entire autocorrelation

function will consist of a mixture of damped exponentials and/or damped

sine waves. If, however, q - p ± 0 then the autocorrelation function

will consist of q - p + 1 initial values />0, p,,..., p , which will not

follow this form. The ARMA(p,g) model, then, has the convenient

property that its first q autocorrelations depend on both moving average

terms as well as autoregressive terms (Bras and Rodriguez- Iturbe 1985).

Autoregressive behavior then dominates after q lags. The partial

autocorrelation function of an ARMA(p,g) model is infinite in extent and

behaves with a mixture of autoregressive and moving average behavior,

depending on the parameters k̂ and 0k.

The ARMA(1,1) process is of particular importance and is defined

by

which can also be written as

V-30



(1 - W)Zt = (1 - 8,B)at .

For stationarity and invertibility, the process parameters must fall in

the ranges of -1 < ̂  < 1 and -1 < 0, < 1.

The first two autocorrelation coefficients of the process can be

expressed in terms of the parameters 0, and 0, as follows

(1 - Aft) (A - ft)_ _v ,̂M̂  ^

1 + Of - 2A,ft,

P2 = t,p, . (5.615)

For stationarity and invertibility, it can be shown that p^ and pz must

lie in the region

\PZ\ <

P2 > p^Zpi + 1) p, < 0 (5.62)

- 1 > 0.

The partial autocorrelation function of the mixed ARMA(1,1)

process consists of a single initial value #n = />,, after which it

behaves like a pure MA(1) process. Thus when ̂  is positive, the

partial autocorrelation function is dominated by a smoothly damped

exponential which decays from 0n. When 0, is negative, the partial

autocorrelation function is dominated after #„ by an exponential which

oscillates as it decays.
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Table 5.1 summarizes the properties of an autoregressive-moving

average process. It also provides a comparison of the three models

which are restricted to being both stationary and invertible. Extensions

of these three basic models can describe nonstationary type of behavior

and will be examined next.

The Autoregressive Integrated Moving Average Process Model

Many time series display homogenous behavior yet are nonstationary

in the mean of the process. Thus, although one part of the series may

behave very much like any other, its mean is not stationary over time.

A nonstationary series can be homogenous in local behavior but not in

local level, such that one part of it looks much the same as another

except in vertical translation. Homogenous nonstationarity such as this

can be modeled by differencing the process d times, i.e. VdZt » (l-B)
dZt.

The differenced process can then be modeled as a stationary mixed

autoregressive-moving average process. This particular formulation is

called the autoregressive integrated moving average process of orders p,

d, and q, ARIMA(p,c/,g). It should be noted that

ARMA(p,<7) = ARIMA(p,0,<7)

AR(p) = ARIMA(p,0,0)

= ARIMA(0,0,<7) .

It is possible to eliminate an unknown but constant mean from a

time series by taking a first-order difference. If the process was

otherwise homogenous, the differenced data should then be stationary

with zero mean. By taking second-order differences, i.e. differences of
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Table 5.1 Summary of properties of autoregressive, moving average, and mixed ARMA processes (after Box and
Jenkins 1976).

Autoregressive Processes Moving Average Processes Mixed Processes

CO
CO

Model in terms of
previous Z's

Model in terms of
previous a's

Stationarity
condition

Invertibility
condition

Autocorrelation
function

Partial
autocorrelation
function

roots of <fi(B) = 0 lie
outside unit circle

always invertible

infinite (damped
exponentials and/or
damped sine waves)

tails off

finite

Zt = 6(B)at

always stationary

roots of 6(B) = 0 lie
outside unit circle

finite

cuts off

infinite (dominated by
damped exponentials
and/or sine waves)

roots of j(B) = 0 lie
outside unit circle

roots of 6(B) - 0 lie
outside unit circle

infinite (damped
exponentials and/or
damped sine waves after
first q - p lags)

tails off

infinite (dominated by
damped exponentials
and/or sine waves after
first p - q lags)

cuts off tails off tails off



a differenced series, it is possible to eliminate unknown linear trends

if the process otherwise exhibits homogeneity. The first difference

would eliminate the unknown slope and produce a stationary process with

nonzero mean. The second difference would then eliminate the unknown

but constant mean. These concepts are illustrated in Figure 5.7.

The general form of the ARIMA(p,d,(7) model is

t , (5.63)

where

- fl)dzt

Recalling that Zt = Zt - m, it becomes obvious that V*Zt = V
dZt for

d * 1, and the ARIMA(p,c/,g) model can then be written as

(5.64)

The general form of the autoregressive integrated moving average

model used to describe time series is a slightly modified version of

(5.64). The model described by (5.64) is capable of representing

processes which have stochastic trends, i.e., trends typified by random

changes in slope or level. However, sometimes it becomes desirable to

include a deterministic constant 6Q which allows for a deterministic

polynomial trend of degree d. For example, #0 can be used to estimate a

possible deterministic linear trend when d - 1. Thus, (5.64) then

becomes
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Figure 5.7 Time series plots, (a) Original series with nonstationary
mean; (b) First-order differenced series with nonzero mean;
(c) Second-order differenced series with zero mean.
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00 + 0(fl)at . (5.65)

An alternate way of expressing this general model is to allow Ut

VdZt. The constant 00 can then be defined as

E0/t)

Defining #t = Wt - p as the deviations of Wt about its mean /u, then the

ARIMA(p,c/,o;) model can be written in its most general form as

d(B)at . (5.66)

The similarity between the general form of the ARIMA(p,d,a;) model

(5.66) and the general form of the ARMA(p,g) model (5.58) is now clearly

evident. Thus, it follows that the ARIMA(p,cf,q) model behaves the same

as the ARMA(p,g) and is characterized by similar autocorrelation and

partial autocorrelation functions (see Table 5.1).

Seasonal Models

Many time series, particularly hydrologic time series, show marked

seasonal patterns or nonstationarity. For example, a time series of

piezometric head levels will display a similarity in monthly variations

from year to year. This annual pattern of groundwater fluctuation is

evident in the almost perfect correlation between piezometric head

levels at 12 months' lag. In general a series is said to exhibit
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periodic behavior with period s when similarities in the series occur

after s basic time intervals (Box and Jenkins 1976).

Processes which exhibit seasonal behavior represent a particular

type of nonstationarity which may be modeled with the simplifying

operation

VsZt = (1 - fi
s)Zt = Zt - Zt.. . (5.67)

Thus, a purely seasonal model may be thought of as a variation on the

general ARIMA(p,d,g) and may be written as

(5.68)

where Vs represents seasonal differences s of order D, and

are polynomials in 5s of degrees P and <?, respectively. This seasonal

model, then, is called an ARIMA(P,D,(?) model, and satisfies stationarity

and invertibility conditions.

The error component <rt of (5.68) in general will correlated with

previous errors at_^, <rt_2,.... Thus it would be expected that modelling

these errors with an ARIMA(p,c/,<7) would take care of the correlations.

Therefore, a second model is introduced

4(B)V*at = 0(B)at , (5.69)

where at represents a white noise process, V* represents nonseasonal

differences of order c/, and 0(0), 6(B) are polynomials in B of degrees p
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and q, respectively. Stationarity and invertibility conditions are

satisfied by this model.

By substituting (5.69) into (5.68), a general multiplicative model

is obtained

6(B)9(Bs)at . (5.70)

The resulting multiplicative model is termed an ARIMA(p,d,(j)x(P,D,<?)8

model. The multiplicative model emphasizes the fact that in periodic

processes, there exist multiple time intervals of importance. For

example, in the piezometric head level time series, correlations are

seen to exist between observations for successive months in a particular

year and between observations for the same month in successive years.

Models with three or more periodic components can be developed to

describe processes with multiple seasonal ities.

Process Identification

Figure 5.8 illustrates an iterative algorithm of the three main

steps in stochastic model building: identification, estimation, and

verification. The identification phase involves the rough estimate of

the general form of the representational model to be studied. By

estimating initial values of p, d, q, and/or P, D, Q of the general

ARIMA model, a tentative model can be obtained. This tentative model

can then serve as a starting point for model parameter estimation.

The first step in model identification is the visual inspection of

a plot of the original time series. Nonstationarities, seasonal trends,

and extreme values should be evident from this plot. The general form
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Propose General
Class of Models

Identify Particular Model
for Further Analysis

Estimate Model Coefficients

If 1. All Coefficients
Significant

and 2. Residuals White
and 3. Adequate for Forecasting

FALSE

FALSE

Figure 5.8 Iterative approach to model building (after Bras and
Rodriguez-Iturbe 1985).

of the tentative model can also be inferred from the behavior of the

original data. If strong trends or seasonalities are evident, then

local or seasonal differencing may be required.

Plots of the estimated autocorrelation function pk and the

estimated spectrum f(o) of the original data can yield further

information. It should be recalled from (5.10) and (5.11) that

estimates of the autocorrelation function pk can be obtained from
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n-k

(5.71)

where Z and a* are given in equations (5.3) and (5.4), and n is the

number of available data values. As k increases, the above estimator

becomes increasingly variable, thus Box and Jenkins (1976) recommend

that the autocorrelation should only be estimated up to lag k = n/4. A

plot of (5.71) may reveal nonstationarities or seasonalities that may or

may not be evident in the plot of the original time series. A failure

of the estimated autocorrelation function to dampen with increasing lag

suggests that the underlying stochastic process is nonstationary. Thus

differencing of first-order or higher may be required. Further, if a

wave pattern with period s is detected, seasonality would be indicated

and seasonal differencing would be necessary.

A plot of the estimated spectrum f(o) as computed from (5.28) can

also reveal whether seasonality exists in the original data. As the

spectrum represents the contribution to the process variance of

components with frequencies in the (<y,6H-d<y) range, a peak in the plot of

the spectrum will indicate an important contribution to the variance at

that frequency. Thus, for a seasonal process, peaks should be expected

at frequencies corresponding to important seasonal time lags. For

example, a time series which cycles on a twelve month basis, with highs

alternating with lows every six months, may have a spectrum with peaks

at frequencies corresponding to periods of three, six, and twelve

months.
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Once the original data has been detrended by differencing (if

detrending was necessary), then a review of the estimated

autocorrelation function and estimated spectrum of the stationary data

can reveal information on the general form of the model to be used. A

plot of the partial autocorrelation function becomes useful at this

point. Tentative values for the partial autocorrelations can be

estimated from the recursive formula given by Box and Jenkins (1976)

in - PV (5.72a)

p
iPf

<5-72b>
J P]

where

p̂+i,j = P̂,j " ^p+i,pti^p,p-j+i J = l»2,...,p.

An autoregressive process of order p is indicated if the

autocorrelation function tails off while the partial autocorrelation

function cuts off after lag p. Conversely, a moving average process of

order q is indicated if the autocorrelation function cuts off after lag

q while the partial autocorrelation function tails off. If both the

autocorrelation function and partial autocorrelation function tail off,

a mixed process is indicated. A review of Table 5.1 will help in the

model identification process.
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Model Parameter Estimation

Once a tentative model has been chosen, the next step in the model

building process is parameter estimation. Parameters are first roughly

estimated and then refined using iterative procedures. For a general

ARIMA(p,</,(7) model, the calculation of initial estimates of the

nonseasonal parameters ̂  and 0 is a three stage process.

(1) The autoregressive parameters 0f(j = 0,1,..., p) are estimated

from the autocorrelations p.^j = q-p+l,...,q+p) using the

relationship of (5.36).

(2) Using the ̂  estimates calculated in (1), the first q+1

autocorrelations pj'(j = 0,1,..., q) of the derived series

are calculated.

(3) The autocorrelations PJ'(J = 0,1,..., q) are used in an

iterative Newton-Raphson algorithm to compute initial

estimates of the moving average parameters #,.(7 = 0,1,..., 9)

and of the residual variance <ra
2.

The calculation of initial estimates of the seasonal parameters t and B

follows precisely the same three step process described for nonseasonal

parameters. The reader is referred to Box and Jenkins (1976), Bras and

Rodriguez- Iturbe (1985), and SAS Institute, Inc. (1988) for more

detailed reviews of the calculation of initial parameter estimates and

the Newton-Raphson iteration algorithm.

Once initial estimates for the model parameters have been made,

these rough estimates must be refined. The refinement procedure used by
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Box and Jenkins (1976) involves least squares estimates of the

parameters n, 4>, 0, $, 0, and aa
2 in the general multiplicative model

t - M) = d(B)9(Bs)at

where tft = 7*7.%,

JLI is the mean value of the H series.

To calculate the residual sum of squares, it is necessary to back

forecast initial vales of W's so that residuals may be calculated in a

two step process:

*t = (wt - M) - E *,("t-i - M) + E Vt-j

-£ t-js

where t - t', t' + l,...,/7 and t' is a negative origin for t for the

back forecasts. For given parameters (JLI, #,0,0,0), the residual sum of

squares is defined as

at2 • <5.73)
t-t'

The values of these parameters which minimize the residual sum of

squares are obtained using the method proposed by Marquardt (1963).
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Model Verification

Upon estimating the model parameters, verification of the adequacy

of the model is necessary. Theoretically, the model residuals at should

form a white noise random sequence (Bras and Rodriguez-Iturbe 1985).

Model verification determines whether the actual residuals have this

expected white noise behavior.

White noise behavior would require that the residuals at be

uncorrelated. Correlation can be checked by plotting the

autocorrelation function of the residual series. A white noise series

would be indicated if the autocorrelation function has a cutoff to zero

after lag 0. Additionally, the spectrum of a white noise residual

series would be uniform with no predominate frequency peaks.

A white noise series is normally distributed, and thus a test of

residual normality can verify the validity of the proposed model. The

residuals should posses an approximately zero mean and an approximately

zero skewness to ensure an accurate model.

Forecasting

Forecasting future values of a process based on present and past

values is the primary goal of stochastic model building. Once a model

has been identified, fit, and verified, the process of forecasting

future values may begin. By definition, stochastic models forecast the

expected value of a random future event. Thus any forecast should be

accompanied by information about the expected deviation around this

forecast, which is summarized by the forecast variance or standard

deviation.
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Although several equivalent forecasting algorithms exist,

forecasting in terms of the difference equation is the simplest and most

elegant. Consider the simple multiplicative model ARIMA(p,0,0)x(0,l,<?)8

8(B*)at . (5.74)

This model can be used to predict future values from origin t for lead

times 1. Thus, for 7 * 1, and recalling that Wt = V8Zt, the equation

for Zt+l may be written as

zt+i = eo + zt+i-s

Since at«.t is an unknown random variable prior to time t+7, only the

expected value of Zt+l can be forecast. Thus, the forecast of Zt+l is

written as

Zt(7) = 0Q + Zt+l.s

where Zt(7) is the expected value or forecast of Zt+l. Note that all

known (and thus deterministic) quantities have expected values equal to

their observed value, however E{atH) is equal to zero and thus does not

appear in (5.76).
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Equation (5.76) is valid for 7 = 1, but for lead values of 7

greater than one, it must be further modified by replacing unknown Z's

with their respective expected values (forecasts). To illustrate this

further, consider the case of the ARIMA(l,0,0)x(0,l,l)12 model

(1 - *,)(Zt - Zt.12) - q, + (1 - 012)at . (5.77)

The lead one forecast can be written following (5.76)

Zt(J) = 0, + Zt+11 + *,(Zt - Zt.12) - «,!,.„ . (5.78)

However, the lead two forecast would have to be

E{Zt+2) = Zt(2) = E{00 + Zt+10 + ̂ (ZM - Zt.1t) - «,at.10 + â }. (5.79)
i

In equation (5.79) Zt+1 and at+2 are the only random variables. Given

that E{Zt+1) - Z(l) and E{at+2> = 0, the lead two forecast becomes:

Zt(2) = 8Q + Zt+10 + ̂ (Zt(J) - Zt.n) - ̂ at.10 . (5.80)

Equation (5.80) expresses the forecast in terms of previous Z's and

previous forecasts of Z's. It should be clear that as 7 increases, the

forecast estimation error will also increase as each forecast becomes

increasingly dependent on previous forecasts.

Although separate expressions for each lead time 7 may be written,

forecast computation can be best carried out by using a general

expression. Thus, a general forecast equation for the ARIMA(l,0,0)x
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(0,1,1)12 model may be written as

3t+l-12 (5.81a)

where

t(j) J>0
(5.81b)

(5.81c)

Consider that forecasts at lead times 1,2,...,£ are required.

These estimates have little meaning unless they are accompanied by a

forecast variance.

Box and Jenkins (1976) show that the forecast variance for a

general ARIMA(p,d,(7)x(P,D,(?) is given by

1-1

j-1
(5.82)

The weights f,, F2,..., FL are calculated utilizing the following

relationship:

(5.83)

V-47



where 9(B) =

fi(B) = d(B)9(B*).

The operator q>(B) is a polynomial in the p*th degree

f(B) = 1 - f,0 -...- fiP , (5.84)

where p* = p + sP + d + sD. Similarly, fi(B) is a polynomial in the <j*th

degree

6(B) = 1 - fi,B -...- fi^P , (5.85)

where q* = q + sQ. Knowing the values of the f's and 0's, the F's may

be calculated using

f> ' E fi'j-i ~ *> J - 1.2,. ...t (5.86)
j-1

where F0 -1, Fj = 0 for j < 0 and 0. = 0 for j > q*.

Note that the variance of the residuals aa
2 in equation (5.82) can

be substituted with estimate <ra
2 when such an estimate is calculated

from at least 50 observations.

Assuming that the a's are normally distributed, then the

probability distribution of the future value Zt+l of the process will be

normally distributed with mean Zt(7) and standard deviation (1̂ (7)}* (Box

and Jenkins 1976). It should be noted that the probabilities calculated

apply only to the forecasts produced given the information available at

origin t. The probabilities calculated for a lead time 10 from origin t

will be unique and different from the probabilities calculated for a
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lead time 5 from origin t+5. Also, while it is true that the actual

value of Zt+10 may fall within the 95% probability limits of the forecast

Zt(10), the value Zt+5 may not fall within the 95% probability limits of

the forecast Zt+5(5).

Excursion Analysis

Excursion analysis was developed by S. 0. Rice in 1945 in

connection with statistical analysis of white noise time series (Nordin

and Rosbjerg 1970). For those time series which are approximately

Gaussian, excursion analysis can provide an estimate of the length of

time that the process runs above or below a given level. In

hydrogeology, this is particularly helpful for predicting the duration

of an excursion of piezometric head levels above or below a fixed

critical level /), which is measured in units of standard deviations.

Obviously, h can be chosen so that excursions below the level are

representative of drought conditions.

Figure 5.9 shows a sketch of a continuous time series y(t) which

has been normalized to have a zero mean and standard deviation />. The

number of excursions below the level -h by the process in the interval

(0,T) represents the number of droughts in the time interval 7, while

the expected duration of the excursion below -/), E{7h"), is the mean

duration of each drought. Similarly, the expected interval between zero

crossings, E{70), is simply the average time interval that the

piezometric head levels are above or below average.

Nordin and Rosbjerg (1970) show that the expected interval between

zero crossings as given by Rice (1945) can be expressed as
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ii

1/2

(5.87)

where />„ is the correlation of the normalized random process at the

origin and p"Q is the second derivative of pQ. The average number of

excursions below -h is given by

(5.88)

and the expected duration of an excursion below the fixed level -/» is

where

=2E{70}pr{y(0)>/»}e* (5.89)

0

pr{y(0)>/)} = _J_Je"'x'dx (5.90)

-h

excursion

Figure 5.9 Definition sketch for continuous time series (after Nordin
and Rosbjerg 1970).
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In practice, hydrogeologic time series are not continuous but

discrete, with time intervals of At and process values which are

averaged over At. In this case, Nordin and Rosbjerg (1970) give the

value of E{70) as

E{70) - * . (5.91)

where p, = pit, the value of the autocorrelation function for the first

lag interval. Since the time series is given as a series of mean values

assumed to apply over a given time interval At, Nordin and Rosbjerg

(1970) show that (5.89) can be approximated by

E{70> = - arcsin . (5.92)

The average number of excursions below a fixed level -h and the expected

duration of each excursion can then be calculated using (5.88) and

(5.89).

Although excursion analysis was developed for Gaussian processes,

moderate departures from normality do not seem to greatly influence the

applicability of the theory (Nordin and Rosbjerg 1970).

Recurrence Analysis

For a stationary stochastic process, the probability of extreme

high or low values occurring can be determined from the experimental

cumulative distribution function calculated from a time series observed

at interval At.
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The experimental cumulative distribution function (cdf) can be

calculated by

Rank(Zn)F(Z0) = prob(Z*Z0) - - IJl (5.93)
n + 1

where prob(Z*Z0) is the probability of a data value being less than or

equal to a given value Z0 in a given observation interval At, Rank(Z0)

is the rank of the actual data value corresponding to Z0, and n is the

number of data available. The smallest data value is given a rank of 1,

and the largest data value is given a rank of n.

Recurrence intervals can be inferred once the experimental cdf has

been calculated according to the following equation:

fl(Z0) - —L- At (5.94)
F(Z0)

where R(Z0) is the recurrence interval associated with the value Z0

(measured in units of At), F(Z0) is calculated according to (5.93), and

At is the observation interval of the process Zt.

Description of Software Packages Used

The computer software packages used for the analysis of the

provided time series data were the base SAS* System, and the SAS/GRAPH*

and SAS/ETS* packages.1 The SAS system provides data retrieval and

1SAS, SAS/GRAPH, and SAS/ETS are registered trademarks of SAS Institute
Inc., Gary, NC, USA.
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management, programming, statistical, and reporting capabilities.

SAS/GRAPH is a graphics package for producing two and three dimensional

graphs, charts, and figures. SAS/ETS is an econometrics and time series

analysis package. The primary SAS/ETS procedures employed in building

the stochastic models developed for this report were the ARIMA and

SPECTRA procedures.

The SAS/ETS ARIMA procedure analyses and forecasts univariate time

series data, transfer function data, and intervention data using the

autoregressive integrated moving average model of Box and Jenkins

(1976). The ARIMA procedure provides tools for univariate time series

model identification, parameter estimation, and forecasting, and allows

for seasonal, subset, and factored models (SAS Institute, Inc. 1988).

Corresponding to the model building stages described by Box and

Jenkins (1976), the SAS/ETS ARIMA procedure is divided into three

stages: IDENTIFY, ESTIMATE, and FORECAST. The IDENTIFY statement

identifies the model. It specifies the time series data to be analyzed,

differences them if applicable, and computes autocorrelations, inverse

autocorrelations, partial autocorrelations, and crosscorrelations. The

IDENTIFY statement computes statistics of the response variable as well

as test statistics for the white noise hypothesis of the series.

The ESTIMATE statement estimates the model parameters and

diagnoses the fit. Preliminary estimates of the parameters are either

specified by the user, computed from the autocorrelations developed in

the IDENTIFY stage, or arbitrarily set to values that produce stable

polynomials. These preliminary estimates are the starting values in an

iterative algorithm to compute the model parameter estimates. Three

methods of estimation are provided: the maximum-likelihood estimation
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method, the unconditional least-squares estimation method, and the

conditional least-squares estimation method, which is the default

method. The ESTIMATE statement provides sample statistics on the

estimated parameters as well as the estimation of the standard deviation

of the residuals aa, the correlation matrix of the parameters, test

statistics for the white noise hypothesis of residuals, and a summary of

the estimated model.

The FORECAST statement computes future values of the time series

based on the estimated model and generates confidence intervals for

these forecasts. It provides a table of forecasts, forecast standard

errors, approximate 95 percent confidence limits for the forecasts,

values of the response variable (actual process values), and the

forecast residuals.

The SPECTRA procedure produces estimates of the spectral densities

of the univariate or multivariate time series. These estimates are

produced using a finite Fourier transform. SPECTRA can also test the

data for the white noise hypothesis.

Hvdroqeologic Time Series Data Description and Analysis

The St. Johns River Water Management District provided latitude,

longitude, and piezometric head level information for 25 wells within

the district and surrounding counties. The piezometric head level data

was relatively consistent, although a few wells had data gaps of a few

months to a few years. All wells had occasional data gaps of a few days

to a few weeks. In general, daily piezometric head levels were provided

for each well, although some wells had periods of weekly, biweekly, or

monthly readings. Of the 25 wells provided, 4 were discarded due to
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lack of sufficient data or extremely large data gaps. Table 5.2 lists

the 21 wells which were modeled, giving identification numbers, latitude

and longitude information, years of relatively uninterrupted head level

readings, and number of monthly observations n. Figure 5.10 shows the

spatial distribution of the wells in the district and surrounding

counties.

Upon receiving the well data from the District, computer files

containing the piezometric head levels were prepared. Where applicable,

monthly head values were computed from the average of the daily, weekly,

or biweekly readings provided for each well, creating time series of n

monthly observations (At= 1 month). These time series were then plotted

for visual inspection. It was noted that 13 of the 21 wells exhibited

steady downward trends in head levels, while the remaining 8 had no

detectable downward trend. Seasonal trends were readily apparent from

all the time series plots, with seasonal lows occurring around May of

each year and seasonal highs occurring around September. For each well,

the annual mean, standard deviation, high head level and low head level

were computed for the each year of record, cf. Appendix B. These plots

were superimposed on the long-term mean head and long-term standard

deviation to aid in the detection of long-term trends. Additionally,

mean, standard deviation, high and low values were

computed for each month of the year over the entire data record, cf.

Appendix C. These plots were also superimposed on the long-term mean

head and standard deviation to aid in the identification of seasonal

trends.

Autocorrelation functions and partial autocorrelation functions of

the original time series were computed for each well using the IDENTIFY
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represents piezometric
head well location

Figure 5.10 Spatial distribution of 21 wells.
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Table 5.2 Identification, location, years of data, and number of
monthly observations n for 21 wells provided by the St.
Johns River Water Management District.

Well
Number

SJRWMD
Well Number Latitude Longitude

Years
of Data

Number
of Years n S/T*

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

N-0003
D-0348
D-0160
U-0001
C-0120
P-0172

SJ-0104
F-0087
M-0048
M-0013
SU-0013
V-0101
S-0125
L-0062
OR-0047
OR-0007
SU-0002
OR-0064
BR-0202
OS-0001
PO-0006

304210
302416
301852
300747
294807
293933
293729
292750
291115
290555
285121
285745
284147
283204
283252
283249
282127
282202
282245
281714
281008

812708
815226
812342
822258
820209
813428
812212
811520
815925
815304
821122
810540
812202
815449
812835
810540
820225
813846
804716
810930
814418

1977-1990
1976-1990
1945-1990
1959-1982
1974-1989
1976-1990
1959-1989
1937-1990
1933-1989
1975-1990
1973-1990
1951-1990
1953-1990
1959-1990
1943-1990
1961-1990
1959-1990
1959-1990
1955-1989
1976-1990
1960-1990

13
13
44
23
14
13
30
53
56
14
16
39
37
31
46
29
31
31
34
14
30

157
158
529
284
172
163
368
643
681
175
198
469
444
371
557
347
370
370
406
169
359

T
T
T
T
S
S
T
T
T
S
S
T
T
S
T
T
S
T
T
S
S

*T indicates a long-term trend, S indicates no apparent long-term trend.

statement of the SAS/ETS ARIMA procedure. Spectrums of the original

data were produced using the SAS SPECTRA procedure. Inspection of the

autocorrelation functions, partial autocorrelation functions, and

spectrums was used to confirm the apparent seasonality and long-term

trends evident in the original data.

The original data was seasonally detrended by differencing the

time series with a period of s = 12 months. Autocorrelation functions,

partial autocorrelation functions, and spectra of the differenced time

series were then computed for each well. A review of each well's
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autocorrelation function and partial autocorrelation function for the

differenced data suggested the general stochastic model form to be fit.

A cursory review of the data revealed that it was feasible to use the

ARIMA(2,0,0)x(0,l,l)12 model for all 21 wells, providing continuity and

ease of modeling for the District. Using the ESTIMATE statement of the

SAS/ETS ARIMA procedure, model parameter estimates were computed for

each well. Using these parameters, the FORECAST statement produced back

forecast estimates of the original data. The estimated model was then

verified by checking the white noise properties of the model residuals.

Back forecasts for each well were produced and compared to the

actual data record to check the accuracy and usefulness of the estimated

model. Plots were developed of one-month, three-month, and six-month

lead predictions. Each plot detailed predictions over the ten year

period 1980-1990 and showed the predicted head values, the actual head

values, and the 95 percent confidence limits for the forecasts.

For those time series which were approximately Gaussian, an

excursion analysis was performed for h = 1 and h = 2 standard

deviations. Expected drought piezometric head levels for these wells

were determined for 30, 20, 10, and 5 year recurrences from the

cumulative distribution function of the original data.

Results and Discussion

Case Study 1; Development of a Stochastic Model for a
"Steady-State" well

Well number 17 (SJRWMD number SU-0002) is a steady-state well

(i.e. a well which shows no evidence of a long-term decline in

piezometric head level) located in Sumter County, Florida. Continuous
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piezometric head level data were available for this well from April 1959

through January 1990, a period of approximately 31 years. The monthly

piezometric head level time series data for this well consisted of n «=

370 observations. Figure 5.11 shows a plot of the original time series.

Note the absence of an apparent long term trend in the data.

The original data exhibited a seasonal cycle of 12 months,

with a subcycle of 6 months, cf. Figure 5.12. Beginning with annual low

head levels in May, the levels would rise to an annual peak in

September. They would then dip to secondary lows in November, rise to

secondary highs in March, before returning once again to yearly lows in

May. Table 5.3 lists the minimum, maximum, mean, and standard deviation

values for the May piezometric head series, September piezometric head

series, and the long-term time series.

Using the SAS/ETS ARIMA and SPECTRA procedures, the

autocorrelation function, partial autocorrelation function, and spectrum

for the original data were computed. Inspection of the autocorrelation

function, Figure 5.13, revealed a sinusoidal wave pattern with

particularly strong correlations at 6 month and 12 month lag intervals.

This confirmed the apparent seasonality of the original data series.

The failure of the autocorrelation function to die out even after an

approximately 48 month lag suggests that the process exhibits

nonstationarity. Thus, the process must be differenced to produce a

stationary time series.

Figure 5.13 also shows the partial autocorrelation function for

the original data. The sinusoidal behavior of this function with

periodic significant partial autocorrelations at lags up to 48 months

suggests the presence of a moving average component in the process.
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Figure 5.11 Plezometric head levels for Well 17.
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Figure 5.12 Average long-term and monthly head levels for Well 17.

More pronounced, however, is the generalized AR(2) component indicated

by the abrupt drop off of the partial autocorrelations after lag 2.

Thus a mixed autoregressive moving average model is indicated.

Inspection of the spectrum of the original series revealed that it was

dominated by low frequencies, confirming the positive correlation

between successive lags and indicating a slowly oscillating process

series, cf. Figure 5.14. Positive lag correlation indicates a direct

Table 5.3 Minimum, maximum, mean, and standard deviation
values for Well 17.

Minimum Maximum Mean Std Dev

Long-Term Head Level
May Head Level
September Head Level

85.58
85.58
88.23

93.61
92.23
93.41

91.00
89.61
91.95

1.60
1.75
1.17

V-61



0.8

0.6

0.4

02

0

-0.2

-0.4

-0.6

-0.8

-1

Marks Two Standard Errors

Tiilli .. '."'." 7. T. lliitll. 11.

12 24 36
lagk (months)

48 60

0.8-

0.6

0.4

0.2

0

-0.2

-0.4-1

-0.6

-0.8

-1

,tr .i ii 11. li ..iii.

12 24 36
lagk (months)

48 60
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function for Well 17 original time series.
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Figure 5.14 Spectrum of Well 17 original time series.

correlation between values Zt and Zt+k, i.e., if Zt is less than the mean

z then there is a high probability that Zt+|e will be also. Further

inspection of the spectrum showed a major peak occurring at a frequency

of a = it/At = 0.333 corresponding to an interval of 3 months. A peak in

the spectrum indicates an important contribution to the process variance

at that frequency. Thus, a peak in the spectrum corresponding to a 3

month frequency indicates a cycle of high values followed by low values

3 months later, or a complete cycle every 6 months. This corresponds

well with the observed 6 month subcycle of the original data.

The original data were seasonally differenced with a period of s =

12. This reduced the number of monthly observations for the differenced

time series to n - 358. A plot of the differenced time series is shown

in Figure 5.15.
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Figure 5.15 Seasonally differenced piezometric head levels for Well 17.



Figure 5.16 shows the autocorrelation function and partial

autocorrelation function for the differenced time series. The

autocorrelation plot for the differenced series is much smoother than

the original series autocorrelation plot, and exhibits a more easily

identifiable structure. Note that the autocorrelation function falls

off exponentially at first and then tails off in a damped sine wive

after lag 12 indicating a mixed autoregressive-moving average process

(see Table 5.1). An inspection of the partial autocorrelation function

also reveals characteristics of both autoregressive and moving average

behavior. First, it appears that an AR(1) or AR(2) component is

indicated since correlations drop significantly after lag 1, or possibly

lag 2. Additionally, the partial autocorrelation function exhibits a

damped exponential decay at lag multiples of approximately 12. This

behavior is indicative of a lag-one seasonal moving average component.

Thus an ARIMA(l,0,0)x(0,l,l)12 or an ARIMA(2,0,0)x(0,l,l)12 model is

indicated.

Inspection of the spectrum for the differenced time series, cf.

Figure 5.17, reveals that the peak at frequency a = 0.333, corresponding

to a period of At = 3 months, has disappeared. This suggests that

differencing of the original data has removed this periodic component of

the process.

Having established that the general form of the process model was

ARIMA(p,0,0)x(0,l,l)12, it was decided to model the process using p = 2.

Although the improvements achieved by an ARIMA(2,0,0)x(0,l,l)12 model

over an ARIMA(l,0,0)x(0,l,l)12 would be relatively minor for this well,

the more complex model was chosen to be consistent with the fitted

models of the other 20 wells.
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Figure 5.16 Autocorrelation function and partial autocorrelation
function for Well 17 seasonally differenced time series.
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Figure 5.17 Spectrum of Well 17 seasonally differenced time series.

Using the ESTIMATE statement of the SAS/ETS ARIMA procedure, model

parameters were estimated for the differenced time series using the

conditional least squares technique. The estimated parameters of the

ARIMA(2,0,0)x(0,l,l)12 model were ̂  = 0.856, ̂ 2 = -0.113, 0, = 0.920,

00 = -0.014, aa
2 = 1.008 ft2.

To verify that an appropriate model had been identified, one month

lead forecasts were generated for the months of May 1960 through January

1990. Model error residuals were then calculated by subtracting the

forecast piezometric head level from the observed piezometric head level

for each month. If the modeling procedure had extracted all available

information from the data series, these model residuals should represent

a zero mean white noise (i.e. uncorrelated) process.
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Figure 5.18 shows a plot of the model error residuals. Visual

inspection of this plot confirmed that the residuals resembled white

noise with a sample mean of 0.07 ft and a sample standard deviation of

0.99 ft. The residual autocorrelation function and spectrum were

computed to test for correlation, cf. Figure 5.19. The autocorrelation

function showed no significant violation of the 2(l//n) limit that would

imply correlated residuals. In addition, the spectrum of the residuals

showed relatively equal weighting over the frequency distribution. Thus

the portmanteau lack-of-fit test did not reject the noncorrelation

hypothesis of residuals at the 0.05 level of significance. The residual

normality hypothesis was also not rejected using a x-squared

distribution test, also at the 0.05 level of

significance. Thus, the final form of the fitted ARIMA(2,0,0)x(0,l,l)12

model was rf(fi)V12Z. = 0(B12)a,. or
i t

(1 - 0.856fi + 0.113̂ )7,̂  = -0.014 + (1 - 0.920fl12)at. (5.95)

Equation (5.95) can be written in a less compact, but more

understandable form as:

Zt = Zt.12 + 0.856(Zt., - Zt.13) - 0.113(Zt.2 - Zt,M)

-0.014 - 0.920at.12 + at. (5.96)

Equation (5.96) indicates that the piezometric head level at time t (Zt)

can be predicted based on knowledge of the piezometric head level that

occurred twelve months ago (Zt.12), as well as knowledge of how different

the previous two months piezometric head levels were from their
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respective values that occurred twelve months prior (i.e. (Ẑ , - Zt.13)

and (Zt_2 -Zt.u)). The moving average term at.12 adjusts this prediction

based on the actual 1 month forecast error that occurred 12 months ago.

The final term in (5.96), at, accounts for the unknown random

inputs/outputs to the system at time t. Possible deviations in

inputs/outputs to the groundwater system as a result from lower than

normal (or higher than normal) rainfall and/or pumping are represented

in this term.

The identified model was used to make lead-1, lead-3, and lead-6

forecasts for Well 17 over a period of 1980-1990. Figures 5.20, 5.21,

and 5.22 show these predictions along with the estimated forecast

standard deviation. If the model is performing as expected, the model

forecasts should fall within one forecast standard deviation of the

actual head level 68 percent of the time, and two forecast standard

deviations of the actual head level 95 percent of the time. Figures

5.20, 5.21, and 5.22 indicate that this is indeed the case and thus the

model's estimate of the distribution of its errors is accurate.

The actual versus predicted model error statistics for this and

the other 20 wells are shown in Table 5.6. This table indicates that,

for Well 17, one month lead forecasts are expected to be within 1.00 ft

of the actual values, three month lead forecasts are expected to be

within 1.47 ft of the actual values, and six month lead forecasts are

expected to be within 1.60 ft of the actual values.

Due to the fact that it did not exhibit a long-term mean, Well 17

was a candidate for excursion and recursion analyses. To determine if an

excursion analysis would be feasible, the original time series data was

normalized by subtracting the monthly means and dividing by the monthly
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Figure 5.20 One month lead forecasts of the ARIMA(2,0,0)x(0,l,l)12 model for Well 17.
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standard deviations. The Kolmogorov-Smirnoff test for normality of the

series was rejected at the 0.05 level of significance, but accepted at

the 0.01 significance level. It will be recalled that moderate

departures from normality do not seem to greatly influence the

applicability of the excursion analysis theory. Thus an excursion

analysis was performed on the normalized time series for Well 17.

The normalized time series was found to have a zero mean, a

variance of 0.97, and a lag-1 autocorrelation p^ = 0.775. An excursion

analysis revealed that it had an expected interval between zero

crossings of E(70) = 4.59 months. Information from an excursion

analysis of a normalized series can be transferred to the original

series. Thus, in real terms, E{/0) is simply the average time interval

(4.59 months) that the head level in Well 17 can be expected to remain

below (or above) a mean level of 91.00 ft.

The expected number of excursions below h = 1 standard deviation

was determined to be E{/V) = 0.066 per month, or one every 15.15 months,

with an expected duration of E{7h") = 2.40 months. In real terms, the

head level in Well 17 can be expected to fall below a level of 89.40 ft

(long-term mean minus one standard deviation) once every 15.15 months,

remaining below this level for 2.40 months. For h = 2 standard

deviations, the head level in Well 17 can be expected to fall below a

level of 87.80 ft (long-term mean minus two standard deviations) once

every 67.88 months (E{W) = 0.015 per month), remaining below this level

for E{7h") =1.55 months.

A recursion analysis performed on Well 17 revealed that the

piezometric head level can be expected to drop below 85.58 ft once every

30 years, to drop below 85.69 ft once every 20 years, to drop below
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86.16 ft once every 10 years, and to drop below 86.44 ft once every 5

years. Tables 5.7 and 5.8 tabulate the excursion and recursion analyses

results of this well and the other 7 steady-state wells.

Case Study 2; Development of a Stochastic Model for a Well with a
Long-Term Trend

Well number 13 (SJRWMD number S-0125), located in Seminole County,

Florida, displays a long-term downward trend. Continuous piezometric

head level data were available for this well from January 1953 through

December 1989, a period of 37 years. The monthly piezometric time

series data for this well consisted of n = 444 observations. Figure

5.23 shows a plot of the original monthly time series. The series

displays a marked downward trend of approximately 0.25 ft per year.

A plot of the average monthly versus average long-term head levels

reveals a seasonal cycle of 12 months, cf. Figure 5.24. The cycle

begins with yearly low head levels in May, rises to a yearly peak in

September, and then drops again to lows in May. Table 5.4 lists the

minimum, maximum, mean, and standard deviation values for the May

series, September series, and the long-term time series. The standard

deviation values are quite large due to the long-term downward trend.

Using the SAS/ETS ARIMA and SPECTRA procedures, the

autocorrelation function, partial autocorrelation function, and spectrum

for the original data were computed. The autocorrelations of the

series, shown in Figure 5.25, suggest that at least one seasonal

differencing is necessary due to the failure of the function to die out

rapidly. The pronounced wave pattern has an interval of 12 lags,

confirms a seasonal cycle of 12 months.
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Figure 5.23 Piezometric head levels for Well 13.
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Figure 5.24 Average yearly and monthly head levels for Well 13.

Figure 5.25 also shows the partial autocorrelation function for

the original data. The abrupt cut off of the partial autocorrelations

after lag 2 would suggest a generalized AR(2) model. The possible

presence of a moving average component in the process is also suggested

by the periodic significant partial autocorrelations at large lags.

Figure 5.26 shows the spectrum of the original series. Once

again, the spectrum is dominated by low frequencies. This low frequency

Table 5.4 Minimum, maximum, mean, and standard deviation
values for Well 13.

Minimum Maximum Mean Std Dev

Long-Term Head Level
May Head Level
September Head Level

35.15
36.14
38.72

55.19
50.59
54.79

44.67
43.17
45.53

3.48
3.62
3.58
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function for Well 13 original time series.
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Figure 5.26 Spectrum of Well 13 original time series.

domination is particularly pronounced due to the downward trend of the

series, i.e., the covariance of data values separated by At decays very

slowly as At increases. The spectrum dies off toward higher frequencies

but is not negligible at frequencies a of 0.167 and 0.333, corresponding

to periods of 6 and 3 months, respectively.

The original data was seasonally differenced with a period of s =

12. This reduced the number of monthly observations for the differenced

time series to n = 432. A plot of the differenced time series is shown

in Figure 5.27. Note that seasonally differencing the time series over

a 12 month period has effectively removed the long-term as well as

seasonal trends.

Figure 5.28 shows the autocorrelation function and partial

autocorrelation function for the differenced time series. Note that the
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autocorrelation function falls off exponentially at first and then tails

off in a damped sine wave after lag 12. An inspection of the partial

autocorrelation function reveals both autoregressive and moving average

behavior. First, it appears that an AR(2) component is indicated since

correlations drop off quickly after lag 2. Additionally, the partial

autocorrelation function exhibits a damped exponential decay at lag

multiples of 12, indicative of a lag-one seasonal moving average

component. Thus an ARIMA(2,0,0)x(0,l,l)12 model is indicated.

Inspection of the spectrum for the differenced time series, cf. Figure

5.29, reveals that the peaks at frequencies a of 0.167 and 0.333 have

disappeared. This suggests that differencing of the original data has

removed this periodic component of the process.

Using the ESTIMATE statement of the SAS/ETS ARIMA procedure, model

parameters were estimated for the differenced time series using the

10

8

f(6>) 6

2

0.25 0.75

Figure 5.29 Spectrum of Well 13 seasonally differenced time series.
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conditional least squares technique. The estimated parameters of the

ARIMA(2,0,0)x(0,l,l)12 model were ̂  = 1.050, j>2 = -0.136, 0, = 0.683,

00 = -0.002, aa
2 = 0.679 ft2.

To verify the model structure, one month lead forecasts were

generated for the months of March 1954 through December 1989. Model

error residuals were then calculated by subtracting the forecast

piezometric head level from the observed piezometric head level for each

month. Figure 5.30 shows a plot of the model error residuals. Visual

inspection of this plot confirmed the white noise behavior of the

residuals with a sample mean of -0.07 ft and a sample standard deviation

of 0.76 ft.

The residual autocorrelation function and spectrum of residuals

were computed to test for correlation, cf. Figure 5.31. The

autocorrelation function showed no significant violation of the 2(l//n)

limit that would imply correlated residuals. Additionally, the spectrum

of the residuals showed relatively equal weighting over the entire

frequency distribution. The portmanteau lack-of-fit test did not reject

the noncorrelation hypothesis of residuals at the 0.05 level of

significance. The normality hypothesis on residuals was also not

rejected using a x-squared test, also at the 0.05 level of significance.

Thus the fitted ARIMA(2,0,0)x(0,l,l)12 model was not rejected and had a

final form of tf(fl)V12Zt = 0(fl
12)at or

(1 - 1.0505 + O.lSeS2)̂ ^ = -0.002 + (1 - 0.638512)at. (5.97a)

Zt = Zt.12 + 1.050(7̂  - Zt.13) - 0.136(Zt.2 - Zt.u)

-0.002 - 0.638at.12 + at. (5.97b)
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Figure 5.30 Residuals of an ARIMA(2,0,0)x(0,l,l)12 adjusted to the original series of Well 13.
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an ARIMA(2,0,0)x(0,l,l)12 adjusted to the original series
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As discussed in Case Study 1, The expanded form of (5.97)

indicates that the piezometric head level at time t can be predicted

based on knowledge of the piezometric head level that occurred twelve

months ago, as well as knowledge of how different the previous two

months piezometric head levels were from their respective values that

occurred twelve months prior. The moving average term at.12 adjusts this

prediction based on the actual 1 month forecast error that occurred 12

months ago. The final term in (5.97b), at, accounts for the unknown

random inputs/outputs (i.e. rainfall, pumping, etc.) to the system at

time t.

The identified model was used to make lead-1, lead-3, and lead-6

forecasts for Well 13 over a period of 1980-1990. Figures 5.32, 5.33,

and 5.34 show these forecasts along with the estimated forecast standard

deviation. Table 5.6 tabulates the actual versus model error statistics

for this and the other 20 wells. This table indicates that, for Well

13, one month lead forecasts are expected to be within 0.82 ft of the

actual values, three month lead forecasts are expected to be within 1.43

ft of the actual values, and six month lead forecasts are expected to be

within 1.83 ft of the actual values.

Due to its pronounced long-term trend, Well 13 was not a candidate

for excursion and recursion analyses.

Stochastic Modeling Results for all 21 Wells

Following the general procedures outlined in the previous two case

studies, an ARIMA(2,0,0)x(0,l,l)12 model was fitted to each of the 21

wells. It will be recalled that an ARIMA(2,0,0)x(0,l,l)12 model has the

form
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Figure 5.32 One month lead forecasts of the ARIMA(2,0,0)x(0,l,l)12 model for Well 13.
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Table 5.5 ARIMA(2,0,0)x(0,l,l)» model parameters fitted to 21 wells
provided by the St. Johns River Water Management District.

Well No

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

aa

17.361214
0.184538
0.745759
0.356887
0.154069
1.790165
0.333215
0.094658
0.278584
0.323197
0.894661
0.289917
0.678634
0.275027
1.164497
0.499200
1.007870
0.196385
0.397356
0.575690
0.777525

«,
0.282726
0.024125
-0.049966
0.008398
-0.005633
-0.002409
-0.019422
-0.010656
0.002065
-0.000000
-0.003613
-0.007582
-0.002312
-0.004345
-0.009827
-0.035206
-0.013605
-0.006658
-0.020838
0.000763
-0.014430

*,
0.57742
1.50572
1.29360
1.33961
1.60244
0.61322
1.12883
1.38132
1.46743
1.47815
1.10231
0.97836
1.04987
0.98589
1.12982
0.99690
0.85623
1.04562
1.07507
1.06876
0.71970

4
0.09093
-0.55845
-0.40283
-0.34435
-0.60507
0.11001
-0.24837
-0.51990
-0.46798
-0.47815
-0.29921
-0.20473
-0.13643
-0.15210
-0.19465
-0.18319
-0.11260
-0.11558
-0.22719
-0.24323
-0.12641

»„
0.63745
0.65203
0.84598
0.70951
0.78577
0.79495
0.74941
0.78955
0.76215
0.83049
0.71556
0.84134
0.68303
0.90336
0.84116
0.68089
0.92045
0.87371
0.76960
0.63362
0.82432

(5.98)

A listing of each well with its fitted model parameters is shown in

Table 5.5.

Several of the wells could have been adequately modeled with a

more parsimonious ARIMA(l,0,0)x(0,l,l)12 model, such as Wells 1, 6, 13,

17, 18, and 21. All of these wells have small second-order

autoregressive parameters of ̂ 2 = -0.13 or less. The forecasting

accuracy improvements afforded by the use of the ARIMA(2,0,0)x(0,l,l)12

model for these wells were minor. For Wells 2, 3, 5, 8, 9, and 10,

however, the second-order autoregressive terms are significant at values

of 02 ̂  -0.40. Forecast improvements for these wells using the
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ARIMA(2,0,0)x(0,l,l)12 model over the ARIMA(l,0,0)x(0,l,l)12 model were

not negligible. Thus it was decided to model all of the wells with an

appropriate ARIMA(2,0,0)x(0,l,l)12 model to allow for overall modeling

consistency.

The actual versus predicted model error statistics for each of the

21 wells is shown in Table 5.6. This table indicates that, on the

average, one month lead predictions can be made within 0.70 ft of the

actual values, three month lead predictions can be made within 1.22 ft

of the actual values, and six month lead predictions can be made within

1.53 ft of the actual values for these 21 wells.

The univariate models developed for these wells were based on the

assumption that the present piezometric head level can be described by

some weighted linear combination of previous piezometric head levels and

an independent random shock, or residual, at. The influence of the

residual on the process is described by its variance. Thus a process

with a large residual variance is dominated by white noise input and is

difficult to predict. The residual variance for Well 1, for instance,

is very large at aa
2 = 17.361214 ft2. A review of the forecast error

standard deviations, Table 5.6, shows that the forecast errors for Well

1 have correspondingly large standard deviations. Thus, it can be

concluded that the process which describes Well 1 is dominated by

unpredictable random input. Consequently, model predictions for Well 1

may produce large forecast errors.

Table 5.6 shows that the forecast error increases as the lead time

7 increases. This results from the additive nature of the forecast

errors for 7 > 1. For instance, the forecast Zt(6) for Zt+6 is based on

past observations and forecasts. As borne out by equation (5.92), the
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Table 5.6 Actual versus predicted model error at statistics.

Forecast Error Standard Deviations

Well
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

<r
(ft)

4.16668
0.42958
0.86357
0.59740
0.39252
1.33797
0.57725
0.30767
0.52781
0.56850
0.94587
0.53844
0.82379
0.52443
1.07912
0.70654
1.00393
0.44315
0.63084
0.75874
0.88177

Mean

Error
(ft)

0.76843
-0.08937
0.86716
-0.00431
0.04294
-0.05740
0.04992
0.04547
-0.01643
-0.01326
0.04342
-0.05088
-0.06624
-0.02796
-0.02426
0.05669
0.06597
-0.01975
0.09112
-0.06236
-0.02621

Lead-1

Actual
(ft)

3.97135
0.40598
0.85716
0.57249
0.37750
1.27603
0.51975
0.30323
0.52236
0.56739
0.90377
0.52669
0.76161
0.51915
1.03877
0.66938
0.62917
0.44396
0.61863
0.69491
0.86715

Estimated
(ft)

4.16668
0.42598
0.86375
0.59740
0.39252
1.33797
0.57725
0.30767
0.52781
0.56850
0.94587
0.53844
0.82379
0.52443
1.07912
0.70654
1.00393
0.44315
0.63084
0.75874
0.88177

Lead-3

Actual
(ft)

4.77414
0.97000
1.72528
1.22661
0.96864
1.53947
0.96096
0.63124
1.21212
1.31121
1.56982
0.82476
1.37682
0.82543
1.94309
1.08701
1.44026
0.77471
1.06551
1.14703
1.12924

Estimated
(ft)

5.07300
0.98911
1.72741
1.27739
0.97120
1.67793
1.04258
0.63976
1.21561
1.31739
1.62795
0.85645
1.43205
0.85334
1.98749
1.15056
1.46812
0.77254
1.09021
1.29669
1.14979

Lead -6

Actual
(ft)

4.99286
1.35992
2.21015
1.85361
1.43256
1.65906
1.18435
0.79630
1.79188
1.89167
1.79948
0.89798
1.77596
0.96619
2.56210
1.24939
1.57302
0.98350
1.24243
1.33215
1.16965

Estimated
(ft)

5.25706
1.37432
2.21083
1.87060
1.45310
1.77379
1.30126
0.79831
1.80871
1.96316
1.90129
0.96334
1.83536
1.00481
2.63537
1.33441
1.60479
1.00828
1.31149
1.52866
1.18138

Average 0.69677 0.00729 0.65375 0.69677 1.18646 1.22718 1.48657 1.54316

*Well 1 not included in average.



forecast error (Zt(6) - Zt+6) will then incorporate a weighted sum of

previous errors.

Note that the actual model error standard deviations are smaller

than the predicted model error standard deviations, thus confirming that

the models are performing as expected. The forecast errors resemble a

white noise process with, on the average, an approximately zero mean of

0.007 ft over all 21 wells. This indicates that the models have

extracted all available information from the data series, and will

produce optimal short-term site-specific predictions based on previous

piezometric head level measurements.

Excursion and recursion analyses were performed on Wells 5, 6, 10,

11, 14, 17, 20, and 21. With the exception of Well 17 (see Case Study 1

above) the normality hypothesis of the original series for each well was

not rejected using the Kolmogorov-Smirnoff test at a 0.05 level of

significance. Table 5.7 lists the excursion analysis results. Table

5.8 lists the recursion analysis results. It should be recalled that

for normally distributed data Zt with mean Zt and standard deviation at,

E{70) is the expected interval between mean crossings in months; E(/V) is

the average number of downcrossings of Zt-/Jat (/> = 1 or 2) per month;

conversely, 1/E{W) is the number of months between downcrossings of

Zt-/)at; E{7h") is the expected length of series excursion below Zt-/»at.

Conclusions

In this Chapter, site-specific empirical stochastic models were

developed for 21 wells within the District that are capable of producing

accurate, optimal monthly forecasts of piezometric head levels for up to

6 month lead times. The developed models forecast future piezometric
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Table 5.7 Excursion analysis results on the normalized series for the 8 nontrending wells.

to
in

Well
Number

5
6

10
11
14
17
20
21

P\

0.952
0.793
0.938
0.869
0.810
0.775
0.853
0.776

(ft')

83.07
17.28
53.04
29.67

100.05
91.00
43.75

127.04

EUn)
(months)

10.04
4.79
8.84
6.07
5.01
4.59
5.73
4.60

h = 1

Z-a t E(/V) I/IW E { 7 ' )
(f t) (I/month) (months) (months)

81.44
14.05
51.21
28.55
99.10
89.40
42.22

125.44

0.030
0.063
0.034
0.050
0.061
0.066
0.053
0.066

33.31
15.80
29.16
20.02
16.52
15.15
18.88
15.18

5.25
2.51
4.63
3.18
2.62
2.40
3.00
2.41

h = 2

Z-2<r t E{/V) 1/E00 E{ / ' }
(ft) (I/month) (months) (months)

79.81
10.82
49.38
27.43
98.15
87.80
40.69

123.84

0.007
0.014
0.008
0.011
0.014
0.015
0.012
0.015

148.37
70.83

130.70
89.71
74.05
67.88
84.62
68.05

3.38
1.61
2.98
2.05
1.69
1.55
1.93
1.55



Table 5.8 Recursion analysis results for the 8
nontrending wells.

Recurrence Piezometric
Well
Number

5
6
10
11
14
17
20
21

5 year

79.64
3.01
49.20
38.66
97.64
86.44
40.17
123.02

Insufficient data

10 year

79.53
2.84
49.12
38.55
97.31
86.16
38.83
122.38

to compute value

Head Level

20 year

*

——
—

97.12
85.69
—

121.84

*

(ft)

30 year

—
—
—

97.03
85.58
—

121.59

head levels based on behavior of the groundwater flow system observed

over the previous 12 to 14 months. Comparison of 1-month, 3-month, and

6-month model forecasts with observed piezometric head levels for all 21

wells showed that the forecast errors are unbiased (i.e., symmetrically

distributed about a zero mean). An analysis of the model forecasts for

20 of the 21 wells showed that average standard deviations for the 1-

month, 3-month, and 6-month forecasts are 0.70, 1.23, and 1.54 feet

respectively. The model developed for Well 1 (SJRWMD Well N-0003)

exhibits much larger forecast standard deviations, thus producing less

accurate predictions. For all 21 models, actual model forecast errors

fell consistently within the model's expected 95 percent confidence

intervals. These time series models should provide short-term, temporal

piezometric head forecasts for the particular wells modeled. To use

these models, the District must continue to sample the 21 wells on a

monthly basis. Since the model coefficients are empirical parameters
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fit to historical data, estimates of these parameters should be updated

on an annual or biannual basis.

For wells showing no long-term trends of decreasing or increasing

water levels, recursion analysis produced expected low water level

estimates at several of the 21 wells for several recurrence intervals.

For those same wells, excursion analysis produced estimates of the

recurrence intervals and durations of groundwater excursions below

levels of one and two standard deviations below the mean water level.
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CHAPTER VI
STOCHASTIC MODELING OF REGIONAL PIEZOMETRIC HEAD

Introduction

As a part of their responsibility to evaluate and manage water

resources, regional water management agencies must develop models

capable of forecasting groundwater levels in space and time. As

illustrated in Chapter IV, regional estimates of transmissivity,

storativity and recharge (or leakance) are quite uncertain due to the

sparseness, high spatial variability, and unknown reliability of

available measurements of these parameters. As a result conventional

deterministic numerical models of regional groundwater movement which

require complete knowledge of these input parameters can produce highly

uncertain results. Stochastic groundwater modeling techniques, however,

provide a mechanism to account for both input parameter and model

uncertainty in model predictions. The reliability of stochastic model

predictions may be assessed directly by examining model prediction

variances. Model predictions, together with model confidence intervals,

can then be used to make more informed water resource management

decisions.

The empirical time series models described in Chapter V provide

short-term, temporal piezometric head forecasts for the particular wells

being modeled. Univariate models were developed for each well based on

the observed temporal correlation structure of Z(xPt) at each well
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location x*. Multivariate time series models, which incorporate

temporal cross-correlations of piezometric head levels between wells,

have the potential to improve piezometric head forecasts at wells that

are sampled less frequently than others nearby. However, since each of

the 21 wells modeled in this study is sampled at least monthly, site-

specific multivariate time series models were not necessary.

To extrapolate the univariate site-specific model predictions over

space, and thus forecast groundwater levels at unmonitored locations,

the spatial correlation structure of Z(x,t) must be determined. This

can be accomplished within the framework of geostatistical modeling

techniques outlined in Chapter IV.

Theory

Piezometric head varies over both time and space and therefore

must, in general, be considered as a spatiotemporal random field Z(x,t):

Z(x,t) = Z(x,t) + £(x,t) , (6.1)

where Z(x,t) is the population mean, or expected value, of the random

head field at location vector x and time t , and £(x,t) is the zero mean

random fluctuation (residual) at location vector x and time t. In

general, the covariance function describing the spatiotemporal

correlation of the random head field will depend simultaneously on the

two spatial locations x, and x2 and the two times t, and t2, i.e.:

* In Chapter IV, we spoke of the spatial random field Zx, while in
Chapter V we spoke of the temporal random process Zt. In this chapter, to
emphasize its spatial and temporal dependence, the spatiotemporal random
field will be represented by Z(x,t).
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- Z(xvtJ][Z(x2,t2) - Z(x2>t2)]} = Ct(xrxz',t,ttz) . (6.2)

In practice, it is often necessary to simplify this spatiotemporal

covariance function by assuming the spatial and temporal correlations

can be separated (Rodriguez-Iturbe and Mejia 1974; Egbert and

Lettenmaier 1986; Rouhani and Wackeragel 1990) for example:

Cz(x1,x2;t1,t2) = CS(tvt2)Cz*(xrx2) , (6.3)

where Cz
t(t1,t2) is the temporal correlation structure which is assumed

to be independent of space and Cz
x(x1,x2) is the spatial correlation

structure which is assumed to be independent of time.

We established in Chapter V that the piezometric head field Z(x,t)

is non-stationary in time. Therefore a 12 month differencing procedure

was proposed which can remove both seasonal and linear trends over time,

i.e. :

dZ(x,t) = Z(x,t) - Z(x,t-12)

= (Z(x,t) + ftx.t)) - (Z(x,t-12) + £(x,t-12)) , (6.4a)

<JZ(x,t) = JZ(x,t) + iy(x,t) . (6.4b)

where t is measured in months and SZ(xtt) is the differenced random head

at location vector x and time t, with mean <JZ(x,t) = Z(x,t) - Z(x,t-12)

and zero mean residual i/(x,t) = £(x,t) - £(x,t-12). Examination of the

piezometric time series for the 21 well locations, x., showed that the

mean and correlation structure of the differenced head series was

temporally stationary at each location i.e.:
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E{<JZ(x.,t)} = 6Z(x.,t) = SZ(x,) , (6.5)

C«(xPx,;M2) = Cs\(t, - t2)CjJ(XpXf) . (6.6)

Evaluation of the temporal correlation structure required time

series of at least 200 to 300 monthly head levels at a series of

locations, x{. Similarly, evaluation of the spatial correlation

structure (ie the spatial mean and spatial covariance ) requires a

spatial network of at least 200 to 300 head levels distributed

throughout the region of interest at a series of times, tn. In the St.

Johns River Water Management District, piezometric head levels are

measured over a dense network of 500 to 600 wells in May and September

of every year. Thus the spatial correlation structure of piezometric

head levels throughout the District can be evaluated using data from

these sampling episodes and the geostatistical techniques summarized in

Chapter IV.

As discussed in Chapter IV, inference of statistical spatial

structure from one realization of a spatial random field requires that

the random field exhibit either second-order stationarity or intrinsic

(incremental) stationarity. However for the case of piezometric head,

different spatial snapshots of the random field are available for May

and September of every year. Evaluation of the temporal correlation

structure of the differenced piezometric head series showed that

temporal correlation is negligible after approximately 6 months in all

of the 21 wells examined. Thus each May and September series of

differenced piezometric head measurements taken over the District can be

considered to be an approximately independent realization of the

spatially random differenced head field. The existence of multiple
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independent realizations of the random field provides a means to account

for possible non-stationarities in the spatial correlation structure of

the piezometric head field.

It can easily be shown that if Z(x,t) is a random field which is

non-stationary in space and only seasonally non-stationary in time, then

seasonally differencing two independent realizations of this random

field removes both the unknown spatial mean and the unknown seasonal

mean, leaving a stationary zero mean residual. For example if Z(x,t)

and Z(x,t-12) are two independent spatial realizations of the random

field taken during the same month of two successive years then :

Z(x,t) = Z(x,t) +

Z(x,t-J2) = Z(x,t-12) + ftx,t-12) . (6.7)

However since t and t-12 represent the same month:

Z(x,t) = Z(x,t-12) = Z(x) , (6.8)

where Z(x) is the spatially variable, but temporally constant mean for

the month under consideration. Thus:

tJZ(x.t) = Z(x,t) - Z(x,t-12)

= (Z(x) + f(x,t)) - (Z(x) + £(x,t-12)) , (6.9a)

6Z(x,t) = ftx,t) - ftx,t-12) . (6.9b)

where <JZ(x,t) is now a detrended random field with a stationary zero

mean in both time and space for all months.
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If there are n realizations of the original piezometric head field

initially available for geostatistical analysis, the differencing

procedure described above produces n-l realizations of the detrended

field. The spatial structure of each of these n-l realizations can be

analyzed using the methods outlined in Chapter IV. If the spatial

structure of the differenced random field is truly stationary over time,

the same general geostatistical structure should emerge from each

realization. However, since they are inferred from a limited data set,

the experimental variograms determined from each realization of the

random field are only estimates of the underlying population variogram.

Therefore the geostatistical parameters may not be identical from

realization to realization. If the n-l variograms are not found to be

significantly different (ie the spatial structure is in fact invariant

over time but estimated parameters vary slightly between realizations)

an improved estimate of the population variogram can be obtained by

grouping the data from the n-l realizations. Then a single variogram,

which is a more accurate estimate of the population variogram, can be

determined and applied for each realization (Journel and Huijbregts,

1978).

Once the spatial correlation structure of piezometric head

throughout the District has been determined, measurements taken at the

21 modeled wells can be extrapolated over space using the kriging

technique. The optimal estimation equations for kriging piezometric

head throughout the region, based on the variogram of the differenced

head field and head observations at only the 21 modeled well locations,

can be written:
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21

Z(x,t|t) = Z(x,£-12) + £ ̂ (xHZUj.t) - Z(xrt-12)] , (6.10)

where Z(x,t|t) is the kriged estimate of piezometric head at an

unmeasured location x and time t given observations of piezometric head

at the 21 wells at time t, Z(x,t-12) is the actual observed piezometric

head that occurred at location x twelve months prior at time t-12,

Z(Xj,t) is the observed piezometric head at modeled well j at time t,

Z(Xj,t-12) is the observed piezometric head that occurred at well j

twelve months prior at time t-12, and JL}(x) is the kriging weight

assigned to the observation at location j for location x determined from

the kriging system of equations presented in Chapter IV. Equation

(6.10) indicates that predictions of piezometric head at an unmeasured

location x, for the current time t, may be estimated from observations

made at the same location 12 months ago plus a weighted sum of the

differences between heads observed at measured locations Xj this month

and heads observed at locations x. 12 months ago.

Piezometric head forecasts for the 21 modeled wells can also be

extrapolated, or kriged, over space in a similar manner. The optimal

forecast equation for predicting piezometric head throughout the region,

based on the variogram of the differenced head field and head

forecasts at the 21 modeled well locations, can be written:

21
Z(x,t+7|t) = Z(x,t+7-12) + £ <l.(x)[Z(xj,t+7|t) - Z(xj,t+7-12)] , (6.11)

j-i

where Z(x,t+7|t) is the kriged forecast of piezometric head at location

vector x and time t+7 given forecasts of piezometric head at the modeled
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21 wells for time t+7, Z(x,t+/-12) is the actual observed piezometric

head that occurred at location vector x twelve months prior to the

forecast time, Z(Xj,t+7|t) is the forecast piezometric head at well j

for time t+7 given observations at time t, Z(xj,t+/-12) is the observed

piezometric head that occurred at well j twelve months prior to the

forecast time, and 4j(x) is the kriging weight assigned to the

observation at location j for location x.

Equations 6.10 and 6.11 indicate that to krige piezometric head

over the district using this method requires that observations of head

must be available at the location where a kriged estimate is desired at

a time 12 months prior to when the kriged estimate is needed. This

essentially restricts the use of the regional model to forecasting

regional head levels for the months of May and September (when intensive

piezometric head sampling is conducted). Thus the stochastic models

developed in this study can be used to generate up to 6 month lead

forecasts of piezometric head for any month of the year at the 21 wells

that were modeled, or up to 6 month lead forecasts of piezometric head

throughout the District for the months of May and September. Since May

is typically the month that head levels reach their annual low and

September is typically the month that head levels reach their annual

high, regional forecasts for these months should provide sufficient

information for water resource management purposes.

Hvdroqeoloqic Data Description

The St. Johns River Water Management District provided ASCII data

files of piezometric head levels for 636 wells within the Floridan

aquifer for a series of May and September sampling episodes. Figure 6.1
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shows the distribution of these wells throughout the District.

Geostatistical analysis was conducted on 19 spatial data series

beginning with the September 1981 sampling episode and ending with the

September 1990 sampling episode. Multiple observations of head levels

were given for some wells on various sampling dates. When multiple

observations occurred for a single location on a particular date, the

mean and the standard deviation of the observations were taken. If the

standard deviation of the observations was less than one foot, the mean

value for that location was used in the geostatistical analysis. If the

standard deviation of the observations was greater than one foot, the

data for that location was thrown out of the analysis for that sampling

period. The data set was reduced in this manner to prevent the use of

data that represented observations from different wells located at

approximately the same latitude and longitude. It should be noted that

not all 636 wells were sampled on each date, thus the number of

observations used in the geostatistical analysis ranged from a low of

161 for the September 1986 sampling episode to a high of 537 for the

September 1988 sampling episode.

Results and Discussion

Plots of the spatial configuration of actual piezometric head

levels for the entire series of May and September sampling episodes

revealed an obvious spatial trend in the original data which is

consistent over time. Figures 6.2 and 6.3 illustrate this trend for

September 1988 and May 1989 respectively. The trend is characterized by

generally higher piezometric heads near the western boundary of the

District and generally lower piezometric heads near the Atlantic coast,
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Figure 6.1 Spatial distribution of 636 wells.
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Figure 6.2 Observed piezometric head map for September 1988,
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Figure 6.3 Observed piezometric head map for May 1989.
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as well as a local piezometric high in central Volusia county. Random

deviations around the approximately temporally constant spatial trend

will occur from month to month due to random variations in the spatial

rainfall, recharge and pumping patterns.

The non-stationary nature of the original (undifferenced)

piezometric head field in space is also evident in the experimental

variograms for the September 1988 and May 1989 samplings shown in

Figures 6.4 and 6.5. These figures illustrate the distinct undulating

non-stationary variogram shape that was found for each May and September

sampling episode. This shape can likely be attributed to the fact that

two wells separated by a given distance in the east-west direction would

be expected to have significantly different measured head values due to

the deterministic drop of piezometric head from the western boundary of

the District toward the coast. However, two wells separated by a

1000 T
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Figure 6.4 Semivariogram of observed piezometric head for
September 1988.
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Figure 6.5 Semivariogram of observed piezometric head for
May 1989.

greater distance in the north-south direction would be expected to have

more similar piezometric head values, since they would both be located

on the central ridge of the piezometric head field. Thus the variogram

tends to dip up and down with increasing direction and does not reach

the level plateau indicative of a second-order stationary random field.

Fortunately, as discussed in the theory section above, the

seasonal differencing procedure used to detrend the random field over

time also has the potential to detrend the random field over space.

Figures 6.6 and 6.7 show the spatial distribution of the differenced

head fields for September 1988 and May 1989 respectively. Recall that:

, September 1988) = Z(x, September 1988) - Z(x, September 1987) (6.12)
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Figure 6.6 Differenced observed piezometric head map for
September 1988.
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Figure 6.7 Differenced observed piezometric head map for May 1989.
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and

<JZ(x,May 1989) = Z(x,May 1989) - Z(x, May 1988) (6.13)

A comparison of Figures 6.2 and 6.3 to Figures 6.6 and 6.7 shows

that while the original random field varied from less than zero to

greater than one hundred feet, the differenced head field varies from -

10 to 10 feet. Thus the differencing procedure produces a random field

that has a lower range of variability and is distributed around an

approximately zero mean. The experimental cumulative distribution

function (cdf) for the differenced head field can be calculated for each

sampling episode according to the following equation:

F(6Z) - (6.14)
n+1

where F(SZ) is the experimental cumulative distribution function value

for the differenced head value <JZ, Rank(<JZ) is the numerical rank of the

SZ value assigned after the data set has been sorted into increasing

order, and n is the total number of dZ observations used to estimate the

experimental cdf. Figures 6.8 and 6.9 show the experimental cdf

calculated for the differenced head fields for September 1988 and May

1989 respectively. These figures indicate that the differenced head

field is approximately symmetrically distributed around an approximately

zero mean. Seventeen differenced head fields, corresponding to sampling

episodes September 1982 through September 1990, were calculated from the

19 original head fields that were initially available. Table 6.1

summarizes the sample mean and sample standard deviations calculated

from each of these differenced head fields. The sample statistics
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Figure 6.8 Experimental cdf for differenced observed piezometric head
for September 1988.
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Figure 6.9 Experimental cdf for differenced observed piezometric head
for May 1989.
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Table 6.1 Differenced head field sample
statistics.

Number of
Realization Observations Mean

Sept 1982
May 1983
Sept 1983
May 1984
Sept 1984
May 1985
Sept 1985
May 1986
Sept 1986
May 1987
Sept 1987
May 1988
Sept 1988
May 1989
Sept 1989
May 1990
Sept 1990

Average

517
500
551
543
537
550
549
567
186
552
561
555
564
555
538
543
556

3.06
1.97

-2.36
-0.89
0.22

-2.53
-1.33
0.68
-0.22
1.59

-0.57
-1.22
0.74
-0.90
-1.50
-0.96
-1.20

-0.19

Standard
Deviation

2.03
2.30
1.97
1.85
1.39
2.17
1.56
1.79
1.53
1.76
1.90
1.97
1.80
1.46
1.79
1.59
1.59

1.79

fluctuate around an average mean of -0.19 ft, and have an average

standard deviation of 1.79 ft. Thus although Z(x,t) is a non-stationary

random field in both space and time, the seasonally differenced field

<JZ(x,£) has a stationary approximately zero mean.

Experimental variograms were calculated for each of the 17

differenced fields to determined whether the geostatistical spatial

structure was consistent (i.e. stationary) over time. Each of the 17

variograms was found to be well fit by a simple linear variogram with a

nugget effect. Table 6.2 summarizes the linear variogram model

parameters fit to each sampling episode using GEOPACK. Figures 6.10

and 6.11 show plots of the experimental variograms for September 1989

and May 1989 respectively.
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Table 6.2 Experimental variogram model parameters.

Realization
Number of

Observations Model
Nugget
(ft2)

Slope
(ft2/ft)

Range of
Validity

(ft)

Sept 1982
May 1983
Sept 1983
May 1984
Sept 1984
May 1985
Sept 1985
May 1986
Sept 1986
May 1987
Sept 1987
May 1988
Sept 1988
May 1989
Sept 1989
May 1990
Sept 1990

Combined

517
500
551
543
537
550
549
567
186
552
561
555
564
555
538
543
556

linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear
linear

linear

1,
2.

1.53
2.40
1.81
1.96
.23
,11

1.73
1.64
2.15
1.88
1.91
1.98
1.78
1.33
2.16
1.11
1.47

1.90

0.
0,
0,
0.

0.0016
0.0086
.0053
.0045
.0018
.0063

0.0019
0.0044
0.0003
0.0026
.0087
.0049
.0031

0.0018
0.0032
0.0035
0.0028

0.0036

0.
0.
0.

200,000
500,000
500,000
500,000
500,000
500,000
500,000
500,000
500,000
500,000
300,000
500,000
500,000
500,000
500,000
500,000
500,000

500,000

Since the 17 experimental variograms were not found to be

significantly different (i.e. the spatial structure is apparently

invariant over time but estimated parameters vary slightly between

realizations) an improved estimate of the population variogram was

obtained by grouping the data from the 17 realizations. Figure 6.12

shows a plot of the combined variogram, which is a more accurate

estimate of the population variogram, and which can be used for the

geostatistical analysis of the differenced head field for any May or

September. The variogram model parameters fit by GEOPACK to this

combined experimental variogram are included in Table 6.2.

Using the spatial correlation structure of the differenced

piezometric head described by the combined variogram, measurements or
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Figure 6.10 Linear model fitted to a semivariogram of differenced
observed piezometric head levels for September 1989.

2.5

2

1.5-

1 -

0.5

0-Vnrrr,

100 200 300 400
Distance (thousands of feet)

500

Figure 6.11 Linear model fitted to a semivariogram of differenced
observed piezometric head levels for May 1989.
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Figure 6.12 Linear model fitted to a combined semivariogram of
differenced observed piezometric head levels.

forecasts at the 21 modeled wells can be kriged over the District to

produce a regional map of estimated piezometric head. In addition the

kriging technique produces a regional map of the expected error (i.e.

the standard deviation of the predicted error) of the piezometric head

estimate. It should be recalled that the differencing technique

required to detrend the piezometric head field requires that observed

head levels at time t-12 be available for any point in the District

where a kriged estimate is desired at time t. This essentially

restricts the model to kriging May and September measurements or

forecasts from the 21 modeled wells over the grid defined by the 636

well network.

To verify the performance of the geostatistical model, a regional

map for each May and September sampling episode was created by kriging
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an estimate of piezometric head level over the 636 well network from

actual observations over only the 21 well network. Figures 6.13 and

6.14 show two examples of these kriged head maps for September 1988 and

May 1989 respectively, while Figures 6.15 and 6.16 show the kriging

standard deviations for these estimates. It should be noted that the

kriging standard deviation maps are identical for all sampling episodes.

This is due to the face that the kriging standard deviation depends only

on the spatial configuration of the 21 well measurement well network,

not on the actual values measured.

Figures 6.15 and 6.16 indicate that, except around clusters of

wells very near the 21 measured wells, the predicted kriging error

standard deviation over most of the District is between 1.5 and 2.0

feet. This value is just slightly larger than the square root of the

nugget of the combined variogram. As discussed in Chapter IV, the

nugget effect represents unresolved variability occurring over distances

smaller than the separation of the closest measurements used to create

the variogram. Thus geostatistical models which contain a nugget factor

predict kriging estimation errors which increase from zero at the

measurement point to the square root of the nugget effect over very

small distances.

Figures 6.17 and 6.18 show maps of the actual prediction errors

calculated by subtracting the kriged head estimate from the observed

head measured at each of the 636 wells. These plots, which are typical

of those observed for each of the 17 sampling episodes, indicate that

the actual prediction errors oscillate up and down around zero in a

random fashion. Recall from the theory discussion in Chapter IV that

the kriging estimator is designed to produce unbiased estimates whose
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Figure 6.13 Piezometric head estimates for September 1988 created by
kriging over 636 well network from actual observations over
21 well network.
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Figure 6.14 Piezometric head estimates for May 1989 created by kriging
over 636 well network from actual observations over 21 well
network.
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Figure 6.15 Standard deviations of piezometric head estimates for
September 1988 created by kriging over 636 well network
from actual observations over 21 well network.
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Figure 6.16 Standard deviations of piezometric head estimates for
May 1989 created by kriging over 636 well network
from actual observations over 21 well network.
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Figure 6.17 Actual prediction errors for September 1988 calculated by
subtracting the kriged head estimate from the observed head
measured at each of the 636 wells.
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Figure 6.18 Actual prediction errors for May 1989 calculated by
subtracting the kriged head estimate from the observed head
measured at each of the 636 wells.
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actual errors have a mean of zero and a standard deviation equal to the

kriging standard deviation. Thus the accuracy of the kriging estimator

can be evaluated by examining the statistics of its actual prediction

errors.

Figures 6.19 and 6.20 show the experimental cdf's of the actual

kriging errors which have been normalized by subtracting the kriging

estimate from the observed head and dividing by the kriging standard

deviation at each of the 636 well locations, x, , i.e.:

Z(x.,t) - Z(x.,t\t)
' l ' , (6.15)

,, t)

where e(x^t) is the normalized kriging error, Z(xpt) is the actual

observed head, Z(x.,t|t) is the kriged estimate of head, and ak(Xj,t) is

the predicted kriging standard deviation, all at locations x,. and times

t. If the kriging estimator is performing as designed these normalized

errors should be symmetrically distributed around a mean of zero and

have a standard deviation of 1.0. Figures 6.19 and 6.20 indicate that

the actual kriging errors are indeed symmetrically distributed with an

approximately zero mean and unit standard deviation. Table 6.3

summarizes the statistics of the normalized kriging errors for each of

the 17 realizations.

The above analysis indicates that the combined variogram provides

an accurate description of the spatial structure of the differenced

random head field, and the geostatistical model developed using this

variogram provides accurate estimates of the regional piezometric head

given only 21 head measurements distributed throughout the District.
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Figure 6.19 Experimental cdf for normalized actual piezometric head
kriging errors for September 1988.
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Experimental cdf for normalized actual piezometric head
kriging errors for May 1989.
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Table 6.3 Normalized kriging error
statistics.

Number of Mean
Realization Observations (ft)

Sept 1982
May 1983
Sept 1983
May 1984
Sept 1984
May 1985
Sept 1985
May 1986
Sept 1986
May 1987
Sept 1987
May 1988
Sept 1988
May 1989
Sept 1989
May 1990
Sept 1990

Average

456
442
485
457
493
490
489
505
161
517
170
497
526
514
506
514
500

454

-0.18
0.47
0.32
0.18
0.31
-0.01
-0.37
-0.01
0.22
-0.03
0.02
0.10
-0.11
0.20
0.04
0.27
-0.08

0.08

Standard
Deviation

(ft)

1.10
1.41
1.23
1.06
0.77
1.09
0.93
0.93
0.93
1.07
1.05
1.01
0.97
0.80
0.96
0.73
0.83

0.99

Next, the accuracy of kriging forecast piezometric heads from the 21

wells over the 636 well network will be examined.

Figure 6.21 shows the 6-month lead regional forecast of

piezometric head for September 1988. This map was produced using 6-

month lead forecasts (i.e. forecasts of September head levels given

March measurements) for each of the 21 modeled wells to krige estimates

over the 636 network according to equation 6.11. Figure 6.22 shows the

actual forecast error calculated by subtracting the 6-month lead

forecast for September 1988 from the actual observed head for September

1988 over each of the 636 wells. Figure 6.23 shows the experimental cdf

for the actual forecast errors. A comparison of Figure 6.19 (the cdf

for the kriged estimate, or 0-1ead forecast) to Figure 6.23 shows that
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Figure 6.21 Six month lead regional forecast of piezometric head for
September 1988.
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Figure 6.22 Actual forecast error for September 1988 calculated by
subtracting the 6-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.23 Experimental cdf for the actual 6-month lead forecast
errors for September 1988.
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both sets of prediction errors are approximately symmetrically

distributed around zero, but that standard deviation of the 6-month

forecast error is larger since it contains error contributions from both

the time series forecasting and the spatial kriging processes.

Figures 6.24 through 6.26 and Figures 6.27 through 6.29 show the

same series of plots for the 3-month lead forecast and the 1-month lead

forecast for September 1988 respectively. Note that the error

distribution remains symmetric and the mean error gets closer to zero as

the lead time of the forecast decreases. This indicates that the

forecast becomes more unbiased as the lead time decreases. The standard

deviation of the actual forecast error, however, remains relatively

constant as the lead time decreases. This may indicate that the kriging

errors, which remain constant over time, dominate the time series

forecasting errors which should decrease as lead time decreases.

Figures 6.30 through 6.38 show the regional forecasts, the actual

forecast errors, and the experimental cdfs of the actual forecast

errors for the 6-month, 3-month and 1-month lead forecasts for May 1989

respectively. Again the forecast errors are approximately symmetrically

distributed around a zero mean for all times, and become more unbiased

as the lead time decreases. The standard deviation of the actual

forecast error ranges from 1.58 to 1.71 feet and again remains

relatively constant with time.
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Figure 6.24 Three month lead regional forecast of piezometric head for
September 1988.
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Figure 6.25 Actual forecast error for September 1988 calculated by
subtracting the 3-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.26 Experimental cdf for the actual 3-month lead forecast
errors for September 1988.
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Figure 6.27 One month lead regional forecast of piezometric head for
September 1988.
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Figure 6.28 Actual forecast error for September 1988 calculated by
subtracting the 1-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.29 Experimental cdf for the actual 1-month lead forecast
errors for September 1988.
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Figure 6.30 Six month lead regional forecast of piezometric head for
May 1989.
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Figure 6.31 Actual forecast error for May 1989 calculated by
subtracting the 6-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.32 Experimental cdf for the actual 6-month lead forecast
errors for May 1989.
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Figure 6.33 Three month lead regional forecast of piezometric head for
May 1989.
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Figure 6.34 Actual forecast error for May 1989 calculated by
subtracting the 3-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.35 Experimental cdf for the actual 3-month lead forecast
errors for May 1989.
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Figure 6.36 One month lead regional forecast of piezometric head for
May 1989.
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Figure 6.37 Actual forecast error for May 1989 calculated by
subtracting the 1-month lead forecast from the actual
observed head over each of the 636 wells.
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Figure 6.38 Experimental cdf for the actual 1-month lead forecast
errors for May 1989.
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Conclusions

In this Chapter, a regional stochastic model was developed that is

capable of producing accurate, optimal forecasts of May and September

piezometric head levels throughout the District for up to 6 month lead

times. The model couples site-specific time series models for 21 wells

distributed throughout the District with a regional geostatistical model

of the spatial correlation structure of piezometric head. Comparison of

regional 1-month, 3-month and 6-month forecasts to observed regional

piezometric head levels showed that the forecast errors are unbiased

(i.e. symmetrically distributed around a zero mean ) with a standard

deviation which ranges from 1.5 to 1.8 feet. The model forecasts future

May and September head levels based on behavior of the groundwater flow

system observed over the previous 12 to 14 months, and stochastic model

parameters fit from long term time series and dense spatial sampling

records. To use this model the District must continue to measure

piezometric head levels in the 636 well network in May and September of

each year, however monthly levels of piezometric head need only be

measured for the 21 well network.
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CHAPTER VII
LITERATURE REVIEW

Introduction

The development of physically-based stochastic groundwater models

is often preferable to empirical time-series models or traditional

geostatistical analysis; first, because their parameters are based on

measurable aquifer characteristics rather than a fit to data series, and

second, because their predictions incorporate the underlying physics of

ground water flow. This section reviews methods of using potentiometric

head measurements, point estimates of hydrogeologic variables, and

information on the spatial and/or temporal correlation structure of

these variables to develop deterministic and/or stochastic regional

ground water models.

Optimal Estimation of Spatially Variable Hvdrogeoloqic Parameters

Development of regional models of groundwater systems often

requires point estimates of hydrogeologic variables; these variables

include state variables which vary in both space and time (i.e.,

piezometric head, unconfined aquifer transmissivities, and solute

concentrations) and physically-based modeling parameters which vary in

space alone (i.e., hydraulic conductivity or confined aquifer

transmissivity). Frequently, measurements of state variables and

parameters are available from a limited number of locations within a

study area; and based on these measurements, estimates are made at all
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other required locations. In the past, these estimates were made in a

rather ad-hoc manner. Over the last 15 years however, there has been

increasing applications of geostatistical methods to groundwater

hydrologic problems (i.e., in the estimation of one or more spatially

distributed state variables or system parameters).

Kriging is a popular geostatistical technique for making spatial

interpolations and mapping variables. The theoretical foundations of

the technique are based in random field theory presented in Chapter IV.

Measurements represent one realization of the random field of the

variable of interest. Traditional kriging uses these measured values

and the spatial correlation structure inferred from these measurements,

to provide a minimum variance, unbiased linear estimate of the random

field at any specified location. In addition, because kriging is a

linear estimator, the algorithm can be used to calculate the variance of

an estimated random field (conditional variance) for a particular

observation scheme before any data are actually collected. Thus, the

algorithm could be used in monitoring network design.

Kriging has several advantages over the other applied methods of

estimating spatial parameters. First, this method is an "exact

interpolator"; meaning it preserves measured variable values at sampling

locations within the mapped region. A second important advantage is

that kriging produces estimation variances at all locations within the

study site. These variances can be used to assess the accuracy of

generated maps (Rouhani et al. 1990b) or examine the uncertainty in

transmissivity and piezometric heads as a function of sample points

(Delhomme 1976 and 1979). Traditional kriging can also be modified to

incorporate both measurement errors and large-scale spatial trends into
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variable estimates (Gambolati and Volpi 1979). Finally, kriged

estimates are more robust than other mapping techniques such as least

square estimators and distance weighting methods, i.e., they are less

sensitive to small changes in the data (Rouhani 1986).

Early applications of kriging were simply to estimate regional

transmissivities from point measurements (Delhomme 1974, 1976, and 1978

and De Marsily 1978). Since these early applications, kriging has also

been used to interpolate steady-state piezometric heads (Aboufirassi and

Marino 1983; Chirlin and Dagan 1980; Dunlap and Spinazola 1981; and

Sophocleous et al. 1982), steady-state hydraulic head gradients (Philip

and Kitanidis 1989), soil water content (Yates and Warrick 1987),

subsurface electrical conductivities (Yates et al. 1986), and steady-

state groundwater contaminant concentrations (Cooper and Istok 1988b and

1988c). Furthermore, the kriging technique has become more general

since the early applications; for example estimates can now reflect

measurement errors and observed large-scale trends.

Gambolati and Volpi (1979) kriged hydraulic head distributions in

three aquifers underlying the Venetian Lagoon. This study was among the

first to utilize a kriging method which accounts for a regional trend in

the data. The hydraulic head field was modeled as the sum of stochastic

and deterministic components, where the stochastic component describes

natural variability of head around the deterministic trend. Later,

Neuman and Jacobson (1984) developed an iterative method to

simultaneously estimate a regionally trending mean and covariance from

point observations that improves on the method used by Gambolati and

Volpi (1979).
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Geostatisties have been used in aquifer parameter estimation

modeling or "inverse modeling". The inverse problem of estimating

transmissivities from head measurements is generally ill posed and thus

transmissivity estimates are extremely sensitive to small changes in the

head measurements. Neuman and Yakowitz (1979) used kriged

transmissivities as initial input to an inverse model estimating

regional transmissivity from steady-state water levels. Similar

applications of kriged transmissivities can also be found in Neuman et

al. (1980) and Neuman (1980). Inverse modeling predicated on

geostatistical foundations tends to produce the most robust estimates

(Kitanidis and Vomvoris 1983 and Dagan 1985a). A more thorough review

of inverse modeling literature is beyond the scope of this project;

although, such reviews already exist (Townley 1983 and Yeh 1986).

Recently, kriging has been used to characterize the spatial

distribution of groundwater contaminants. Pollutant concentrations for

two dimensional horizontal interpolations must be depth averaged and

expressed in units of mass per unit aquifer volume (or mass); otherwise

concentrations are not additive as required with linear kriging. Moore

and Mclaughlin (1980) were among the first to krige groundwater

contaminant concentrations. They investigated the spatial distribution

of ruthenium-106 in a plume. Cooper and Istok (1988a) examined the work

of Moore and Mclaughlin, and they concluded that the spatial analysis

was incomplete because pollutant concentrations were not additive.

Cooper and Istok (1988a) described a four-step procedure to

spatially characterize steady-state, spatially stationary contaminant

plumes with kriging. Steps of the procedure include: 1) an initial

conversion of contaminant concentration data into additive contaminant
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densities; 2) calculation of the experimental variogram from converted

data; 3) fitting a semivariogram model to the experimental variogram;

and 4) interpolating unknown contaminant densities with kriging.

In a second paper, Cooper and Istok (1988b) use the above four

step procedure, to evaluate groundwater concentrations of boron, barium,

iron, manganese, zinc, and total volatile organic carbon (TVOC) at the

Chem-Dyne toxic waste site located in Hamilton, Ohio. And finally, in a

third paper Cooper and Istok (1988c) present a method of obtaining

global estimates of mean contaminant concentrations. Global estimates

are obtained from integrating depth average contaminant concentrations

over a specified region of the plume. These estimates can be used to

locate recovery systems or to simply calculate the mass of contaminant

represented by a plume. The method of Cooper and Istok obtains not only

global estimates but also global estimation errors for steady-state,

stationary contaminant distributions.

Optimal Estimation of Spatially
and Temporally Variable Hydrogeologic Parameters

Typically, in practice, state variables and hydrogeologic

variables have been measured to understand state variable or parameter

variations in either space or time. For example it is often the case

that water levels are measured at a few locations at frequent intervals,

while measurements at neighboring wells are taken less frequently and

possibly at irregular intervals. At wells with frequent and regular

measurements stochastic time series analyses of temporal water level

fluctuations are often conducted (Houston 1983). Whereas, when water

levels are measured simultaneously from a network of wells for any given

moment, then a geostatistical analysis of the spatial distribution of
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water levels may be conducted (i.e., Chirlin and Dagan 1980). In

general, however, it is preferable to make optimal estimates (forecasts)

of spatially and temporally variable processes using techniques that can

account for both temporal and spatial correlation properties.

To date, optimal estimates of hydrogeologic variables have rarely

been produced in both space and time. Kriging has generally been used

to only interpolate temporally constant parameter and state variable

values over space (Rouhani and Hall 1988b). This is because kriging is

a static linear estimation technique which is best suited to processes

where temporal changes occur relatively slowly (i.e, transmissivities).

Rouhani and Hall (1988a) and Rouhani and Wackernagel (1990) however,

recently attempted to expand kriging into the space-time domain by using

time as the third dimension in the geostatistical analysis of a two

dimensional sampling regime for piezometric head.

Consistent time-space mapping can be achieved with Kalman

filtering, which is an alternate state variable estimation technique

capable of predicting optimal estimates and variances of these estimates

for time and space varying stochastic processes. This technique shows

promise for use in optimal forecasting of groundwater flow systems or

subsurface contaminant plumes which are changing over time. The Kalman

filter, like kriging, is a linear estimation algorithm which can be used

to combine measurements, taken at discrete points in space and/or time,

to obtain minimum variance estimates of the states of a random process

whenever and wherever measurement are unavailable. The heart of the

Kalman filter is a linear mathematical model, which consists of a system

of stochastic equations, formulated in state-space, which describe the

propagation of the random process through space and/or time. The form
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of the mathematical model can either be estimated empirically from

historical data, or derived theoretically based on physical processes.

At measurement times, the Kalman filter computes optimal gains

which blend measurements and prior state estimates predicted from the

governing stochastic model, to obtain an updated minimum variance state

estimate, and an updated state covariance matrix. The updated state

estimate and covariance are the conditional mean and variance of the

random process based on the measurement information. Since the Kalman

filter is a linear estimator, the updated state covariance matrix can be

calculated before the measurements are actually taken. Thus, it could

be used for the design of efficient data collection networks in both

space and time. The mathematical concepts of Kalman filtering and its

derivatives (such as extended and iterative Kalman filtering) are

developed in detail in Gelb (1974). It can easily be shown that

conventional kriging is a simplification of Kalman filtering for a

steady-state stochastic model (Chirlin and Wood 1982).

The Kalman filter has been applied to problems in subsurface

hydrology by Wilson et al. (1978), Townley (1983), and Graham and

Mclaughlin (1989a and 1989b). Wilson and his colleagues used an

extended Kalman filter and a 2-dimensional groundwater flow model to

combine prior information about the head and transmissivity fields with

transient head measurements to provide optimal estimates of the

transmissivity distribution. Model uncertainty, measurement error, and

uncertainty in the transmissivity and head fields were all accounted for

in their analysis. An extended Kalman filter was required since the

transmissivity and head fields are related nonlinearly in the

groundwater flow equations. The main problem Wilson et al. encountered
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was the computational burden associated with the large augmented state

vector which results from a discretized flow model. Nevertheless, they

showed that the extended Kalman filter can provide an effective means of

estimating both the mean head and transmissivity fields, based only on

head measurements, assumed information about measurement and model

error, and the initial state vector and covariance matrix.

Townley (1983) continued the work of Wilson et al. and compared

the use of an extended (linearized) Kalman filter to a non-linear

weighted least squares approach in simultaneously estimating

transmissivities, heads, boundary values and inputs for 1- and 2-

dimensional numerical models of aquifer flow. The main difference

between the two approaches is that in the weighted least squares

approach the transmissivity is not considered to be a random field.

Both unconditioned prior estimates of the mean and covariance of the

head and transmissivity fields, and prior estimates conditioned on

transmissivity measurements (using a kriging algorithm) were tested. As

expected, the conditional priors gave superior results in all cases.

Townley found that the extended Kalman filter was extremely sensitive to

the choice of model noise, and cost twice as much to run as the weighted

least squares algorithm -- mainly due to the predictive portion of the

filter. Thus he concluded that there was no clear advantage in using

the extended Kalman filter when the number of unknown parameters was

large.

Graham and Mclaughlin (1989a and 1989b) used an extended Kalman

filter, based on a physical 2-dimensional solute transport model, to

provide optimal estimates and estimation variances of the trajectory of

a solute plume in an unknown spatially variable hydraulic conductivity
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field. The parameter and state estimates predicted by the physically

based stochastic model were updated when measurements of hydraulic

conductivity, hydraulic head and/or solute concentrations became

available. The performance of the filter was demonstrated using both a

synthetically generated solute plume, and field data from an

experimental tracer test site. The Kalman filter was found to

accurately predict the trajectory of these plumes, and accurately

estimate the reliability of its predictions. Again the major problem

encountered in the implementation of the Kalman filter for the solute

transport problem were the long computation times and large computer

memory requirements.

It should be noted that the regional stochastic model for

piezometric head level presented in Chapter VI of this report can be

interpreted as a simplified Kalman filter. In this case the stochastic

model is the set of empirical time series models at 21 discrete

locations in space. Updates to each model are made whenever new

forecasts or measurements are available. The updated model forecasts

are then optimally interpolated over space using the temporally-constant

spatial covariance structure of the piezometric head field.

Optimal Estimation with Augmented Data

Frequently it is the case that estimates of a random field cannot

be predicted accurately from measurements of a single hydrogeologic

variable. This occurs because of too few measurements, or because

measurements are not distributed throughout the region of study. To

overcome these data limitations, measurements can be augmented with data

or information on other hydrogeologic variables before spatial or
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temporal interpolations are performed with kriging or Kalman filtering.

Several methods exist by which data from one measured variable can be

supplemented with measurement or information on an ancillary variable.

The most obvious methods include: 1) kriging combined with linear

regression modeling, 2) kriging that incorporates external drift of a

secondary variable, 3) kriging with "guess field", and 4) simple

cokriging. Ahmed and De Marsily (1987) compared the above four methods

in a case study of interpolating transmissivities from data on both

transmissivity and specific capacity.

Kriginq Coupled with Linear Regression

Kriging combined with linear regression modeling is the simplest

approach to augmenting a data set. This method can be used if point

values of a primary variable can be estimated from a simple linear

regression model involving the secondary variable. First, a linear

regression model is derived from point locations where both the specific

capacity and transmissivity are measured. Then additional

transmissivity estimates are calculated from the regression relationship

at locations where only the specific capacity is known. The errors

associated with regression model predictions are also considered.

Delhomme (1974, 1976, and 1978) developed the initial kriging equations

that incorporate measurement or variable error. Ahmed and De Marsily

(1987) give a complete system of equations required when kriging a set

of variable values developed from point measurements and regression

model estimates.

Kriging coupled with linear regression works for no more than two

variables, and it requires that sufficient data exist to: 1) create a
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regression model, and 2) estimate the primary variable from the

secondary variable measured at locations where the primary variable has

not been measured. Ahmed and De Marsily (1987) tested this method to

supplement measured transmissivities in a random field with additional

transmissivities estimated from available specific capacity

measurements. They found the method easy to apply; although, a poorly

fitted regression model will increase the uncertainty of kriged

variables.

Kriqinq with an External Drift

Kriging with external drift is another method of augmenting

available data. The name of this method does not imply that the primary

variable is nonstationary (Ahmed and De Marsily 1987), only that the

mean of the primary variable is strongly correlated with a well sampled

secondary variable. The conditional expectation of the primary variable

is written as a linear function of the secondary variable; consequently,

this alters the classical system of kriging equations to a system

directly dependent on the secondary variable. A linear model is used to

estimate the primary variable from the secondary variable. Prediction

residuals are calculated by subtracting linear model estimates of the

primary variable from measured values. Generally variograms for the

residuals and the primary and secondary variables are used in this

method. But for the stationary case, variograms of the main variables

are sufficient. Ahmed and De Marsily examined this method to augment

transmissivity data with specific capacity data. They found the method

to be complicated but effective when the primary variable is both under

and equally sampled with respect to the secondary variable. Variograms
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of both variables are needed, but the method does not require

measurements of both variables at common locations.

Kriginq with Guess Field

Another simple technique of supplementing data with additional

hydrologic information, is kriging with a "guess field." This method

was first proposed by Delhomme (1978) to improving mapping accuracy. In

this procedure, an estimate of a spatial variable is first obtained

throughout the region of interest with an independent model (i.e.,

piezometric surface could be estimated with a numerical model using

constant parameters). Next deviations between the estimates and point

measurements are calculated over the domain, and a variogram of the

deviations is calculated. A map of deviations is then kriged and added

to the map of initial estimates to obtain a corrected variable map.

Ahmed and De Marsily (1987) used a linear regression model to

estimate transmissivities from specific capacity estimates.

Transmissivities estimated from the regression model were initially

kriged to obtain a "guess field". Next, at point locations where both

transmissivity and specific capacity were known, regression model

prediction errors were calculated. These model errors were kriged.

Finally, the interpolated errors were added to the guess field to give a

corrected transmissivity field. Ahmed and De Marsily concluded that the

guess field approach is best applied the if secondary variable has been

measured (or predicted independently) at all locations where the primary

variable has been measured.
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Cokriqinq with Statistically Estimated or Physically-Based
Correlation Structures

Cokriging is an extension of kriging which can improve the accu-

racy of random field estimation by sampling from, and considering the

correlation between two or more related random fields. Ahmed and De

Marsily (1987) found cokriging effective for undersampled as well as

equally sampled primary and secondary variables. However, to

statistically estimate cross-variograms from data requires a large

number of points where both variables have been simultaneously measured.

For stationary fields where mean parameter values are known, the cross-

covariances can be used in lieu of the cross-variograms. The

statistical estimation of the cross-covariance does not require that

both variables be simultaneously measured at each location.

Before cokriging, it is necessary to characterize the correlation

structure between primary and secondary variables through appropriate

joint first and second moments (i.e., the mean and covariance of the

secondary variable and the cross-covariances function between the

variables). With sufficient data, these moment functions can be

estimated by developing direct and cross variograms from the data

(Journel and Huijbregts 1978).

In real-life applications however, there is often insufficient

data available to obtain reliable statistical estimates of the mean,

covariances, and cross-covariances. In these cases, the use of

physically-based analytically derived covariance and cross-covariance

functions is desirable. Moments are obtained for a dependent variable

(e.g. piezometric head) given a model solution to an applicable boundary

value problem (e.g. a flow model) and the first and second moments
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(i.e., mean and covariance) of the independent variable (e.g.

transmissivity). After the mean and the covariance functions for the

dependent variable have been characterized from field data, and the

cross-covariance function for the dependent-independent variables has

been derived from a physical model, the estimation problem is solved

under the same framework of cokriging (Rouhani et al. 1990b). In a

typical application, the mean and covariance functions for

transmissivities would be specified and then a flow model would be used

to characterize the mean and covariance of the piezometric surface and

the cross-covariance function.

Several methods have been used to derive required first and second

moments of the dependent variable including: Monte Carlo simulations;

analytical spectral methods; numerical small-perturbation

approximations; and lagrangian methods. Kitanidis and Vomvoris (1983)

and Hoeksema and Kitanidis (1984) used physically-based covariances and

cross-covariances, derived from numerical small-perturbation

approximations, to cokrige a transmissivity field based on head and

transmissivity observations. Gutjahr and Wilson (1985) demonstrated the

cokriging of hydraulic head field from head and transmissivity

measurements based on spectrally derived covariance and cross-covariance

functions. Mclaughlin and Graham (1986) used cokriging techniques to

estimate a steady-state concentration field based on observations of

hydraulic conductivity, head, and concentration, and spectrally derived

covariance and cross-covariance functions. Graham and Mclaughlin (1989a

and 1989b) extended the method to estimate a transient concentration

field based on observations of hydraulic conductivity, head, and

concentration, using a Kalman Filtering technique. In this study
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physically-based covariances and cross-covariances were derived using

numerical small-perturbation approximations. Details on alternative

methods of deriving physically-based covariances and cross-covariances

are discussed in the next section.

Derivation of Physically-Based Correlation Structures

Monte Carlo Methods

Some of the earliest work in stochastic subsurface hydrology

concentrated on Monte Carlo simulations of flow in heterogeneous porous

media. Simulations of this type require a random field generator to

create multiple realizations of the spatially correlated independent

variable (i.e., transmissivity), a numerical flow and/or transport model

for the boundary-value problem of interest, and software for calculating

the mean, covariance, and cross-covariance of the resulting realizations

of the dependent variable (Rouhani et al. 1990b).

Freeze (1975) and Smith and Freeze (1979a and 1979b) used Monte

Carlo simulations to derive the first and second moments of the hydrau-

lic head distribution, based on 1- and 2-dimensional flow models and a

random hydraulic conductivity field with known statistics. They found

that the variance of the hydraulic head increased with increasing

hydraulic conductivity variance, increasing hydraulic conductivity

correlation scale, and increasing mean hydraulic gradient. In addition,

they found that the variance of hydraulic head decreased by

approximately one half when going from 1- to a similar 2-dimensional

problem. These results, which have also been found by others (Dagan

1979; and Gelhar 1982), point out that correctly predicting the derived

moments for a particular problem depends on correctly determining the
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appropriate dimensionality, and recognizing the inter-dependence of the

first and second moments of the derived random fields.

Smith and Schwartz (1980, 1981a, and 1981b) used Monte Carlo

methods to study contaminant transport in randomly generated, spatially

autocorrelated hydraulic conductivity fields. First they investigated

the relationship between random variations in hydraulic conductivity and

macroscopic dispersion using a lagrangian particle tracking algorithm.

They found that, in general, a constant macrodispersivity could not be

defined either for each individual realization of the Monte Carlo

simulations or for the ensemble behavior as a whole. Increasing the

variance and correlation scale of the hydraulic conductivity was found

to lead to greater variability in the concentration distribution. The

concentration distribution was found to be very sensitive to the

specific arrangement of hydraulic conductivity in each realization.

Smith and Schwartz also analyzed the uncertainty in mass transport

predictions as characterized by the frequency distributions for initial

breakthrough, time of maximum mass and last arrival of mass at a

particular boundary. Again they found that transport uncertainties were

highly sensitive to particular features of the spatial structure of the

hydraulic conductivity field. Finally they conducted a conditional

Monte Carlo simulation which investigated the effect of uniformly spaced

hydraulic conductivity measurements in reducing uncertainty in mass

transport predictions. They concluded that although gathering hydraulic

conductivity measurements could be useful in defining ensemble

statistics for the hydraulic conductivity field, mass transport

prediction uncertainties did not decrease significantly even for their

most dense measurement grid.
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Smith and Schwartz's discouraging results regarding the inability

to define a constant dispersivity for heterogeneous porous media can

perhaps be attributed to the fact that the length scale of their

simulation was only approximately ten times their hydraulic conductivity

correlation length, and thus not long enough to allow for sufficient

spatial averaging of the particle paths. Nevertheless, their effort

indicates that at early times (i.e. the first five to ten years) mass

transport cannot be described as a Fickian process.

Monte Carlo techniques are advantageous in that they can handle

bounded, non-linear systems with relatively large input variances, and

that they are easy to understand and implement. However the

computational requirements for a Monte Carlo simulation, and

particularly a conditional simulation, restrict its use in practical

situations. In general, Monte Carlo techniques are probably best suited

for checking the assumptions and results of derived moment problems

solved using other methods.

Spectral Techniques

Another technique being used for stochastic analysis of flow and

transport in heterogeneous porous media is analytical spectral analysis.

Using this method all random variables in the governing differential

equation are expanded into a mean term and an assumed small, zero mean

stochastic perturbation around the mean. First order mean and

perturbation equations are derived from the expanded equation. Solution

of the first order mean equation yields information regarding the

effective or mean properties of the random fields which can be used in

large scale prediction. Solution of the first covariance equation
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yields information regarding the variation that can be expected around

the predicted mean. Results obtained using spectral solutions to

perturbed stochastic equations are generally closed form analytical

expressions, in contrast to the numerical results obtained using Monte

Carlo simulation.

Bakr et al.(1978), Mizell et al.(1982), Gutjahr et al. (1978) and

Gutjahr and Gelhar (1981) all used spectral methods to evaluate problems

of 1-, 2-, and 3-dimensional steady state flow in stationary, spatially

correlated, random hydraulic fields with known statistics. They found

first order analytic expressions for the effective hydraulic

conductivity, mean hydraulic head, hydraulic head variance and head

covariance functions which explained and verified the qualitative

results reported by Freeze (1975), and Smith and Freeze (1979a and

1979b). However, solution of the steady state perturbed flow equation

by spectral methods requires that both the mean-removed head and

hydraulic conductivity fields be stationary over an infinite domain.

For the steady state flow equation this translates into a requirement

that the mean fields have at most a linear trend (i.e. the hydraulic

gradient must be constant). This assumption restricts the direct

application of the results to regions far removed from boundaries or

pumping/recharge sites, where perturbations around a linearly trending

mean are more likely to be small and have zero mean.

Gelhar et al.(1979), Gelhar and Axness (1983), and Vomvoris and

Gelhar (1985) have used spectral analysis to evaluate mass transport in

heterogeneous porous media. The earlier work focused on evaluating the

additional solute flux term, or macrodispersivity, that appears in the

first order mean equation for steady state mass transport due to the
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correlation between the flow and concentration perturbations. By

assuming stationarity of the mean removed flow and concentration fields,

Gelhar and Axness used the spectral representation theorem to evaluate

an ensemble macrodispersion term for steady 3-dimensional flow in an

anisotropic hydraulic conductivity field with arbitrary orientation of

stratification. They found that macroscopic dispersivity increased with

increasing hydraulic conductivity variance, hydraulic conductivity

correlation length, and mean head gradient, but was independent of local

dispersion for the general case.

For the steady state transport equation, stationarity of the head

and concentration fields impliestthat both the mean hydraulic gradient

and the mean concentration gradient are constant. The constant mean

concentration gradient assumption is clearly a restrictive assumption

that cannot be applied rigorously over the scale of a real-life

contaminant plume. Therefore it is assumed that the mean concentration

is only locally constant, over a scale much smaller than that of the

plume. Thus, at any point of interest, the macrodispersivity is

obtained using a local linearization of the actual mean concentration

field.

Gelhar and Axness (1983) calculated macroscopic dispersivities

which were consistent with field observations and numerical Monte Carlo

simulations. Use of the coefficient in the mean mass transport equation

for prediction would require that 1) the constant mean concentration

gradient assumption be relaxed after the macroscopic dispersivities are

calculated, and 2) that the concept of ergodicity, which allows ensemble

statistics to be applied to single realizations of random fields, be

invoked.
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Vomvoris and Gelhar (1985) concentrated on evaluating the variance

and covariance functions for the concentration field based on the mass

transport perturbation equation. Again, they assumed that the mean head

and concentration gradients were locally constant to apply the spectral

representation theorem. The concentration variance and covariance

functions they derived were found to increase with increasing hydraulic

conductivity variance, correlation scale and mean hydraulic gradient.

In addition, the concentration variance increased with the square of the

local mean concentration gradient and was inversely proportional to the

local dispersivity.

The concentration variance found by Vomvoris and Gelhar provides

valuable insight into the factors which contribute to uncertainty in

mass transport prediction, but the direct applicability of the

covariance function is unclear. The linearly trending mean

concentration field that the covariance analysis is based upon is not

the solution of the mean mass transport equation which is used to derive

the perturbation equation.

The spectral approach for deriving the moments of the random head

and concentration fields is one of the most computationally efficient

and elegant methods of derived distribution analysis. Unfortunately,

unlike other derived distribution methods, there is no mechanism within

the spectral framework for updating knowledge about the particular

realization of interest, and thus reducing prediction uncertainty as

observations are gathered. For additional applications of spectral

methods, the reader is referred to Dagan (1982a and 1982b), Gutjahr et

al. (1978), Kitanidis and Vomvoris (1983), and Rubin and Dagan (1987 and

1988).
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Numerical Small-Perturbation Approximations

Numerical small-perturbation approximations (state-space methods)

obtain truncated mean and covariance equations for derived random fields

by applying the expectation operator directly to the governing

stochastic differential equations. The resulting deterministic system

of equations is then typically solved numerically in the spatial domain.

Numerical solutions of the moment equations allows for consideration of

non-stationary random fields, source/sink terms, and boundary conditions

which cannot easily be dealt with using the spectral method.

First order state-space solutions for the analysis of uncertainty

in hydraulic head predictions was investigated by Sagar (1978),

Dettinger and Wilson (1981), Townley (1983), Hoeksema and Kitanidis

(1984,1985), Mclaughlin (1985), and Graham and Mclaughlin (1989a).

Sagar and Dettinger and Wilson solved the derived moment problem by

first discretizing the governing transient 2-dimensional flow equation

in state-space using finite element and finite difference methods,

respectively. The solution to the discretized equation was then expand-

ed in a Taylor series about the expected value of all uncertain

parameters (i.e., heads, transmissivities, and boundary conditions).

First and second order estimates of the first and second moments of the

head distribution are then obtained by applying the expectation operator

to the appropriately truncated Taylor series expansion of the head

solution.

Dettinger and Wilson found that a first order expected value of

head was identical to the head field predicted by deterministic methods

using the mean hydraulic conductivity. Second order contributions to

the expected value however, modified the first order estimate based on
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transraissivity uncertainty. The second moment (covariance) of the head

field was found to be a function of the transmissivity covariance

function, uncertainty in the boundary conditions, and the sensitivity of

heads to these parameters. Townley refined the technique demonstrated

by Dettinger and Wilson, and showed that results obtained using this

method agree with the results Smith and Freeze (1979a and 1979b)

obtained using Monte Carlo simulation.

Hoeksema and Kitanidis, in route to a solution of the inverse

problem in groundwater modeling, used a slightly different method to

derive the mean and covariance of the 2-dimensional steady state head

distribution. They expanded both the transmissivity and head into a

mean term and a zero-mean perturbation, and inserted these expansions

into the continuous governing partial differential equation.

Differential equations for the mean head and head perturbations were

obtained by assuming there was no trend in the mean hydraulic

conductivity and that second order terms (products of perturbations)

could be neglected.

Hoeksema and Kitanidis's equation for the head perturbation showed

a clear dependence on the mean head gradient and thus the two equations

should be solved simultaneously. However, by neglecting the expected

value of the products of perturbations in the mean equation, they could

solve the equations sequentially -- which was equivalent to the first

order approximation of the mean obtained by Dettinger and Wilson.

Dettinger and Wilson also showed a dependence of the second moment

equations on the solution of the mean condition. However, since the

equations were discretized in the first step of their solution

technique, the functional form of the dependence was not obvious.
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Hoeksema and Kitanidis found the covariance of the head field by

discretizing and solving the equation for the head perturbation using

finite difference methods, and applying the expectation operator to this

solution. Like Dettinger and Wilson, the head covariance was found to

depend on the covariance of the transmissivity and the uncertainty

regarding the boundary conditions. These methods provide a covariance

matrix describing the correlation between the nodes on a discretized

grid, rather than a continuous covariance function which the spectral

method provides.

Mclaughlin (1985) and Graham and Mclaughlin (1989a) used a third

slightly different method for obtaining the moments of the head and

concentration distributions using state-space methods. Like the other

methods, concentration, head, and transmissivity were assumed to be

random fields, and approximate expressions were developed which relate

the unknown head and concentration moments to the moments of

transmissivity, and the moments of the boundary and initial conditions.

The approach was similar to that of Dettinger and Wilson except that the

operators in the governing partial differential equation were expanded

in a Taylor series about the means of their arguments before any

discretization occurs. The expectation operator was then applied to the

expansion and a closed set of continuous first and second moment

equations was obtained. A second order equation for the mean was used

and therefore the interdependence of the mean and covariance equations

was retained throughout the analysis. The importance of the covariance

term in the mean equation can be significant if large variations around

the calculated mean occur.
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Numerical small-perturbation approximations provide a convenient

way to solve derived moment problems when the underlying random fields

are non-stationary or boundary conditions play an important role in the

analysis. The method is better suited to solving transient problems

than the spectral approach, and is usually less computationally

demanding than Monte Carlo simulation. Since the method can be used in

examining a wide range of problems -- including non-homogeneous, non-

isotropic, random fields with spatially varying means -- conditioning of

the derived moments based on field measurements is conceptually straight

forward.
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CHAPTER VIII
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1) Geostatistical analysis of transmissivities and storativities

produced the spatial correlation structures, the optimal estimates

throughout the District, and the predicted error of these

estimates for both variables. Maps were generated showing

estimated means and standard deviations of these estimates.

Transmissivities and storativities were found to be highly

variable, and in areas with few measurements higher estimation

standard deviations indicate greater uncertainty.

2) A comparison of transmissivity estimates obtained through kriging

versus estimates obtained through regional flow modeling showed

little resemblance between the estimates. However, the accuracy

of the flow model estimates are uncertain since they were obtained

by trial and error calibration of a regional flow model to

estimated steady-state predevelopment conditions.

3) Site-specific empirical time series models were developed for 21

wells within the District. Temporal water level fluctuations were

accurately modeled in 20 of the 21 wells. For these 20 wells, an

analysis of model predictions showed that average prediction error

standard deviations for the 1-month, 3-month, and 6-month
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forecasts were 0.81, 1.36, and 1.68 feet respectively. Actual

model errors fell consistently within the model's predicted 95

percent confidence intervals. These time series models should

provide accurate short-term, temporal piezometric head forecasts

for the particular wells modeled.

4) For wells showing no long-term trends of decreasing or increasing

water levels, recursion analysis produced expected low water level

estimates at several wells for several recurrence intervals.

5) If a critical water level is specified for a nontrending well, it

is possible to determine the recurrence interval and the potential

duration of the critical event. For several wells, excursion

analysis was used to estimate the recurrence intervals and

durations of groundwater excursions below levels of one and two

standard deviations below mean water levels.

6) A regional empirical stochastic groundwater model was developed in

this study that is capable of predicting transient effects of

declining or increasing regional groundwater levels due to

temporal fluctuations in recharge. Model parameters were fit from

historical data records of piezometric head fluctuations over

space and time. This model is capable of forecasting regional

groundwater levels in May and September of any year, and it also

estimates the accuracy of predictions. Forecasts can be made for

any specified lead time; however, the accuracy of predictions

improve greatly for lead times less than seven months. Comparison
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of regional 1, 3, and 6-month forecasts to observed regional

piezometric head levels showed that forecast errors were unbiased

(i.e., symmetrically distributed around zero) with standard

deviations ranging from 1.5 to 1.8 feet. Thus, this model should

be useful for predicting regional water levels in May and

September and provide the basis for drought management decisions.

Recommendations

1) The District should include both physically-based and empirically-

based stochastic groundwater models in their decision making

process. Stochastic models not only produce regional predictions

of the behavior of the groundwater system, but also provide an

estimate of the accuracy of the prediction.

2) To use the empirical stochastic models developed in

this study, the District must continue to intensively sample

piezometric head levels throughout the District in May and

September of each year, but only needs to sample 21 wells on a

monthly basis. Since the model coefficients are empirical

parameters fit to historic data, estimates of these parameters

should be updated on an annual or biannual basis.

3) The times series models developed in this study should be extended

to include the effects of temporally variable rainfall and

pumpage. This would require conversion of the univariate time
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series models to multivariate models which include rainfall and

pumpage components.

4) A method should be developed to permit timely manipulation of

pumpage rates so that target groundwater levels can be maintained

at particular monitoring stations. Such a method would use the

modified times series models described above in an optimal

feedforward/feedback control algorithm.

5) The correlation structure derived from the geostatistical analysis

of the transmissivities and storativities should be used in

conditional Monte Carlo simulations or first-order perturbation

stochastic models to predict best estimates of steady-state or

transient hydraulic head distributions throughout the District and

the variance in these estimates resulting from input parameter

uncertainty. Results from these analyses could be compared to

traditional deterministic models where the transmissivities and

storativities are estimated by trial and error efforts to match

deterministic model predictions to measured heads. Physically-

based stochastic models could be used to evaluate effects of

future well-field developments on steady-state and transient

groundwater levels; simulations would also give the uncertainty in

water level predictions associated with particular development

scenarios.
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6) Transmissivities, storativities, and leakances were found to be

highly variable; thus, more measurements should be taken in

regions where estimates have the greatest uncertainty.

7) Head observations should be collected simultaneously at all

locations where transmissivities and/or storativities have been

measured to permit the development of cross-variograms between

these variables. If these variables were found to be highly

correlated, the cross-variograms could be used with district-wide

head measurements to improve regional transmissivity and

storativity estimates throughout the District.
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APPENDIX A
LATITUDE, LONGITUDE, TRANSMISSIVITY, STORATIVITY,

AND LEAKANCE VALUES FOR WELLS PROVIDED BY
THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

Table A.I Values for shallow aquifer.

Well
Number

SI
S2
S3
S4
S5
S6
S7
S8
S9
S10
Sll
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21

Latitude

302300
295200
295800
295700
295340
290300
290900
290800
282318
282400
282400
282600
282600
275900
281000
275900
280100
280100
280200
274700
274600

Longitude

812400
812500
813200
813000
812138
821300
820200
820300
815440
810000
810300
810400
810300
810400
810400
803200
803600
803700
803500
803000
803000

(ft2/d)

2,700
6,751
307

1,210
1,507
3,650
695

6,150
9,795
1,782
3,075
4,278
1,484
401

2,005
1,678
2,003
2,691
1,845
10,745
10,491

S

0.001
0.2
0.01
0.13

0.000235
-
-
-
-
-
-
-
-
-
0.0004
-
-
-

0.000054
0.000101
0.000157

(d"1) County

Duval
St. Johns

-
-
-

Marion
-
-

Lake
Orange

-
-
-

Osceola
-

Brevard
-
-
-

0.000149 Indian River
0.000388
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Table A.2 Values for intermediate aquifer.

Well
Number

11
12
13
14
15
16
17
18
19
110
111
112
113
114
115

Latitude

301933
295700
295800
295847
290900
290800
290000
292200
292400
292000
292200
292100
282318
282510
282531

Longitude

823505
812900
812900
812353
820200
820300
812000
810900
810900
810800
810900
810900
815440
810545
810543

(ft2/d)

2,276
1,664
2,288
27,485

361
21,390
6,484
3,676
2,986
622
666

1,670
11,812
2,353
4,251

S

0.00012
0.00042
0.00035

-
-

0.00019
0.00016

0.04
0.00112_

-
-
0.001
0.0003

fa
0.000053
0.0334
0.001
-
-
-
-
-

0.00945
.
-
-
-
—

County

Columbia
St. Johns

Marion

Volusia

Lake
Orange

Table A.3 Values for Upper Floridan aquifer.

Well T
Number Latitude Longitude (ft2/d) County

Ul
U2
U3
U4
U5
U6
U7
U8
U9
U10
Ull
U12
U13
U14
U15
U16
U17

304400
301933
301000
303836
300800
300800
295144
300656
300100
293950
294053
294752
295730
294343
295028
295132
300354

813000
823505
823700
812742
813800
813900
813771
814634
814400
812842
812952
812905
812930
812840
813309
811648
813012

18,717
32,995
36,096
30,000
107,955
19,953
7,799
87,005
30,882
87,968
56,016
25,000
54,011
29,011
8,703
13,035
6,818

0.00007
0.0008
0.00025
0.00115
0.000286

-
-
0.0002
0.0006
0.0006
0.001
0.0002
0.0003
-
-
-

0.000695
-

0.000053
-
-
-
-
-
0.0187
0.00508
0.00110
0.00495
0.000963

-
-
-

Camden
Columbia
Nassau

Duval

Clay

St. Johns

AA-2



Table A.3--continued.

Well
Number

U18
U19
U20
U21
U22
U23
U24
U25
U26
U27
U28
U29
U30
U31
U32
U33
U34
U35
U36
U37
U38
U39
U40
U41
U42
U43
U44
U45
U46
U47
U48
U49
U50
U51
U52
U53
U54
U55
U56
U57
U58
U59
U60
U61
U62
U63

Latitude

300048
294612
294700
294748
295826
295800
295700
295800
294200
293933
294032
294255
294540
293234
294500
294025
293930
293955
294300
292300
292700
291955
291955
291915
293716
293036
293325
292616
292947
292448
292500
290900
290800
290500
285900
290600
290500
290900
291200
291100
291100
285900
285900
291948
291725
291507

Longitude

812333
812534
812900
812923
812339
813200
813000
811800
821600
813428
813455
813240
813833
814241
814300
813358
813436
813445
820100
813700
812157
812009
811951
811840
812936
811714
811248
811314
811743
811213
811200
820200
820300
821700
821200
820000
820000
810600
810200
810400
810300
811700
805500
812855
812756
812906

(ft2/d)

1,604
15,000
23,128
38,770
22,006
42,781
85,695
17,981
2,139
45,989
23,997
57,513
17,005
41,043
36,765
36,765
48,128
36,765
106,283
16,811
36,096
37,433
25,401
36,765
25,936
9,398
55,481
22,995
9,265
12,005
6,610
16,043
29,412
62,166
66,845
33,422
66,845
40,775
3,743
45,900
32,754
25,401
6,952
28,509
24,499
26,003

S

-
0.00016
0.00059
0.00018

-
0.0012

0.000235
-
0.001
0.0008
0.001
-
-

0.00094
-
-
-
-

0.000345
0.00047
0.0009
0.00019

-
-
0.0001
0.0004
-

0.00042
0.00036
0.000016

-
-
0.0062
0.0005
-
-

0.000735
0.00023
0.000145
0.00022

-
0.00029
0.001

0.00055
0.00045

«S
-

0.000201_

1.3xlO'7
-
-
-
-
0.0160
0.0100
0.0214
-
-

0.000241
-
-
-

0.000829
0.0112

0.000695
-

0.00227
-
-

0.000896
0.000755

-
0.000134
0.000254

-
-
-

0.00227
-
-
-
-
-
-
-
-
-
-
-
-

County

Alachua
Putnam

Flagler

Marion

Volusia
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Table A.3--continued.

Well
Number

U64
U65
U66
U67
U68
U69
U70
U71
U72
U73
U74
U75
U76
U77
U78
U79
U80
U81
U82
U83
U84
U85
U86
U87
U88
U89
U90
U91
U92
U93
U94
U95
U96
U97
U98
U99

U100
U101
U102
U103
U104
U105
U106
U107
U108
U109

Latitude

291439
291541
290927
290847
290535
291929
291802
291506
291433
291440
291422
291055
290850
290635
290532
291004
292200
292300
290600
290500
285700
291600
291500
292100
285600
282318
282800
282200
282200
282700
283200
284900
283800
284100
284100
284200
284300
284500
284700
284900
284428
284550
284706
284712
284800
284600

Longitude

812817
812546
812128
812030
812148
812840
812741
812857
812852
812828
812547
812850
812021
812027
812135
811014
810900
810900
810800
810800
805800
810900
810900
810800
811800
815440
815400
813800
814900
815800
815400
815500
811400
811000
811300
811000
811800
811300
811200
811800
810726
810715
810708
810443
811900
812300

(ft2/d)

22,025
8,396
23,997
6,698
88,516
8,904
15,000
21,999
16,043
42,005
4,505
18,048
7,794

160,027
37,032
12,032
1,604
4,586
5,548
4,445
10,160
41,979
21,658
1,883
5,348
12,968
39,171
3,476
4,278
7,620
3,743
20,098
33,824
1,217
13,102
29,813
42,112
9,581
25,802
17,914
4,104
16,979
1,698
3,703
13,492
152,406

S L

0.0006
0.00045
0.00095
0.0003
0.0007
-
-
-
-
-
-
-
-
-
-
-

0.00015 0.00134
-

0.000205
0.00012
0.000497 0.000127

-
-

0.000156 0.0401
-

0.00025 0.00201
0.013 0.00481
-
-
-
-
0.0119 0.00221
-
-
-
-
-

0.000004
-
-
-
-
-
-
-
0.0035 0.0100

County

Lake

Seminole
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Table A.3--cont1nued.

Well
Number

U110
Ulll
U112
U113
U114
U115
U116
U117
U118
U119
U120
U121
U122
U123
U124
U125
U126
U127
U128
U129
U130
U131
U132
U133
U134
U135
U136
U137
U138
U139
U140
U141
U142
U143
U144
U145
U146
U147
U148
U149
U150
U151
U152

Latitude

283100
283600
282552
282531
282531
283200
282412
282341
282530
282510
281000
281300
281400
281400
281400
281400
281500
275901
280905
281037
281150
281159
281632
281714
282729
281820
281919
281955
281600
280100
284700
275119
275725
275738
275831
280658
280746
280811
280947
275900
274700
274400
274500

Longitude

812100
812800
810756
810822
810957
812000
810447
810401
810542
810545
814400
814900
813900
814000
814300
813400
814900
811215
812701
810751
810241
811428
805150
810930
811340
805405
805333
813707
813500
814400
805100
804824
804127
805210
805135
804651
805016
805144
805134
803200
802600
802400
802400

(ft2/d)

79,713
36,230
46,791
73,529
72,861
574,866
508,021
550,000
209,893
758,021
14,706
5,348
84,893
90,909
10,294
4,947
3,877
6,003
6,003
18,984
2,005
37,968
6,992
83,021
25,000
2,995
4,011
6,000
1,604

170,242
40,107
10,000
5,000
8,008
8,008
9,000
5,000
8,008
2,995
24,612
19,831
6,150
26,719

S

0.001367
0.000935
0.00007

0.03
0.00063

-
-
0.0009
-

0.00007
-
-
0.012
0.0018
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.011
-
0.0008
-
-
-
-
-
-
-
-

0.00136
0.001267
0.00525
0.000228

(d~1) County

0.0188 Orange
0.0263

0.000267
0.00134
0.00535
0.000012

-
-
-
-

Polk
-
-
-
-
-
-

Osceola
-
-
-
-
-
-
-
-
-
-
-

Polk
Brevard

-
-
-
-
-
-
-
-
-

Indian River
-
-

AA-5



APPENDIX B
ANNUAL MEAN, STANDARD DEVIATION, MAXIMUM AND MINIMUM

PIEZOMETRIC HEAD LEVELS FOR 21 WELLS WITHIN
THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

Well
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

SJRWMD
Well
Number

N-0003
D-0348
D-0160
U-0001
C-0120
P-0172
SJ-0104
F-0087
M-0048
M-0013
SU-0013
V-0101
S-0125
L-0062
OR-0047
OR-0007
SU-0002
OR-0064
BR-0202
OS-0001
PO-0006

Years
of
Data

1977-1990
1976-1990
1945-1990
1959-1982
1974-1989
1976-1990
1959-1989
1937-1990
1933-1989
1975-1990
1973-1990
1951-1990
1953-1990
1959-1990
1943-1990
1961-1990
1959-1990
1959-1990
1955-1989
1976-1990
1960-1990

Number
of

Obs.

157
158
529
284
172
163
368
643
681
175
198
469
444
371
557
347
370
370
406
169
359

Mean
(ft)

-13.68
45.68
37.90
59.80
83.07
17.28
17.06
15.21
48.56
53.04
29.67
42.29
44.67
100.05
63.12
36.32
91.00
108.72
28.42
43.75
127.04

Std
Dev
(ft)

6.03
1.89
5.95
3.17
1.63
3.23
1.99
1.60
2.21
1.82
1.12
1.61
3.48
0.95
5.13
1.87
1.60
1.32
2.24
1.53
1.59

Maximum
(ft)

7.22
50.05
52.34
66.51
87.02
21.33
22.20
18.21
55.33
57.63
31.77
46.12
55.19
102.01
76.88
40.72
93.61
112.17
33.95
46.64
131.16

Minimum
(ft)

-30.64
41.23
24.65
53.41
79.53
2.84
11.68
10.64
43.41
49.12
25.27
38.55
35.15
97.03
50.42
30.78
85.58
104.87
23.01
38.83
121.59
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APPENDIX C
MONTHLY MEAN, STANDARD DEVIATION, MAXIMUM AND MINIMUM

PIEZOMETRIC HEAD LEVELS FOR 21 WELLS WITHIN
THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

Table C.I Monthly sample statistics for Well 1 (SJRWMD Well N-0003)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of
Obs.

13
13
13
13
13
13
13
13
13
13
13
13

Mean
(ft)

-11.72
-14.18
-14.12
-12.45
-15.12
-16.28
-14.15
-15.71
-12.83
-13.61
-13.69
-9.70

Std
Dev
(ft)

6.19
5.12
5.06
6.18
5.92
4.34
5.25
9.19
8.09
4.56
4.28
5.73

Maximum
(ft)

-1.80
-8.80
-7.90
-6.30
-3.70
-9.50
-3.00
7.20
6.70
-4.70
-6.20
-1.00

Minimum
(ft)

-23.90
-24.40
-23.10
-22.90
-24.30
-23.80
-21.90
-30.60
-28.90
-22.20
-21.90
-20.80
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Table C.2 Monthly sample statistics for Well 2 (SJRWMD Well D-0348)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

13
13
13
13
13
13
13
13
13
13
14
14

Mean
(ft)

44.96
44.67
44.33
44.48
45.35
46.30
46.86
46.82
46.45
46.16
45.83
45.56

Std
Dev
(ft)

1.37
1.60
1.80
2.05
2.06
2.04
1.92
1.80
1.57
1.56
1.45
1.43

Maximum
(ft)

47.22
47.54
47.78
48.15
49.03
49.97
50.04
49.91
49.17
48.44
48.04
48.26

Minimum
(ft)

43.26
42.66
41.97
41.23
41.89
42.61
43.54
43.95
44.21
43.88
43.68
43.64

Table C.3 Monthly sample statistics for Well 3 (SJRWMD Well D-0160),

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

44
44
44
44
44
44
44
44
44
44
44
44

Mean
(ft)

38.95
38.93
38.50
37.25
36.46
36.48
36.34
36.86
37.88
38.62
39.02
38.97

Std
Dev
(ft)

5.64
5.58
5.66
6.01
6.76
6.49
6.23
5.93
5.68
5.70
5.53
5.56

Maximum
(ft)

51.10
51.20
51.40
50.70
51.80
52.30
51.30
49.80
50.10
51.00
51.60
51.40

Minimum
(ft)

28.80
26.50
26.20
26.20
25.10
24.60
25.00
26.40
27.60
27.20
29.80
29.60
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Table C.4 Monthly sample statistics for Well 4 (SJRWMD Well U-0001)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

23
24
24
24
24
24
24
24
24
23
23
23

Mean
(ft)

59.49
60.05
60.57
60.68
60.11
59.52
59.31
59.54
59.78
59.80
59.43
59.26

Std
Dev
(ft)

2.97
2.94
3.19
3.29
3.16
3.14
3.23
3.31
3.24
3.39
3.27
3.07

Maximum
(ft)

65.45
65.26
66.45
66.27
65.52
65.84
65.35
65.03
64.88
65.64
65.02
64.72

Minimum
(ft)

54.39
54.99
55.16
56.07
55.23
54.21
53.60
53.41
53.76
53.63
53.77
53.89

Table C.5 Monthly sample statistics for Well 5 (SJRWMD Well C-0120)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

14
14
14
14
14
15
15
15
15
14
14
14

Mean
(ft)

82.99
83.16
83.38
83.47
83.09
82.78
82.66
82.81
83.11
83.33
83.11
82.96

Std
Dev
(ft)

1.49
1.38
1.41
1.68
1.81
1.83
1.87
1.90
1.74
1.57
1.60
1.56

Maximum
(ft)

86.13
86.30
86.57
87.03
86.61
85.98
85.75
85.75
85.80
85.87
85.71
85.67

Minimum
(ft)

80.66
80.99
81.08
81.31
80.60
79.93
79.76
79.53
79.64
80.34
80.00
80.06
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Table C.6 Monthly sample statistics for Well 6 (SJRWMD Well P-0172).

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

14
14
14
14
14
14
13
13
13
13
13
13

Mean
(ft)

18.04
17.86
15.99
13.70
14.62
16.92
17.86
18.46
18.93
18.75
18.91
17.88

Std
Dev
(ft)

4.52
4.56
4.02
2.84
1.64
1.36
1.20
1.05
0.96
1.32
1.18
4.57

Maximum
(ft)

21.13
20.95
21.33
19.72
17.33
18.82
19.58
19.86
20.19
20.57
20.97
20.97

Minimum
(ft)

2.84
3.18
5.57
9.99
11.75
14.50
15.71
16.52
17.57
16.87
17.13
3.01

Table C.7 Monthly sample statistics for Well 7 (SJRWMD Well SJ-0104)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

30
31
31
31
31
31
31
31
31
30
30
30

Mean
(ft)

17.78
17.77
17.26
15.94
15.36
15.99
16.57
17.11
17.64
17.96
17.90
17.74

Std
Dev
(ft)

1.52
1.66
2.01
2.30
2.19
1.85
1.78
1.73
1.69
1.76
1.72
1.58

Maximum
(ft)

20.97
20.93
20.91
20.82
20.74
20.60
20.67
21.18
21.75
22.20
21.83
21.21

Minimum
(ft)

15.05
15.13
13.51
12.71
11.68
12.45
12.99
13.63
14.71
14.87
15.11
15.04
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Table C.8 Monthly sample statistics for Well 8 (SJRWMD Well F-0087)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of
Obs.

53
54
54
54
54
54
54
54
54
53
53
53

Mean
(ft)

15.51
15.52
15.28
14.64
14.20
14.45
14.84
15.17
15.55
15.66
15.62
15.55

Std
Dev
(ft)

1.33
1.37
1.46
1.71
1.80
1.73
1.70
1.61
1.51
1.45
1.38
1.33

Maximum
(ft)

17.90
17.70
17.70
17.50
17.20
17.40
17.60
17.80
18.20
18.00
17.90
17.90

Minimum
(ft)

12.70
12.70
12.60
11.30
10.90
10.60
10.70
11.90
12.60
12.60
12.70
12.80

Table C.9 Monthly sample statistics for Well 9 (SJRWMD Well M-0048)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of
Obs.

56
57
57
57
57
57
57
57
57
57
56
56

Mean
(ft)

48.49
48.26
48.28
48.38
48.16
47.92
48.07
48.52
49.17
49.42
49.25
48.82

Std
Dev
(ft)

2.14
1.99
1.98
2.16
2.06
1.97
2.02
2.18
2.35
2.54
2.43
2.27

Maximum
(ft)

52.93
52.44
52.12
53.67
53.22
52.49
52.66
54.20
54.77
55.33
54.71
53.78

Minimum
(ft)

44.08
43.96
43.59
43.47
43.41
43.72
43.88
44.12
44.27
44.53
44.54
44.24
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Table C.10 Monthly sample statistics for Well 10 (SJRWMD Well M-0013)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

14
14
14
14
14
15
15
15
15
15
15
15

Mean
(ft)

52.75
52.89
53.02
53.16
52.91
52.89
53.09
53.19
53.41
53.48
53.12
52.84

Std
Dev
(ft)

1.71
1.77
1.61
1.69
1.70
1.60
1.99
2.02
1.95
2.04
1.94
1.90

Maximum
(ft)

55.76
56.31
55.69
56.05
55.82
55.60
56.74
57.05
57.19
57.60
56.91
56.63

Minimum
(ft)

49.12
49.20
50.19
50.20
50.35
50.04
49.79
50.17
50.25
49.80
49.56
49.17

Table C.ll Monthly sample statistics for Well 11 (SJRWMD Well SU-0013),

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

39
40
39
39
39
39
39
39
39
39
39
39

Mean
(ft)

29.93
30.01
29.92
29.49
28.75
28.72
29.34
29.76
30.12
30.21
30.03
29.91

Std
Dev
(ft)

0.81
0.87
0.95
1.11
1.21
1.20
1.23
1.07
0.82
0.89
0.86
0.84

Maximum
(ft)

31.35
31.30
31.42
31.34
30.79
31.17
31.39
31.47
31.77
31.61
31.29
31.35

Minimum
(ft)

28.15
28.27
27.68
27.26
26.36
25.64
25.27
26.52
28.21
27.58
27.55
27.27
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Table C.12 Monthly sample statistics for Well 12 (SJRWMD Well V-0101),

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

17
17
16
16
16
16
16
16
17
17
17
17

Mean
(ft)

42.19
42.51
42.89
42.48
41.82
41.74
42.29
42.49
42.78
42.46
41.79
41.79

Std
Dev
(ft)

1.17
1.29
1.57
1.56
1.49
1.50
1.91
1.92
1.88
1.84
1.56
1.39

Maximum
(ft)

44.28
44.40
45.20
44.97
44.12
44.17
45.57
45.58
45.10
46.12
44.53
43.76

Minimum
(ft)

39.66
40.18
39.75
39.43
38.83
39.18
38.76
38.66
38.93
38.55
38.62
38.79

Table C.13 Monthly sample statistics for Well 13 (SJRWMD Well S-0125)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

37
37
37
37
37
37
37
37
37
37
37
37

Mean
(ft)

44.99
44.96
44.75
44.03
43.17
43.46
44.22
44.94
45.53
45.56
45.25
44.99

Std
Dev
(ft)

3.03
2.88
3.22
3.62
3.62
3.49
3.52
3.58
3.58
3.78
3.43
3.19

Maximum
(ft)

50.96
50.64
51.71
52.49
50.59
50.10
52.12
53.60
54.79
55.19
53.24
51.82

Minimum
(ft)

39.01
38.51
37.75
36.46
36.14
35.15
35.78
36.55
38.72
38.73
38.87
38.95
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Table C.14 Monthly sample statistics for Well 14 (SJRWMD Well L-0062),

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

30
31
31
31
31
31
31
31
31
31
31
31

Mean
(ft)

100.01
100.27
100.36
99.99
99.39
99.61
100.13
100.45
100.66
100.23
99.92
99.84

Std
Dev
(ft)

0.89
0.78
0.86
1.02
1.14
0.92
0.75
0.73
0.85
0.94
0.88
0.90

Maximum
(ft)

101.26
101.51
101.65
101.72
100.91
101.21
101.56
101.98
101.99
101.67
101.23
101.19

Minimum
(ft)

97.70
98.70
98.43
97.62
97.03
97.86
98.42
99.04
98.87
98.16
97.89
97.31

Table C.15 Monthly sample statistics for Well 15 (SJRWMD Well OR-0047)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

46
46
46
46
46
46
46
47
47
47
47
47

Mean
(ft)

63.57
63.35
63.25
61.43
61.28
61.50
62.67
63.80
64.73
64.80
64.11
63.70

Std
Dev
(ft)

4.90
4.80
5.18
5.40
5.23
4.94
5.09
5.12
5.35
5.66
5.26
5.16

Maximum
(ft)

73.61
73.27
76.53
77.44
73.51
72.39
76.32
76.76
76.88
76.41
75.95
75.17

Minimum
(ft)

53.41
53.58
53.59
52.09
50.42
50.60
50.87
51.53
53.29
52.66
53.20
52.68
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Table C.16 Monthly sample statistics for Well 16 (SJRWMD Well OR-0007)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

28
29
29
29
29
29
29
29
29
29
29
29

Mean
(ft)

36.76
36.84
36.69
35.66
34.41
34.96
35.90
36.53
37.08
37.26
37.06
36.79

Std
Dev
(ft)

1.46
1.79
1.89
1.97
1.70
1.61
1.66
1.56
1.46
1.67
1.63
1.46

Maximum
(ft)

39.64
40.72
39.91
39.31
37.86
38.40
39.16
39.67
40.08
40.34
39.81
39.51

Minimum
(ft)

33.75
34.22
33.37
32.40
30.78
31.47
31.76
32.76
34.47
34.29
33.48
33.78

Table C.17 Monthly sample statistics for Well 17 (SJRWMD Well SU-0002)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

31
30
30
31
31
31
31
31
31
31
31
31

Mean
(ft)

91.18
91.64
91.66
90.79
89.61
90.00
91.03
91.87
91.95
91.17
90.61
90.64

Std
Dev
(ft)

1.53
1.43
1.41
1.41
1.75
1.95
1.39
1.24
1.17
1.25
1.29
1.41

Maximum
(ft)

93.44
93.50
93.61
92.93
92.23
93.11
92.82
93.61
93.41
93.13
92.84
92.99

Minimum
(ft)

87.04
87.00
87.33
87.28
85.58
85.69
87.36
87.92
88.23
87.97
87.69
87.46
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Table C.18 Monthly sample statistics for Well 18 (SJRWMD Well OR-0064)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

30
30
31
31
31
31
31
31
31
31
31
31

Mean
(ft)

108.68
108.73
108.74
108.45
108.09
108.28
108.69
108.99
109.26
109.12
108.87
108.68

Std
Dev
(ft)

1.15
1.18
1.36
1.61
1.50
1.29
1.30
1.26
1.15
1.25
1.22
1.20

Maximum
(ft)

110.78
110.85
111.67
111.99
111.41
111.29
111.58
111.57
112.17
111.99
111.38
111.03

Minimum
(ft)

106.60
106.22
106.18
105.58
104.87
105.22
105.64
105.64
107.23
106.69
106.78
106.45

Table C.19 Monthly sample statistics for Well 19 (SJRWMD Well BR-0202)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

34
34
34
34
34
34
34
34
33
33
34
34

Mean
(ft)

28.88
28.81
28.77
27.98
26.94
27.18
27.99
28.49
29.06
29.42
29.35
29.01

Std
Dev
(ft)

1.85
2.01
2.06
2.34
2.43
2.23
2.23
2.16
2.11
2.11
2.15
1.96

Maximum
(ft)

32.38
32.43
32.71
32.77
31.83
32.03
32.62
33.42
33.97
34.07
33.66
33.08

Minimum
(ft)

25.65
25.73
25.56
24.67
23.02
23.25
23.68
24.32
25.44
25.99
25.19
25.86
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Table C.20 Monthly sample statistics for Well 20 (SJRWMD Well OS-0001)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

15
14
14
14
14
14
14
14
14
14
14
14

Mean
(ft)

44.33
44.32
44.27
43.22
41.94
42.28
43.14
43.78
44.46
44.54
44.37
44.37

Std
Dev
(ft)

1.13
1.31
1.49
1.65
1.47
1.36
1.43
1.26
0.99
1.18
1.21
1.11

Maximum
(ft)

45.88
45.97
46.64
46.63
44.29
44.00
45.16
45.58
45.65
46.21
45.84
45.68

Minimum
(ft)

42.11
42.37
41.63
40.70
38.83
39.83
40.17
41.19
42.80
42.16
41.63
42.30

Table C.21 Monthly sample statistics for Well 21 (SJRWMD Well PO-0006)

Month

January
February
March
April
May
June
July
August
September
October
November
December

Number
of

Obs.

29
30
30
30
30
30
30
30
30
30
30
30

Mean
(ft)

127.22
127.38
127.17
126.01
125.33
126.32
127.35
127.87
128.18
127.62
127.19
127.14

Std
Dev
(ft)

1.21
1.33
1.52
2.03
1.74
1.46
1.45
1.12
1.05
1.38
1.32
1.21

Maximum
(ft)

129.55
129.49
129.79
129.83
129.19
129.68
131.03
131.15
131.45
131.31
130.57
129.74

Minimum
(ft)

124.58
123.74
123.75
121.59
121.84
124.06
124.80
126.16
125.81
124.21
125.05
124.66
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