UPPER ST. JOHNS RIVER MARSH CONTROLLED BURN STUDY

RESPONSE OF VEGETATION TO A CONTROLLED BURN IN SAWGRASS AND MAIDENCANE PLANT COMMUNITIES IN THE UPPER ST. JOHNS RIVER BASIN

FINAL REPORT

Prepared for:

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT Palatka, Florida

Contract 91D170

Prepared by:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. Tampa and Gainesville, Florida

ESE Project No. 3913045

February 1994

Section		Page
	EXECUTIVE SUMMARY	iii
1.0	INTRODUCTION	1-1
2.0	METHODS	2-1
3.0	RESULTS	3-1
	3.1 BIOMASS AND SPECIES ABUNDANCE	3-1
	3.1.1 PRE-BURN CONDITIONS3.1.2 POST-BURN CONDITIONS	3-1 3-12
	3.2 COMMUNITY COMPOSITION IN PERMANENT QUADRATS	3-14
4.0	DISCUSSION	4-1
	 4.1 <u>BIOMASS AND FUEL LOADS</u> 4.2 <u>PERCENT COVER</u> 	4-1 4-1
5.0	CONCLUSIONS	5-1
6.0	REFERENCES	6-1

TABLE OF CONTENTS

LIST OF TABLES

<u>Table</u>		<u>Page</u>
3-1	Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled Prior to Controlled Burning	3-2
3-2	Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 12 Months After Controlled Burning	3-4
3-3	Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 20 Months After Controlled Burning	3-6
3-4	Total Percent Live Cover and Species Diversity from 1- by 4-m Permanent Plots	3-15
3-5	Percent Cover Statistics from 1- by 4-m Permanent Plots, by Community Type	3-16

LIST OF FIGURES

<u>Figure</u>

Page

2-1	Prescribed Burn Site Location	2-2
2-2	Schematic of randomized block design	2-4
2-3	Power of ANOVA for total cover and biomass in the sawgrass community	2-8
2-4	Power of ANOVA for total cover and biomass in the maidencane community	2-9
3-1	Sawgrass Community Biomass	3-8
3-2	Maidencane Community Biomass	3-9
3-3	Sawgrass Community Percent Cover	3-10
3-4	Maidencane Community Percent Cover	3-11

EXECUTIVE SUMMARY

Natural marsh communities in the upper St. Johns River Basin (USJRB) have experienced frequent arson fires. One management option to control the potential damage from arson fires is conducting controlled burns in the marsh communities to reduce fuel loads.

To evaluate this management option, the St. Johns River Water Management District (SJRWMD) contracted Environmental Science & Engineering, Inc. (ESE), to study the response of marsh vegetation to a controlled burn in the USJRB. The objective of the study was to measure aboveground biomass and species composition prior to and following controlled burns in two marsh communities, one dominated by sawgrass (Cladium jamaicense) and the other dominated by maidencane (Panicum hemitomon).

A randomized block design was used to evaluate the effects of fire on biomass and species composition. Ten 300 ft by 300 ft contiguous experimental study plots were established approximately south to north along the St. Johns River, located such that each plot contained both sawgrass and maidencane communities. One-half of the plots were randomly assigned to the controlled burning group. Within each community in each of the plots, two biomass quadrats and two 1 by 4 m permanent percent cover quadrats were established and sampled at each of three sample times. Biomass and percent cover data were collected from biomass quadrats and percent cover data were collected from biomass quadrats and percent cover data were collected from permanent quadrats within each community. Sampling was conducted prior to and at 12 and 20 months following a controlled burn to monitor changes in biomass (fuel), percent cover, and species composition.

Analysis of data from the biomass plots showed rapid recovery from fire in the sawgrass community within 12 months. Live sawgrass biomass in the control group was at a pre-burn level of 2,093 grams per square meter (g/m^2) , was 2,158 g/m² at 12 months post-burn, and was 1,289 g/m² at 20 months post-burn. Live sawgrass biomass in the sample plots that were burned was 2,379 g/m² prior to the burn, was 2,487 g/m² at 12 months and decreased slightly to 2,161 g/m² at 20 months.

iii

Biomass recovery in the maidencane community could not be assessed because levels in both the control group and the burned group declined over time. Live maidencane biomass in the control group declined from a pre-burn level of 982 g/m² to a 12-month post-burn level of 312 g/m². Live maidencane biomass in the burn group declined from a pre-burn level of 1,103 g/m² to a 12-month post-burn level of 226 g/m². These levels continued to decline at 20 months post-burn. Percent cover results were similar to results from the biomass data.

Data from the permanent plots provided an assessment of species diversity and composition changes during the study period. Fire treatment did not appear to affect species diversity. Differences in species diversity between treatment groups (control and burn) appear to reflect initial conditions, and differences cannot be attributed to the effects of burning. However, definitive results regarding response to fire could not be concluded because of sporadic or low frequencies of some species.

Sawgrass communities in USJRB support very high biomass levels compared with other published estimates. This high productivity may reflect both hydrologic and nutrient differences between the USJRB study site and other study areas. The USJRB study site has an enriched nutrient status due to runoff from nearby agricultural areas.

Constraints in study design and burning regime may have limited the conclusions of this study. Future studies should consider using a greater number of quadrats, in fewer experimental plots, to increase relative statistical efficiency. Investigating the response of marsh communities to different burning frequencies or seasonal regimes may yield more definitive results and is recommended.

iv

1.0 INTRODUCTION

Arson fires are a serious potential threat to the integrity of natural marsh communities in the Upper St. Johns River Basin (USJRB). The St. Johns River Water Management District (SJRWMD) is evaluating the management option of conducting controlled burns to reduce fuel loads prior to the dry season, when arson fires typically are set and are most destructive.

Various ecological studies of sawgrass (<u>Cladium jamaicense</u>) marshes in southern Florida have been conducted (e.g., Forthman, 1973; Hofstetter and Parsons, 1975; Herndon and Taylor, 1986; Herndon <u>et al</u>. 1991; Wood and Tanner, 1990). However, no previously published scientific information on the effect of fire on marsh community vegetation specific to USJRB was available. Therefore, SJRWMD planned this study of the response of marsh vegetation to a controlled burn in USJRB.

SJRWMD contracted with Environmental Science & Engineering, Inc. (ESE), to monitor vegetation communities during the project. The objective of this study was to measure the effect of fire on aboveground biomass (i.e., species abundance and fuel loads) and species composition at approximately 12 months and 18 months following controlled burns in two distinct marsh communities, one dominated by sawgrass and the other dominated by maidencane (<u>Panicum hemitomon</u>).

2.0 METHODS

The study site was selected by SJRWMD and was located within the USJRB south of State Road (SR) 192 (Figure 2-1). The broad riverine floodplain marsh ecosystem in this area consists of a mosaic of communities that include sawgrass marsh, maidencane marsh, broad leaf emergents, scattered tree islands, and deeper water slough areas characterized by floating aquatic vegetation and open water areas. Pre-burn sampling was conducted in August 1991. A controlled burn was conducted in February 1992, and post-burn sampling was conducted 12 months later in February 1993 and again in October 1993. The final sampling was delayed by 2 months, occurring at 20 months instead of the planned 18 months post-burn, because extremely shallow water levels in the study area precluded access by airboat.

A randomized block design was used for the experimental study (Figure 2-2). The sampling area was divided into five blocks, with two 300- by 300-foot (ft) study plots within each block, for a total of 10 study plots. The 10 plots were arranged consecutively from south to north (approximately) along the river. One of the two plots in each block was randomly assigned to the control (unburned) or fire treatment (controlled burn) group following the initial, pre-burn sampling in August 1991 using the DESIGN module from SYSTAT, Inc. (Dallal, 1988). Subsequent to baseline sampling, the southernmost block (Block 1) was burned by an arson fire during the dry season, and these plots were eliminated from further sampling. A total of 8 post-burn plots, occurring in Blocks 2 through 5, were sampled for the remainder of the study. The controlled burn coverage of the four plots treated was incomplete, with estimated area within each plot burned consisting of 90 percent, 80 percent, 75 percent, and 80 percent in plots 3, 5, 7 and 10, respectively (plots are shown in Figure 2-2). Unusually high water levels delayed SJRWMD's controlled burn until late January 1992.

Each plot contained both sawgrass and maidencane marsh communities, which were sampled and analyzed independently. Data were collected from biomass quadrats and permanent quadrats to monitor changes in percent cover and species composition. A preliminary analysis of pre-burn samples of the biomass and percent cover of sawgrass and

maidencane in these communities provided variance estimates that indicated that statistical Type I and Type II errors could be minimized to conventionally acceptable levels (.05 and .20, respectively) when testing for a 50 percent difference from the pre-burn, control levels, by using as few as two replicate sampling quadrats within each subgroup formed by plot and community type. Type I error (alpha) is the probability of rejecting the null hypothesis when the hypothesis is in fact true, that is, the probability of getting a false-positive test. Type II error (beta) is the probability of accepting the null hypothesis when it is false, concluding that there is no difference between samples when such a difference actually exists (a false-negative test). Power is 1 minus beta, the probability of a test finding a true difference. Power varies as a function sample size, sample reliability (precision), and the effect size, or magnitude of effect that is desired to detect. Power is reduced by smaller sample sizes, reduced reliability, and small effect sizes. For a more complete treatment of this subject the reader is referred to Cohen (1969).

SJRWMD MARSH BURN 12/93 BL

· •

Pre-burn biomass samples were collected from 1- by 1-meter (m) [1 square meter (m^2)] quadrats. Practical considerations resulted in the reduction of quadrat size to 0.1 m² for post-burn biomass sample collection. Biomass and stem counts for the latter sampling events were then adjusted to a per-square-meter basis.

Collection of data from smaller sized sample plots than used in the original experimental design could be expected to increase variability within sample groups and reduce statistical power. Expected power to detect a 50 percent difference from the control group was computed for the initial control group values that were based on full-size $(1 m^2)$ biomass quadrats as well as the 12 month control group values obtained from the smaller-size (0.1 m^2) quadrats. Power curves for group sample sizes for total cover and total biomass in the sawgrass and maidencane communities are shown in Figures 2-3 and 2-4. In sawgrass, no increased variance for percent cover was associated with the smaller quadrat size and expected power was conserved. There was an increase in variance for biomass such that expected power at the final group sample size of 8 quadrats declined from 90 percent to about 65 percent. In the maidencane community, power was reduced with the smaller quadrat size and the smaller sample sizes in the curves for both percent cover and biomass, but at the final group sample size of n=8, power from the smaller quadrats was comparable to that from the larger quadrats and exceed 90 percent. In the results section the approximate actual power values of t-tests performed for variables measured in the biomass quadrats were determined by the methods described by Cohen (1969).

The following variables were measured within each biomass quadrat:

- 1. Water depth [in centimeters (cm)];
- 2. Percent cover of live and dead sawgrass, maidencane, and other subdominant species estimated visually and noted;
- 3. Number of stems of sawgrass and maidencane; and
- 4. Live and dead dry weight (biomass) of sawgrass, maidencane, and other subdominant species (combined).

Sampling quadrats were located randomly within each plot using an X,Y coordinate grid system. If a quadrat was to sample a burned area but fell in an unburned area, new random coordinates were obtained until the quadrat was within a burned area of the plot. Because of the disturbance associated with removal of vegetation, each biomass quadrat was sampled only once during the study (i.e., the same quadrat was not revisited, and additional quadrats were established for each sampling period). Vegetation was harvested by clipping all vegetation, including submerged vegetation, at the soil surface. Subsoil material (i.e., roots) was not disturbed or removed. Vegetation was identified, sorted by category (live/dead sawgrass, live/dead maidencane, live/dead other), and bagged. Vegetation was dried at 97 degrees Fahrenheit (°F) for 30 days in a walk-in oven at the University of Florida in Gainesville. Dry weight was measured on a Mettler balance and recorded to the nearest 0.1 gram (g).

Percent cover and species composition within sawgrass and maidencane marsh communities were estimated in permanent quadrats that were resampled throughout the study. Two replicate 1- by 4-m rectangular quadrats were established in each study plot. The permanent percent cover quadrats were monumented with 7-ft lengths of rebar, tagged, and resampled. The larger plot size of the permanent quadrats compared to the plot size of the biomass quadrats was intended to increase the probability of including subdominant species in sampling.

All data were entered into rectangular-type computer files with the sample quadrat as the replicate unit of analysis. For biomass quadrat data, file records contained all data recorded for each quadrat sampled. For permanent quadrat percent cover data, file records reported the frequency of occurrence of a species and sample quadrat and other group identifiers and data. Grouping variables included sample time (TIME); community type [COMTYP\$, sawgrass (S) versus <u>Panicum</u> (maidencane) (P)]; treatment (TRT, unburned control group versus controlled burn); and the replicate blocks (BLOCK).

Separate analyses were conducted for the two community types to control potential obvious or irrelevant community-specific differences. Standard statistical methods were

used, including analysis of variance (ANOVA), analysis of covariance (ANCOVA), and regression. The statistical procedures and graphing of results were performed using SYSTAT (Wilkinson, 1990a) and SYGRAPH (Wilkinson, 1990b) statistical software. The data were examined for departures from normality using Lilliefors Kolmogorov-Smirnov goodness of fit test in SYSTAT's nonparametric (NPAR) test module, as well as for homogeneity of variance by Bartlett's test, which is reported in the output for the t-test performed by the STATS module. No serious departures from normality or homogeneity of variance were found that would be sufficient to justify transformation of the original, raw data. In addition, it is widely accepted that ANOVA is robust to such departures. Therefore, no transformations of the data were applied prior to any of the statistical tests.

Because of the differences between the two community types, separate ANOVAs were performed on the biomass quadrat data for each community. In addition, many of the variables changed in both communities over time. Therefore, following a fully factorial ANOVA, separate ANOVAs were performed for the pre- and post-burn samples. In these tests, BLOCK was a replicate, random factor in the model included to account for potential spatial variation in the study variables and provide a reduction in the error mean square for tests.

In evaluating species diversity from permanent quadrats, the number of species and Shannon's diversity index were evaluated. Shannon's index was computed as:

$$\overline{H} = -\sum_{i=1}^{n} \left(\frac{PC_i}{TOTAL} \right) * LOG_2 \left(\frac{PC_i}{TOTAL} \right)$$

where total is the total percent cover in a quadrat, pc_i is the percent cover of the ith species in the quadrat, and there are n species.

Statistical test output is provided in a separately bound appendix to this report (Appendices A1-A9).

1

3.0 RESULTS

3.1 BIOMASS AND SPECIES ABUNDANCE

3.1.1 PRE-BURN CONDITIONS

Table 3-1 presents summary statistics for key study variables determined in the pre-burn biomass quadrats. Tables 3-2 and 3-3 report statistics for the 12- and 20-month post-burn samples, respectively. Mean and standard error of the mean (\pm SEM) biomass for the treatment groups and times sampled for the sawgrass and maidencane communities are presented in Figures 3-1 and 3-2, respectively. Mean \pm SEM percent cover for the treatment groups and times sampled for the studied sawgrass and maidencane communities are presented in Figures 3-3 and 3-4, respectively. Complete statistics and test results are given in Appendices A-1 and A-2.

In general, the pre-burn samples yielded comparable values for most variables in the two treatment groups (control and burn). Prior to the experimental burn in the sawgrass community, BLOCK was a highly significant source of variation for dead sawgrass biomass only but was nevertheless retained in the model tests for treatment effects for all variables. The implication of this variation for future experiments will be discussed in Section 4.0. There were no significant differences between the treatment groups assigned to control and burn categories for total biomass (TOTWTG), total percent cover (TOTCOV), live sawgrass biomass (CJLWTG), or sawgrass stem density (CJLSTEMS). Dead sawgrass biomass was significantly greater in the burn treatment group when BLOCK is included in the analysis as a source of variation (F=5.644, 1,10 df, P=0.039) but not when significance testing is performed by a simple one-way ANOVA (or t-test), as shown in Table 3-1. This illustrates the value of the randomized block design in this particular case. Water depth (DEPTHCM) also was investigated as a covariate and was not significant for any of the variables.

In the maidencane community, BLOCK was significant for stem density (PHLSTEMS) but not for other variables. The covariate water depth again was not significant for any of the variables. The tests for differences between treatment groups were conducted

		Treatr	nent Group				
	Co	Control Bur					
Variable	Mean	SD	Mean	SD	Р	Power(%)	
COMMUNITY: SAWG	RASS						
Water Depth (cm)	48.7	10.05	54.0	8.79		99	
Sawgrass Total Cover (%)	74.0	15.72	74.7	12.50		99	
Total Cover (%)	85.5	16.00	81.4	10.71		99	
Sawgrass Stems (Live stems/m ²)	17.5	4.65	16.3	3.16		99	
Sawgrass Biomass (Live g/m ²)	2092.8	684.05	2379.4	857.26		91	
Sawgrass Biomass (Dead g/m ²)	981.2	586.51	1391.4	137.42		70	
Other Biomass (Live g/m ²)	92.3	120.56	42.5	60.55		29	
Other Biomass (Dead g/m ²)	59.0	88.04	36.6	79.37		22	
Total Biomass (All Species)	3225.2	915.21	3849.8	281.16		99	

• "

Table 3-1.	Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Va	ariables, Sampled Prior to Controlled
	Burning ($N=10$ Quadrats in Each Group). Page 1 of 2.	

		Treatment Grou	חט				
	Control		Burn	-			
Variable	Mean	SD	Mean	SD	Р	Power(%)	
COMMUNITY: MAIDE	NCANE						
Water Depth (cm)	50.3	9.23	56.6	10.98		99	
Maidencane Total Cover (%)	70.0	21.91	66.3	12.72		99	
Total Cover (%)	81.6	10.84	68.7	15.36	0.044	99	
Maidencane Stems (Live stems/m ²)	281.4	121.70	237.7	85.54		91	
Maidencane Biomass (Live g/m ²)	981.8	371.44	1103.1	388.12		91	
Maidencane Biomass (Dead g/m ²)	112.0	87.82	242.3	108.72	0.009	36	
Other Biomass (Live g/m ²)	80.0	211.85	14.6	44.54		16	
Other Biomass (Dead g/m ²)	36.7	94.34	7.6	24.16		16	
Total Biomass (All Species)	1210.6	290.2	1367.6	415.32		99	

•~

 Table 3-1.
 Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled Prior to Controlled Burning (N=10 Quadrats in Each Group) Cont., p. 2 of 2.

Note: P = probability value of difference between groups by t-test.

SD = standard deviation.

Source: ESE.

	Treatm	ent Group				
Control		E	lum			
Mean	SD	Mean	SD	Р	Power(%)	
ASS						
41.0	3.78	46.6	2.24	0.049	99	
66.0	19.66	53.0	16.83		99	
71.2	14.49	61.5	12.32		9 9	
42.5	17.52	50.0	16.04		74	
2158.1	846.43	2486.9	966.10		74	
1762.6	706.21	1572.4	361.75		99	
25.4	67.34	42.0	43.81		10	
37.8	90.37	173.5	260.23		7	
3983.9	1290.81	4274.8	1246.82		99	
	ASS 41.0 66.0 71.2 42.5 2158.1 1762.6 25.4 37.8 3983.9	Image Treatment Mean SD ASS 41.0 3.78 66.0 19.66 71.2 14.49 42.5 17.52 2158.1 846.43 1762.6 706.21 25.4 67.34 37.8 90.37 3983.9 1290.81	Treatment GroupControlNeanMeanSDMeanASS41.0 3.78 46.666.019.6653.071.214.4961.542.517.5250.02158.1846.432486.91762.6706.211572.425.467.3442.037.890.37173.53983.91290.814274.8	Treatment Group \overline{Mean} SD \overline{Mean} SDASS41.03.7846.62.2466.019.6653.016.8371.214.4961.512.3242.517.5250.016.042158.1846.432486.9966.101762.6706.211572.4361.7525.467.3442.043.8137.890.37173.5260.233983.91290.814274.81246.82	Treatment Group $Londow ControlSDMeanSDPASS41.03.7846.62.240.04966.019.6653.016.8371.214.4961.512.3242.517.5250.016.042158.1846.432486.9966.101762.6706.211572.4361.7525.467.3442.043.8137.890.37173.5260.233983.91290.814274.81246.82$	Treatment GroupMeanSDNeanSDPPower(%)ASS41.0 3.78 46.6 2.24 0.049 9966.019.66 53.0 16.839971.214.4961.512.329942.517.5250.016.04742158.1846.432486.9966.10741762.6706.211572.4361.759925.467.3442.043.811037.890.37173.5260.2373983.91290.814274.81246.8299

.

Table 3-2.	Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 12 Months After
	Controlled Burning (N=8 Quadrats in Each Group). Page 1 of 2.

3-4

•~

		Treatme	ent Group				
	Co	ntrol	B	um			
Variable	Mean	SD	Mean	SD	Р	Power(%)	
COMMUNITY: MAIDEN	ICANE						
Water Depth (cm)	48.6	5.32	49.2	8.03		99	
Maidencane Total Cover (%)	48.5	18.88	60.2	26.18		61	
Total Cover (%)	50.5	18.14	62.8	24.40		74	
Maidencane Stems (Live stems/m ²)	350.0	122.84	378.8	313.75		38	·
Maidencane Biomass (Live g/m ²)	311.7	225.57	368.7	217.65		38	
Maidencane Biomass (Dead g/m ²)	232.4	226.75	219.4	226.08		25	
Other Biomass (Live g/m ²)	0.1	0.05	0.0	0.05		25	·
Other Biomass (Dead g/m ²)	24.4	43.58	55.0	100.41		10	
Total Biomass (All Species)	568.6	336.89	643.1	327.41		61	

· ~ `

 Table 3-2.
 Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 12 Months After Controlled Burning (N=8 Quadrats in Each Group) Cont., p. 2 of 2.

Note: P = probability value of difference between groups by t-test.

SD = standard deviation.

н. Н		Treatr	nent Group				
	<u>Co</u>	ntrol	Bu	111			
Variable	Mean	SD	Mean	SD	Р	Power(%)	····
COMMUNITY: SAWGR	ASS						
Water Depth (cm)	22.5	7.09	21.0	5.24		99	
Sawgrass Total Cover (%)	65.1	19.57	64.6	13.30		99	
Total Cover (%)	66.8	18.88	69.0	11.61		99	
Sawgrass Stems (Live stems/m ²)	31.2	19.59	42.5	18.32		46	
Sawgrass Biomass (Live g/m ²)	1289.1	888.31	2161.0	800.20	0.058	46	
Sawgrass Biomass (Dead g/m ²)	2133.2	803.57	2343.5	250.01		99	
Other Biomass (Live g/m ²)	5.4	10.66	0.4	0.52		19	
Other Biomass (Dead g/m ²)	0.0	0.00	155.9	186.41	NV	NV	
Total Biomass (All Species)	3427.6	1196.21	4664.3	1213.92	0.059	99	

·~

 Table 3-3.
 Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 20 Months After Controlled Burning (N=8 Quadrats in Each Group).
 Page 1 of 2.

NV-One or more groups had no variance; no ANOVA or Power estimation could be performed.

		Treatm	pent Group					
	Cor	ntrol	Bur	Burn				
Variable	Mean	SD	Mean	SD	Р	Power(%)		1
COMMUNITY: MAIDER	NCANE							
Water Depth (cm)	25.9	8.66	26.1	6.69		99		
Maidencane Total Cover (%)	56.2	13.56	49.9	22.47		99		
Total Cover (%)	59.3	14.98	51.9	23.28		99		
Maidencane Stems (Live stems/m ²)	533.8	181.57	548.8	199.67		85	,	
Maidencane Biomass (Live g/m ²)	267.0	91.82	253.7	121.23		74		
Maidencane Biomass (Dead g/m ²)	221.8	133.92	172.5	96.33		61		
Other Biomass (Live g/m ²)	4.4	12.01	0.12	0.35		13		
Other Biomass (Dead g/m ²)	32.1	55.79	39.0	34.73		13		
Total Biomass (All Species)	525.3	176.46	465.4	206.01		99		

.-

Table 3-3.Summary Statistics from Biomass Quadrats by Community Type and Treatment Group, for Key Study Variables, Sampled 20 Months After
Controlled Burning (N=8 Quadrats in Each Group) Cont., p. 2 of 2.

Note: P = probability value of difference between groups by t-test.

SD = standard deviation.

Source: ESE.

١_

3

including BLOCK as a random factor in the model. Dead maidencane biomass was significantly greater in the group assigned to be burned (F=7.982, 1,10 df, P=0.018). Differences for total biomass, maidencane live biomass, and maidencane stem density were not significant. Total cover was marginally nonsignificant (P=0.065) in the randomized blocks ANOVA. A simple t-test, in which effects of variation among blocks is ignored, yields a significant outcome (Table 3-1, P=0.044). The conclusion is that total cover was substantially greater in the control group regardless of which test is considered.

3.1.2 POST-BURN CONDITIONS

In the sawgrass community, both post-burn periods were included (represented as factor TIME) in the MANOVA (Appendix A-3). Treatment by TIME interactions were not significant for any independent variable, so both times were considered jointly to increase total sample size and improve power for the test of treatment effects. TIME was a nonsignificant factor for all variables, although a marginally nonsignificant value was reported for live sawgrass biomass (P=.10). Inspection of Tables 3-2 and 3-3 shows that average live sawgrass biomass in both treatment groups appears lower in the final sample than in the 12-month post-burn sample. Differences between burned and unburned sawgrass areas were not significant for total cover, dead sawgrass biomass, or sawgrass stem density. Live sawgrass biomass was marginally nonsignificant, i.e., substantially greater in the burned group (f=4.216, 1,24 df, P=0.051), as was total biomass (P=0.058), an apparent result of the latter variable's strong association with live sawgrass biomass.

In the maidencane community post-burn samples, treatment by TIME interaction effects were nonsignificant for all variables, as was the TIME main effect. With the two sample times pooled, the treatment effect was not significant for any of the variables. Table 3-2 shows slightly higher values in the burned group for all variables except dead maidencane biomass. Table 3-3 shows slightly higher values in the control group for all biomass measures and percent cover, but not for stem density or water depth. None of the differences is statistically significant.

Review of Figure 3-1 shows that, in the sawgrass control group, total biomass displayed a minor net increase over the study period. Live sawgrass biomass was slightly greater at 12 months but actually declined by 20 months. Dead sawgrass accumulated through the period. In the burned group, there was little difference in live biomass over time. Dead biomass was not as great as might be expected in the 12-month sample, but quantities increased to levels comparable to the control group by the last sample event. Total biomass (fuel load) was at a maximum in the control group at 12 months, and at a maximum in the burned group at 20 months.

Figure 3-2, which presents biomass for the maidencane community, shows a different pattern than that exhibited by the sawgrass community. When both communities were examined in a fully factorial MANOVA (Appendix A-4), including community type as a grouping factor, a significant COMTYP\$*TIME interaction term was evident (due to the maidencane community) for total biomass, total live weight, and total dead weight. Unlike the sawgrass community, in which biomass was relatively constant over time, maidencane community biomass, particularly live material, declined from the pre-burn sample event in both treatment groups.

Water depth was not a significant covariate in the tests performed within time samples in which treatment group differences were explored.

3.2 COMMUNITY COMPOSITION IN PERMANENT QUADRATS

Table 3-4 presents statistics for total percent cover of living plant species, number of species, and the calculated Shannon-Wiener diversity index based on sampling of the 1- by 4- m permanent quadrats during the study (complete test results are given in Appendix A-6). Prior to the burn, total percent cover was comparable in both communities. Species diversity was slightly higher in the sawgrass community. There were no significant differences between the control and burn treatment groups prior to the controlled burn in either community type. In the sawgrass community, vegetation diversity in the burned and control (unburned) plots did not differ significantly between sampling periods. Total percent cover was greater in the burned group at 12 months post-burn (P=0.006) and nonsignificantly higher by 18 months post-burn.

In the maidencane community, percent cover did not appear to be affected by fire at 12 months or 20 months post-burn. Species diversity in this community was significantly lower in the burned group compared with the control at 20 months (Table 3-4). However, diversity in this group was also lower initially prior to any burn treatment.

Percent cover of each of the 15 species identified in the study by sample period, treatment group, and community type is shown in Table 3-5 (complete statistical results are shown in Appendix A-7). Both communities are relatively monotypic, i.e., dominated by a single species, with a minor and sometimes sporadic occurrence of other species. Sawgrass was the dominant species in the sawgrass community, with very low frequencies of arrowhead (Sagittaria lancifolia), willow (Salix spp.), cattail (Typha domingensis), climbing hempweed (Mikania scandens), water smartweed (Polygonum amphibium), and maidencane. Six species were not encountered in the sawgrass community at all and were found only in the maidencane community. Maidencane was the dominant species in the maidencane community, with low frequencies of climbing hempweed, sedge (Cyperus sp.), water pennywort (Hydrocotyle sp.), Ludwigia sp., pickerelweed (Pontederia cordata), water smartweed, and arrowhead.

		P	re-Burn		12-	mo Post-F	Burn	20-	mo Post-B	um
Variable		Control	Burn	Р	Control	Burn	<u> </u>	Control	Burn	P
COMMUNITY TY	PE: SAWG	RASS								
% Cover	Mean	37.56	35.96		18.94	34.86	0.006	22.50	33.29	
	SD	5.33	9.65		11.85	7.48		9.23	13.66	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
N Species	Mean	4.50	4.37		3.50	3.50		3.63	3.57	
	SD	1.31	1.19		1.93	0.93		1.06	0.79	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Shannon-Wiener	Mean	0.88	0.81		0.58	0.72		0.70	1.02	
Index	SD	0.56	0.50		0.67	0.38		0.49	0.23	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
COMMUNITY TY	PE: MAID	ENCANE								
% Cover	Mean	38.59	44.54		20.28	21.78		26.21	17.25	
	SD	6.68	10.73		7.90	8.71		11.95	8.21	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
N Species	Mean	4.25	2.87		3.62	2.75	0.051	4.37	2.12	0.003
	SD	1.83	1.13		0.92	0.71		1.60	0.83	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Shannon-Wiener	Mean	0.63	0.16		0.80	0.43		0.92	0.10	0.010
Index	SD	0.63	0.24		0.60	0.37		0.74	0.27	
	N	8.00	8.00		8.00	8.00		8.00	8.00	

Table 3-4. Total Percent Live Cover and Species Diversity from 1- by 4-m Permanent Plots

Note: P = probability value from t-test of difference between treatment groups.

SD = standard deviation.

N = number of species.

P values are reported for significant or marginally nonsignificant tests only.

Source: ESE.

,

Species		Pre-Burn			12-mo Post-Burn			20-mo Post-Burn		
	Variable	Control	Burn	P	Control	Burn	P	Control	Burn	P
SAWGRASS COMMUNITY										
Boehmeria cylindrica	Mean	0.13	0.00		0.00	0.00		0.16	0.00	
	SD	0.35	0.00		0.00	0.00		0.44	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
<u>Cladium jamaicense</u>	Mean	26.97	27.66		14.66	26.53	0.001	14.81	18.89	
	SD	10.05	9.22		6.25	5.67		8.38	7.90	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Cyperus sp.	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Eupatorium capillifolium	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Galium en	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
<u>ounum</u> sp.	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Hudmontule sa	Maan	0.00	0.00		0.00	0.00		0.00	0.00	
<u>Infutocotric</u> sp.	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	0.00 7.00	
					• • •				-	
Ludwigia sp.	Mean	0.16	0.01		0.00	0.00		0.00	0.00	
	SD	0.44	0.02		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
<u>Mikania scandens</u>	Mean	1.75	0.54		0.56	0.00		1.72	0.32	
	SD	2.57	1.09		1.31	0.00		3.34	0.55	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Panicum hemitomon	Mean	0.59	0.63		0.06	0.00		0.31	0.36	
	SD	1.16	1.39		0.18	0.00		0.88	0.94	
	N	8.00	8.00		8.00	8.00		8.00	7.00	

Table 3-5. Percent Cover Statistics from 1- by 4-m Permanent Plots, by Community Type

r.

		Pre-Burn			12-mo Post-Burn			20-mo Post-Burn		
Species	Variable	Control	Burn	<u> </u>	Control	Burn	P	Control	Burn	
Pontederia cordata	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Pluchea rosea	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Polygonum amphibium	Mean	0.28	0.32		1.01	0.51		1.44	0.00 0.00 7.00 0.00 0.00 7.00 1.00 1.38 7.00 10.46 11.15 7.00 2.25 5.95 7.00 0.00 0.00 7.00 0.00	
	SD	0.80	0.79		2.63	1.00		1.72	1.38	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Sagittaria lancifolia	Mean	6.84	6.19		2.22	7.50		3.28	10.46	
	SD	8.66	7.14		3.72	6.53		8.79	11.15	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
<u>Salix</u> sp.	Mean	0.53	0.16		0.19	0.31		0.63	2.25	
	SD	1.40	0.44		0.53	0.59		1 34	5.95	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
Typha domingensis	Mean	0.31	0.47		0.25	0.00		0.16	0.00	
	SD	0.79	1 33		0.71	0.00		0.10	0.00	
	N	8.00	8.00		8.00	8.00		8.00	7.00	
MAIDENCANE COMMUNITY										
Boehmeria cylindrica	Mean	0.00	0.00		0.22	0.00		0.53	0.00	
	SD	0.00	0.00		0.62	0.00		1.31	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
<u>Cladium jamaicense</u>	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Cyperus sp.	Mean	0.06	0.34		0.00	0.00		0 1 6	0.00	
T	SD	0.18	0.97		0.00	0.00		0.10	0.00	
	N	8.00	8.00		0.00	9.00		9.00	0.00	

Table 3-5. Percent Cover Statistics from 1- by 4-m Permanent Plots, by Community Type (Continued, Page 2 of 4)

•

Species			Pre-Burn		12-mo Post-Burn			20-mo Post-Burn		
	Variable	Control	Burn	P	Control	Burn	P	Control	Burn	P
Eupatorium capillifolium	Mean	0.00	0.00		0.00	0.00		0.06	0.00	
	SD	0.00	0.00		0.00	0.00		0.18	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Galium sp.	Mean	0.00	0.00		0.00	0.00		0.03	0.00	
	SD	0.00	0.00		0.00	0.00		0.09	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Hydrocotyle sp.	Mean	0.06	0.00		0.00	0.00		1.31	0.00	
	SD	0.18	0.00		0.00	0.00		2.30	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Ludwigia sp.	Mean	0.13	0.00		0.00	0.00		0.00	0.00	
	SD	0.19	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
<u>Mikania</u> scandens	Mean	2.59	0.69		4.16	1.00		0.84	0.00	
	SD	3.07	1.33		5.25	2.07		1.81	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Panicum hemitomon	Mean	33.09	43.28	0.044	14.63	19.22		18.56	16.69	
	SD	7.19	10.85		7.77	7.01		6.95	7.36	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Pontederia cordata	Mean	0.78	0.00		0.00	0.00		0.31	0.00	
	SD	2.21	0.00		0.00	0.00		0.88	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Pluchea rosca	Mean	0.00	0.00		0.00	0.00		0.13	0.00	
	SD	0.00	0.00		0.00	0.00		0.35	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Polygonum amphibium	Mean	0.13	0.07		0.31	1.56		4.28	0.31	0.02*
	SD	0.19	0.11		0.40	1.72		5.29	0.88	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Sagittaria lancifolia	Mean	1.19	0.16		0.63	0.00		0.00	0.00	
	SD	1.85	0.44		1.27	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	

Table 3-5. Percent Cover Statistics from 1- by 4-m Permanent Plots, by Community Type (Continued, Page 3 of 4)

		Pre-Burn			12-mo Post-Burn			20-mo Post-Burn		
Species	Variable	Control	Burn	P	Control	Burn	P	Control	Burn	<u> </u>
<u>Salix</u> sp.	Mean	0.00	0.00		0.00	0.00		0.00	0.00	
	SD	0.00	0.00		0.00	0.00		0.00	0.00	
	N	8.00	8.00		8.00	8.00		8.00	8.00	
Typha domingensis	Mean	0.56	0.00		0.34	0.00		0.00	0.25	
	SD	1.05	0.00		0.97	0.00		0.00	0.71	
	<u> </u>	8.00	8.00		8.00	8.00		8.00	8.00	

Table 3-5. Percent Cover Statistics from 1- by 4-m Permanent Plots, by Community Type (Continued, Page 4 of 4)

Note: N = number of species.

P = probability from t-test comparing group means.

SD = standard deviation.

*Value from Mann-Whitney U-test.

Source: ESE.

ANOVA was not possible for many species because of their absence from groups and consequent lack of variance in percent cover. In the sawgrass community, percent cover declined with time, but no treatment group differences were apparent. Maidencane biomass declined during the study, but percent cover was not affected by the fire treatment by 20 months. Water smartweed increased in frequency somewhat but also was unaffected by fire. Arrowhead declined over time in the control group but increased in the burned group. Willow also showed a slight increase in burned plots relative to control plots. Cattail was initially present about equally in both treatment groups in sawgrass, but disappeared from the burned plots. However, in the maidencane community, cattail appeared in the burned group at 20 months post-burn, suggesting that fire was not a causative agent in the disappearance of cattail.

In the maidencane community, a greater number of species disappeared following burn treatment, as was reported previously. These species included the sedge, climbing hempweed, and arrowhead. It is difficult to determine whether fire played a role in the disappearance of these species, or if other factors were involved. In the sawgrass community, climbing hempweed was reduced in burned areas but not eliminated. Arrowhead actually increased in the burned sawgrass plots during the same period, tending to rule out fire itself as a causative agent in its disappearance from the maidencane study plots.

4.0 DISCUSSION

4.1 **BIOMASS AND FUEL LOADS**

Live, dead, and total sawgrass biomass returned to pre-burn levels in the sawgrass communities within 12 months, indicating rapid recovery from fire. In the control group, live biomass was only slightly greater at 12 months than at the start of the experiment, although dead biomass continued to increase. Total fuel loads were not substantially different at the end of the study. The rapid recovery in sawgrass biomass is in general agreement with other studies conducted in Florida. Forthman (1973) reported no substantial differences in live sawgrass biomass 1 year post-burn in the Everglades. Rapid regrowth of <u>Muhlenbergia</u> prairie vegetation, including sawgrass, was reported by Herndon and Taylor (1986), although annual burning was found to be eventually detrimental to sawgrass. Sawgrass biomass in the USJRB study area generally was greater than that reported in other studies. This may reflect both hydrologic and nutrient differences between the USJRB study site and others.

In the maidencane community, biomass recovery following fire cannot be assessed since biomass in both treatment groups declined over time. The correlation between maidencane biomass and depth of water suggests that the decline in water levels with time could be associated with the decline in maidencane biomass throughout the study area. However, other factors could also be contributing to this decline. VanArman and Goodrick (1979) found that total biomass in a maidencane marsh in the Kissimmee River floodplain recovered completely within 6 months. Values for USJRB maidencane biomass are generally within the range of values reported elsewhere.

4.2 PERCENT COVER

Percent cover measured in the biomass quadrats generally yielded results similar to those observed for biomass. In the sawgrass community, percent live cover of sawgrass had declined in both treatment groups and differences in treatment groups were not significant. Percent cover of dead sawgrass increased over time in the control group as expected; in the burn group, percent cover was nonsignificantly lower at 12 months post-burn compared with
pre-burn levels, but some recovery had occurred by the end of the study. Percent cover is difficult to estimate as accurately as biomass can be measured, so some differences in results compared with the biomass data are to be expected. Although total cover and total biomass in this study were significantly correlated, only a small proportion of the variance in percent cover is explained by the actual biomass present. Thus, where practical for a study, biomass provides a better estimate of species abundance as well as directly relevant data on fuel loads.

The permanent plots provided an assessment of species composition changes over the course of this study. Live sawgrass cover appeared to decline in the 12-month sample control group but had increased by the end of the study. In the burned group, live sawgrass percent cover amounts were relatively constant. In viewing the data overall, fire would actually appear to have had a mildly beneficial effect on biomass and percent cover amounts relative to the unburned control plots. This observation may be related to the release and uptake of nutrients by sawgrass in the burned areas. In the maidencane community, percent cover declined over time regardless of treatment, as was noted for percent cover measured in the biomass quadrats.

Species diversity was initially slightly higher in the sawgrass community than in the maidencane community but was not substantially different throughout the study. In the unburned plots, species diversity at 12 months and 20 months was slightly greater in the maidencane community. No significant effects of burning on species diversity were apparent in the sawgrass community. Species diversity in the maidencane community was consistently higher in the unburned plots, including the pre-burn sample. VanArman and Goodrick (1979) did not detect any effect of fire on species diversity in their study of maidencane marshes in the Kissimmee River floodplain. In this study of USJRB marshes, differences in species diversity between treatment groups appear to reflect initial conditions and cannot be attributed to the effects of burning.

4-2

5.0 CONCLUSIONS

Two USJRB marsh communities were monitored to measure the effects of fire on aboveground biomass and species composition. The following conclusions are presented as a result of this study:

- Biomass in the burned sawgrass plots recovered to pre-burn levels within 12 months of the fire. Biomass in the control plots appeared to be at an equilibrium or undergoing a slight decline. Burning may have had a slight stimulatory effect on sawgrass production.
- 2. Biomass recovery following fire in the maidencane community reached levels comparable to the control group by 12 months post-burn. However, pre-burn levels were not attained during the study; both the control and burned plots declined by more than 50 percent for unknown reasons. Lower water levels following the fire may have been responsible.
- 3. Other measures of plant abundance for sawgrass and maidencane, such as percent cover, stem density, etc., generally provided results similar to those observed for biomass.
- 4. Fire treatment did not affect species diversity significantly. However, some species occurred so infrequently that definitive statements about response to fire cannot be made.
- 5. The USJRB sawgrass community supports very high biomass levels compared with other published estimates. This high productivity may reflect the enriched nutrient status of the study site due to runoff from nearby agricultural areas.
- 6. Although a randomized block design was employed, spatial variation (due to blocks) was generally insignificant and the resultant increase in relative statistical efficiency was limited for most variables. Future studies could consider using fewer blocks, with a greater number of quadrats per block, to reduce field effort. Unfortunately, the loss of one block to arson fire illustrates the risk of using a small number of blocks. A reasonable design to detect a 50 percent difference from control levels might be to use three blocks, with three to four quadrats per treatment group in each block, providing a total treatment group sample size of 9 to 12. The variance

estimates from this study could be used in the design of future studies nearby. The actual designs required will depend on the study objectives and magnitude of effect (size effect) that is to be detected and considered biologically meaningful.

7. This study monitored the response of marsh communities at 12 and 20 months following fire. The rate of recovery between the burn and 12 months remains unknown, as do potential effects beyond 20 months. In addition, the response to a single fire was monitored. It would seem to be important to study the response of marsh communities to different burning frequencies or seasonal burning regimes.

6.0 REFERENCES

- Cohen, J. 1969. Statistical Power Analysis for the Behavioral Sciences. Academic Press, New York, 411 pp.
- Dallal, G.E. 1988. DESIGN: Power Analysis and Expected Mean Squares; A Supplementary Module for SYSTAT and SYGRAPH. SYSTAT, Inc., Evanston, IL.
- Forthman, C.A. 1973. The Effects of Prescribed Burning on Sawgrass, <u>Cladium</u> <u>jamaicense</u> Crantz, in South Florida. Masters Thesis, University of Miami, Fla. NTIS, U.S. Department of Commerce, Springfield, VA.
- Herndon, A., Taylor, D. 1986. Response of a <u>Muhlenbergia</u> Prairie to Repeated Burning: Changes in Aboveground Biomass. Report SFRC-86/05, National Park Service, Homestead, FL.
- Herndon, A., Gunderson, L., and Stenberg, J. 1991. Sawgrass (<u>Cladium jamaicense</u>) Survival in a Regime of Fire and Flooding. Wetlands 11(1):17-27.
- Hofstetter, R.H., and Parsons, F. 1973. Effects of Fire in the Ecosystem: An ecological Study of the Effects of Fire on the Wet Prairies, Sawgrass Glades and Pineland Communities of South Florida. Final Report, Par 1, NTIS Publication No. PB-231940, Springfield, VA.
- VanArman, J., and Goodrick, R.L. 1979. Effects of Fire on a Kissimmee River Marsh. Florida Scientist 42(4):183-195.
- Wilkinson, L. 1990a. SYSTAT: The System for Statistics. SYSTAT, Inc., Evanston, IL.
- Wilkinson, L. 1990b. SYGRAPH: The System for Graphics. SYSTAT, Inc., Evanston, IL.
- Wood, J.M., and Tanner, G.W. 1990. Graminoid Community Composition and Structure Within Four Everglades Management Areas. Wetlands 10(2):127-149.

APPENDICES TO FINAL REPORT:

UPPER ST. JOHNS RIVER MARSH CONTROLLED BURN STUDY

RESPONSE OF VEGETATION TO A CONTROLLED BURN IN SAWGRASS AND MAIDENCANE PLANT COMMUNITIES IN THE UPPER ST. JOHNS RIVER BASIN

Prepared for:

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT Palatka, Florida

Contract 91D170

Prepared by:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. Tampa and Gainesville, Florida

February 1994

APPENDIX A. KEY TO STATISTICAL FILE VARIABLE CODE NAMES, BY FILE.

FILE: BIOMSSRT.SYS DATA FROM BIOMASS QUADRATS

VARIABLES IN SYSTAT RECT FILE ARE:

BLOCK	PLOT	QUADRAT	DEPTHCM	PHLCOV
PHDCOV	PHTOTCOV	CJLCOV	CJDCOV	OTHERLCO
OTHERDCO	TOTCOV	PHLSTEMS	CJLSTEMS	PHLWTG
PHDWTG	CJLWTG	CJDWTG	OTHERLWT	OTHERDWT
TOTWTG	COMTYP	COMTYP\$	CJTOTCOV	PHTOTWT
CJTOTWT	OTHTOTWT	TRT	TRT\$	TIME
GRP	GRPS	TOTLWT	TOTDWT	TIMES

Variable name information: block-study block, 1-5 plot-study plot, 1-10, each plot 300x300 ft comtyp\$-S or P (sawgrass or panicum dominated) quadrat-quadrat depthcm-surface water depth at quadrat center in cm phlcov-live panicum cover % phdcov-dead ... phtotcov-panicum total cover (live + dead) cjlcov-sawgrass live cover cjdcov-sawgrass dead cover otherlco-other spp. live cover, combined total estimate otherdco-dead totcov-total cover, all spp. phlstems-panicum stems per quadrat cjlstems-sawgrass " comtyp-community type index (1=sawgrass, 2=panicum) trt-treatment group (1=intended control, 2=intended for burning) time-1 (pre-burn), 2 (12 mos) or 3 (20 mos) other prefixes similar, wt and wtg abbrev. for weight (biomass in g)

FILE: SPP.SYS DATA FROM PERMANENT PERCENT COVER QUADRATS

VARIABLES IN S	SYSTAT RECT FILE	ARE:		
TIME	BLOCK	COMTYP\$	COMTYP	PLT
QUAD	х	Y	DCM	SP\$
PERCOV	TRT	TRT\$	GRP	

plt-plot quad-quadrat x,y-x,y coordinates of quadrat within the plot dcm-depth in cm of standing water sp\$-4 letter species code, consisting of first two letter of genus and of species percov-percent cover

FILE: DIVERS.SYS DATA FROM PERMANENT PERCENT COVER QUADRATS

SYSTAT FILE	VARIABLES AVAILABLE	TO YOU ARE:		
TIME	BLOCK	COMTYP\$	COMTYP	PLT
QUAD	X	Y	DCM	TOTCOV
NSPP	SWINDEX	TRT	TRT\$	

TOTCOV-TOTAL PERCENT COVER WITHIN QUADRAT NSPP-NUMBER OF SPECIES WITHIN QUADRAT SWINDEX-SHANNON-WIENER INDEX APPENDIX A1. GROUP STATISTICS AND T-TEST OUTPUT BY COMMUNITY TYPE AND SAMPLE TIMES.

ANOVAS.LIS BIOMSGRP.SYS 1WAY.CMD TIME=PRE-BURN

sawgrass community

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 10

	DEPTHCM C	JTOTCOV	TOTCOV	CJLSTEMS	CJLWTG
N OF CASES	10	10	10	10	10
MINIMUM	38.500	45.000	46.000	10.000	883.600
MAXIMUM	70.000	90.000	100.000	26,000	3034.450
MEAN	48.690	74.000	85.500	17.500	2092.757
STANDARD DEV	10.050	15.720	15.995	4.649	684.050

	CJDWTG OT	HERLWT C	THERDWT	TOTWTG
N OF CASES	10	10	10	10
MINIMUM	390.800	7.500	0.000	1915.000
MAXIMUM	2387.300	389.300	251.300	5264.200
MEAN	981.160	92.290	58.968	3225.175
STANDARD DEV	586.512	120.564	88.040	915.208

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 10

	DEPTHCM	CJTOTCOV	TOTCOV	CJLSTEMS	CJLWTG
N OF CASES	1	0 1	0 10	10	10
MINIMUM	41.10	0 55.00	0 55.000	11.000	1413.100
MAXIMUM	68.00	0 90.00	0 90.000	21.000	3535.900
MEAN	54.03	0 74.70	0 81.400	16.300	2379.366
STANDARD DEV	8.79	5 12.49	9 10.710	3.164	857.259
	CJDWTG	OTHERLWT	OTHERDWT	TOTWTG	
N OF CASES	1	0 1	0 10	10	
MINIMUM	865.49	0 0.00	0 0.000	2842.900	
MAXIMUM	2228.58	0 152.25	0 251.700	5734.440	
MEAN	1391.41	1 42.46	8 36.606	3849.851	
STANDARD DEV	434.57	7 60.54	8 79.366	889.092	

SUMMARY STATISTICS FOR DEPTHCM

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.160 APPROXIMATE F = 0.151 DF = 1, 972 PROBABILITY = 0.698 OVERALL MEAN = 51.360 STANDARD DEVIATION = 9.591 POOLED WITHIN GROUPS STANDARD DEVIATION = 9.443 T STATISTIC = -1.264 PROBABILITY = 0.222

SUMMARY STATISTICS FOR CJTOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.469 APPROXIMATE F = 0.444 DF = 1, 972 PROBABILITY = 0.505 OVERALL MEAN = 74.350 STANDARD DEVIATION = 13.827 POOLED WITHIN GROUPS STANDARD DEVIATION = 14.201 T STATISTIC = -0.110 PROBABILITY = 0.913

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.410APPROXIMATE F = 1.337 DF = 1, 972 PROBABILITY = 0.248 OVERALL MEAN = 83.450 STANDARD DEVIATION = 13.414POOLED WITHIN GROUPS STANDARD DEVIATION = 13.611T STATISTIC = -0.674 PROBABILITY = 0.509

SUMMARY STATISTICS FOR CJLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.301APPROXIMATE F = 1.233 DF = 1, 972 PROBABILITY = 0.267OVERALL MEAN = 16.900 STANDARD DEVIATION = 3.919POOLED WITHIN GROUPS STANDARD DEVIATION = 3.976T STATISTIC = -0.675 PROBABILITY = 0.508

SUMMARY STATISTICS FOR CJLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.455APPROXIMATE F = 0.431 DF = 1, 972 PROBABILITY = 0.512OVERALL MEAN = 2236.062 STANDARD DEVIATION = 769.008 POOLED WITHIN GROUPS STANDARD DEVIATION = 775.506 T STATISTIC = -0.826 PROBABILITY = 0.419 SUMMARY STATISTICS FOR CJDWTG BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.797 APPROXIMATE F = 0.755 DF = 1, 972 PROBABILITY = 0.385 OVERALL MEAN = 1186.286 STANDARD DEVIATION = 544.697 POOLED WITHIN GROUPS STANDARD DEVIATION = 516.165 -1.777 PROBABILITY = 0.092 T STATISTIC = SUMMARY STATISTICS FOR OTHERLWT BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 3,969 APPROXIMATE F = 3.771 DF = 1, 972 PROBABILITY =0.052 67.379 STANDARD DEVIATION = OVERALL MEAN = 96.307 POOLED WITHIN GROUPS STANDARD DEVIATION =95.399T STATISTIC =-1.168 PROBABILITY =0.258 T STATISTIC = -1.168 PROBABILITY =

SUMMARY STATISTICS FOR OTHERDWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.097 APPROXIMATE F = 0.091 DF = 1, 972 PROBABILITY = 0.762 OVERALL MEAN = 47.787 STANDARD DEVIATION = 82.383 POOLED WITHIN GROUPS STANDARD DEVIATION = 83.815 T STATISTIC = -0.597 PROBABILITY = 0.558

SUMMARY STATISTICS FOR TOTWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.008 APPROXIMATE F = 0.007 DF = 1, 972 PROBABILITY = 0.933 OVERALL MEAN = 3537.513 STANDARD DEVIATION = 934.821 POOLED WITHIN GROUPS STANDARD DEVIATION = 902.245 T STATISTIC = -1.548 PROBABILITY = 0.139

TIME=12 MOS POST-BURN

sawgrass community

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

8

TOTAL OBSERVATIONS:

	DEPTHCM C	JTOTCOV	TOTCOV	CJLSTEMS	CJLWTG
N OF CASES	8	8	8	8	8
MINIMUM	34.000	25.000	46.000	30.000	1135.100
MAXIMUM	47.000	80.000	88.000	80.000	3563.600
MEAN	41.000	66.000	71.250	42.500	2158.075
STANDARD DEV	3.780	19.661	14.489	17.525	846.431

	CJDWTG OTI	HERLWT OT	HERDWT	TOTWTG
N OF CASES	8	8	8	8
MINIMUM	567.100	0.000	0.000	2152.900
MAXIMUM	2769.100	191.900	258.800	5531.200
MEAN	1762.613	25.450	37.750	3983.888
STANDARD DEV	706.209	67.376	90.367	1290.813

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

	DEPTHCM C	JTOTCOV	TOTCOV	CJLSTEMS	CJLWTG
N OF CASES	8	8	8	8	8
MINIMUM	40.000	30.000	43.000	30.000	769.900
MAXIMUM	59.900	70.000	75.000	80.000	3631.500
MEAN	46.613	53.000	61.500	50.000	2486.938
STANDARD DEV	6.338	16.835	12.329	16.036	966.104

	CJDWTG O	THERLWT C	DTHERDWT	TOTWTG
N OF CASES	8	8	8	8
MINIMUM	1104.000	0.000	0.000	1882.500
MAXIMUM	2136.200	113.200	790.400	5767.700
MEAN	1572.413	42.000	173.500	4274.850
STANDARD DEV	361.748	43.809	260.231	1246.819

SUMMARY STATISTICS FOR DEPTHCM

SUMMARY STATIS	TICS FOR CJTOT	cov		
T STATISTIC =	-2.151 PR	DBABILITY =	0.049	
POOLED WITHIN C	ROUPS STANDAR	D DEVIATION =	5.218	
OVERALL MEAN =	43.806 S	TANDARD DEVIATIO	N = 5.815	
APPROXIMATE F	r = 1.67	5 DF = 1, 58	8 PROBABILITY =	0.196
BARTLETT TEST F	FOR HOMOGENEIT	OF GROUP VARIA	NCES = 1.793	i -

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.168 APPROXIMATE F = 0.157 DF = 1, 588 PROBABILITY = 0.693 OVERALL MEAN = 59.500 STANDARD DEVIATION = 18.914 POOLED WITHIN GROUPS STANDARD DEVIATION = 18.303 T STATISTIC = -1.421 PROBABILITY = 0.177

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.182APPROXIMATE F = 0.169 DF = 1, 588 PROBABILITY = 0.681

OVERALL MEAN =66.375 STANDARD DEVIATION =13.937POOLED WITHIN GROUPS STANDARD DEVIATION =13.452T STATISTIC =-1.450 PROBABILITY =0.169

SUMMARY STATISTICS FOR CJLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.055APPROXIMATE F = 0.051 DF = 1, 588 PROBABILITY = 0.821OVERALL MEAN = 46.250 STANDARD DEVIATION = 16.683 POOLED WITHIN GROUPS STANDARD DEVIATION = 16.797 T STATISTIC = -0.893 PROBABILITY = 0.387

SUMMARY STATISTICS FOR CJLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.122

APPROXIMATE F =0.114 DF =1,588 PROBABILITY =0.736OVERALL MEAN =2322.506 STANDARD DEVIATION =893.727POOLED WITHIN GROUPS STANDARD DEVIATION =908.240

T STATISTIC = -0.724 PROBABILITY = 0.481

SUMMARY STATISTICS FOR CJDWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.924

APPROXIMATE F = 2.737 DF = 1, 588 PROBABILITY = 0.099

OVERALL MEAN =1667.513 STANDARD DEVIATION =550.869POOLED WITHIN GROUPS STANDARD DEVIATION =561.067T STATISTIC =-0.678 PROBABILITY =0.509

SUMMARY STATISTICS FOR OTHERLWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.259APPROXIMATE F = 1.175 DF = 1, 588 PROBABILITY = 0.279OVERALL MEAN = 33.725 STANDARD DEVIATION = 55.562POOLED WITHIN GROUPS STANDARD DEVIATION = 56.827T STATISTIC = -0.582 PROBABILITY = 0.570

SUMMARY STATISTICS FOR OTHERDWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 6.698 APPROXIMATE F = 6.309 DF = 1, 588 PROBABILITY = 0.012 OVERALL MEAN = 105.625 STANDARD DEVIATION = 200.818 POOLED WITHIN GROUPS STANDARD DEVIATION = 194.790 T STATISTIC = -1.394 PROBABILITY = 0.185

SUMMARY STATISTICS FOR TOTWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.008APPROXIMATE F = 0.008 DF = 1, 588 PROBABILITY = 0.929OVERALL MEAN = 4129.369 STANDARD DEVIATION = 1235.150 POOLED WITHIN GROUPS STANDARD DEVIATION = 1269.007 T STATISTIC = -0.459 PROBABILITY = 0.654

TIME=20 MOS POST-BURN

sawgrass community

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

8

TOTAL OBSERVATIONS:

	DEPTHCM C	JTOTCOV	TOTCOV	CJLSTEMS	CJLWTG
N OF CASES	8	8	8	8	8
MINIMUM	15.000	40.000	40.000	10.000	398.300
MAXIMUM	37.000	95.000	95.000	60.000	2553.600
MEAN	22.500	65.125	66.750	31.250	1289.075
STANDARD DEV	7.091	19.570	18.881	19.594	888.316

	CJDWIG O	THERLWT	OTHERDWT	TOTWIG
N OF CASES	8	٤	3 8	8
MINIMUM	1297.800	0.000	0.000	1900.200
MAXIMUM	3721.300	28.700	0.000	5863.500
MEAN	2133.150	5.363	3 0.000	3427.588
STANDARD DEV	803.569	10.659	0.000	1196.215

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

	DEPTHCM	CJTOTCOV		TOTCOV	CJLSTEMS	CJLWTG
N OF CASES		8	8	8	8	. 8
MINIMUM	15.00	0 55	.000	59.000	20.000	1102.500
MAXIMUM	31.00	0 90	.000	91.000	70.000	3612.200
MEAN	21.50	0 64	.625	69.000	42.500	2160.950
STANDARD DEV	5.23	37 13	.298	11.613	18.323	800.204

	CJDWTG	OTHERLWT	OTHER	DWT TWC	OTWTG
N OF CASES		8	8	8	8
MINIMUM	1294.00	0 0.	000	1.000	3364.000
MAXIMUM	3122.60	10 1.	000	507.600	6639.100
MEAN	2343.48	8 0.	375	155.938	4664.325
STANDARD DEV	707.12	90.	518	186.641	1213.923

SUMMARY STATISTICS FOR DEPTHCM

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.633

APPROXIMATE F =0.591 DF = 1,588 PROBABILITY =0.442OVERALL MEAN =22.000 STANDARD DEVIATION =6.044POOLED WITHIN GROUPS STANDARD DEVIATION =6.234

T STATISTIC = -0.321 PROBABILITY = 0.753

SUMMARY STATISTICS FOR CJTOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.020 APPROXIMATE F = 0.952 DF = 1, 588 PROBABILITY = 0.330 OVERALL MEAN = 64.875 STANDARD DEVIATION = 16.165 POOLED WITHIN GROUPS STANDARD DEVIATION = 16.731 T STATISTIC = -0.060 PROBABILITY = 0.953

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.592APPROXIMATE F = 1.488 DF = 1, 588 PROBABILITY = 0.223OVERALL MEAN = 67.875 STANDARD DEVIATION = 15.187POOLED WITHIN GROUPS STANDARD DEVIATION = 15.674T STATISTIC = -0.287 PROBABILITY = 0.778 SUMMARY STATISTICS FOR CJLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.031

APPROXIMATE F = 0.029 DF = 1, 588 PROBABILITY = 0.864

OVERALL MEAN =36.875 STANDARD DEVIATION =19.225POOLED WITHIN GROUPS STANDARD DEVIATION =18.969T STATISTIC =-1.186 PROBABILITY =0.255

SUMMARY STATISTICS FOR CJLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.076APPROXIMATE F = 0.071 DF = 1, 588 PROBABILITY = 0.790OVERALL MEAN = 1725.013 STANDARD DEVIATION = 932.619 POOLED WITHIN GROUPS STANDARD DEVIATION = 845.409 T STATISTIC = -2.063 PROBABILITY = 0.058

SUMMARY STATISTICS FOR CJDWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.114APPROXIMATE F = 0.106 DF = 1, 588 PROBABILITY = 0.744OVERALL MEAN = 2238.319 STANDARD DEVIATION = 739.245 POOLED WITHIN GROUPS STANDARD DEVIATION = 756.886 T STATISTIC = -0.556 PROBABILITY = 0.587

SUMMARY STATISTICS FOR OTHERLWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 32.679APPROXIMATE F = 32.120 DF = 1, 588 PROBABILITY = 0.000 OVERALL MEAN = 2.869 STANDARD DEVIATION = 7.732POOLED WITHIN GROUPS STANDARD DEVIATION = 7.546T STATISTIC = -1.322 PROBABILITY = 0.207

SUMMARY STATISTICS FOR OTHERDWT

ONE OR MORE OF YOUR GROUPS HAS NO VARIANCE.

SUMMARY STATISTICS FOR TOTWIG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.002

APPROXIMATE F = 0.001 DF = 1, 588 PROBABILITY = 0.970

OVERALL MEAN =4045.956 STANDARD DEVIATION =1327.902POOLED WITHIN GROUPS STANDARD DEVIATION =1205.101T STATISTIC =-2.053 PROBABILITY =0.059

TIME=PRE-BURN

panicum (maidencane) community

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 10

	DEPTHCM	PHTOTCOV	TOTCOV	Phlstems	PHLWTG
N OF CASES	10	0 10	10	10	10
MINIMUM	36.90	0 13.000	60.000	20.000	167.900
MAXIMUM	67.00	90.000	93.000	435.000	1523.400
MEAN	50.33	70.000	81,600	281.400	981.808
STANDARD DEV	9.22	9 21.914	10.844	121.704	371.440

	PHDWTG OT	HERLWT O	THERDWT	TOTWIG
N OF CASES	10	10	10	10
MINIMUM	26.400	0.000	0.000	812.300
MAXIMUM	256.100	678.300	300.800	1627.300
MEAN	112.033	80.036	36.720	1210.597
STANDARD DEV	87.815	211.851	94.340	290.235

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

242.309

108.718

TOTAL OBSERVATIONS: 10

MEAN

STANDARD DEV

	DEPTHCM	PHTOTCOV	TOTCOV	PHLSTEMS	PHLWTG
N OF CASES	1	.0 1	10 1	0 10	10
MINIMUM	44.00	0 45.00	0 45.00	0 130.000	467.100
MAXIMUM	76.00	0 85.00	0 93.00	0 365.000	1872.130
MEAN	56.64	0 66.30	0 68.70	0 237.700	1103.096
STANDARD DEV	10.98	12.70	15.35	5 85.545	388.123
	PHDWTG	OTHERLWT	OTHERDWT	TOTWTG	
N OF CASES	1	.0 ::	10 1	0 10	
MINIMUM	97.89	0.0	0.00	0 713.900	
MAXIMUM	421.60	0 141.30	0 76.40	0 2099.740	

14.588

44.545

7.640

24.160

1367.633

415.323

SUMMARY STATISTICS FOR DEPTHCM

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.272 APPROXIMATE F = 0.257 DF = 1,972 PROBABILITY = 0.612 OVERALL MEAN = 53.485 STANDARD DEVIATION = 10.391 POOLED WITHIN GROUPS STANDARD DEVIATION = 10.145 T STATISTIC = -1.391 PROBABILITY = 0.181 SUMMARY STATISTICS FOR PHTOTCOV BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.554 APPROXIMATE F = 2.423 DF = 1, 972 PROBABILITY = 0.120 OVERALL MEAN = 68.150 STANDARD DEVIATION = 17.536

POOLED WITHIN GROUPS STANDARD DEVIATION =17.910T STATISTIC =-0.462 PROBABILITY =0.650

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.068 APPROXIMATE F = 1.012 DF = 1, 972 PROBABILITY = 0.315 OVERALL MEAN = 75.150 STANDARD DEVIATION = 14.532 POOLED WITHIN GROUPS STANDARD DEVIATION = 13.293 T STATISTIC = -2.170 PROBABILITY = 0.044

SUMMARY STATISTICS FOR PHLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.096 APPROXIMATE F = 1.039 DF = 1, 972 PROBABILITY = 0.308 OVERALL MEAN = 259.550 STANDARD DEVIATION = 104.810 POOLED WITHIN GROUPS STANDARD DEVIATION = 105.190 T STATISTIC = -0.929 PROBABILITY = 0.365

SUMMARY STATISTICS FOR PHLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.017

APPROXIMATE F =0.016 DF = 1,972 PROBABILITY =0.898OVERALL MEAN =1042.452 STANDARD DEVIATION =374.940POOLED WITHIN GROUPS STANDARD DEVIATION =379.873T STATISTIC =-0.714 PROBABILITY =0.484

SUMMARY STATISTICS FOR PHDWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.407 APPROXIMATE F = 0.386 DF = 1, 972 PROBABILITY = 0.535 OVERALL MEAN = 177.171 STANDARD DEVIATION = 117.123 POOLED WITHIN GROUPS STANDARD DEVIATION = 98.820 T STATISTIC = -2.948 PROBABILITY = 0.009

SUMMARY STATISTICS FOR OTHERLWT BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 16.371 APPROXIMATE F = 15.746 DF = 1, 972 PROBABILITY = 0.000 OVERALL MEAN = 47.312 STANDARD DEVIATION = 152.730 POOLED WITHIN GROUPS STANDARD DEVIATION = 153.077 T STATISTIC = -0.956 PROBABILITY = 0.352

SUMMARY STATISTICS FOR OTHERDWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 13.187

APPROXIMATE F =12.644 DF = 1,972 PROBABILITY =0.000OVERALL MEAN =22.180 STANDARD DEVIATION =68.665POOLED WITHIN GROUPS STANDARD DEVIATION =68.861T STATISTIC =-0.944 PROBABILITY =0.358

SUMMARY STATISTICS FOR TOTWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.132

APPROXIMATE F = 1.073 DF = 1, 972 PROBABILITY = 0.301

OVERALL MEAN =1289.115 STANDARD DEVIATION =357.908POOLED WITHIN GROUPS STANDARD DEVIATION =358.280T STATISTIC =-0.980 PROBABILITY =0.340

8

TIME=12 MOS POST-BURN

panicum (maidencane) community

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS:

	DEPTHCM	PHTOTCOV	TOTCOV	PHLSTEMS	PHLWTG
N OF CASES	8	8	8	8	8
MINIMUM	41.000	25.000	29.000	150.000	93.600
MAXIMUM	57.000	75.000	77.000	490.000	833.900
MEAN	48.625	48.500	50.500	350.000	311.713
STANDARD DEV	5.317	18.883	18.142	122.824	225.569

	PHDWTG	OTHERLWT	OTHERDWT	TOTWIG
N OF CASES	8		8 8	8
MINIMUM	10.800	0.000	0.000	117.900
MAXIMUM	611.900	0.100	120.000	1098.900
MEAN	232.363	0.050	0 24.438	568.563
STANDARD DEV	226.750	0.05	3 43.576	336.886

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

	DEPTHCM	PHTOTCOV	TOTCOV	PHLSTEMS	PHLWTG
N OF CASES	8	8	8	8	8
MINIMUM	36.000	24.000	25.000	70.000	111.600
MAXIMUM	59.000	90.000	90.000	1000.000	708.100
MEAN	49.250	60.250	62.750	378.750	368.700
STANDARD DEV	8.031	26.185	24.406	313.753	217.615

	PHDWTG	OTHERLWT	OTHERDWT	TOTWTG
N OF CASES	8		8 8	8
MINIMUM	22.600	0.00	0.000	215.600
MAXIMUM	646.400	0.10	0 295.300	1145.600
MEAN	219.375	0.03	8 54.988	643.100
STANDARD DEV	226.080	0.05	2 100.413	327.406

SUMMARY STATISTICS FOR DEPTHCM

BARTLETT TEST	FOR HOMOGENEITY	OF GROUP VARIAN	CES = 1.159	
APPROXIMATE	F = 1.082	DF = 1, 588	PROBABILITY =	0.299
OVERALL MEAN POOLED WITHIN T STATISTIC =	= 48.938 ST GROUPS STANDARI -0.184 PRO	ANDARD DEVIATION DEVIATION = DBABILITY =	= 6.588 6.811 0.857	

SUMMARY STATISTICS FOR PHTOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.735APPROXIMATE F = 0.686 DF = 1, 588 PROBABILITY = 0.408OVERALL MEAN = 54.375 STANDARD DEVIATION = 22.873POOLED WITHIN GROUPS STANDARD DEVIATION = 22.828T STATISTIC = -1.029 PROBABILITY = 0.321

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.607

APPROXIMATE F = 0.566 DF = 1, 588 PROBABILITY = 0.452

OVERALL MEAN =56.625 STANDARD DEVIATION =21.716POOLED WITHIN GROUPS STANDARD DEVIATION =21.503T STATISTIC =-1.139 PROBABILITY =0.274

SUMMARY STATISTICS FOR PHLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 5.422APPROXIMATE F = 5.097 DF = 1, 588 PROBABILITY = 0.024OVERALL MEAN = 364.375 STANDARD DEVIATION = 230.650POOLED WITHIN GROUPS STANDARD DEVIATION = 238.251T STATISTIC = -0.241 PROBABILITY = 0.813

SUMMARY STATISTICS FOR PHLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.009APPROXIMATE F = 0.008 DF = 1, 588 PROBABILITY = 0.927OVERALL MEAN = 340.206 STANDARD DEVIATION = 216.125 POOLED WITHIN GROUPS STANDARD DEVIATION = 221.627 T STATISTIC = -0.514 PROBABILITY = 0.615

SUMMARY STATISTICS FOR PHDWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.000APPROXIMATE F = 0.000 DF = 1, 588 PROBABILITY = 0.994OVERALL MEAN = 225.869 STANDARD DEVIATION = 218.841 POOLED WITHIN GROUPS STANDARD DEVIATION = 226.415 T STATISTIC = -0.115 PROBABILITY = 0.910

SUMMARY STATISTICS FOR OTHERLWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.007APPROXIMATE F = 0.007 DF = 1, 588 PROBABILITY = 0.934OVERALL MEAN = 0.044 STANDARD DEVIATION = 0.051POOLED WITHIN GROUPS STANDARD DEVIATION = 0.053T STATISTIC = -0.475 PROBABILITY = 0.642 SUMMARY STATISTICS FOR OTHERDWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 4.399 APPROXIMATE F = 4.128 DF = 1, 588 PROBABILITY = 0.043 OVERALL MEAN = 39.713 STANDARD DEVIATION = 76.422 POOLED WITHIN GROUPS STANDARD DEVIATION = 77.400 T STATISTIC = -0.789 PROBABILITY = 0.443 SUMMARY STATISTICS FOR TOTWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.006 APPROXIMATE F = 0.005 DF = 1, 588 PROBABILITY = 0.942 OVERALL MEAN = 605.831 STANDARD DEVIATION = 323.216 POOLED WITHIN GROUPS STANDARD DEVIATION = 332.180 T STATISTIC = -0.449 PROBABILITY = 0.660

panicum (maidencane) community

TIME=20 MOS POST-BURN

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	DEPTHCM	PHTOTCOV	TOTCOV	PHLSTEMS	PHLWTG
N OF CASES		8 8	8	8 8	8
MINIMUM	15.00	0 35.000	38.000	220.000	153.000
MAXIMUM	37.00	0 75.000	78.500	760.000	441.100
MEAN	25.87	5 56.250	59.313	533.750	267.038
STANDARD DEV	8.65	9 13.562	14.978	181.575	91.816

	PHDWTG	OTHERLWT	OTHERDW	T TO	rwtg
N OF CASES	8	}	8	8	8
MINIMUM	108.100) 0.	000	0.000	353.700
MAXIMUM	491.300) 34.	100 15	9.300	779.300
MEAN	221.763	4.	388 3	2.075	525.263
STANDARD DEV	133.922	. 12.	011 5	5.786	176.456

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

	DEPTHCM	PHTOTCOV	TOTCOV	Phlstems	PHLWTG
N OF CASES		3 8	8	8	8
MINIMUM	19.00	18.000	18.000	230.000	91.000
MAXIMUM	35.00	90.000	92.000	840.000	386.400
MEAN	26.12	5 49.875	51.875	548.750	253.700
STANDARD DEV	6.68	5 22.472	23.277	199.674	121.234

	PHDWTG	OTHERLWT	OTHERDWT	TOTWTG
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	8 59.400 323.400 172.538 96.327	0.00 1.00 0.12 0.35	8 8 0 0.000 0 91.200 5 39.013 4 34.727	8 236.700 742.600 465.375 206.010

SUMMARY STATISTICS FOR DEPTHCM

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.463APPROXIMATE F = 0.432 DF = 1, 588 PROBABILITY = 0.511OVERALL MEAN = 26.000 STANDARD DEVIATION = 7.474 POOLED WITHIN GROUPS STANDARD DEVIATION = 7.736 T STATISTIC = -0.065 PROBABILITY = 0.949

SUMMARY STATISTICS FOR PHTOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.714APPROXIMATE F = 1.602 DF = 1, 588 PROBABILITY = 0.206OVERALL MEAN = 53.063 STANDARD DEVIATION = 18.230POOLED WITHIN GROUPS STANDARD DEVIATION = 18.560T STATISTIC = -0.687 PROBABILITY = 0.503

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.319APPROXIMATE F = 1.232 DF = 1, 588 PROBABILITY = 0.268 OVERALL MEAN = 55.594 STANDARD DEVIATION = 19.295 POOLED WITHIN GROUPS STANDARD DEVIATION = 19.573 T STATISTIC = -0.760 PROBABILITY = 0.460

SUMMARY STATISTICS FOR PHLSTEMS

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.063

APPROXIMATE F = 0.059 DF = 1, 588 PROBABILITY = 0.808

OVERALL MEAN =541.250 STANDARD DEVIATION =184.531POOLED WITHIN GROUPS STANDARD DEVIATION =190.839T STATISTIC =-0.157 PROBABILITY =0.877

SUMMARY STATISTICS FOR PHLWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.534APPROXIMATE F = 0.498 DF = 1, 588 PROBABILITY = 0.481OVERALL MEAN = 260.369 STANDARD DEVIATION = 104.118 POOLED WITHIN GROUPS STANDARD DEVIATION = 107.536T STATISTIC = -0.248 PROBABILITY = 0.808

SUMMARY STATISTICS FOR PHDWTG

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.747 APPROXIMATE F = 0.697 DF = 1, 588 PROBABILITY = 0.404 OVERALL MEAN = 197.150 STANDARD DEVIATION = 115.525 POOLED WITHIN GROUPS STANDARD DEVIATION = 116.649 T STATISTIC = -0.844 PROBABILITY = 0.413

SUMMARY STATISTICS FOR OTHERLWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 39.665 APPROXIMATE F = 39.447 DF = 1, 588 PROBABILITY = 0.000 OVERALL MEAN = 2.256 STANDARD DEVIATION = 8.498 POOLED WITHIN GROUPS STANDARD DEVIATION = 8.497 T STATISTIC = -1.003 PROBABILITY = 0.333

SUMMARY STATISTICS FOR OTHERDWT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.517APPROXIMATE F = 1.417 DF = 1, 588 PROBABILITY = 0.234OVERALL MEAN = 35.544 STANDARD DEVIATION = 45.033POOLED WITHIN GROUPS STANDARD DEVIATION = 46.465T STATISTIC = -0.299 PROBABILITY = 0.770

SUMMARY STATISTICS FOR TOTWIG BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.167APPROXIMATE F = 0.156 DF = 1, 588 PROBABILITY = 0.693

OVERALL MEAN =495.319 STANDARD DEVIATION =187.862POOLED WITHIN GROUPS STANDARD DEVIATION =191.803T STATISTIC =-0.624 PROBABILITY =0.542

APPENDIX A2. MANOVA/ANOVA FOR PRE-BURN DATA. FILE IS BIOMSSRT OUTPUT IS MANBLKT1.LIS SAWGRASS COMMUNITY LEVELS ENCOUNTERED DURING PROCESSING ARE: TRT 1.000 2.000 BLOCK 2.000 3.000 4.000 5.000

NUMBER OF CASES PROCESSED: 16

	the second se		the second s			
ADJUST	ED LEAST SQU	JARES MEANS.				
	TRT =	1.000 N	OF CASES =	8.000		
		momtimo	momoout			CMBVC
207	T C MIND M	TUTWIG		CJLWIG		STEMS 17 CCD
ADJ.	LS MEAN	3307.733 31E 733	00.493	22/3.233	125 506	1 205
<u> 36</u>			4.555		125.500	1.233
	TRT =	2.000 N	OF CASES =	8.000		
		TOTWTG	TOTCOV	CJLWTG	CJDWTG CJL	STEMS
ADJ.	LS MEAN	4043.822	81.255	2565.338	1427.891	16.581
SE		315.733	4.533	272.576	125.506	1.295
B	LOCK =	2.000 N	OF CASES =	4.000		
		TOTWTG	TOTCOV	CJLWTG	CJDWTG CJL	STEMS
ADJ.	LS MEAN	4404.004	90.952	2520.298	1861.066	18.881
SE		433.737	6.228	374.450	172.414	1.778
B	LOCK =	3.000 N	OF CASES =	4.000		
•		TOTWIG	TOTCOV	CJLWTG	CJDWTG CJL	STEMS
ADJ.	LS MEAN	3064.554	76.579	2025.079	858.653	14.806
SE		434.143	6.233	374.800	172.575	1.780
				<u> </u>	·	
B	LOCK =	4.000 N	OF CASES =	4.000		
		TOTWTG	TOTCOV	CJLWTG	CJDWTG CJL	STEMS
ADJ.	LS MEAN	3551.476	81.736	2570.931	955.663	17.884
SE		436.035	6.261	376.434	173.327	1.788
		E 000 N	OF CASES -	4 000	· · · · · · · · · · · · · · · · · · ·	
D	ILUCK =	2.000 N	OF CASES =	4.000		
		TOTWTG	TOTCOV	CJLWTG	CJDWTG CJL	STEMS
	T.S. MEAN	3807.482	74.232	2564.875	1168.745	16.929
ADJ.						

TEST FOR EFFECT CALLED: TRT

UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	P
TOTWTG	1617704.317	1	1617704.317	2,153	0.173
ERROR	7513352.276	10	751335.228		
TOTCOV	2.056		2.056	0.013	0.911
EBROR	1548,916	10	154,892		
CJLWTG	299760.313		299760.313	0.535	0.481
ERROR	5599747.662	10	559974.766		
CJDWTG	670098.881	1	670098.881	5.644	0.039
ERROR	1187199.671	10	118719.967		
CJLSTEMS	4.218	1	4.218	0.334	0.576
ERROR	126.314	10	12.631		
TEST FOR EFFE	CT CALLED:	BLOC	ĸ		
UNIVARIATE F	TESTS				
VARIABLE	SS	DF	MS	F	P
ጥርጥምምር	3696096.004	3	1232032.001	1.640	0.242
EBBUB	7513352.276	10	751335,228		
TOTCOV	659,153	- 3	219.718	1,419	0.294
EDBUB	1548,916	10	154,892	1.112	0.274
C.TL.WTG	835859.296	3	278619.765	0.498	0,692
EBBOR	5599747.662	10	559974.766	01170	01052
CIDWTG	2436388.073	3	812129.358	6.841	0,009
ERROR	1187199.671	10	118719.967		
CJLSTEMS	36.274		12.091	0.957	0.450
ERROR	126.314	10	12.631		
TEST FOR EFFE	CT CALLED:	DEPI	HCM		
UNIVARIATE F	TESTS				
VARIABLE	SS	DF	MS	F	Р
TOTWTC	9066 923	1	8066 823	0 011	0 920
201410 101410	7513352 274	10	751335 222	0.011	0.920
TOTODU	1313332.270	10	523 334	3 370	0 096
TOTCOV	323.334 15/0 012	10	323.334 157 809	3.313	0.090
	1340.310 376360 601	10	104.072 376260 601	0 672	0 431
COTUTO	5500717 667	10	570200.001 550071 766	0.012	0.431
	176107 662	10	A76407 662	4 013	0 073
CODUTO	1187199 671	10	118719 967	4.013	0.075
CILSTEMS	43 034	1	TTO, T3. 034	3 478	0.092
ERROR	126.314	10	12.631	014/0	

LEVELS TRT	ENCOU	NTERE	MAIDENCANE D DURING PROC	C (PANICUM) C CESSING ARE:	OMMUNITY MAN	OVA	· · · ·
	1.00	0	2.000				
BLOCK	2.00	0	3.000	4.000	5.000	,	
NUMBER	OF CA	SES P	PROCESSED:	16	· · ····		
ADJUST	ED LEA	ST SC	UARES MEANS.				
	TRT	=	1.000 N	OF CASES =	8.000		
			TOTWTG	TOTCOV	PHIWTG	PHDWTG PH	I.STEMS
ADJ.	LS ME	AN	1164.377	78.840	1053.835	95.311	305.046
SE			131.699	4.531	119.200	34.960	15.177
,	TRT	=	2.000 N	OF CASES =	8.000	· · · · · · · · · · · · · · · · · · ·	
			TOTWIG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ.	LS ME	AN	1379.823	64.910	1136.095	241.629	264.704
SE			131.699	4.531	119.200	34.960	15.177
В	LOCK	=	2.000 N	OF CASES =	4.000		
			TOTWIG	TOTCOV	PHLWTG	PHDWTG PH	ILSTEMS
ADJ.	LS ME	an	1482.962	73.645	1285.368	190.234	295.404
SE			180.710	6.217	163.560	47.971	20.825
В	LOCK	=	3.000 N	OF CASES =	4.000		
			TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	ILSTEMS
ADJ.	LS ME	EAN	1569.244	79.780	1340.062	223.235	200.775
SE			178.712	6.148	161.752	47.440	20.595
В	LOCK	=	4.000 N	OF CASES =	4.000		
			TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	ilstems
ADJ.	LS ME	CAN	1045.297	68.929	904.730	120.536	253.784
SE			181.924	6.259	164.659	48.293	20.965
B	LOCK	=	5.000 N	OF CASES =	4.000		
			TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	ILSTEMS
ADJ.	LS ME	EAN	990.897	65.145	849.700	139.875	389.537
SE			178.019	6.124	161.125	47.256	20.515
				······································		······	

TEST FOR EFFECT CALLED:

UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	P
TOTWTG	152773.480	··· 7	152773.480	1.220	0.295
ERBOR	1252701.251	10	125270, 125	11220	01235
TOTCOV	638.571	ĩ	638, 571	4.307	0.065
ERROR	1482.707	10	148,271	41507	0.005
PHTWTG	22271.122	-1	22271.122	0.217	0.651
EBBUB	1026216.597	10	102621.660	0.227	01001
DHINWTC	70463 959	1	70463 959	7 982	0.018
FRROR	88274.201	10	8827, 420		0.010
PHISTENS	5356.674	1	5356.674	3,220	0.103
ERROR	16636.952	10	1663.695	01220	01200
TEST FOR EFFE	CT CALLED:	BLOCH	c · · · ·		
UNIVARIATE F	TESTS				
VARIABLE	SS	DF	MS	F	Р
TOTWTG	950699.140	3	316899.713	2.530	0.116
ERROR	1252701.251	10	125270.125		
TOTCOV	448.300	3	149.433	1.008	0.429
ERROR	1482.707	10	148.271		
PHLWTG	695337.160	3	231779.053	2.259	0.144
ERROR	1026216.597	10	102621.660		
PHDWTG	23822.216	3	7940.739	0.900	0.475
ERROR	88274.201	10	8827.420		
Phlstems	75756.016	3	25252.005	15.178	0.000
ERROR	16636.952	10	1663.695		
TEST FOR EFFE	CT CALLED:	DEPTI	HCM		
UNIVARIATE F	TESTS				
VARIABLE	SS	DF	MS	F	P
TOTWTG	27163.592	1	27163.592	0.217	0.651
ERROR	1252701.251	10	125270.125		
TOTCOV	122.793	1	122.793	0.828	0.384
ERROR	1482.707	10	148.271		
PHLWTG	2047.948	1	2047.948	0.020	0.890
ERROR	1026216.597	10	102621.660		
PHDWTG	11320.681	1	11320.681	1.282	0.284
ERROR	88274.201	10	8827.420	_	
Phlstems	15.298	1	15.298	0.009	0.926
ERROR	16636.952	10	1663.695		

TRT

APPENDIX A3. MANOVA/ANOVA FOR POST-BURN DATA (SAMPLE TIMES 2 AND 3, 12 AND 20 MOS POST-BURN. FILE IS BIOMSSRT OUTPUT IS MANOVBLK.LIS SAWGRASS COMMUNITY. LEVELS ENCOUNTERED DURING PROCESSING ARE: TRT 1.000 2.000 TIME 2.000 3.000 BLOCK 2.000 3.000 4.000 5.000 NUMBER OF CASES PROCESSED: 32 ADJUSTED LEAST SQUARES MEANS. 16.000 TIME = 2.000 N OF CASES =CJLSTEMS TOTWTG TOTCOV CJLWTG CJDWTG 64.693 ADJ. LS MEAN 4748.525 2651.162 1920.810 45.451 548.363 6.052 397.422 292.589 7.224 SE TIME _ 3.000 N OF CASES = 16.000 CJDWTG TOTWIG TOTCOV CJLWTG CJLSTEMS 3426.800 69.557 1396.357 1985.021 ADJ. LS MEAN 37.674 548.363 6.052 397.422 292.589 7.224 SE TRT =7 1.000 N OF CASES = 16.000 TOTWTG TOTCOV CJLWTG CJDWTG CJLSTEMS ADJ. LS MEAN 3640.255 69.178 1688.816 1921.092 36.960 228.091 SE 314.720 3.473 167.924 4.146 TRT 2.000 N OF CASES = 16.000 = TOTWTG TOTCOV CJLWTG CJDWTG CJLSTEMS 4535.070 65.072 2358.703 1984.739 ADJ. LS MEAN 46.165 314.720 3.473 228.091 167.924 4.146 SE TRT 1.000 = TIME = 2.000 N OF CASES = 8.000 TOTWTG TOTCOV CJLWTG CJDWTG CJL.STEMS 4443.685 70.001 2402.141 1950.716 41.906 ADJ. LS MEAN SE 553.174 6.105 400.909 295.156 7.287 TRT = 1.000 3.000 N OF CASES = 8.000 TIME = TOTWTG TOTCOV CJLWTG CJDWTG CJLSTEMS 68.355 ADJ. LS MEAN 2836.825 975.491 1891.468 32.013 615.787 6.796 446.287 328.564 8.112 SE TRT 2.000 = 2.000 N OF CASES = 8.000 TIME = TOTWTG TOTCOV CJLWTG CJDWTG CJLSTEMS 2900.182 ADJ. LS MEAN 5053.365 59.385 1890.904 48.995 SE 718.301 7.927 520.583 383.262 9.462

TRT = TTMF =	2.000 N OF	CASES -	8.000		
1 1140 -	3.000 N OF	CASES -	5.000		
TO	TWTG I	OTCOV	CJLWTG	CJDWTG C	JLSTEMS
. LS MEAN	4016.775	70.759	1817.223	2078.574	43.336
	645.448	7.123	467.783	344.390	8.503
BLOCK =	2.000 N OF	CASES =	8.000		
TO	TWTG 1	OTCOV	CJLWTG	CJDWTG C	JLSTEMS
. LS MEAN	4084.388	73.620	2052.020	1877.398	37.557
۰ 	441.106	4.868	319.688	235.360	5.811
BLOCK =	3.000 N OF	CASES =	8.000		
TO	TWTG 1	OTCOV	CJLWTG	CJDWTG C	JLSTEMS
. LS MEAN	3682.619	61.496	1717.376	1847.959	39.939
	441.282	4.870	319.816	235.454	5.813
BLOCK =	4.000 N OF	CASES =	8.000		
TC	TWTG 1	TOTCOV	CJLWTG	CJDWTG C	CJLSTEMS
. LS MEAN	4415,252	74.139	2122.914	2282.531	32.566
	441.514	4.873	319.984	235.578	5.816
BLOCK =	5.000 N OF	CASES =	8.000	······································	
TC	TWTG 1	TOTCOV	CJLWTG	CJDWTG C	CJLSTEMS
. LS MEAN	4168.392	59.244	2202.728	1803.774	56.188
	111 222	1 970	210 8/5	235.476	5.814

TEST FOR EFFECT CALLED: TRT*TIME

UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	P
TOTWTG	592962.651	1	592962.651	0.383	0.542
ERROR	.371588E+08	24	1548283.867		
TOTCOV	309.094	1	309.094	1.639	0.213
ERROR	4525.773	24	188.574		
CJLWTG	215377.364	1	215377.364	0.265	0.612
ERROR	.195177E+08	24	813238.909		
CJDWTG	111165.928	1	111165.928	0.252	0.620
ERROR	.105789E+08	24	440787.624		
CJLSTEMS	32.697	1	32.697	0.122	0.730
ERROR	6448.276	24	268.678		

and the second						and the second
TEST FOR EFFE UNIVARIATE F	CT CALLED: TESTS	TIME				
VARIABLE	SS	DF	MS		F	Р
TOTWTG	2679938.002	1	2679938.00	2	1.731	0.201
ERROR	.371588E+08	24	1548283.86	7	1	
TOTCOV	36.291	1	36.29	1	0.192	0.665
ERROR	4525.773	24	188.57	4		
CJLWTG	2415431.645	1	2415431.64	5	2.970	0.098
ERROR	.195177E+08	24	813238.90	19		
CJDWTG	6325.074	1	6325.07	4	0.014	0.906
ERROR	.105789E+08	24	440787.62	4		
CJLSTEMS	92.773	1	92.77	3	0.345	0.562
ERROR	6448.276	24	268.67	8		
TEST FOR EFFE UNIVARIATE F	ECT CALLED: TESTS	TRT				
VARIABLE	SS	DF	MS		F	P
TOTWTG	6117156.517	1	6117156.51	.7	3.951	0.058
ERROR	.371588E+08	24	1548283.86	57		
TOTCOV	128.787	1	128.78	37	0.683	0.417
ERROR	4525.773	24	188.57	4		
CJLWTG	3428352.847	1	3428352.84	7	4.216	0.051
ERROR	.195177E+08	24	813238.90)9		
CJDWTG	30948.173	1	30948.17	3	0.070	0.793
ERROR	.105789E+08	24	440787.62	24		-
CJLSTEMS	647.471	1	647.47	/1	2.410	0.134
ERROR	6448.276	24	268.67	78		
MAIDENCANE (1 LEVELS ENCOU TRT 1.000	PANICUM) COMMU NTERED DURING D 2.000	NITY PROCES	SSING ARE:			
2.000	0 3.000					
BLOCK	0 3.000		4.000	5,000		
						····
NUMBER OF CA:	SES PROCESSED:	<u></u>	32			-
ADJUSTED LEA: TIME	ST SQUARES MEAN = 2.00	NS. 0 N 01	CASES =	16.000		
	TOTWTG	2	TOTCOV	PHLWTG	PHDWTG	PHLSTEMS
ADJ. LS ME	AN 554.	928	67.184	270.108	290.	.032 389.951
SE	103.	482	7.262	67.597	67	.662 76.555
TIME	= 3.00	оио	F CASES =	16.000		
	ጥርማመጥር		TOTCOV	PHI.WTC	PHDWTC	PHISTEMS
AD.T. T.S. MP	AN 5/6	222	45.035	330 467	1 3 2	986 515 674
SE	102	<u> </u>	7 262	67 607	£7	
			1.202			

TRT =	1.000 N	OF CASES =	16.000		· .
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PHI	STEMS
AD.T. LS MEAN	547.883	54.705	290.712	225,839	441.387
SE	63.793	4.477	41.671	41.711	47.193
TRT =	2.000 N	OF CASES =	16.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PHI	LSTEMS
ADJ. LS MEAN	553.267	57.514	309,863	197.180	464.238
SE	63.793	4.477	41.671	41.711	47.193
	1.000		· · · · · · · · · · · · · · · · · · ·	······································	
TIME =	2.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PHI	LSTEMS
ADJ. LS MEAN	519.046	60.771	243.524	294.778	374.879
SE	120.078	8.426	78.438	78.513	88.832
TRT =	1.000		<u> </u>		
TIME =	3.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PHI	LSTEMS
ADJ. LS MEAN	576.721	48.638	337.900	156.900	507.895
SE	122.153	8.572	79.793	79.870	90.367
TRT =	2.000				
TIME =	2.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ. LS MEAN	590.810	73.597	296.691	285.287	405.023
SE	123.055	8.635	80.383	80.460	91.035
TRT =	2.000				
TIME =	3.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ. LS MEAN	515.724	41.431	323.035	109.073	523.453
SE	120.962	8.488	79.015	79.091	89.486
BLOCK =	2.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ. LS MEAN	611.189	47.079	308.433	237.353	398.380
SE	92.625	6.500	60.504	60.563	68.523
BLOCK =	3.000 N	OF CASES =	8.000		
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ. LS MEAN	519.762	54.971	257.487	264.004	347.461
SE	94.365	6.622	61.641	61.701	69.810
BLOCK =	4.000 N	OF CASES =	8.000	<u>te di an</u> italian di di ang	
	TOTWTG	TOTCOV	PHLWTG	PHDWTG PH	LSTEMS
ADJ. LS MEAN	369.895	49.473	230.470	71.230	415.618
SE	90.389	6.343	59.044	59.101	66.869

BLOCK	= 5.000	O N OF	CASES =	8.000		
ADJ. LS MEAN SE	TOTWTG N 701.4 90.1	TC 454 193	72.914 6.329	PHLWTG 404.761 58.916	PHDWTG 273.451 58.973	PHLSTEMS 649.791 66.724
				······································	······	
TEST FOR EFFE	CT CALLED:	TRT*I	IME			
UNIVARIATE F	TESTS					
VARIABLE	SS	DF	MS		F	P
TOTWTG	35243.053	1	35243.05	3	0.542	0.469
ERROR	1561787.730	24	65074.48	9		
TOTCOV	802.447	1	802.44	7	2.504	0.127
ERROR	7690.898	24	320.45	4		
PHLWTG	9254.943	1	9254.94	3	0.333	0.569
ERROR	666413.333	24	27767.22	2		
PHDWTG	2938.579	1	2938.57	9	0.106	0.748
ERROR	667696.156	24	27820.67	3		
PHLSTEMS	425.426	1	425.42	6	0.012	0.914
ERROR	854743.787	24	35614.32	4		
TEST FOR EFFE UNIVARIATE F	CT CALLED: TESTS	TIME				
VARIABLE	SS	DF	MS		F	Р
TOTWTG	142.128	1	142.12	8	0.002	0.963
ERROR	1561787.730	24	65074.48	9		
TOTCOV	920.016	1	920.01	.6	2.871	0.103
ERROR	7690.898	24	320.45	4		
PHLWTG	6832.459	1	6832.45	9	0.246	0.624
ERROR	666413.333	24	27767.22	2		
PHDWTG	46252.203	1	46252.20	3	1.663	0.210
ERROR	667696.156	24	27820.67	3		
PHLSTEMS	29642.059	1	29642.05	9	0.832	0.371
ERROR	854743.787	24	35614.32	4		
TEST FOR EFFE	CT CALLED:	TRT				
UNIVARIATE F	TESTS					
VARIABLE	SS	DF	MS		F	Р
TOTWIG	231.554	1	231.55	4	0.004	0.953
ERROR	1561787.730	24	65074.49	9		
TOTCOV	63.051	1	63.05	1	0.197	0,661
ERROR	7690.898	24	320.45	4		01001
PHLWTC	2930.584	1	2930.58	4	0.106	0.748
ERROR	666413.333	24	27767.22	2		
PHDWTG	6562.722	1	6562.72	2	0.236	0,632
EDDUIG EDDUIG	667696.156	24	27820.67	17	0.200	0.032
PHT.STEMS	4172.261	1	4172.24	51	0.117	0.735
T T DILD	854743 787	24	35614 32	24	· · · · · · · · · · · · · · · · · · ·	0.700

APPENDIX A4. COMPLETE MANOVA/ANOVA WITH BOTH COMMUNITIES AND ALL TIMES CONSIDERED.

FILE IS BIOMSSRT PRINT FILE IS MANOV1.LIS LEVELS ENCOUNTERED DURING PROCESSING ARE: COMTYP

TRT	1.000	2.000	
TTME	1.000	2.000	
TUD	1.000	2.000	3.000

NUMBER OF CASES PROCESSED: 104

TEST FOR EFFECT CALLED: COMTYP*TRT*TIME UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	P
TOTWTG	1295223.645	2	647611.822	0.963	0.386
ERROR	.619003E+08	92	672829.159		
TOTCOV	1348.235	2	674.118	2.550	0.084
ERROR	24325.244	92	264.405		
TOTLWT	614774.346	2	307387.173	0.846	0.432
ERROR	.334203E+08	92	363264.217		
TOTDWT	252525.904	2	126262.952	0.668	0.515
ERROR	.173906E+08	92	189028.329		
DEPTHCM	51.304	2	25.652	0.402	0.670
ERROR	5869.949	92	63.804		

TEST FOR EFFECT CALLED: UNIVARIATE F TESTS COMTYP*TRT

VARIABLE	SS	DF	MS	F	P
TOTWTG	2802237.769	1	2802237.769	4.165	0.044
ERROR	.619003E+08	92	672829.159		
TOTCOV	8.813	1	8.813	0.033	0.856
ERROR	24325.244	92	264.405		
TOTLWT	1316187.398	1	1316187.398	3.623	0.060
ERROR	.334203E+08	92	363264.217		
TOTDWT	277451.312	1	277451.312	1.468	0.229
ERROR	.173906E+08	92	189028.329		
DEPTHCM	5,471	1	5.471	0.086	0.770
ERROR	5869.949	92	63.804		_ • • • •

TEST FOR EFFECT CALLED: TRT*TIME UNIVARIATE F TESTS VARIABLE SS DF MS F 658459.635 2 TOTWTG 329229.818 0.489 92 672829.159 ERROR .619003E+08 TOTCOV 436.203 2 218.101 0.825

TOTCOV	436.203	2	218.101	0.825	0.442
ERROR	24325.244	92	264.405		
TOTLWT	375579.510	2	187789.755	0.517	0.598
ERROR	.334203E+08	92	363264.217		
TOTDWT	313914.514	2	156957.257	0.830	0.439
ERROR	.173906E+08	92	189028.329		
DEPTHCM	170.858	2	85.429	1.339	0.267
ERROR	5869.949	92	63.804		

P

0.615

TEST FOR EFFECT CALLED:

COMTYP*TIME

COMTYP

UNIVARIATE F TESTS

SS	DF	MS	F	P
.102228E+08	2	5111378.443	7.597	0.001
.619003E+08	92	672829.159		
71.011	2	35.506	0.134	0.875
24325.244	92	264.405		
2919857.780	2	1459928.890	4.019	0.021
.334203E+08	92	363264.217		•
4889726.335	2	2444863.167	12.934	0.000
.173906E+08	92	189028.329		
41.775	2	20.888	0.327	0.722
5869.949	92	63.804		
	SS .102228E+08 .619003E+08 71.011 24325.244 2919857.780 .334203E+08 4889726.335 .173906E+08 41.775 5869.949	SSDF.102228E+082.619003E+089271.011224325.244922919857.7802.334203E+08924889726.3352.173906E+089241.77525869.94992	SSDFMS.102228E+0825111378.443.619003E+0892672829.15971.011235.50624325.24492264.4052919857.78021459928.890.334203E+0892363264.2174889726.33522444863.167.173906E+0892189028.32941.775220.8885869.9499263.804	SS DF MS F .102228E+08 2 5111378.443 7.597 .619003E+08 92 672829.159 7 .71.011 2 35.506 0.134 24325.244 92 264.405 2 2919857.780 2 1459928.890 4.019 .334203E+08 92 363264.217 4889726.335 2 2444863.167 12.934 .173906E+08 92 189028.329 41.775 2 20.888 0.327 5869.949 92 63.804 5 5 5 5

TEST FOR EFFECT CALLED: UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	Р
TOTWTG	.248315E+09	1	.248315E+09	369.061	0.000
ERROR	.619003E+08	92	672829.159		
TOTCOV	2628.528	1	2628.528	9.941	0.002
ERROR	24325.244	92	264.405		
TOTLWT	.630257E+08	1	.630257E+08	173.498	0.000
ERROR	.334203E+08	92	363264.217		
TOTDWT	.611391E+08	1	.611391E+08	323.439	0.000
ERROR	.173906E+08	92	189028.329		
DEPTHCM	362.009	1	362.009	5.674	0.019
ERROR	5869.949	92	63.804		

TEST FOR EFFECT CALLED: TRT

UNIVARIATE F TESTS

ERROR

ERROR

ERROR

TOTDWT

DEPTHCM

.334203E+08

5597371.349

.173906E+08

15321.221

5869.949

92 2

92

2

92

				•	
VARIABLE	SS	DF	MS	F	P
TOTWTG	3858045.843	1	3858045.843	5.734	0.019
ERROR	.619003E+08	92	672829.159		
TOTCOV	276.855	1	276.855	1.047	0.309
ERROR	24325.244	92	264.405		
TOTLWT	1711373.719	1	1711373.719	4.711	0.033
ERROR	.334203E+08	92	363264.217		
TOTDWT	430330.824	1	430330.824	2.277	0.135
ERROR	.173906E+08	92	189028.329		
DEPTHCM	209.781	1	209.781	3.288	0.073
ERROR	5869.949	92	63.804		
TEST FOR EFFE UNIVARIATE F	ECT CALLED: TESTS	TIME	,		4, , , , , , , , , , , , , , , , , , ,
VARIABLE	SS	DF	MS	F	P
TOTWTG	368833.656	2	184416.828	0.274	0.761
ERROR	.619003E+08	92	672829.159		
TOTCOV	7697.663	2	3848.832	14.557	0.000
ERROR	24325.244	92	264.405		
TOTLWT	8752856.137	2	4376428.069	12.048	0.000

363264.217

2798685.674

189028.329

7660.610 63.804

14.806

120.065

0.000

0.000

APPENDIX A5. MANOVA/ANOVA FOR SAWGRASS AND MAIDENCANE COMMUNITIES CONSIDERED SEPARATELY. FILE IS BIOMSSRT PRINT FILE IS MANOV2.LIS SAWGRASS COMMUNITY. LEVELS ENCOUNTERED DURING PROCESSING ARE: TRT 1.000 2.000 TIME 1.000 2.000 3.000 NUMBER OF CASES PROCESSED: 52 LEAST SQUARES MEANS. 1.000 N OF CASES = 26.000 ጥጽጥ = TOTWTG TOTCOV TOTLWT TOTDWT DEPTHCM 3545.550 74.500 1887.670 1657.880 LS. MEAN 37.397 2.805 1.463 220.537 161.030 117.143 SE TRT 2.000 N OF CASES = 26.000 = TOTWTG TOTCOV TOTLWT TOTDWT DEPTHCM LS. MEAN 4263.009 70.633 2371.891 1891.118 40.714 SE 220.537 2.805 161.030 117.143 1.463 TIME 1.000 N OF CASES = 20.000 = TOTLWT TOTWTG TOTCOV TOTDWT DEPTHCM 3537.513 LS. MEAN 83.450 2303.441 1234.073 51.360 250.065 3.181 182.591 132.827 1.658 SE 2.000 N OF CASES = 16.000 TIME = TOTWTG TOTCOV TOTLWT TOTDWT DEPTHCM 2356.231 LS. MEAN 4129.369 66.375 1773.138 43.806 3.556 1.854 279.581 204.143 148.506 SE TIME 3.000 N OF CASES = 16.000 × TOTWTG TOTCOV TOTLWT TOTDWT DEPTHCM 2316.288 4045.956 LS. MEAN 67.875 1729.669 22.000 148.506 SE 279.581 3.556 204.143 1.854 TRT = 1.000 1.000 N OF CASES = TIME = 10.000 DEPTHCM TOTWTG TOTCOV TOTLWT TOTDWT LS. MEAN 2185.047 3225.175 85.500 1040.128 48.690 SE 353.645 4.498 258.222 187.846 2.345 TRT 1.000 z TIME ÷ 2.000 N OF CASES = 8.000 TOTWTG TOTCOV TOTLWT TOTDWT DEPTHCM LS. MEAN 3983.888----71.250 2183.525 1800.363 41.000 SE 395.387 5.029 288.701 210.019 2.622
	mp m	- <u>-</u>	1 00	~							
	TIME		3.00	0 N	OF	CASES =		8.0	00	· ·	
			ጥሰጥአምሮ		ጥረ	าตะคณ	ጥ	<u>ር ምፕ. አም</u>		ጥርጥር	DEPTHCM
T.S.	MEAN		3427	588	•	66.750	<u>م</u> ا	1294.4	38	2133.150	22.500
SE .	PERMIT		395.	387		5.029		288.7	01	210.019	2.622
	 ጥውጥ		2 00	0			<u>_</u>			<u> </u>	
	TIME	=	1.00	0 N	OF	CASES =		10.0	00		
					_		-				
			TOTWTG	~	T	OTCOV	T	OTLWT		TOTDWT	DEPTHCM
LS.	MEAN		3849.	851		81.400	2	2421.8	34	1428.017	54.030
SE			353.	645		4.498	s 	258.2	22	187.846	2.345
	TRT	=	2.00	0							
	TIME	=	2.00	0 N	OF	CASES =		8.0	00		
			TOTWTG		T	OTCOV	т	OTLWT		TOTDWT	DEPTHCM
LS.	MEAN		4274.	850		61.500)	2528.9	38	1745.913	46.613
SE			395.	387		5.029)	288.7	01	210.019	2.622
	ጥጽጥ	=	2.00	0							····
	TIME	=	3.00	N OG	OF	CASES =		8.0	00		
			and and a second		τ.	OTTON	m	OTT WT		TOTOT	DEDTUCK
TC	MEAN		101WIG	275	T		\ <u>т</u>	2164 0	00	101DW1	21 EOO
L3. CF	MEAN		4004.	223		5.000	,	2104.7	100	2499.429	21.500
								200.7			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
UNIVA V	RIATE F	TESTS	SS	,	DF	MS				F	P
·			00							-	•
TOT	WTG	18485	78.862		2	924289.	.431			0.739	0.483
TOT	COV	. 5752	88.377		2	1230049.	188			0.713	0.496
	ERROR	93	07.900		46	202.	. 346	,			
TOT	'LWT	9752	09.447		2	487604.	724			0.731	0.487
	ERROR	.3067	22E+08		46	666787.	. 372				
TOT	DWT	5195	97.810		2	259798.	.905	i i		0.736	0.484
	ERROR	.1623	17E+08		46	352862	.276	•			
DEPT	HCM	1	.15.769		2	57.	.885	· .		1.052	0.357
	ERROR	25	30.299		46	55.	.006	I			
TEST UNIVA	FOR EFFE RIATE F	CT CAL TESTS	LED:	T	RT			<u></u>			
v	ARIABLE		SS		DF	MS				F	P
TOT	WTG	66181	74.922		1	6618174	.922	1		5.292	0.026
	ERROR	.5752	299E+08		46	1250649	. 447	1			
TOT	COV	1	92.229		1	192	.229			0.950	0.335
ጥ∩ጥ	EKRUR T.WT	30144	509.837		-10	3014609	. 340	1 7		4.521	0.039
101	EBBUB	.3067	722E+08		46	666787	. 372	1		JCT .	0.033
тот	DWT	6994	28.117		1	699428	.117			1.982	0.166
	ERROR	.1623	317E+08		46	352862	.276	j			
DEPI	HCM	1	41.503		1	141	. 503	}		2.572	0.116
	ERROR	25	530.299		46	55	.006	i			

A-32

TEST FOR EFFECT CALLED: TIME UNIVARIATE F TESTS F P VARIABLE SS DF MS TOTWTG 3780762.359 2 1890381.180 1.512 0.231 .575299E+08 1250649.447 ERROR 46 TOTCOV 3298.069 2 1649.035 8.150 0.001 ERROR 9307.900 46 202.346 1987893.346 2.981 0.061 TOTLWT 3975786.692 2 ERROR .306722E+08 46 666787.372 TOTDWT .104479E+08 2 5223968.980 14.805 0.000 352862.276 3998.396 ERROR .162317E+08 46 DEPTHCM 7996.792 2 72.690 0.000 2530.299 ERROR 46 55.006

MAIDENCANE (PANICUM) COMMUNITY MANOVA LEVELS ENCOUNTERED DURING PROCESSING ARE: TRT

017 X 12	1.000		2.000					
1106	1.000		2.000		3.000			
NUMBER	OF CAS	ES PRC	CESSED:		52			
LEAST	SQUARES TRT	MEANS =	1.000 N	OF	CASES =	26.000		
			TOTWTG	T	OTCOV	TOTLWT	TOTDWT	DEPTHCM
LS.	MEAN		768.141		63.804	548.344	219.797	41.610
SE			60.785		3.563	48.200	31.301	1.680
	TRT	-	2.000 N	OF	CASES =	26.000		
			TOTWTG	T	OTCOV	TOTLWT	TOTDWT	DEPTHCM
LS.	MEAN		825.369		61.108	580.082	245.287	44.005
SE			60.785		3.563	48.200	31.301	1.680
•••••••••••••••••••••••••••••••••••••••	TIME		1.000 N	OF	CASES =	20.000	<u></u>	
			TOTWTG	T	OTCOV	TOTLWT	TOTDWT	DEPTHCM
LS.	MEAN		1289.115		75.150	1089.764	199.351	53.485
SE			68.923		4.040	54.654	35.493	1.905
•	TIME	=	2.000 N	OF	CASES =	16.000		
			TOTWTG	T	OTCOV	TOTLWT	TOTDWT	DEPTHCM
LS.	MEAN		605.831		56.625	340.250	265.581	48.938
SE			77.059		4.517	61.105	39.682	2.130
	TIME	=	3.000 N	OF	CASES =	16.000		
			TOTWTG	T	OTCOV	TOTLWT	TOTDWT	DEPTHCM
LS.	MEAN		495.319		55.594	262.625	232.694	26.000
SE			77.059		4.517	61.105	39.682	2.130

TIME = 1.000 N OF CASES = 10.000 TOTWTG TOTCOV TOTLWT TOTDWT DEPTH LS. MEAN 1210.597 81.600 1061.844 148.753 SE 97.472 5.714 77.292 50.194	CM 50.330 2.694
TOTWTG TOTCOV TOTLWT TOTDWT DEPTH LS. MEAN 1210.597 81.600 1061.844 148.753 SE 97.472 5.714 77.292 50.194	CM 50.330 2.694
LS. MEAN 1210.597 81.600 1061.844 148.753 SE 97.472 5.714 77.292 50.194	50.330 2.694
SE 97.472 5.714 77.292 50.194	2.694
TRT = 1.000	
TIME = 2.000 N OF CASES = 8.000	
TOTWIG TOICOV TOILWI TOIDWI DEPTH	CM
LS. MEAN 568.563 50.500 311.763 256.800	48.625
SE 108.978 6.388 86.415 56.119	3.012
TRT = 1.000	
TIME = 3.000 N OF CASES = 8.000	
TOTWIG TOTCOV TOTLWI TOTDWI DEPTH	CM
LS. MEAN 525.263 59.313 271.425 253.838	25.875
SE 108.978 6.388 86.415 56.119	3.012
TRT = 2.000	
TIME = 1.000 N OF CASES = 10.000	
TOTWIG TOTCOV TOTLWI TOTDWI DEPTH	CM
LS. MEAN 1367.633 68.700 1117.684 249.949	56.640
SE 97.472 5.714 77.292 50.194	2.694
TRT = 2.000	
TIME = 2.000 N OF CASES = 8.000	
TOTWIG TOTCOV TOTLWI TOTDWI DEPIF	ICM
LS. MEAN 643.100 62.750 368.738 274.363	49.250
SE 108.978 6.388 86.415 56.119	3.012
TRT = 2.000	
TIME = 3.000 N OF CASES = 8.000	
TOTWIG TOTCOV TOTLWI TOTDWI DEPTH	ICM
LS. MEAN 465.375 51.875 253.825 211.550	26.125
SE 108.978 6.388 86.415 56.119	3.012

TEST FOR EFFECT CALLED: TRT*TIME UNIVARIATE F TESTS

VARIABLE	SS	DF	MS	F	P
TOTWTG	105104.418	2	52552.209	0.553	0.579
ERROR	4370408.035	46	95008.870		
TOTCOV	1496.061	2	748.030	2.291	0.113
ERROR	15017.344	46	326.464		
TOTLWT	15144.410	2	7572.205	0.127	0.881
ERROR	2748088.799	46	59741.061		
TOTDWT	46842.608	2	23421.304	0.930	0.402
ERROR	1158941.578	46	25194.382		
DEPTHCM	106.393	2	53.196	0.733	0.486
ERROR	3339.650	46	72.601		

A-34

TEST FOR EFFECT CALLED: TRT UNIVARIATE F TESTS

ERROR

ERROR

ERROR

ERROR

ERROR

TOTCOV

TOTLWT

TOTDWT

DEPTHCM

4370408.035

7696927.225 2748088.799

1158941.578

4470.605

15017.344

39159.724

7366.204

3339.650

46

2

2

2

46

46

2

46

46

VARIABLE	SS	DF	MS	F	P
TOTWTG	42108.689	1	42108.689	0.443	0.509
ERROR	4370408.035	46	95008.870		
TOTCOV	93.440	1	93.440	0.286	0.595
ERROR	15017.344	46	326.464		
TOTLWT	12951.280	1	12951.280	0.217	0.644
ERROR	2748088.799	46	59741.061		
TOTDWT	8354.020	1	8354.020	0.332	0.568
ERROR	1158941.578	46	25194.382		
DEPTHCM	73.749	1	73.749	1.016	0.319
ERROR	3339.650	46	72.601		
TEST FOR EFFE UNIVARIATE F	CCT CALLED: TESTS	TIME	······································		·····
VARIABLE	SS	DF	MS	F	P
TOTWTG	6810828.182	2	3405414.091	35.843	0.000

95008.870

59741.061

19579.862

25194.382 3683.102

72.601

3848463.612

2235.303

326.464

6.847

64.419

0.777

50.731

0.002

0.000

0.466

0.000

APPENDIX A6. ONE-WAY ANOVAS FOR PERMANENT QUADRAT MEASURES, BY COMMUNITY AND TIME.

sawgrass community

TIME=PRE-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	TOTCOV	NSPP	SWINDEX	
N OF CASES	8	8	8	
MINIMUM	29.750	3.000	0.347	
MAXIMUM	45.000	7.000	1.936	
MEAN	37.563	4.500	0.882	
STANDARD DEV	5.326	1.309	0.565	

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS:

	TOTCOV	NSPP	SWINDEX		
N OF CASES	8	8	. 8		
MINIMUM	24.000	3.000	0.201		
MAXIMUM	57.050	6.000	1.514		
MEAN	35.962	4.375	0.814		
STANDARD DEV	9.653	1.188	0.503		

8

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.342 APPROXIMATE F = 2.191 DF = 1, 588 PROBABILITY = 0.139 OVERALL MEAN = 36.762 STANDARD DEVIATION = 7.577 POOLED WITHIN GROUPS STANDARD DEVIATION = 7.796 T STATISTIC = 0.410 PROBABILITY = 0.688

SUMMARY STATISTICS FOR NSPP

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.066 APPROXIMATE F = 0.062 DF = 1, 588 PROBABILITY = 0.804 OVERALL MEAN = 4.438 STANDARD DEVIATION = 1.209 POOLED WITHIN GROUPS STANDARD DEVIATION = 1.250 T STATISTIC = 0.200 PROBABILITY = 0.844

A-36

SUMMARY STATISTICS FOR SWINDEX

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.095

APPROXIMATE F = 0.088 DF = 1, 588 PROBABILITY = 0.766

OVERALL MEAN =0.848 STANDARD DEVIATION =0.518POOLED WITHIN GROUPS STANDARD DEVIATION =0.535T STATISTIC =0.253 PROBABILITY =0.804

sawgrass community TIME=12 MOS POST-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	TOTCOV	NSPP	SWINDEX		
N OF CASES	8	8	8		
MINIMUM	6.500	2.000	0.000		
MAXIMUM	41.750	7.000	1.851		
MEAN	18.944	3.500	0.584		
STANDARD DEV	11.852	1.927	0.667		

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS:

	TOTCOV	NSPP	SWINDEX	
N OF CASES	8	8	8	
MINIMUM	24.250	2.000	0.000	
MAXIMUM	46.800	5.000	1.182	
MEAN	34.856	3.500	0.725	
STANDARD DEV	7.480	0.926	0.382	

8

SUMMARY STATISTICS FOR TOTCOV

BARTLETT	TEST	FOR	HOMOGENEITY	OF	GRC	UP	VARIANO	CES	=	1.434	
APPROXI	MATE	F =	1.339	DF	=	1,	588	PRC	BABILITY	=	0.248
OVERALL M POOLED WI T STATIST	EAN = THIN CIC =	GROU	26.900 STA PS STANDARD 3.211 PROP	NDZ DEV BAB	ARD /IA1 [L11	DEV NON Y =	VIATION N =	= 0.0	12.6 9.910 906	517	

SUMMARY STATISTICS FOR NSPP

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 3.467

APPROXIMATE F =3.249 DF = 1,588 PROBABILITY =0.072OVERALL MEAN =3.500 STANDARD DEVIATION =1.461POOLED WITHIN GROUPS STANDARD DEVIATION =1.512T STATISTIC =0.000 PROBABILITY =1.000

SUMMARY STATISTICS FOR SWINDEX

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.076 APPROXIMATE F = 1.942 DF = 1, 588 PROBABILITY = 0.164 OVERALL MEAN = 0.655 STANDARD DEVIATION = 0.530 POOLED WITHIN GROUPS STANDARD DEVIATION = 0.544 T STATISTIC = 0.521 PROBABILITY = 0.610

sawgrass community

TIME=20 MOS POST-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	7.500	2.000	0.000
MAXIMUM	33.750	5.000	1.481
MEAN	22.500	3.625	0.705
STANDARD DEV	9,227	1.061	0.492

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

	TOTCOV	NSPP	SWINDEX
N OF CASES	7	7	7
MINIMUM	16.250	3.000	0.722
MAXIMUM	53.750	5.000	1.424
MEAN	33.286	3.571	1.021
STANDARD DEV	13.664	0.787	0.233

SUMMARY STATISTICS FOR TOTCOV BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.991 APPROXIMATE F = 0.920 DF = 1, 499 PROBABILITY = 0.338 OVERALL MEAN = 27.533 STANDARD DEVIATION = 12.394 POOLED WITHIN GROUPS STANDARD DEVIATION = 11.490 T STATISTIC = 1.814 PROBABILITY = 0.093

SUMMARY STATISTICS FOR NSPP

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.560APPROXIMATE F = 0.519 DF = 1, 499 PROBABILITY = 0.472OVERALL MEAN = 3.600 STANDARD DEVIATION = 0.910POOLED WITHIN GROUPS STANDARD DEVIATION = 0.944T STATISTIC = 0.110 PROBABILITY = 0.914

SUMMARY STATISTICS FOR SWINDEX

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 3.198APPROXIMATE F = 2.980 DF = 1, 499 PROBABILITY = 0.085OVERALL MEAN = 0.852 STANDARD DEVIATION = 0.414POOLED WITHIN GROUPS STANDARD DEVIATION = 0.394T STATISTIC = 1.548 PROBABILITY = 0.146

panicum (maidencane) community

TIME=PRE-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	30.000	2.000	0.000
MAXIMUM	46.250	7.000	1.679
MEAN	38.594	4.250	0.629
STANDARD DEV	6.684	1.832	0.628

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

,	TOTCOV	NSPP	SWINDEX
N OF CASES	8	. 8	8
MINIMUM	28.750	2.000	0.000
MAXIMUM	60.000	5.000	0.636
MEAN	44.537	2.875	0.164
STANDARD DEV	10.730	1.126	0.243

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.513 APPROXIMATE F = 1.414 DF = 1, 588 PROBABILITY = 0.235 OVERALL MEAN = 41.566 STANDARD DEVIATION = 9.165 POOLED WITHIN GROUPS STANDARD DEVIATION = 8.939 T STATISTIC = 1.330 PROBABILITY = 0.205

SUMMARY STATISTICS FOR NSPP

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.598

APPROXIMATE F = 1.493 DF = 1, 588 PROBABILITY = 0.222

OVERALL MEAN =3.563 STANDARD DEVIATION =1.632POOLED WITHIN GROUPS STANDARD DEVIATION =1.521T STATISTIC =1.808 PROBABILITY =0.092

SUMMARY STATISTICS FOR SWINDEX

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 5.542

APPROXIMATE F =5.210 DF = 1,588 PROBABILITY =0.023OVERALL MEAN =0.397 STANDARD DEVIATION =0.519POOLED WITHIN GROUPS STANDARD DEVIATION =0.476

T STATISTIC = 1.954 PROBABILITY = 0.071

panicum (maidencane) community TIME=12 MOS POST-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

8

TOTAL OBSERVATIONS:

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	6.500	2.000	0.000
MAXIMUM	32.250	5.000	1.555
MEAN	20.281	3.625	0.802
STANDARD DEV	7.902	0.916	0.599

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS:

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	13.750	2.000	0.000
MAXIMUM	39.750	4.000	0.918
MEAN	21.781	2.750	0.430
STANDARD DEV	8.714	0.707	0.375

8

SUMMARY STATISTICS FOR TOTCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.067 APPROXIMATE F = 0.062 DF = 1, 588 PROBABILITY = 0.803 OVERALL MEAN = 21.031 STANDARD DEVIATION = 8.073 POOLED WITHIN GROUPS STANDARD DEVIATION = 8.318 T STATISTIC = 0.361 PROBABILITY = 0.724

SUMMARY STATISTICS FOR NSPP

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.464 APPROXIMATE F = 0.433 DF = 1, 588 PROBABILITY = 0.511 OVERALL MEAN = 3.188 STANDARD DEVIATION = 0.911 POOLED WITHIN GROUPS STANDARD DEVIATION = 0.818 T STATISTIC = 2.139 PROBABILITY = 0.051

SUMMARY STATISTICS FOR SWINDEX

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.478 APPROXIMATE F = 1.381 DF = 1, 588 PROBABILITY = 0.240 OVERALL MEAN = 0.616 STANDARD DEVIATION = 0.520 POOLED WITHIN GROUPS STANDARD DEVIATION = 0.500 T STATISTIC = 1.490 PROBABILITY = 0.158

panicum (maidencane) community TIME=20 MOS POST-BURN THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	16.250	2.000	0.000
MAXIMUM	53.500	6.000	1.662
MEAN	26.219	4.375	0.923
STANDARD DEV	11.949	1.598	0.737

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS:

	TOTCOV	NSPP	SWINDEX
N OF CASES	8	8	8
MINIMUM	4.250	1.000	0.000
MAXIMUM	29.500	4.000	0.767
MEAN	17.250	2.125	0.096
STANDARD DEV	8.206	0.835	0.271

8

SUMMARY STATISTICS FOR TOTCOV

BARTLETT	TEST	FOR	HOMOGENEIT	Y OF	GROUF	VARIAN	CES =	0.966	
APPROXI	IMATE	F =	0.90	2 DF	= 1,	588	PROBABI	LITY =	0.343
OVERALL N POOLED WI T STATISI	MEAN = ITHIN FIC =	GROU	21.734 S JPS STANDAR 1.750 PF	TANDA D DEV COBAB	ARD DE VIATIO ILITY	VIATION = =	= 10.250 0.102	10.932)	

SUMMARY STATISTICS FOR NSPP BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.767 APPROXIMATE F =2.590 DF = 1,588 PROBABILITY = 0.108 OVERALL MEAN = 3.250 STANDARD DEVIATION = 1.693 POOLED WITHIN GROUPS STANDARD DEVIATION = 1.275 T STATISTIC = 3.530 PROBABILITY = 0.003 SUMMARY STATISTICS FOR SWINDEX BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 6.062

APPROXIMATE F =5.704 DF =1,588 PROBABILITY =0.017OVERALL MEAN =0.509 STANDARD DEVIATION =0.686POOLED WITHIN GROUPS STANDARD DEVIATION =0.555T STATISTIC =2.979 PROBABILITY =0.010

APPENDIX A7. SELECT ANOVAS FOR PERCENT COVER, BY INDIVIDUAL SPECIES PRESENT IN PERMANENT QUADRATS. TIME=PREBURN

sawgrass community

CLJA

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 26.969

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		27.656

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.051APPROXIMATE F = 0.048 DF = 1, 588 PROBABILITY = 0.827OVERALL MEAN = 27.313 STANDARD DEVIATION = 9.322POOLED WITHIN GROUPS STANDARD DEVIATION = 9.642T STATISTIC = 0.143 PROBABILITY = 0.889

CLJA

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		14.656

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		26.531

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.065

APPROXIMATE F = 0.061 DF = 1, 588 PROBABILITY = 0.805

OVERALL MEAN =20.594 STANDARD DEVIATION =8.418POOLED WITHIN GROUPS STANDARD DEVIATION =5.970T STATISTIC =3.978 PROBABILITY =0.001

CLJA

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		14.813

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N OF	CASES	7
MEAN		18.893

SUMMARY STATISTICS FOR PERCOV BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.023 APPROXIMATE F =0.021 DF = 1,499 PROBABILITY = 0.885 16.717 STANDARD DEVIATION = OVERALL MEAN = 8.141 POOLED WITHIN GROUPS STANDARD DEVIATION = 8.160 0.352 T STATISTIC = 0.966 PROBABILITY = MISC

THE FOLLOWING RESULTS ARE FOR: 1.000 TRT **

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	CAN		1.750

THE FOLLOWING RESULTS ARE FOR: 2.000 TRT =

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8	
MI	CAN		0.538	

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 4.645 APPROXIMATE F =4.362 DF = 1, 588 PROBABILITY = 0.037 OVERALL MEAN = 1.144 STANDARD DEVIATION = 2.004 POOLED WITHIN GROUPS STANDARD DEVIATION = 1.971 T STATISTIC = -1.230 PROBABILITY = 0.239

MISC

THE FOLLOWING RESULTS ARE FOR: 1.000 TRT =

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	 8
MEAN		 0.563

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	. 8
ME	EAN		0.000

SUMMARY STATISTICS FOR PERCOV

ONE OR MORE OF YOUR GROUPS HAS NO VARIANCE.

MISC THE FOLLOWING RESULTS ARE FOR: TRT 1.000 = TOTAL OBSERVATIONS: 8 PERCOV N OF CASES 8 1.719 MEAN THE FOLLOWING RESULTS ARE FOR: TRT * 2.000 TOTAL OBSERVATIONS: 7 PERCOV

N OF CASES 7 MEAN 0.321

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 13.809

APPROXIMATE F = 13.131 DF = 1, 499 PROBABILITY =

OVERALL MEAN =1.067 STANDARD DEVIATION =2.494POOLED WITHIN GROUPS STANDARD DEVIATION =2.477T STATISTIC =-1.090 PROBABILITY =0.296

PAHE

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		0.594

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
MI	EAN		0.631

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.227APPROXIMATE F = 0.211 DF = 1, 588 PROBABILITY = 0.646OVERALL MEAN = 0.613 STANDARD DEVIATION = 1.233POOLED WITHIN GROUPS STANDARD DEVIATION = 1.276T STATISTIC = -0.059 PROBABILITY = 0.954

PAHE

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 0.063 0.000

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 0.000

SUMMARY STATISTICS FOR PERCOV

ONE OR MORE OF YOUR GROUPS HAS NO VARIANCE.

PAHE

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		0.313

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N	OF	CASES	7
ME	EAN		0.357

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.029APPROXIMATE F = 0.027 DF = 1, 499 PROBABILITY = 0.870OVERALL MEAN = 0.333 STANDARD DEVIATION = 0.880POOLED WITHIN GROUPS STANDARD DEVIATION = 0.913T STATISTIC = -0.095 PROBABILITY = 0.926 POCO

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	AN		0.281

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	AN		0.319

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.001APPROXIMATE F = 0.001 DF = 1, 588 PROBABILITY = 0.973OVERALL MEAN = 0.300 STANDARD DEVIATION = 0.764POOLED WITHIN GROUPS STANDARD DEVIATION = 0.790T STATISTIC = -0.095 PROBABILITY = 0.926

POCO

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 1.006

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8	
MEAN		0.513	

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 5.701APPROXIMATE F = 5.362 DF = 1, 588 PROBABILITY = 0.021OVERALL MEAN = 0.759 STANDARD DEVIATION = 1.939POOLED WITHIN GROUPS STANDARD DEVIATION = 1.990T STATISTIC = -0.496 PROBABILITY = 0.627

POCO

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	CAN		1.438

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N OF	CASES	7
MEAN	N	1.000

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.306APPROXIMATE F = 0.284 DF = 1, 499 PROBABILITY = 0.595OVERALL MEAN = 1.233 STANDARD DEVIATION = 1.528POOLED WITHIN GROUPS STANDARD DEVIATION = 1.568T STATISTIC = -0.539 PROBABILITY = 0.599

THE FOLLOWING RESULTS ARE FOR: 1.000 TRT = TOTAL OBSERVATIONS: 8 PERCOV N OF CASES 8 6.844 MEAN THE FOLLOWING RESULTS ARE FOR: 2.000 TRT = TOTAL OBSERVATIONS: 8 PERCOV N OF CASES 8

6.188

SUMMARY STATISTICS FOR PERCOV

MEAN

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.258APPROXIMATE F = 0.241 DF = 1, 588 PROBABILITY = 0.624OVERALL MEAN = 6.516 STANDARD DEVIATION = 7.674POOLED WITHIN GROUPS STANDARD DEVIATION = 7.936T STATISTIC = -0.165 PROBABILITY = 0.871

SALA

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 2.219

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

SALA

PERCOV

N OF CASES 8 MEAN 7.500

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 2.103APPROXIMATE F = 1.967 DF = 1, 588 PROBABILITY = 0.161OVERALL MEAN = 4.859 STANDARD DEVIATION = 5.812POOLED WITHIN GROUPS STANDARD DEVIATION = 5.313T STATISTIC = 1.988 PROBABILITY = 0.067

SALA

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		3.281

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N	OF	CASES	7
ME	EAN		10.464

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.369APPROXIMATE F = 0.342 DF = 1, 499 PROBABILITY = 0.559OVERALL MEAN = 6.633 STANDARD DEVIATION = 10.280POOLED WITHIN GROUPS STANDARD DEVIATION = 9.950T STATISTIC = -1.395 PROBABILITY = 0.186

SASP THE FOLLOWING RESULTS ARE FOR: 1.000 TRT = TOTAL OBSERVATIONS: 8 PERCOV N OF CASES 8 0.531 MEAN THE FOLLOWING RESULTS ARE FOR: 2.000 TRT = TOTAL OBSERVATIONS: 8 PERCOV N OF CASES 8 0.156 MEAN SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 7.804APPROXIMATE F = 7.364 DF = 1, 588 PROBABILITY = 0.007OVERALL MEAN = 0.344 STANDARD DEVIATION = 1.024POOLED WITHIN GROUPS STANDARD DEVIATION = 1.041T STATISTIC = -0.720 PROBABILITY = 0.483

SASP

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	AN		0.188

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000 TOTAL OBSERVATIONS: 8

PERCOV

N. OF	CASES	8
MEAN		0.313

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.089APPROXIMATE F = 0.083 DF = 1, 588 PROBABILITY = 0.773OVERALL MEAN = 0.250 STANDARD DEVIATION = 0.548POOLED WITHIN GROUPS STANDARD DEVIATION = 0.563T STATISTIC = -0.444 PROBABILITY = 0.664

SASP

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		0.625

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N	OF	CASES	7
ME	EAN		2.250

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 11.607

 APPROXIMATE F =
 10.990 DF = 1, 499 PROBABILITY = 0.001

OVERALL MEAN =1.383 STANDARD DEVIATION =4.097POOLED WITHIN GROUPS STANDARD DEVIATION =4.161

T STATISTIC =	-0.755 PROBA	ABILITY =	0.464	
		TYDO		
THE FOLLOWING RE TR TOTAL OBSERVATIO	SULTS ARE FOR: F = NS: 8	1.000		
	PERCOV			
N OF CASES MEAN	8 0.313			

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	AN		0.469

SUMMARY STATISTICS FOR PERCOV

BARTLETT	TEST	FOR	Homogeneity	OF	GRO	OUP	VARIANO	CES =	1.817	
APPROXI	MATE	F =	1.699	DF	=	1,	588	PROBABII	JITY =	0.193
OVERALL M POOLED WI T STATIST	MEAN = THIN TIC =	- GROU	0.391 SI PS STANDARI -0.287 PRC	AND DE BAB	ARD VIA ILI	DE\ FION FY =	/IATION N = =	= 1.090 0.779	1.057	

TYDO

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		0.250

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

A-56

TOTAL OBSERVATIONS: 8

PERCOV N OF CASES 8

MEAN 0.000

SUMMARY STATISTICS FOR PERCOV

ONE OR MORE OF YOUR GROUPS HAS NO VARIANCE.

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		0.156

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 7

PERCOV

N OF CASES 7 MEAN 0.000

SUMMARY STATISTICS FOR PERCOV

ONE OR MORE OF YOUR GROUPS HAS NO VARIANCE.

PANICUM COMMUNITY

TYDO

MISC

THE FOLLOWING RESULTS ARE FOR:

A-57

1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 2.594

TRT

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	AN		0.688

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 4.392

APPROXIMATE F =4.122 DF =1,588 PROBABILITY =0.043OVERALL MEAN =1.641 STANDARD DEVIATION =2.492POOLED WITHIN GROUPS STANDARD DEVIATION =2.369

T STATISTIC = -1.609 PROBABILITY = 0.130

MISC

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	CAN		4.156

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF CASES 8 MEAN 1.000

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 5.324 APPROXIMATE F = 5.004 DF = 1, 588 PROBABILITY = 0.026 OVERALL MEAN = 2.578 STANDARD DEVIATION = 4.186 POOLED WITHIN GROUPS STANDARD DEVIATION = 3.991

-1.582 PROBABILITY =

MISC

0.136

PAHE

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

T STATISTIC =

PERCOV

N OF	CASES	8
MEAN		33.094

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		43.281

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.158 APPROXIMATE F = 1.081 DF = 1, 588 PROBABILITY = 0.299 OVERALL MEAN = 38.188 STANDARD DEVIATION = 10.333 POOLED WITHIN GROUPS STANDARD DEVIATION = 9.206 T STATISTIC = 2.213 PROBABILITY = 0.044

PAHE

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		14.625

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
ME	EAN		19.219

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 0.075APPROXIMATE F = 0.070 DF = 1, 588 PROBABILITY = 0.792OVERALL MEAN = 16.922 STANDARD DEVIATION = 7.530 POOLED WITHIN GROUPS STANDARD DEVIATION = 7.398 T STATISTIC = 1.242 PROBABILITY = 0.235

PAHE

POCO

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

8

N OF CASES 8 MEAN 0.125

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS:

PERCOV

8

N OF CASES MEAN 0.069

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES = 1.764 APPROXIMATE F =1.648 DF = 1,588 PROBABILITY = 0.200 0.097 STANDARD DEVIATION = OVERALL MEAN = 0.153 POOLED WITHIN GROUPS STANDARD DEVIATION = 0.156 -0.722 PROBABILITY = 0.482 T STATISTIC =

POCO

THE FOLLOWING RESULTS ARE FOR: 1.000 TRT =

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		0.313

THE FOLLOWING RESULTS ARE FOR: 2.000 TRT Ξ

TOTAL OBSERVATIONS: 8

PERCOV

N OF	CASES	8
MEAN		1.563

SUMMARY STATISTICS FOR PERCOV

BARTLETT	TEST	FOR	HOMOGENEITY	of	GRO	UP	VARIANC	CES =	11.568	
APPROXI	IMATE	F =	10.982	DF	*	1,	588	PROBABII	LITY =	0.001
OVERALL N POOLED WI T STATISI	AEAN = ITHIN FIC =	- GROU	0.938 ST PS STANDARD -2.009 PRO	ANDI DEV BAB	ARD VIAT ILIT	DEV ION Y =	VIATION	= 1.245 0.064	1.365	

THE FOLLOWING RESULTS ARE FOR: TRT = 1.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
MI	EAN		4.281

THE FOLLOWING RESULTS ARE FOR: TRT = 2.000

TOTAL OBSERVATIONS: 8

PERCOV

N	OF	CASES	8
MI	EAN		0.313

SUMMARY STATISTICS FOR PERCOV

BARTLETT TEST	FOR HOMOGENEITY	OF GROUP VARIANO	CES = 15.720	
APPROXIMATE	F = 15.025	DF = 1, 588	PROBABILITY =	0.000
OVERALL MEAN = POOLED WITHIN T STATISTIC =	= 2.297 ST GROUPS STANDARD -2.095 PRO	ANDARD DEVIATION DEVIATION = BABILITY =	= 4.195 3.789 0.055	

APPENDIX A8. LILLIEFORS NORMALITY TESTS, BY COMMUNITY TYPE AND TIME SAMPLE. CONTROL SAMPLES. SAWGRASS COMMUNITY PRE-BURN.

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF	LILLIEFORS	PROBABILITY	(2-TAIL)
DEPTHCM	10.000	0.2	59 0	.056	
CJLCOV	10.000	0.1	73 0	.619	
CJDCOV	10.000	0.2	11 0	.251	
OTHERLCO	10.000	0.1	90 0	.431	
OTHERDCO	10.000	0.2	41 0	.103	
TOTCOV	10.000	0.2	11 0	.254	
CJLSTEMS	10.000	0.1	43 1	.000	
CJLWTG	10.000	0.1	61 0	.786	*
CJDWTG	10.000	0.1	98 0	.350	
OTHERLWT	10.000	0.3	75 0	.000	
OTHERDWT	10.000	0.3	35 0	.002	
TOTWTG	10.000	0.1	89 0	.435	
CJTOTCOV	10.000	0.2	25 0	.168	
CJTOTWT	10.000	0.1	78 0	.558	
OTHTOTWT	10.000	0.3	97 0	.000	
TOTLWT	10.000	0.1	62 0	.770	
TOTDWT	10.000	0.2	26 0	.163	

12 MOS POST-BURN

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF LILLIEFO	RS PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.250	0.160	
CJLCOV	8.000	0.238	0.221	
CJDCOV	8.000	0.140	1.000	
OTHERLCO	8.000	0.278	0.069	
OTHERDCO	8.000	0.383	0.001	
TOTCOV	8.000	0.253	0.145	
CJLSTEMS	8.000	0.262	0.113	
CJLWTG	8.000	0.134	1.000	
CJDWTG	8.000	0.114	1.000	
OTHERLWT	8.000	0.457	0.000	
OTHERDWT	8.000	0.399	0.000	
TOTWTG	8.000	0.236	0.235	
CJTOTCOV	8.000	0.331	0.010	
CJTOTWT	8.000	0.233	0.251	
OTHTOTWT	8.000	0.434	0.000	
TOTLWT	8.000	0.151	1.000	
TOTDWT	8.000	0.117	1.000	

20 MOS POST-BURN

VARIABLE	N-OF-CASES	MAXDIF L	LLIEFORS	PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.189	ə 0	. 662	
CJLCOV	8.000	0.24	1. O	.190	
CJDCOV	8.000	0.208	з о	456	
OTHERLCO	8.000	0.449	€ 0	.000	
OTHERDCO	8.000	0.500	0 0	. 000	
TOTCOV	8.000	0.204	1 0	. 496	
CJLSTEMS	8.000	0.27	5 0	.075	

1			
	8.000	0.242	0.198
	8.000	0.188	0.675
	8.000	0.443	0.000
	8.000	0.500	0.000
	8.000	0.214	0.392
	8.000	0.228	0.283
	8.000	0.213	0.407
	8.000	0.443	0.000
	8.000	0.240	0.208
	8.000	0.188	0.675
		8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MAIDENCANE COMMUNITY PRE-BURN

KOLMOGOROV-SMI	RNOV ONE SA	AMPLE TEST	USING	STANDARD	NORMAL	DISTRIBUTION
VARIABLE	N-OF-CASES	S MAXDIF	LILLI	IEFORS PRO	DBABILIT	Y (2-TAIL)
DEPTHCM	10.00	o o	.111	1.000)	
PHLCOV	10.00	0 OC	.178	0.556	5	
PHDCOV	10.00	0 00	.203	0.315	5	
PHTOTCOV	10.00	0 00	.236	0.120	5	
OTHERLCO	10.00	00 Ō	.333	0.002	2	
OTHERDCO	10.00	0 00	.366	0.000)	
TOTCOV	10.00	0 00	.241	0.102	2	
PHLSTEMS	10.00	0 0	.163	0.759	5	
PHLWTG	10.00	0 0	.190	0.43	3	
PHDWTG	10.00	0 00	.260	0.054	1	
OTHERLWT	10.00	o o	.420	0.000	5	
OTHERDWT	10.00	0 0	.403	0.000	5	
TOTWTG	10.00		.144	1.000	5	
PHTOTWT	10.00	0 0	.182	0.51	3	
OTHTOTWT	10.00	0 0	.440	0.000	5	
TOTLWT	10.00	0 OC	.207	0.28	5	
TOTDWT	10.00	o oc	.274	0.032	2	

12 MOS POST-BURN

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF LILLIEF	ORS PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.153	1.000	
PHLCOV	8.000	0.218	0.363	
PHDCOV	8.000	0.204	0.495	
PHTOTCOV	8.000	0.184	0.730	
OTHERLCO	8.000	0.288	0.049	
OTHERDCO	8.000	0.513	0.000	
TOTCOV	8.000	0.219	0.357	
PHLSTEMS	8.000	0.243	0.196	
PHLWTG	8.000	0.326	0.012	
PHDWTG	8.000	0.254	0.142	
OTHERLWT	8.000	0.325	0.013	
OTHERDWT	8.000	0.350	0.005	
TOTWTG	8.000	0.173	0.875	
PHTOTWT	8.000	0.200	0.537	
OTHTOTWT	8.000	0.350	0.005	
TOTLWT	8.000	0.326	0.012	
TOTDWT	8.000	0.274	0.078	

20 MOS POST-BURN

VARIABLE	N-OF-CASES	MAXDIF LILLIE	FORS PROBABILIT	TY (2-TAIL)
DEPTHCM		0.193	0.610	
PHLCOV	8.000	0.229	0.276	
PHDCOV	8.000	0.374	0.002	
PHTOTCOV	8.000	0.178	0.815	
OTHERLCO	8.000	0.463	0.000	
OTHERDCO	8.000	0.347	0.005	
TOTCOV	8.000	0.211	0.428	
PHLSTEMS	8.000	0.133	1.000	
PHLWTG	8.000	0.160	1.000	
PHDWTG	8.000	0.286	0.054	
OTHERLWT	8.000	0.486	0.000	
OTHERDWT	8.000	0.336	0.008	
TOTWTG	8.000	0.277	0.071	
PHTOTWT	8.000	0.289	0.049	
OTHTOTWT	8.000	0.286	0.054	
TOTLWT	8.000	0.182	0.758	
TOTINT	8 000	0 197	0 572	

FIRE TREATMENT SAMPLES. SAWGRASS COMMUNITY. PRE-BURN. .

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF LILLIEFC	RS PROBABILIT	Y (2-TAIL)
DEPTHCM	10.000	0.151	0.925	
CJLCOV	10.000	0.258	0.059	
CJDCOV	10.000	0.196	0.375	
OTHERLCO	10.000	0.322	0.004	
OTHERDCO	10.000	0.362	0.001	
TOTCOV	10.000	0.211	0.253	
CJLSTEMS	10.000	0.112	1.000	
CJLWTG	10.000	0.245	0.090	
CJDWTG	10.000	0.161	0.786	
OTHERLWT	10.000	0.258	0.057	
OTHERDWT	10.000	0.381	0.000	
TOTWTG	10.000	0.206	0.288	
CJTOTCOV	10.000	0.210	0.262	
CJTOTWT	10.000	0.163	0.760	
OTHTOTWT	10.000	0.283	0.023	
TOTLWT	10.000	0.232	0.135	
TOTDWT	10.000	0.194	0.390	

12 MOS POST-BURN

VARIABLE	N-OF-CASES	MAXDIF	LILLI	EFORS	PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.	285	0	.055	
CJLCOV	8.000	0.	262	0	.112	
CJDCOV	8.000	Ò.	262	0	.114	
OTHERLCO	8.000	0.	269	Ō	.093	
OTHERDCO	8.000	0.	291	Ō	.045	
TOTCOV	8.000	0.	200	Ő	.541	
CJLSTEMS	8.000	0.	234	0	.248	
CJLWTG	8.000	0.	197	· 0	.564	
CJDWTG	8.000	0.	222	Ō	.332	

OTHERLWT	8.000	0.185	0 712
OTHERDWT	8.000	0.374	0.002
TOTWTG	8.000	0.253	0.002
CJTOTCOV	8.000	0.264	0 106
CJTOTWT	8.000	0.150	1 000
OTHTOTWT	8.000	0.306	0.026
TOTLWT	8.000	0.190	0.657
TOTDWT	8.000	0.247	0.173

20 MOS POST-BURN

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF	LILLIEFORS	PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.	163 1	000	
CJLCOV	8.000	0.1	214	307	
CJDCOV	8.000	0.1	219 0	353	
OTHERLCO	8.000	0.	391 0	001	
OTHERDCO	8.000	0.	303 0	030	
TOTCOV	8.000	0.2	227 0.	293	
CJLSTEMS	8.000	0.2	252 0	149	
CJLWTG	8.000	0.	323 O.	014	
CJDWTG	8.000	0.2	228 0.	288	
OTHERLWT	8.000	0.3	391 O.	001	
OTHERDWT	8.000	0.2	288 0.	050	
TOTWTG	8.000	0.1	188 0.	672	
CJTOTCOV	8.000	0.2	261 0.	116	
CJTOTWT	8.000	0.2	200 0.	538	
OTHTOTWT	8.000	0.2	286 0.	052	
TOTLWT	8.000	0.3	324 0.	013	
TOTDWT	8.000	0.2	257 0.	131	

MAIDENCANE COMMUNITY. PRE-BURN

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF LILLI	EFORS PROBABILITY	(2-TAIL)
DEPTHCM	10.000	0.177	0 576	
PHLCOV	10.000	0,166	0.376	
PHDCOV	10.000	0.193	0.404	
PHTOTCOV	10.000	0.159	0.808	
OTHERLCO	10.000	0.459	0.000	
OTHERDCO	10.000	0.524	0.000	
TOTCOV	10.000	0.195	0.379	
PHLSTEMS	10.000	0.186	0.474	
PHLWTG	10.000	0.150	0.953	
PHDWTG	10.000	0.178	0.557	
OTHERLWT	10.000	0.489	0.000	
OTHERDWT	10.000	0.524	0.000	
TOTWTG	10.000	0.145	1.000	
PHTOTWT	10.000	0.121	1.000	
OTHTOTWT	10.000	0.501	0.000	
TOTLWT	10.000	0.136	1.000	
TOTDWT	10.000	0.206	0.292	

12 MOS POST-BURN

VARIABLE	N-OF-CASES	MAXDIF LILLI	EFORS PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.188	0.675	
PHLCOV	8.000	0.318	0.017	÷
PHDCOV	8.000	0.311	0.022	
PHTOTCOV	8.000	0.213	0.402	
OTHERLCO	8.000	0.371	0.002	
OTHERDCO	8.000	0.384	0.001	
TOTCOV	8.000	0.192	0.626	
PHLSTEMS	8.000	0.261	0.118	
PHLWTG	8.000	0.176	0.831	
PHDWTG	8.000	0.302	0.031	
OTHERLWT	8.000	0.391	0.001	
OTHERDWT	8.000	0.345	0.006	
TOTWTG	8.000	0.182	0.752	
PHTOTWT	8.000	0.184	0.734	
OTHTOTWT	8,000	0.345	0.006	
TOTLWT	8.000	0.176	0.833	
TOTDWT	8.000	0.250	0.161	

20 MOS POST-BURN

VARIABLE	N-OF-CASES	MAXDIF LILL	IEFORS PROBABILITY	(2-TAIL)
DEPTHCM	8.000	0.195	0.590	
PHLCOV	8.000	0.276	0.074	
PHDCOV	8.000	0.212	0.415	
PHTOTCOV	8.000	0.215	0.386	
OTHERLCO	8.000	0.513	0.000	
OTHERDCO	8.000	0.312	0.021	
TOTCOV	8.000	0.195	0.588	
PHLSTEMS	8.000	0.158	1.000	
PHLWTG	8.000	0.202	0.517	
PHDWTG	8.000	0.155	1.000	
OTHERLWT	8.000	0.513	0.000	
OTHERDWT	8.000	0.217	0.371	
TOTWTG	8.000	0.207	0.462	
PHTOTWT	8.000	0.202	0.512	
OTHTOTWT	8.000	0.217	0.367	
TOTLWT	8.000	0.201	0.524	
TOTDWT	8.000	0.212	0.418	