Special Publication SJ98-SP13

Sediment and Nutrient Deposition in Lake Griffin

Final Report

St. Johns River Water Management District Contract #93-G269

Department of Fisheries and Aquatic Sciences University of Florida

Claire L. Schelske, Project Director

March 3, 1998

.

- ii -

EXECUTIVE SUMMARY

A study of historic, whole-basin sediment and nutrient deposition was conducted in Lake Griffin in two phases. Phase I, a feasibility study, demonstrated that historic sediment and nutrient deposition could be estimated using historic (²¹⁰Pb dated cores) and survey (undated) sediment cores. Results of Phase I, the first study in our laboratory that was designed to estimate whole basin sedimentation, showed that sedimentation rates were greater in some areas of the lake than anticipated. Consequently, Phase II was undertaken to refine estimates by collecting additional historic cores and by collecting and sectioning longer survey cores at finer intervals. In this design, data from historic cores were used to establish a chronology of sedimentation extending from the present to approximately 100-150 years and data from survey cores were used to increase the number of sampling sites and to investigate patterns of sediment and nutrient deposition over the lake basin. Five historic cores were collected in each phase, 40 survey cores were collected in Phase I, and 20 survey cores were collected in Phase II.

Results of Phase I showed that Lake Griffin could be divided into three zones based on patterns of sedimentation: embayment (southwest part of the lake), south basin, and north basin. In general, Phase I cores in the south basin were long enough to sample the anthropogenic horizon defined as the depth at which total phosphorus (TP) concentration increased above a baseline level. Sedimentation rates in the embayment and north basin were so high that the anthropogenic horizon was not sampled in many of the Phase I cores; consequently all Phase II survey cores were collected in these zones.

Sedimentation rates obtained from the constant rate of supply (CRS) model (²¹⁰Pb ages) were weighted by age so decadal dry mass, TP, and non-apatite inorganic phosphorus (NAIP) sedimentation rates could be calculated. Decadal dry mass, TP, and NAIP sedimentation rates generally increased with time. Dry mass sedimentation rates differed from TP or NAIP sedimentation rates in that relative changes in dry mass rates were smaller. The relative increase in decadal dry mass sedimentation rate for the 1985-1994 decade was only 6 fold greater than the rate for the base decade (1895-1904) whereas the relative increases in TP and NAIP sedimentation rate were 23 and 17, respectively, for the same time periods. This difference can be explained by noting that TP and NAIP concentrations increase upcore. The large relative increase in TP sedimentation over time can be illustrated by noting that approximately 70% of TP sedimentation in the past 100 years occurred in the most recent 30 years (from 1965-1994). By contrast only 53% of dry mass sedimentation in the past 100 years occurred in the most recent 30 years (from 1965-1994).

Dry mass, TP, and NAIP sedimentation rates were estimated by decades for the most recent 100 years of the historical record using three different methods of calculation. The first estimate by zones was based on cumulative storage (quantity per unit surface area) of dry mass, TP, and NAIP above the anthropogenic horizon in survey cores from Phase I and Phase II. The second estimate by zones was based on the mean decadal dry mass, TP, and NAIP sedimentation rates calculated from ²¹⁰Pb dated cores and the surface area in each zone. The third estimate was based on the mean decadal dry mass, TP, and NAIP sedimentation rates calculated from all ²¹⁰Pb dated cores extrapolated to the surface area of the lake basin. Ranges in estimated values for whole-basin sedimentation over the entire 100 years were relatively small. The largest relative range was obtained for dry mass sedimentation was 554 to 568 metric tons and for NAIP sedimentation was 218 to 241 metric tons.

Historic cores were dated using a CRS model because plots of excess ²¹⁰Pb activity did not decrease exponentially with either cumulative mass or depth. The CRS model is based on the assumptions that inputs of ²¹⁰Pb to the lake basin are constant and that sedimentation rates can be variable. An exponential decrease in excess ²¹⁰Pb activity with depth would be expected only if the sedimentation rate were relatively constant. Instead, many profiles were relatively flat, showing little change in excess ²¹⁰Pb activity with depth. Relatively flat profiles might be interpreted as an artifact of sediment mixing, but different stratigraphic patterns in ¹³⁷Cs activity among cores is not consistent with this interpretation. The large depth range of excess ²¹⁰Pb activity in cores and chemical, physical, and diatom microfossil data are also at variance with attributing the shape of excess ²¹⁰Pb profiles simply to sediment mixing. An increase in primary production of organic matter, however, could account for the deviation from an exponential profile that would be expected if sedimentation rate were constant. In fact, if organic matter sedimentation increased at approximately 3% annually and if primary production accounted for a constant proportion of sediment mass, the resulting increase in sedimentation would compensate for the radioactive decay of ²¹⁰Pb with a decay constant of 0.03114 (half-life of 22.2 yr). Given the highly organic sediments in Lake Griffin (>60% LOI), increased primary production of organic matter must be considered in interpreting and validating results obtained from the CRS model.

Net TP sedimentation rates in Lake Griffin were evaluated to determine if sediments were a significant sink for phosphorus. Whole-lake TP sedimentation averaged 15.6 metric tons yr^{-1} which was calculated from the three estimates of TP sedimentation in the two most recent decades (1975-1994) or 19.1 metric tons yr^{-1} if estimates for the most recent decade (1985-1994) are averaged. Averaged over the lake basin, the net TP sedimentation rate in Lake Griffin is 410 mg m⁻² yr⁻¹ (average of 1975-1994 decades) or

- iv -

501 mg m⁻² yr⁻¹ (average of 1985-1994 decade). This net TP sedimentation rate was converted to a water mass equivalent of TP in overlying waters by dividing by mean water depth (2.36 m). The resulting concentration equivalents in overlying waters were 174 and 212 μ g L⁻¹, greater than measured mean TP concentrations in lake water that ranged from 78 μ g L⁻¹ to 119 μ g L⁻¹ in several different investigations. TP residence times in the water column based on TP sedimentation of 410 mg m⁻² yr⁻¹ are 0.448 yr if the water column TP concentration is 78 μ g L⁻¹ and 0.684 yr if the water column TP concentration is 119 μ g L⁻¹. If TP sedimentation is 501 mg m⁻² yr⁻¹, TP residence times are 0.368 yr if the water column TP concentration is 78 μ g L⁻¹ and 0.561 yr if the water column TP concentration is 119 μ g L⁻¹. Data on net TP sedimentation rates and TP residence times, therefore, indicate that the sediments are a significant sink for TP over periods of decades in Lake Griffin even though, as discussed below, sediment resuspension plays an important role in nutrient and phytoplankton dynamics on shorter time scales. Recent studies of Lake Apopka and Lake Okeechobee also show that large quantities of phosphorus are sedimented on annual or decadal time scales.

Wind-driven resuspension of bottom sediments can provide an important source of internal phosphorus loading. In Lake Griffin, concentrations of phosphorus are high in sediments at the mud-water interface. In addition, the meroplanktonic diatom, Aulacoseira ambigua, comprises a large fraction of the diatom assemblage in these sediments. Based on recent research in Lake Apopka and other shallow Florida lakes, it seems likely that a significant fraction of the phosphorus in near-surface sediments is sequestered in meroplankton. Meroplanktonic algae are adapted to survive for long periods in the aphotic environment on the lake bottom and then to become metabolically active when resuspended in the water column. Meroplanktonic algae in near-surface sediments assimilate and store nutrients that can be used for growth during periods of resuspension. The frequency of meteorological events in Lake Griffin that resuspend meroplankton is not known, but in Lake Apopka (a larger lake) and other shallow lakes such events are so common that they play an important role in phytoplankton dynamics and produce significant short-term changes in phytoplankton standing crop. Given the high abundance of Aulacoseira in Lake Griffin sediments, both chemical and biogeochemical processes must be considered in interpreting the short-term dynamics of nutrient sequestering and nutrient release from near-surface sediments.

Several lines of paleolimnological evidence point to nutrient enrichment and its consequences on ecosystem processes in Lake Griffin in the 20th century. Sediment TP concentration increased five- to six-fold above the anthropogenic baseline concentration. Dry mass sedimentation rate, which is controlled by organic matter sedimented as a by-product of primary production, increased upcore; TP sedimentation rates determined from ²¹⁰Pb dated cores increased upcore with a sharp increase beginning about 1950; diatom-

- v -

inferred water column TP concentrations generally increased with a sharp break early in the century; the planktonic/benthic (P/B) ratio of diatom microfossils, an index of nutrient enrichment, increased in recent sediments; and the TC/TN ratio of organic matter decreased in recent sediments. High P/B ratios of diatom microfossils and low TC/TN ratios in the 1980s and early 1990s are inferred as evidence of the period of highest nutrient enrichment. These signals of nutrient enrichment occur after the development of the Emeralda muck farms at a time when nutrient inputs from these sources probably peaked. In Lake Apopka, increases in P/B ratios of diatom microfossils and decreases in TC/TN ratios were attributed to replacement of macrophytes by phytoplankton as a result of nutrient enrichment. Similar changes in P/B and TC/TN ratios in Lake Griffin may also reflect loss of macrophytes due to nutrient enrichment.

Two possible signs of recent, decreased nutrient loading were found in Lake Griffin sediments: a decrease in sediment TP concentration in the near-surface sediments of most cores and a decrease in diatom-inferred water column concentrations in nearsurface sediments in two of the three cores studied. The decrease in sediment TP concentration was either too small or in such a small portion of the sediment record that it did not produce a corresponding decrease in TP sedimentation rate in the most recent decade of the sediment record. A decrease in phosphorus sedimentation would be expected if phosphorus loading to the lake basin and phosphorus concentrations in the water column decreased.

In conclusion, results presented in this report show that phosphorus loading has affected the trophic state of Lake Griffin in the 20th century, but most severely in the second half of this century; that sediments are a significant sink for phosphorus and therefore that reductions in phosphorus loading can be expected to improve water quality on time scales of years or one or two decades; that improvements in water quality can be predicted from data on historic phosphorus loading (not a part of this study); and that permanent sedimentation of stored phosphate in meroplanktonic algae may be an important phosphorus sink and thus an unrecognized factor in accelerating improvements in water quality. Burial and sedimentation of stored phosphorus in meroplanktonic algae, a potentially important phosphorus sink, should be investigated in greater detail to evaluate the environmental implications related to long-term phosphorus dynamics.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	iii
LIST OF FIGURES	viii
LIST OF TABLES	xi
ACKNOWLEDGMENTS	xiii
INTRODUCTION	1
METHODS	2
Station Selection	
Core Collection and Sectioning	
Laboratory Analyses	
Radiometric Analysis	
RESULTS	9
Gravimetric Analysis	
Total Carbon and Total Nitrogen	9
Non-Apatite Inorganic and Total Phosphorus	
Sediment Dating	
STRATIGRAPHY OF NUTRIENTS	
NAIP and TP	
TC/TN Ratio	
SEDIMENT AND PHOSPHORUS ACCUMULATION RATE.	
DIATOM MICROFOSSILS	61
ESTIMATES OF SEDIMENT AND PHOSPHORUS STOR	AGE76
DISCUSSION AND CONCLUSIONS	
LITERATURE CITED	
APPENDICES	

1

LIST OF FIGURES

Figure	Page
1.	Map of Lake Griffin with location of survey stations for Phase I and Phase II. Forty Phase I stations are shown by numbers 1 through 40. Twenty Phase II stations are shown by designations PII-1 through PII-20. Coordinates for the stations are given in Appendix A
2.	Map of Lake Griffin with location of historic stations for Phase I and Phase II. The five historic stations collected during Phase I are designated with the prefix I and the five historic stations collected during Phase II are designated with the prefix II. In the report, historic stations are identified by the prefix LG and the suffix H combined with the unique numerical identification for each station. Coordinates for the stations are given in Appendix A
3.	Scatter plots of loss on ignition (LOI) and % dry weight for Phase I survey and historic cores
4.	Scatter plots of loss on ignition (LOI) and % dry weight for Phase II survey and historic cores
5A.	Plots of TC/TN vs. depth for historic cores, Lake Griffin. Data are weight ratios. Phase I cores: A. LG-2H, LG-11H, LG-26H and LG-42H
5B.	Phase II cores: LG-3H, LG-7H, LG-16H and LG-43H
5C.	Phase II core: LG-44H and Phase I core: LG-41H14
6A.	Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth in Phase II survey cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. Cores 1-4
6B.	Cores 5-816
6C.	Cores 9-12
6D.	Cores 13-16
6E.	Cores 17-20
7.	Scatter plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) in Phase I historic and survey cores. Data are in mg P/g dry sediment.
8.	Scatter plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) in Phase II historic and survey cores. Data are in mg P/g dry sediment.
9.	Plots of excess ²¹⁰ Pb activity (dpm g ⁻¹) and ¹³⁷ Cs activity (dpm g ⁻¹) vs. cumulative weight (g dry mass cm ⁻²) in five historic cores, Phase I Lake Griffin. ²¹⁰ Pb activity for LG-2H and LG-11H was measured with alpha counting so ¹³⁷ Cs data were not obtained

10.	Plots of excess ²¹⁰ Pb activity (dpm g ⁻¹) and ¹³⁷ Cs activity (dpm g ⁻¹) vs. cumulative weight (g dry mass cm ⁻²) in five historic cores, Phase II Lake Griffin
11.	Age/depth plots for Phase I (upper panel) and Phase II (lower panel) historic cores, Lake Griffin
12.	Excess ²¹⁰ Pb inventory (dpm cm ⁻²⁾ plotted vs. depth (cm) and cumulative weight (g cm ⁻²) for Phase I and Phase II historic cores, Lake Griffin29
13A.	Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth and date in Phase I historic cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. LG-2H and LG-11H
13B.	LG-26H and LG-42H
14A.	Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth and date in Phase II historic cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. LG-3H and LG-7H
14B.	LG-16H and LG-43H
14C.	LG-44H
15.	Plots of total phosphorus (TP) and total carbon/total nitrogen ratio (TC/TN) vs. date in Phase I historic cores. Data are in mg P/g dry sediment and mass ratio of TC/TN
16A.	Plots of total phosphorus (TP) and total carbon/total nitrogen ratio (TC/TN) vs. date in Phase II historic cores. Data are in mg P/g dry sediment and mass ratio of TC/TN. Plots are presented consecutively by station. A. LG-3H, LG-7H, LG-16H and LG-43H
16B.	LG-44H
17A.	Plots of total phosphorus (TP) and % dry weight and TP and ash dry ratio vs. depth in Phase II historic cores. Data are in mg P/g dry sediment and % and fraction of dry sediment. Plots are presented consecutively by station. A. LG-3H and LG-7H40
1 7 B.	LG-16H and LG-43H41
17C.	LG-44H42
18A.	Scatter plots of TP (mg/g) and TC/TN ratio for Phase I and Phase II cores. A. Phase I historic and survey cores
18 B .	Phase II historic cores45

•

19.	Plots of mass sedimentation rate (MSR in mg cm ⁻² yr ⁻¹) and TP accumulation rate (TPAR in μ g cm ⁻² yr ⁻¹) vs. date for Phase I historic cores
20.	Plots of mass sedimentation rate (MSR in mg cm ⁻² yr ⁻¹) and TP accumulation rate (TPAR in μ g cm ⁻² yr ⁻¹) vs. date for Phase II historic cores
21.	Plots of relative increase in TP accumulation rate (TPAR in μ g cm ⁻² yr ⁻¹) vs. date for Phase I and Phase II historic cores. The relative increase for each core was based on an estimated 1900 rate for each core. Phase I cores are plotted in the upper panel and Phase II cores in the lower panel
22.	Plots of total phosphorus density (mg TP cm ⁻³ wet sediment) vs. date for Phase I and Phase II historic cores. Phase I cores are plotted in the upper panel and Phase II cores in the lower panel
23.	Diatom assemblages (relative abundance) in sediment core, LG-11H62
24.	Diatom assemblages (relative abundance) in sediment core, LG-26H63
25.	Diatom assemblages (relative abundance) in sediment core, LG-44H64
26.	Inferred limnetic TP based on diatom assemblages in sediment core, LG-11H.
27.	Inferred limnetic TP based on diatom assemblages in sediment core, LG-26H.
28.	Inferred limnetic TP based on diatom assemblages in sediment core, LG-44H.
29.	P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-11H. Upper panel presents data by depth and lower panel by date. In lower panel dates older than ²¹⁰ Pb have been interpolated so all data are presented.
30.	P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-26H. Upper panel presents data by depth and lower panel by date. In lower panel dates older than ²¹⁰ Pb have been interpolated so all data are presented.
31.	P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-44H. Upper panel presents data by depth and lower panel by date. All data for this core are plotted in both panels

,

LIST OF TABLES

Table

Page

1.	Data for ²¹⁰ Pb dated historic cores for 9 stations in Lake Griffin (see Fig. 2) for station location. Data are inventory of excess ²¹⁰ Pb (dpm cm ⁻²), cumulative weight (g cm ⁻²), depth (cm), age (yr) and average MSR (mg cm ⁻² yr ⁻¹) for sediments with the specified age
2.	Physical and chemical characteristics of sediments at the depth of anthropogenic disturbance for Phase I survey stations, Lake Griffin. Core 15 was on the border between the north and south basin and was divided equally between the south and north basin for the averages
3.	Physical and chemical characteristics of sediments at the depth of anthropogenic disturbance for Phase II survey stations, Lake Griffin
4.	Physical and chemical characteristics of sediments at the depth of anthropogenic disturbance for Phase I and Phase II historic stations, Lake Griffin. Data for LG-41H are included even though this truncated core was not dated
5.	Decadal mass sedimentation rates (MSR, mg cm ⁻² yr ⁻¹) by years since core collection. MSR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and change in MSR (bottom half) relative to the base decade (91-100 yr) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores.
6.	Decadal total phosphorus accumulation rates (TPAR, $\mu g \text{ cm}^{-2} \text{ yr}^{-1}$) by years since core collection. TPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and change in TPAR relative to the base decade (91-100 yr) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores
7.	Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR, μ g cm ⁻² yr ⁻¹) by years since core collection. NAIPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and change in NAIPAR (bottom half) relative to the base decade (91-100 yr) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores. 57
8.	Decadal organic matter sedimentation rates (OMSR) and non-volatile solids sedimentation rates (NVSAR) in mg cm ⁻² yr ⁻¹ by years since core collection. OMSR and NVSAR calculated from ²¹⁰ Pb geochronology using a CRS model and change in OMSR and NVSAR relative to the base decade (91-100 yr) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores. The upper sets of data are for OMSR and the lower sets are for NVSAR
9.	Limnetic total P values inferred from sedimentary diatoms in Core LG-11H with upper and lower bounds for 95% confidence intervals (c.i.)
10.	Limnetic total P values inferred from sedimentary diatoms in Core LG-26H with upper and lower bounds for 95% confidence intervals (c.i.)
11.	Limnetic total P values inferred from sedimentary diatoms in Core LG-44H with upper and lower bounds for 95% confidence intervals (c.i.)

the state of the second st

- 14. Three whole-basin estimates of dry sediment (10³ metric tons), total phosphorus (metric tons) and non-apatite-inorganic phosphorus (metric tons) storage by decade for Lake Griffin during the last 100 yr. The relative by zone estimate represents adjusted cumulative storage to the depth of anthropogenic disturbance in survey cores. Decadal storage in the two estimates based on rates was determined from rates and dates established from ²¹⁰Pb dating. See text for explanation of methods.

- xii -

ACKNOWLEDGMENTS

A number of people are acknowledged for their role in successfully completing this project. Dr. Mark Brenner and Dr. Thomas Whitmore collected cores and conducted gravimetric analyses for Phase I. Dr. Brenner also provided valuable guidance in sampling and other matters throughout the study. The assistance of Jason Kahne in collection of cores, radiometric dating of historic cores, and data analysis is acknowledged. William Kenney analyzed samples for total phosphorus and non-apatite inorganic phosphorus and assisted with field collections. William Pothier and Dr. Jason Curtis analyzed samples for total carbon and total nitrogen. Dr. Thomas Whitmore conducted the analyses of diatom microfossils and calculated water quality inferences. Dr. Jaye E. Cable provided assistance with radiometric analyses and calculations ²¹⁰Pb ages and mass sedimentation and phosphorus sedimentation rates. Phyllis Hansen compiled the data files from the two phases of the investigation for the final report. Several students including Peter Myers and Raymond Roach assisted with the project over the years. Martha Love ably and cheerfully assisted with administrative matters and preparation of reports. The assistance of these people and others is gratefully acknowledged.

Finally, Dr. Rolland Fulton, St. Johns River Management District, is acknowledged for providing pertinent information and for his careful reading of the report for matters of style and continuity.

INTRODUCTION

Historic phosphorus loading to lakes can be estimated from loading models or from water column data when data are available. However, in the absence of such data, measuring sediment and nutrient deposition is the only means to infer historical conditions and to obtain data to back calculate phosphorus loading (Rippey and Anderson 1996). Estimating phosphorus sedimentation using paleolimnological methods is important because most phosphorus loading models assume that net phosphorus sedimentation and water column concentration are proportional, but that specific coefficients must be developed for each system. Knowledge of historical conditions is a prerequisite for lake management and restoration (Brenner et al. 1993).

The project on sediment and nutrient deposition in Lake Griffin was undertaken initially during Phase I as a feasibility study with the following four major objectives:

- assessment of the feasibility and methodology to quantitatively estimate basin-wide net sedimentation rates of nutrients,
- estimation of modern basin-wide storage of sedimentary nutrients from 40 survey cores,
- measurement of temporal changes in rates of sediment accumulation and nutrient accumulation using radiometric dating of five historic cores; and,
- inference of historic lake total phosphorus concentrations from paleolimnological analyses of sedimentary diatoms in two historic cores.

Therefore, studies were undertaken to directly measure phosphorus sedimentation as the basis for estimating lake-basin changes in sediment and nutrient deposition. In addition, historic concentrations of total phosphorus in the water column were inferred from transfer functions based on relative abundance of diatom microfossils (Whitmore 1989).

Results of the Phase I investigation demonstrated that basin-wide estimates of sediment and nutrient deposition were feasible provided the sampling strategy was modified. The extensive deposits of soft sediments in high deposition areas were not anticipated in the Phase I design. As a result some of the collected cores were too short to sample the entire record of interest. It was also apparent that finer sectioning of survey cores would be advantageous during Phase II because data from Phase I stratigraphy using 10-cm intervals were difficult to interpret.

Phase II was focused on quantitative estimation of basin-wide net sedimentation rates and designed to obtain data that would refine rates obtained during Phase I. Specifically, nutrient analyses of additional longer survey cores and radiometric dating of five additional historic cores were utilized to obtain more reliable estimates of sediment and nutrient deposition than would have been possible if only Phase I data had been collected.

Determining sedimentation rates in shoreline areas was also attempted during Phase II as a means to refine basin-wide net sedimentation rates. Many stations are necessarily located adjacent to the shoreline due to the elongate nature of Lake Griffin. Obtaining data to measure sedimentation rates in shoreline areas was more difficult than anticipated because relevant data could not be obtained from grab samples. Soft muck sediments which are found over most of the lake basin (Danek et al. 1991) could not be sampled reliably with a grab sampler. In addition, such samples provided no stratigraphic information. As a consequence in attempting to implement this sampling, it was soon discovered that collecting and sectioning sediment cores is the only reliable method to obtain data for the specified purposes and that obtaining data on sedimentation in shoreline areas would be beyond the scope of this project.

Survey and historic stations were utilized in Phase I and Phase II investigations of sediment and nutrient deposition in Lake Griffin. Ten historic cores were collected so they could be aged using ²¹⁰Pb (Appleby and Oldfield 1983), a naturally occurring radioisotope, to establish a chronology of sediment and nutrient deposition. The purpose of survey stations was to provide nutrient profiles at a greater number of stations than those that could be aged with 210 Pb. Profiles at survey stations were measured so they could be stratigraphically correlated with the historic stations. Much more information was obtained using this strategy because 60 survey cores were collected during Phase I and II. Data from historic and survey cores were used to estimate basin-wide sediment and nutrient deposition and to determine changes in historic rates over the previous 100 yr. Results show that total phosphorus sedimentation increased with time such that the decadal rate increased at least 10 fold since 1925 and that approximately 70% of the phosphorus sedimentation in the past 100 yr occurred in the most recent 30 yr (after 1964). Such large increases in total phosphorus sedimentation indicate that phosphorus concentrations in the water column increased historically. This conclusion is supported by other paleolimnological data collected during the investigation including inferences about increased phosphorus concentrations obtained from diatom microfossils.

The report is organized into sections including an Executive Summary, Introduction, Methods, and Results. These sections are followed by sections titled Stratigraphy of Nutrients, Sediment and Phosphorus Accumulation Rate, Diatom Microfossils, Estimates of Sediment and Phosphorus Storage, and Discussion and Conclusions. Data collected during the investigation are presented in seven Appendices.

METHODS

Lake Griffin is a shallow lake with a surface area of 38.06 km² and a mean depth of 2.3 m (Danek et al. 1991). Results obtained during Phase I provided evidence for three distinct depositional areas in the lake. These areas were the embayment (southwest portion of the lake) and a south basin and north basin. The three areas are shown in Figs. 1 and 2. The north basin represents nearly half (48.9%) of the total surface area. The remainder of the surface area is apportioned between the south basin (35.7%) and the embayment (15.4%).

Station Selection

Survey and historic stations were utilized in the investigation of sediment deposition in Lake Griffin (Figs. 1 and 2). Historic cores were collected at sites shown so they could be aged

Fig. 1. Map of Lake Griffin with location of survey stations for Phase I and Phase II. Forty Phase I stations are shown by numbers 1 through 40. Twenty Phase II stations are shown by designations PII-1 through P1I-20. Coordinates for the stations are given in Appendix A.

Fig. 2. Map of Lake Griffin with location of historic stations for Phase I and Phase II. The five historic stations collected during Phase I are designated with the prefix I and the five historic stations collected during Phase II are designated with the prefix II. In the report, historic stations are identified by the prefix LG and the suffix H combined with the unique numerical identification for each station. Coordinates for the stations are given in Appendix A. using ²¹⁰Pb, a naturally occurring radioisotope. The purpose of survey stations was to provide nutrient profiles at a greater number of stations than those that could be aged with ²¹⁰Pb. Profiles at survey stations were measured so they could be stratigraphically correlated with the historic stations. Survey and historic stations were located with a Global Positioning System and latitude and longitude were recorded (Appendix A).

Sixty survey stations were sampled during the investigation (Fig. 1). Forty survey stations were selected for Phase I. These stations were located primarily on two north-south transects. Additional stations not located on the two transects were positioned on transects in areas not represented spatially by the two north-south transects. Stations were positioned so cores collected represented all areas in the lake basin. Because sedimentation rates were higher than anticipated, 50-cm cores collected at survey stations located in the north basin and in the southwest embayment were too short to sample the entire sediment column deposited during the period of interest (approximately 100 yr). As a consequence, the 20 survey cores collected during Phase II were located in these two parts of the lake. These cores were positioned in areas in which sedimentation rates were high as determined during Phase I.

Ten historic cores were collected during the investigation (Fig. 2). Five historic cores (LG-2H, LG-11H, LG-26H, LG-41H, and LG-42H) were collected during Phase I. LG-2H, LG-11H, and LG-26H in the embayment and south basin were positioned at approximately the same sites as the Phase I survey cores with these numbers. LG-41H and LG-42H were each positioned in the center of a quadrangle bounded by four Phase I survey stations. LG-41H was too short to sample the entire sediment column with measurable excess ²¹⁰Pb activity. LG-10, a survey core collected during Phase II at the site for LG-41H, was used to assess the degree of truncation in LG-41H. Five historic cores (LG-3H, LG-7H, LG-16H, LG-43H, and LG-44H) were also collected during Phase II. LG-3H and LG-16H were positioned at approximately the same sites as the Phase I survey cores with these numbers. Sites for LG-7H, LG-43H, and LG-44H were positioned to represent high sedimentation areas that had not been sampled previously.

Core Collection and Sectioning

At each station, thickness of soft sediment was determined using a steel spudding rod and a Secchi disc. The steel spudding rod calibrated in 5-cm intervals was driven vertically to hard bottom and depth relative to the water surface was recorded. Depth of the water column was determined by lowering a 20-cm Secchi disk to the sediment surface and this depth was subtracted from the spudding value to yield soft-sediment depth. A sediment core of approximately 1.5 m in length was collected with a piston corer (Fisher et al. 1992) when sufficient soft thickness of sediment was present. Survey cores with a few exceptions were collected using a 1.8-m clear plastic core barrel (4.2-cm inside diameter). A few survey cores and all historic cores were collected using a 1.8-m clear plastic core barrel (6.99-cm inside diameter). Depths of stratigraphic features in sediment cores were determined visually on deck after retrieval and measured directly in the core tube when such features were distinguishable (see Appendix A). Cores were generally sectioned at the station immediately after collection or soon after collection onboard the boat. Samples from each section were placed in Whirl-Pak bags which were stored in insulated freezer chests during transit to the laboratory in Gainesville.

Different strategies were employed in core sectioning for the two phases of this investigation. Survey cores (40 cores) were sectioned at 10-cm intervals to a maximum depth of 50 cm during Phase I. Samples from survey cores collected in the north basin and southwest embayment were too short to sample the complete sediment record deposited in the past 100-150 yr. Therefore, an additional 20 survey cores were collected during Phase II in these two parts of the lake. These cores were sectioned at either 4.0- or 5.0-cm intervals. Phase I and Phase II historic cores were sampled at 2.0-cm intervals, with the exception of LG-16H which was sampled at 4.0-cm intervals. In addition, sections for LG-42H below 52 cm and all sections for LG-41H were combined so that ²¹⁰Pb dating was conducted at 4.0-cm intervals, but other analyses were run on the 2.0-cm sections. Sampling, as shown by dating and chemical results, appeared to be much finer than necessary, particularly at the high sedimentation sites.

Laboratory Analyses

In the laboratory, all samples were stored frozen, generally for no more than 6 weeks, before processing. For Phase I samples, dry weight fraction (% dry weight) was determined from a small subsample of wet sediment after oven drying at 70°C. For Phase II samples, dry mass per section and dry weight fraction (% dry weight) were obtained by weighing the entire section before and after freeze drying. Organic matter content of dried sediments was measured as percent loss on ignition (LOI) at 550°C for 2 hr in a Sybron Thermolyne muffle furnace (Håkanson and Jansson 1983). Inorganic or non-volatile solids (ash/dry fraction) was considered to represent the fraction remaining after combustion. Dry weight density, rho (ρ), was calculated using an equation by Binford (1990)

$$\rho = \underline{D(2.5I_{X} + 1.6C_{X})}$$
$$D + (1-D)(2.5I_{X} + 1.6C_{X})$$

where ρ is dry weight density (g dry cm⁻³ wet), x is depth in the sediment profile (cm), D is proportion of dry mass in wet sediment (dry mass/wet mass), I is inorganic proportion of dry mass with density = 2.5 g cm⁻³ dry, and C is the organic proportion of dry material with density = 1.6 g cm⁻³ dry. All samples used in chemical and radiometric analyses were freeze dried and ground to fine powder using a mortar and pestle.

Two forms of phosphorus were measured in dried sediment samples (Schelske et al. 1986). Total phosphorus (TP) was analyzed using persulfate digestion. Non-apatite inorganic phosphorus (NAIP), a chemically determined form of phosphorus that has been shown to be biologically available (Williams et al. 1976), was leached from small samples for 17 hr at 25°C

- 6 -

in a solution of 0.1 N NaOH. Phosphate was measured after digestion or leaching with a segmented flow autoanalyzer and an electronic data acquisition system.

Total carbon (TC) and total nitrogen (TN) were measured with a Carlo Erba NA1500 CNS elemental analyzer equipped with an autosampler on all cores except Phase II survey cores. Analysis of sediment samples was based on methodology described by Verardo et al. (1990).

Gravimetric and chemical data for survey and historic cores from Phase I and Phase II include percent dry weight, dry weight density, organic matter from loss on ignition (LOI) at 550°C, TP, NAIP, TC, TN, and TC/TN (Appendices B-E). Cumulative dry mass (g cm⁻²), cumulative NAIP (mg NAIP cm⁻²) and cumulative TP (mg TP cm⁻²) are also presented in the Appendices B-E. For Phase II cores, cumulative dry mass (g cm⁻²) was calculated by dividing the sample dry mass for each section by core tube area and summing the results with depth. For Phase I cores, cumulative dry mass was calculated by multiplying dry weight density by section thickness and summing the results with depth. Cumulative dry mass and the concentration of NAIP and TP were used to calculate TP and NAIP storage with depth. Missing data were interpolated so cumulative storage of nutrients could be calculated. Missing data resulted primarily from inadequate amounts of sample for all analyses at the tops of cores.

Radiometric Analysis

Sediments were aged by measuring the activity of naturally occurring radioisotopes in sediment samples. The method is based on determining the activity of total ²¹⁰Pb (22.3 yr half-life), a decay product of ²²⁶Ra (half-life 1622 yr) in the ²³⁸U decay series. Total ²¹⁰Pb represents the sum of excess ²¹⁰Pb and supported ²¹⁰Pb activity in sediments. The ultimate source of excess ²¹⁰Pb is the outgassing of chemically inert ²²²Rn (3.83 d half-life) from continents as ²²⁶Ra incorporated in soils and rocks decays. In the atmosphere, ²²²Rn decays to ²¹⁰Pb which is deposited at the earth's surface with atmospheric washout as unsupported or excess ²¹⁰Pb. Supported ²¹⁰Pb in lake sediments is produced by the decay of ²²⁶Ra that is deposited as one fraction of erosional inputs. In the sediments gaseous ²²²Rn produced from ²²⁶Ra is trapped and decays to ²¹⁰Pb. By definition, supported ²¹⁰Pb is in secular equilibrium with sedimentary ²²⁶Ra and is equal to total ²¹⁰Pb activity at depths where excess ²¹⁰Pb activity is not measurable due to decay. Because the decay of excess ²¹⁰Pb activity in sediments provides the basis for estimating sediment ages, it is necessary to make estimates of total and supported ²¹⁰Pb activities so excess ²¹⁰Pb activity can be determined by difference.

Radiometric measurements were made using low-background gamma counting systems with well-type intrinsic germanium detectors (Schelske et al. 1994). To prepare samples for radiometric analysis, dry homogeneous sediment from each core section was packed to a nominal height of 30 mm in a tared polypropylene tube (84 mm high x 14.5 mm outside diameter, 12 mm inside diameter). Sample height was recorded and tubes were weighed to obtain sample mass. Samples in the tubes were sealed with a layer of epoxy resin and

- 7 -

polyamine hardener, capped, and stored for 2 to 3 weeks before counting to ensure radioactive equilibrium between ²²⁶Ra and its daughter, ²¹⁴Bi. Activities for each radionuclide were calculated using empirically derived factors of variation in counting efficiency with sample mass and height and corrected for decay from the coring date (Schelske et al. 1994). Total ²¹⁰Pb activity was obtained from the 46.5 kev photon peak and ²²⁶Ra activity was based on the equilibrium activity of ²¹⁴Bi at the 609.2 kev peak. Excess (unsupported) ²¹⁰Pb activity was determined from the difference between total and supported ²¹⁰Pb activity. Supported ²¹⁰Pb activity was assumed to be equal to ²²⁶Ra activity. Supported ²¹⁰Pb activity, however, was based on measurements of total ²¹⁰Pb activity at depths where total and supported ²¹⁰Pb activity were considered to be in equilibrium. Direct measurements of ²²⁶Ra were not used because low activity was not measured precisely, a result of relatively large counting errors.

The 661.7 kev photon peak was used to measure 137 Cs activity. The peak in 137 Cs activity was measured to evaluate its usefulness as an independent time marker for the peak period of fallout from nuclear weapons testing in 1962-63.

Sediment ages were calculated using a CRS model (Appleby and Oldfield 1983). This model calculates ages based on the assumption that the flux of excess ²¹⁰Pb to the lake was constant. Variation in sedimentation rates over time, therefore, will result in deviation in ²¹⁰Pb activity from a pattern of exponential decrease with cumulative mass of sediment (depth). For Lake Griffin and other Ocklawaha lakes, the assumption that sedimentation rate was not constant must be invoked to apply a ²¹⁰Pb age model. The age of sediments at depth x is given by

 $t = (1/k) \ln (A_0/A)$

where t is time in yr, k is 0.03114 (the ²¹⁰Pb-decay constant), A_0 is the total excess ²¹⁰Pb activity (dpm cm⁻²) in the sediment core, and A is the integrated excess ²¹⁰Pb activity (dpm cm⁻²) below depth x. Calculations for each depth provide a continuous profile of ages as a function of depth. Mass sedimentation rate (MSR) at depth x is given by

where m is dry mass of sediment $(g \text{ cm}^{-2})$ for the sampling interval. Errors in age and mass sedimentation rate were propagated using first-order approximations (Binford 1990).

Radiometric data and CRS model output are presented in Appendix F.

Diatom microfossils were enumerated in three historic cores, two collected during Phase I (LG-11H and LG-26H) and one collected during Phase II (LG-44H). Sedimentary diatom analyses were performed on 15 sediment samples from each historic core. Samples were cleaned of organic matter using the potassium dichromate and hydrogen peroxide method of Van der Werff (1955), then mounted for microscopic analysis. A minimum of 500 diatom valves was counted per sample and identified to the lowest taxon possible. Data are presented in Appendix G.

RESULTS

Gravimetric Analysis

Sediments were generally high in water content and highly organic in both survey and historic cores (Appendices B-E). The % dry weight increased downcore in all cores with values >5% dry weight being found at depth only in some cores. Samples with dry weight <5% were found at all depths in some cores and to depths of 100 cm or more in others. These sediments which contained more than 95% water by weight also were high in organic matter measured as LOI. LOI in sediments with dry weight <5% generally ranged from 60 to 80% in survey and historic cores from Phase I and Phase II (Figs. 3 and 4). LOI in sediments was high and variable in the upper parts of cores with the lowest values at depth (Appendices B-E). Less variation in LOI or % dry was found in data from Phase I survey stations than in the other data sets. Phase I sediments with low % dry weight and high organic matter were underrepresented in the 0-10 cm section compared to the 2.0-cm sections at other stations and deeper samples with higher % dry weight and lower LOI were not sampled in the Phase I survey stations.

Total Carbon and Total Nitrogen

No distinct trends in TC or TN were apparent in either survey or historic cores from Phase I and Phase II (Appendices B-E), but distinct patterns were found in TC/TN ratios of historic cores (Figs. 5 A-C). TC/TN increased down core from values that ranged from 8.5 to 9.5 near the surface to values of approximately 12 at depth in most cores. Considerable variation among cores was found in the depth at which TC/TN increased. Some of the variation was undoubtedly related to sedimentation rate and the time interval sampled in individual cores. For example, the range in TC/TN ratios for LG-41H was small compared to other cores, but the complete historic record in this core was not sampled as noted previously. TC/TN ratios for Phase I survey cores were not plotted since only five depths were sampled for each core (Appendix B). No data were obtained for TC/TN ratios in Phase II survey cores because the potential utility of this parameter was not recognized when Phase II studies were designed.

Non-Apatite Inorganic and Total Phosphorus

Phosphorus concentration decreased with depth in all cores in which the record was complete (Appendices B-E). Records in some cores were truncated because cores were too short (Truncated records were found for survey cores from the north basin and Phase I historic core, LG-41H). NAIP and TP were greatest in samples at the tops of cores and decreased to minimum values at depth in historic cores (with the exception of LG-41H) and in all 20 survey cores from Phase II (Figs. 6 A-E). Plots for TP and NAIP concentration with depth in historic cores are

Fig. 3. Scatter plots of loss on ignition (LOI) and % dry weight for Phase I survey and historic cores.

计通过中部分 的复数

Fig. 4. Scatter plots of loss on ignition (LOI) and % dry weight for Phase II survey and historic cores.

Fig. 5A. Plots of TC/TN vs. depth for historic cores, Lake Griffin. Data are weight ratios. A. Phase I cores: LG-2H, LG-11H, LG-26H and LG-42H.

Fig. 5B. Phase II cores: LG-3H, LG-7H, LG-16H and LG-43H.

ì

Fig. 6A. Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth in Phase II survey cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. Cores 1-4.

Fig. 6D. Cores 13-16.

presented below in the section on Stratigraphy of Nutrients. The depth zone of high concentration and the minimum concentration varied from core to core. Maximum values for TP generally ranged from 1.4 to 2.0 mg/g with high values occurring at survey and historic stations with higher sedimentation rate, i.e., stations with extended zones of high concentration. The minimum concentration was found at shallower depths at stations with lower sedimentation rate. The minimum or baseline TP concentration ranged from 0.2 to 0.4 mg/g. Smaller TP concentrations were at depths where sediments were older than 100-150 yr which will be shown in the section on Stratigraphy of Nutrients.

Maxima in NAIP and TP concentration were found below the surface in a number of historic and survey cores (Fig. 6 A-E, Appendices C-E). This distribution is important to consider in interpreting other data because such a distribution is inconsistent with the premise that shallow lake sediments are mixed over large depths by wind action (turbulence) or by other factors.

TP and NAIP concentration in sediment samples were highly correlated in all the different sets of survey and historic cores (Figs. 7 and 8). The major difference among the four sets of data was that the slope for the calculated regression line was lower for Phase I survey cores than for the other data sets. The lower slope is undoubtedly an artifact of sampling; the thicker (10 cm) sections in the Phase I survey cores probably caused an under representation of high TP and NAIP values in surface samples. The similar slopes for the other three regressions show that conclusions about TP concentrations will be supported by data on NAIP concentrations because TP and NAIP are measured separately and independently.

Sediment Dating

Radiometric data were measured in ten cores collected during Phase I and Phase II (five from Phase I and five from Phase II). The classic monotonic decrease in excess ²¹⁰Pb activity with cumulative weight (depth), which indicates a relatively constant sedimentation rate, was not found in the Lake Griffin cores (Figs. 9 and 10). Instead, profiles appeared to be composed of two components, a component near the surface with a steep slope and a deeper component with a smaller decrease in activity with cumulative weight. These patterns in data indicate that sedimentation rate changed markedly over the period of ²¹⁰Pb record. The pattern of excess ²¹⁰Pb activity with depth for LG-44H differed from most cores in that activity decreased little with depth over the entire profile and only decreased to a relatively small value in one section near the bottom (Fig. 10). The profile for LG-43H differed in that excess ²¹⁰Pb activity <5 dpm g⁻¹ at depth was variable. One core, LG-41H, was not aged because the core was too short to adequately sample the entire record of excess ²¹⁰Pb activity (Fig. 9). The lowest excess ²¹⁰Pb activity in this core was 5 dpm g⁻¹. ¹³⁷Cs data also were plotted vs. cumulative weight, except no data were obtained for the cores, LG-2H and LG-11H, in which ²¹⁰Pb activity was measured

Fig. 7. Scatter plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) in Phase I historic and survey cores. Data are in mg P/g dry sediment.

Fig. 8. Scatter plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) in Phase II historic and survey cores. Data are in mg P/g dry sediment.

Fig. 9. Plots of excess ²¹⁰Pb activity (dpm g⁻¹) and ¹³⁷Cs activity (dpm g⁻¹) vs. cumulative weight (g dry mass cm⁻²) in five historic cores, Phase I Lake Griffin. ²¹⁰Pb activity for LG-2H and LG-11H was measured with alpha counting so ¹³⁷Cs data were not obtained.

a pha an an

Fig. 10. Plots of excess ²¹⁰Pb activity (dpm g⁻¹) and ¹³⁷Cs activity (dpm g⁻¹) vs. cumulative weight (g dry mass cm⁻²) in five historic cores, Phase II Lake Griffin.

with alpha counting. It can be seen from the grossly different patterns among cores that ¹³⁷Cs is not useful as a time-dependent stratigraphic marker. For example, no peak was found in LG-16H and a very broad peak was found in LG-44H (Fig. 10).

Ages were calculated with a CRS model (Appleby and Oldfield 1983) because the decrease in excess ²¹⁰Pb activity with cumulative weight (depth) was not logarithmic for most of these cores (Figs. 9 and 10). Age/depth plots showed that profiles were divided into two groups on the basis of excess ²¹⁰Pb activity (Fig. 11) because the sedimentation rate of one group was much greater than the other. The sedimentation rate can be inferred from cumulative weight at the bottom of the zone of excess ²¹⁰Pb activity (Figs. 9 and 10) where the age is >100 yr (Fig. 11, Table 1). Cumulative weight was <2.0 mg cm⁻² in the low sedimentation group and >2.0 mg cm⁻² in the high sedimentation group. In the low sedimentation group, excess ²¹⁰Pb activity representing an age of approximately 150 yr was not found deeper than 48 cm; whereas in the high sedimentation group excess ²¹⁰Pb activity representing an age of approximately 150 yr was found at depths ranging from 70 to 88 cm (Appendix F). Cores 11H, 26H, 3H, 16H and 43H were in the low sedimentation group. The sites for high or low sedimentation apparently varied over short distances. Station LG-2H, for example, was a high sedimentation site whereas LG-3H (the adjacent historic station, Fig. 2) was alow sedimentation site.

An average sedimentation rate for the cores was calculated on the basis of data presented in Table 1. Average rates were also divided into two groups. The average MSR for the low sedimentation stations ranged from 6.3 to 13.3 mg cm⁻² yr⁻¹ and for the high sedimentation stations ranged from 16.0 to 22.0 mg cm⁻² yr⁻¹. The range in average sedimentation rate was <4 fold. Age/depth plots, however, show that sedimentation rates generally decreased with increasing age and that sedimentation rates increased most rapidly during the past 50 yr (Fig. 11). Thus, information on changes in MSR over time is important.

MSR calculated from ²¹⁰Pb ages varied greatly among historic cores collected in Lake Griffin with maximum rates ranging from <20 to 80 mg cm⁻² yr⁻¹ and minimum rates being <10 mg cm⁻² yr⁻¹ (Appendix F; see Figs. 19 and 20, pages 52 and 53). MSR in all cores generally increased with time with the increase beginning at least at the turn of the century and being most pronounced after 1950. Ranges in MSR among stations were large when highest rates were compared to the rate at 1900. This range was 6 fold at LG-2H and more than 10 fold at LG-44H, two stations with high MSR. The high sedimentation rate at the surface is reflected in age/depth relationships. An age of 4 yr was found at depths ranging from 12-14 cm in the four cores with high MSR: cores LG-2H (12 cm), LG-42H (14 cm), LG-7H (14 cm), LG-44H (14 cm). At the other extreme, an age of 5 yr was found at 4 cm for core LG-26H. These large differences in MSR which are attributed to differential sediment focusing obviously affect the resolution of temporal events that might be recorded in the sediments.

Fig. 11. Age/depth plots for Phase I (upper panel) and Phase II (lower panel) historic cores, Lake Griffin.

Table 1. Data for ²¹⁰Pb dated historic cores for 9 stations in Lake Griffin (see Fig. 2 for station location). Data are inventory of excess ²¹⁰Pb (dpm cm⁻²), cumulative weight (g cm⁻²), depth (cm), age (yr) and average MSR (mg cm⁻² yr⁻¹) for sediments with the specified age.

Excess ²¹⁰ Pb (dpm cm ⁻²)	Cum Weight (g cm ⁻²)	Depth (cm)	Age (yr)	MSR (mg cm ⁻² yr ⁻¹)
40.1 10.2 8.10 40.4	2.961 1.057 1.003 2.868	88 38 32 76	149 148 158 130	19.9 7.16 6.33 22.0
11.5 21.9 10.5 15.4 31.2	1.273 2.559 1.740 1.900 2.614	40 74 48 48 70	165 160 138 143 140	7.73 16.0 12.6 13.3 18.6
	Excess 210pb (dpm cm ⁻²) 40.1 10.2 8.10 40.4 11.5 21.9 10.5 15.4 31.2	ExcessCum ^{210}Pb Weight(dpm cm ⁻²)(g cm ⁻²) $^{40.1}$ $^{2.961}$ $^{10.2}$ $^{1.057}$ $^{8.10}$ $^{1.003}$ $^{40.4}$ $^{2.868}$ $^{11.5}$ $^{1.273}$ $^{21.9}$ $^{2.559}$ $^{10.5}$ $^{1.740}$ $^{15.4}$ $^{1.900}$ $^{31.2}$ $^{2.614}$	ExcessCum ^{210}Pb WeightDepth(dpm cm ⁻²)(g cm ⁻²)(cm) $^{40.1}$ $^{2.961}$ 88 $^{10.2}$ $^{1.057}$ 38 $^{8.10}$ $^{1.003}$ 32 $^{40.4}$ $^{2.868}$ 76 $^{11.5}$ $^{1.273}$ 40 $^{21.9}$ $^{2.559}$ 74 $^{10.5}$ $^{1.740}$ 48 $^{15.4}$ $^{1.900}$ 48 $^{31.2}$ $^{2.614}$ 70	ExcessCum ^{210}Pb WeightDepthAge(dpm cm ⁻²)(g cm ⁻²)(cm)(yr) $^{40.1}$ $^{2.961}$ 88 149 $^{10.2}$ $^{1.057}$ 38 148 $^{8.10}$ $^{1.003}$ 32 158 $^{40.4}$ $^{2.868}$ 76 130 $^{11.5}$ $^{1.273}$ 40 165 $^{10.5}$ $^{1.740}$ 48 138 $^{15.4}$ $^{1.900}$ 48 140

Plots of the excess ²¹⁰Pb inventory and cumulative weight for the depth interval most closely approximating 1850 show that excess ²¹⁰Pb and sediment mass are focused in similar proportions among stations (Fig. 12). The cumulative weight of sediments focused at the two stations with the largest inventory of excess ²¹⁰Pb, LG-2H and LG-44H, was nearly 3.0 g cm⁻² and the excess ²¹⁰Pb inventory at these stations was approximately 40 dpm cm⁻². At LG-26H, the excess ²¹⁰Pb inventory was <10 dpm cm⁻². A four-fold range in the excess ²¹⁰Pb inventory among the stations is not uncommon for other Florida lakes studied recently in our laboratory (Whitmore et al. 1996, Schelske 1997a), but is inconsistent with the conclusions from a study by Oldfield and Appleby (1984).

The shape of excess 210 Pb profiles for sediment cores analyzed during this investigation could be attributed to sediment mixing, but such an interpretation as a single factor in explaining the non-monotonic curves is not consistent with other data. Profiles of ¹³⁷Cs activity (Figs. 9 and 10), for example, for cores 26H, 42H, 3H, 7H and 43H show a region of high ¹³⁷Cs activity at depth. These profiles suggest that the sediment record reflects the peak input of ¹³⁷Cs in the early 1960s and lower inputs since the 1960s. The relatively shallow peak at 3H is particularly important in this respect because the importance of mixing should be greater at low sedimentation sites and a sharp peak in ¹³⁷Cs would not be expected at a low sedimentation site. The expected 1952 rise in ¹³⁷Cs occurs at a much older age than expected, approximately 1915, in a number of cores which could be attributed to mixing or to downward movement of soluble Cs in pore water. No ¹³⁷Cs data were obtained for cores 2H and 11H because ²¹⁰Pb activity in these cores was measured using alpha spectroscopy. The distribution of ¹³⁷Cs in cores 16H and 44H may be related to depositional characteristics at the two sites. Core 16H was the site with the lowest sedimentation rate; the lack of a peak at 16H, therefore, can be explained by characterizing this site as either transitional or non-depositional. Core 44H is a high sedimentation site with a greater zone of high ¹³⁷Cs activity than the other high sedimentation cores, 7H and 42H. Possible explanations for the broad ¹³⁷Cs peaks include ¹³⁷Cs mobility in the sediments, focusing of ¹³⁷Cs after the period of peak input, sediment mixing or some combination of these factors. Chemical and physical and data presented above and microfossil data presented below also are at variance with attributing the shape of excess ²¹⁰Pb profiles simply to sediment mixing.

One explanation for the steep slopes of excess ²¹⁰Pb activity in the upper parts of Lake Griffin cores is an increase in primary production of organic matter by phytoplankton. Robbins and Herche (1993) point out that "flat profiles" could be produced if inputs of sediment increased at a rate comparable to the decay of ²¹⁰Pb. They discount such a possibility in invoking sediment mixing as a cause for flat profiles. Their data, however, differ in two important respects from those obtained from Lake Griffin and other lakes in the Ocklawaha chain

Fig. 12. Excess ²¹⁰Pb inventory (dpm cm⁻²⁾ plotted vs. depth (cm) and cumulative weight (g cm⁻²) for Phase I and Phase II historic cores, Lake Griffin.

(Schelske 1997a). First, flat profiles usually refer to a relatively small fraction of the profile and not to the extensive depth ranges found in the Florida lakes that practically can not be explained by mixing. Second, composition of sediments in the Ocklawaha lakes is very different from those commonly found in many regions of the world considered by Robbins and Herche (1993). Sediments in many lakes average <10% organic matter; whereas the Ocklawaha lakes are highly organic, averaging >60% organic matter. Therefore, it is possible that an increase in production of organic matter can produce flat profiles. A profile with no change in excess 210 Pb activity with depth (cumulative mass) would be produced if the rate of sedimentation doubled in 22.2 years, during one half-life of ²¹⁰Pb. The necessary increase to produce a flat profile is equivalent to an annual increase in net sedimentation of approximately 3.1 %. A flat profile would be the result for the special case in which net sedimentation was proportional to such an increase in primary production during approximately the last 80-100 yr. Because sediments are not composed entirely of the by-products of primary production, an increase in primary production greater than 3.1% might be required to produce an annual 3.1% increase in net sedimentation. If the entire increase in net sedimentation was due to the by-products of primary production, an annual increase in primary production of approximately 5% would produce a flat profile if the organic content of sediments average 67%. A relatively modest increase in primary production in the 20th century, therefore, can be invoked as an explanation for the relatively flat excess ²¹⁰Pb profiles in Lake Griffin.

STRATIGRAPHY OF NUTRIENTS

NAIP and TP

Depth and time dependence of changes in phosphorus concentration were compared by plotting NAIP and TP concentration vs. depth and date for the nine historic cores (Figs. 13 and 14). Redundancy in sampling is illustrated for several stations (LG-2H, LG-42H, LG-7H and LG-44H) by the density of sampling points when concentration was plotted vs. date. At the other extreme, only 14 sampling points were present in the datable record for LG-26H (Fig. 13B), a station with a low sedimentation rate. The difference in temporal resolution is mainly a function of sedimentation rate (see Table 1) and not a result of coarser or finer sampling depths.

NAIP and TP concentration increased upcore at all historic stations (Figs. 13 and 14). At many of the historic and survey (Fig. 6) stations, the maximum concentration was found at depth. The date for the maximum concentration in historic cores ranged from the late 1980s to approximately 1990. A zone of high concentration was found in the uppermost sediments at all stations. The time dependence of the greatest increase in concentration varied among cores, ranging from approximately 1950 to 1970 in most cores; but the inflection occurred latest, approximately 1980, at LG-44H.

TC/TN Ratio

A distinct stratigraphic change in TC/TN ratio was found in all datable historic cores (Figs. 15 and 16) with the exception of LG-7H (Fig. 16A). Ratios generally increased downcore from values of 8-9 to approximately 12 at variable depths. The change in ratios with depth was at least 3 for all cores except LG-41H and LG-7H. LG-41H, a truncated core, was too short to sample the entire excess ²¹⁰Pb record. This provides an explanation for the small change in TC/TN ratio in LG-41H because the range in TC/TN is larger in the datable historic cores. A small change in TC/TN at LG-7H must be attributed to another factor because supported ²¹⁰Pb was measured at depth in this core with a high sedimentation rate (Fig. 10, Appendix F). Relatively high TC/TN ratios in near-surface sediments and the small change in the ratio at LG-7H indicate source material for sediments that contains less organic matter derived from phytoplankton than at other historic stations. In a study of Lake Apopka, TC/TN ratios <10.5 were associated with sediments derived from phytoplankton whereas ratios >12.5 were from sediments derived primarily from macrophytes (Schelske 1997a).

The time dependence of the change in TC/TN ratio was compared with the change in TP concentration to determine if the two coincided temporally (Figs. 15 and 16). With the exception of LG-7H, low TC/TN ratios at the tops of cores coincided with high TP concentration. The time dependence for the two changes was variable from core to core. LG-7H also differs from the other cores in that the overall change in TP concentration is smaller.

The stratigraphy of TP concentration in the five historic cores from Phase II was compared with the stratigraphy of % dry weight and ash/dry fraction to determine if these variables were stratigraphically correlated (Fig. 17). A peak in % dry weight that corresponded to the increase in

Fig. 13A. Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth and date in Phase I historic cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. LG-2H and LG-11H.

Fig. 13B. LG-26H and LG-42H.

Fig. 14A. Plots of total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) vs. depth and date in Phase II historic cores. Data are in mg P/g dry sediment. Plots are presented consecutively by station. A. LG-3H and LG-7H.

Fig. 14B. LG-16H and LG-43H.

 $[0, \cdot]_{t \in \mathbb{R}}$

Fig. 14C. LG-44H.

Fig. 15. Plots of total phosphorus (TP) and total carbon/total nitrogen ratio (TC/TN) vs. date in Phase I historic cores. Data are in mg P/g dry sediment and mass ratio of TC/TN.

Fig. 16A. Plots of total phosphorus (TP) and total carbon/total nitrogen ratio (TC/TN) vs. date in Phase II historic cores. Data are in mg P/g dry sediment and mass ratio of TC/TN. Plots are presented consecutively by station. A. LG-3H, LG-7H, LG-16H and LG-43H.

Fig. 16B. LG-44H.

Fig. 17A. Plots of total phosphorus (TP) and % dry weight and TP and ash dry ratio vs.date in Phase II historic cores. Data are in mg P/g dry sediment and % and fraction of dry sediment. Plots are presented consecutively by station. A. LG-3H and LG-7H.

Fig. 17B. LG-16H and LG-43H.

- 17 -

Fig. 17C. LG-44H.

TP from the baseline concentration was found in three of the five cores. The time dependence, however, was not consistent. Peaks occurred at approximately 1979 in LG-3H and 1989 in LG-7H, but at 1924 in LG-43H. Comparable stratigraphic features were not found in LG-16H and LG-44H even though LG-44H is a high sedimentation site. Thus LG-44H and LG-16H (a low sedimentation site) have no clear time-dependent stratigraphic marker in sediments deposited in the last 100 yr. Taken together, no feature that is stratigraphically correlated is evident in comparing the stratigraphy of all five cores.

Although time-dependent stratigraphic markers were not readily identifiable in historic cores, consistent depth relationships were found among some variables for depths that could be aged with ²¹⁰Pb. Among these variables were % dry weight which increased with depth (see Fig. 17), TC/TN which generally was smaller at the tops of cores than at depth (see Figs. 15 and 16), and TP and NAIP concentration which were greater at tops of cores than at depth (see Figs. 13 and 14). Scatter plots of TP concentration and TC/TN in historic and survey cores show that TP decreases with increases in TC/TN, or that these variables covary with depth (Figs. 18A and B). At deeper depths in historic cores where TP and TC/TN are relatively constant, the relationship flattens out. These deeper depths were not sampled with 50-cm survey cores from Phase I. By contrast, the variation in LOI was relatively small (see Figs. 3 and 4).

The time dependence of the inflection from the baseline TP in historic cores was evaluated using data from Phase I and Phase II historic cores (Figs. 13 and 14). This analysis was confounded by differences among cores in the baseline TP concentration and in the time dependence of the inflection in TP concentration. A baseline concentration in the range of 0.2-0.3 mg/g could be identified in all cores except LG-41H and LG-7H. The baseline TP concentration in LG-41H was 0.6 mg/g; but a high baseline concentration was expected because several variables show this core was truncated. A baseline TP concentration >0.4 mg/g, however, was not expected for LG-7H, particularly because measurable excess ²¹⁰Pb was found only to a depth of 74 cm (1836) in this 100-cm core. The baseline TP concentration was 0.47 mg/g at 74 cm. A high TP concentration (0.56 mg/g) was found at 70 cm (1855) for LG-44H; the baseline concentration was 0.31 mg/g at 74 cm. LG-7H and LG-44H were the two high sedimentation cores collected during Phase II. An inflection concentration of 0.3 mg/g or less was found for the remaining historic cores, but the time dependence varied from below 1813 (92 cm, LG-2H) to 1882, an interpolated date (74 cm, LG-42H). Variability in time dependence and TP concentration of the inflection point shows that stratigraphic correlation has limited utility in establishing dates in survey cores. The error in establishing cumulative TP for the anthropogenic horizon, however, is relatively small at the selected depths in dated historic cores.

Stratigraphic features in profiles of TP, NAIP, TC/TN, fraction dry weight, and LOI were used to infer the initial point of anthropogenic disturbance in survey and historic cores (Tables 2-4). Given that phosphorus concentration increased markedly upcore, the increase in phosphorus concentration above a baseline was assumed to reflect anthropogenic disturbance.

Fig. 18A. Scatter plots of TP (mg/g) and TC/TN ratio for Phase I and Phase II cores. A. Phase I historic and survey cores.

Fig. 18B. Phase II historic cores.

Table 2.Physical and chemical characteristics of sediments at the depth of anthropogenic disturbance for Phase I survey stations, Lake
Griffin. Core 15 was on the border between the north and south basin and was divided equally between the south and north
basin for the averages. Cum TP, Cum NAIP, and Cum Mass are considered to be zero for Cores 27 and 20 because
sediments at these stations contain essentially no organic matter.

Core	Depth	Dry Wt	LOI	TP	NAIP	TN	TC	TC/TN	Cum TP	Cum NAIP	Cum Mass
Number	(cm)	(%)	(%)	(mg/g)	(mg/g)	(%)	(%)		(mg cm ⁻²)	$(mg cm^{-2})$	$(g \text{ cm}^{-2})$
Embaym	ient										
1	50	2.78	68.42	0.88	0.37	3.12	33.84	10.85	1.447	0.559	1.168
2	50	2.93	61.78	1.19	0.52	2.98	31.29	10.50	1.797	0.748	1.259
3	40	3.99	67.19	0.32	0.17	2.88	34.06	11.83	0.779	0.320	1.284
South											
4	50	4.09	55.31	0.91	0.53	2.67	30.50	11.42	1.615	0.873	1.494
5	40	4.16	54.90	0.32	0.16	2.68	31.30	11.68	0.967	0.481	1.290
6	50	4.98	36.52	0.53	0.33	2.77	30.66	11.07	1.324	0.780	1.493
7	40	3.31	57.32	0.65	0.28	2.81	31.65	11.26	1.160	0.724	1.085
8	50	3.73	62.42	0.95	0.57	2.75	29.46	10.71	1.709	1.012	1.539
10	30	2.67	62.58	0.65	0.26	2.79	31.72	11.37	0.653	0.351	0.746
11	30	3.14	55.95	0.61	0.29	2.56	29.50	11.52	0.869	0.366	0.809
12	30	3.07	56.15	0.57	0.36	2.34	27.10	11.58	0.921	0.484	0.798
13	50	3.42	62.80	0.49	0.27	2.66	31.22	11.74	1.295	0.672	1.413
14	50	3.96	58.81	0.99	0.84	2.69	29.91	11.12	1.720	1.289	1.523
15	50	4.19	60.95	0.80	0.77	2.93	31.31	10.69	1.587	1.163	1.506
24	30	4.57	59.85	0.35	0.21	2.59	30.73	11.86	0.519	0.277	1.189
25	20	4.19	45.15	0.52	0.18	2.51	30.13	12.00	0.502	0.282	0.461
26	40	3.47	59.90	0.37	0.16	2.81	32.38	11.52	0.811	0.432	1.144
27	10	78.6	0.94	0.03	0.02		0.14		0.000	0.000	0.000
37	50	3.74	63.55	0.36	0.21	2.73	33.94	12.43	1.322	0.692	1.507
38	50	3.67	62.06	0.52	0.23	2.57	31.47	12.25	1.202	0.549	1.367

Table 2. Continued.

North											
9	50	4.35	52.17	0.54	0.30	2.58	31.32	12.14	1.742	0.859	1.577
16	50	2.67	64.10	0.41	0.32	2.62	31.71	12.10	1.124	0.852	1.376
17	10	2.17	61.09	1.11	0.84	2.93	27.78	9.48	0.243	1.036	0.219
18	50	3.28	65.06	0.54	0.39	2.93	34.45	11.76	1.037	0.648	1.524
19	50	3.35	65.49	0.65	0.54	3.21	33.97	10.58	1.313	0.879	1.618
20	10	75.79	0.97	0.02	0.03		0.09		0.000	0.000	0.000
21	50	3.18	65.91	0.67	0.30	2.69	33.71	12.53	1.354	0.655	1.526
22	40	3.06	72.41	0.30	0.13	2.90	36.91	12.73	0.603	0.291	1.060
23	50	3.46	70.39	0.38	0.21	2.85	36.21	12.71	0.960	0.474	1.536
28	50	3.27	57.59	0.61	0.28	2.60	33.97	13.07	1.305	0.571	1.352
29	50	4.63	61.03	0.81	0.41	2.45	30.82	12.58	1.710	0.829	1.732
30	50	3.96	64.78	1.41	0.49	2.36	28.58	12.11	2.271	1.164	1.674
31	50	4.32	64.32	0.68	0.33	3.13	34.07	10.88	1.841	0.950	1.688
32	50	4.12	64.96	0.72	0.39	2.51	33.19	13.22	1.623	0.829	1.607
33	50	4.08	62.70	0.81	0.47	2.73	33.32	12.21	1.688	0.923	1.738
34	50	4.02	66.93	0.55	0.29	3.02	33.82	11.20	1.078	0.509	1. 461
35	30	2.87	68.25	0.35	0.27	2.96	34.24	11.57	0.773	0.391	0.860
36	50	3.73	67.11	0.56	0.27	2.95	34.39	11.66	1.403	0.624	1.654
39	50	2.97	69.55	0.58	0.28	3.07	35.51	11.57	1.318	0.639	1.465
40	40	3.72	62.90	0.40	0.17	2.50	33.92	13.57	1.106	0.544	1.307

- 47 -

and the second second

Station	Depth (cm)	Dry Wt (%)	LOI (%)	TP (mg/g)	NAIP (mg/g)	Cum TP (mg cm ⁻²)	Cum NAIP (mg cm ⁻²)	Cum Mass (g cm ⁻²)
Embay	ment							
1	95	5.04	52.1	0.303	0.177	2.174	0.800	2.784
2	110	4.17	64.6	0.209	0.067	2.015	0.762	3.641
3	60	4.09	59.9	0.227	0.070	1.274	0.349	1.782
4	75	5.04	50.6	0.285	0.101	1.600	0.572	2.907
North I	Basin							
5	56	4.43	65.5	0.277	0.259	1.233	0.745	1.908
6	20	4.97	61.2	0.296	0.214	0.732	0.411	1.061
7	52	4.18	63.6	0.304	0.094	1.461	0.554	1.785
8	52	3.96	66.3	0.296	0.096	1.101	0.390	1.757
9	76	4.12	70.4	0.280	0.109	1.570	0.551	2.351
10	128	4.85	66.9	0.378	0.195	3.858	1.644	4.767
11	120	4.85	66.7	0.309	0.166	3.205	1.283	5.032
12	76	4.60	70.8	0.277	0.102	1.900	0.681	3.374
13	68	4.39	69.5	0.318	0.132	2.652	0.875	2.976
14	104	4.29	69.1	0.329	0.180	2.688	1.191	3.932
15	60	3.95	65.2	0.385	0.130	1.839	0.706	2.308
16	56	5.85	50.3	0.303	0.108	1.977	0.748	2.450
17	64	4.57	67.3	0.321	0.110	2.081	0.672	3.098
18	64	3.51	64.2	0.316	0.116	1.594	0.544	2.574
19	128	4.46	64.2	0.336	0.140	2.612	1.072	4.424
20	104	4.54	64.7	0.231	0.070	2.183	0.869	3.520

Table 3.Physical and chemical characteristics of sediments at the depth of anthropogenic
disturbance for Phase II survey stations, Lake Griffin.

Station	Depth (cm)	Dry Wt (%)	LOI (%)	Cum Wt (g cm ⁻²)	TC (%)	TN (%)	TC/TN	TP (mg/g)	NAIP (mg/g)	Cum TP (mg cm ⁻²)	Cum NAIP (mg cm ⁻²)
Phase I											
LG-2H LG-11H LG-26H LG-41H LG-42H	92 38 34 78 74	4.48 3.80 4.44 4.88 10.51	68.1 61.7 59.1 68.7 26.7	3.197 1.057 1.093 2.729 2.765	32.6 30.7 29.3 35.0 19.0	2.70 2.48 2.43 3.29 1.69	12.1 12.4 12.1 10.6 11.2	0.287 0.255 0.205 0.604 0.205	0.189 0.085 0.074 0.338 0.249	3.197 0.848 0.840 2.529 1.934	1.525 0.293 0.305 1.232 0.858
Phase II											
LG-3H LG-7H LG-16H LG-43H LG-44H	42 76 56 54 74	5.21 4.51 2.96 4.75 8.88	53.7 65.7 65.5 60.3 33.8	1.394 2.691 1.974 2.187 3.038	28.1 32.2 32.4 29.5 20.9	2.53 2.85 2.78 2.46 1.61	11.1 11.3 11.7 12.0 13.0	0.210 0.467 0.230 0.226 0.312	0.075 0.278 0.071 0.073 0.122	0.881 2.106 1.093 1.237 2.312	0.364 0.722 0.359 0.516 0.870

Table 4.Physical and chemical characteristics of sediments at the depth of anthropogenic disturbance for Phase I and Phase II historic
stations, Lake Griffin. Data for LG-41H are included even though this truncated core was not dated.

SEDIMENT AND PHOSPHORUS ACCUMULATION RATE

Decadal MSR since 1895 (last 100 yr) varied widely among the nine historic cores (Table 5) as expected from the primary data on MSR (see Figs. 19 and 20). Decadal averages, which were calculated based on age-weighting of MSR data (Appendix F), varied from 14.7 to 66.1 mg dry sediment cm⁻² yr⁻¹ for the most recent decade (1985-1994). Cores with the highest rates were LG-44H, LG-7H, LG-42H and LG-2H, as expected from age/depth relationships (Fig. 11). The rate at LG-44H for the most recent decade was 66.1 mg dry sediment $cm^{-2} vr^{-1}$. somewhat greater than rates for the other three cores which ranged from 51.6 to 58.1 mg dry sediment $cm^{-2} yr^{-1}$. The mean MSR of all cores in the most recent decade increased approximately 2.2 fold since the decade from 1945-1954 (50 yr before present) and approximately 4.4 fold since the decade ending in 1914 (90 yr). Decadal sedimentation rates were also calculated for TP, NAIP, organic matter (OM), and inorganic or non-volatile solids (NVS). Trends in these rates among cores were similar as shown below because all use MSR as one variable in the calculated product. In addition, organic matter is the major component of dry sediment, comprising >60% in most sediment samples that were aged with ²¹⁰Pb dating. Thus, the four cores with the highest MSR were also the four cores with the highest rates of sedimentation for TP, NAIP, OM, and NVS.

Changes in decadal total phosphorus accumulation rates (TPAR) over time among the nine historic cores were compared to determine if patterns were similar (Table 6). TPAR was calculated as the product of MSR and TP concentration, both of which increase with time. Therefore, TPAR was greatest for the four cores (LG-2H, LG-7H, LG-42H, and LG-44H) with high MSR (Figs. 19 and 20) which were readily identifiable in age/depth plots (Fig. 11). For most cores, TPAR increased at a greater rate than MSR, particularly in cores with high MSR. This greater increase occurred because both TP concentration and MSR increased upcore. The mean relative increase in decadal MSR was only 7.0 fold (Table 5) whereas the mean relative increase in decadal MSR was only 7.0 fold (Table 5) whereas the mean relative increase in decadal TPAR was 22 fold (Table 6) when the most recent decade (10 yr) was compared to 1895-1904 (91-100 yr before present). Lower TP accumulation rates were found in the five cores with lower MSR (Figs. 19 and 20). Rates for both variables increased markedly in all cores after 1950 with smaller increases from 1900 to 1950. Maxima in TPAR among cores ranged from 25-35 μ g TP cm⁻² yr⁻¹ for cores LG-11H, LG-26H, LG-3H and LG-16H to >100 μ g TP cm⁻² yr⁻¹ for cores LG-2H, LG-42H, and LG-44H. TPAR, therefore, varied greatly among cores with the differences being determined largely by differences in MSR.

The relative increase in decadal TPAR normalized to the 1900 rate (100 yr) was at least 13 fold in all cores and was 25 fold and 52 fold for LG-2H and LG-44H, respectively (Fig. 21). Data are decadal averages (Table 6) plotted for 10-year intervals beginning with 1900 which is approximately the mid-date for each decade. The relative increase in TPAR for all historic cores was greater after 1950 than for the 1900-1950 period. It should be noted that MSR and TPAR calculated for the most recent sediments, particularly at high sedimentation sites, represent

Table 5. Decadal mass sedimentation rates (MSR, mg cm⁻² yr⁻¹) by years since core collection. MSR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and change in MSR (bottom half) relative to the base decade (91-100 yrs) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores.

Yrs	Avg	2H	3H	7H	11H	16H	26H	42H	43H	44H
10	36.76	51.56	19.58	58.12	18.02	19.03	14.65	53.39	30.37	66.09
20	31.04	40.99	20.05	50.45	12.78	22.47	12.52	41.16	22.38	56.57
30	26.80	40.21	18.49	35.31	10.90	29.39	10.26	39.32	20.57	36.72
40	20.06	33.59	15.73	27.60	8.35	21.14	9.70	23.90	13.56	27.01
50	16.39	27.04	12.44	18.11	6.85	17.71	7.85	24.92	12.22	20.39
60	13.06	23.30	9.14	14.89	5.57	12.78	6.38	17.20	10.71	17.57
70	11.29	19.05	7.59	9.48	4.17	11.20	8.75	12.60	17.12	11.64
80	10.11	16.98	5.25	8.44	4.36	5.23	6.41	14.18	22.30	7.90
90	8.36	10.93	4.41	7.69	4.42	5.17	5.70	19.08	11.66	6.23
100	6.16	8.38	3.77	5.50	4.50	5.17	4.61	13.51	6.99	2.99
10	7 02	6 1 5	5.20	10 57	4 01	3.68	3 17	3.95	4.34	22.09
20	6.05	4.89	5.32	9.18	2.84	4.34	2.71	3.05	3.20	18.91
30	4.95	4.80	4.91	6.42	2.42	5.68	2.22	2.91	2.94	12.27
40	3.78	4.01	4.18	5.02	1.86	4.09	2.10	1.77	1.94	9.03
50	2.99	3.23	3.30	3.29	1.52	3.42	1.70	1.84	1.75	6.81
60	2.41	2.78	2.43	2.71	1.24	2.47	1.38	1.27	1.53	5.87
70	2.03	2.27	2.02	1.72	0.93	2.16	1.90	0.93	2.45	3.89
80	1.69	2.02	1.39	1.53	0.97	1.01	1.39	1.05	3.19	2.64
90	1.36	1.30	1.17	1.40	0.98	1.00	1.24	1.41	1.67	2.08
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fig. 19. Plots of mass sedimentation rate (MSR in mg cm⁻² yr⁻¹) and TP accumulation rate (TPAR in μ g cm⁻² yr⁻¹) vs. date for Phase I historic cores.

Fig. 20. Plots of mass sedimentation rate (MSR in mg cm⁻² yr⁻¹) and TP accumulation rate (TPAR in μ g cm⁻² yr⁻¹) vs. date for Phase II historic cores.

٠..

Table 6. Decadal total phosphorus accumulation rates (TPAR, μg cm⁻² yr⁻¹) by years since core collection. TPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and change in TPAR relative to the base decade (91-100 yrs) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores.

.

Yrs	Avg	2H	3H	7H	11H	16H	26H	42H	43H	44H
10	50.25	90.15	27.69	57.24	26.70	23.22	20.50	75.87	39.83	91.04
20	31.97	54.23	19.12	48.96	15.58	30.66	17.01	41.54	21.08	39.53
30	20.03	44.01	10.03	30.95	9.11	15.80	10.85	25.18	11.95	22.42
40	13.41	33.22	7.20	19.44	7.17	8.75	8.89	11.95	7.11	16.94
50	9.34	22.26	4.99	10.83	5.84	6.45	4.95	9.09	6.52	13.14
60	7.26	17.32	3.56	8.82	4.25	4.18	3.77	7.23	5.65	10.54
70	6.57	20.51	3.10	5.68	2.96	3.62	4.52	5.59	6.17	6.99
80	4.62	10.55	2.31	4.88	1.94	1.58	3.40	5.27	6.89	4.79
90	3.32	5.18	1.98	4.34	1.82	1.56	2.67	4.92	3.61	3.76
100	2.24	3.61	1.72	2.98	1.95	1.56	1.53	3.12	1.94	1.74
10	22.15	24 99	16.09	19.22	13 71	14 86	13.38	24 34	20 49	52.24
20	14.24	15.04	11.11	16.44	8.00	19.62	11.10	13.33	10.84	22.68
$\overline{30}$	8.60	12.20	5.83	10.39	4.68	10.11	7.08	8.08	6.14	12.86
40	5.80	9.21	4.19	6.53	3.68	5.60	5.80	3.83	3.65	9.72
50	4.10	6.17	2.90	3.64	3.00	4.13	3.23	2.92	3.35	7.54
60	3.16	4.80	2.07	2.96	2.18	2.67	2.46	2.32	2.90	6.04
70	2.80	5.69	1.80	1.91	1.52	2.32	2.95	1.79	3.18	4.01
80	2.01	2.92	1.34	1.64	1.00	1.01	2.22	1.69	3.54	2.75
90	1.48	1.43	1.15	1.46	0.94	1.00	1.74	1.58	1.86	2.16
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Fig. 21. Plots of relative increase in TP accumulation rate (TPAR in μ g cm⁻² yr⁻¹) vs. date for Phase I and Phase II historic cores. The relative increase for each core was based on an estimated 1900 rate for each core. Phase I cores are plotted in the upper panel and Phase II cores in the lower panel.

ì

relatively little sediment mass compared to deeper depths. Thus, in terms of sediment mass, several sections at the top of a core must be summed to obtain a sediment mass comparable to deeper depths or to obtain a specified time span such as that used to calculate decadal MSR or TPAR rates (see Appendix F).

Decadal changes in TPAR since the base decade 1895-1904 (100 yr, Table 6) were much greater than changes in MSR (Tables 5) because TP concentration increased upcore since 1900 (Figs. 13 and 14). Highest decadal TPAR in the 1985-1994 decade (10 yr) were found for the four cores (LG-44H, LG-7H, LG-42H and LG-2H) with the highest decadal MSR; but unlike MSR, TPAR at LG-2H (90.2 μ g TP cm⁻² yr⁻¹) was essentially the same as LG-44H (91.0 μ g TP cm⁻² yr⁻¹), the core with the highest MSR. Rates for LG-42H (75.9 μ g TP cm⁻² yr⁻¹) and LG-7H (57.2 μ g TP cm⁻² yr⁻¹) were lower, but greater than rates at the remaining stations which ranged from 20.5 μ g TP cm⁻² yr⁻¹ at LG-26H to 39.8 μ g TP cm⁻² yr⁻¹ at LG-43H. Mean TPAR in the most recent decade increased 5.4 fold compared to the 1945-54 decade (50 yr) and 11 times compared to the 1915-24 decade (80 yr). The mean relative increase in the most recent decade was 22 times greater than the rate for the oldest decade (1895-1904). Among cores, the relative increase in rate in the most recent decade compared to the oldest decade varied nearly 4 fold, from a 13.4-fold increase for LG-26H to a 52.2-fold increase for LG-44H. The average rate in the most recent decade for the nine historic cores was 50.3 μ g TP cm⁻² yr⁻¹.

Decadal changes in NAIPAR since the base decade 1895-1904 (Table 7) were similar to those for TPAR (Table 6) with some important differences. Highest decadal rates in the 1985-1994 decade (10 yr) were also found at LG-2H (37.0 μ g NAIP cm⁻² yr⁻¹), LG-44H (31.9 μ g NAIP cm⁻² yr⁻¹), and LG-42H (29.8 μ g NAIP cm⁻² yr⁻¹); but NAIPAR (20.6 μ g NAIP cm⁻² yr⁻¹) at LG-43H, a core with a low sedimentation rate (see Fig. 11), was greater than that for LG-7H (15.6 μ g NAIP cm⁻² yr⁻¹), a core with a high sedimentation rate. This difference must be attributed to differences in NAIP/TP ratio at the two stations. NAIPAR in the 1985-1994 decade ranged from 6.4 μ g NAIP cm⁻² yr⁻¹ to 11.6 μ g NAIP cm⁻² yr⁻¹ at the remaining stations. The average relative increase in NAIPAR was 19 fold compared to an average relative increase in TPAR of 22 fold (Table 6).

Decadal organic matter sedimentation rate (OMSR) since the base decade 1895-1904 (Table 8) varied among the nine cores in patterns similar to those for MSR (Table 5). Cores with the highest OMSR in the 1985-1994 decade (10 yr) were also LG-44H, LG-7H, LG-42H and LG-2H. The highest rate, 47.1 mg OM cm⁻² yr⁻¹, was found for LG-44H and rates for the other high sedimentation rate cores ranged from 34.3 to 37.3 mg OM cm⁻² yr⁻¹. Decadal OMSR rates at the five low sedimentation rate stations ranged from 9.4 to 20.7 mg OM cm⁻² yr⁻¹ in the most recent decade. Mean decadal OMSR increased 2.3 fold since the decade from 1945-1954 (50 yr) and increased 3.7 fold since the decade ending in 1934 (70 yr) and increased only 2.0 fold from the base decade (1895-1904) to the 70-yr decade (1925-1934).

- 56 -

Table 7. Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR, $\mu g \text{ cm}^{-2} \text{ yr}^{-1}$) by years since core collection. NAIPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and change in NAIPAR (bottom half) relative to the base decade (91-100 yrs) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores.

Yrs	Avg	2 H	3H	7H	11 H	16H	26H	42H	43H	44H
10	19.04	36.97	11.59	15.55	9.69	8.82	6.43	29.79	20.55	31.94
20	12.23	21.70	9.41	14.36	5.90	10.98	6.82	16.19	10.91	13.82
30	7.00	17.73	4.01	9.28	2.77	4.76	3.42	7.86	4.65	8.54
40	5.31	14.68	2.04	7.06	2.21	2.19	4.03	5.92	2.30	7.38
50	4.22	14.73	1.71	4.01	1.66	1.67	1.99	4.82	1.90	5.50
60	3.70	13.13	1.35	4.11	1.19	1.25	1.39	4.15	1.58	5.11
70	2.97	10.40	1.09	2.74	0.95	1.16	1.99	3.06	1.87	3.50
80	2.31	7.74	0.87	2.61	0.94	0.49	1.14	3.00	2.03	1.99
90	1.59	2.92	0.89	1.90	0.80	0.48	0.93	3.75	1.03	1.63
100	1.14	2.06	0.90	1.53	0.44	0.48	0.61	2.75	0.68	0.80
10	19.21	17.93	12.93	10.18	21.82	18.34	10.52	10.85	30.13	40.16
20	13.00	10.53	10.50	9.40	13.28	22.82	11.16	5.90	15.99	17.38
30	6.81	8.60	4.47	6.07	6.23	9.88	5.61	2.86	6.81	10.74
40	4.99	7.12	2.27	4.62	4.97	4.55	6.60	2.16	3.37	9.28
50	3.73	7.15	1.90	2.63	3.75	3.46	3.26	1.76	2.79	6.92
60	3.15	6.37	1.50	2.69	2.69	2.60	2.28	1.51	2.32	6.42
70	2.68	5.04	1.22	1.79	2.15	2.42	3.25	1.12	2.74	4.40
80	2.00	3.76	0.97	1.71	2.11	1.01	1.87	1.09	2.98	2.51
90	1.44	1.41	0.99	1.24	1.81	1.00	1.53	1.37	1.51	2.05
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 8. Decadal organic matter sedimentation rates (OMSR) and non-volatile solids sedimentation rates (NVSAR) in mg cm⁻² yr⁻¹ by years since core collection. OMSR and NVSAR calculated from ²¹⁰Pb geochronology using a CRS model and change in OMSR and NVSAR relative to the base decade (91-100 yrs) are shown for nine historic cores. Averages (Avg) by decade for both sets of data are presented for the nine cores. The upper sets of data are for OMSR and the lower sets are for NVSAR.

Yrs	Avg	2 H	3 H	7 H	11H	16H	26H	42H	43H	44H
10	24.46	34.26	11.75	35.06	11.93	12.65	9.37	37.31	20.70	47.14
20	20.26	26.43	11.78	30.83	8.24	14.58	7.54	28.36	15.60	38.98
30	16.81	24.29	11.42	21.81	6.15	19.78	5.22	26.38	13.78	22.45
40	12.99	20.59	10.38	17.95	4.69	14.83	5.22	15.79	8.89	18.60
50	10.84	16.77	8.72	12.24	3.95	12.74	4.29	15.89	7.90	15.05
60	8.46	14.54	6.22	10.35	3.09	9.31	3.25	10.94	6.57	11.89
/0	/.09	12.77	5.19	0.38	2.10	8.15	4.78	8.07	8.20	1.85
80	0.28	11.00	3.39	5.70	2.34	3.70	3.41	8.70	6 70	5.30
90	4.91	7.04	2.00	3.20	2.40	3.00 3.66	2.09	0.12 5.50	0.79	4.24
100	5.00	5.82	2.30	5.19	2.47	5.00	2.39	5.50	4.01	2.01
10	7.45	5.89	4.59	9.25	4.83	3.46	3.61	6.79	5.16	23.44
20	6.21	4.54	4.60	8.13	3.34	3.98	2.90	5.16	3.89	19.38
30	4.85	4.17	4.46	5.75	2.49	5.41	2.01	4.80	3.44	11.16
40	3.85	3.54	4.06	4.73	1.90	4.05	2.01	2.87	2.22	9.25
50	3.18	2.88	3.41	3.23	1.60	3.48	1.65	2.89	1.97	7.48
60 70	2.47	2.50	2.43	2.73	1.25	2.54	1.23	1.99	1.04	5.91
20	2.04	2.19	2.05	1.74	0.87	2.23	1.84	1.47	2.00	3.90
00 00	1.71	2.00	1.40	1.32	0.95	1.01	1.52	1.39	2.97	2.00
100	1.57	1.51	1.17	1.59	1.00	1.00	1.19	1.40	1.09	1.00
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
10	12 30	17 30	7 82	23.05	6 09	6 38	5 34	16.08	9 67	18 95
20	10.78	14.57	8.27	19.62	4.54	7.89	4.98	12.80	6.78	17.58
30	9.99	15.92	7.08	13.50	4.76	9.61	5.05	12.93	6.79	14.27
40	7.07	13.01	5.35	9.65	3.66	6.31	4.48	8.10	4.67	8.41
50	5.55	10.27	3.72	5.87	2.90	4.97	3.56	9.03	4.32	5.34
60	4.60	8.77	2.93	4.54	2.47	3.48	3.13	6.26	4.14	5.68
70	4.20	6.28	2.40	2.90	2.01	3.05	3.97	4.54	8.87	3.79
80	3.84	5.31	1.67	2.67	2.02	1.53	2.99	5.42	10.37	2.54
90	3.45	3.29	1.40	2.43	2.02	1.52	2.61	10.96	4.86	1.99
100	2.56	2.56	1.21	1.71	2.03	1.52	2.02	8.01	2.98	0.98
10	6.80	6.75	6.48	13.51	3.01	4.21	2.64	2.01	3.24	19.32
20	6.19	5.68	6.86	11.50	2.24	5.20	2.47	1.60	2.27	17.93
30	5.51	6.21	5.86	7.91	2.35	6.34	2.50	1.61	2.28	14.55
40	3.83	5.08	4.43	5.66	1.81	4.16	2.22	1.01	1.57	8.57
50	2.78	4.01	3.08	3.44	1.43	3.28	1.76	1.13	1.45	5.45
60	2.39	3.42	2.43	2.66	1.22	2.29	1.55	0.78	1.39	5.79
70	2.06	2.45	1.99	1.70	0.99	2.02	1.97	0.57	2.97	3.86
8U 00	1.09	2.07	1.38	1.57	1.00	1.01	1.48	0.68	3.47	2.59
90 100	1.33	1.28	1.10	1.43	1.00	1.00	1.29	1.5/	1.03	2.03
100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Decadal non-volatile solids accumulation rate (NVSAR) is equal to decadal MSR minus decadal OMSR. (NVS or ash/dry fraction is the sediment remaining after LOI measurements.) The mean relative increase in NVSAR in the most recent decade (1985-1994) was 6.8 fold greater than the base decade, 1895-1904, or less than 10% smaller the 7.5-fold increase in OMSR for the same time periods (Table 8). The four stations with the greatest NVSAR were LG-2H, LG-7H, LG-42H, and LG-44H; the same set of stations with the largest MSR, OMSR, TPAR, and NAIPAR (Tables 5-7). NVSAR in the most recent decade ranged from 16.1 to 23.1 mg cm⁻² yr⁻¹ at these high sedimentation stations compared to a range of 5.3 to 9.7 mg cm⁻² yr⁻¹ at the remaining, low sedimentation stations. The station with the largest NVSAR in the most recent decade, however, was LG-7H, the station with the third highest OMSR. For all stations, the decadal average NVSAR in the most recent decade at LG-7H and LG-3H, 40% for both stations. The percent NVSAR relative to MSR in the most recent decade was smallest at stations in the northern basin (LG-42H, LG-43H, and LG-44H), ranging from 29 to 32%.

Comparing relative increases in MSR, TPAR, NAIPAR, OMSR, and NVSAR for the 1985-1994 decade (10 yr) to the 1895-1904 base decade (100 yr) showed large variation among the nine cores (Tables 5-8). Variability among stations in the 1985-1994 decade (10 yr) was greatest for NVSAR (9.6 fold) and least for TPAR and NAIPAR (nearly 4 fold). MSR and OMSR varied 7.0 and 6.8 fold, respectively. Much of the variation among cores is due to the large relative increase at LG-44H. The relative increase in MSR, TP, and OM sedimentation for LG-44H was at least two-fold greater than any other historic core. NAIP sedimentation does not fit this pattern because a large relative increase was also found for LG-43H; NVS sedimentation is not included because a large relative increase was also found at LG-7H.

The time dependence of phosphorus density (mg TP cm⁻³ wet sediment) was evaluated for Phase I and Phase II historic cores (Fig. 22). The time dependence of changes in TP density varied markedly from core to core. TP density calculated as the product of TP concentration (mg g⁻¹ dry) and rho (g dry cm⁻³ wet sediment) is relatively constant over much of each profile because changes in TP concentration and rho (or fraction dry weight) compensate over the core. TP generally decreases down core, with the exception that the highest TP concentration is slightly below the sediment surface in some samples, whereas rho and fraction dry weight increase with depth as the result of compaction. Increases in TP density were found in sediments deposited after 1950, but no consistent temporal pattern was obvious for all cores. Phosphorus density peaked at depth in most cores, an expected feature because TP concentration to some depth is relatively constant and rho increases with depth (see Figs. 6, 13 and 14). TP density in the oldest sediments varied largely in relation to sedimentation rate (Fig. 11) and lower compaction in low sedimentation cores. This approach, therefore, also appears to have limited utility for stratigraphic correlation of historic and survey cores.

Fig. 22. Plots of total phosphorus density (mg TP cm⁻³ wet sediment) vs. date for Phase I and Phase II historic cores. Phase I cores are plotted in the upper panel and Phase II cores in the lower panel.

DIATOM MICROFOSSILS

The most abundant diatom in recent sediment samples from LG-11H, LG-26H, and LG-44H was *Aulacoseira ambigua*, a planktonic diatom that commonly occurs in eutrophic lakes. *A. ambigua* decreased in abundance below 14 cm in LG-11H and LG-26H (Figs. 23 and 24). In LG-44H, *A. ambigua* reached its maximum at 10 cm and declined below 20 cm (Fig. 25). *Pseudostaurosira brevistriata, Staurosira construens* var. *venter*, and *Staurosirella pinnata* are periphytic taxa that increased in abundance as *A. ambigua* declined. These three periphytic taxa indicate mesotrophic to hypereutrophic conditions, possibly indicating that trophic state was high in the lake at the time of their deposition.

Changes in the diatom flora occur in the lower portions of LG-11H and LG-26H (Figs. 23 and 24). At 34 cm and below in LG-11H, eutrophic indicators become less abundant, and an increase in periphytic taxa suggests shallower water or macrophyte presence. A similar change occurs in LG-26H at 28 cm. These periphytic taxa include species from the genera Pinnularia, Navicula, Epithemia, Gomphonema, Stauroneis, and Eunotia. These taxa suggest lower trophic state conditions in the past, although relatively high percentages (10-15%) of A. ambigua in the lower portions of the cores indicate that planktonic production was still high during this period. The shift to shallow-water diatoms may also be the result of changes in hydrologic regime, and may have occurred if water levels were subject to greater fluctuation in the past, or if sediment inputs to the basin from nearby wetlands were greater. This change, which was observed in LG-11H and LG-26H, does not occur at LG-44H (Fig. 25). LG-44H appears to be truncated with respect to LG-11H and LG-26H because P. brevistriata and S. construens var. venter are dominant to the base of LG-44H. The truncation, however, probably results from a much higher sedimentation rate at LG-44H. For LG-11H and LG-26H, sediments below 38 cm and 30 cm, respectively, were older than 1850, but at LG-44H a comparable date was found at 72 cm (see Fig. 11). Therefore, samples with ages old enough to reveal periphytic species identified at depths older than 1850 in LG-11H and LG-26H probably were not counted at LG-44H.

Quantitative inferences for limnetic total P values were obtained from sedimented diatom assemblages for LG-11H (Table 9), LG-26H (Table 10), and LG-44H (Table 11). The modern limnetic total P inference for the recent sample (0-2 cm) in LG-11H was 86 μ g L-1 (95% c.i. 65-114 μ g L⁻¹), in LG-26H was 141 μ g L⁻¹ (95% c.i. 101-198 μ g L⁻¹), and in LG-44H was 87 μ g L⁻¹ (95% c.i. 66-114 μ g L⁻¹). These inferences are close approximations to measured limnetic total P in 1992 when the mean was 78 μ g L⁻¹ and ranged from 58 to 114 μ g L⁻¹ (Canfield et al. 1992). Higher means were reported for data combined from samples collected by different agencies: 119 μ g L⁻¹ for data collected from 1977-1993 (Fulton 1995), 102 μ g L⁻¹ for data collected at a center lake station from 1984-94 (Fulton, personal communication) and 103 μ g L⁻¹ for data collected at the center lake station in 1992 (Fulton, personal communication). These higher means are more representative of TP inferences for samples collected at depths below 2 cm.

Sample	Nominal	Inferred	lower bound	upper bound
interval	depth	total P	of 95% c.i.	of 95% c.i.
<u>(cm)</u>	(cm)	$(\mu g/L)$	(µg/L)	<u>(μg/L)</u>
0-2	1	86	65	114
2-4	3	112	83	153
4-6	5	127	92	175
8-10	9	169	118	243
12-14	13	114	83	155
16-18	15	74	58	96
18-20	19	113	83	154
20-22	21	83	63	108
24-26	25	89	67	117
28-30	29	81	62	106
32-34	33	48	39	59
36-38	37	38	31	45
40-42	41	33	28	39
44-46	45	30	26	36
48-50	49	28	24	33
52-54	53	29	25	34
56-58	57	47	38	57
60-62	61	55	44	68
64-66	65	38	32	46
68-70	69	33	28	39

Table 9.Limnetic total P values inferred from sedimentary diatoms in Core LG-11H
with upper and lower bounds for 95% confidence intervals (c.i.).

Sample interval (cm)	Nominal depth (cm)	Inferred total P (µg/L)	lower bound of 95% c.i. (µg/L)	upper bound of 95% c.i. (µg/L)
0-2	1	141	101	198
2-4	3	137	98	192
4-6	5	116	85	159
6-8	7	160	112	228
8-10	9	154	109	219
10-12	11	123	90	170
12-14	13	152	107	215
14-16	15	118	86	163
16-18	17	129	93	179
18-20	19	96	72	128
20-22	21	116	85	159
22-24	23	123	90	170
24-26	25	138	99	193
26-28	27	57	45	71
28-30	29	39	32	47
30-32	31	43	35	52
34-36	35	41	34	50
38-40	39	44	36	53
42-44	43	45	37	55
46-48	47	36	30	43

Table 10.Limnetic total P values inferred from sedimentary diatoms in Core LG-26H
with upper and lower bounds for 95% confidence intervals (c.i.).

Sample interval	Nominal depth	Inferred total P	lower bound of 95% c.i.	upper bound of 95% c.i.
<u>(cm)</u>	(cm)	(μ <u>g/L)</u>	<u>(µg/L)</u>	<u>(µg/L)</u>
0-2	1	87	66	114
4-6	5	94	71	126
8-10	9	131	94	182
12-14	13	120	87	164
16-18	17	113	83	154
20-22	21	127	92	175
24-26	25	98	73	132
28-30	29	92	70	122
32-34	33	84	64	109
36-38	37	65	51	82
40-42	41	71	55	90
46-48	47	79	61	102
52-54	53	-81	62	105
58-60	59	83	63	108
68-70	69	61	48	77

Table 11.	Limnetic total P values inferred from sedimentary diatoms in Core LG-44H
	with upper and lower bounds for 95% confidence intervals (c.i.).

Inferred TP at these depths, which according to the ²¹⁰Pb dates were deposited since 1987, were >100 μ g L⁻¹ for all three cores (Figs. 23-25). Concurrence between measured and inferred recent total P values suggests that historic inferences are reliable for Lake Griffin, particularly at LG-11H and LG-44H.

Inferred limnetic total P for LG-11H and LG-26H show large increases since the late 1800s. Limnetic total P values for LG-11H indicate that the lake was hypereutrophic between recent times and the 30-cm level (Fig. 26). A sharp, significant decrease in limnetic total P occurs between 30 and 34 cm which indicates that the lake has become more eutrophic since 1907 (Appendix F). A sharp decrease in limnetic total P occurs between 26 and 28 cm in LG-26H (Fig. 27). This sharp decrease suggests that the change occurred abruptly before 1925 (Appendix F) or that sediment redistribution processes affected stratigraphic continuity to a greater extent at LG-26H than at LG-11H. Bounds for inferred total P for older sediments in these two cores (Table 9 and 10) are similar to the predevelopment total P (27 μ g L⁻¹) obtained by Fulton (1995) using a nutrient budget/trophic state modeling approach.

By contrast with LG-11H and LG-26H, limnetic total P inferences for LG-44H are relatively high over the core (Fig. 28). Total P inferences and ²¹⁰Pb dates (Fig. 11) suggest that the upper portion of the stratigraphic profile is extended in LG-44H with respect to LG-11H and LG-26H (Figs. 26 and 27). Total P inferences decrease less in LG-44H than in LG-11H and LG-26H (Tables 9-11). However, samples counted for LG-11H and LG-26H were older than those for LG-44H. The deepest sample (68-70 cm) counted in LG-44H was ²¹⁰Pb dated at 1855 whereas much older samples were analyzed for LG-11H and LG-26H. Total P inferences at the tops of LG-11H and LG-44H appear slightly lower than in sediment samples corresponding to a decade earlier, but limnetic total P values in the recent samples are not statistically different from earlier samples at the 95% level of confidence.

The planktonic/benthic (P/B) ratio of diatoms can be used to infer changes in trophic state because planktonic diatoms will replace benthic forms when decreases in water transparency produce an aphotic benthic environment (Schelske et al. 1997). Therefore, nutrient enrichment will increase the proportion of planktonic species in the assemblage. Plots of P/B ratios show an increase in planktonic diatoms in LG-11H and LG-26H by approximately 1900 (Figs. 29 and 30). By contrast, the proportion of planktonic diatoms is high in the oldest samples counted for LG-44H, but only two depths represent samples deposited before 1950 (Fig. 31). All cores show high P/B ratios in sediments deposited in the 1980s and 1990s. The Emeralda muck farm area developed from sawgrass marshes in the 1950s through the early 1970s increased nutrient input (Marburger and Godwin 1996). Plant cover (primarily spatterdock) decreased from 4,600 acres in 1947 to 250 acres in 1973 (Benton 1994). Studies of aerial photos by SJRWMD show a similar decrease with only 43 acres of spatterdock and other deep marsh vegetation in 1981 (Fulton, personal communication). Low P/B ratios beginning about 1950 and ending in the 1970s in LG-26H

<u>.</u>:

, 1

5

, ۱

Fig. 29. P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-11H. Upper panel presents data by depth and lower panel by date. In lower panel dates older than ²¹⁰Pb have been interpolated so all data are presented

Fig. 30. P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-26H. Upper panel presents data by depth and lower panel by date. In lower panel dates older than ²¹⁰Pb have been interpolated so all data are presented.

Fig. 31. P/B ratios of planktonic to periphytic diatoms in sediment samples from core, LG-44H. Upper panel presents data by depth and lower panel by date. All data for this core are plotted in both panels.

and LG-44H (Figs. 30 and 31) may reflect high abundance of aquatic macrophytes and subsequent decrease in plant cover, but this trend is not obvious in LG-11H (Fig. 29). A minimum in P/B ratios in the 1950s and 1960s may not have been detected in LG-11H because fewer samples were counted in this age range than in LG-26H. The increase in P/B ratio in sediments deposited in the 1980s and 1990s of all three cores (Figs. 29-31) reflects an increase in planktonic diatoms, primarily *A. ambigua* (Figs. 23-25). An increase in P/B ratios and the dominance of *A. italica* in sediments deposited in the 1980s resulting from nutrient enrichment (Schelske 1997a, Schelske et al. 1997). A decrease in the TC/TN ratio also has been used as a proxy for a an increase in phytoplankton relative to macrophytes in the primary producer community (Schelske et al. 1997). The TC/TN ratio decreases markedly after 1950 at LG-11H and LG-26H (Fig. 15) and after 1975 at LG-44H (Fig. 16b). Thus, both P/B and TC/TN ratios provide evidence of increased phytoplankton abundance after macrophytes decreased in Lake Griffin.

and company and a second

ESTIMATES OF SEDIMENT AND PHOSPHORUS STORAGE

ر این ایند. از این ایند اینده

Dry sediment mass, TP, and NAIP storage were calculated using two basic analyses of data. The first was to calculate sediment mass and phosphorus storage per unit surface area of sediment for all survey and historic cores. In this approach, storage per unit area was summed section by section to the anthropogenic horizon defined as the point in the phosphorus profile where TP and NAIP concentration increased relative to a baseline concentration. In dated historic cores, the anthropogenic horizon was generally in that portion of the record that could be dated with ²¹⁰Pb, but in some cores the horizon was at a slightly deeper depth. Determining the date for a horizon at approximately 1850 using ²¹⁰Pb ages is somewhat problematic owing to inherent uncertainties in the CRS model. At the depths of interest, however, the change in cumulative mass or cumulative phosphorus storage per section is relatively small. Errors, therefore, are small and were considered to be random for the purposes of storage calculations. In survey cores, the anthropogenic horizon was established by using not only data for TP and NAIP concentration, but also data for % dry weight, LOI and TC/TN ratio. Some cores appeared to be truncated which would result in underestimates of storage. The second analysis was to infer the rate of change in phosphorus storage (accumulation) over time using decadal averages of MSR, TPAR and NAIPAR obtained from ²¹⁰Pb dated historic cores. Data were weighted by sediment age and rates were calculated for ten decades (100 yr) for each of the nine historic cores. Storage estimates to the anthropogenic horizon were adjusted, as explained below, to account for an anthropogenic horizon older than 100 years.

Three estimates of decadal changes in sediment, TP, and NAIP deposition or storage were developed. Decadal sediment, TP and NAIP deposition were estimated for three zones (embayment, south basin and north basin) using two different calculations and whole-basin deposition only was estimated in the third calculation. The first estimate was based on calculated storage (cumulative mass, cumulative TP, or cumulative NAIP) to the anthropogenic horizon at either Phase I or Phase II survey stations (Tables 2 and 3). The mean relative increase by decade for each variable during the past 100 yr was obtained from ²¹⁰Pb dated historic cores (Tables 5-7). The relative increase was used to calculate the proportion of storage during each of the ten decades. Because the anthropogenic horizon was older than 100 years, it was assumed that only 90% of the storage occurred in the ten decades used in the calculations. Data from Phase I survey stations were used to calculate storage in the south basin and data from Phase II survey stations in the embayment and north basin. Phase I data for survey stations in the embayment and north basin were not used because these cores were too short to sample the sediment record of interest.

The second and third estimates of sediment, TP and NAIP storage were based on decadal averages of MSR, NAIPAR and TPAR for ²¹⁰Pb dated historic cores (Tables 5-7).

The second estimate used the decadal mean of MSR, NAIPAR and TPAR to calculate mean decadal storage rate by zone. The third estimate was based on the mean decadal MSR, NAIPAR and TPAR for all historic cores extrapolated to the lake basin. Zone and basin storage by decade was the product of mean decadal storage (quantity m⁻²) for each parameter and either zone area or lake surface area.

Phosphorus storage above the anthropogenic horizon could not be calculated for all survey cores collected during Phase I because the records for many cores were truncated. The degree of truncation can be illustrated by comparing phosphorus storage for the paired survey and historic cores collected at the same site during Phase I (Appendices B and C). Storage for survey core 2 was 1.80 mg TP cm⁻² compared to 3.20 mg TP cm⁻² for the longer historic core (LG-2H), survey core 11 was 0.87 mg TP cm⁻² compared to 0.85 mg TP cm⁻² for LG-11H, and survey core 26 was 0.81 mg TP cm⁻² compared to 0.84 for LG-26H. The large difference for station 2 resulted from truncation. The anthropogenic horizon was at 92 cm in the historic core (LG-2H) whereas the shorter survey core was only 50 cm long. The anthropogenic horizon was found above 50 cm at the other two stations. Differences in storage for paired stations would be expected because the horizon could not be resolved as precisely at the survey stations which were sectioned at coarser intervals than those employed for historic stations. Nearly half (8 of 17) of the south basin cores and 75% (15 of 20) of the north basin cores collected in Phase I appeared to be truncated (Table 2) based on the TP concentration at 50 cm. TP concentration at 50 cm was less in south basin cores than in north basin cores indicating truncation was not as severe in the south basin. Truncation of embayment and north basin cores was not important because Phase II cores in the embayment and north basin were used to calculate storage in these zones (Table 3).

Variation in sediment, TP and NAIP storage over the lake basin was evident from the analysis of the Phase I and Phase II survey cores. This difference was evident from Phase I data even though some cores were truncated. A greater proportion of cores from the north basin and the embayment were truncated than those from the south basin (Table 2, Appendix B). Average storage per station for Phase I cores was 1.34 mg TP cm⁻² in the embayment, 1.23 mg TP cm⁻² in the north basin, and only 1.05 mg TP cm⁻² in the south basin (Table 12). Average storage per station for Phase II cores was 1.77 and 2.04 mg TP cm⁻², respectively, in the embayment and north basin, much greater than Phase I averages of 1.34 and 1.23 mg TP cm⁻² for the same areas. No Phase II survey cores were collected in the south basin. TP storage in historic cores which were collected at high deposition sites averaged 2.04 mg TP cm⁻² in the embayment and ranged from an average of 1.26 mg TP cm⁻² in the south basin to an average of 1.82 mg TP cm⁻² in the north basin. The greatest storage of 2.53 mg TP cm⁻², however, was at LG-41H (Appendix C), the truncated Phase I historic core that was too short to sample the entire excess ²¹⁰Pb record. The degree of truncation at LG-41H can be evaluated

Table 12. Cumulative storage of sediment (g dry cm⁻²), total phosphorus (mg TP cm⁻²), and non-apatite inorganic phosphorus (mg NAIP cm⁻²) for Phase I and II survey cores in three morphometric zones of Lake Griffin. Data presented are averages for each zone to the depth of anthropogenic disturbance or deepest depth. See text for additional explanation.

Phase I Survey Cores

	Cum Mass	Cum TP	Cum NAIP
Embayment	1.237	1.341	0.542
South	1.128	1.053	0.597
North	1.353	1.233	0.695
Phase II Survey Cores			
Embayment	2.778	1.766	0.621
North	2.957	2.037	0.806

by comparing TP storage with that for Phase II core LG-10, a core collected at essentially the same location (Appendix A). TP storage at LG-10 was 3.86 mg TP cm⁻² (Appendix D), approximately 50% greater than measured in the truncated core LG-41H.

and the second states of

Two estimates of decadal storage of sediment, TP and NAIP per unit surface area over 100 yr were obtained for the three zones in the lake (Table 13). The third estimate (rate average) is simply the average rates for the nine cores. Dry mass and TP sedimentation rates were much greater in the embayment and north basin than in the south basin whereas NAIP sedimentation rates were higher in the north basin but differed relatively little among the three zones. Dry mass, TP, and NAIP sedimentation rates generally increased upcore with the largest values for each zone in the two most recent decades (from 1975-1994). TP and NAIP sedimentation increased at a faster rate than dry mass sedimentation in the three most recent decades (1965-1994). The difference is most pronounced for TP sedimentation in the last 20 yr (since 1975), a difference that can be attributed to increased decadal MSR and larger phosphorus concentrations in near surface sediments of survey and historic cores (Appendices B-E).

A general increase in net storage rates of sediment, TP and NAIP (Table 13) was also obtained for the third estimate based on decadal averages of MSR, TPAR, and NAIPAR of all ²¹⁰Pb cores. The relative increase in estimated decadal rates of mass sedimentation was slower than that for estimated decadal rates of TP or NAIP sedimentation, particularly in the most recent decades. The increase in decadal mass sedimentation rate from the base period to the most recent decade was only 6 fold, much smaller than increases of 23 and 17 fold for TP and NAIP sedimentation, respectively. Differences among the relative increases resulted from greater historic increases in decadal TPAR and NAIPAR compared to decadal MSR (Tables 5-7). TPAR and NAIPAR increased at a faster rate because TP and NAIP concentration in cores generally increased upcore with time.

Storage expressed as totals for the three zones (data not shown) was greater for all three variables in the north basin than in the other two areas combined. This result is expected because dry mass sedimentation is high in the north basin (Table 13) which represents nearly half of the total surface area (48.9%). Storage in the embayment which only represents 15.4% of the surface area is relatively large compared to the larger south basin (35.7% of the surface area) because the mass sedimentation rate is higher in the embayment. Differences in phosphorus concentration among zones are relatively unimportant in affecting storage by zone. Decadal storage of sediment mass, TP and NAIP in the lake basin increased over time with the greatest quantities being stored in the last 30 yr, 1965-1994 (Table 14). For example, the proportion of TP stored in this period was 68.9%, 69.2% and 68.6%, respectively, for the first, second and third estimates. Rates of either TP and NAIP storage were similar for the three methods among different decades.

Table 13. Three estimates of decadal storage of sediment mass (kg m⁻² decade⁻¹), total phosphorus (g TP m⁻² decade⁻¹) and non-apatiteinorganic phosphorus (g NAIP m⁻² decade⁻¹) for the Lake Griffin basin during the last 100 years. Two estimates provide decadal storage by morphometric zones and the third estimate is an average for the lake basin. See text for explanation of methods.

	Mass Sedimentation (kg m ⁻² decade ⁻¹)		TP Sedimentation (g m ⁻² decade ⁻¹)		NAIP Sedimentation (g m ⁻² decade ⁻¹)				
	Embayment	South	North	Embayment	South	North	Embayment	South	North
Relative by Z	lone								
10	5.27	2.14	5.61	5.39	3.21	6.22	1.85	1.78	2.40
20	4.55	1.85	4.84	3.46	2.07	4.00	1.25	1.20	1.63
30	3.72	1.51	3.96	2.09	1.25	2.41	0.66	0.63	0.85
40	2.84	1.15	3.02	1.41	0.84	1.63	0.48	0.46	0.62
50	2.24	0.91	2.39	1.00	0.59	1.15	0.36	0.35	0.47
60	1.81	0.74	1.93	0.77	0.46	0.89	0.30	0.29	0.39
70	1.53	0.62	1.62	0.68	0.41	0.78	0.26	0.25	0.34
80	1.27	0.52	1.35	0.49	0.29	0.56	0.19	0.19	0.25
90	1.02	0.42	1.09	0.36	0.21	0.42	0.14	0.13	0.18
100	0.75	0.31	0.80	0.24	0.15	0.28	0.10	0.09	0.13
Rate by Zone	1								
10	3.56	3.03	4.22	5.89	3.48	5.75	2.43	1.06	2.28
20	3.05	2.52	3.56	3.67	2.72	3.32	1.56	0.90	1.30
30	2.94	1.88	3.15	2.70	1.70	1.88	1.09	0.52	0.64
40	2.47	1.52	2.14	2.02	1.18	1.12	0.84	0.44	0.44
50	1.97	1.09	1.88	1.36	0.72	0.88	0.82	0.26	0.35
60	1.62	0.89	1.46	1.04	0.56	0.69	0.72	0.22	0.30
70	1.33	0.75	1.31	1.18	0.44	0.56	0.57	0.19	0.24
80	1.11	0.64	1.24	0.64	0.34	0.46	0.43	0.16	0.19
90	0.77	0.59	1.05	0.36	0.29	0.35	0.19	0.12	0.17
100	0.61	0.49	0.72	0.27	0.22	0.21	0.15	0.09	0.12
Rate Average									
10		3.68			5.03			1.90	
20		3.10			3.20			1.22	
30		2.68			2.00			0.70	
40		2.01		$\Phi(x) = \Phi(x) + e^{-i x x} + e^{-i x x}$	1.34			0.53	
50		1.64			0.93			0.42	
60		1.31			0.73			0.37	
70		1.13			0.66			0.30	
80		1.01			0.46			0.23	
90		0.84			0.33			0.16	
100		0.62			0.22			0.11	

Table 14. Three whole-basin estimates of dry sediment (10³ metric tons), total phosphorus (metric tons) and non-apatite-inorganic phosphorus (metric tons) storage by decade for Lake Griffin during the last 100 yr. The relative by zone estimate represents adjusted cumulative storage to the depth of anthropogenic disturbance in survey cores. Decadal storage in the two estimates based on rates was determined from rates and dates established from ²¹⁰Pb dating. See text for explanation of methods.

Years	Dry Mass	TP	NAIP
Relative by Zone			
10	164.6	191.2	79.8
20	141.9	122.8	54.0
30	116.2	74.2	28.3
40	88.6	50.0	20.7
50	70.0	35.3	15.5
60	56.5	27.2	13.1
70	47.6	24.1	11.1
80	39.6	17.4	8.3
90	31.9	12.8	6.0
100	23.5	8.6	4.2
Total	780.4	563.6	241.0
Rate by Zone			
10	140.7	189.0	71.0
20	118.6	120.3	45.6
30	101.5	74.0	25.4
40	75.0	48.8	19.2
50	61.5	34.2	14.8
60	48.8	26.6	12.9
70	42.4	23.3	10.4
80	38.3	17.0	8.2
90	32.2	12.6	6.0
100	23.5	8.4	4.2
Total	682.6	554.2	217.6
Rate Average			
10	140.0	191.4	72.5
20	118.2	121.8	46.6
30	102.1	76.3	26.7
40	76.4	51.1	20.2
50	62.4	35.6	16.1
60	49.7	27.6	14.1
70	43.0	25.0	11.3
80	38.5	17.6	8.8
90	31.9	12.6	6.1
100	23.5	8.5	4.3
Total	685.8	567.6	226.7

Three estimates of dry sediment, TP and NAIP storage by decade summed for the lake basin for the past 100 yr are shown in Table 14. Estimated dry mass sedimentation ranged from 683,000 to 780,000 metric tons dry mass, a much larger relative range than that for either TP or NAIP sedimentation. The relative difference between the high and low estimate was 1.14 for dry mass sedimentation, but only 1.024 for TP sedimentation. Estimated TP sedimentation ranged from 554 to 568 metric tons for the lake basin and estimated NAIP sedimentation ranged from 218 to 241 metric tons for the lake basin. The largest basin values for dry mass and NAIP sedimentation were obtained from the first estimate and the largest value for TP sedimentation was obtained from the third estimate. The smallest values for all three variables were obtained from the second estimate. General agreement among the three estimates was good with the exception of the relatively high value for basin-wide dry mass sedimentation obtained with the relative by zone estimate. This finding probably results because more than 10% of the cumulative mass storage to the anthropogenic horizon occurred before 1895. The relative by zone estimate, therefore, overestimated storage in the most recent 100 yr. An error in this correction results in less variability for TP or NAIP sedimentation because TP and NAIP concentrations decrease with depth and age of sediments and therefore contribute relatively small quantities to cumulative phosphorus deposition at depths close to the anthropogenic horizon.

DISCUSSION AND CONCLUSIONS

The study of sediment and phosphorus deposition in Lake Griffin was undertaken in two phases utilizing survey and historic sediment cores. A total of 60 survey and 10 historic cores were collected during the two phases. Dry sediment mass, TP, NAIP, OM and NVS (ash fraction) were measured from sections obtained at 2.0- or 4.0-cm intervals in both sets of cores. Historic cores were dated with the CRS ²¹⁰Pb model (Appleby and Oldfield 1983) to establish time-dependent stratigraphic features and to calculate sediment and nutrient deposition rates. Survey cores were collected to measure deposition over the lake basin and were then calibrated to rates of sediment and phosphorus deposition measured in ²¹⁰Pb dated historic cores. The 40 survey cores collected during Phase I, designed as a feasibility study, were only 50 cm long which was too short to measure the depositional record of interest at many sites (Table 2). Survey cores from the south basin collected during Phase I were generally long enough to sample the anthropogenic record defined as sediments in which TP concentration increased above a baseline concentration. Therefore, 20 additional survey cores were collected in the embayment and north basin during Phase II. Results from Phase I showed that the lake could be divided into three zones, embayment, south basin and north basin (Figs. 1 and 2), based on sediment and phosphorus deposition. Results of Phase II confirmed that sediment and phosphorus deposition rates were greater in the north basin and embayment than in the south basin.

Historic cores were dated using a ²¹⁰Pb CRS model (Appleby and Oldfield 1983) because plots of excess ²¹⁰Pb activity did not decrease exponentially with either cumulative mass or depth. An exponential decrease in excess ²¹⁰Pb activity with depth would be expected only if the sedimentation rate were relatively constant. Instead, many profiles were relatively flat, showing little change in excess ²¹⁰Pb activity with depth (Figs. 9 and 10). Relatively flat profiles might be interpreted as an artifact of sediment mixing (Robbins and Herche 1993), but different stratigraphic patterns in ¹³⁷Cs activity among cores (Figs. 9 and 10) is not consistent with this interpretation. The large depth range of excess ²¹⁰Pb activity in cores and chemical, physical, and diatom microfossil data are also at variance with attributing the shape of excess ²¹⁰Pb profiles simply to sediment mixing. An increase in primary production of organic matter, however, could account for the deviation from an exponential profile that would be expected if sedimentation rate were constant. In fact, if organic matter sedimentation increased at approximately 3% annually and if primary production accounted for a constant proportion of sediment mass, the resulting increase in sedimentation would compensate for the radioactive decay of ²¹⁰Pb with a decay constant of 0.03114 (half-life of 22.2 yr). Given the highly organic sediments in Lake Griffin (>60% LOI), increased primary production of organic matter must be considered in interpreting and validating results obtained from the CRS model. Increased

primary production, particularly in the last 50 years, would be expected due to the large increase in TP concentration in both historic and survey cores (Figs. 6, 13 and 14).

Contract of the Contract of the second second

The temporal resolution of sediment chronological events with ²¹⁰Pb dating is affected by resuspension and mixing of sediments, but the time constant associated with these physical dynamics is unknown and should be investigated in the future. However, the depth of sediments with measurable excess ²¹⁰Pb activity can be used to estimate the magnitude of sedimentation because excess ²¹⁰Pb activity is not measurable at depths with ages equivalent to six or seven half-lives of ²¹⁰Pb (approximately 130 to 150 yr). Such sediments, therefore, can be assumed to be no older than approximately 150 years. Measurements of excess ²¹⁰Pb activity can be used to verify that the anthropogenic horizon, defined as the depth at which TP concentration increased above a baseline, represents sediments deposited since approximately 1850.

No stratigraphic horizons other than the anthropogenic horizon could be identified and correlated stratigraphically in historic or survey cores. Because temporal events could not be stratigraphically correlated, models were used to simulate decadal chronological sediment and nutrient deposition in survey and historic cores. Decadal mass, TP, and NAIP sedimentation rates were estimated for ten decades (100 yr) since 1895 using three methods (Table 13). The first (Relative by Zone) estimate was based on cumulative storage of dry mass, TP, and NAIP in survey cores (Table 12) and the relative mean increase in mass, TP, and NAIP sedimentation by decade determined from ²¹⁰Pb dated historic cores (Table 13). The second (Rate by Zone) and third (Rate Average) estimates were based entirely on decadal mass, TP and NAIP sedimentation rates determined from ²¹⁰Pb dated historic cores (Tables 5-7). Thus, estimated mass, TP and NAIP sedimentation rates were determined using cumulative storage in survey cores for the first estimate and decadal MSR, TPAR, and NAIPAR calculated from ²¹⁰Pb dated historic cores in the second and third estimates. Estimated whole-basin storage of dry mass, TP, and NAIP over the last 100 years was similar for the three methods except the first estimate for dry mass was 13% and 14% greater than the other two estimates (Table 14). Estimated dry mass storage by decade was similar for all three methods in the first 50 years, but diverged in the last 50 years.

Data from Phase I and II survey cores were used to estimate sediment, TP and NAIP storage in terms of quantity per unit area to the anthropogenic horizon (Tables 2 and 3). These data were then used to calculate decadal storage for each variable for the three zones of the lake (Table 13). Four Phase II cores from the embayment (15.4% of the surface area), 16 Phase II cores from the north basin (48.9% of the surface area) and 16.5 Phase I cores (one core was located on the boundary between the north and south basin so it was weighted as half in the calculation) from the south basin (35.7% of the surface area) were used in the calculations. It was assumed that averages represented storage in each subdivision of the basin. This assumption might be questioned because many survey stations in the elongated basin of Lake Griffin are adjacent to the shoreline (see Fig. 1). However, the extensive sediment survey by

Danek et al. (1991) showed that 95% of the lake basin was covered by organic sediments. Sand was found at two of the 40 Phase I survey stations and organic sediments were found at 38 or 95% of the stations (Appendix A, Table 2).

an the second start

Storage expressed as totals for the three zones in the lake was greater for dry mass, TP and NAIP in the north basin than in the other two areas combined. This result is expected because dry mass sedimentation is high in the north basin (Table 13) which represents nearly half of the total surface area (48.9%). Storage in the embayment which only represents 15.4% of the surface area is relatively large compared to the larger south basin (35.7% of the surface area) because the mass sedimentation rate is higher in the embayment. Differences in phosphorus concentration among zones are relatively unimportant in affecting storage by zone.

Estimated dry sediment, TP and NAIP storage by decade summed for the lake basin for the past 100 years were similar (Table 14). Estimated dry mass sedimentation ranged from 683,000 to 780,000 metric tons dry mass, a much larger relative range than that for either TP or NAIP sedimentation. The relative difference between the high and low estimate was 1.14 for dry mass sedimentation, but only 1.024 for TP sedimentation. Estimated TP sedimentation ranged from 554 to 568 metric tons and estimated NAIP sedimentation ranged from 218 to 241 metric tons for the lake basin. General agreement among the three estimates was good with the exception of the relatively high value for basin-wide dry mass sedimentation obtained with the relative by zone estimate. This finding probably results because more than 10% of the cumulative mass storage to the anthropogenic horizon occurred before 1895. The relative by zone estimate, therefore, overestimated storage in the most recent 100 years. An error in this correction results in less variability for TP or NAIP sedimentation because TP and NAIP concentrations decrease with depth and age of sediments and therefore contribute relatively small quantities to cumulative phosphorus deposition at depths close to the anthropogenic horizon.

Organic matter represented approximately 60% of the dry mass sedimented in the Lake Griffin basin. Therefore, increases in dry mass, TP, and NAIP sedimentation were driven by increased OMSR (Table 8). Average dry mass, TP, and NAIP sedimentation rates based on decadal time intervals increased over time in the lake basin (Tables 5-7) even though this pattern in MSR was not present in all historic cores (Figs. 20 and 21). Decadal storage of sediment mass, TP and NAIP in the lake basin also increased over time with the greatest quantities being stored in the last 30 years or from 1965-1994 (Table 14). For example, the proportion of TP stored in this period was 68.9%, 69.2% and 68.6%, respectively, for the first, second and third estimates. Relative changes in storage rates over the ten decades were greater for TP than for dry sediment (Table 14). TP storage increased more than 20 fold from the base decade (1895 to 1904) to the most recent decade (1985 to 1994 whereas dry sediment storage only increased 6 fold. This large difference is due mainly to greater TP concentrations in the most recent sediments (Figs. 6, 13 and 14).

Because sediments are highly organic (>60% LOI), the historic increase in mass sedimentation in Lake Griffin is inferred to represent increased organic production by primary producers. A nutrient-driven increase in primary production is inferred from the increase in TP and NAIP concentration upcore and in increased TPAR, NAIPAR and OMSR (Tables 6-8). Although TP concentration decreases in near-surface sediments of some cores (Figs. 6, 13 and 14; Appendices B-E), estimated decadal TP sedimentation rates do not reflect this decrease because sections of near-surface sediment represent a relatively small time interval (Appendix F). Data discussed in the next paragraph show that estimated areal rates of TP sedimentation in Lake Griffin are similar to recent estimates for Lake Apopka (Schelske 1997a).

Net TP sedimentation in Lake Griffin was evaluated to determine if sediments were a significant sink for phosphorus. Estimated TP sedimentation in Lake Griffin during the two most recent decades was compared with recent estimates of TP sedimentation in other Florida lakes. The average whole-lake TP sedimentation in Lake Griffin was 15.6 metric tons yr⁻¹ which was calculated from three estimates of TP sedimentation in the two most recent decades or 19.1 metric tons yr⁻¹ if based only on the three estimates from the most recent decade (Table 14). Averaged over the lake basin, net TP sedimentation in Lake Griffin is 410 mg m $^{-2}$ yr⁻¹ or 501 mg m⁻² yr⁻¹ if only estimates from the most recent decade are averaged. The higher estimate undoubtedly is more representative of recent sedimentation than the more conservative estimate based on sedimentation averaged over 20 years. Several estimates of TP sedimentation are available for Lake Apopka. Net TP sedimentation from a mass balance study conducted in 1977 was 49.1 metric tons yr⁻¹ (Brezonik et al. 1978), or 393 mg m⁻² yr⁻¹. TP sedimentation estimated from estimates of TP storage in sediments was 72.7 and 52.5 metric tons yr⁻¹, respectively, for decades from 1986-1995 and 1976-1985 (Schelske 1997a), or 582 and 420 mg m⁻² yr⁻¹, respectively. Finally, Brezonik and Engstrom (In press) compared net TP sedimentation of 249 mg m⁻² yr⁻¹ determined from loading estimates to average TP sedimentation in ²¹⁰Pb dated cores of 371 mg m⁻² yr⁻¹ in Lake Okeechobee. Annual rates of net TP sedimentation in Lake Griffin, Lake Apopka, and Lake Okeechobee were converted to water mass equivalents of TP in overlying waters by dividing by mean water depth. Concentration equivalents in overlying waters were 174 and 212 μ g L⁻¹ for Lake Griffin, 231-342 µg L⁻¹ for Lake Apopka and 92-137 µg L⁻¹ for Lake Okeechobee. These concentrations are greater than the mean water column TP concentration for each lake, 78 μ g L⁻¹ (Canfield et al. 1992) and 119 μ g L⁻¹ (Fulton 1995) for Lake Griffin, approximately 200 μ g L⁻¹ for Lake Apopka and approximately 100 μ g L⁻¹ for Lake Okeechobee. Data on net TP sedimentation rates, therefore, indicate that the sediments in Lake Griffin are a significant sink for TP over periods of decades because the annual TP sedimentation rate is greater than the average quantity of TP in the overlying waters.

The TP retention coefficient in Lake Griffin can be calculated directly from the average estimated net TP sedimentation obtained in the present study and the average annual TP loading

estimated by Fulton (1995). Net TP sedimentation was 15.6 metric tons yr⁻¹ averaged over two decades or 19.1 metric tons yr⁻¹ averaged over the most recent decade and average annual loading was 37.8 metric tons yr⁻¹. TP retention coefficients calculated from these data are 0.413 or 0.505, less than either the estimated (0.739) or predicted (0.519) TP retention coefficients (Fulton 1995). TP residence times in the water column based on TP sedimentation of 410 mg m⁻² yr⁻¹ are 0.448 yr if the water column TP concentration is 78 µg L⁻¹ and 0.684 yr if the water column TP concentration is 501 mg m⁻² yr⁻¹, TP residence times are 0.368 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 78 µg L⁻¹ and 0.561 yr if the water column TP concentration is 119 µg L⁻¹. These comparisons indicate that net TP retention, although lower than reported by Fulton (1995), is still large enough to conclude that sediments are a significant sink for phosphorus in Lake Griffin on decadal time scales.

On shorter time scales, as discussed below, sediment resuspension plays an important role in nutrient and phytoplankton dynamics. Resuspension of bottom sediments can provide an important source of internal phosphorus loading. In Lake Griffin, high concentrations of phosphorus are found in sediments at the mud-water interface. Based on work in Lake Apopka, it seems likely that a significant fraction of the phosphorus in near-surface sediments is found in meroplankton (Kenney 1997). Meroplanktonic algae are adapted to survive for long periods (decades) in the aphotic environment on the lake bottom and then to become metabolically active when resuspended in the water column (Carrick et al. 1993). After sinking to the sediment surface, meroplanktonic algae assimilate and store nutrients that can be used for growth during periods of resuspension (Schelske et al. 1995). The meroplanktonic diatom, A. ambigua, comprises a large fraction of the diatom assemblage in near-surface sediments (Figs. 23-25). The frequency of meteorological events in Lake Griffin that resuspend meroplankton is not known, but in Lake Apopka (a larger lake) and other shallow lakes such events are so common that they play an important role in phytoplankton dynamics and produce significant short-term changes in phytoplankton standing crop (Carrick et al. 1993, Schelske et al. 1995). Storage of phosphorus by the algal community in near-surface sediments and subsequent burial of dormant algae, therefore, may be one of the factors contributing to high storage of phosphorus in recent sediments (Tables 12-14).

Given the high relative abundance of *Aulacoseira* in Lake Griffin sediments (Figs. 23-25), both chemical and biogeochemical processes must be considered in interpreting the dynamics of sedimentation, nutrient sequestering, and nutrient release in the near-surface sediments. Pore-water profiles of soluble phosphorus (phosphate) and soluble nitrogen (ammonium) at depths >8 cm in Lake Apopka are those attributed to geochemical processes (Reddy et al. 1996). Relatively low phosphate concentrations in the upper 8 cm in these sediments indicate that diffuse flux of phosphate into overlying waters is relatively unimportant. Reddy et al. (1996) conclude that the presence of a large algal mass (dominated by the meroplanktonic diatom, *Aulacoseira*) in the upper 5-10 cm of the sediment column may be an active sink for phosphate released from deeper sediments (see Van Luijn et al. 1995), adding a biological component to these dynamics and effectively altering the release of soluble phosphorus from the sediments (see Schelske et al. 1995). It is known that dormant meroplankton survive in a viable form for decades in sediments (Schelske et al. 1995). Such algae provide a potentially large phosphorus sink in lakes, particularly those in which dormant cells have stored excess phosphorus as polyphosphate (Schelske et al. 1995, Kenney 1997). Meroplanktonic algae, therefore, also are likely to be an important component of the biogeochemical cycle of phosphorus in Lake Griffin.

Paleolimnologic investigations of diatom microfossils in Florida lakes have demonstrated consistent stratigraphic patterns in a number of lakes. Four taxa that are indicators of either eutrophic or hypereutrophic conditions are dominant in eutrophic to hypereutrophic lakes in which macrophytes presently are relatively unimportant (Whitmore 1989). These taxa are either A. *italica* or A. *ambigua* which are meroplanktonic (Carrick et al. 1993) and three species formerly in the genus Fragilaria: P. brevistriata, S. pinnata, and several subspecies of S. construens. The three sets of entities formerly in the genus Fragilaria will be referred to collectively by that genus for purposes of convenience. In some lakes either A. *italica* or A. *ambigua* is dominant in surface sediments whereas in other lakes one or more of the three *Fragilaria* entities are dominant. At depth, a very different flora is commonly found. It is distinguished by periphytic (benthic) taxa including the genera *Pinnularia*, Nitzschia, Navicula, Amphora, Epithemia, Gomphonema, Stauroneis, and Cymbella. In addition, meroplanktonic diatoms in the genus Aulacoseira and planktonic diatoms in the genus Cyclotella may be present. The microfossil flora at depth is more diverse and generally is used to infer a macrophyte-dominated lake, lake water with higher transparency and lower nutrient content than at present, or some combination of both.

In this discussion of diatom microfossils in the sediments of eutrophic or hypereutrophic lakes, Case 1 lakes will be those in which either *A. italica* or *A. ambigua* is dominant in surface sediments and Case 2 lakes will be those in which one or more of the three *Fragilaria* entities are dominant in surface sediments. Whether *A. italica* and *A. ambigua* represent separate taxonomic entities or whether the same entity has been identified by different investigators is not resolved. For the purposes of this discussion, it is assumed that both *A. italica* or *A. ambigua* are meroplanktonic.

Lake Apopka provides a good example to illustrate Case 1 lakes. The lake is presently hypereutrophic with an average TP of 194 μ g L⁻¹ (Conrow et al. 1993). It is known that the primary producer community shifted abruptly from macrophyte dominance to phytoplankton dominance in 1947 (Schelske et al. 1997). The microfossil assemblage in Lake Apopka before 1947 was a diverse assemblage consisting of *A. italica* and benthic species that were not important in terms of relative abundance after 1947. Case 2 species in this lake were most important after 1947 and then *A. italica* dominated the assemblage after approximately 1980.

Since then *A. italica* comprised approximately 80% of the microfossil assemblage. It has been shown that nutrient enrichment of lake waters increased after 1947 (Schelske et al. 1997). Therefore, the recent microfossil assemblage dominated by *A. italica* is associated with hypereutrophic conditions (194 μ g TP L⁻¹) in Lake Apopka and the assemblage with the greatest proportion of the *Fragilaria* species reflected a lower degree of nutrient enrichment during the early part of the phytoplankton phase.

The microfossil assemblage in Lake Griffin and its historic changes are similar to those found in Lake Apopka. *A. ambigua* comprised 60% or more of the microfossil assemblage in recent sediments, Case 2 species are most abundant at intermediate depths, and benthic species are found at the deepest depths in LG-11H and LG-26H but not in LG-44H (Figs. 23-25). The benthic assemblage, if present in LG-44H, was not sampled because the core was collected at a high sedimentation site and multiple depths deeper than ²¹⁰Pb dated sediments such as those counted in the other two cores were not studied.

Different microfossil assemblages were found in the surface sediments of two other lakes in the Ocklawaha chain (Schelske 1997b). Lake Eustis is clearly an example of a Class 1 lake. *A. ambigua* in two cores from this lake averaged 68% of the surface microfossil assemblage. Case 2 species were found at deeper depths. By contrast, *A. ambigua* comprises only 33% of surface microfossil assemblage in Lake Dora and *P. brevistriata* is the next most abundant taxon. These results based on the pattern found in Lake Apopka indicate that Lake Dora is less nutrient enriched than Lake Eustis, Lake Apopka, or Lake Griffin, other lakes studied in the Ocklawaha chain. According to data summarized by Fulton (1995), the average annual TP concentration in Lake Eustis was 50 μ g L⁻¹ or less in several years and only exceeded 100 μ g L⁻¹ in one year; whereas the annual TP concentration in Lake Dora was greater, exceeding 100 μ g L⁻¹ in most years and being >250 μ g L⁻¹ in one year. Data on water chemistry, therefore, are inconsistent with the inference that the average TP concentration is lower in Lake Dora than in Lake Eustis.

Examples of Case 2 lakes include Lake Jesup and Lake Hollingsworth, two hypereutrophic lakes. In Lake Jesup A. ambigua comprises <1.0% of the microfossil assemblage in surface sediments of three cores (Cable et al. 1997). In this lake, P. brevistriata is the most abundant taxon in the surface sediments. The microfossil assemblage in Lake Hollingsworth is dominated by the Fragilaria assemblage (Brenner et al. 1995). This lake, however, differs from Lake Jesup in that P. brevistriata is more important at depth and the importance of S. pinnata is greatest in surface sediments. A. ambigua and A. italica are also present in low relative abundance in Lake Hollingsworth. Lake Hollingsworth with a surface area of only 144 ha is by far the smallest lake used in this comparison.

No single hypothesis can be advanced to explain the differences in near-surface diatom microfossil assemblages in hypereutrophic Florida lakes. The hypothesis that nutrient

an faith an an an an Arthread an

enrichment increases phytoplankton standing crop and decreases water transparency (Schelske et al. 1997) is consistent with Case 1 lakes. This hypothesis invokes shading of the benthic *Fragilaria* assemblage and replacement with meroplanktonic *Aulacoseira* during nutrient enrichment. It is also consistent with the scenario in which macrophytes are replaced by phytoplankton during nutrient enrichment (Scheffer et al. 1993). The nutrient enrichment hypothesis, however, is not consistent with data from Case 2 lakes. Here, the benthic *Fragilaria* assemblage appears to exist in lakes with a mean depth much greater than the photic depth. These data indicate that the *Fragilaria* assemblage may be meroplanktonic. Therefore, other factors must be considered to explain differences observed among lakes.

Differences in physical factors may be important in explaining the distribution of diatom microfossils among hypereutrophic lakes. A refuge for benthic species may exist in lakes if depth varies markedly over the lake basin. Comparing hypsographic curves with photic depths for the lakes in question is needed to resolve this question. Size of lakes is also important. Case 1 lakes, particularly Lake Apopka, are large. In Lake Apopka, the area of bottom which is in the photic zone is very small; therefore, the meroplanktonic strategy is important in this system (Schelske et al. 1995). Lake Dora and Lake Jesup (Case 2 lakes) are moderately sized lakes, but both have an east-west orientation that may affect the role of resuspension because the long axis of these lakes is not in the path of prevailing winds. In small lakes, benthic diatoms produced in a relatively small littoral area (refuge) could contribute significantly to the microfossil flora. If the refuge hypothesis does not explain the presence of the benthic Fragilaria assemblage in surface sediments then species in this assemblage also must be meroplanktonic. Therefore, meroplanktonic species may have a competitive advantage in such lakes. Meroplanktonic Aulacoseira may replace the Fragilaria assemblage if Aulacoseira are better adapted as meroplankton. This hypothesized competitive advantage for meroplanktonic algae in hypereutrophic lakes (Carrick et al. 1993, Schelske et al. 1995) does provide a mechanism to explain the observed patterns of microfossil succession in Lake Apopka (Schelske et al. 1997).

Stratigraphic changes in the P/B ratio of microfossil diatoms (Figs. 29-31) and the TC/TN ratio (Figs. 15 and 16b) in Lake Griffin are consistent with known changes in macrophyte cover. Low P/B ratios beginning about 1950 and ending in the 1970s in LG-26H and LG-44H (Figs. 30 and 31) may reflect high abundance of aquatic macrophytes and subsequent decrease in plant cover, but this trend is not obvious in LG-11H (Fig. 29). The increase in P/B ratio in sediments deposited in the 1980s and 1990s of all three cores (Figs. 29-31) reflects an increase in planktonic diatoms, primarily *A. ambigua* (Figs. 23-25). A decrease in the TC/TN ratio also has been used as a proxy for a an increase in phytoplankton relative to macrophytes in the primary producer community (Schelske et al. 1997). The TC/TN ratio decreases markedly after 1950 at LG-11H and LG-26H (Fig. 15) and after 1975 at LG-44H (Fig. 16b). Thus, both P/B and TC/TN ratios provide evidence of increased phytoplankton

الحالية المراجعة المحافظ المراجع المراجع المراجع المراجع المحافة المراجع المراجع المحافة المحافة المحافة المحاف

abundance after macrophytes decreased in Lake Griffin. In Lake Apopka, these patterns were inferred to reflect increased abundance of phytoplankton and the associated decrease in transparency. If decreased water transparency can be inferred from the P/B ratio of microfossil diatoms in Lake Griffin, then the microfossils provide evidence that water transparency decreased markedly with the observed increase in sediment TP concentration after 1950 (Figs. 13 and 14). Large P/B ratios were found in recent sediments with high TP concentrations and during the period of highest TP sedimentation rates (Table 13).

Some data collected during this investigation of Lake Griffin point to improved water quality in recent sediments. Such a decrease in the 1980s and 1990s might be anticipated because a trend of decreased TP concentration in the water column is indicated by SJRWMD data collected since 1977 (Fulton, personal communication). Diatom-inferred TP concentrations in the water column decreased in near-surface sediments in two of the three cores studied, an indication that TP concentration in the water column decreased. Lower TP and NAIP concentrations in near-surface sediments of some historic and survey cores also indicates that TP concentration in the water column decreased. However, lower TP concentrations in cores also may reflect dilution by labile organic matter in near-surface sediments. Diagenesis (decomposition) of this labile organic matter during burial will result in higher TP concentration as sediment mass is reduced. Both of these possible signals of reduced TP concentration were found only in sediments deposited in the 1990s. Therefore, an indication of reduced TP sedimentation was not found in analyses that were based on decadal weighting. The signal inferred from diatom microfossils of improved water quality is not confounded by averaging data from more than one section and apparently is not blurred completely by sediment mixing. One of the possible explanations for the absence of signals of reduced TP in the water column in the 1980s is blurring of the sediment record by mixing.

Several lines of paleolimnological evidence point to nutrient enrichment and its consequences on ecosystem processes in Lake Griffin in the 20th century. Sediment TP concentration increased five- to six-fold above the anthropogenic baseline concentration. Dry mass sedimentation rate, which is controlled by organic matter sedimented as a by-product of primary production, increased upcore; TP sedimentation rates determined from ²¹⁰Pb dated cores increased upcore with a sharp increase beginning about 1950; diatom-inferred water column TP concentrations generally increased with a sharp break early in the century; the planktonic/benthic (P/B) ratio of diatom microfossils an, index of nutrient enrichment, increased in recent sediments; and the TC/TN ratio of organic matter decreased in recent sediments. High P/B ratios of diatom microfossils and low TC/TN ratios in the 1980s and early 1990s are inferred as evidence of the period of highest nutrient enrichment. These signals of nutrient enrichment occur after development of the Emeralda muck farms in the early 1950s through the 1970s (Marburger and Godwin 1996), or at a time when nutrient inputs from such sources probably peaked (Fulton 1995). In Lake Apopka,

- 91 -

increases in P/B ratios of diatom microfossils and decreases in TC/TN ratios were attributed to replacement of macrophytes by phytoplankton as a result of nutrient enrichment (Schelske et al. 1997). Similar changes in P/B and TC/TN ratios in Lake Griffin may also reflect loss of macrophytes due to nutrient enrichment (Scheffer et al. 1993).

Two possible signs of recent, decreased nutrient loading were found in Lake Griffin sediments: a decrease in sediment TP concentration in the near-surface sediments of most cores and a decrease in diatom-inferred water column concentrations in near-surface sediments in two of the three cores studied. The decrease in sediment TP concentration was either too small or in such a small portion of the sediment record that it did not produce a corresponding decrease in TP sedimentation rate in the most recent decade of the sediment record. A decrease in phosphorus sedimentation would be expected if phosphorus loading to the lake basin and phosphorus concentrations in the water column decreased.

In conclusion, results presented in this report show that phosphorus loading has affected the trophic state of Lake Griffin in the 20th century, but most severely in the second half of this century; that sediments are a significant sink for phosphorus and therefore that reductions in phosphorus loading can be expected to improve water quality on time scales of years or one or two decades; that improvements in water quality can be predicted from data on historic phosphorus loading (not a part of this study); and that permanent sedimentation of stored phosphate in meroplanktonic algae may be an important phosphorus sink and thus an unrecognized factor in assessing the predicted time scales required for improvements in water quality. Burial and sedimentation of stored phosphorus in meroplanktonic algae, a potentially important phosphorus sink, should be investigated in greater detail to evaluate the environmental implications for long-term phosphorus dynamics.

LITERATURE CITED

and the part of the second

- Appleby, P. G., and F. Oldfield. 1983. The assessment of ²¹⁰Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29-35.
- Benton, J. 1994. Draft Lake Griffin restoration plan. Florida Game and Fresh Water Commission, Eustis Fisheries Research Laboratory, Eustis, Florida.
- Binford, M. W. 1990. Calculation and uncertainty analysis of ²¹⁰Pb dates for PIRLA project lake sediment cores. J. Paleolim. 3:253-267.
- Brenner, M., and M. W. Binford. 1988. Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. Aquat. Sci. 45:294-300.
- Brenner, M., T. J. Whitmore, J. H. Curtis, and C. L. Schelske. 1995. Historical ecology of a hypereutrophic Florida lakes. Lake and Reserv. Manage. 11:255-271.
- Brenner, M., T. J. Whitmore, M. S. Flannery, and M. W. Binford. 1993. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake and Reserv. Manage. 7:209-217.
- Brezonik, P. L., C. D. Pollman, T. L. Crisman, J. N. Allison, and J. L. Fox. 1978.
 Limnological studies on Lake Apopka and the Oklawaha chain of lakes. 1. Water quality in 1977. Report No. ENV-07-78-01. Department of Environmental Engineering Sciences, University of Florida, Gainesville. 283 pp.
- Brezonik, P. L., and D. R. Engstrom. In press. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. J. Paleolim.
- Cable, J. E., C. L. Schelske, P. S. Hansen, W. F. Kenney, and T. J. Whitmore. 1977. Sediment and nutrient deposition in Lake Jesup, Florida (USA). Final Report. St. Johns River Water Management District.
- Canfield, D. E., Jr., S. Fisher, M. V. Hoyer, and C. A. Horsburgh. Florida Lakewatch Data-1992. University of Florida Institute of Food and Agricultural Sciences, Gainesville. 345 pp.
- Carrick, H. J., F. J. Aldridge, and C. L. Schelske. 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr. 38:1179-1192.
- Conrow, R., W. Godwin, M. F. Coveney, and L. E. Battoe. 1993. SWIM PLAN for Lake Apopka. 163 pp.
- Danek, L. J., T. A. Barnard, and M. S. Tomlinson. 1991. Bathymetric and sediment thickness analysis of seven lakes in the Upper Oklawaha River Basin. Publication 90-17-0400. St. Johns River Water Management District, Palatka, Florida.
- Fisher, M. M., M. Brenner, and K. R. Reddy. 1992. A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J. Paleolim. 7:157-161.

- Fulton, R. S., III. 1995. External nutrient budget and trophic state modeling for lakes in the upper Ocklawaha River basin. Technical Publication SJ95-6. St. Johns River Water Management District, Palatka, Florida.
- Fulton, R. S., III, G. Hall, C. Ware, M. Coveney, and G. Bethune. 1991. Draft SWIM plan for the upper Oklawaha River basin. St. Johns River Water Management District, Palatka, Florida.
- Håkanson, L., and M. Jansson. 1983. Principles of lake sedimentology. Springer-Verlag, NY. 316 pp.
- Kenney, W. F., III. 1997. A comparison of chemical assays for the estimation of bioavailable phosphorus in Lake Apopka sediments. M. S. Thesis, University of Florida, Gainesville. 67 pp.
- Marburger, J. E., and W. F. Godwin. 1996. Emeralda Marsh Conservation Area: Conceptual restoration plan. St. Johns River Water Management District, Dept. Water Res. Tech. Rept. No. 20.
- Oldfield, F., and P. G. Appleby. 1984. Empirical testing of ²¹⁰Pb-dating models for lake sediments. pp. 93-124. In: E. Y. Haworth and J. W. G. Lund (eds.), Lake sediments and environmental history: Studies in palaeolimnology and palaeoecology in honour of Winifred Tutin. Univ. Minnesota Press, Minneapolis.
- Reddy, K. R., M. M. Fisher, and D. Ivanoff. 1996. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. J. Environ. Qual. 25:363-371.
- Rippey, B., and N. J. Anderson. 1996. Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Environ. Sci. Technol. 30:1786-1788.
- Robbins, J. A., and L. R. Herche. 1993. Models and uncertainty in ²¹⁰Pb dating of sediments. Verh. Internat. Verein. Limnol. 25:217-222.
- Scheffer, M., S. H. Hosper, M-L. Meijer, B. Moss, and E. Jeppesen. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8:275-279.
- Schelske, C. L. 1997a. Sediment and Phosphorus Deposition in Lake Apopka. Final Report.St. Johns River Water Management District. Contract #96W213.

Schelske, C. L. 1997b. Sediment and Phosphorus Deposition in Lake Eustis and Lake Dora. Draft Phase I Report. St. Johns River Water Management District. Contract #96W213.

Schelske, C. L., H. J. Carrick, and F. J. Aldridge. 1995. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? J. N. Am. Benthol. Soc. 14:616-630.

Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry, and C. D. Campbell. 1986.
Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143:79-86.

Schelske, C. L., C. M. Donar, and E. F. Stoermer. 1997. A test of paleolimnologic proxies for the planktonic/benthic ratio of microfossil diatoms in Lake Apopka. Paper accepted for publication, 14th International Diatom Symposium, September 2-8, 1996, Tokyo, Japan. Schelske, C. L., A., Peplow, M. Brenner, and C. N. Spencer. 1994. Low-background gamma counting: Applications for ²¹⁰Pb dating of sediments. J. Paleolim. 10:115-128.

en g

- Van der Werff, A. 1955. A new method of concentrating and cleaning diatoms and other organisms. Verh. Internat. Verein. Limnol. 12:276-277.
- Van Luijn, F., D. T. Van der Molen, W. J. Luttmer, and P. C. M. Boers. 1995. Influence of benthic diatoms on the nutrient release from sediments of shallow lakes recovering from eutrophication. Wat. Sci. Tech. 32:89-97.
- Verardo, D. J., P. N. Froelich, and A. McIntyre. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res. 37:157-165.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882-895.
- Whitmore, T. J., M. Brenner, and C. L. Schelske. 1996. Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J. Paleolim. 15:207-221.
- Williams, J. D. H., T. P. Murphy, and T. Mayer. 1976. Rates of accumulation on phosphorus forms in Lake Erie sediments. J. Fish Res. Bd. Can. 33:430-439.
APPENDIX A

Field core description and station location for survey and historic cores collected during Phase I and Phase II, Lake Griffin.

Key to Field Notes

- Station Location Data for stations are latitude and longitude values obtained from a Trimble Navigation Global Positioning System Pathfinder. Station locations were stored as waypoint values on the system. An initial reading was taken after anchoring on station and a second reading was taken when work was completed. Only one reading is recorded here.
- Sediment Survey Data include information on water depth, sediment thickness, and descriptions of the sediment cores retrieved.
- Depth of the water column was determined by sounding with a Secchi disc on a metered line.
- Depth to hard bottom was measured by inserting metered electrical conduit rods into the sediment until they bottomed on hard, sandy deposits.
- Soft sediment thickness was estimated by subtracting the depth of the water column from the depth to hard bottom.

Sediment core length was determined by measuring the retrieved core with a meter stick.

Sediment core descriptions were made before sediment cores were extruded. Additional descriptions were made as the cores were sectioned.

LAKE GRIFFIN SURVEY CORES - PHASE I

and the second s

Station 1

.

Station 4

Core ID:	LG-1-93	Core ID:	LG-4-93
Collected: Location:	13 December 1993 28° 50' 47.3" N 81° 52' 51.4" W	Collected: Location:	13 December 1993 28° 49' 39" N 81° 51' 17" W
Length: Description:	134 cm Dark organic sediments to 68 cm. Dark organic sediments with plant fibers 68-134 cm.	Length: Description:	137 cm Dark organic sediments to 137 cm
Water Depth:	196 cm	Water Depth:	260 cm
Soft Sediment Thickness:	404 cm	Soft Sediment Thickness:	340 cm
Station 2		Station 5	
Core ID:	LG-2-93	Core ID:	LG-5-93

Collected:	13 December 1993	Collected:	13 December 1993
Location:	28° 50' 19.3" N 81° 52´ 32.6" W	Location:	28° 50' 01.2" N 81° 51´ 18.9" W
Length:	110 cm	Length:	147 cm
Description:	Dark organic sediments 0- 110 cm.	Description:	Dark organic sediments to 147 cm.
Water Depth:	216 cm	Water Depth:	280 cm
Soft Sediment		Soft Sediment	
Thickness:	384 cm	Thickness:	320 cm

Station 3

Core ID:	LG-3-93	Core ID:	LG-6-93
Collected: Location:	13 December 1993 28° 49' 53.1" N 81° 52' 12.7" W	Collected: Location:	13 December 1993 28° 50' 24.4" N 81° 51' 19.5" W
Length: Description:	120 cm Dark organic sediments from 0-120 cm.	Length: Description:	142 cm Dark organic sediments to 142 cm.
Water Depth:	230 cm	Water Depth:	286 cm
Soft Sediment Thickness:	370 cm	Soft Sediment Thickness:	314 cm

Core ID:	LG-7-93	Core ID:	LG-10-93
Collected: Location: Length: Description:	13 December 1993 28° 50' 45.5" N 81° 51' 19.3" W 129 cm Dark organic sediments to 129 cm.	Collected: Location: Length: Description:	17 December 1993 28° 49' 42.2" N 81° 50' 57.4" W 123 cm Dark organic sediments to 123 cm.
Water Depth:	272 cm	Water Depth:	220 cm
Soft Sediment Thickness:	328 cm	Soft Sediment Thickness:	380 cm
Station 8		Station 11	
Core ID:	LG-8-93	Core ID:	LG-11-93
Collected: Location:	13 December 1993 28° 51' 07.8" N 81° 51 23.3" W	Collected: Location:	17 December 1993 28° 50' 07.0" N 81° 50' 57.5" W
Length: Description:	131 cm Dark organic sediments to 131 cm.	Length: Description:	151 cm Dark organic sediments to 124 cm. With plant fibers from 124- 151 cm.
Water Depth:	242 cm	Water Depth:	265 cm
Soft Sediment Thickness:	358 cm	Soft Sediment Thickness:	335 cm
Station 9		Station 12	
Core ID:	LG-9-93	Core ID:	LG-12-93
Collected: Location: Length: Description:	 13 December 1993 28° 53' 18.6" N 81° 51' 28.5" W 147 cm Dark organic sediments to 92 cm. And plant fibers to 147 	Collected: Location: Length: Description:	17 December 1993 28° 50' 31.4" N 81° 50' 57.6" W 140 cm. Dark organic sediments to 140 cm.
Water Devide	cm.	Watan Dautha	260
water Deptn:	140 CM	water Deptn:	200 CM
Soft Sediment Thickness:	200 cm	Soft Sediment Thickness:	340 cm

Station 16

Core ID:	LG-13-93	Core ID:	LG-16-93
Collected:	17 December 1993	Collected:	17 December 1993
Location:	28° 50' 55.1" N 81° 50' 57.6" W	Location:	28° 52' 08.1" N 81° 50′ 58.1" W
Length:	124 cm	Length:	129 cm
Description:	Dark organic sediment with small gastropods to 20 cm. Dark sediment only from 20- 124 cm.	Description:	Dark organic sediments to 129 cm.
Water Depth:	260 cm	Water Depth:	210 cm
Soft Sediment	205 cm	Soft Sediment	208 am
THICKNESS.	505 CIII	THICKNESS.	200 UII

Station 14

...

Station 17

Station 18

Core ID:	LG-14-93	Core ID:	LG-17-93
Collected:	17 December 1993	Collected:	17 December 1993
Location:	28° 51' 20.7" N 81° 50' 57.7" W	Location:	28° 52' 31.4" N 81° 50′ 58.1" W
Length:	140 cm	Length:	54 cm
Description:	Dark organic sediments to 140 cm.	Description:	0-29 cm, dark organic sediments; 29-39 cm, brown sand with gray clay to 39-54 cm.
Water Depth:	280 cm	Water Depth:	300 cm
Soft Sediment Thickness:	295 cm	Soft Sediment Thickness:	30 cm

Core ID:	LG-15-93	Core ID:	LG-18-93
Collected: Location:	17 December 1993 28° 51' 43.2" N 81° 50′ 58 2" W	Collected: Location:	17 December 1993 28° 52' 56" N 81° 50′ 57 8" W
Length: Description:	126 cm Dark organic sediment to 126 cm.	Length: Description:	137 cm Dark organic sediments to 137 cm.
Water Depth:	220 cm	Water Depth:	215 cm
Soft Sediment Thickness:	350 cm	Soft Sediment Thickness:	155 cm

Station 22

Core ID:	LG-19-93	Core ID:	LG-22-93
Collected:	17 December 1993	Collected:	17 December 1993
Location:	28° 53' 20.2" N 81° 50' 58" W	Location:	28° 54' 32.9" N 81° 50′ 57.8" W
Length:	134 cm	Length:	136 cm
Description:	Dark organic sediments to 134 cm.	Description:	Dark organic sediments to 136 cm.
Water Depth:	210 cm	Water Depth:	165 cm
Soft Sediment		Soft Sediment	202
Thickness:	330 cm	Thickness:	205 cm

Station 20

Station 23

Core ID:	LG-20-93	Core ID:	LG-23-93
Collected:	17 December 1993	Collected:	17 December 1993
Location:	28° 53' 44.5" N 81° 50′ 58.1" W	Location:	28° 54' 56.9" N 81° 50′ 58.0" W
Length:	17 cm	Length:	148 cm
Description:	Dark organic sediments to 0.5 cm. Brown sand 0.5-8.5 cm and gray clay from 8.5-	Description:	Dark organic sediment to 148 cm.
	17 cm.	Water Depth:	158 cm
Water Depth:	275 cm	Soft Sediment Thickness:	202 cm
Soft Sediment Thickness:	20 cm		

Station 21

Core ID:	LG-21-93	Core ID:	LG-24-93
Collected: Location:	17 December 1993 28° 54' 07.5" N 81° 50′ 57 5" W	Collected: Location:	14 December 1993 28° 50' 08.8" N 81° 50' 22.3" W
Length: Description:	142 cm Dark organic sediments to 142 cm.	Length: Description:	131 cm Dark organic sediment to 131 cm.
Water Depth:	170 cm	Water Depth:	275 cm
Soft Sediment Thickness:	275 cm	Soft Sediment Thickness:	185 cm

Core ID:	LG-22-93	Core ID:	LG-28-93
Collected: Location:	14 December 1993 28° 50' 33.5" N 81° 50' 25 3" W	Collected: Location:	18 December 1993 28° 52' 07.2" N 81° 50′ 23.3" W
Length: Description:	148 cm Dark organic sediments to 148 cm.	Length: Description:	126 cm Dark organic sediment to 126 cm.
Water Depth:	260 cm	Water Depth:	200 cm
Soft Sediment Thickness:	340 cm	Soft Sediment Thickness:	170 cm
Station 26		Station 29	
Core ID:	LG-26-93	Core ID:	LG-29-93
Collected: Location:	18 December 1993 28° 50' 55.5" N 81° 50" 23 7" W	Collected: Location:	18 December 1993 28° 52' 31.3" N 81° 50′ 23 7" W
Length: Description:	130 cm Light brown organic sediments with gastropods to 38 cm; from 38-130 cm dark brown sediments.	Length: Description:	138 cm Dark organic sediment to 73 cm. From 73-114 cm plant fibers, sand at 114-122. From 122-123 cm gray clay
Water Depth:	250 cm	Water Depth:	gray clay only to 138 cm.
Soft Sediment Thickness:	265 cm	Soft Sediment Thickness:	90 cm
Station 27		Station 30	
Core ID:	LG-27-93	Core ID:	LG-30-93
Collected: Location:	18 December 1993 28° 51' 19.3" N 81° 50′ 24.0" W	Collected: Location:	18 December 1993 28° 52' 55.7" N 81° 50′ 23.9" W
Length: Description:	17 cm Sand to 6 cm and gray clay from 6-17 cm.	Length: Description:	103 cm Dark organic sediment to 88 cm. From 88-93 cm, sand. Gray clay with small
Water Depth:	310 cm	Water Depth:	gastropods from 93-103 cm 255 cm
Soft Sediment Thickness:	10 cm	Soft Sediment Thickness:	85 cm

Station 34

Core ID:	LG-31-93	Core ID:	LG-34-93
Collected:	18 December 1993	Collected:	18 December 1993
Location:	28° 53' 20.4" N 81° 50′ 23.9" W	Location:	28° 54' 33.1" N 81° 50′ 23.9" W
Length:	136 cm	Length:	142 cm
Description:	Dark organic sediment to 136 cm.	Description:	Dark organic sediment to 132 cm. with sand from 132-134 cm. and clay from 134-142
Water Depth:	220 cm	Water Depth:	cm. 170 cm
Soft Sediment		Water Depair	170 011
Thickness:	150 cm	Soft Sediment Thickness:	140 cm

Station 32

Core ID:	LG-32-93	Core ID:	LG-35-93
Collected: Location:	18 December 1993 28° 53' 44.1" N 81° 50" 23 9" W	Collected: Location:	18 December 1993 28° 54' 57.1" N 81° 50" 24.0" W
Length: Description:	135 cm Dark brown organic sediments to 135 cm.	Length: Description:	142 cm Dark brown sediments with plant fibers to 142 cm.
Water Depth:	180 cm	Water Depth:	160 cm
Soft Sediment Thickness:	180 cm	Soft Sediment Thickness:	160 cm
Station 33		Station 36	
Core ID:	LG-33-93	Core ID:	LG-36-93
Collected: Location:	18 December 1993 28° 54' 07.6" N 81° 50" 24 0" W	Collected: Location:	18 December 1993 28° 55 21.1" N 81° 50" 24 1" W
Length: Description:	98 cm Dark organic sediments to 86 cm; from 86-91 cm sand with gray clay from 91-98 cm.	Length: Description:	125 cm Dark organic sediments to 70 cm. with plant fibers from 70-105 cm. Sand from 105- 111 cm and gray clay from
Water Depth:	205 cm	Water Depth:	111-125 cm. 160 cm
Soft Sediment Thickness:	95 cm	Soft Sediment Thickness:	110 cm

Core ID:	LG-37-93	Core ID:	LG-39-93
Collected: Location: Length: Description:	18 December 1993 28° 50' 41.3" N 81° 49'51.6" W 114 cm Dark organic sediment to 102 cm. with sand from 102- 102.5 cm. then dark organic sediments from 102.5-114 cm.	Collected: Location: Length: Description:	18 December 1993 28° 52' 09.1" N 81° 49' 52.3" W 137 cm Dark organic sediment to 90 cm. with sand from 90-96 cm. A shell layer from 96-98 cm. and gray clay from 98- 110 cm.
Water Depth:	190 cm	Water Depth:	140 cm
Soft Sediment Thickness:	265 cm	Soft Sediment Thickness:	180 cm
Station 38		Station 40	
Core ID:	LG-38-93	Core ID:	LG-40-93
Collected: Location: Length: Description:	18 December 1993 28° 51 07.2" N 81° 49' 52.3" W 132 cm Dark organic sediment to 132 cm.	Collected: Location: Length: Description:	18 December 1993 28° 54' 17.6" N 81° 49' 52.5" W 136 cm Dark organic sediment with plant fibers to 136 cm.
Water Depth:	200 cm	Water Depth:	140 cm
Soft Sediment Thickness:	250 cm	Soft Sediment Thickness:	140 cm

LAKE GRIFFIN HISTORIC CORES PHASE I

Station LG-2H

Core ID:	LG-2H-94
Collected:	16 March 1994
Location:	28° 50' 21.6" N
	81° 52' 32.0" W
Core Length:	123 cm
Description:	Dark organic material with gastropods to 50 cm. From 50-123 cm dark organic material.
Water Depth:	227 cm
Soft Sediment Thickness:	373 cm

Station LG-41H

Core ID:	LG-41H-94
Collected: Location:	16 March 1994 28° 53' 10.1" N
Core Length: Description:	79 cm Dark organic material entire core
Water Depth:	240 cm
Soft Sediment Thickness:	160 cm.

Station LG-11H

Station LG-42H

Core ID:	LG-11H-94	Core ID:	LG-42H-94
Collected:	15 March 1994	Collected:	15 March 1994
Location:	28° 50' 06.5" N 81° 50' 51.1" W	Location:	28° 54' 44.5" N 81° 50' 38.7"W
Core Length:	138 cm	Core Length:	84 cm
Description:	Dark organic material with gastropods to 35 cm. From 35-138 cm dark organic	Description:	Dark organic material entire core
	material.	Water Depth:	237 cm
Water Depth:	292 cm	Soft Sediment Thickness:	123 cm
Soft Sediment			
Thickness:	308 cm		

Station LG-26H

Core ID:	LG-26H-94
Collected: Location:	15 March 1994 28° 50' 53.0" N 81° 50' 24.2" W
Core Length: Description:	135 cm Dark organic material from 0-135 cm.
Water Depth:	278 cm
Soft Sediment Thickness:	237 cm

LAKE GRIFFIN SURVEY CORES - PHASE II

Station PII-1

Station PII-4

Station PII-5

Station PII-6

Core ID:	LG-1-95	Core ID:	LG-4-95
Collected:	10 October 1995	Collected:	10 October 1995
Location:	28° 51´ 11.9" N 81° 52´ 47.0" W	Location:	28° 49´ 36.5" N 81° 51´ 54.1" W
Length:	95 cm	Length:	155 cm
Description:	Plant fibers below 50 cm, core never consolidated	Description:	0-30 cm, unconsolidated floc. Gastropod shells from 15 to 20 cm
Water Depth:	160 cm	Water Depth:	280 cm
Soft Sediment Thickness:	675 cm	Soft Sediment Thickness:	290 cm

Station PII-2

Core ID:	LG-2-95	Core ID:	LG-5-95
Collected:	10 October 1995	Collected:	31 October 95
Location:	28° 50′32.3" N	Location:	28° 51′ 55.0" N
	81° 52´ 41.7" W		81° 51´ 12.9" W
Length:	155 cm	Length:	155 cm
Description:	Gastropod shells from 25 to	Description:	0-20 cm unconsolidated floc.
_	50 cm, sand at 75 cm	·	Gastropod shells to 45 cm
Water Depth:	210 cm	Water Depth:	210 cm
Soft Sediment		Soft Sediment	
Thickness:	770 cm	Thickness:	355 cm

Station PII-3

Core ID:	LG-3-95	Core ID:	LG-6-95
Collected:	10 October 1995	Collected:	31 October 95
Location:	28° 50′10.3" N 81° 52′ 24.3" W	Location:	28° 53´ 03.7" N 81° 51´ 15.2" W
Length:	153 cm	Length:	44 cm
Description:	Gastropods to 55 cm	Description:	0-30 cm, unconsolidated floc. Sand layer from 30 to 34 cm, sand at 47 cm, clay
Water Depth:	220 cm	Water Depth:	below 58 cm 260 cm
Soft Sediment Thickness:	730 cm	Soft Sediment Thickness:	95 cm

Station PII-7

Core ID: LG-7-95 Collected: 31 October 95 28° 54′ 19.9" N 81° 51′ 08.9" W Location: Length: 148 cm Description: Brown floculent material, unconsolidated till last 8 cm. No visible stratigraphy Water Depth: 160 cm Soft Sediment 245 cm Thickness:

Station PII-8

Station PII-10

Core ID:	LG-10-95
Collected:	31 October 95
Location:	28° 53´ 07.3" N
	81° 50′ 41.6" W
Length:	128 cm
Description:	Fibers at 80 cm
I	No visible stratigraphy
Water Depth:	260 cm
Soft Sediment Thickness:	155 cm

Station PII-11

Station PII-12

Core ID:	LG-8-95	Core ID:	LG-11-95
Collected: Location:	31 October 95 28° 54´ 45.2" N 81° 51´ 10.3" W	Collected: Location:	7 November 95 28° 53′ 55.2 " N 81° 50′ 40.8 " W
Length: Description:	140 cm 0-40 cm unconsolidated floc. at 40 cm, macrophyte fibers to end. No visible stratigraphy	Length: Description:	128 cm 0-20 unconsolidated floc. A few gastropod shells from 20 to 24 cm
Water Depth:	170 cm	Water Depth:	200 cm
Soft Sediment Thickness:	230 cm	Soft Sediment Thickness:	245 cm

Station PII-9

Core ID:	LG-9-95	Core ID:	LG-12-95
Collected:	31 October 95	Collected:	7 November 95
Location:	28° 52´ 18.9" N 81° 50´ 38.3" W	Location:	28° 54´ 42.2" N 81° 50´ 42.2" W
Length:	144 cm	Length:	128 cm (104 cm saved)
Description:	Plant fibers to 37 cm, gastropod shells from 14 cm to bottom	Description:	Gastropod shells from 16 to 29 cm, sand below 128 cm
Water Depth:	240 cm	Water Depth:	220 cm
Soft Sediment Thickness:	175 cm	Soft Sediment Thickness:	135 cm

Station PII-13

Station PII-16

Core ID:	LG-13-95	Core ID:	LG-16-95
Collected:	7 November 95	Collected:	28 November 95
Location:	28° 55′ 13.3" N	Location:	28° 53´ 07.0" N
	81° 50′ 51.2" W		81° 50° 12.3" W
Length:	136 cm	Length:	88 cm
Description:	Gastropod shells to 32 cm, plant fibers from 72 cm to bottom	Description:	0-16 cm unconsolidated floc. Fragmented gastropod shells from 8 to 32 cm, sand from 72 to 76 cm, clay below 76 cm
Water Depth:	180 cm	Water Depth:	250 cm
Soft Sediment Thickness:	180 cm	Soft Sediment Thickness:	85 cm
~		- 11101110001	

Station PII-14

Station PII-17

Thickness: 135 cm

Station PII-18

Core ID:	LG-14-95	Core ID:	LG-17-95
Collected:	7 November 95	Collected:	28 November 95
Location:	28° 51´ 55.4" N 81° 50´ 02.0" W	Location:	28° 53´ 31.3" N 81° 50´ 12.2" W
Length:	136 cm	Length:	112 cm
Description:	Gastropod shells to 32 cm	Description:	0-28 cm unconsolidated floc. Plant fibers at 64 cm, sand from 108 to 112 cm, clay below 112 cm
Water Depth:	180 cm	Water Depth:	220 cm
Soft Sediment		Soft Sediment	

Station PII-15

Thickness: 385 cm

Core ID:	LG-15-95	Core ID:	LG-18-95
Collected:	7 November 95	Collected:	28 November 95
Location:	28° 52´ 43.8" N 81° 50´ 12.2" W	Location:	28° 53´ 54.8" N 81° 50´ 08.5" W
Length:	96 cm	Length:	128 cm
Description:	No visible stratigraphy	Description:	0-16 cm unconsolidated floc. Sand from 120 to 126 cm,
Water Depth:	250 cm		clay below 126 cm
-		Water Depth:	180 cm
Soft Sediment			
Thickness:	85 cm	Soft Sediment Thickness:	135 cm

Station PII-19

Core ID:	LG-19-95
Collected:	28 November 95
Location:	28° 54´ 25.7" N
	81° 50′ 10.0" W
Length:	128 cm
Description:	0-26 cm unconsolidated floc.
1	Plant fibers below 26 cm
Water Depth:	200 cm

Soft Sediment Thickness: 127 cm

Station PII-20

Core ID:	LG-20-95
Collected:	28 November 95
Location:	28° 54´ 46.6" N
	81° 50′ 12.7" W
Length:	136 cm
Description:	0-30 cm unconsolidated floc
	Plant fibers below 30 cm
Water Depth:	130 cm

Soft Sediment Thickness: 130 cm

LAKE GRIFFIN HISTORIC CORES - PHASE II

Station LG-3H

Core ID:	LG-3H-95
Collected:	24 July 95
Location:	28° 49' 53.6" N
	81° 52' 11.2" W
Length:	120 cm
Description:	Plant fibers to 20 cm
•	Gastropod shell fragments
	from 20 to 30 cm.
	Unconsolidated organic
	sediments from 30 to 160
	cm
Water Depth:	230 cm

Station LG-43H

Core ID:	LG-43H-95
Collected: Location:	25 July 95 28° 54' 10.2" N
Length: Description:	81° 49' 56.1" W 116 cm Flocculent layer 10-15 cm
	No visible stratigraphy to 116 cm where core terminates with sand

Water Depth: 140

140 cm

Station LG-7H

LG-7H-95

17 May 95

Collected: Location:

Core ID:

Length: Description: 28° 50' 57.2" N 81° 51' 23.7" W 100 cm Flocculent sediments 10 to 20 cm, plant fibers and shells to 90 cm

Station LG-44H

Core ID:	LG-44H-95
Collected: Location:	25 July 95 28° 54' 21.3" N
Length: Description:	81° 51' 01.0" W 130 cm No visible stratigraphy
Water Depth:	200 cm

Station LG-16H

Core ID:	LG-16H-95
Collected:	24 July 95
Location:	28° 52' 10.3" N
	81° 51' 01.1" W
Length:	108 cm
Description:	No visible stratigraphy

Water Depth: 240 cm

APPENDIX B

Gravimetric and chemical data, Lake Griffin survey cores, Phase I. See Appendix A for collection date, location and description of cores.

CODES: Sta is station number Depth is depth (cm) Dry is percent dry weight Rho is dry weight density (g dry cm⁻³ wet) LOI is percent loss on ignition Cum Wt is cumulative mass (g cm⁻²) TP is total phosphorus (mg g⁻¹) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum TP is cumulative TP (mg cm⁻²) Cum NAIP is cumulative NAIP (mg cm⁻²) TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio

Missing data are indicated by dots.

•

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
1	10	1.38	0.0139	69.35	0.139	1.91	0.65	0.265	0.090	3.70	33.83	9.14
1	20	2.12	0.0214	69.96	0.353	1.43	0.57	0.572	0.211	3.35	33.98	10.14
1	30	2.56	0.0259	67.49	0.612	1.27	0.49	0.900	0.337	3.23	32.93	10.20
1	40	2.71	0.0274	68.12	0.886	1.09	0.43	1.199	0.456	3.27	33.61	10.28
1	50	2.78	0.0282	68.42	1.168	0.88	0.37	1.447	0.559	3.12	33.84	10.85
2	10	1.67	0.0168	67.86	0.168	1.93	0.78	0.325	0.132	3.51	33.08	9.42
2	20	1.97	0.0198	68.59	0.367	1.43	0.61	0.609	0.252	3.29	32.54	9.89
2	30	2.78	0.0282	65.24	0.649	1.54	0.60	1.043	0.421	3.36	32.71	9.74
2	40	3.08	0.0313	62.36	0.962	1.28	0.55	1.444	0.593	3.18	31.93	10.04
2	50	2.93	0.0297	61.78	1.259	1.19	0.52	1.797	0.748	2.98	31.29	10.50
3	10	1.97	0.0199	61.22	0.199	1.39	0.55	0.277	0.110	3.27	31.77	9.72
3	20	3.18	0.0323	58.13	0.522	0.70	0.26	0.503	0.195	2.98	31.91	10.71
3	30	3.49	0.0355	68.60	0.877	0.41	0.15	0.649	0.250	3.14	34.09	10.86
3	40	3.99	0.0407	67.19	1.284	0.32	0.17	0.779	0.320	2.88	34.06	11.83
3	50	4.98	0.0511	47.09	1.795	0.19	0.12	0.876	0.380	2.52	30.07	11.93
4	10	1.94	0.0196	64.58	0.196	1.57	0.75	0.308	0.148	3.47	31.38	9.04
4	20	2.15	0.0217	58.97	0.413	1.26	0.75	0.582	0.311	3.15	30.67	9.74
4	30	3.07	0.0311	55.45	0.725	1.07	0.57	0.915	0.487	2.77	29.81	10.76
4	40	3.45	0.0352	53.02	1.076	0.91	0.47	1.235	0.653	2.92	30.20	10.34
4	50	4.09	0.0418	55.31	1.494	0.91	0.53	1.615	0.873	2.67	30.50	11.42
5	10	1.96	0.0198	60.42	0.198	1.46	0.76	0.289	0.150	3.36	30.94	9.21
5	20	2.47	0.0250	58.38	0.448	1.15	0.51	0.577	0.276	2.86	30.97	10.83
5	30	4.08	0.0417	45.34	0.865	0.61	0.32	0.831	0.411	2.65	31.13	11.75
5	40	4.16	0.0425	54.90	1.290	0.32	0.16	0.967	0.481	2.68	31.30	11.68
5	50	4.02	0.0410	60.99	1.700	0.25	0.10	1.070	0.523	2.61	31.03	11.89
						0.20						
6	10	1.54	0.0155	64.56	0.155	1.28	0.89	0.199	0.138	3.45	31.91	9.25
6	20	2.24	0.0227	62.66	0.382	1.28	0.69	0.489	0.295	3.06	29.41	9.61
6	30	2.80	0.0284	56.35	0.666	1.04	0.58	0.784	0.459	3.04	30.69	10.10
6	40	3.11	0.0316	57.29	0.981	0.85	0.47	1.052	0.609	2.81	29.97	10.67
6	50	4.98	0.0512	36.52	1.493	0.53	0.33	1.324	0.780	2.77	30.66	11.07
7	10	1.85	0.0187	63.55	0 187	1 41	1 15	0 263	0.215	3 33	31 36	9 42
7	20	2.47	0.0250	61.59	0.436	1 70	1 15	0.688	0.502	3.05	30.68	10.06
7	30	3.08	0.0313	57 89	0.749	0.81	0.41	0.000	0.629	2 63	30.75	11.69
7	40	3.31	0.0336	57.32	1.085	0.65	0.28	1 160	0.724	2.83	31.65	11.05
7	50	4.12	0.0420	58.37	1 506	0.05	0.20	1 277	0.724	2.58	32.06	12.43
<i>'</i>			0.0120		1,500	0.20	0.17	1.277	0.770	2.50	22.00	12.13
8	10	1 96	0.0198	64.08	0 198	1 55	0.01	0 306	0 180	3 51	37 41	0.24
8	20	2.59	0.0262	61 11	0.150	1 36	0.21	0.500	0.100	3 20	32.44	0.78
8	30	3.14	0.0319	58 12	0 779	1.50	0.55	0.002	0.420	3.00	31.22	10.41
8	40	3.74	0.0381	60.18	1.160	0.92	0.57	1 348	0.796	3.03	31.22	10.37
8	50	3.73	0.0379	62.42	1.539	0.95	0.57	1.709	1.012	2.75	29.46	10.71

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
9	10	2.54	0.0257	68.71	0.257	1.56	0.58	0.401	0.150	3.52	33.39	9.49
9	20	2.59	0.0263	68.29	0.519	1.69	1.01	0.844	0.414	3.50	34.24	9.78
9	30	2.87	0.0291	67.11	0.810	1.22	0.53	1.199	0.568	3.24	33.48	10.33
9	40	3.17	0.0321	68.08	1.132	0.94	0.49	1.501	0.724	2.95	33.80	11.46
9	50	4.35	0.0445	52.17	1.577	0.54	0.30	1.742	0.859	2.58	31.32	12.14
10	10	1.83	0.0184	62.39	0.184	1.28	0.76	0.236	0.139	3.14	30.68	9.77
10	20	2.87	0.0291	51.91	0.475	0.83	0.49	0.477	0.281	2.30	25.90	11.26
10	30	2.67	0.0271	62.58	0.746	0.65	0.26	0.653	0.351	2.79	31.72	11.37
10	40	3.16	0.0320	65.17	1.066	0.29	0.19	0.746	0.413	2.81	32.71	11.64
10	50	3.38	0.0343	64.04	1.410	0.24	0.18	0.829	0.475	2.70	31.63	11.71
												-
11	10	1.97	0.0199	60.80	0.199	1.53	0.75	0.304	0.150	3.02	29.49	9.76
11	20	2.87	0.0292	52.94	0.490	1.27	0.42	0.674	0.272	2.62	28.10	10.73
11	30	3.14	0.0319	55.95	0.809	0.61	0.29	0.869	0.366	2.56	29.50	11.52
11	40	3.68	0.0374	59.68	1.184	0.30	0.19	0.981	0.437	2.49	31.38	12.60
11	50	3.80	0.0387	61.81	1.571	0.24	0.12	1.074	0.481	2.72	32.48	11.94
12	10	1.85	0.0187	63.31	0.187	1.65	1.03	0.308	0.193	3.26	31.82	9.76
12	20	2.96	0.0300	54.09	0.487	1.45	0.60	0.743	0.373	2.57	27.27	10.61
12	30	3.07	0.0311	56.15	0.798	0.57	0.36	0.921	0.484	2.34	27.10	11.58
12	40	3 52	0.0358	57.58	1 157	0.28	0.16	1 021	0 541	2.49	30.38	12.20
12	50	3.71	0.0378	63.88	1.137	0.20	0.10	1 373	0.511	2.64	33 49	12.69
	50		0.0070	05.00	1.555	0.75	0.21	1.575	0.017	2.01	55.15	12.07
13	10	1 80	0.0181	62.69	0 181	1 63	0.89	0 296	0.162	3 11	31 40	10.10
13	20	2.81	0.0285	60.18	0.101	1.05	0.05	0.598	0.102	2.83	29 39	10.10
13	30	2.01	0.0278	60.87	0.745	0.95	0.30	0.862	0.525	2.05	31.66	11 51
13	40	3.16	0.0320	98 58	1.065	0.23	0.15	1 125	0.130	2.75	31.05	11.51
13	50	3 42	0.0348	62.80	1.005	0.02	0.10	1 295	0.570	2.67	31.00	11.05
	50	5.72	0.0040	02.00	1.415	(1.7)	0.21	1.275	0.072	2.00	51.22	11.74
14	10	2 02	0.0204	64.15	0.204	1 65	1.05	0.336	0.215	3 35	32.16	9.60
$\frac{17}{14}$	20	2.02	0.0204	61.04	0.204	1.05	0.72	0.550	0.213	2.04	31 17	10.60
14	20	2.75	0.0277	58.45	0.401	1.11	0.72	1 008	0.714	2.94	20.58	10.00
14	30	3.13	0.0318	60.66	1 110	0.09	0.94	1 220	0.714	2.09	20.20	11.38
14	50	3.06	0.0318	58.81	1.119	0.98	0.74	1.520	1 280	2.00	20.01	11.40
	50	5.90	0.0404	50.01	1.525	0.99	0.04	1.720	1.209	2.09	29.91	11.12
15	10	2.02	0.0204	65 58	0.204	1.54	1.06	0.215	0.216	2.06	21.61	10.22
15	20	2.02	0.0204	63.00	0.204	1.34	0.78	0.515	0.210	2.10	22.19	10.55
15	20	2.45	0.0240	64 19	0.430	1.27	0.76	0.027	0.408	2.00	21.00	10.51
15	30	2.17	0.0303	61.25	1.079	1.05	0.71	0.940	0.024	2.99	21.90	10.70
15	40	5.17	0.0322	60.05	1.0/8	0.92	0.03	1.244	0.833	2.83	21.02	10.88
13	50	4.19	0.0428	00.93	1.500	0.80	0.77	1.58/	1.103	2.93	51.51	10.09
17	10	2.00	0.0000	(2.07	0.000	1 40	0.07	0.000	0.105	2.22	20.01	0.70
10	10	2.00	0.0202	03.90	0.202	1.49	0.97	0.300	0.195	5.52	32.21	9.70
10	20	2.8/	0.0291	57 10	0.492	0.94	0.73	0.5/4	0.409	3.02	32.02	10.60
10	30	3.09	0.0314	57.10	0.807	0.82	0.69	0.831	0.624	2.73	30.77	11.2/
10	40	2.94	0.0299	64.10	1.105	0.61	0.47	1.014	0.765	2.70	32.72	12.12
10	50	2.07	0.0270	04.10	1.376	0.41	0.32	1.124	0.852	2.62	31.71	12.10

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
17	10	2.17	0.0219	61.09	0.219	1.11	0.84	0.243	0.184	2.93	27.78	9.48
17	20	5.96	0.0617	30.43	0.836	0.42	0.32	0.502	0.383	2.50	28.80	11.52
17	30	17.46	0.1943	11.29	2.779	0.11	0.03	0.716	0.446	0.64	8.11	12.67
17	40	76.93	1.4283	0.18	17.063	0.02	0.01	1.002	0.622	•	0.92	•
17	50	79.51	1.5169	1.11	32.232	0.02	0.05	1.305	1.437	•	0.54	•
18	10	2.14	0.0216	62.07	0.216	1.24	0.76	0.268	0.165	2.98	31.77	10.66
18	20	3.26	0.0331	64.87	0.547	0.63	0.35	0.476	0.279	2.80	33.56	11.99
18	30	3.23	0.0328	64.24	0.876	0.65	0.36	0.690	0.399	2.74	33.70	12.30
18	40	3.12	0.0316	67.61	1.192	0.53	0.38	0.857	0.519	3.08	36.40	11.82
18	50	3.28	0.0333	65.06	1.524	0.54	0.39	1.037	0.648	2.93	34.45	11.76
19	10	2.19	0.0221	64.61	0.221	1.49	0.98	0.329	0.217	3.44	34.14	9.92
19	20	3.12	0.0316	65.00	0.537	0.76	0.36	0.570	0.332	2.94	34.02	11.57
19	30	3.44	0.0350	65.71	0.887	0.79	0.53	0.846	0.517	2.99	34.73	11.62
19	40	3.83	0.0390	66.47	1.277	0.63	0.45	1.092	0.694	2.84	34.80	12.25
19	50	3.35	0.0341	65.49	1.618	0.65	0.54	1.313	0.879	3.21	33.97	10.58
20	10	75.79	1.3873	0.97	13.873	0.02	0.03	0.277	0.434	•	0.09	•
20	17	74.64	1.3444	2.83	23.284	0.02	0.02	0.466	0.662	•	0.04	•
21	10	2.22	0.0224	68.32	0.224	1.07	0.60	0.240	0.135	3.11	33.37	10.73
21	20	3.04	0.0308	67.70	0.532	1.13	0.57	0.588	0.310	3.00	32.74	10.91
21	30	3.01	0.0305	65.91	0.837	0.89	0.38	0.859	0.427	3.02	33.46	11.08
21	40	3.60	0.0366	67.09	1.203	0.76	0.36	1.138	0.557	2.97	34.17	11.51
21	50	3.18	0.0323	65.91	1.526	0.67	0.30	1.354	0.655	2.69	33.71	12.53
												10.44
22	10	2.02	0.0204	70.00	0.204	1.08	0.57	0.220	0.116	3.18	33.82	10.64
22	20	2.70	0.0274	70.22	0.478	0.66	0.31	0.401	0.202	3.14	34.58	11.01
22	30	2.69	0.0272	72.00	0.750	0.40	0.18	0.510	0.250	2.73	37.00	13.55
22	40	3.06	0.0310	72.41	1.060	0.30	0.13	0.603	0.291	2.90	36.91	12.73
22	50	3.17	0.0321	68.51	1.382	0.28	0.14	0.693	0.335	2.70	34.60	12.81
	10	0.15	0.0010		0.010	1.10	0.60	0.044	0.107	0.07	05.54	10.50
23	10	2.15	0.0218	73.33	0.218	1.12	0.63	0.244	0.137	3.36	35.54	10.58
23	20	2.75	0.0278	70.61	0.496	0.88	0.44	0.488	0.259	3.20	35.87	11.21
23	30	3.41	0.0347	68.82	0.842	0.56	0.22	0.683	0.334	2.81	35.37	12.59
23	40	3.30	0.0341	68.46	1.184	0.42	0.19	0.826	0.400	2.70	34.79	12.89
23	50	3.46	0.0352	70.39	1.536	0.38	0.21	0.960	0.474	2.85	36.21	12.71
	10	2.10	0.0014	(2.00	0.011	0.00		0.100	0.004	0.00	20.24	10.04
	10	2.12	0.0214	03.09	0.214	0.90	0.44	0.193	0.094	2.80	30.34	10.84
24	20	4.94	0.0307	42.80	0.721	0.32	0.17	0.333	0.181	3.03	32.94	10.80
24	30	4.5/	0.0407	39.83	1.189	0.35	0.21	0.519	0.277	2.39	30.73	11.80
24	40	7.00	0.0733	40.51	1.922	0.22	0.11	0.080	0.302	2.49	31.91	12.82
24	50	5.10	0.0529	55.48	2.451	0.21	0.10	0.791	0.413	2.61	33.50	12.84

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
25	10	1.93	0.0195	62.30	0.195	1.50	0.63	0.292	0.123	2.54	27.26	10.73
25	20	4.19	0.0429	45.15	0.624	0.52	0.18	0.515	0.202	2.51	30.13	12.00
25	30	3.81	0.0388	63.29	1.012	0.21	0.09	0.597	0.238	2.72	34.60	12.72
25	40	4.59	0.0469	66.84	1.480	0.22	0.08	0.700	0.277	2.42	34.39	14.21
25	50	4.21	0.0430	65.78	1.910	0.18	0.08	0.777	0.310	2.80	35.03	12.51
26	10	1.84	0.0186	62.98	0.186	1.25	0.72	0.233	0.134	3.27	31.70	9.69
26	20	2.72	0.0275	61.70	0.461	0.98	0.54	0.502	0.282	2.74	32.02	11.69
26	30	3.25	0.0330	54.81	0.792	0.54	0.28	0.681	0.374	2.28	27.73	12.16
26	40	3.47	0.0353	59.90	1.144	0.37	0.16	0.811	0.432	2.81	32.38	11.52
26	50	4.03	0.0411	61.17	1.555	0.24	0.12	0.910	0.483	2.34	32.25	13.78
27	10	78.55	1.4829	0.94	14.829	0.03	0.02	1.308	0.759	•	0.14	•
27	17	82.75	1.6393	1.11	26.304	0.04	0.02	1.767	0.957	•	0.33	•
28	10	1.73	0.0174	68.18	0.174	1.30	0.37	0.226	0.064	3.18	32.44	10.20
28	20	2.46	0.0249	66.15	0.423	1.40	0.48	0.575	0.184	3.57	33.08	9.27
28	30	2.80	0.0284	65.71	0.707	1.02	0.55	0.864	0.341	2.86	31.39	10.98
28	40	3.08	0.0313	61.69	1.020	0.76	0.44	1.102	0.480	2.84	32.47	11.43
28	50	3.27	0.0332	57.59	1.352	0.61	0.28	1.305	0.571	2.60	33.97	13.07
29	10	1.94	0.0196	65.82	0.196	1.55	0.76	0.304	0.149	3.50	33.53	9.58
29	20	2.96	0.0300	65.92	0.496	1.27	0.64	0.684	0.342	3.21	33.65	10.48
29	30	3.51	0.0357	66.24	0.852	0.90	0.40	1.005	0.484	3.08	33.47	10.87
29	40	3.98	0.0406	64.43	1.258	0.79	0.37	1.326	0.635	2.80	33.00	11.79
29	50	4.63	0.0474	61.03	1.732	0.81	0.41	1.710	0.829	2.45	30.82	12.58
30	10	2.22	0.0224	68.64	0.224	1.67	0.87	0.374	0.195	3.45	34.06	9.87
30	20	2.68	0.0272	67.34	0.496	1.48	0.95	0.777	0.453	3.22	33.85	10.51
30	30	3.48	0.0354	67.01	0.850	1.20	0.66	1.201	0.686	3.29	33.75	10.26
30	40	4.13	0.0421	67.09	1.271	1.19	0.66	1.702	0.966	2.92	33.66	11.53
30	50	3.96	0.0404	64.78	1.674	1.41	0.49	2.271	1.164	2.36	28.58	12.11
31	10	2.07	0.0209	69.14	0.209	1.68	0.83	0.352	0.174	3.61	34.62	9.59
31	20	2.60	0.0263	66.77	0.473	1.48	0.80	0.741	0.386	3.29	33.99	10.33
31	30	3.68	0.0374	67.22	0.847	1.28	0.69	1.220	0.643	3.44	33.94	9.87
31	40	3.93	0.0401	65.04	1.247	0.80	0.41	1.541	0.806	2.96	33.78	11.41
31	50	4.32	0.0441	64.32	1.688	0.68	0.33	1.841	0.950	3.13	34.07	10.88
32	10	2.20	0.0223	67.58	0.223	1.51	0.76	0.336	0.170	3.30	34.25	10.38
32	20	2.63	0.0267	64.19	0.489	1.42	0.73	0.715	0.364	3.15	33.70	10.70
32	30	3.12	0.0316	64.66	0.806	1.00	0.44	1.032	0.504	2.88	33.37	11.59
32	40	3.73	0.0380	64.43	1.186	0.76	0.42	1.320	0.663	2.73	33.39	12.23
32	50	4.12	0.0421	64.96	1.607	0.72	0.39	1.623	0.829	2.51	33.19	13.22
33	10	2.47	0.0250	68.56	0.250	1.54	0.95	0.385	0.237	3.52	35.39	10.05
33	20	2.77	0.0281	66.94	0.531	1.31	0.60	0.753	0.405	3.31	35.23	10.64
33	30	3.23	0.0328	65.23	0.859	0.75	0.34	0.999	0.516	2.92	34.34	11.76
33	40	4.53	0.0463	64.17	1.322	0.76	0.46	1.351	0.727	3.10	33.36	10.76

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
33	50	4.08	0.0416	62.70	1.738	0.81	0.47	1.688	0.923	2.73	33.32	12.21
34	10	2.07	0.0209	71.38	0.209	1.38	0.71	0.288	0.149	3.39	36.18	10.67
34	20	2.71	0.0274	69.07	0.483	0.87	0.40	0.527	0.259	3.16	34.03	10.77
34	30	2.97	0.0302	67.24	0.785	0.56	0.22	0.696	0.325	2.77	34.87	12.59
34	40	2.62	0.0266	65.62	1.051	0.59	0.25	0.852	0.391	2.95	34.15	11.58
34	50	4.02	0.0410	66.93	1.461	0.55	0.29	1.078	0.509	3.02	33.82	11.20
35	10	2.50	0.0253	71.85	0.253	1.44	0.71	0.365	0.180	3.56	35.28	9.91
35	20	3.11	0.0316	69.98	0.569	0.97	0.42	0.671	0.313	3.02	34.39	11.39
35	30	2.87	0.0291	68.25	0.860	0.35	0.27	0.773	0.391	2.96	34.24	11.57
35	40	2.96	0.0300	68.00	1.161	0.46	0.20	0.911	0.450	2.90	35.03	12.08
35	50	3.31	0.0336	67.15	1.497	0.41	0.20	1.049	0.517	2.85	34.64	12.15
36	10	2.67	0.0271	70.26	0.271	1.18	0.57	0.319	0.153	3.19	33.05	10.36
36	20	2.82	0.0285	68.49	0.556	1.24	0.49	0.673	0.292	3.26	34.51	10.59
36	30	3.37	0.0343	67.41	0.899	0.83	0.40	0.958	0.430	3.03	35.65	11.77
36	40	3.69	0.0376	66.78	1.275	0.62	0.24	1.191	0.521	2.91	34.30	11.79
36	50	3.73	0.0379	67.11	1.654	0.56	0.27	1.403	0.624	2.95	34.39	11.66
37	10	1.59	0.0160	63.89	0.160	1.51	0.82	0.241	0.130	3.54	32.62	9.21
37	20	2.42	0.0244	60.52	0.404	1.48	0.67	0.603	0.294	2.99	31.09	10.40
37	30	3.45	0.0351	49.56	0.755	0.97	0.41	0.944	0.438	3.00	32.29	10.76
37	40	3.64	0.0371	49.15	1.126	0.65	0.48	1.184	0.614	2.57	28.16	10.96
37	50	3.74	0.0381	63.55	1.507	0.36	0.21	1.322	0.692	2.73	33.94	12.43
38	10	1.60	0.0161	66.02	0.161	1.52	0.86	0.244	0.138	3.09	32.28	10.45
38	20	2.08	0.0210	62.57	0.371	1.11	0.71	0.478	0.287	3.24	33.20	10.25
38	30	2.91	0.0295	57.03	0.666	1.12	0.31	0.808	0.378	2.60	31.84	12.25
38	40	3.22	0.0327	60.98	0.993	0.61	0.25	1.008	0.461	2.68	30.77	11.48
38	50	3.67	0.0374	62.06	1.367	0.52	0.23	1.202	0.549	2.57	31.47	12.25
39	10	2.15	0.0217	65.90	0.217	1.58	0.80	0.343	0.173	3.42	32.54	9.51
39	20	2.76	0.0279	65.09	0.496	1.10	0.62	0.650	0.345	3.04	32.18	10.59
39	30	3.15	0.0320	64.31	0.816	0.89	0.40	0.935	0.474	2.67	32.27	12.09
39	40	3.43	0.0348	67.06	1.164	0.60	0.24	1.144	0.556	2.80	35.32	12.61
39	50	2.97	0.0301	69.55	1.465	0.58	0.28	1.318	0.639	3.07	35.51	11.57
								1 888 W 1 100				
40	10	2.34	0.0236	67.84	0.236	1.46	0.78	0.345	0.183	3.13	33.50	10.70
40	20	2.98	0.0302	65.54	0.538	1.23	0.64	0.716	0.376	3.05	33.47	10.97
40	30	3.83	0.0390	60.97	0.928	0.61	0.26	0.954	0.479	2.43	30.10	12.39
40	40	3.72	0.0379	62.90	1.307	0.40	0.17	1.106	0.544	2.50	33.92	13.57
40	50	4.40	0.0449	60.05	1.756	0.37	0.16	1.272	0.617	2.83	32.81	11.59

APPENDIX C

Gravimetric and chemical data, Lake Griffin historic cores, Phase I. See Appendix A for collection date, location and description of cores.

CODES: Sta is station number Depth is depth (cm) Dry is percent dry weight Rho is dry weight density (g dry cm⁻³ wet) LOI is percent loss on ignition Cum Wt is cumulative mass (g cm⁻²) TP is total phosphorus (mg g⁻¹) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum TP is cumulative TP (mg cm⁻²) Cum NAIP is cumulative NAIP (mg cm⁻²) TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio

Missing data are indicated by dots.

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
		-										
2	2	2.13	0.0215	68.48	0.043	1.882	0.720	0.081	0.031	3.72	35.40	9.52
2	4	1.60	0.0161	66.67	0.075	1.957	0.674	0.144	0.053	3.56	34.95	9.82
2	6	1.79	0.0180	66.27	0.111	1.931	0.776	0.214	0.081	3.96	34.92	8.82
2	8	1.69	0.0170	66.67	0.145	1.872	0.727	0.277	0.105	4.08	34.74	8.51
2	10	1.97	0.0199	67.69	0.185	1.902	0.836	0.353	0.139	3.85	34.69	9.01
2	12	2.03	0.0205	68.60	0.226	1.822	0.817	0.427	0.172	3.81	34.95	9.17
2	14	2.08	0.0210	67.48	0.268	1.828	0.775	0.504	0.205	3.97	35.24	8.88
2	16	2.36	0.0238	65.38	0.316	1.804	0.760	0.590	0.241	3.47	34.45	9.93
2	18	2.55	0.0259	67.46	0.367	1.627	0.711	0.674	0.278	3.41	34.74	10.19
2	20	2.27	0.0230	65.56	0.413	1.544	0.651	0.745	0.307	3.47	34.59	9.97
2	22	6.69	0.0691	64.17	0.551	1.527	0.608	0.956	0.392	3.64	34.43	9.46
2	24	6.32	0.0652	65.00	0.682	1.375	0.573	1.136	0.466	3.41	34.29	10.06
2	26	2.53	0.0256	63.54	0.733	1.257	0.476	1.200	0.491	3.64	33.29	9.15
2	28	2.19	0.0221	63.16	0.777	1.291	0.479	1.257	0.512	3.58	33.96	9.49
2	30	2.31	0.0234	63.10	0.824	1.288	0.548	1.317	0.537	3.32	34.73	10.46
2	32	2.43	0.0245	65.96	0.873	1.271	0.556	1.380	0.565	3.15	34.48	10.95
2	34	2.60	0.0263	65.18	0.926	1.227	0.420	1.444	0.587	2.97	33.48	11.27
2	36	2.72	0.0275	62.61	0.981	1.214	0.467	1.511	0.613	2.90	31.64	10.91
2	38	3.11	0.0315	57.94	1.044	1.095	0.418	1.580	0.639	2.92	32.43	11.11
2	40	2.23	0.0226	60.00	1.089	1.136	0.435	1.631	0.659	2.96	33.11	11.19
2	42	2.30	0.0232	62.79	1.135	1.059	0.390	1.681	0.677	3.20	31.22	9.76
2	44	2.96	0.0300	61.27	1.196	1.083	0.436	1.746	0.703	3.10	32.33	10.43
2	46	3.36	0.0341	60.13	1.264	1.051	0.423	1.817	0.732	3.06	32.30	10.56
2	48	3.46	0.0352	59.02	1.201	1.031	0.505	1.817	0.767	2.87	32.21	11.22
2	50	2 84	0.0288	59.01	1 392	1.011	0.505	1.051	0.795	3.07	32.14	10.47
2	52	3.61	0.0367	60.87	1 465	1.032	0.453	2 027	0.828	2.69	32.29	12.00
2	54	3.01	0.0378	62.07	1.105	1.032	0.449	2.106	0.862	3.14	32.58	10.38
2	56	3 49	0.0355	62.28	1.612	0.886	0.422	2.169	0.892	2.95	32.84	11.13
2	58	3 55	0.0361	62.12	1.612	0.918	0.368	2.235	0.919	3.26	32.42	9.94
2	60	3.13	0.0318	61 54	1.001	0.880	0.408	2.293	0.945	3 34	31.86	9.54
2	62	3.15	0.0320	63.92	1.710	0.000	0.600	2.341	0.983	2.73	31.00	11 45
2	64	3.60	0.0366	61 59	1.012	0.760	0.620	2.341	1 028	2.75	30.53	11.13
2	66	3 53	0.0359	60.67	1.005	0.700	0.610	2.557	1.020	2.00	31.69	10.60
2	68	4 16	0.0335	61.95	2 042	0.000	0.580	2.430	1.072	2.75	31.57	11 44
2	70	3.65	0.0425	62.03	2.042	0.747	0.500	2.522	1.121	3 15	32 77	10.40
2	70	3.84	0.0372	64.41	2.110	0.723	0.540	2.575	1.102	2.86	33 36	11.46
2	74	4 02	0.0391	64 40	2.134	0.710	0.550	2.032	1.205	2.60	32 45	12.06
2	76	4.02	0.0413	70.52	2.270	1.625	0.020	2.005	1.255	2.09	35.97	10.74
2	70	3.03	0.0413	68 16	2.539	0.635	0.470	2.819	1.274	3.34	35.87	11.07
2	80	3.95	0.0400	60.10	2.439	0.000	0.330	2.870	1.357	2.19	33.51	11.07
2	82	4.06	0.0403	60.05	2.513	0.001	0.400	2.919	1.303	2.00	25.61	11.70
2	02 QA	2.07	0.0414	60.74	2.002	0.308	0.274	2.901	1.392	2.10	25.01	12.09
- 2	94	3.97	0.0404	60.05	2.003	0.398	0.231	2.993	1.412	2.33	25.07	13.90
2	00	4.00	0.0300	29.05	2.703	0.470	0.240	2 120	1.430	3.04	22.91	11.05
	00	6.49	0.0009	36.03	2.901	0.452	0.233	3.120	1.4//	3.10	21.05	10.85
	90	0.97	0.0123	44.9/	2.107	0.333	0.208	2.1/1	1.50/	2./1	22.50	12.07
	92	4.48	0.0437	62.11	2.197	0.287	0.189	3.19/	1.525	2.70	32.38	12.0/
	94	9 22	0.0348	24 10	2 401	0.283	0.203	3.229	1.54/	2.49	24.39	15.89
	90	0.33	0.0672	54.18	2 501	0.209	0.200	2 201	1.383	2.88	34.10	11.80
	100	4.07	0.0490	56 70	2 705	0.201	0.104	2 224	1.001	2.9/	22.49	11.42
2	100	<u> </u>	0.0021	64 37	3.705	0.274	0.199	2 272	1.020	2.90	33.49	12 04
2	104	5 72	0.0478	60.42	<u></u>	0.190	0.100	3.312	1.045	2.12	36 20	11.04
2	112	5 32	0.0546	60.42	4.151	0.323	0.210	2 520	1.094	2.04	3/ 5/	11.94
2	112	<u> </u>	0.0540	63.04	4.530	0.520	0.100	2 577	1.734	2.92	36 72	12.03
L ~	1 110	+.21	0.0505	05.95	+.551	0.204	0.100	1 3.311	1.770	2.90	JU.43	12.49

×,

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
11	2	1.183	0.012	68.12	0.024	•	•	•	•	3.400	32.980	9.70
11	4	1.777	0.018	65.35	0.060	1.435	0.500	0.051	0.018	3.470	32.800	9.45
11	6	1.713	0.017	64.79	0.094	1.501	0.516	0.103	0.036	3.450	30.840	8.94
11	8	2.045	0.021	65.06	0.135	1.580	0.606	0.169	0.061	3.700	31.640	8.55
11	10	1.870	0.019	68.22	0.173	1.462	0.550	0.224	0.081	3.490	31.110	8.91
11	12	2.079	0.021	66.67	0.215	1.310	0.502	0.279	0.103	3.330	32.110	9.64
11	14	2.132	0.022	66.67	0.258	1.338	0.522	0.336	0.125	3.420	31.220	9.13
11	16	1.945	0.020	62.50	0.298	1.087	0.405	0.379	0.141	2.960	28.270	9.55
11	18	2.937	0.030	55.47	0.357	0.919	0.285	0.434	0.158	3.230	31.800	9.85
11	20	2.870	0.029	57.14	0.415	0.764	0.227	0.478	0.171	2.970	29.880	10.06
11	22	3.214	0.033	55.56	0.481	0.848	0.265	0.534	0.188	2.760	29.350	10.63
11	24	3.125	0.032	58.14	0.544	0.893	0.261	0.590	0.205	2.950	30.300	10.27
11	26	3.287	0.033	56.82	0.611	0.781	0.210	0.643	0.219	3.010	32.050	10.65
11	28	2.998	0.030	51.76	0.672	0.709	0.228	0.686	0.233	2.470	25.170	10.19
11	30	3.441	0.035	54.03	0.742	0.406	0.213	0.714	0.248	2.860	31.080	10.87
11	32	3.998	0.041	54.95	0.824	0.433	0.099	0.749	0.256	2.610	29.230	11.20
11	34	3.941	0.040	56.13	0.904	0.274	0.124	0.772	0.266	2.520	29.130	11.56
11	36	3.720	0.038	60.53	0.980	0.309	0.114	0.795	0.275	2.650	32.260	12.17
11	38	3.803	0.039	61.70	1.057	0.255	0.085	0.815	0.281	2.480	30.660	12.36
11	40	3.729	0.038	60.64	1.133	0.209	0.070	0.831	0.287	2.670	32.010	11.99
11	42	4.078	0.042	57.76	1.216	0.234	0.091	0.850	0.294	2.210	25.570	11.57
11	44	4.570	0.047	58.25	1.310	0.276	0.090	0.876	0.303	2.870	33.040	11.51
11	46	4.282	0.044	59.36	1.397	0.222	0.089	0.895	0.310	2.650	29.890	11.28
11	48	4.809	0.049	59.75	1.496	0.221	0.063	0.917	0.317	2.740	31.520	11.50
11	50	4.434	0.045	57.79	1.587	0.203	0.066	0.936	0.323	2.470	30.100	12.19
11	52	4.524	0.046	52.34	1.679	0.194	0.075	0.954	0.330	2.480	31.290	12.62
11	54	5.522	0.057	55.60	1.793	0.199	0.061	0.976	0.336	2.870	33.600	11.71
11	56	4.326	0.044	61.11	1.881	0.201	0.079	0.994	0.343	2.130	21.460	10.08
11	58	4.911	0.050	55.33	1.982	0.199	0.081	1.014	0.352	2.630	33.710	12.82
11	60	5.519	0.057	50.00	2.095	0.202	0.065	1.037	0.359	2.800	34.040	12.16
11	62	5.418	0.056	61.20	2.207	0.213	0.085	1.061	0.368	1.420	15.530	10.94
11	64	4.955	0.051	65.68	2.308	0.194	0.106	1.080	0.379	2.690	33.890	12.60
11	66	4.471	0.046	63.00	2.400	0.211	0.093	1.100	0.388	2.820	34.100	12.09
11	68	4.691	0.048	66.30	2.496	0.225	0.094	1.121	0.397	2.720	33.770	12.42
11	70	4.340	0.044	65.24	2.584	0.220	0.107	1.141	0.406	2.780	34.310	12.34
11	72	4.673	0.048	65.14	2.680	0.216	0.091	1.161	0.415	2.850	33.540	11.77
11	74	4.068	0.041	65.38	2.763	0.211	0.099	1.179	0.423	2.840	33.760	11.89
11	76	4.610	0.047	64.52	2.857	0.211	0.075	1.199	0.430	2.880	32.580	11.31
11	78	5.270	0.054	61.49	2.965	0.194	0.087	1.220	0.440	2.410	29.160	12.10
11	80	5.698	0.059	53.99	3.083	0.184	0.072	1.241	0.448	2.620	31.130	11.88
11	82	5.066	0.052	60.49	3.186	0.173	0.044	1.259	0.453	2.910	30.530	10.49
11	84	5.048	0.052	62.99	3.290	0.192	0.110	1.279	0.464	2.540	32.570	12.82
11	86	6.510	0.067	52.80	3.425	0.174	0.154	1.303	0.485	2.830	32.700	11.55
11	88	5.669	0.058	61.03	3.541	0.164	0.061	1.322	0.492	2.830	32.590	11.52
11	90	6.092	0.063	56.90	3.667	0.177	0.060	1.344	0.499	2.610	32.660	12.51
11	92	5.979	0.062	58.49	3.790	0.175	0.083	1.366	0.510	2.810	32.790	11.67
11	94	8.077	0.084	37.13	3.959	0.163	0.081	1.393	0.523	2.260	27.570	12.20
11	96	8.580	0.090	35.25	4.139	0.129	0.047	1.416	0.532	1.790	23.560	13.16
11	98	7.313	0.076	45.78	4.291	0.177	0.043	1.443	0.538	2.120	23.570	11.12
11	100	5.972	0.062	57.53	4.414	0.154	0.049	1.462	0.544	2.500	32.380	12.95
11	104	6.329	0.065	56.57	4.675	0.160	0.100	1.504	0.570	1.250	15.350	12.28
11	108	7.946	0.083	51.71	5.007	0.161	0.070	1.557	0.593	2.290	27.690	12.09
11	112	5.946	0.061	60.59	5.252	0.165	0.070	1.598	0.611	0.810	8.230	10.16
11	116	6.271	0.065	62.55	5.510	0.154	0.080	1.637	0.631	2.250	27.760	12.34

3

,

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN		
11	120	6.423	0.066	58.46	5.776	0.176	0.090	1.684	0.655	1.650	20.420	12.38		
11	124	6.576	0.068	61.26	6.047	0.161	0.090	1.728	0.680	2.490	29.200	11.73		
11	128	6.693	0.069	58.75	6.324	0.172	0.090	1.775	0.705	2.730	31.220	11.44		
11	132	7.126	0.074	56.44	6.620	0.144	0.090	1.818	0.731	2.420	30.380	12.55		
Note:	ote: In calculations of cumulative storage reported in the text, cumulative TP and NAIP were increased by 0.033 and 0.012, respectively, to account for missing data at 2 cm. Values of 1.40 and 0.50, respectively, were used for missing TP and NAIP data. Cumulative totals reported in these appendix tables do not include these adjustments.													

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
26	2	1.44	0.0145	65.85	0.029	1.216	0.522	0.035	0.015	3.88	33.18	8.55
26	4	1.56	0.0157	60.38	0.061	1.514	0.547	0.083	0.032	3.54	32.09	9.06
26	6	1.96	0.0198	66.67	0.100	1.273	0.321	0.134	0.045	3.53	31.06	8.80
26	8	1.87	0.0189	62.79	0.138	1.604	0.375	0.194	0.059	3.62	33.63	9.29
26	10	2.47	0.0250	62.79	0.188	1.328	0.589	0.260	0.089	3.59	31.41	8.75
26	12	2.08	0.0211	60.26	0.230	1.331	0.541	0.317	0.111	3.66	33.27	9.09
26	14	2.23	0.0225	57.58	0.275	1.416	0.504	0.380	0.134	3.18	29.37	9.24
26	16	3.36	0.0342	49.30	0.344	0.969	0.300	0.447	0.155	3.09	28.83	9.33
26	18	3.20	0.0325	53.45	0.408	1.213	0.389	0.525	0.180	2.54	26.51	10.44
26	20	2.91	0.0296	53.75	0.468	0.763	0.440	0.571	0.206	3.03	29.10	9.60
26	22	2.78	0.0282	56.92	0.524	0.641	0.273	0.607	0.221	2.86	31.39	10.98
26	24	3.78	0.0385	50.00	0.601	0.609	0.215	0.654	0.238	3.13	30.46	9.73
26	26	4.53	0.0463	54.79	0.694	0.515	0.231	0.701	0.259	2.75	31.33	11.39
26	28	5.37	0.0551	53.29	0.804	0.531	0.178	0.760	0.279	2.67	30.51	11.43
26	30	4.84	0.0496	56.25	0.903	0.332	0.132	0.793	0.292	2.62	28.47	10.87
26	32	4.85	0.0497	56.42	1.003	0.289	0.063	0.822	0.298	2.71	30.64	11.31
26	34	4.44	0.0454	59.13	1.093	0.205	0.074	0.840	0.305	2.43	29.30	12.06
26	36	4.44	0.0454	61.76	1.184	0.230	0.155	0.861	0.319	2.63	31.12	11.83
26	38	4.72	0.0483	61.11	1.281	0.279	0.095	0.888	0.328	2.93	32.14	10.97
26	40	5.04	0.0517	57.04	1.384	0.271	0.067	0.916	0.335	3.12	33.98	10.89
26	42	5.04	0.0517	62.75	1.488	0.227	0.054	0.940	0.341	2.59	31.65	12.22
26	44	4.79	0.0490	61.79	1.586	0.270	0.059	0.966	0.347	2.79	33.25	11.92
26	46	5.03	0.0516	63.57	1.689	0.229	0.055	0.990	0.353	2.73	33.04	12.10
26	48	4.83	0.0495	59.12	1.788	0.238	0.105	1.013	0.363	2.84	33.74	11.88
26	50	4.60	0.0471	56.85	1.882	0.254	0.077	1.037	0.370	1.64	18.22	11.11
26	52	7.20	0.0748	38.34	2.032	0.250	0.076	1.075	0.381	2.64	31.39	11.89
26	54	5.51	0.0567	58.44	2.145	0.275	0.089	1.106	0.392	2.56	32.20	12.58
26	56	4.85	0.0497	61.54	2.244	0.243	0.063	1.130	0.398	2.93	33.41	11.40
26	58	8.60	0.0903	32.23	2.425	0.198	0.120	1.166	0.419	2.66	31.97	12.02
26	60	5.59	0.0575	48.25	2.540	0.184	0.089	1.187	0.430	2.63	33.88	12.88
26	62	5.82	0.0600	53.97	2.660	0.229	0.078	1.214	0.439	2.51	30.85	12.29
26	64	4.96	0.0508	58.82	2.762	0.228	0.061	1.238	0.445	2.73	33.68	12.34
26	66	5.08	0.0521	58.41	2.866	0.211	0.073	1.260	0.453	2.67	33.07	12.39
26	68	5.67	0.0583	58.70	2.983	0.235	0.068	1.287	0.461	2.59	32.48	12.54
26	70	6.04	0.0624	50.50	3.107	0.162	0.067	1.307	0.469	2.60	31.79	12.23
26	72	8.97	0.0943	35.83	3.296	0.198	0.039	1.345	0.476	2.36	33.86	14.35
26	74	8.87	0.0932	36.17	3.482	0.189	0.038	1.380	0.483	2.08	27.40	13.17
26	76	7.59	0.0790	44.51	3.640	0.256	0.056	1.420	0.492	2.67	34.14	12.79
26	78	9.38	0.0989	31.02	3.838	0.201	0.073	1.460	0.507	1.73	22.36	12.92
26	80	12.24	0.1313	28.64	4.101	0.198	0.055	1.512	0.521	2.04	28.04	13.75
26	82	7.37	0.0766	45.63	4.254	0.200	0.057	1.543	0.530	2.66	32.29	12.14
26	84	6.40	0.0661	58.55	4.386	0.190	0.056	1.568	0.537	2.78	34.85	12.54
26	86	7.94	0.0828	48.00	4.552	0.201	0.035	1.601	0.543	2.91	33.44	11.49
26	88	7.16	0.0743	51.89	4.700	0.184	0.042	1.628	0.549	2.81	34.64	12.33
26	90	9.31	0.0980	38.02	4.896	0.244	0.032	1.676	0.556	2.47	32.09	12.99
26	92	12.84	0.1382	29.55	5.173	0.181	0.021	1.726	0.562	2.65	34.24	12.92
26	94	28.08	0.3359	10.32	5.844	0.239	0.038	1.887	0.587	2.32	29.92	12.90
26	96	9.84	0.1039	37.13	6.052	0.165	0.032	1.921	0.594	2.49	33.60	13.49
26	98	9.17	0.0964	37.37	6.245	0.150	0.037	1.950	0.601	2.37	32.73	13.81
26	100	7.20	0.0747	52.43	6.395	0.143	0.028	1.971	0.605	2.78	34.31	12.34
26	104	6.41	0.0662	60.26	6.659	0.160	0.060	2.014	0.621	2.01	28.89	14.37
26	108	9.05	0.0951	43.16	7.040	0.170	0.070	2.078	0.648	1.80	24.07	13.37
26	112	7.69	0.0801	46.90	7.360	0.160	0.040	2.130	0.660	1.90	23.43	12.33
26	116	7.25	0.0753	47.06	7.661	0.150	0.040	2.175	0.672	2.09	24.43	11.69

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
26	120	7.99	0.0832	51.20	7.994	0.210	0.060	2.245	0.692	1.26	15.82	12.56
26	124	9.95	0.1051	37.72	8.415	0.250	0.120	2.350	0.743	1.91	23.75	12.43
26	128	8.95	0.0939	45.00	8.790	0.290	0.060	2.459	0.765	2.15	31.28	14.55
26	132	8.36	0.0874	50.34	9.140	0.200	0.070	2.529	0.790	2.40	33.97	14.15

na series de la construcción de l Construcción de la construcción de

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
41	2	1.21	0.0122	70.37	0.024	•	•	•	•	3.53	34.86	9.88
41	4	2.39	0.0242	71.72	0.073	1.671	0.843	0.081	0.041	3.61	34.51	9.50
41	6	2.10	0.0212	71.82	0.115	1.704	0.910	0.153	0.079	3.52	34.23	9.72
41	8	2.12	0.0214	71.58	0.158	1.756	1.041	0.228	0.124	3.53	34.19	9.69
41	10	2.93	0.0297	71.54	0.217	1.891	1.034	0.340	0.185	3.84	34.90	9.09
41	12	2.43	0.0246	71.74	0.266	1.839	1.010	0.431	0.235	3.97	34.95	8.80
41	14	2.90	0.0294	70.59	0.325	1.740	0.973	0.533	0.292	3.80	34.52	9.08
41	16	2.79	0.0282	70.69	0.382	1.617	0.934	0.624	0.345	3.60	34.54	9.59
41	18	2.73	0.0276	70.27	0.437	1.564	0.824	0.710	0.390	3.66	33.65	9.19
41	20	2.43	0.0246	71.08	0.486	1.250	0.751	0.772	0.427	3.34	31.61	9.40
41	22	2.54	0.0258	70.59	0.537	1.494	0.694	0.849	0.463	3.44	34.28	9.9
41	24	2.99	0.0303	69.49	0.598	1.439	0.701	0.936	0.505	3.61	34.45	9.54
41	26	3.31	0.0336	69.44	0.665	1.187	0.556	1.016	0.543	3.51	34.27	9.70
41	28	3.07	0.0311	69.41	0.728	0.978	0.433	1.077	0.570	3.35	33.88	10.1
41	30	2.69	0.0272	68.53	0.782	0.874	0.345	1.124	0.588	2.95	34.02	11.53
41	32	3.32	0.0338	68.66	0.850	0.813	0.356	1.179	0.612	3.10	34.07	10.99
41	34	3.70	0.0376	68.11	0.925	0.780	0.444	1.238	0.646	2.97	34.12	11.49
41	36	3.57	0.0363	68.59	0.998	0.798	0.371	1.296	0.673	3.06	34.25	11.19
41	38	3.79	0.0386	67.25	1.075	0.788	0.329	1.357	0.698	3.06	33.48	10.94
41	40	3.60	0.0366	67.46	1.148	0.754	0.335	1.412	0.723	2.95	33.34	11.30
41	42	3.86	0.0393	66.87	1.226	0.747	0.379	1.471	0.753	3.24	33.90	10.40
41	44	3.98	0.0406	67.54	1.308	0.749	0.330	1.532	0.779	3.00	34.18	11.39
41	46	4.40	0.0449	67.57	1.397	0.667	0.303	1.591	0.807	2.96	33.66	11.3
41	48	4.34	0.0443	67.18	1.486	0.697	0.281	1.653	0.831	2.88	33.82	11.74
41	50	4.08	0.0416	68.08	1.569	0.703	0.292	1.712	0.856	3.05	33.34	10.9
41	52	3.56	0.0362	67.32	1.642	0.676	0.246	1.761	0.874	3.26	33.71	10.34
41	54	3.31	0.0336	66.67	1.709	0.728	0.266	1.810	0.892	3.24	33.77	10.4
41	56	3.09	0.0314	69.17	1.772	0.776	0.396	1.858	0.916	3.01	33.89	11.2
41	58	4.30	0.0439	68.61	1.860	0.821	0.328	1.930	0.945	3.75	40.34	10.7
41	60	3.62	0.0369	68.75	1.933	0.769	0.384	1.987	0.973	3.20	35.65	11.1
41	62	4.01	0.0409	68.53	2.015	0.683	0.267	2.043	0.995	3.03	33.03	10.9
41	64	3.75	0.0382	68.25	2.091	0.777	0.305	2.102	1.019	2.97	34.08	11.4
41	66	4.26	0.0434	68.14	2.178	0.777	0.331	2.170	1.047	3.08	33.88	11.0
41	68	4.41	0.0451	67.68	2.268	0.522	0.260	2.217	1.071	2.78	31.75	11.4
41	70	4.21	0.0430	68.87	2.354	0.507	0.286	2.260	1.095	3.28	33.40	10.1
41	72	4.22	0.0430	68.78	2.440	0.640	0.297	2.315	1.121	3.23	35.25	10.9
41	74	3.85	0.0393	68.00	2.519	0.584	0.348	2.361	1.148	2.98	31.81	10.6
41	76	5.35	0.0549	68.70	2.629	0.597	0.274	2.427	1.178	3.02	33.29	11.0
41	78	4.88	0.0500	68.75	2.729	0.604	0.338	2.487	1.212	3.29	35.02	10.6
Note:	In calc	ulations	of cumula	ative stor	age reporte	d in the te	xt, cumu	lative TP a	and NAIP we	ere increa	ased by 0	.042 and
	0.020, 1	respectiv	ely, to ac	count for	missing da	ata at 2 cm	. Values	of 1.70 ar	nd 0.80, resp	ectively,	were use	d for
	missing	TP and	NAIP dat	ta. Cumu	ilative tota	ls reported	l in these	appendix	tables do not	t include	these ad	ustments

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
										1		
42	2	0.56	0.0056	71.43	0.011	1.031	0.314	0.012	0.004	3.80	34.23	9.01
42	4	0.81	0.0081	72.73	0.027	1.292	0.346	0.033	0.009		•	
42	6	0.89	0.0090	68.29	0.045	1.301	0.363	0.056	0.016	3.75	32.78	8.74
42	8	1.59	0.0160	68.42	0.077	1.321	0.477	0.098	0.031	3.62	32.73	9.04
42	10	2.01	0.0203	71.43	0.118	1.308	0.463	0.151	0.050	3.51	34.39	9.80
42	12	2.63	0.0266	70.09	0.171	1.331	0.488	0.222	0.076	3.93	33.99	8.65
42	14	2.35	0.0237	71.28	0.219	1.391	0.542	0.288	0.101	3.63	35.49	9.78
42	16	2.22	0.0225	70.73	0.264	1.568	0.634	0.359	0.130	3.60	34.73	9.65
42	18	2.73	0.0276	71.53	0.319	1.703	0.823	0.453	0.175	2.98	26.68	8.95
42	20	3.04	0.0308	66.67	0.381	1.727	0.653	0.559	0.216	4.02	40.51	10.08
42	22	3.12	0.0316	70.00	0.444	1.382	0.567	0.647	0.251	3.24	35.31	10.90
42	24	3.37	0.0342	68.93	0.512	1.246	0.533	0.732	0.288	3.01	31.02	10.31
42	26	3.46	0.0351	69.76	0.583	1.240	0.457	0.819	0.320	3.87	39.82	10.29
42	28	3.48	0.0354	69.09	0.653	1.377	0.418	0.917	0.350	3.71	38.81	10.46
42	30	3.65	0.0372	68.65	0.728	0.917	0.441	0.985	0.383	2.63	26.84	10.21
42	32	3.89	0.0396	68.73	0.807	0.905	0.378	1.056	0.412	3.80	45.19	11.89
42	34	3.57	0.0363	68.55	0.880	0.844	0.351	1.118	0.438	2.83	29.79	10.53
42	36	3.63	0.0369	68.89	0.953	0.856	0.330	1.181	0.462	3.60	35.96	9.99
42	38	3.63	0.0369	68.55	1.027	0.920	0.235	1.249	0.480	2.82	34.19	12.12
42	40	3.43	0.0349	68.39	1.097	0.849	0.211	1.308	0.494	2.86	33.10	11.57
42	42	4.42	0.0451	66.22	1.187	0.447	0.189	1.348	0.511	3.41	36.71	10.77
42	44	4.63	0.0473	66.52	1.282	0.419	0.161	1.388	0.527	3.28	37.41	11.41
42	46	4.03	0.0411	65.79	1.364	0.667	0.204	1.443	0.544	2.14	26.26	12.27
42	48	3.30	0.0336	65.30	1.431	0.504	0.214	1.477	0.558	3.56	38.92	10.93
42	50	3.81	0.0388	66.37	1.509	0.513	0.312	1.517	0.582	2.95	32.68	11.08
42	52	3.49	0.0355	66.67	1.580	0.420	0.224	1.546	0.598	3.00	32.94	10.98
42	54	4.24	0.0433	65.24	1.666	0.312	0.128	1.573	0.609	2.93	33.64	11.48
42	56	4.15	0.0424	62.57	1.751	0.401	0.226	1.607	0.628	2.87	31.06	10.82
42	58	3.84	0.0392	63.24	1.830	0.371	0.144	1.636	0.640	2.79	31.81	11.40
42	60	4.33	0.0442	63.40	1.918	0.393	0.307	1.671	0.667	3.11	34.83	11.20
42	62	3.79	0.0386	62.71	1.995	0.474	0.321	1.708	0.692	2.92	34.31	11.75
42	64	4.72	0.0483	64.86	2.092	0.455	0.199	1.752	0.711	2.85	33.43	11.73
42	66	4.05	0.0413	64.24	2.174	0.475	0.266	1.791	0.733	3.02	34.21	11.33
42	68	3.71	0.0377	64.29	2.250	0.290	0.156	1.813	0.745	2.68	33.14	12.37
42	70	5.02	0.0514	59.41	2.353	0.307	0.294	1.844	0.775	2.66	31.62	11.89
42	72	9.01	0.0947	33.44	2.542	0.231	0.144	1.888	0.802	2.64	27.97	10.59
42	74	10.51	0.1116	26.74	2.765	0.205	0.249	1.934	0.858	1.69	18.99	11.24
42	76	5.03	0.0516	60.78	2.868	0.143	0.140	1.949	0.872	2.55	31.87	12.50
42	78	5.83	0.0600	62.21	2.988	0.310	0.134	1.986	0.888	2.48	31.41	12.67
42	80	5.24	0.0537	62.83	3.096	0.144	0.190	2.001	0.909	2.82	32.76	11.62
42	82	6.68	0.0690	63.95	3.234	0.134	0.105	2.020	0.923	2.75	34.27	12.46
42	84	6.41	0.0661	59.71	3.366	0.126	0.132	2.036	0.941	2.78	35.41	12.74

APPENDIX D

Gravimetric and chemical data, Lake Griffin survey cores, Phase II. See Appendix A for collection date, location and description of cores.

CODES: Sta is station number Depth is depth (cm) Dry is percent dry weight Rho is dry weight density (g dry cm⁻³ wet) LOI is percent loss on ignition Cum Wt is cumulative mass (g cm⁻²) TP is total phosphorus (mg g⁻¹) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum TP is cumulative TP (mg cm⁻²) Cum NAIP is cumulative NAIP (mg cm⁻²)

Missing data are indicated by dots.

			Lake	Griffin	Survey Co	ores, Phas	e II		
Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
			1						
PII-1	5	1.59	0.0160	79.3	0.067	1.589	0.634	0.107	0.043
PII-1	10	1.96	0.0198	78.5	0.167	1.638	0.691	0.270	0.112
PII-1	15	2.18	0.0220	78.4	0.262	1.610	0.669	0.424	0.175
PII-1	20	2.30	0.0233	77.9	0.382	1.614	0.722	0.617	0.262
РП-1	25	2.49	0.0252	75.9	0.496	1.266	0.508	0.761	0.320
PII-1	30	2.76	0.0280	74.5	0.626	1.074	0.364	0.901	0.367
PII-1	35	2.83	0.0287	74.3	0.763	1.164	0.331	1.061	0.412
PII-1	40	2.86	0.0290	74.0	0.901	0.913	0.257	1.186	0.448
PII-1	45	3.03	0.0307	72.6	1.057	0.856	0.270	1.320	0.490
РП-1	50	3.16	0.0321	72.0	1.216	0.750	0.241	1.439	0.528
PII-1	55	3.20	0.0325	72.6	1.377	0.642	0.162	1.542	0.554
PII-1	60	3.06	0.0311	72.7	1.527	0.623	0.172	1.636	0.580
PII-1	65	2.97	0.0301	71.8	1.665	0.515	0.165	1.707	0.603
PII-1	70	3.15	0.0320	71.0	1.839	0.478	0.173	1.790	0.633
PII-1	75	3.18	0.0323	67.8	1.999	0.424	0.147	1.858	0.657
PII-1	80	3.53	0.0359	68.0	2.152	0.530	0.217	1.939	0.690
PII-1	85	3.67	0.0373	68.2	2.336	0.412	0.187	2.015	0.724
PII-1	90	4.70	0.0481	64.1	2.528	0.427	0.162	2.097	0.755
PII-1	95	4.92	0.0504	52.1	2.784	0.303	0.177	2.174	0.800
	L		L						
PII-2	5	1.46	0.0147	69.9	0.052	1.601	0.572	0.083	0.030
PII-2	10	2.24	0.0226	68.1	0.160	1.757	0.782	0.273	0.114
PII-2	15	2.41	0.0244	68.7	0.275	1.674	0.795	0.465	0.205
PIL-2	20	2 56	0.0259	69 0	0 397	1 461	0 620	0 644	0.281

0.542

0.683

0.837

0.998

1.146

1.326

1.529

1.698

1.835

2.007

2.200

2.384

2.806

3.256

<u>3.</u>641

<u>4.</u>071

4.523

5.016

1.185

1.002

0.774

0.868

0.639

0.470

0.386

0.307

0.362

0.285

0.265

0.245

0.238

0.253

0.209

0.178

0.166

0.152

0.483

0.339

0.264

0.307

0.223

0.172

0.139

0.094

0.118

0.099

0.083

0.119

0.076

0.080

0.067

0.056

0.048

0.053

0.816

0.957

1.076

1.216

1.311

1.395

1.473

1.525

1.575

1.624

1.675

1.720

1.820

1.934

2.015

2.091

2.166

2.241

0.351

0.399

0.440

0.489

0.522

0.553

0.581

0.597

0.613

0.630

0.646

0.668

0.700

0.736

0.762

0.786

0.808

0.834

PII-2

PII-2

PII-2

PII-2

PII-2

РП-2

PII-2

25

30

35

40

45

50

55

60

65

70

75

80

90

100

110

120

130

140

2.54

2.84

3.02

3.20

3.30

3.52

3.75

3.45

2.95

3.56

3.99

<u>3.91</u>

4.17

4.82

4.09

5.09

4.61

5.39

0.0257

0.0288

0.0306

0.0324

0.0335

0.0358

0.0382

0.0351

0.0299

0.0362

0.0407

0.0399

0.0426

0.0494

0.0417

0.0522

0.0471

0.0554

66.3

66.2

66.5

70.5

69.9

69.1

65.8

68.9

69.3

60.5

57.8

62.3

62.0

53.9

64.6

63.9

59.8

58.0

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
PII-3	5	0.98	0.0099	67.4	0.050	1.548	0.438	0.078	0.022
PII-3	10	1.69	0.0170	66.6	0.130	1.597	0.498	0.205	0.062
PII-3	15	1.95	0.0197	61.0	0.223	1.716	0.531	0.364	0.111
PII-3	20	2.64	0.0268	59.1	0.356	1.453	0.536	0.558	0.183
PII-3	25	3.02	0.0306	59.2	0.499	1.093	0.229	0.714	0.215
PII-3	30	3.00	0.0304	63.0	0.661	0.640	0.142	0.818	0.238
PII-3	35	3.14	0.0319	65.8	0.830	0.653	0.169	0.928	0.267
PII-3	40	3.33	0.0338	70.3	0.995	0.612	0.122	1.029	0.287
PII-3	45	3.52	0.0358	67.7	1.181	0.418	0.087	1.107	0.303
PII-3	50	4.01	0.0409	61.8	1.383	0.303	0.086	1.168	0.320
PII-3	55	4.27	0.0436	59.3	1.590	0.301	0.074	1.230	0.336
PII-3	60	4.01	0.0409	59.9	1.782	0.227	0.070	1.274	0.349
PII-3	65	4.05	0.0413	60.7	2.002	0.230	0.080	1.325	0.367
PII-3	70	4.17	0.0426	56.7	2.198	0.175	0.086	1.359	0.384
PII-3	80	4.28	0.0437	60.8	2.422	0.199	0.050	1.404	0.395
PII-3	90	4.19	0.0428	62.0	2.827	0.213	0.061	1.490	0.420
PII-3	100	4.31	0.0440	59.8	3.271	0.246	0.071	1.599	0.451
PII-3	110	4.53	0.0463	65.8	3.696	0.180	0.056	1.675	0.475
PII-3	120	7.05	0.0730	58.4	4.204	0.159	0.029	1.756	0.490
PII-3	130	5.20	0.0533	65.4	4.707	0.146	0.080	1.830	0.530
PII-3	140	6.46	0.0668	48.2	5.370	0.110	0.058	1.903	0.568
PII-3	150	6.03	0.0621	62.7	5.919	0.134	0.039	1.976	0.590
PII-4	5	0.99	0.0099	69.2	0.059	1.405	0.531	0.083	0.031
PII-4	10	2.17	0.0220	66.6	0.153	1.553	0.604	0.230	0.088
PII-4	15	3.33	0.0338	55.1	0.325	1.395	0.530	0.469	0.179
PII-4	20	3.89	0.0397	47.4	0.518	0.807	0.340	0.624	0.245
PII-4	25	3.96	0.0405	53.1	0.744	0.745	0.217	0.793	0.294
PII-4	30	4.52	0.0463	49.7	0.953	0.676	0.177	0.934	0.331
PII-4	35	4.61	0.0472	45.7	1.189	0.640	0.189	1.085	0.376
PII-4	40	4.48	0.0459	49.5	1.415	0.442	0.168	1.185	0.414
PII-4	45	4.30	0.0439	54.4	1.633	0.308	0.109	1.252	0.437
PII-4	50	4.32	0.0442	59.7	1.823	0.265	0.093	1.303	0.455
PII-4	55	4.11	0.0419	64.7	2.017	0.266	0.096	1.354	0.474
PII-4	60	4.10	0.0418	64.2	2.212	0.280	0.118	1.409	0.497
PII-4	65	4.69	0.0480	56.4	2.434	0.274	0.114	1.470	0.522
PII-4	70	4.25	0.0434	56.2	2.680	0.266	0.110	1.535	0.549
PII-4	75	4.91	0.0504	50.6	2.907	0.285	0.101	1.600	0.572
PII-4	80	5.20	0.0535	46.1	3.218	0.232	0.082	1.672	0.597
PII-4	90	7.05	0.0733	42.7	3.908	0.137	0.063	1.766	0.641
PII-4	100	7.42	0.0773	37.5	4.671	0.244	0.145	1.953	0.751
PII-4	110	8.66	0.0908	41.9	5,561	0.165	0.079	2.100	0.822
PII-4	120	11.33	0.1205	41.4	6.397	0.129	0.069	2.207	0.879
PII-4	130	5.40	0.0554	64.4	6.931	0.211	0.062	2.320	0.913
PII-4	140	5.41	0.0555	65.2	7.478	0.260	0.087	2,462	0.960

			·····						
Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
PII-5	4	1.13	0.0113	71.0	0.065	•	•	•	•
PII-5	8	2.12	0.0214	64.3	0.152	1.369	0.594	0.119	0.052
PII-5	12	2.41	0.0244	65.3	0.255	1.401	0.606	0.264	0.114
<u>PII-5</u>	16	2.77	0.0281	63.8	0.372	1.415	0.485	0.429	0.171
<u>PII-5</u>	20	3.06	0.0311	62.5	0.506	0.834	0.305	0.541	0.212
PII-5	24	3.37	0.0343	57.6	0.640	0.982	0.747	0.672	0.312
PII-5	28	3.29	0.0334	65.4	0.791	0.545	0.418	0.754	0.375
<u>PII-5</u>	32	3.35	0.0340	70.3	0.932	0.401	0.308	0.811	0.418
PII-5	36	3.56	0.0362	69.5	1.085	0.383	0.329	0.869	0.469
PII-5	40	3.29	0.0334	68.7	1.235	0.373	0.353	0.926	0.522
PII-5	44	4.71	0.0482	66.8	1.400	0.355	0.285	0.984	0.569
PII-5	48	3.89	0.0396	66.2	1.556	0.347	0.277	1.038	0.612
PII-5	52	4.04	0.0412	66.9	1.733	0.311	0.277	1.093	0.661
PII-5	56	4.33	0.0443	65.5	1.908	0.277	0.259	1.142	0.706
PII-5	60	4.12	0.0420	65.9	2.076	0.246	0.205	1.183	0.741
PII-5	64	3.92	0.0400	67.6	2.248	0.231	0.244	1.223	0.783
<u>PII-5</u>	72	3.71	0.0378	67.5	2.570	0.288	0.231	1.316	0.857
PII-5	80	3.82	0.0389	66.8	2.890	0.268	0.192	1.401	0.918
PII-5	88	4.14	0.0422	68.3	3.247	0.268	0.196	1.497	0.988
PII-5	96	4.13	0.0421	67.4	3.601	0.258	0.268	1.588	1.083
PII-5	104	4.20	0.0428	67.5	3.969	0.256	0.189	1.682	1.153
PII-5	112	5.29	0.0543	56.3	4.438	0.304	0.179	1.825	1.237
<u>PII-5</u>	120	4.88	0.0500	64.5	4.831	0.217	0.226	1.910	1.325
PII-5	128	5.17	0.0530	63.3	5.295	0.192	0.209	1.999	1.422
PII-5	136	5.83	0.0600	70.3	5.682	0.198	0.192	2.076	1.497
PII-5	144	4.77	0.0488	/0.7	6.098	0.203	0.258	2.160	1.604
PII-5	152	4.36	0.0446	67.2	6.478	0.205	0.179	2.238	1.6/2
Notas Im	aalaylat	ions of au	mulativa et		Contad in the	tart arm	lative TD and	NA ID war	inonacad
Note: In	Calculat	ions of cu	anualive su	brage rep	boned in the	e text, cumu	all ve IP and	alues of 1 40	and 0 40
	by 0.05	valu war	59, respect	very, to a	D and MAT	Inissing dat	a at 2 cm. v	alues of 1.40	these
	annandi	very, wer	e used for in	to those	r allu INAL	r uala. Culi	iulative total	s reported in	ulese
	appendi	in laules u			aujustiiiciits	••			-+
		1 5 1	0.0152	(0.5	0.004	1 200	0.600	0.100	0.059
	4	1.51	0.0152	69.5	0.094	1.300	0.622	0.122	0.058
	10	5.14	0.0319	00.4	0.232	1.235	0.005	0.292	0.150
	12	0.40	0.0570	38.3	0.405	0.803	0.517	0.494	0.271
	10	9.49	0.1003	<u> </u>	1.041	0.45/	0.240	0.008	
	20	- 4.03	0.0497	59.2	1.001	0.290	0.214	0.732	0.411
DII 2	24	26 67	0.0302	20.2	1.293	0.229	0.194	0.785	0.430
DII 2	20	20.07	0.5105	0.0	2.030	0.097	0.125	0.91/	0.517
DII 4	32	10.25	0.1441	25.0	3.238	0.082	0.125	1.005	0.392
<u>гн-0</u> рп 2	30	10.20	0.1000	21.0	3.129	0.003	0.031	1.005	0.007
	40	56 10	0.1088	31.0	4.109	0.088	0.027	1.044	0.019
PII-6	44	50.12	0.8430	2.4	7.652	0.059	0.009	1.250	0.050

Γ	Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
	PII-7	4	1.29	0.0129	71.7	0.056	1.400	0.600	0.078	0.033
	PII-7	8	1.69	0.0171	70.9	0.123	1.380	0.590	0.170	0.073
	PII-7	12	2.46	0.0249	70.7	0.217	1.468	0.626	0.309	0.132
	PII-7	16	2.85	0.0288	68.7	0.332	1.482	0.642	0.479	0.206
	PII-7	20	3.08	0.0312	69.8	0.491	1.488	0.672	0.716	0.313
	PII-7	24	3.39	0.0345	69.3	0.610	1.226	0.515	0.862	0.374
	PII-7	28	3.78	0.0385	67.8	0.746	0.889	0.323	0.983	0.418
	PII-7	32	4.72	0.0483	53.5	0.975	0.752	0.179	1.155	0.459
	PII-7	36	4.20	0.0429	59.2	1.125	0.475	0.148	1.226	0.481
	PII-7	40	3.76	0.0383	64.6	1.290	0.391	0.118	1.290	0.501
	PII-7	44	3.72	0.0379	64.7	1.446	0.389	0.122	1.351	0.520
-	PII-7	48	3.86	0.0394	66.6	1.616	0.344	0.110	1.410	0.538
	<u>PII-7</u>	52	4.10	0.0418	63.6	1.785	0.304	0.094	1.461	0.554
	<u>PII-7</u>	56	3.97	0.0405	63.9	1.948	0.289	0.093	1.508	0.569
	<u>PII-7</u>	60	3.72	0.0378	68.4	2.102	0.276	0.085	1.551	0.582
	<u>PII-7</u>	64	3.76	0.0383	68.8	2.260	0.333	0.106	1.603	0.599
	<u>PII-7</u>	72	4.05	0.0413	65.1	2.586	0.250	0.094	1.685	0.630
	<u>PII-7</u>	80	3.88	0.0396	67.8	2.908	0.254	0.106	1./6/	0.664
	PII-7	88	- 3.85	0.0393	68.4	3.247	0.278	0.117	1.801	0.704
	PII-/	90	3.87	0.0394	70.0	3.544	0.295	0.119	1.949	0.739
	P11-/	104	3.8/	0.0394	70.1	3.8/3	0.332	0.127	2.058	0.781
	PII-/	112	3.74	0.0380	<u> </u>	4.174	0.317	0.155	2.155	0.821
	DII 7	120	4.29	0.0438	65.3	4.555	0.280	0.109	2.250	0.800
	<u>РП.7</u>	120	5 88	0.0425	62.7	5 302	0.270	0.109	2.555	0.090
	 	144	7 26	0.0000	53.4	6.027	0.194	0.067	2.451	0.942
	PII-7	148	7.20	0.0741	55.4	6 407	0.341	0.000	2.000	1 014
		140	7.14	0.0741	55.0	0.407	0.100	0.075	2.135	1.011
	PII-8	4	1.26	0.0126	72.2	0.080	1.223	0.524	0.098	0.042
	PII-8	8	1.99	0.0201	71.9	0.159	1.292	0.561	0.200	0.086
1	PII-8	12	2.63	0.0266	73.0	0.276	1.381	0.622	0.362	0.159
·	PII-8	16	2.83	0.0287	72.7	0.393	1.095	0.438	0.490	0.210
	PII-8	20	3.37	0.0342	71.5	0.543	0.706	0.215	0.596	0.243
	PII-8	24	3.54	0.0360	70.9	0.673	0.603	0.174	0.674	0.265
	PII-8	28	3.63	0.0369	69.9	0.843	0.535	0.138	0.765	0.289
	PII-8	32	3.70	0.0377	68.3	0.993	0.491	0.125	0.838	0.307
	PII-8	36	3.39	0.0345	70.5	1.131	0.454	0.143	0.901	0.327
	PII-8	40	3.51	0.0357	71.4	1.300	0.363	0.115	0.963	0.347
	PII-8	44	3.96	0.0404	67.0	1.431	0.298	0.097	1.002	0.359
	PII-8	48	3.83	0.0390	68.6	1.598	0.310	0.092	1.053	0.375
	PII-8	52	3.88	0.0396	66.3	1.757	0.296	0.096	1.101	0.390
	PII-8	56	4.24	0.0433	66.4	1.940	0.220	0.099	1.141	0.408
	PII-8	60	4.10	0.0418	65.8	2.091	0.221	0.104	1.174	0.424
	PII-8	64	4.10	0.0418	66.5	2.277	0.267	0.134	1.224	0.449
	PII-8	72	3.94	0.0401	68.9	2.598	0.231	0.095	1.298	0.479
	PII-8	80	3.66	0.0372	70.1	2.899	0.268	0.103	1.379	0.510
	<u>PII-8</u>	88	4.06	0.0413	80.7	3.232	0.246	0.105	1.460	0.545
	<u>– 11-8</u>	96	4.15	0.0424	55.2	3.582	0.151	0.077	1.513	0.572
		104	4.23	0.0431	/1.9	5.942	0.258	0.086	1.000	0.603
	0 1170	112	4.30	0.0439	/1.5 60 E	4.301	0.203	0.082	1./01	0.032
	 	120	7.09	0.0797	71 0	4.939	0.198	0.003	1.032	0.073
	 PII-8	120	13 53	0.0733	61 2	6 740	0.232	0.090	2 211	0.731
	PII-8	140	12.82	0.1366	64.0	7.531	0.152	0.048	2.343	0.831
	0	,					0.107	0.0.0	2.0.10	5.051

G +- 1	~								
Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
		1 25	0.0124	70 7	0.050	1 470	0.400	0.074	0.025
PII-9	4 9	1.55	0.0130	71.6	0.030	1.470	0.499	0.074	0.025
PIL-9	12	2 15	0.0191	71.0	0.127	1.510	0.404	0.171	0.002
PII-9	16	2.13	0.0224	69.0	0.303	1.777	0.676	0.489	0.177
PII-9	20	3.07	0.0312	61.3	0.425	1.205	0.497	0.636	0.237
PII-9	24	3.28	0.0333	58.4	0.556	0.797	0.273	0.741	0.273
PII-9	28	3.51	0.0357	56.7	0.704	0.872	0.442	0.870	0.339
PII-9	32	3.18	0.0323	68.3	0.834	0.510	0.159	0.936	0.359
PII-9	36	3.17	0.0322	70.4	0.967	0.630	0.225	1.020	0.389
PII-9	40	2.89	0.0293	72.1	1.088	0.474	0.119	1.077	0.404
PII-9	44	3.33	0.0338	72.0	1.223	0.425	0.106	1.134	0.418
PII-9	48	3.29	0.0334	72.7	1.358	0.387	0.098	1.187	0.431
PII-9	52	3.31	0.0336	12.6	1.492	0.406	0.103	1.241	0.445
		3.21	0.0326	13.0	1.022	0.4/1	0.138	1.303	0.400
<u>РШ-9</u> рп о	64	2.00	0.0311	15.0	1.749	0.435	0.129	1.300	0.462
PII-9	68	3.23	0.0328	75.8	2.025	0.410	0.114	1 470	0.497
PII-9	72	3.60	0.0366	72.1	2.165	0.347	0.118	1.518	0.531
PII-9	76	4.04	0.0412	70.4	2.351	0.280	0.109	1.570	0.551
PII-9	80	3.93	0.0400	68.1	2.513	0.274	0.101	1.615	0.567
PII-9	88	4.74	0.0485	60.7	2.916	0.243	0.102	1.713	0.608
PII-9	96	5.33	0.0547	66.1	3.387	0.244	0.104	1.828	0.657
PII-9	104	4.45	0.0455	65.1	3.784	0.255	0.117	1.929	0.704
PII-9	112	4.64	0.0474	67.0	4.163	0.242	0.109	2.021	0.745
PII-9	120	4.47	0.0456	66.5	4.546	0.235	0.105	2.111	0.785
PII-9	128	4.73	0.0484	65.0	4.967	0.240	0.114	2.212	0.833
PII-9	136	5.19	0.0533	59.9	5.422	0.208	0.098	2.306	0.878
<u>PII-9</u>	144	5.77	0.0594	53.6	5.893	0.184	0.086	2.393	0.919
DII 10	1	0.05	0.0005	72 0	0.066	1 / 12	0.584	0.003	0.030
PII-10	10	1 78	0.0093	72.9	0.000	1.412	0.304	0.093	0.039
PII- 10	10	2.09	0.0211	73.0	0.102	1.420	0.559	0.330	0.030
PII-10	16	2.33	0.0236	71.8	0.307	1.623	0.739	0.467	0.193
PII-10	20	2.71	0.0275	70.3	0.421	1.676	0.828	0.658	0.287
PII-10	24	2.84	0.0288	71.2	0.544	1.417	0.572	0.833	0.357
PII-1 0	28	3.17	0.0321	70.9	0.667	1.199	0.454	0.980	0.413
PII-10	32	3.33	0.0338	70.7	0.801	1.176	0.507	1.138	0.481
PII-10	36	3.22	0.0327	70.6	0.932	1.004	0.381	1.269	0.531
PII-10	40	3.49	0.0355	69.3	1.076	0.844	0.327	1.391	0.578
PII-10	44	3.58	0.0364	69.4	1.232	0.853	0.351	1.523	0.633
PII-10	48	3.59	0.0365	68.5	1.376	0.831	0.298	1.644	0.676
$-\frac{PII-10}{DII}$	52	3.72	0.0378	69.5	1.531	0.791	0.296	1.766	0.722
<u>РП-10</u> рп 10	<u> </u>	3.8/	0.0395	69.7	1.084	0.7/1	0.290	1.884	0.766
PΠ-10	64	4.22	0.0430	<u> </u>	1.8/0	0.703	0.247	2.019	0.813
PII_10	68	4.55	0.0442	<u></u>	2.040	0.000	0.240	2.137	0.830
PII-10	72	4 33	0.0442	69.0	2.230	0.055	0.204	2.230	0.910
PII-10	76	4.37	0.0446	69.9	2.624	0.745	0.283	2.529	1.024
PII-10	80	4.15	0.0423	70.5	2.796	0.742	0.330	2.656	1.080
PII-10	88	3.99	0.0407	70.9	3.137	0.756	0.346	2.914	1.198
РП-10	96	3.72	0.0378	71.4	3.460	0.734	0.330	3.151	1.305
PII-10	104	3.38	0.0343	71.6	3.738	0.667	0.297	3.337	1.388
PII-10	112	3.48	0.0354	68.2	4.048	0.663	0.319	3.542	1.486
PII-10	120	3.88	0.0396	70.5	4.366	0.517	0.249	3.707	1.566
PII-10	128	4.74	0.0485	66.9	4.767	0.378	0.195	3.858	1.644

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
PII-11	4	1.39	0.0139	69.9	0.068	1.392	0.558	0.095	0.038
PII-11	8	2.15	0.0217	66.9	0.151	1.459	0.644	0.216	0.091
PII-1 1	12	2.59	0.0262	67.6	0.263	1.486	0.643	0.381	0.163
PII-1 1	16	3.09	0.0314	70.0	0.414	1.301	0.537	0.578	0.244
PII-11	20	3.10	0.0315	69.8	0.511	1.075	0.449	0.682	0.288
PII-11	24	3.12	0.0317	69.7	0.640	0.938	0.327	0.803	0.330
PII-11	28	3.63	0.0370	67.8	0.804	0.806	0.297	0.936	0.379
PII-11	32	3.56	0.0362	67.0	0.940	0.951	0.295	1.065	0.419
PII-11	36	3.76	0.0382	67.2	1.098	0.727	0.246	1.180	0.458
PII-11	40	4.10	0.0418	68.1	1.267	0.642	0.221	1.288	0.495
PII-11	44	4.33	0.0442	66.9	1.470	0.661	0.241	1.423	0.544
PII-11	48	4.21	0.0430	66.8	1.637	0.694	0.221	1.539	0.581
PII-11	52	4.25	0.0434	66.1	1.837	0.676	0.236	1.674	0.628
PII-11	56	4.42	0.0452	65.0	2.053	0.718	0.260	1.829	0.684
PII- 11	60	4.28	0.0437	65.2	2.237	0.690	0.255	1.956	0.731
PII- 11	64	4.19	0.0428	66.1	2.406	0.671	0.246	2.069	0.773
PII-11	68	4.07	0.0415	65.8	2.579	0.674	0.247	2.186	0.816
PII-11	72	4.10	0.0418	65.2	2.761	0.671	0.248	2.308	0.861
PII-11	76	4.16	0.0425	65.2	2.939	0.621	0.252	2.418	0.905
PII-11	80	4.02	0.0410	66.9	3.110	0.513	0.236	2.506	0.946
РП-11	88	3.92	0.0400	68.8	3.428	0.540	0.213	2.678	1.014
PII-11	96	4.49	0.0459	67.2	3.833	0.318	0.191	2.807	1.091
PII-11	104	4.71	0.0482	64.8	4.224	0.329	0.151	2.935	1.150
PII-11	112	4.58	0.0468	66.3	4.629	0.358	0.162	3.080	1.216
PII-1 1	120	4.75	0.0485	66.7	5.032	0.309	0.166	3.205	1.283
PII-11	128	4.25	0.0433	67.9	5.388	0.316	0.156	3.317	1.338
PII-12	5	2.19	0.0221	71.4	0.113	1.388	0.613	0.157	0.069
PII-12	10	2.84	0.0288	71.3	0.216	1.464	0.550	0.307	0.126
PII-12	15	2.89	0.0293	71.5	0.348	1.201	0.498	0.467	0.192
PII-12	20	3.96	0.0403	71.3	0.496	0.839	0.328	0.590	0.240
PII-12	25	2.81	0.0285	70.2	0.627	0.627	0.207	0.672	0.267
PII-12	30	3.92	0.0399	69.9	0.800	0.582	0.174	0.773	0.297
PII-12	35	3.38	0.0344	70.4	0.993	0.475	0.166	0.865	0.329
PII-12	40	3.65	0.0371	70.6	1.137	0.461	0.165	0.931	0.353
PII-12	45	3.69	0.0375	71.1	1.307	0.486	0.177	1.014	0.383
PII-12	50	3.92	0.0399	70.8	1.499	0.440	0.150	1.098	0.412
PII-12	55	4.04	0.0411	69.9	1.726	0.495	0.148	1.210	0.446
PII-12	60	3.84	0.0391	69.6	1.966	0.524	0.155	1.336	0.483
PII-12	65	3.74	0.0380	70.3	2.210	0.508	0.180	1.460	0.527
PII-12	70	3.89	0.0396	69.9	2.426	0.493	0.168	1.567	0.563
PII-12	75	3.73	0.0379	70.1	2.617	0.535	0.153	1.669	0.592
PII-12	80	3.52	0.0358	70.9	2.772	0.366	0.124	1.726	0.612
PII-12	85	3.96	0.0403	65.5	2.926	0.348	0.127	1.779	0.631
PII-12	90	4.20	0.0428	69.3	3.146	0.261	0.122	1.837	0.658
PII-12	95	4.50	0.0460	70.8	3.374	0.277	0.102	1.900	0.681
PII-12	100	5.15	0.0527	67.4	3.635	0.186	0.078	1.948	0.702
PII-12	110	5.11	0.0523	65.7	4.120	0.215	0.099	2.053	0.750
PII-12	120	6.02	0.0621	56.9	4.906	0.166	0.065	2.183	0.801
PII-12	130	6.57	0.0680	50.5	5.627	0.183	0.040	2.315	0.830

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
	_								
PII-13	4	5.13	0.0525	72.7	0.258	1.396		0.360	
PII-13	8	3.99	0.0407	74.7	0.418	1.285	0.460	0.566	0.074
PII-13	12	2.90	0.0294	73.4	0.539	1.426	0.826	0.738	0.173
PII-13	16	3.37	0.0343	74.0	0.683	1.435	0.621	0.944	0.263
PII-13	20	3.41	0.0347	74.3	0.819	1.384	0.582	1.134	0.342
РП-13	24	3.81	0.0387	73.9	0.967	1.206	0.476	1.312	0.413
РП-13	28	3.70	0.0377	73.0	1.131	0.997	0.413	1.475	0.480
PII-13	32	4.05	0.0412	72.0	1.298	0.962	0.323	1.635	0.534
PII-13	36	4.10	0.0418	71.1	1.470	0.810	0.230	1.775	0.574
PII-13	40	4.32	0.0441	71.1	1.650	0.720	0.225	1.905	0.614
PII-13	44	5.82	0.0598	73.0	1.908	0.687	0.220	2.082	0.671
PII-13	48	4.19	0.0428	71.4	2.068	0.696	0.233	2.194	0.708
PII-13	52	4.16	0.0424	71.0	2.251	0.792	0.225	2.339	0.750
PII-13	56	4.10	0.0418	71.5	2.423	0.649	0.257	2.450	0.794
PII-13	60	3.98	0.0406	<u> </u>	2.618	0.442	0.178	2.536	0.828
PII-13	64	5.10	0.0522	68.9	2.797	0.327	0.129	2.595	0.851
PII-13	68	4.30	0.0439	69.5	2.976	0.318	0.132	2.652	0.875
PII-13	72	5.09	0.0522	61.7	3.198	0.259	0.121	2.709	0.902
PII-13	76	5.41	0.0556	59.8	3.437	0.373	0.106	2.798	0.927
PII-13	80	4.97	0.0508	67.4	3.669	0.233	0.121	2.852	0.955
PII-13	88	5.55	0.0573	24.3	4.141	0.233	0.095	2.962	1.000
PII-13	96	5.65	0.0580	70.9	4.632	0.160	0.105	3.041	1.052
PII-13	104	5.70	0.0586	66.8	5.127	0.202	0.081	3.141	1.092
PII-13	112	6.11	0.0629	66.8	5.664	0.397	0.141	3.354	1.168
PII-13	120	7.14	0.0739	66.5	6.255	0.267	0.121	3.512	1.239
PII-13	128	6.74	0.0696	64.6	6.839	0.192	0.112	3.624	1.304
PII-13	136	7.45	0.0775	50.04	7.512	0.173	0.070	3.740	1.351
PII-14	4	1.17	0.0118	69.9	0.063	1.246	0.494	0.078	0.031
PII-14	8	1.67	0.0168	69.9	0.131	1.325	0.485	0.169	0.064
PII-14	12	2.28	0.0231	68.6	0.226	1.293	0.531	0.291	0.114
PII-14	16	2.76	0.0280	67.0	0.352	1.504	0.625	0.480	0.193
PII-14	20	2.89	0.0293	67.5	0.462	1.389	0.601	0.634	0.260
PII-14	24	3.14	0.0319	69.1	0.612	1.362	0.592	0.838	0.348
PII-14	28	3.04	0.0308	68.8	0.727	1.325	0.557	0.991	0.412
PII-14	32	3.15	0.0320	69.2	0.852	1.120	0.527	1.130	0.478
PII-14	36	3.91	0.0399	66.4	1.039	1.003	0.455	1.318	0.563
PII-14	40	4.44	0.0454	53.9	1.176	0.939	0.375	1.447	0.615
PII-14	44	4.98	0.0511	51.9	1.435	0.753	0.345	1.642	0.704
PII-14	48	4.04	0.0412	68.0	1.595	0.507	0.215	1.723	0.738
PII-14	52	3.60	0.0366	70.6	1.755	0.514	0.229	1.805	0.775
РП-14	56	3.58	0.0364	71.4	1.913	0.474	0.203	1.880	0.807
PII-14	60	3.70	0.0377	68.3	2.056	0.482	0.188	1.949	0.834
PII-14	64	4.13	0.0421	66.0	2.230	0.456	0.194	2.028	0.868
PII-14	68	3.85	0.0392	67.3	2.413	0.443	0.207	2.109	0.905
PII-14	72	3.34	0.0340	66.9	2.550	0.494	0.244	2.177	0.939
PII-14	76	3.74	0.0381	66.8	2.717	0.405	0.197	2.245	0.972
PII-14	80	3.80	0.0387	65.2	2.879	0.416	0.188	2.312	1.002
PII-14	88	3.84	0.0391	67.1	3.209	0.369	0.172	2.434	1.059
PII-14	96	4.58	0.0468	70.9	3.554	0.376	0.184	2.564	1.123
PII-14	104	4.21	0.0429	69.1	3.932	0.329	0.180	2.688	1.191
	112	4.50	0.0461	67.8	4.309	0.360	0.169	2.824	1.254
PII-14	120	3.90	0.0397	67.5	4.638	0.329	0.173	2.932	1.311
PII-14	128	4.25	0.0434	68.2	5.000	0.359	0.181	3.062	1.377
PII-14	136	3.87	0.0394	70.0	5.327	0.354	0.201	3.177	1.442
PII-14	144	3.71	0.0377	70.4	5.648	0.351	0.204	3.290	1.508
PII-14	152	3.82	0.0389	67.8	5.915	0.354	0.186	3.385	1.558
Lake Griffin Survey Cores, Phase II

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
PII-15	4	1.42	0.0143	70.7	0.094	1.216	0.555	0.114	0.052
PII-15	8	2.65	0.0269	69.8	0.200	1.360	0.684	0.259	0.125
PII-15	12	3.12	0.0317	67.1	0.340	1.233	0.680	0.432	0.220
PII-15	16	3.33	0.0338	67.2	0.481	1.224	0.496	0.604	0.290
PII-15	20	3.71	0.0378	66.9	0.639	0.932	0.361	0.751	0.347
РП-15	24	3.94	0.0401	67.8	0.809	0.784	0.250	0.884	0.389
PII-15	28	4.34	0.0443	67.4	0.994	0.721	0.256	1.018	0.437
РП-15	32	4.27	0.0436	67.7	1.167	0.631	0.213	1.127	0.474
PII-15	36	4.00	0.0408	67.6	1.333	0.691	0.237	1.242	0.513
PII-15	40	4.13	0.0421	66.1	1.524	0.721	0.232	1.379	0.557
PII-15	44	4.21	0.0430	64.4	1.694	0.714	0.229	1.501	0.596
PII-15	48	3.71	0.0378	69.6	1.849	0.681	0.221	1.606	0.630
PII-15	52	3.66	0.0372	70.6	1.986	0.594	0.181	1.688	0.655
PII-15	56	3.50	0.0356	70.0	2.152	0.551	0.185	1.779	0.686
PII-15	60	3.88	0.0395	65.2	2.308	0.385	0.130	1.839	0.706
PII-15	64	3.57	0.0363	71.7	2.460	0.339	0.121	1.891	0.725
PII-15	68	3.75	0.0381	66.9	2.631	0.356	0.119	1.952	0.745
PII-15	72	5.03	0.0516	51.4	2.821	0.246	0.086	1.998	0.761
PII-15	76	5.60	0.0577	50.5	3.054	0.210	0.084	2.047	0.781
PII-15	80	5.96	0.0615	50.7	3.312	0.253	0.088	2.112	0.804
PII-15	88	43.41	0.5853	3.4	8.561	0.080	0.011	2.532	0.861
PII-15	96	68.96	1.1713	2.6	19.528	0.032	0.016	2.883	1.037
PII-16	4	1.85	0.0187	68.6	0.084	1.338	0.535	0.112	0.045
PII-16	8	2.55	0.0259	68.7	0.178	1.392	0.566	0.244	0.098
PII-16	12	3.03	0.0308	66.8	0.309	1.342	0.567	0.420	0.173
PII-16	16	3.41	0.0346	66.3	0.461	1.231	0.528	0.606	0.253
PII-16	20	4.11	0.0419	64.8	0.636	0.984	0.380	0.778	0.319
PII-16	24	4.46	0.0456	65.2	0.816	0.884	0.347	0.938	0.382
PII-16	28	4.51	0.0461	65.7	1.015	0.925	0.362	1.122	0.454
PII-16	32	4.51	0.0461	65.9	1.220	0.902	0.351	1.306	0.525
PII-16	36	4.61	0.0471	62.6	1.421	0.800	0.287	1.467	0.583
PII-16	40	4.81	0.0493	58.9	1.625	0.792	0.233	1.628	0.631
	44	4./1	0.0482	58.7	1.823	0.539	0.187	1./30	0.668
PII-16	48	4.17	0.0426	41.8	1.994	0.488	0.152	1.819	0.694
	52	4.81	0.0492	58.9	2.192	0.402	0.135	1.898	0.720
$\begin{array}{c c} PII-16 \\ \hline PII 16 \end{array}$	56	<u> </u>	0.0585	50.3	2.450	0.303	0.108	1.9//	0.748
PII-16	60	11.39	0.1218	21.7	2.951	0.261	0.087	2.107	0.792
PII-16	04	9.10	0.0958	31.0	3.340	0.196	0.051	2.184	0.812
PII-16	08	18.45	0.2064	16.2	4.177	0.214	0.087	2.303	0.885
PII-16	12	46.24	0.6378	3.5	0.469	0.000	0.008	2.363	0.903
PII-16	/0	/9.83	1.5297	0.7	13.642	0.000	0.003	2.363	0.925
	80	65.31	1.0663	4.6	18.586	0.040	0.035	2.561	1.098
<u>PII-16</u>	88	61.04	0.9551	5.9	23.539	0.063	0.038	2.873	1.286

Lake Griffin Survey Cores, Phase II

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP
PII-17	4	2.03	0.0205	80.6	0.146	1.194	0.487	0.175	0.071
PII-17	8	2.94	0.0299	10.6	0.269	1.197	0.486	0.321	0.131
PII-17	12	3.64	0.0370	61.0	0.414	1.052	0.371	0.475	0.185
PII-17	16	4.10	0.0419	60.9	0.586	1.077	0.299	0.660	0.236
PII-17	20	4.38	0.0448	57.5	0.756	0.803	0.250	0.796	0.279
PII-17	24	5.16	0.0530	51.7	0.981	0.804	0.239	0.977	0.332
PII-17	28	5.94	0.0613	44.8	1.248	0.670	0.204	1.156	0.387
PII-17	32	8.11	0.0848	35.9	1.581	0.501	0.167	1.322	0.442
PII-17	36	5.68	0.0585	53.6	1.844	0.618	0.188	1.485	0.492
PII-17	40	4.84	0.0496	63.1	2.049	0.568	0.164	1.601	0.525
PII-17	44	4.63	0.0473	64.3	2.244	0.542	0.144	1.707	0.554
PII-17	48	4.89	0.0501	57.0	2.449	0.567	0.166	1.824	0.588
PII-17	52	3.82	0.0389	69.7	2.605	0.438	0.136	1.892	0.609
PII-17	56	3.71	0.0378	68.0	2.764	0.408	0.140	1.957	0.631
PII-17	60	3.58	0.0364	70.0	2.925	0.427	0.133	2.026	0.653
PII-17	64	4.48	0.0457	67.3	3.098	0.321	0.110	2.081	0.672
PII-17	68	6.23	0.0643	62.5	3.358	0.280	0.094	2.154	0.696
PII-17	72	5.55	0.0570	59.5	3.601	0.279	0.103	2.222	0.721
PII-17	76	5.59	0.0574	60.0	3.821	0.277	0.094	2.283	0.742
PII-17	80	4.86	0.0498	59.7	4.023	0.290	0.094	2.341	0.761
PII-17	88	5.56	0.0572	58.7	4.495	0.291	0.088	2.478	0.802
PII-17	96	5.35	0.0550	57.4	4.972	0.269	0.084	2.607	0.842
PII-17	104	14.03	0.1524	19.9	6.230	0.135	0.042	2.777	0.895
PII-17	112	73.11	1.2999	1.0	16.779	0.019	0.019	2.977	1.096
PII-18	4	1.27	0.0128	64.5	0.047	1.152	0.459	0.054	0.022
PII-18	8	1.84	0.0185	63.9	0.111	1.295	0.529	0.138	0.056
PII-18	12	3.02	0.0307	63.6	0.248	1.288	0.575	0.314	0.134
PII-18	16	3.88	0.0397	37.3	0.414	1.134	0.473	0.501	0.213
PII-18	20	4.05	0.0413	62.4	0.591	0.822	0.266	0.647	0.260
PII-18	24	4.18	0.0427	62.8	0.761	0.727	0.201	0.770	0.294
PII-18	28	4.49	0.0459	63.4	0.945	0.714	0.206	0.902	0.332
PII-18	32	4.74	0.0486	57.5	1.154	0.534	0.170	1.014	0.367
PII-18	36	4.09	0.0417	63.5	1.346	0.377	0.112	1.086	0.389
PII-18	40	3.96	0.0404	65.8	1.516	0.406	0.116	1.155	0.409
PII-18	44	4.10	0.0418	62.2	1.691	0.489	0.152	1.240	0.435
PII-18	48	4.41	0.0451	61.1	1.881	0.460	0.146	1.328	0.463
PII-18	52	4.48	0.0458	61.2	2.066	0.423	0.122	1.406	0.485
PII-18	56	4.45	0.0455	63.0	2.263	0.428	0.127	1.491	0.511
PII-18	60	4.13	0.0421	63.0	2.426	0.345	0.103	1.547	0.527
	64	3.45	0.0351	64.2	2.574	0.316	0.116	1.594	0.544
	68	5.83	0.0600	60.2	2.815	0.222	0.090	1.647	0.566
		/.90	0.0823	53.2	3.168	0.182	0.081	1./11	0.595
	76	6.47	0.0666	74.5	3.434	0.201	0.084	1.765	
	80	5.26	0.0539	63.4	3.658	0.238	0.093	1.818	0.638
PII-18	88	4.97	0.0509	63.1	4.084	0.216	0.100	1.910	0.681
PII-18	90	5.49	0.0507	50.5	4.540	0.216	0.095	2.009	0.724
DI 10	104	4.93	0.0307	59.6	4.909	0.250	0.079	2.110	0.758
DTI 10	112	0.02	0.03/8	20.9	2.445	0.220	0.070	2.221	0.791
DTL 19	120	70 54	1 2211	57.5	16 114	0.130	0.030	2.541	1.015
L TT-10	120	70.54	1.4411	I U.Y	10.440	0.019	0.019	4.334	1.013

5

Lake Griffin Survey Cores, Phase II

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP -	NAIP	Cum TP	Cum NAIP
DIL 10		1 17	0.0117	(7.0	0.045	1 206	0.552	0.062	0.025
PII-19	4	1.17	0.0117	0/.8	0.045	1.390	0.555	0.005	0.025
PII-19	12	1.09	0.0170		0.103	1.433	0.000	0.147	0.039
PII-19	12	2.50	0.0252	68.0	0.201	1.240	0.423	0.209	0.101
DII 10	20	2.42	0.0244	67.8	0.300	0.886	0.423	0.373	0.143
DII 10	20	2.40	0.0248	657	0.409	0.880	0.354	0.556	0.179
DII 10	24	2.02	0.0280	65.5	0.525	0.727	0.203	0.550	0.210
DII 10	20	3.11	0.0310	66.2	0.055	0.771	0.352	0.050	0.233
DII_10	36	3.18	0.0320	66 7	0.700	0.675	0.233	0.830	0.207
DIL 10	40	3.64	0.0323	65.6	1 001	0.000	0.456	0.050	0.342
DIL 10	40	3 53	0.0370	66.0	1 234	0.705	0.260	1.062	0.375
PII_10	48	3.00	0.0345	66.8	1 382	0.745	0.304	1.002	0.485
PΠ_10	52	3.40	0.0343	61.0	1.562	0.010	0.271	1 306	0.403
DIL 10	56	3.80	0.0324	66.2	1.544	0.530	0.230	1.500	0.532
<u>PΠ_10</u>	60	3.57	0.0363	67.1	1.721	0.546	0.274	1.410	0.530
DII _10	64	3.57	0.0303	65.3	2 014	0.540	0.205	1.475	0.610
РП_10	68	3.68	0.0374	65.2	2.014	0.547	0.193	1.577	0.032
PII-19	72	3 74	0.0374	63.0	2 341	0.555	0.155	1.000	0.072
<u>РП_10</u>	76	3.83	0.0301	62.0	2.541	0.540	0.213	1.755	0.700
PII_10	80	- 3.05	0.0338	64.5	2.514	0.510	0.212	1.045	0.742
PII_10	88	3 54	0.0350	66.8	2.032	0.500	0.232	2 047	0.835
PII_10		3 44	0.0300	67.5	3 233	0.405	0.192	2.047	0.891
DII 10	104	3 50	0.0345	66.4	3 535	0.425	0.192	2.175	0.871
DII 10	112	4 16	0.0303	57.0	3.886	0.423	0.101	2.304	0.040
DII.10	120	4.10	0.0424	62.5	4 230	0.305	0.149	2.451	1.045
DIL 10	120	<u> </u>	0.0430	64.2	4.230	0.336	0.133	2.540	1.045
	120		0.0440	04.2	7.727	0.550	0.140	2.012	1.072
РП-20	· 4	1 12	0.0113	73.9	0.046	1.420	0.510	0.066	0.024
PII-20	8	1.83	0.0185	73.2	0.130	1.601	0.635	0.199	0.077
РП-20	12	2.22	0.0224	73.5	0.216	1.518	0.682	0.330	0.135
PII-20	16	2.42	0.0245	74.2	0.321	1.426	0.674	0.479	0.206
PII-20	20	2.27	0.0229	72.6	0.410	1.393	0.678	0.604	0.266
PII-20	24	2.79	0.0283	72.7	0.525	1.341	0.565	0.758	0.332
PII-20	28	2.85	0.0289	72.3	0.649	1.316	0.589	0.922	0.405
PII-20	32	2.73	0.0276	71.8	0.768	1.113	0.451	1.054	0.458
PII-20	36	2.81	0.0285	71.4	0.878	0.989	0.364	1.163	0.498
PII-20	40	2.86	0.0290	72.3	1.007	1.033	0.422	1.296	0.553
PII-20	44	3.06	0.0310	68.6	1.134	0.820	0.323	1.400	0.594
PII-20	48	3.26	0.0331	68.5	1.271	0.457	0.170	1.463	0.617
PII-20	52	3.51	0.0356	69.6	1.419	0.440	0.164	1.528	0.641
РІІ-20	56	3.66	0.0372	68.7	1.556	0.389	0.139	1.581	0.660
РП-20	60	3.80	0.0387	68.0	1.719	0.361	0.128	1.640	0.681
PII-20	64	3.76	0.0383	66.7	1.881	0.313	0.110	1.691	0.699
PII-20	68	3.84	0.0391	67.4	2.058	0.346	0.122	1.752	0.721
PII-20	72	3.49	0.0355	69.9	2.224	0.376	0.120	1.814	0.740
PII-20	76	3.35	0.0340	68.8	2.361	0.386	0.137	1.867	0.759
PII-20	80	3.46	0.0352	67.9	2.489	0.334	0.107	1.910	0.773
PII-20	88	3.89	0.0396	68.9	2.811	0.294	0.108	2.005	0.808
PII-20	96	3.95	0.0403	67.2	3.154	0.273	0.105	2.098	0.844
PII-20	104	4.45	0.0454	64.7	3.520	0.231	0.070	2.183	0.869
PII-20	112	5.26	0.0540	55.9	3.983	0.237	0.093	2.293	0.913
PII-20	120	6.45	0.0668	49.7	4.546	0.290	0.088	2.456	0.962
PII-20	128	9.83	0.1039	34.9	5.446	0.164	0.047	2.603	1.004
PII-20	136	20.44	0.2314	19.4	7.293	0.267	0.074	3.096	1.141

APPENDIX E

Gravimetric and chemical data, Lake Griffin historic cores, Phase II. See Appendix A for collection date, location and description of cores.

CODES: Sta is station number Depth is depth (cm) Dry is percent dry weight Rho is dry weight density (g dry cm⁻³ wet) LOI is percent loss on ignition Cum Wt is cumulative mass (g cm⁻²) TP is total phosphorus (mg g⁻¹) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum TP is cumulative TP (mg cm⁻²) Cum NAIP is cumulative NAIP (mg cm⁻²) TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio

Missing data are indicated by dots.

化化学性化的 化化化合金 化分子 医鼻膜骨折 化合金 有限的

03H 2 1 0 0.071 1.338 0.496 0.050 0.019 . . . 03H 6 2.21 . 0.110 1495 0.575 0.152 0.057 .	Sta	Depth	Dry	Rho	LOI	Cum Wt	ТР	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
03H 2 1.40 . . 0.037 1.338 0.496 0.019 . . . 03H 6 2.21 . 0.110 1.495 0.575 0.152 0.067 . . . 03H 6 2.28 0.026 6.020 0.208 1.168 0.636 0.292 0.124 3.03 2.911 9.60 03H 12 2.84 0.0285 57.49 0.330 0.789 0.380 0.380 0.154 2.93 3.010 03H 14 3.07 0.031 0.538 0.380 0.154 2.97 2.774 9.93 03H 13 15 0.0320 61.04 0.518 0.407 0.148 0.570 0.221 2.81 30.61 10.88 03H 22 3.41 0.0347 63.10 0.538 0.571 0.228 3.029 10.71 03H 22 3.43 64.14 0.55													
03H 4 1.85 . 0.070 1.309 0.470 0.093 0.034 . . . 03H 6 2.21 . 0.110 1.495 0.575 0.152 0.037 . <	03H	2	1.40	•	•	0.037	1.338	0.496	0.050	0.019	•	•	•
03H 6 2.21 . . 0.110 1.495 0.575 0.152 0.057 . . . 03H 10 2.57 0.0026 60.00 0.103 1.630 0.721 0.238 0.095 2.98 27.95 9.38 03H 12 2.84 0.0285 57.49 0.333 0.789 0.330 0.398 0.175 2.99 27.74 9.93 03H 16 3.00 0.0312 60.138 0.389 0.175 0.281 2.81 30.29 10.71 03H 13 15 0.0320 61.04 0.518 0.440 0.206 0.228 2.83 30.29 10.71 03H 24 3.37 0.0342 64.14 0.656 0.271 0.231 3.028 10.031 03H 24 3.47 0.0342 64.77 0.397 0.387 0.362 0.228 3.08 3.07 3.351 10.031 10.350	03H	4	1.85	•	•	0.070	1.309	0.470	0.093	0.034	•	•	•
03H 8 2.58 0.0260 60.00 0.163 1.630 0.721 0.238 0.095 2.98 2.795 9.88 03H 12 2.87 0.0285 57.98 0.229 0.144 0.031 2.91 9.90 03H 14 3.49 0.0355 57.49 0.330 0.789 0.330 0.388 0.155 2.79 2.774 9.93 03H 16 3.070 0.0312 60.38 0.389 1.151 0.581 0.444 0.202 2.28 2.302 10.71 03H 22 3.41 0.0342 64.14 0.666 0.207 0.142 0.666 0.201 3.02 2.88 10.61 03H 23 3.70 0.0342 64.47 0.796 0.409 0.135 0.664 0.278 3.24 84.88 10.71 03H 32 3.60 0.0356 0.395 0.139 0.662 0.232 3.28 3.88 1	03H	6	2.21	•	•	0.110	1.495	0.575	0.152	0.057	•	•	•
03H 10 2.67 0.0270 60.20 0.208 1.168 0.636 0.292 0.124 3.03 2933 10.00 03H 14 3.49 0.0355 57.49 0.333 0.789 0.330 0.398 0.175 2.93 29.33 10.00 03H 16 3.07 0.0312 60.38 0.389 1.153 0.581 0.444 0.208 2.67 28.84 10.80 03H 12 3.15 0.0320 61.04 0.518 0.446 0.506 0.2241 2.83 30.29 10.71 03H 23 3.15 0.0322 67.52 0.720 0.416 0.113 0.664 0.276 3.24 3.48 10.83 03H 23 3.40 68.47 0.797 0.387 0.150 0.719 0.299 3.12 3.384 10.84 03H 23 50.0366 67.77 0.979 0.387 0.327 3.281 1.181	03H	8	2.58	0.0260	60.00	0.163	1.630	0.721	0.238	0.095	2.98	27.95	9.38
03H 12 2.84 0.028 57.99 0.269 0.496 0.348 0.154 2.93 10.00 03H 14 3.49 0.0355 57.49 0.333 0.789 0.375 2.77 2.7.74 9.93 03H 18 3.15 0.0320 61.04 0.451 0.680 0.316 0.566 0.228 2.83 30.29 10.71 03H 24 3.15 0.0320 61.04 0.651 0.490 0.200 0.538 0.241 2.85 2.9.71 10.41 03H 24 3.41 0.0342 64.47 0.796 0.440 0.660 0.251 3.051 10.61 03H 24 3.46 10.352 67.52 0.720 0.416 0.113 0.633 0.288 3.08 3.35 10.86 03H 3.45 0.0366 67.77 0.937 0.387 0.130 0.799 0.324 3.08 3.35 10.86 0.375	03H	10	2.67	0.0270	60.20	0.208	1.168	0.636	0.292	0.124	3.03	29.11	9.60
03H 14 3.49 0.0355 57.49 0.333 0.789 0.130 0.398 0.175 2.774 9.93 03H 16 3.07 0.0312 60.38 0.389 1.153 0.581 0.464 0.208 2.67 2.884 10.80 03H 22 3.15 0.0320 61.04 0.518 0.490 0.200 0.538 0.241 2.85 29.71 10.41 03H 23 3.41 0.0347 63.10 0.584 0.478 0.142 0.606 0.261 3.02 32.08 10.63 03H 26 3.46 0.0352 67.52 0.720 0.416 0.113 0.633 0.268 3.07 33.85 10.91 03H 3 3.60 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.348 10.83 0.323 10.76 0.334 3.08 3.35 10.83 0.344 3.16 3.405	03H	12	2.84	0.0288	57.98	0.269	0.929	0.496	0.348	0.154	2.93	29.33	10.00
03H 16 3.07 0.0312 60.38 0.389 1.153 0.056 0.228 28.84 10.80 03H 18 3.15 0.0320 61.04 0.518 0.366 0.506 0.228 2.83 30.29 10.71 03H 24 3.15 0.0320 61.04 0.518 0.444 0.506 0.251 2.81 30.61 10.88 03H 24 3.47 0.0342 64.14 0.656 0.507 0.142 0.666 0.251 3.061 10.88 03H 24 3.48 0.0322 67.52 0.720 0.416 0.113 0.663 0.288 3.08 33.85 10.98 03H 3.4 3.66 0.0322 68.39 1.130 0.317 0.749 0.399 3.13 3.043 3.84 10.88 10.749 0.399 3.23 10.76 0.314 3.45 3.405 10.78 2.814 1.13 0.314 3.45 3.061	03H	14	3.49	0.0355	57.49	0.333	0.789	0.330	0.398	0.175	2.79	27.74	9.93
03H 18 3.15 0.0320 61.04 0.451 0.680 0.316 0.506 0.228 2.83 30.29 10.71 03H 22 3.41 0.0347 63.10 0.584 0.478 0.148 0.570 0.251 2.81 30.61 10.88 03H 24 3.37 0.0342 64.14 0.656 0.507 0.142 0.606 0.261 3.02 32.08 10.63 03H 26 3.46 0.0352 67.52 0.720 0.416 0.131 0.664 0.278 3.48 10.77 03H 3.62 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.384 10.85 03H 3.4 3.66 0.0372 68.39 1.103 0.399 0.137 0.749 0.309 3.23 10.65 03H 3.4 3.66 0.435 5.2.67 0.348 3.427 1.38 0.344 3.16	03H	16	3.07	0.0312	60.38	0.389	1.153	0.581	0.464	0.208	2.67	28.84	10.80
03H 20 3.15 0.0320 61.04 0.584 0.478 0.148 0.700 0.251 2.81 20.061 10.888 03H 24 3.37 0.0342 64.14 0.656 0.507 0.142 0.666 0.261 3.02 3.02 3.028 10.651 03H 26 3.46 0.0352 67.52 0.720 0.416 0.113 0.6564 0.278 3.24 3.488 10.77 03H 32 3.60 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.384 10.85 03H 34 3.66 0.0372 68.30 1.105 0.440 0.166 0.790 0.324 3.08 3.35.3 10.88 03H 44 4.37 0.0446 67.96 1.188 0.457 0.238 0.362 2.33 2.84 11.36 03H 44 4.37 0.0447 61.11 1.475 0.224	03H	18	3.15	0.0320	61.04	0.451	0.680	0.316	0.506	0.228	2.83	30.29	10.71
03H 22 3.41 0.0347 63.10 0.584 0.478 0.148 0.050 0.251 2.81 3.061 10.88 03H 26 3.37 0.0342 64.47 0.0560 0.042 0.666 0.261 3.02 3.223 3.23 10.91 03H 3.62 0.0366 71.53 0.865 0.359 0.139 0.662 0.288 3.08 3.385 10.98 03H 3.66 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.384 10.85 03H 3.6 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.384 10.85 03H 4.05 0.0446 64.42 1.273 0.328 0.130 0.366 0.354 2.53 10.88 03H 42 5.21 0.0535 5.366 1.352 0.214 0.078 0.388 0.344 3.16 3.405 <td>03H</td> <td>20</td> <td>3.15</td> <td>0.0320</td> <td>61.04</td> <td>0.518</td> <td>0.490</td> <td>0.200</td> <td>0.538</td> <td>0.241</td> <td>2.85</td> <td>29.71</td> <td>10.41</td>	03H	20	3.15	0.0320	61.04	0.518	0.490	0.200	0.538	0.241	2.85	29.71	10.41
03H 24 3.37 0.0342 64.14 0.656 0.507 0.142 0.666 0.261 3.02 3.208 10.63 03H 26 3.46 0.0352 67.52 0.720 0.416 0.113 0.633 0.268 3.07 3.351 10.91 03H 32 0.0362 67.73 0.937 0.387 0.130 0.799 0.288 3.84 10.85 03H 3 3.60 0.0366 67.77 0.937 0.387 0.150 0.749 0.309 3.02 3.25.31 10.76 03H 36 4.05 0.04413 68.30 1.105 0.440 0.166 0.790 0.324 3.08 3.353 10.88 03H 42 5.21 0.0446 67.96 1.188 0.457 0.238 0.324 3.082 3.264 1.136 03H 42 5.21 0.0430 6.355 3.266 1.355 0.355 3.266 3.269	03H	22	3.41	0.0347	63.10	0.584	0.478	0.148	0.570	0.251	2.81	30.61	10.88
03H 26 3.46 0.032 67.52 0.720 0.416 0.113 0.633 0.263 3.07 33.51 10.91 03H 28 3.37 0.0344 68.47 0.796 0.409 0.135 0.662 0.228 3.08 33.85 10.98 03H 34 3.66 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 33.84 10.85 03H 3.66 0.0372 68.39 1.015 0.440 0.166 0.790 0.324 3.08 33.53 10.88 03H 40 64.09 0.0440 64.42 1.273 0.228 0.324 0.364 2.53 22.64 11.36 03H 44 4.37 0.0447 61.12 1.475 0.224 0.075 0.881 0.364 2.53 22.64 11.35 03H 44 4.37 0.0447 61.22 1.040 0.376 2.96 0.374	03H	24	3.37	0.0342	64.14	0.656	0.507	0.142	0.606	0.261	3.02	32.08	10.63
03H 28 3.37 0.0342 68.47 0.796 0.409 0.135 0.664 0.278 3.24 3.48 10.7 03H 30 3.62 0.0366 71.73 0.937 0.387 0.150 0.719 0.299 3.12 33.84 10.85 03H 34 3.66 0.0372 68.39 1.013 0.399 0.137 0.749 0.399 3.02 3.23 31.08 03H 36 0.0446 67.96 1.188 0.457 0.238 0.828 0.344 3.16 34.05 10.78 03H 42 5.21 0.0353 53.66 1.394 0.210 0.075 0.881 0.364 2.53 28.14 11.13 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 29.37 11.13 03H 44 4.37 0.0431 66.84 1.731 0.216 0.794 <	03H	26	3.46	0.0352	67.52	0.720	0.416	0.113	0.633	0.268	3.07	33.51	10.91
03H 30 3.62 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 3.384 10.85 03H 34 3.66 0.0372 68.39 1.013 0.397 0.150 0.719 0.299 3.12 3.384 10.85 03H 34 3.66 0.0372 68.39 1.013 0.399 0.137 0.749 0.309 3.02 3.253 10.76 03H 34 4.05 0.0446 67.96 1.188 0.4477 0.132 0.828 0.344 3.16 3.40 51.078 03H 44 4.473 0.0447 61.12 1.475 0.224 0.073 0.899 0.371 2.64 2.937 11.13 03H 44 4.01 0.0409 65.174 1.552 0.214 0.073 0.916 0.376 2.96 3.269 11.05 03H 50 4.20 0.431 60.88 1.731 0.126	03H	28	3.37	0.0342	68.47	0.796	0.409	0.135	0.664	0.278	3.24	34.88	10.77
03H 32 3.60 0.0366 67.77 0.937 0.387 0.150 0.719 0.299 3.12 33.84 10.83 03H 34 6.405 0.0413 68.30 1.105 0.399 0.137 0.749 0.309 3.02 32.53 10.76 03H 36 4.05 0.0446 67.96 1.188 0.457 0.238 0.328 0.344 3.16 34.05 10.78 03H 40 4.69 0.0440 64.42 1.273 0.328 0.130 0.856 0.355 2.87 32.66 11.36 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 2.937 11.13 03H 44 4.31 0.0409 65.11 1.632 0.201 0.078 0.892 0.380 2.84 3.11 1.30 03H 54 3.79 0.0385 67.25 1.888 0.051	03H	30	3.62	0.0368	71.53	0.865	0.395	0.139	0.692	0.288	3.08	33.85	10.98
03H 36 4.05 0.0372 68.39 1.013 0.399 0.137 0.749 0.309 3.02 32.53 10.76 03H 38 4.37 0.0446 67.96 1.188 0.457 0.238 0.828 0.344 3.16 34.05 10.78 03H 42 5.21 0.0535 53.66 1.394 0.210 0.075 0.881 0.364 2.53 28.14 11.13 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 29.37 11.13 03H 48 4.01 0.4047 65.74 1.552 0.214 0.078 0.899 0.371 2.64 29.37 11.13 03H 50 4.22 0.4431 60.88 1.731 0.216 0.054 0.935 0.385 2.72 3.031 11.16 03H 56 7.37 0.0385 67.25 1.886 0.185	03H	32	3.60	0.0366	67.77	0.937	0.387	0.150	0.719	0.299	3.12	33.84	10.85
03H 36 4.05 0.0413 68.30 1.105 0.440 0.166 0.790 0.324 3.08 33.33 10.88 03H 38 4.37 0.0446 67.96 11.88 0.457 0.238 0.828 0.344 3.16 34.05 10.78 03H 44 4.69 0.0480 64.42 1.273 0.328 0.130 0.856 0.355 2.87 32.66 11.36 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 2.93.7 11.13 03H 44 4.31 0.0447 65.17 1.552 0.214 0.073 0.916 0.376 2.96 32.66 11.05 03H 52 4.22 0.0431 60.88 1.731 0.216 0.054 0.974 0.390 2.91 32.41 11.13 03H 53 3.79 0.0385 67.92 1.888 0.054	03H	34	3.66	0.0372	68.39	1.013	0.399	0.137	0.749	0.309	3.02	32.53	10.76
03H 38 4.37 0.0446 67.96 1.188 0.477 0.238 0.828 0.324 3.16 34.05 10.78 03H 40 4.69 0.0480 64.42 1.273 0.328 0.130 0.856 0.355 2.87 32.66 11.36 03H 42 5.21 0.0355 53.66 1.394 0.210 0.075 0.881 0.344 2.93 2.81 11.13 03H 46 3.89 0.0396 65.74 1.552 0.216 0.048 0.932 0.380 2.84 32.13 11.30 03H 45 4.01 0.0409 65.11 1.632 0.205 0.048 0.932 0.380 2.84 3.16 1.160 03H 50 4.22 0.0431 60.22 1.888 0.050 0.990 0.393 3.06 3.40 1.116 03H 56 3.73 0.0336 67.99 2.037 0.184 0.054 <t< td=""><td>03H</td><td>36</td><td>4.05</td><td>0.0413</td><td>68.30</td><td>1.105</td><td>0.440</td><td>0.166</td><td>0.790</td><td>0.324</td><td>3.08</td><td>33.53</td><td>10.88</td></t<>	03H	36	4.05	0.0413	68.30	1.105	0.440	0.166	0.790	0.324	3.08	33.53	10.88
03H 40 6.49 0.0480 64.42 1.273 0.328 0.130 0.856 0.355 2.87 32.66 11.36 03H 44 4.37 0.0315 53.66 1.134 0.210 0.075 0.881 0.364 2.53 28.14 11.13 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 2.937 11.13 03H 46 3.89 0.0396 65.74 1.552 0.214 0.073 0.916 0.336 2.84 3.21 11.10 03H 50 4.22 0.0431 60.88 1.731 0.216 0.054 0.380 2.72 0.31 11.16 03H 52 4.13 0.0421 60.22 1.888 0.198 0.054 0.390 2.91 3.241 11.13 03H 56 3.76 0.0383 67.25 1.888 0.054 1.004 0.393 <	03H	38	4.37	0.0446	67.96	1.188	0.457	0.238	0.828	0.344	3.16	34.05	10.78
03H 42 5.21 0.0535 53.66 1.394 0.210 0.075 0.881 0.364 2.53 28.14 11.13 03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 29.37 11.13 03H 46 3.89 0.0396 65.74 1.552 0.214 0.073 0.916 0.376 2.64 29.37 11.13 03H 50 4.22 0.0431 60.88 1.731 0.216 0.054 0.932 0.380 2.84 3.13 11.16 03H 52 4.13 0.0421 60.021 1.808 0.050 0.990 0.393 3.06 34.08 11.16 03H 56 3.73 0.0379 67.58 1.967 0.185 0.054 1.033 0.407 2.90 3.301 11.38 03H 60 3.83 0.6753 2.117 0.156 0.066 1.041	03H	40	4.69	0.0480	64.42	1.273	0.328	0.130	0.856	0.355	2.87	32.66	11.36
03H 44 4.37 0.0447 61.12 1.475 0.224 0.078 0.899 0.371 2.64 29.37 11.13 03H 46 3.89 0.0396 65.74 1.552 0.214 0.073 0.916 0.376 2.96 32.69 11.05 03H 44 4.01 0.0499 65.71 1.632 0.205 0.048 0.932 0.380 2.84 32.13 11.30 03H 50 4.22 0.0431 60.88 1.731 0.216 0.054 0.974 0.380 2.84 32.13 11.16 03H 56 3.73 0.0356 67.25 1.888 0.198 0.050 0.990 0.393 3.06 3.113 11.20 03H 56 3.73 0.0356 67.99 2.037 0.184 0.065 1.004 0.393 3.05 3.113 11.20 03H 64 4.03 0.0416 65.45 2.118 0.0406	03H	42	5.21	0.0535	53.66	1.394	0.210	0.075	0.881	0.364	2.53	28.14	11.13
03H 46 3.89 0.0396 65.74 1.552 0.214 0.073 0.916 0.376 2.96 32.69 11.05 03H 50 4.22 0.0431 60.421 0.0431 50.048 0.932 0.380 2.84 32.13 11.30 03H 50 4.22 0.0431 60.022 1.808 0.054 0.954 0.385 2.72 30.31 11.16 03H 54 3.79 0.0385 67.25 1.888 0.198 0.050 0.990 0.393 3.06 34.08 11.16 03H 58 3.76 0.0383 67.99 2.037 0.184 0.054 1.004 0.398 3.05 34.13 11.20 03H 64 3.85 0.0390 65.63 2.118 0.020 0.064 1.033 0.407 2.90 33.01 11.38 03H 66 4.01 0.0406 5.64 2.358 0.172 0.067 1.074	03H	44	4.37	0.0447	61.12	1.475	0.224	0.078	0.899	0.371	2.64	29.37	11.13
03H 48 4.01 0.0409 65.11 1.632 0.205 0.048 0.954 0.380 2.84 32.13 11.30 03H 50 4.22 0.0431 60.22 1.808 0.261 0.054 0.954 0.385 2.72 30.31 11.16 03H 52 4.13 0.0421 60.22 1.808 0.261 0.954 0.380 2.72 30.31 11.16 03H 54 3.79 0.0385 67.25 1.888 0.198 0.050 0.990 0.393 3.06 34.08 11.16 03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 33.01 11.38 03H 64 4.03 0.0416 6.53 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0416 6.56 2.435 0.209 0.077 <	03H	46	3.89	0.0396	65.74	1.552	0.214	0.073	0.916	0.376	2.96	32.69	11.05
03H 50 4.22 0.0431 60.88 1.731 0.216 0.054 0.974 0.385 2.72 30.31 11.16 03H 52 4.13 0.0421 60.22 1.808 0.261 0.054 0.974 0.390 2.91 32.41 11.13 03H 54 3.79 0.0385 67.25 1.888 0.198 0.050 0.990 0.393 3.05 34.13 11.20 03H 54 3.76 0.0383 67.99 2.037 0.184 0.065 1.017 0.402 2.83 33.06 11.69 03H 62 4.36 0.0446 59.58 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0416 66.96 2.435 0.209 0.079 1.040 0.421 2.82 32.67 11.52 03H 68 4.08 0.0416 66.96 2.620 0.188	03H	48	4.01	0.0409	65.11	1.632	0.205	0.048	0.932	0.380	2.84	32.13	11.30
03H 52 4.13 0.0421 60.22 1.808 0.261 0.054 0.974 0.390 2.91 32.41 11.13 03H 54 3.79 0.0385 67.25 1.888 0.198 0.050 0.990 0.393 3.06 34.08 11.16 03H 56 3.73 0.0383 67.99 2.037 0.184 0.065 1.017 0.402 2.83 33.06 11.69 03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 33.01 11.38 03H 64 4.03 0.0411 64.18 2.284 0.176 0.077 1.061 0.420 2.82 32.47 11.52 03H 66 4.01 0.0416 66.96 2.435 0.209 0.079 1.090 0.431 2.82 33.67 11.96 03H 70 0.0415 67.27 2.523 0.228 0.062	03H	50	4.22	0.0431	60.88	1.731	0.216	0.054	0.954	0.385	2.72	30.31	11.16
03H 54 3.79 0.0385 67.25 1.888 0.198 0.050 0.090 0.398 3.06 34.08 11.16 03H 56 3.73 0.0379 67.58 1.967 0.185 0.054 1.004 0.398 3.05 34.13 11.20 03H 58 3.76 0.0383 67.99 2.037 0.184 0.065 1.017 0.402 2.90 33.06 11.69 03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 33.06 11.69 03H 64 4.03 0.0411 64.18 2.284 0.176 0.077 1.061 0.425 2.82 32.47 11.50 03H 68 4.08 0.0416 66.96 2.435 0.209 0.077 1.074 0.425 2.82 33.67 11.50 03H 68 4.07 0.0418 66.96 2.602 0.188	03H	52	4.13	0.0421	60.22	1.808	0.261	0.054	0.974	0.390	2.91	32.41	11.13
03H 56 3.73 0.0379 67.58 1.967 0.185 0.054 1.004 0.398 3.05 34.13 11.20 03H 58 3.76 0.0383 67.99 2.037 0.184 0.065 1.017 0.402 2.83 33.06 11.69 03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 33.01 11.38 03H 62 4.36 0.0446 59.58 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0411 64.18 2.284 0.172 0.067 1.074 0.425 2.82 32.47 11.52 03H 66 4.01 0.0416 66.96 2.435 0.209 0.077 1.090 0.431 2.82 33.61 11.90 03H 70 4.07 0.0415 67.27 2.523 0.228	03H	54	3.79	0.0385	67.25	1.888	0.198	0.050	0.990	0.393	3.06	34.08	11.16
03H 58 3.76 0.0383 67.99 2.037 0.184 0.065 1.017 0.0402 2.83 33.06 11.69 03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 33.01 11.38 03H 62 4.36 0.04416 69.58 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0411 64.81 2.284 0.176 0.077 1.061 0.420 2.75 32.59 11.52 03H 66 4.01 0.0409 65.46 2.358 0.172 0.067 1.074 0.425 2.82 32.47 11.52 03H 70 4.07 0.0415 67.27 2.523 0.228 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0439 65.13 2.7775 0.209	<u>03H</u>	56	3.73	0.0379	67.58	1.967	0.185	0.054	1.004	0.398	3.05	34.13	11.20
03H 60 3.83 0.0390 65.63 2.118 0.200 0.064 1.033 0.407 2.90 3.311 11.38 03H 62 4.36 0.0446 59.58 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0411 64.18 2.284 0.176 0.077 1.061 0.420 2.75 32.59 11.86 03H 66 4.01 0.0440 65.46 2.358 0.172 0.067 1.074 0.425 2.82 32.47 11.52 03H 68 4.08 0.0415 67.27 2.523 0.028 0.067 1.125 0.441 2.86 32.99 11.52 03H 70 4.07 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 31.8 11.49 03H 76 4.30 0.0450 64.10 2.861 0.176	03H	58	3.76	0.0383	67.99	2.037	0.184	0.065	1.017	0.402	2.83	33.06	11.69
03H 62 4.36 0.0446 59.58 2.197 0.156 0.068 1.046 0.413 2.52 29.59 11.75 03H 64 4.03 0.0411 64.18 2.284 0.176 0.077 1.061 0.420 2.75 32.59 11.86 03H 66 4.01 0.0409 65.46 2.358 0.172 0.067 1.074 0.420 2.82 33.67 11.52 03H 68 4.08 0.0415 67.27 2.523 0.228 0.062 1.110 0.436 2.91 33.73 11.59 03H 70 4.07 0.0418 66.96 2.602 0.188 0.067 1.125 0.441 2.86 32.99 11.52 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0474 61.58 2.949 0.166	03H	60	3.83	0.0390	65.63	2.118	0.200	0.064	1.033	0.407	2.90	33.01	11.38
03H 64 4.03 0.0411 64.18 2.284 0.176 0.077 1.061 0.420 2.75 32.59 11.80 03H 66 4.01 0.0409 65.46 2.358 0.172 0.067 1.074 0.425 2.82 32.47 11.52 03H 68 4.08 0.0415 67.27 2.523 0.029 0.179 1.090 0.431 2.82 33.67 11.96 03H 70 4.07 0.0415 67.27 2.523 0.228 0.062 1.110 0.436 2.91 33.73 11.59 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0439 65.13 2.775 0.209 0.065 1.159 0.453 2.80 32.23 11.52 03H 80 4.63 0.0474 61.58 2.949 0.166	03H	62	4.36	0.0446	59.58	2.197	0.156	0.068	1.046	0.413	2.52	29.59	11./5
03H 66 4.01 0.0409 65.46 2.338 0.172 0.067 1.074 0.425 2.82 32.47 11.52 03H 68 4.08 0.0416 66.96 2.435 0.209 0.079 1.090 0.431 2.82 33.67 11.99 03H 70 4.07 0.0415 67.27 2.523 0.228 0.062 1.110 0.436 2.91 33.73 11.59 03H 72 4.10 0.0418 66.96 2.602 0.188 0.067 1.125 0.441 2.86 32.99 11.52 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 78 4.40 0.0450 64.10 2.861 0.176 0.068 1.174 0.453 2.80 32.23 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095	03H	64	4.03	0.0411	64.18	2.284	0.176	0.077	1.001	0.420	2.75	32.59	11.80
03H 68 4.08 0.0416 66.96 2.435 0.209 0.079 1.090 0.431 2.82 33.67 11.90 03H 70 4.07 0.0415 67.27 2.523 0.228 0.062 1.110 0.436 2.91 33.73 11.59 03H 72 4.10 0.0418 66.96 2.602 0.188 0.067 1.125 0.441 2.86 32.99 11.52 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0450 64.10 2.861 0.176 0.068 1.174 0.459 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.077 1.201 0.472 1.78 22.55 12.67 03H 82 6.40 0.0662 44.85 3.080 0.057	03H	66	4.01	0.0409	65.46	2.358	0.172	0.067	1.074	0.425	2.82	32.47	11.52
03H 70 4.07 0.0415 67.27 2.523 0.228 0.062 1.110 0.436 2.91 33.73 11.59 03H 72 4.10 0.0418 66.96 2.602 0.188 0.067 1.125 0.441 2.86 32.99 11.52 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0439 65.13 2.775 0.209 0.065 1.159 0.453 2.80 32.23 11.52 03H 78 4.40 0.0450 64.10 2.861 0.176 0.068 1.174 0.459 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.070 1.188 0.465 2.64 30.54 11.56 03H 84 5.56 0.0572 52.66 3.192 0.121	03H	68	4.08	0.0416	66.96	2.435	0.209	0.079	1.090	0.431	2.82	33.67	11.90
03H 72 4.10 0.0418 66.96 2.002 0.188 0.067 1.125 0.441 2.86 32.99 11.52 03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0439 65.13 2.775 0.209 0.065 1.159 0.453 2.80 32.23 11.52 03H 78 4.40 0.0450 64.10 2.861 0.176 0.068 1.174 0.459 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.070 1.188 0.465 2.64 30.54 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095 0.57 1.201 0.472 1.78 22.55 12.67 03H 84 5.6 0.0572 52.66 3.192 0.121 <	03H	70	4.07	0.0415	67.27	2.523	0.228	0.062	1.110	0.430	2.91	33./3	11.59
03H 74 4.19 0.0427 66.50 2.698 0.185 0.067 1.142 0.448 2.89 33.18 11.49 03H 76 4.30 0.0439 65.13 2.775 0.209 0.065 1.159 0.453 2.80 32.23 11.52 03H 78 4.40 0.0450 64.10 2.861 0.176 0.068 1.174 0.459 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.070 1.188 0.465 2.64 30.54 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095 0.057 1.201 0.472 1.78 22.55 12.67 03H 84 5.56 0.0572 52.66 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H	03H	12	4.10	0.0418	00.90	2.602	0.188	0.067	1.125	0.441	2.80	32.99	11.52
03H 76 4.30 0.0439 63.13 2.773 0.209 0.065 1.139 0.433 2.80 32.23 11.32 03H 78 4.40 0.0450 64.10 2.861 0.176 0.068 1.174 0.459 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.070 1.188 0.465 2.64 30.54 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095 0.057 1.201 0.472 1.78 22.55 12.67 03H 84 5.56 0.0572 52.66 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H 90 5.42 0.0558 51.30 3.500 0.137	03H	74	4.19	0.0427	65.12	2.098	0.185	0.067	1.142	0.448	2.89	33.18	11.49
0.3H 7.6 4.40 0.0430 04.10 2.801 0.176 0.068 1.174 0.439 2.71 31.73 11.70 03H 80 4.63 0.0474 61.58 2.949 0.166 0.070 1.188 0.465 2.64 30.54 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095 0.057 1.201 0.472 1.78 22.55 12.67 03H 84 5.56 0.0572 52.66 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168	03H	/0	4.30	0.0439	64.10	2.113	0.209	0.005	1.139	0.453	2.80	32.23	11.52
03H 00 4.05 0.0474 01.36 2.949 0.100 1.188 0.465 2.04 30.34 11.56 03H 82 6.40 0.0662 44.85 3.080 0.095 0.057 1.201 0.472 1.78 22.55 12.67 03H 84 5.56 0.0572 52.66 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H 88 4.99 0.0512 59.92 3.391 0.181 0.061 1.246 0.490 2.43 29.82 12.25 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069	03H	18	4.40	0.0450	61 50	2.801	0.170	0.008	1.1/4	0.459	2./1	31./3	11./0
0311 032 0.40 0.0002 44.85 3.000 0.055 0.057 1.201 0.472 1.78 22.55 12.67 03H 84 5.56 0.0572 52.66 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H 88 4.99 0.0512 59.92 3.391 0.181 0.061 1.246 0.490 2.43 29.82 12.25 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069 1.275 0.501 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169	03H	00	4.03	0.0474	01.38 AA 05	2.949	0.100	0.070	1.100	0.403	2.04	20.24	11.30
0311 034 3.50 0.0372 32.00 3.192 0.121 0.049 1.214 0.478 2.37 28.64 12.06 03H 86 4.78 0.0489 60.86 3.289 0.140 0.059 1.228 0.484 2.38 29.70 12.45 03H 88 4.99 0.0512 59.92 3.391 0.181 0.061 1.246 0.490 2.43 29.82 12.25 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069 1.275 0.501 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169 0.059 1.291 0.507 2.89 33.87 11.73 03H 96 4.75 0.0486 62.42 3.772 0.141	0211	02	5 52	0.0002	44.00 50 44	3.080	0.095	0.037	1.201	0.472	1./8	22.33	12.0/
0311 030 4.76 0.0469 00.30 3.269 0.140 0.059 1.228 0.484 2.36 29.70 12.43 03H 88 4.99 0.0512 59.92 3.391 0.181 0.061 1.246 0.490 2.43 29.82 12.25 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069 1.275 0.501 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169 0.059 1.291 0.507 2.89 33.87 11.73 03H 96 4.75 0.0486 62.42 3.772 0.141 0.056 1.305 0.512 2.65 32.77 12.38 03H 98 4.38 0.0447 69.06 3.860 0.150	0211	04 02	J.JO 1 70	0.0372	52.00	2 200	0.121	0.049	1.214	0.478	2.37	28.04	12.00
03H 08 4.99 0.0312 39.92 3.991 0.181 0.061 1.246 0.490 2.43 29.82 12.25 03H 90 5.42 0.0558 51.30 3.500 0.137 0.054 1.261 0.496 2.23 27.27 12.25 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069 1.275 0.501 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169 0.059 1.291 0.507 2.89 33.87 11.73 03H 96 4.75 0.0486 62.42 3.772 0.141 0.056 1.305 0.512 2.65 32.77 12.38 03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.517 2.81 33.55 11.96 03H 100 4.45 0.0455 67.45 3.955 0.149	031	00	4.70	0.0409	50.00	2 201	0.140	0.039	1.220	0.404	2.30	29.70	12.45
031 90 3.42 0.0336 51.30 3.500 0.137 0.034 1.201 0.490 2.23 27.27 12.23 03H 92 4.29 0.0438 67.62 3.582 0.168 0.069 1.275 0.501 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169 0.059 1.291 0.507 2.89 33.87 11.73 03H 96 4.75 0.0486 62.42 3.772 0.141 0.056 1.305 0.512 2.65 32.77 12.38 03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.517 2.81 33.55 11.96 03H 100 4.45 0.0455 67.45 3.955 0.149 0.060 1.332 0.523 2.85 33.64 11.82 03H 102 5.35 0.0550 57.53 4.052 0.122	031	00	5 12	0.0312	51 20	3.391	0.101	0.001	1.240	0.490	2.43	29.02	12.23
031 92 4.22 0.0436 07.02 3.322 0.103 0.009 1.213 0.301 2.83 33.47 11.81 03H 94 4.35 0.0444 67.56 3.678 0.169 0.059 1.291 0.507 2.89 33.87 11.73 03H 96 4.75 0.0486 62.42 3.772 0.141 0.056 1.305 0.512 2.65 32.77 12.38 03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.517 2.81 33.55 11.96 03H 100 4.45 0.0455 67.45 3.955 0.149 0.060 1.332 0.523 2.85 33.64 11.82 03H 102 5.35 0.0550 57.53 4.052 0.122 0.048 1.344 0.528 2.44 29.62 12.15 03H 104 4.66 0.0476 65.61 4.158 0.171	031	90	4 20	0.0330	67 67	3.500	0.137	0.034	1.201	0.490	2.23	21.21	12.23
03H 96 4.75 0.0444 07.50 3.078 0.109 0.059 1.291 0.507 2.89 33.87 11.75 03H 96 4.75 0.0446 62.42 3.772 0.141 0.056 1.305 0.512 2.65 32.77 12.38 03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.517 2.81 33.55 11.96 03H 100 4.45 0.0455 67.45 3.955 0.149 0.060 1.332 0.523 2.85 33.64 11.82 03H 102 5.35 0.0550 57.53 4.052 0.122 0.048 1.344 0.528 2.44 29.62 12.15 03H 104 4.66 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0479 64.09 4.255 0.200	031	92	4.25	0.0430	67 54	3.502	0.100	0.009	1.273	0.501	2.03	33.47	11.01
03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.512 2.05 32.77 12.36 03H 98 4.38 0.0447 69.06 3.860 0.150 0.059 1.318 0.517 2.81 33.55 11.96 03H 100 4.45 0.0455 67.45 3.955 0.149 0.060 1.332 0.523 2.85 33.64 11.82 03H 102 5.35 0.0550 57.53 4.052 0.122 0.048 1.344 0.528 2.44 29.62 12.15 03H 104 4.66 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0479 64.09 4.255 0.200 0.078 1.381 0.542 2.68 32.52 12.12 03H 108 4.69 0.0480 63.65 4.352 0.164	031	06	4.55	0.0444	67.50	2 771	0.109	0.039	1.291	0.507	2.09	23.07	11.75
03H 100 4.45 0.0447 0.055 0.160 0.055 1.316 0.517 2.81 33.55 11.90 03H 100 4.45 0.0455 67.45 3.955 0.149 0.060 1.332 0.523 2.85 33.64 11.82 03H 102 5.35 0.0550 57.53 4.052 0.122 0.048 1.344 0.528 2.44 29.62 12.15 03H 104 4.66 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0479 64.09 4.255 0.200 0.078 1.381 0.542 2.68 32.52 12.12 03H 108 4.69 0.0480 63.65 4.352 0.164 0.066 1.397 0.548 2.65 31.49 11.86	031	20	4.75	0.0460	60 04	3.772	0.141	0.030	1 210	0.512	2.03	22 55	12.56
03H 102 5.35 0.0550 57.53 4.052 0.122 0.048 1.344 0.528 2.44 29.62 12.15 03H 104 4.66 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0479 64.09 4.255 0.200 0.078 1.381 0.542 2.68 32.52 12.12 03H 108 4.69 0.0480 63.65 4.352 0.164 0.066 1.397 0.548 2.65 31.49 11.86	03H	100	4 45	0.0455	67 45	3 955	0.150	0.059	1 332	0.517	2.01	33.55	11.90
03H 104 4.66 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.13 03H 106 4.68 0.0476 65.61 4.158 0.171 0.059 1.362 0.534 2.70 32.48 12.03 03H 106 4.68 0.0479 64.09 4.255 0.200 0.078 1.381 0.542 2.68 32.52 12.12 03H 108 4.69 0.0480 63.65 4.352 0.164 0.066 1.397 0.548 2.65 31.49 11.86	03H	102	5.35	0.0550	57.53	4.052	0.179	0.048	1 344	0.525	2.05	29.67	12.15
03H 106 4.68 0.0479 64.09 4.255 0.200 0.078 1.381 0.542 2.68 32.52 12.05 03H 108 4.69 0.0480 63.65 4.352 0.164 0.066 1.397 0.548 2.65 31.49 11.86	03H	102	4.66	0.0476	65.61	4 158	0.122	0.040	1 362	0.520	2.70	37 48	12.13
03H 108 4.69 0.0480 63.65 4.352 0.164 0.066 1.397 0.548 2.65 31 49 11 86	03H	106	4.68	0.0479	64.09	4.255	0.200	0.078	1.381	0.542	2.68	32.52	12.12
	03H	108	4.69	0.0480	63.65	4.352	0.164	0.066	1.397	0.548	2.65	31.49	11.86

Lake Griffin Historic Cores, Phase II

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
03H	110	4.78	0.0489	64.13	4.443	0.151	0.059	1.411	0.553	2.55	30.73	12.03
03H	112	4.59	0.0469	66.17	4.534	0.198	0.090	1.429	0.561	2.66	33.47	12.60
03H	114	5.81	0.0597	65.27	4.633	0.150	0.056	1.444	0.567	2.64	31.75	12.05
03H	116	4.83	0.0495	66.02	4.734	0.139	0.046	1.458	0.572	2.56	31.91	12.49
03H	118	5.63	0.0579	54.56	4.852	0.136	0.049	1.474	0.577	2.19	27.72	12.68
03H	120	6.32	0.0654	48.03	4.991	0.124	0.050	1.491	0.584	1.92	23.43	12.19

 $(S^{\mathrm{AB}}(A), \mathbb{Z}_{2}^{\mathrm{A}}(A), \mathbb{Z}_{2}^{\mathrm{A}}(A)) = \sum_{i=1}^{n} (1 - i)^{i} (1 - i)$

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
07H	2	1.45	0.0146	68.90	0.025	1.158	0.354	0.029	0.009	2.84	33.19	11.70
07H	4	1.83	0.0185	68.49	0.063	1.262	0.338	0.077	0.022	3.18	33.36	10.48
07H	6	2.00	0.0201	67.58	0.087	1.103	0.287	0.103	0.029	3.13	31.59	10.09
07H	8	2.11	0.0213	66.51	0.118	1.043	0.267	0.136	0.037	2.22	30.55	13.76
07H	10	2.47	0.0250	60.89	0.161	1.019	0.265	0.179	0.048	2.82	30.57	10.82
07H	12	2.93	0.0297	59.18	0.221	0.919	0.225	0.234	0.062	2.68	30.01	11.20
07H	14	2.96	0.0300	59.52	0.268	0.970	0.246	0.280	0.073	2.91	31.73	10.90
07H	16	2.93	0.0298	57.73	0.333	1.022	0.268	0.346	0.091	2.67	29.19	10.93
07H	18	3.42	0.0347	54.89	0.398	0.909	0.242	0.406	0.107	2.44	27.22	11.14
07H	20	3.95	0.0403	57.46	0.475	0.847	0.250	0.471	0.126	2.41	27.97	11.61
07H	22	3.67	0.0374	59.40	0.538	0.874	0.229	0.526	0.140	2.73	30.60	11.21
07H	24	3.50	0.0356	60.31	0.612	1.075	0.357	0.606	0.167	2.79	30.63	10.97
07H	26	3.32	0.0337	67.55	0.685	1.048	0.301	0.682	0.189	2.80	30.77	11.00
07H	28	3.51	0.0357	59.23	0.744	0.944	0.262	0.738	0.204	2.70	30.71	11.37
07H	30	3.54	0.0360	59.63	0.815	1.030	0.303	0.811	0.226	2.71	29.85	11.01
07H	32	3.72	0.0379	60.29	0.890	0.923	0.263	0.880	0.245	2.70	30.11	11.17
07H	34	3.72	0.0379	58.52	0.971	0.934	0.252	0.956	0.266	2.54	27.99	11.01
07H	36	3.71	0.0377	60.94	1.036	0.919	0.294	1.015	0.285	2.67	30.14	11.27
07H	38	3.81	0.0388	62.21	1.108	0.936	0.290	1.083	0.306	2.77	30.85	11.12
07H	40	3.94	0.0402	61.36	1.192	0.931	0.270	1.161	0.328	2.81	30.10	10.72
07H	42	3.97	0.0405	63.29	1.264	0.872	0.262	1.224	0.347	2.83	31.49	11.12
07H	44	4.06	0.0414	62.19	1.343	0.844	0.262	1.291	0.368	2.89	31.18	10.80
07H	46	4.18	0.0426	60.46	1.437	0.846	0.251	1.370	0.391	2.78	31.57	11.36
07H	48	4.06	0.0414	62.51	1.523	0.825	0.280	1.441	0.416	2.79	31.15	11.18
07H	50	3.98	0.0406	65.15	1.587	0.667	0.247	1.483	0.431	3.03	32.55	10.75
07H	52	3.95	0.0403	66.62	1.662	0.641	0.263	1.532	0.451	2.90	33.21	11.45
07H	54	4.01	0.0408	66.62	1.737	0.647	0.218	1.580	0.467	2.85	32.98	11.55
07H	56	4.12	0.0420	66.92	1.823	0.588	0.217	1.631	0.486	3.08	33.77	10.96
07H	58	3.98	0.0406	68.68	1.906	0.595	0.228	1.680	0.505	3.01	33.81	11.22
07H	60	4.54	0.0464	69.43	1.992	0.590	0.240	1.731	0.526	3.12	34.86	11.17
07H	62	4.15	0.0423	69.76	2.072	0.595	0.329	1.779	0.552	3.08	34.56	11.21
07H	64	4.19	0.0427	69.32	2.151	0.600	0.279	1.826	0.574	3.06	34.11	11.15
07H	66	4.37	0.0446	68.26	2.242	0.578	0.311	1.879	0.602	2.95	33.75	11.43
07H	68	4.60	0.0470	68.39	2.321	0.563	0.237	1 923	0.621	3.04	33.85	11.12
07H	70	4.48	0.0457	69.13	2.412	0.536	0.289	1.972	0.621	3.03	34 42	11.12
07H	72	4 55	0.0465	68 55	2,506	0 507	0.248	2.020	0.671	3.05	34.02	11.20
07H	74	4.55	0.0465	66.51	2.593	0 468	0 273	2.060	0.695	2 84	32.10	11 30
07H	76	4.51	0.0460	65.66	2.691	0.467	0.278	2.106	0 722	2.85	32.16	11.20
07H	78	4.72	0.0483	64.59	2.786	0 456	0 249	2.130	0.745	2.63	31.06	11.27
07H	80	4 44	0.0454	69.19	2.880	0.459	0 230	2 193	0 767	2.98	34 29	11 52
07H	82	4.51	0.0461	68.04	2.957	0 4 5 6	0.210	2.228	0.783	2.95	33.07	11.22
07H	84	4.72	0.0483	64 11	3 044	0.438	0 230	2.220	0.703	2.55	31 76	12 01
07H	86	4.72	0.0483	61.51	3.133	0.430	0.250	2.200	0.805	2.51	30.28	12.01
07H	88	4.31	0.0440	63 79	3 217	0.427	0.254	2 340	0.848	2.51	32 38	11.65
07H	90	4.03	0.0411	67.44	3.294	0.445	0.317	2.374	0.873	2.77	32.54	11.00
07H	92	4.22	0.0430	67.14	3.372	0.430	0 275	2.408	0.894	2.64	32.21	12 20
07H	94	4.18	0.0427	67.95	3 452	0 454	0 332	2.100	0.021	2.04	32.21	11 93
07H	96	4.36	0.0445	67.44	3.533	0 432	0.255	2.479	0.941	2.94	32.85	11.55
07H	98	4.19	0.0428	64.68	3.617	0.435	0.267	2.516	0.964	2.76	32.09	11.10
07H	100	4.37	0.0447	65.35	3.717	0.426	0.270	2.558	0.991	2.78	32.91	11.82

Lake Griffin Historic Cores, Phase II

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
16H	4	2.28	0.0230	68.71	0.089	1.358	0.530	0.120	0.047	3.62	33.98	9.37
16H	8	2.42	0.0245	64.40	0.160	1.099	0.431	0.199	0.078	3.28	32.35	9.87
16H	12	2.61	0.0264	64.71	0.260	1.104	0.347	0.310	0.113	3.43	33.99	9.90
16H	16	2.99	0.0303	64.97	0.439	1.483	0.553	0.575	0.212	3.07	32.49	10.59
16H	20	3.34	0.0339	67.50	0.748	0.451	0.126	0.714	0.250	3.25	35.56	10.96
16H	24	2.87	0.0291	70.94	0.866	0.401	0.097	0.762	0.262	3.22	35.33	10.98
16H	28	3.23	0.0328	70.39	0.989	0.415	0.102	0.813	0.274	3.29	35.82	10.89
16H	32	3.30	0.0335	72.94	1.151	0.332	0.089	0.866	0.289	3.27	36.47	11.16
16H	36	3.16	0.0321	72.73	1.338	0.323	0.104	0.927	0.308	3.10	36.42	11.77
16H	40	3.15	0.0320	70.71	1.529	0.302	0.093	0.985	0.326	3.13	35.70	11.40
16H	44	3.05	0.0310	68.20	1.634	0.266	0.064	1.013	0.333	2.53	30.37	12.01
16H	48	2.60	0.0264	67.75	1.740	0.243	0.078	1.038	0.341	2.97	33.94	11.44
16H	52	2.72	0.0275	66.54	1.843	0.241	0.083	1.063	0.350	2.88	34.06	11.84
16H	56	2.96	0.0300	65.50	1.974	0.230	0.071	1.093	0.359	2.78	32.44	11.66
16H	60	3.16	0.0321	65.47	2.119	0.234	0.081	1.127	0.371	2.89	32.99	11.41
16H	64	3.16	0.0321	64.99	2.257	0.213	0.081	1.157	0.382	2.65	31.40	11.87
16H	68	3.55	0.0361	65.93	2.399	0.213	0.058	1.187	0.390	2.76	33.08	11.98
16H	72	3.81	0.0388	62.96	2.575	0.210	0.077	1.224	0.404	2.47	29.15	11.81
16H	76	3.51	0.0357	65.08	2.749	0.206	0.088	1.260	0.419	2.86	32.81	11.45
16H	80	1.06	•	68.90	2.800	0.232	0.067	1.271	0.422	2.59	32.63	12.58
16H	84	3.61	0.0367	67.05	2.946	0.229	0.072	1.305	0.433	2.88	32.48	11.27
16H	88	3.73	0.0380	66.87	3.125	0.229	0.071	1.346	0.446	2.89	32.84	11.36
16H	92	3.82	0.0389	65.53	3.290	0.218	0.094	1.382	0.461	2.89	33.00	11.43
16H	96	4.05	0.0413	64.86	3.475	0.201	0.056	1.419	0.471	2.85	33.72	11.82
16H	100	3.55	0.0361	65.39	3.636	0.205	0.057	1.452	0.481	2.91	33.14	11.38
16H	104	3.10	0.0314	67.13	3.772	0.214	0.057	1.481	0.488	2.88	33.27	11.56
16H	108	2.33	0.0236	66.37	3.870	0.233	0.063	1.504	0.495	2.82	33.47	11.85

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
43H	2	1.87	0.0189	65.87	0.041	1.272	0.575	0.052	0.023	3.17	30.85	9.73
43H	4	2.37	0.0240	66.72	0.087	1.305	0.613	0.112	0.052	3.18	30.80	9.69
43H	6	2.58	0.0261	68.95	0.137	1.259	0.679	0.175	0.086	3.43	32.90	9.60
43H	8	2.82	0.0286	67.94	0.180	1.491	0.708	0.239	0.116	3.30	31.43	9.52
43H	10	2.91	0.0295	68.72	0.241	1.307	0.729	0.319	0.161	3.45	33.35	9.66
43H	12	3.10	0.0314	69.61	0.300	1.276	0.719	0.394	0.203	3.30	32.60	9.88
43H	14	3.16	0.0321	71.10	0.360	1.144	0.651	0.462	0.242	2.96	30.23	10.20
43H	16	3.28	0.0333	69.18	0.427	1.040	0.535	0.532	0.278	3.83	37.53	9.81
43H	18	3.40	0.0346	69.56	0.491	0.802	0.393	0.584	0.303	3.23	33.49	10.36
43H	20	3.62	0.0369	68.77	0.568	0.698	0.314	0.638	0.327	3.01	32.99	10.98
43H	22	4.03	0.0411	67.04	0.643	0.599	0.218	0.683	0.344	3.02	33.12	10.95
43H	24	4.24	0.0432	66.18	0.721	0.510	0.191	0.722	0.358	2.79	32.83	11.75
43H	26	4.13	0.0421	65.79	0.806	0.525	0.200	0.767	0.375	2.99	32.40	10.85
43H	28	4.28	0.0437	65.30	0.891	0.523	0.134	0.811	0.387	2.80	32.43	11.57
43H	30	4.26	0.0435	64.50	0.981	0.531	0.161	0.859	0.401	2.75	32.25	11.72
43H	32	4.43	0.0452	64.69	1.064	0.582	0.158	0.908	0.415	2.75	32.11	11.67
43H	34	5.69	0.0586	53.98	1.190	0.407	0.125	0.959	0.430	2.11	25.44	12.05
43H	36	6.87	0.0713	41.56	1.316	0.307	0.091	0.997	0.442	1.80	22.04	12.25
43H	38	4.92	0.0505	55.59	1.428	0.318	0.092	1.033	0.452	2.39	28.11	11.75
43H	40	4.80	0.0491	58.51	1.526	0.294	0.090	1.062	0.461	2.51	29.46	11.73
43H	42	4.77	0.0488	58.19	1.612	0.316	0.088	1.089	0.468	2.46	29.53	12.01
43H	44	4.90	0.0502	57.29	1.716	0.276	0.098	1.118	0.479	2.43	28.16	11.59
43H	46	4.50	0.0460	60.78	1.812	0.287	0.085	1.145	0.487	2.54	30.74	12.09
43H	48	4.87	0.0499	60.22	1.900	0.259	0.071	1.168	0.493	2.51	30.76	12.24
43H	50	4.41	0.0451	61.44	1.990	0.246	0.082	1.190	0.500	2.49	30.84	12.37
<u>43H</u>	52	4.62	0.0472	60.78	2.078	0.248	0.083	1.212	0.508	2.54	30.88	12.15
43H	54	4.75	0.0486	60.34	2.187	0.226	0.073	1.237	0.516	2.46	29.50	12.00
43H	56	4.83	0.0495	59.13	2.282	0.222	0.076	1.258	0.523	2.54	31.61	12.45
43H	58	5.44	0.0559	54.20	2.385	0.193	0.066	1.278	0.530	2.39	27.94	11.68
43H	60	5.38	0.0553	55.32	2.493	0.218	0.082	1.301	0.538	2.32	28.10	12.14
43H	62	5.59	0.0575	57.23	2.611	0.235	0.075	1.329	0.547	2.07	26.83	12.99
43H	64	5.37	0.0552	52.48	2.718	0.248	0.076	1.355	0.555	2.21	26.90	12.17
43H	66	5.26	0.0540	56.22	2.816	0.245	0.075	1.380	0.563	2.47	28.99	11.75
43H	68	4.83	0.0494	61.36	2.913	0.269	0.099	1.405	0.572	2.50	29.59	11.85
43H	70	4.82	0.0494	60.51	3.011	0.242	0.084	1.429	0.581	2.48	30.10	12.12
43H	72	4.81	0.0493	61.31	3.104	0.225	0.078	1.450	0.588	2.64	30.72	11.65
43H	74	4.69	0.0480	62.10	3.207	0.217	0.085	1.473	0.597	2.61	30.99	11.89
43H	76	4.49	0.0459	62.88	3.287	0.225	0.088	1.491	0.604	2.64	31.04	11.74
43H	/8	4.41	0.0451	64.84	3.378	0.246	0.101	1.513	0.613	2.77	32.56	11.77
43H	80	4.33	0.0466	62.91	3.468	0.230	0.090	1.534	0.621	2.63	31.57	12.01
43H	82	4.72	0.0483	61.59	3.553	0.220	0.084	1.552	0.628	2.58	30.43	11.80
43H	84	4.55	0.0465	62.23	3.045	0.238	0.098	1.5/4	0.637	2.63	30.93	11.78
43H	80	4.61	0.0472	62.37	3.732	0.248	0.092	1.590	0.645	2.58	30.16	11./1
43H	88	4.55	0.0465	63.33	3.828	0.240	0.082	1.619	0.653	2.55	31.05	12.19
43H	90	4.65	0.04/6	03.18	3.912	0.234	0.082	1.638	0.660	2.66	31.42	11.79
43H	92	4.49	0.0459	03.//	4.000	0.265	0.094	1.002	0.668	2.62	31.19	11.90
43H	94	4.41	0.0451	04.08	4.098	0.263	0.096	1.687	0.678	2.65	31.01	11.69
43H	90	4.42	0.0452	64 74	4.1/8	0.208	0.102	1.709	0.080	2.08	31.80	11.86
431	90	4.10	0.0424	6/ 22	4.200	0.20/	0.095	1.753	0.094	2.00	31.23	11.70
431	100	4.24	0.0452	64 74	4.559	0.230	0.000	1.734	0.702	2.30	31.01	12.00
43H	102	4.50	0.0447	64.74	4 527	0.273	0.100	1.701	0.712	2.00	31.00	11.77
431	104	4.20	0.0429	63 07	4.552	0.209	0.107	1.003	0.720	2.00	31.30	11.77
43H	100	4 58	0.0451	64 40	4.704	0.225	0.080	1.022	0.720	2.03	31.33	11.90
L-7.511	100	7.20	0.0700	07.70	1.704	0.213	0.072	1.040	0.734	2.09	51.10	1 11.00

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
										,		
43H	110	4.71	0.0482	65.12	4.801	0.208	0.070	1.861	0.741	2.63	30.85	11.72
43H	112	5.23	0.0537	64.16	4.902	0.188	0.057	1.880	0.746	2.48	31.84	12.85
43H	114	5.73	0.0589	66.43	5.032	0.169	0.047	1.902	0.752	2.46	30.85	12.54
43H	116	5.62	0.0577	64.01	5.159	0.196	0.055	1.927	0.759	2.53	31.35	12.37

CTTS CARLS IN THE REAL

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
										-		
44H	2	1.58	0.0159	71.86	0.031	1.285	0.489	0.040	0.015	3.42	33.35	9.75
44H	4	2.00	0.0202	69.97	0.068	1.341	0.579	0.090	0.037	2.77	32.02	11.57
44H	6	2.20	0.0222	71.05	0.106	1.489	0.419	0.146	0.052	3.64	35.45	9.74
44H	8	2.45	0.0247	71.05	0.154	1.404	0.438	0.213	0.073	3.68	35.55	9.65
44H	10	2.63	0.0266	71.73	0.212	1.565	0.618	0.304	0.110	3.57	35.47	9.94
44H	12	2.68	0.0271	72.96	0.263	1.547	0.546	0.383	0.137	3.66	35.73	9.77
44H	14	2.77	0.0281	72.44	0.318	1.584	0.515	0.470	0.165	3.70	35.65	9.63
44H	16	2.84	0.0288	72.22	0.373	1.530	0.480	0.554	0.192	3.83	36.15	9.44
44H	18	3.02	0.0306	73.47	0.432	1.425	0.485	0.639	0.221	3.72	35.40	9.52
44H	20	2.99	0.0303	71.33	0.495	1.436	0.477	0.729	0.251	3.51	35.05	9.99
44H	22	3.21	0.0326	69.61	0.559	1.196	0.476	0.806	0.281	3.25	33.02	10.17
44H	24	3.36	0.0342	69.07	0.633	1.048	0.390	0.882	0.310	3.38	35.55	10.53
44H	26	3.83	0.0390	70.88	0.712	0.986	0.337	0.961	0.337	3.24	34.82	10.74
44H	28	3.77	0.0384	68.79	0.785	0.704	0.227	1.012	0.353	3.19	34.49	10.80
44H	30	3.90	0.0397	68.39	0.868	0.795	0.235	1.078	0.373	3.07	33.63	10.95
44H	32	4.11	0.0419	68.97	0.955	0.738	0.297	1.142	0.399	3.21	34.70	10.81
44H	34	4.38	0.0447	68.96	1.053	0.624	0.212	1.203	0.419	3.03	34.03	11.23
44H	36	4.38	0.0447	68.67	1.132	0.595	0.233	1.250	0.438	2.94	34.31	11.68
44H	38	4.33	0.0442	68.53	1.236	0.582	0.210	1.311	0.460	3.06	34.24	11.19
44H	40	4.45	0.0454	68.09	1.309	0.620	0.213	1.356	0.475	2.96	34.30	11.60
44H	42	4.46	0.0456	68.29	1.388	0.573	0.230	1.402	0.493	2.91	34.13	11.74
44H	44	4.53	0.0462	69.01	1.484	0.637	0.210	1.463	0.513	3.02	34.26	11.35
44H	46	4.33	0.0443	26.48	1.548	0.624	0.269	1.503	0.531	3.14	34.34	10.93
44H	48	4.36	0.0445	67.93	1.639	0.591	0.270	1.556	0.555	3.12	34.18	10.94
44H	50	4.45	0.0455	69.16	1.710	0.619	0.273	1.601	0.575	3.11	34.73	11.16
44H	52	4.33	0.0442	69.34	1.792	0.673	0.300	1.656	0.599	3.04	34.29	11.26
44H	54	4.39	0.0448	68.65	1.885	0.605	0.245	1.712	0.622	2.93	34.45	11.75
44H	56	4.35	0.0443	81.85	1.961	0.670	0.289	1.763	0.644	3.05	34.37	11.28
44H	58	4.38	0.0447	69.33	2.049	0.642	0.257	1.819	0.667	3.02	34.47	11.41
44H	60	4.63	0.0473	07.53	2.150	0.598	0.280	1.880	0.695	2.84	33.31	11./1
44H	62	4.51	0.0461	67.84	2.243	0.601	0.300	1.936	0.723	2.80	33.14	11.59
44H	64	4.60	0.0470	67.39	2.341	0.599	0.310	1.994	0.753	2.93	34.30	11./1
44H	60	4.90	0.0502	67.81	2.430	0.606	0.252	2.052	0.777	2.92	34.21	11.70
44H	08	4.81	0.0492	68.09	2.514	0.604	0.262	2.099	0.798	2.89	33.47	11.60
44H	70	5.10	0.0529	20.48	2.014	0.304	0.209	2.155	0.824	2.70	33.30	12.17
44H	72	11.98	0.1283	29.01	2.8/4	0.417	0.103	2.204	0.851	2.12	27.15	12.79
44H	74	0.00	0.0933	50.00	3.040	0.312	0.122	2.315	0.871	1.01	20.80	12.98
441	70	5.55	0.0330	53.00	2 2 250	0.320	0.131	2.332	0.007	2.41	22 21	12.77
441	20	5.10	0.0331	62.62	2 262	0.310	0.175	2.303	0.907	2.03	23 21	12.01
441	80	4 80	0.0528	66 17	3.303	0.200	0.130	2.415	0.925	2.55	22.51	12.09
4411	QA	5 12	0.0501	67 20	2 5/17	0.304	0.171	2.440	0.939	2.09	2/ 1/	12.34
4411	94	5 22	0.0520	68 11	2 661	0.207	0.10U	2.473	0.933	2.07	2/ 14	12.90
4411	80	5.55	0.0547	66.67	3.001	0.204	0.151	2.502	0.970	2.71	34.10	12.30
	00	5.51	0.0500	65 54	2 904	0.203	0.102	2.331	1 000	2.03	32.23	12.38
441	02	5 80	0.0507	64 20	J.090	0.221	0.108	2.500	1.009	2.04	32.00	12.44
44H	04	5.09	0.0000	65 47	4 122	0.220	0.122	2.564	1.022	2.02	32.01	12.40
44H	96	7 88	0.0822	47 74	4 288	0.209	0.144	2.011	1.041	1.64	21 46	12.09
44H	90	6.76	0.0622	56 37	4 438	0.178	0.103	2.059	1.037	2.04	21.40	12.03
44H	100	6.68	0.0692	56.13	4 572	0.105	0.112	2.000	1 080	2.20	20.55	12.00
44H	102	7.19	0.0746	54 72	4 728	0.182	0.112	2.000	1 108	2.21	29.95	12.75
44H	104	6.99	0.0724	56.08	4.872	0 160	0.125	2.721	1 1 1 2 2	2.57	30.15	12.05
44H	106	6.52	0.0673	60.75	5.000	0.182	0.104	2.769	1 136	2.44	30.23	12.49
44H	108	6.49	0.0671	61.42	5.152	0.174	0.117	2.795	1.154	2.48	31.73	12.81
						U.1.7 T	VIII/		1.1.5 T	2.10	51.15	1

Sta	Depth	Dry	Rho	LOI	Cum Wt	TP	NAIP	Cum TP	Cum NAIP	TN	TC	TC/TN
44H	110	6.52	0.0673	62.99	5.269	0.154	0.089	2.814	1.164	2.45	31.44	12.85
44H	112	7.21	0.0748	58.85	5.425	0.155	0.073	2.838	1.175	2.31	29.81	12.88
44H	114	7.23	0.0750	58.82	5.552	0.156	0.095	2.857	1.187	2.29	31.36	13.68
44H	116	6.97	0.0722	60.99	5.690	0.164	0.087	2.880	1.199	2.18	29.22	13.42
44H	118	7.05	0.0730	59.74	5.848	0.167	0.079	2.907	1.212	2.29	30.78	13.44
44H	120	6.98	0.0723	57.27	5.989	0.150	0.068	2.928	1.221	2.20	28.45	12.91
44H	122	6.72	0.0695	56.65	6.128	0.180	0.077	2.953	1.232	2.05	27.38	13.36
44H	124	7.38	0.0767	50.70	6.294	0.160	0.071	2.979	1.244	1.92	25.43	13.24
44H	126	9.03	0.0949	40.53	6.463	0.150	0.059	3.005	1.254	1.68	21.93	13.07
44H	128	11.53	0.1231	31.98	6.732	0.160	0.050	3.048	1.267	0.95	14.64	15.47
44H	130	11.38	0.1214	31.74	6.958	0.140	0.059	3.079	1.281	1.17	16.38	14.02

APPENDIX F

Radiometric data for 10 historic cores collected during Phase I and Phase II, Lake Griffin. See Appendix A for collection date, location and description of cores.

CODES: Depth is depth (cm) Total ²¹⁰Pb is activity (dpm g⁻¹) ¹³⁷Cs is activity (dpm g⁻¹) ²¹⁰Pb error is error in Total ²¹⁰Pb activity (dpm g⁻¹) ¹³⁷Cs error is error in ¹³⁷Cs activity (dpm g⁻¹) Excess ²¹⁰Pb is activity (dpm g⁻¹) Age is age in years at each depth Date is calendar year at each depth MSR is mass sedimentation rate (mg cm⁻² yr⁻¹) Cum mass is cumulative dry mass (g cm⁻²) at each depth

Total ²¹⁰Pb activity in two cores, LG-2H and LG-11H, was measured using alpha counting. Therefore, ¹³⁷Cs activity was not measured in these cores.

Radiometric data, Phase I Core, LG-2H.

	Total		210Pb	137Cs	Excess			Age		MSR	Cum
Depth	210 Pb	137Cs	Error	Error	210Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		$(g \text{ cm}^{-2})$
2	21.56		0.62		20.49	0.7	1993.5	0.4	60.5	1.9	0.043
4	21.18		0.84		20.10	1.2	1993.0	0.4	60.5	2.6	0.075
6	21.87		0.70		20.80	1.9	1992.4	0.4	57.4	2.0	0.111
8	22.09		0.76		21.02	2.5	1991.8	0.4	55.7	2.1	0.145
10	24.77		1.39		23.71	3.3	1990.9	0.4	48.3	2.8	0.185
12	21.78		1.15		20.71	4.1	1990.2	0.4	53.9	3.0	0.226
14	21.26		1.06		20.18	4.8	1989.4	0.4	54.0	2.9	0.268
16	23.28		0.97		22.21	5.8	1988.4	0.4	47.8	2.1	0.316
18	21.96		0.90		20.89	6.9	1987.4	0.4	49.2	2.1	0.367
20	21.66		1.02		20.59	7.8	1986.4	0.5	48.4	2.4	0.413
22	20.78		0.81		19.71	10.7	1983.5	0.5	47.6	2.0	0.551
24	20.77		0.83		19.70	13.7	1980.5	0.5	43.4	1.8	0.682
26	20.01		1.04		18.93	15.0	1979.3	0.5	42.3	2.3	0.733
28	21.19		0.82		20.12	16.1	1978.1	0.5	38.4	1.6	0.777
30	21.97		0.93		20.90	17.4	1976.8	0.5	35.6	1.6	0.824
32	19.94		0.94		18.86	18.7	1975.5	0.5	37.8	1.9	0.873
34	17.75		0.68		16.67	20.0	1974.3	0.5	41.1	1.7	0.926
36	16.63		0.73		15.54	21.3	1973.0	0.5	42.4	2.0	0.981
38	15.96		0.67		14.87	22.8	1971.5	0.5	42.4	2.0	1.044
40	15.71		0.65		14.62	23.9	1970.4	0.6	41.4	1.9	1.089
42	15.00		0.56		13.91	25.0	1969.3	0.6	42.1	1.8	1.135
44	15.55		0.58		14.46	26.5	1967.7	0.6	38.9	1.6	1.195
46	14.55		0.58		13.46	28.2	1966.0	0.6	39.7	1.8	1.264
48	14.96		0.70		13.87	30.2	1964.1	0.6	36.4	1.9	1.334
50	13.22		0.61		12.12	31.6	1962.6	0.6	39.5	2.1	1.392
52	14.73		0.65		13.64	33.9	1960.4	0.7	33.1	1.6	1.465
54	13.04		0.72		11.95	36.0	1958.3	0.7	35.3	2.2	1.541
56	14.37		0.83		13.28	38.4	1955.9	0.7	29.6	1.9	1.612
58	12.46		0.96		11.36	40.6	1953.6	0.7	32.2	2.7	1.684
60	12.37		0.56		11.28	42.7	1951.5	0.8	30.3	1.6	1.748

•

	Total		210Pb	137Cs	Excess			Age		MSR	Cum
Depth	210 Pb	137Cs	Error	Error	210 Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
62	14.91		0.75		13.82	45.5	1948.7	0.8	23.0	1.3	1.812
64	11.11		0.53		10.01	48.0	1946.2	0.9	29.2	1.7	1.885
66	11.86		0.94		10.76	50.9	1943.3	0.9	25.0	2.2	1.957
68	11.09		0.54		9.99	54.4	1939.9	1.0	24.3	1.4	2.042
70	11.01		0.51		9.91	57.8	1936.5	1.1	22.1	1.3	2.116
72	9.70		0.49		8.59	61.2	1933.1	1.2	22.9	1.4	2.194
74	9.93		0.76		8.83	65.3	1928.9	1.2	19.8	1.8	2.276
76	9.87		0.56		8.77	70.1	1924.2	1.4	17.4	1.3	2.359
78	8.58		0.50		7.47	74.6	1919.6	1.6	17.6	1.4	2.439
80	7.75		0.43		6.65	79.3	1914.9	1.8	17.2	1.4	2.519
82	9.31		0.88		8.21	86.5	1907.8	2.0	11.6	1.3	2.602
84	8.78		0.46		7.67	94.8	1899.5	2.6	9.7	0.9	2.683
86	8.53		0.58		7.43	108.8	1885.5	3.7	7.2	0.8	2.783
88	6.55		0.44		5.44	148.6	1845.6	11.0	4.5	0.9	2.961
90	2.82		0.39		1.71	180.4	1813.8	26.8	4.6	2.5	3.106
92	2.20		0.36		1.10	217.6	1776.7	82.0	2.5	3.5	3.197
94	1.53		0.36		0.42						3.307
96	1.00		0.35		0.00						3.481
98	0.73		0.35		0.00						3.581
100	1.43		0.37		0.00						3.705
108	1.56		0.39		0.00						3.800
112	0.89		0.38		0.00						3.918
116	1.05		0.37		0.00						4.027

,

Provide A Provid

ż.

Radiometric data, Phase I Core, LG-2H, Continued.

I.

Radiometric data, Phase II Core, LG-3H.

	Total		210Pb	¹³⁷ Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210 Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
2	23.95	2.43	1.46	0.25	22.63	2.45	1993.2	0.86	15.2	1.11	0.037
4	16.21	2.54	0.72	0.14	14.77	3.97	1991.6	0.88	21.9	1.25	0.070
6	14.39	2.06	0.97	0.20	12.98	5.61	1990.0	0.90	23.7	2.03	0.110
8	15.41	2.42	1.05	0.22	13.96	8.18	1987.4	0.91	20.7	1.78	0.163
10	15.96	2.61	1.24	0.27	14.56	10.67	1984.9	0.93	18.3	1.80	0.208
12	11.97	2.86	0.84	0.22	10.48	13.26	1982.3	0.94	23.5	2.19	0.269
14	13.76	3.63	0.81	0.22	12.33	16.76	1978.8	0.98	18.2	1.42	0.333
16	11.85	4.08	0.82	0.25	10.36	19.65	1976.0	1.00	19.6	1.82	0.389
18	10.63	3.13	0.83	0.24	9.13	22.72	1972.9	1.02	20.3	2.15	0.451
20	10.71	2.65	0.74	0.19	9.21	26.40	1969.2	1.05	18.1	1.74	0.518
22	9.95	2.44	0.77	0.20	8.44	30.14	1965.5	1.07	17.6	1.89	0.584
24	8.42	1.87	0.69	0.17	6.92	33.93	1961.7	1.07	19.1	2.34	0.656
26	10.17	1.16	0.49	0.08	8.66	38.72	1956.9	1.15	13.3	0.98	0.720
28	8.32	1.38	0.45	0.09	6.81	44.00	1951.6	1.23	14.5	1.25	0.796
30	8.99	1.25	0.47	0.09	7.47	50.23	1945.4	1.36	11.1	0.93	0.865
32	8.75	0.99	0.50	0.08	7.24	58.08	1937.5	1.52	9.2	0.88	0.937
34	7.39	1.18	0.42	0.08	5.86	66.64	1929.0	1.76	8.8	0.90	1.013
36	8.10	1.18	0.40	0.07	6.57	84.32	1911.3	2.49	5.3	0.58	1.105
38	6.53	0.79	0.40	0.07	4.99	106.16	1889.4	3.95	3.8	0.60	1.188
40	5.70	0.40	0.36	0.05	4.14	164.60	1831.0	17.83	1.5	0.49	1.273
42	2.17	0.24	0.24	0.03	0.56						1.394
44	1.42	0.46	0.22	0.04	0.00						1.475
46	1.81	0.29	0.23	0.03							1.552

Radiometric data, Phase II Core, LG-7H.

	Total		210 Pb	137Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(vr)			$(mg cm^{-2} vr^{-1})$		(g cm ⁻²)
(/	(~ r 0)	(- r <i>b</i>)	(-r- <i>0</i> /								
2	14.68	3.05	1.09	0.22	12.86	0.48	1995.3	0.71	52.6	4.70	0.025
4	17.63	2.92	1.26	0.25	15.81	1.39	1994.4	0.72	41.8	3.53	0.063
6	16.21	2.57	1.32	0.24	14.40	1.91	1993.9	0.72	44.9	4.36	0.087
8	16.14	2.85	0.76	0.14	14.33	2.62	1993.2	0.73	44.3	2.59	0.118
10	11.08	2.93	1.05	0.24	9.25	3.26	1992.5	0.73	67.2	8.01	0.161
12	11.05	2.80	0.93	0.21	9.22	4.16	1991.6	0.74	65.8	6.99	0.221
14	13.80	2.91	1.06	0.22	11.98	5.13	1990.7	0.74	49.2	4.62	0.268
16	12.37	2.40	1.01	0.20	10.54	6.33	1989.5	0.75	54.0	5.53	0.333
18	10.49	2.97	0.88	0.21	8.67	7.36	1988.4	0.75	63.5	7.04	0.398
20	7.99	3.46	0.83	0.23	6.15	8.25	1987.6	0.75	86.8	12.74	0.475
22	9.72	3.48	0.92	0.24	7.89	9.21	1986.6	0.76	65.7	8.20	0.538
24	11.05	3.17	0.99	0.02	9.23	10.57	1985.2	0.76	54.2	6.19	0.612
26	11.98	2.78	0.89	0.20	10.17	12.12	1983.7	0.77	47.0	4.46	0.685
28	8.32	4.01	0.85	0.25	6.54	12.96	1982.8	0.77	70.4	10.02	0.744
30	10.39	4.35	0.69	0.18	8.55	14.33	1981.5	0.78	52.1	4.63	0.815
32	10.97	4.06	0.70	0.18	9.14	15.93	1979.9	0.80	46.5	3.97	0.890
34	8.16	4.34	0.65	0.19	6.32	17.20	1978.6	0.81	64.3	7.19	0.971
36	10.55	4.62	0.65	0.18	8.72	18.64	1977.2	0.82	44.7	3.72	1.036
38	11.87	4.71	0.69	0.19	10.05	20.60	1975.2	0.84	36.8	2.83	1.108
40	10.65	4.93	0.63	0.17	8.82	22.72	1973.1	0.86	39.3	3.17	1.192
42	9.45	4.90	0.64	0.18	7.62	24.41	1971.4	0.88	42.9	4.03	1.264
44	9.62	4.86	0.63	0.19	7.84	26.43	1969.4	0.90	39.4	3.61	1.343
46	12.44	3.66	0.91	0.01	10.63	29.94	1965.9	0.92	26.7	2.60	1.437
48	9.76	4.17	0.70	0.19	8.00	32.62	1963.2	0.94	32.2	3.23	1.523
50	9.06	3.20	0.95	0.02	7.23	34.54	1961.3	0.94	33.1	4.73	1.587
52	10.51	1.70	0.66	0.12	8.74	37.50	1958.3	0.98	25.4	2.21	1.662
54	11.26	2.59	0.65	0.01	9.44	41.03	1954.8	1.03	21.2	1.72	1.737
56	11.77	1.81	0.70	0.12	10.02	45.91	1949.9	1.09	17.6	1.49	1.823
58	10.26	0.96	0.63	0.01	8.44	50.55	1945.3	1.17	18.0	1.62	1.906
60	11.02	0.95	0.60	0.08	9.26	56.09	1939.7	1.29	14.0	1.15	1.983

F - 4

	Total		210РЬ	137Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210РЬ	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
62	8.80	0.64	0.56	0.01	6.97	61.20	1934.6	1.40	15.7	1.59	2.064
64	11.95	0.61	0.62	0.07	10.21	70.39	1925.4	1.68	8.6	0.75	2.143
66	9.48	0.57	0.55	0.01	7.66	81.20	1914.6	2.08	8.4	0.89	2.234
68	7.91	0.70	0.55	0.07	6.12	91.55	1904.3	2.59	7.6	1.01	2.313
70	7.73	0.75	0.73	0.01	5.90	109.41	1886.4	3.18	5.1	1.02	2.404
72	6.70	0.71	0.45	0.06	4.89	129.19	1866.6	5.19	3.4	0.64	2.472
74	4.61	0.77	0.46	0.01	2.77	159.78	1836.0	9.90	2.8	1.05	2.559
76	3.39	0.50	0.39	0.01	1.54					1.25	2.657
78	1.30	0.51	0.38	0.01	0.00						2.751

Radiometric data, Phase II Core, LG-16H.

Depth (cm)	Total ²¹⁰ Pb (dpm/g)	¹³⁷ Cs (dpm/g)	210Pb Error (dpm/g)	¹³⁷ Cs Error	Excess 210Pb	Age (yr)	Date	Age Error	MSR (mg cm ⁻² yr ⁻¹)	MSR Error	Cum Mass (g cm ⁻²)
4	16 56	2.89	0.88	0.18	14 77	4 28	1991 5	1 72	20.7	1 56	0 089
8	17.48	2.72	1.11	0.22	15.69	8.44	1987.4	1.83	17.1	1.50	0.160
12	13.72	1.88	0.94	0.17	11.93	13.60	1982.2	1.97	19.5	1.98	0.260
16	9.70	1.75	0.67	0.13	7.91	21.02	1974.8	2.20	24.2	2.75	0.439
20	6.64	0.63	0.70	0.09	4.85	31.31	1964.5	2.18	30.0	5.61	0.748
24	7.66	0.74	0.70	0.10	5.87	37.47	1958.3	2.38	19.1	2.89	0.866
28	6.12	0.53	0.47	0.06	4.33	43.21	1952.6	2.64	21.5	3.08	0.989
32	6.38	0.92	0.48	0.07	4.59	53.36	1942.4	3.20	15.9	2.47	1.151
36	6.11	0.64	0.50	0.06	4.32	70.09	1925.7	4.44	11.2	2.19	1.338
40	6.03	0.54	0.68	0.09	4.24	106.95	1888.9	6.90	5.2	1.87	1.529
44	2.73	0.44	0.39	0.05	0.93	116.65	1879.2	7.79	10.8	6.17	1.634
48	3.06	0.20	0.34	0.03	1.27	137.86	1857.9	12.23	5.0	2.55	1.740
52	3.18	0.33	0.50	0.06	1.39						1.843

F - 6

	Total		210Pb	137Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
4	19.10	3.40	2.05	0.33	17.65	4.6	1989.8	2.59	13.32	1.94	0.061
6	16.07	2.46	2.39	0.41	14.60	7.3	1987.0	2.67	14.36	2.77	0.100
8	11.82	2.83	1.42	0.24	10.31	9.3	1985.0	2.75	18.88	3.12	0.138
10	15.92	2.08	1.19	0.19	14.45	13.4	1980.9	2.96	12.26	1.44	0.188
12	12.45	2.72	1.64	0.28	10.96	16.3	1978.0	3.11	14.50	2.68	0.230
14	14.18	2.52	1.41	0.24	12.70	20.3	1974.0	3.36	11.24	1.71	0.275
16	13.34	2.73	1.38	0.24	11.86	27.0	1967.3	3.83	10.20	1.73	0.344
18	11.07	3.24	1.52	0.27	9.57	33.3	1961.0	4.35	10.32	2.26	0.408
20	10.14	4.06	1.28	0.25	8.63	39.6	1954.7	5.03	9.40	2.09	0.468
22	8.72	4.58	1.45	0.28	7.20	45.7	1948.6	5.78	9.30	2.67	0.524
24	9.93	3.89	1.21	0.24	8.42	58.6	1935.7	8.06	5.95	1.67	0.601
26	5.40	2.71	1.39	0.25	3.84	68.8	1925.5	9.90	9.06	4.89	0.694
28	5.13	0.99	1.00	0.16	3.57	86.1	1908.2	15.23	6.41	3.56	0.804
30	4.30	0.83	1.44	0.22	2.73	107.6	1886.7	24.01	4.61	4.66	0.903
32	3.84	0.52	1.21	0.18	2.27	158.3	1836.0	91.82	1.96	3.67	1.003
34	2.22	0.07	1.20	0.18	0.65						1.093
36	1.63	0.42	1.17	0.18							1.184
38	1.76	0.61	1.25	0.18							1.281
40	1.38	0.70	1.62	0.23							1.384
42	3.79	0.58	1.17	0.18							1.488
44	1.10	0.44	1.04	0.15							1.586
46	3.54	0.62	1.11	0.16							1.689

Radiometric data, Phase I Core, LG-26H.

Radiometric data, Phase I Core, LG-41H.

	Total	105	210РЬ	137Cs	Excess			Age		MSR	Cum
Depth	210 Pb	137Cs	Error	Error	210Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		$(g \text{ cm}^{-2})$
											-
4	16.68	2.88	2.27	0.37	15.05						0.070
8	16.28	3.54	2.00	0.34	15.72						0.160
12	13.08	2.78	2.22	0.37	12.13						0.270
16	16.94	3.41	2.37	0.38	17.35						0.380
20	17.68	3.81	2.04	0.34	16.34						0.490
24	17.33	3.10	2.49	0.43	16.86						0.600
28	19.52	2.85	2.20	0.37	17.55						0.730
32	11.97	4.34	2.16	0.39	9.40						0.850
36	13.21	5.04	2.13	0.41	12.86						1.000
40	15.24	5.04	2.12	0.39	13.00						1.150
44	10.39	0.20	2.11	0.30	9.18						1.310
48	8.13	4.63	2.15	0.40	6.62						1.490
52	9.11	4.83	2.21	0.40	7.53						1.640
56	9.22	5 00	2.11	0.40	8.96						1 770
60	9 51	5 65	2.17	0.41	7 30						1 930
64	11 71	5 23	1 91	0.35	10.98						2 090
68	11.71	5.14	2 10	0.33	10.35						2.000
77	8 35	5 11	1 47	0.70	7 /3						2.270
74	0.35	5.44	1.47	0.27	7.43						2.440
/0 70	9.13	5.71	1.33	0.31	1.00						2.030
/ð	5.72	5.19	1.01	0.32	5.00						2.730

Note: Excess activity was determined using nominal values for ²²⁶Ra activity. Core was too short to reach depths of supported ²¹⁰Pb activity.

	Total		210Pb	137 _{Cs}	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210 Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
4	28.29	3.03	3.33	0.48	28.13	0.6	1993.7	1.2	46.1	6.2	0.027
6	24.09	1.58	6.70	0.91	22.54	0.9	1993.4	1.2	53.9	16.8	0.045
8	23.07	2.99	2.16	0.33	22.65	1.5	1992.8	1.2	55.6	6.1	0.077
10	25.34	3.06	2.64	0.40	24.22	2.3	1992.0	1.2	49.3	6.0	0.118
12	20.03	2.75	1.87	0.28	19.35	3.2	1991.1	1.2	61.6	6.8	0.171
14	23.82	3.02	2.00	0.30	22.42	4.2	1990.2	1.2	49.8	4.9	0.219
16	22.63	3.03	1.49	0.23	21.15	5.0	1989.3	1.2	51.1	4.1	0.264
18	16.25	2.73	1.83	0.29	14.26	5.8	1988.5	1.3	71.1	9.5	0.319
20	21.95	3.04	1.85	0.29	20.41	7.0	1987.3	1.3	49.8	5.0	0.381
22	20.80	3.28	2.26	0.27	19.89	8.3	1986.0	1.3	50.8	6.4	0.444
24	18.18	2.26	1.65	0.24	17.65	9.5	1984.8	1.3	56.4	6.2	0.512
26	22.38	2.80	1.60	0.25	20.70	11.1	1983.2	1.4	43.2	3.8	0.583
28	20.83	3.13	1.42	0.23	19.54	12.7	1981.6	1.4	44.3	3.8	0.653
30	21.47	2.96	1.87	0.29	21.03	14.6	1979.7	1.4	40.7	4.3	0.728
32	19.07	3.47	1.85	0.29	17.60	16.4	1977.9	1.5	43.6	5.2	0.807
34	20.38	3.89	1.79	0.29	19.44	18.3	1976.0	1.5	38.3	4.2	0.880
36	19.42	3.63	1.67	0.26	19.19	20.2	1974.1	1.6	38.0	4.1	0.953
38	12.47	2.12	1.28	0.20	11.65	21.5	1972.8	1.6	58.8	7.7	1.027
40	14.27	2.17	1.51	0.23	12.60	22.9	1971.4	1.7	48.3	6.5	1.097
42	16.55	3.93	1.71	0.29	14.64	25.2	1969.1	1.8	38.7	5.1	1.187
44	18.09	4.46	1.91	0.32	16.48	28.2	1966.1	1.9	32.4	4.4	1.282
46	17.45	4.53	1.67	0.28	15.71	30.8	1963.5	2.0	30.9	3.9	1.364
48	18.06	4.62	2.21	0.38	16.04	33.3	1961.0	2.1	27.4	4.3	1.431
50	21.75	4.41	2.08	0.35	20.03	37.1	1957.2	2.2	20.4	2.7	1.509
52	17.21	4.82	1.33	0.24	16.49	40.1	1954.2	2.4	23.5	2.7	1.580
56	14.53	4.26	1.34	0.24	12.86	47.2	1947.1	2.8	24.2	3.5	1.751
60	11.06	3.06	1.38	0.22	10.02	53.4	1940.9	3.2	26.7	5.0	1.918
64	16.83	3.99	1.38	0.24	15.99	67.6	1926.7	4.6	12.3	2.0	2.092
68	10.59	3.41	1.39	0.24	8.96	79.1	1915.2	6.1	13.7	3.5	2.250
72	5.75	0.02	1.20	0.17	5.06	94.4	1899.9	8.0	19.1	8.3	2.542
76	5.70	0.35	1.13	0.16	4.63	130.4	1863.9	16.0	9.1	5.6	2.868
80	3.58	0.93	1.29	0.18	2.76	173.4	1820.9	24.0	5.3	7.6	3.096

Radiometric data, Phase I Core, LG-42H. Note: Sections deeper than 52 cm were combined for radiometric analysis.

Radiometric data, Phase II Core, LG-43H.

	Total		210 Pb	137Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	210Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
2	20.57	3.89	1.14	0.25	17.19	1.49	1994.3	0.98	27.2	1.99	0.041
4	16.27	3.63	0.98	0.23	12.89	2.83	1993.0	1.00	34.7	2.88	0.087
6	17.56	3.83	1.13	0.26	14.18	4.49	1991.3	1.02	30.1	2.62	0.137
8	17.33	3.20	1.21	0.26	13.95	5.94	1989.9	1.03	29.2	2.72	0.180
10	15.41	3.55	0.96	0.23	12.04	7.86	1987.9	1.06	32.1	2.77	0.241
12	15.65	4.19	1.16	0.29	12.29	9.85	1986.0	1.08	29.6	3.11	0.300
14	17.43	4.87	0.90	0.23	14.06	12.32	1983.5	1.12	24.1	1.77	0.360
16	17.56	4.67	0.88	0.22	14.19	15.38	1980.4	1.17	21.9	1.61	0.427
18	17.73	5.58	0.63	0.17	14.37	18.66	1977.1	1.25	19.6	1.13	0.491
20	12.81	5.67	0.82	0.26	9.45	21.51	1974.3	1.30	27.1	2.77	0.568
22	14.28	6.21	0.69	0.21	10.92	25.03	1970.8	1.39	21.3	1.67	0.643
24	14.31	6.21	0.65	0.19	10.95	29.16	1966.6	1.52	18.8	1.45	0.721
26	15.59	7.46	1.12	0.38	12.23	35.04	1960.8	1.65	14.4	1.64	0.806
28	14.81	5.99	0.70	0.21	11.45	41.75	1954.1	1.92	12.7	1.11	0.891
30	12.79	5.83	0.78	0.25	9.44	49.00	1946.8	2.24	12.4	1.43	0.981
32	12.36	5.84	0.70	0.22	8.99	57.19	1938.6	2.74	10.2	1.22	1.064
34	9.13	3.80	0.62	0.17	5.77	67.68	1928.1	3.48	11.9	1.93	1.190
36	4.96	3.04	0.46	0.14	1.61	71.36	1924.4	3.70	34.3	11.54	1.316
38	4.89	4.39	0.51	0.17	1.53	74.87	1920.9	3.92	32.0	12.20	1.428
40	6.68	3.88	0.83	0.27	3.32	82.71	1913.1	4.42	12.5	3.96	1.526
42	6.22	3.34	0.59	0.16	2.86	90.31	1905.5	5.28	11.4	3.20	1.612
44	6.71	2.79	0.80	0.21	3.35	105.35	1890.5	6.90	6.9	2.55	1.716
46	4.59	3.14	0.55	0.16	1.23	112.74	1883.1	7.74	13.0	7.54	1.812
48	6.53	3.34	0.70	0.21	3.17	142.54	1853.3	15.79	2.9	1.51	1.900
50	5.36	3.51	0.56	0.17	2.01						1.990
52	1.95	3.11	0.43	0.15	0.00						2.078
54	3.70	2.73	0.52	0.15	0.00						2.187
56	1.97	2.92	0.48	0.16	0.00						2.282
58	4.63	2.74	0.72	0.22	0.00						2.385
60	3.12	2.80	0.51	0.15	0.00						2.493

.

Depth (cm)	Total ²¹⁰ Pb (dpm/g)	137 _{Cs} (dpm/g)	²¹⁰ Рь Error (dpm/g)	¹³⁷ Cs Error	Excess 210Pb	Age (yr)	Date	Age Error	MSR (mg cm ⁻² yr ⁻¹)	MSR Error	Cum Mass (g cm ⁻²)
62	2.91	2.32	0.47	0.13	0.00						2.611
64	3.40	2.31	0.41	0.11	0.00						2.718
66	2.66	3.13	0.51	0.16	0.00						2.816
68	3.72	3.34	0.55	0.16							2.913
70	1.96	3.22	0.48	0.15							3.011
72	3.88	3.02	0.55	0.16							3.104
74	5.60	3.17	0.59	0.16							3.207
76	2.48	2.50	0.70	0.21							3.287
78	5.01	3.46	0.57	0.17							3.378

Radiometric data, Phase II Core, LG-43H, Continued.

	Total		210Pb	¹³⁷ Cs	Excess			Age		MSR	Cum
Depth	210Pb	137Cs	Error	Error	²¹⁰ Pb	Age	Date	Error	MSR	Error	Mass
(cm)	(dpm/g)	(dpm/g)	(dpm/g)			(yr)			$(mg cm^{-2} yr^{-1})$		(g cm ⁻²)
2	14.80	3.79	1.02	0.26	11.78	0.38	1995.2	0.58	82.1	7.72	0.031
4	17.99	3.77	1.06	0.25	14.99	0.96	1994.6	0.58	63.5	4.82	0.068
6	15.39	3.05	1.44	0.33	12.38	1.46	1994.1	0.58	75.7	10.05	0.106
8	15.13	3.03	1.15	0.27	12.12	2.09	1993.5	0.59	75.9	7.89	0.154
10	15.76	3.19	0.91	0.21	12.75	2.92	1992.7	0.59	70.6	5.47	0.212
12	17.25	3.52	1.13	0.27	14.25	3.74	1991.9	0.60	61.5	5.27	0.263
14	14.91	3.92	1.10	0.29	11.89	4.50	1991.1	0.60	71.9	7.32	0.318
16	16.49	3.27	0.88	0.20	13.48	5.39	1990.2	0.60	61.8	4.39	0.373
18	16.97	3.63	0.61	0.14	13.98	6.42	1989.2	0.61	57.9	2.86	0.432
20	17.76	3.80	1.11	0.27	14.78	7.61	1988.0	0.62	52.9	4.40	0.495
22	15.59	3.23	0.90	0.21	12.59	8.68	1986.9	0.62	59.9	4.68	0.559
24	12.04	4.02	0.82	0.24	9.00	9.58	1986.0	0.63	81.3	8.23	0.633
26	13.52	3.87	0.97	0.26	10.50	10.76	1984.8	0.63	67.5	6.86	0.712
28	13.39	4.33	0.88	0.26	10.42	11.87	1983.7	0.64	65.6	6.17	0.785
30	15.70	4.46	0.61	0.17	12.77	13.49	1982.1	0.65	51.3	2.82	0.868
32	13.48	4.55	0.71	0.20	10.45	14.95	1980.7	0.66	59.8	4.55	0.955
34	13.98	5.30	0.78	0.23	10.95	16.75	1978.9	0.67	54.2	4.33	1.053
36	13.17	4.75	0.65	0.18	10.13	18.16	1977.4	0.68	55.7	4.02	1.132
38	13.41	4.15	0.96	0.28	10.39	20.19	1975.4	0.68	51.5	5.42	1.236
40	15.23	5.52	0.73	0.23	12.30	21.98	1973.6	0.69	41.0	2.84	1.309
42	15.80	4.80	0.72	0.20	12.84	24.12	1971.5	0.71	36.9	2.42	1.388
44	13.90	5.39	0.69	0.22	10.94	26.49	1969.1	0.73	40.4	3.02	1.484
46	14.47	5.57	0.73	0.22	11.50	28.26	1967.3	0.75	36.1	2.62	1.548
48	17.57	4.90	0.76	0.21	14.66	31.74	1963.9	0.78	26.1	1.64	1.639
50	15.81	5.06	0.66	0.17	12.80	34.38	1961.2	0.81	27.2	1.67	1.710

Radiometric data, Phase II Core, LG-44H.

Depth (cm)	Total ²¹⁰ Pb (dpm/g)	¹³⁷ Cs (dpm/g)	210Pb Error (dpm/g)	¹³⁷ Cs Error	Excess 210Pb	Age (yr)	Date	Age Error	MSR (mg cm ⁻² yr ⁻¹)	MSR Error	Cum Mass (g cm ⁻²)
52 54 56 58 60 62 64 66 68 70 72 74 76 78 80	$14.53 \\ 13.72 \\ 15.02 \\ 15.04 \\ 13.31 \\ 12.95 \\ 13.50 \\ 15.38 \\ 13.84 \\ 16.82 \\ 4.64 \\ 2.77 \\ 2.77 \\ 4.14 \\ 2.82 \\$	5.22 5.35 5.47 4.85 5.11 4.44 4.75 5.12 4.90 4.47 1.60 2.16 3.60 4.37 3.95	$\begin{array}{c} 0.68\\ 0.53\\ 0.67\\ 0.70\\ 0.72\\ 0.72\\ 0.66\\ 0.79\\ 0.64\\ 0.68\\ 0.32\\ 0.26\\ 0.38\\ 0.43\\ 0.39 \end{array}$	$\begin{array}{c} 0.20\\ 0.16\\ 0.20\\ 0.20\\ 0.21\\ 0.20\\ 0.19\\ 0.22\\ 0.19\\ 0.17\\ 0.08\\ 0.09\\ 0.17\\ 0.18\\ 0.15\\ \end{array}$	$11.56 \\ 10.75 \\ 12.05 \\ 12.10 \\ 10.28 \\ 9.92 \\ 10.48 \\ 12.38 \\ 10.83 \\ 13.82 \\ 1.53 \\ 0.00 \\$	37.35 40.81 44.38 49.06 54.40 60.01 67.72 79.57 92.22 140.16	1958.3 1954.8 1951.2 1946.5 1941.2 1935.6 1927.9 1916.0 1903.4 1855.4	$\begin{array}{c} 0.85\\ 0.91\\ 0.97\\ 1.04\\ 1.12\\ 1.22\\ 1.40\\ 1.72\\ 2.30\\ 8.28 \end{array}$	27.5 26.8 21.4 18.8 18.9 16.5 12.7 8.0 6.2 2.1	1.92 1.64 1.49 1.38 1.68 1.52 1.10 0.76 0.62 0.35	$1.792 \\ 1.885 \\ 1.961 \\ 2.049 \\ 2.150 \\ 2.243 \\ 2.341 \\ 2.436 \\ 2.514 \\ 2.614 \\ 2.874 \\ 3.040 \\ 3.153 \\ 3.258 \\ 3.363 $

Radiometric data, Phase II Core, LG-44H, Continued.

APPENDIX G

Microfossil data for diatoms from 3 historic cores collected during Phase I and Phase II, Lake Griffin. See Appendix A for collection date, location and description of cores.

Key to taxonomic abbreviations in Appendix G.

.

÷

.

Abbreviation	Taxonomic name
NAVBAC	Navicula bacillum
NAVGOT	Navicula gottlandica
STAUPHGR	Stauroneis phoenocenteron var. gracilis
NEIIRAMH	Neidium iridis var. amphigomphus
PINSP	Pinnularia sp.
MASTSMLA	Mastogloia smithii var. lacustris
NAVOBL	Navicula oblonga
NAVSP	Navicula sp.
NAVRA	Navicula radiosa
NAVPURE	Navicula pupula var. rectangularis
NAVSEMIN	Navicula seminulum
PINVIR	Pinnularia viridis
CYCSTEL	Cyclotella stelligera
NAVRAPA	Navicula radiosa var. parva
SSRLPIN	Staurosirella pinnata
AULAITAL	Aulacoseira italica
PSSTBREV	Pseudostaurosira brevistriata
STASCONV	Staurosira construens var. venter
STASCON	Staurosira construens
AULAAM	Aulacoseira ambigua
NITZAM	Nitzschia ambigua
AULADIS	Aulacoseira distans

	Depth in sediment core (cm)																
	0-2	2-4	4-6	8-10	12-14	16-18	18-20	20-22	24-26	28-30	32-34	40-42	48-50	52-54	56-58	64-66	68-70
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1 790	1 507	1 792	2 1 2 8	2 871
NAVGOT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.707	1.397	1.702	2.120	2.074
STALIDUCD	0.000	0.000	0.000	0.385	0.385	0.200	0.000	0.000	0.000	0.000	1 759	0.990	2.304	4.192 5 380	1.100	2.000	4.370
NEIDAMU	0.100	0.000	0.192	0.000	0.000	0.200	0.000	0.390	0.000	0.390	2 344	2 574	2.304	2.369	2 178	2.708	1 215
PINSP	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.344	0 000	2 783	3 194	0.000	0.000	0.383
MASTSMI A	0.188	0.207	0.000	0.000	0.000	0.200	0.000	0.000	0.402	0.700	0 077	1 782	2.703	2 505	2 178	0.000	1 341
NAVORI	0.100	0.000	0.000	0.192	0.000	0.000	0.000	0.000	0.000	0.780	2.148	3 366	11 332	8 782	3 366	5 609	6 513
NAVSP	0.188	0.000	0.576	0.000	0.000	1 198	0.191	0.000	0.201	0.975	1.563	6 1 3 9	5 964	7 186	2.574	2.901	1 1 4 9
NAVRA	0.000	0.620	0.192	0.385	0.193	0.000	0.191	0.000	0.201	0.585	6.641	8.713	10.934	9.381	12.277	14.313	13.410
NAVPURE	0.376	0.000	0.000	0.000	0.000	0.200	0.191	0.398	0.402	0.780	3.320	9.307	11.928	3.992	5.743	9.091	6.130
NAVSEMIN	0.000	0.000	0.000	0.192	0.193	0.000	0.000	0.000	0.000	0.000	0.977	3.168	2.187	1.597	1.782	2.708	2.874
PINVIR	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.344	3.366	3.380	3.393	3.366	2.901	3.640
CYCSTEL	7.519	3.926	1.727	0.385	0.578	0.599	0.382	0.000	1.207	0.390	3.516	4.356	3.976	4.591	3.960	3.675	3.831
NAVRAPA	0.376	0.000	0.000	0.000	0.578	0.000	0.382	0.000	1.006	1.559	5.078	5.941	3.380	2.395	2.970	4.836	6.705
SSRLPIN	2.820	1.653	1.919	4.423	0.771	9.182	5.153	12.724	11.871	11.696	5.859	3.564	0.000	0.200	0.000	0.000	0.192
AULAITAL	0.000	0.000	0.000	0.962	0.385	0.200	0.000	0.000	0.805	0.000	1.953	0.594	0.000	0.599	0.990	0.000	0.192
PSSTBREV	10.526	4.339	10.940	8.846	9.056	21.557	24.809	17.893	28.571	20.273	14.063	8.119	1.193	1.198	0.198	0.193	0.766
STASCONV	14.662	8.471	11.324	8.654	14.258	30.539	20.229	26.640	20.724	18.908	7.813	7.129	0.994	0.399	0.396	0.387	0.383
STASCON	4.135	1.033	2.495	6.154	2.697	3.393	4.771	3.579	4.628	8.967	3.516	0.990	2.982	0.998	0.396	2.515	1.149
AULAAM	49.436	67.562	60.461	59.808	61.850	26.747	37.405	32.604	25.553	26.901	22.461	16.436	9.742	15.170	39.010	24.758	20.498
NITZAM	2.820	1.240	1.919	3.846	0.771	0.998	2.672	2.386	0.000	1.559	0.977	2.178	2.386	3.792	2.574	2.515	1.724
AULADIS	1.692	4.959	4.607	2.308	3.854	1.597	1.527	0.398	1.006	2.144	1.953	0.396	1.193	0.000	0.792	0.193	0.383

Appendix G. Percentages of diatoms with >3% abundance in core LG-11.

	Depth in sediment core (cm)														
	0-2	4-6	6-8	8-10	10-12	12-14	14-16	20-22	22-24	24-26	26-28	28-30	34-36	38-40	46-48
NAVBAC	0.000	0.199	0.198	0.394	0.000	0.000	0.000	0.000	0.596	0.591	0.371	1.972	4.511	4.554	2.183
NAVGOT	0.196	0.199	0.198	0.000	0.990	0.000	0.369	0.527	0.199	0.394	0.371	0.592	1.692	2.376	2.778
STAUPHGR	0.196	0.598	0.000	0.000	0.396	0.000	0.554	0.000	0.795	0.591	1.113	1.578	3.947	2.574	2.183
NEIIRAMH	0.196	0.598	0.198	0.394	0.198	0.198	0.185	0.351	0.994	0.197	1.299	1.775	3.008	3.168	2.778
PINSP	0.196	0.000	0.198	0.197	0.198	0.198	0.000	0.176	0.000	0.394	1.299	2.564	0.564	0.990	0.000
MASTSMLA	0.000	0.000	0.000	0.000	0.000	0.198	0.554	0.879	0.398	0.394	0.557	3.748	0.940	1.782	1.786
NAVOBL	0.196	0.199	0.000	0.000	0.000	0.395	0.369	0.000	0.596	0.591	1.484	4.536	5.075	6.337	6.746
NAVSP	0.589	0.398	0.198	0.591	0.396	0.000	0.369	0.176	0.199	0.394	2.968	1.381	3.759	3.168	4.563
NAVRA	0.786	0.398	0.397	0.984	1.188	0.198	0.923	0.351	0.398	0.787	3.896	5.720	9.211	7.525	9.127
NAVPURE	0.393	0.398	0.198	0.000	0.198	0.791	0.554	0.527	1.193	1.575	3.154	7.495	9.586	9.505	10.317
NAVSEMIN	0.000	0.000	0.198	0.197	0.594	0.000	0.000	0.176	0.199	0.787	2.041	2.367	2.820	1.584	3.373
PINVIR	0.393	0.398	0.000	0.000	0.396	0.395	0.000	0.000	0.994	0.394	1.855	1.578	3.571	2.178	2.976
CYCSTEL	1.768	2.988	1.190	1.575	1.386	0.198	0.369	0.176	0.994	0.197	0.742	3.156	1.504	2.376	2.778
NAVRAPA	0.000	0.199	0.397	0.000	0.000	0.198	0.185	0.527	0.000	0.197	2.412	1.972	0.188	0.792	2.976
SSRLPIN	0.982	0.797	0.397	0.984	1.188	0.395	2.583	4.569	2.187	1.575	0.371	0.592	0.000	0.198	0.397
AULAITAL	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.394	0.000	1.188	0.198
PSSTBREV	5.108	7.769	6.349	6.693	7.129	5.731	17.159	15.114	5.169	4.134	1.855	2.367	0.940	0.792	1.389
STASCONV	6.876	9.761	10.516	8.465	10.099	12.055	16.790	15.466	10.139	9.449	12.616	9.467	1.880	1.386	1.984
STASCON	2.554	2.988	4.563	5.315	4.950	3.755	4.059	14.236	12.326	10.236	9.091	7.101	4.511	2.772	5.556
AULAAM	71.513	63.944	68.056	68.701	63.168	70.158	50.923	41.652	58.052	63.780	45.269	25.049	25.564	30.099	21.627
NITZAM	0.786	2.191	1.984	0.591	2.376	0.988	0.369	0.703	0.398	0.787	0.371	1.775	1.504	1.386	2.183
AULADIS	2.161	2.390	1.587	1.969	1.584	1.186	1.845	1.054	0.398	0.591	0.742	0.000	0.188	0.594	0.000

Appendix G. Percentages of diatoms with >3% abundance in core LG-26.

	Depth in sediment core (cm)													
	0-2	4-6	8-10	12-14	16-18	20-24	24-26	28-30	32-34	36-38	40-44	46-48	58-60	68-70
	<u> </u>										<u>.</u>		<u></u>	
NAVBAC	0.200	0.198	0.198	0.191	0.792	0.975	0.198	0.527	0.000	0.327	0.000	0.000	0.000	0.185
NAVGOT	0.000	0.000	0.198	0.382	0.000	0.000	0.395	0.176	0.583	0.164	0.000	0.196	0.171	0.000
STAUPHGR	1.603	0.397	0.396	0.956	0.198	0.000	0.198	0.527	0.388	0.164	0.000	0.196	0.512	0.369
NEIIRAMH	0.601	0.198	0.000	0.000	0.000	0.000	0.395	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PINSP	0.200	0.397	0.594	0.574	1.188	0.390	0.791	2.460	0.388	0.491	0.575	0.000	0.512	0.000
MASTSMLA	0.000	0.000	0.000	0.000	0.000	0.000	0.395	0.351	0.000	0.000	0.000	0.196	0.171	0.000
NAVOBL	0.000	0.000	0.000	0.191	0.198	0.390	0.395	0.351	0.000	0.164	0.192	0.000	0.171	1.292
NAVSP	0.802	0.198	0.198	0.000	0.594	0.975	0.791	0.176	0.194	0.000	0.192	0.196	0.000	0.000
NAVRA	0.200	0.000	0.000	0.000	0.594	0.195	0.000	0.527	0.583	0.491	0.383	2.161	1.706	0.369
NAVPURE	0.802	0.000	0.000	0.191	0.000	0.195	0.000	0.176	0.971	0.327	0.192	0.196	0.000	0.000
NAVSEMIN	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PINVIR	0.000	0.198	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.164	0.383	0.196	0.341	0.000
CYCSTEL	2.004	1.190	0.396	2.677	3.564	1.949	0.791	0.527	0.583	0.818	0.575	0.982	1.195	1.292
NAVRAPA	0.200	0.198	0.000	0.000	0.198	0.000	0.000	0.176	0.000	0.164	0.000	0.982	1.024	0.369
SSRLPIN	0.000	0.198	0.198	2.294	1.980	0.390	2.372	2.812	5.437	9.493	6.322	7.073	3.584	6.089
AULAITAL	4.208	3.571	1.584	0.000	0.000	4.288	3.755	2.285	2.718	2.619	1.916	5.108	4.949	1.107
PSSTBREV	4.208	5.357	2.178	4.398	5.149	5.458	12.648	15.290	27.379	18.658	18.391	16.699	11.945	11.808
STASCONV	4.810	0.992	0.792	3.250	6.337	8.382	13.043	19.332	27.379	35.843	34.291	27.505	24.232	39.852
STASCON	5.611	1.786	1.584	2.868	2.574	4.483	3.360	1.757	3.301	1.146	0.958	1.179	1.536	0.923
AULAAM	50.301	57.341	68.911	67.495	66.337	61.014	48.419	45.167	21.942	21.440	27.586	29.077	41.980	30.996
NITZAM	3.808	3.770	4.158	0.956	1.584	2.339	2.372	1.054	1.359	1.473	2.682	3.733	1.706	1.292
AULADIS	2.605	1.190	1.386	0.574	0.990	0.195	1.383	0.000	0.000	0.000	0.000	0.196	0.171	0.000

Appendix G. Percentages of diatoms with >3% abundance in core LG-44.

▶. 2