Special Publication SJ99-SP6

Final Report

Sediment and Nutrient Deposition in Lake Dora and Lake Eustis

St. Johns River Water Management District Contract No. 93G269

Claire L. Schelske, William F. Kenney, Phyllis S. Hansen, Thomas J. Whitmore and Matthew N. Waters

> Department of Fisheries and Aquatic Sciences University of Florida Claire L. Schelske, Project Director

> > July 1999

EXECUTIVE SUMMARY

A study of sediment and nutrient deposition in Lake Dora and Lake Eustis was undertaken in two phases with the primary goal of quantitatively estimating temporal changes in net nutrient accumulation rates in sediments. A secondary goal was to infer historic lake total phosphorus (TP) concentrations from paleolimnological analyses of sedimentary diatoms. The major purpose of Phase I was to determine the feasibility and to evaluate the methodology necessary to obtain quantitative estimates of net sedimentation and net nutrient accumulation rates for the entire lake basins of Lake Dora and Lake Eustis. Phase II was undertaken after the feasibility of the methodology was demonstrated with results from Phase I. To accomplish the primary goal, a large number of survey and historic cores (approximately 80) were collected from the two lakes to characterize spatial variability over each lake basin, to assess changes in nutrients with depth and to determine whether stratigraphic time-dependent features were present that could be correlated across survey cores. Time-dependent stratigraphic features were determined using ages calculated for six ²¹⁰Pb-dated historic cores from each lake.

Lake Dora and Lake Eustis are two lakes in the Harris Chain of Lakes in the upper Ocklawaha River basin. The surface area of Lake Dora is 17.74 x 10^6 m², slightly more than half as large as Lake Eustis (surface area of 31.39×10^6 m²). Mean depths are 3.00 m for Lake Dora and 3.46 m for Lake Eustis. Because of the deeper mean depth and larger surface area in Lake Eustis, the volume of Lake Eustis is more than twice as large as that for Lake Dora. Mean hydraulic detention is essentially equal for the two lakes, 0.82 yr for Lake Dora and 0.79 yr for Lake Eustis (Fulton 1995). The reported mean TP in the water column is 138 μ g/L in Lake Dora, twice as large as the mean TP (68 μ g/L) in Lake Eustis. The reported annual TP retention of 6230 kg/yr in Lake Dora and 17,500 kg/yr in Lake Eustis was obtained from TP mass balances calculated in an earlier study by the St. Johns River Water Management District (SJRWMD). In our study of the two lakes, we estimated TP sedimentation from whole-basin inventories of sediment dry mass and TP.

Our estimate of TP sedimentation in Lake Dora is 15,600 kg/yr, more than twice the estimated TP retention (6,230 kg/yr); but our estimate of TP sedimentation in Lake Eustis is 7,720 kg/yr, less than half the estimated TP retention of 17,500 kg/yr. Calculations based on reported mass balances show that 2.81 times more phosphorus is sedimented in Lake Eustis than in Lake Dora even though the lake surface area is only 1.77 times larger. Results from our study, however, indicate that whole-basin TP sedimentation in Lake Dora is 2.0 times greater than in Lake Eustis. No adequate explanation is immediately available for the discrepancies between TP retention and TP sedimentation rates in Lake Dora and Lake Eustis. An analysis of differences in these estimates is beyond the scope of our investigation.

Data from our study show that the rate of TP sedimentation increased in both lakes during the 20th century with the greatest increase occurring after 1950 in both lakes. Our estimated rates of whole-basin TP sedimentation normalized for lake surface area show that TP sedimentation in recent sediments averaged 87.9 μ g cm⁻² yr⁻¹ and 24.6 μ g cm⁻² yr⁻¹, respectively, in Lake Dora and Lake Eustis. The mean decadal TP accumulation rate (TPAR) calculated from ²¹⁰Pb-dated cores for the most recent decade since core collection was 81.8 and 27.5 μ g cm⁻² yr⁻¹, respectively, for Lake Dora and Lake Eustis. A greater TP sedimentation rate is expected in Lake Dora with a greater TP concentration, because TP sedimentation is generally modeled as a function of TP concentration in the water, mean depth and hydraulic residence time. Of these variables, TP concentration differs most between lakes. Thus, our analysis of two data sets shows that the recent, areal TP sedimentation rate is greater in Lake Dora than in Lake Eustis.

We have not attempted to resolve the discrepancies between our estimates of wholebasin TP sedimentation rate in Lake Dora and Lake Eustis with reported estimates of TP retention rate other than to note that our data support a higher areal TP accumulation rate (TPAR) for Lake Dora and a larger whole-basin estimate of TP sedimentation for Lake Dora than indicated by estimated TP retention. It should be recognized, however, that errors in establishing absolute rates of either TP retention or TP sedimentation may be large and that reported discrepancies between the two estimates may be within the range of errors. It should also be recognized that data bases such as those we have provided are an essential component of understanding whole-basin sedimentation of sediment mass or any of its components because they provide direct estimates based on measured sedimentation. Such data applicable to long time periods can be obtained only by using paleolimnological approaches. Therefore, our data will be useful in the future to establish direct estimates of TP sedimentation and to model historic TP accumulation in studies of mass balances or phosphorus dynamics.

Only a limited number of stratigraphic zones in sediment cores could be established with stratigraphic correlation of discontinuities in the sediment record and used to estimate whole-basin dry mass and TP sedimentation. The upcore increase in TP concentration and the upcore decrease in dry density (% dry weight) and TC/TN ratio were used to establish stratigraphic zones using K-means cluster analysis (a multi-variate statistical technique). In Lake Dora, fraction ash was used in the cluster analysis instead of dry density. Stratigraphic changes over depth were subtle; therefore, only one zone in Lake Eustis and two zones in Lake Dora were identified that could be used to estimate whole-basin sedimentation of sediment dry mass and TP. Thus, other approaches and analyses will be required to obtain additional temporal refinement of sediment and nutrient composition. Sediment characteristics we measured were similar in Lake Dora and Lake Eustis, differing mainly because TP and non-apatite inorganic phosphorus (NAIP) concentrations in Lake Dora sediments were larger. In near-surface sediment samples, TP concentrations in Lake Dora were generally >2.0 mg/g, about twice as large as concentrations in Lake Eustis. Sediments in both lakes were highly organic with means ranging only from 60 to 63% loss on ignition (LOI) among different data sets collected during Phase I and Phase II. Sediments deposited in the last 100 to 150 yr were unconsolidated with the mean % dry weight among different data sets ranging only from 4.5 to 5.4%. The % dry weight in samples from all cores, except for samples near the bottom of cores, was <5.0%.

Several chemical and gravimetric variables measured in sediment cores from Lake Dora and Lake Eustis change predictably from core to core, including an upcore increase in NAIP and TP concentration and an upcore decrease in the total carbon/total nitrogen (TC/TN) ratio and % dry weight. The upcore increase in TP concentration was greater in Lake Dora than in Lake Eustis because maximum TP concentrations in near-surface sediment samples were twice as large as comparable samples from Lake Eustis. These data are interpreted to be the result of increased anthropogenic nutrient loading in both lakes. An increase in TP concentration is a valid proxy for increased TP loading and eutrophication in freshwater systems that are phosphorus limited. Part of the increased decadal TP storage in Lake Dora sediments during the most recent decade (1986-1995) was due to NAIP comprising a greater proportion of TP. Based on studies in Lake Apopka, we have recently found that this change may reflect increased polyphosphate storage by phytoplankton, which is also a proxy for increased phosphorus loading to the system. The importance and time course of this change must be established from direct measurements of polyphosphate that were not undertaken on either Lake Dora or Lake Eustis. The upcore decrease in TC/TN is a proxy for increasing importance of phytoplankton communities and decreasing importance of macrophyte communities in system primary production. The ratio decreases because macrophytes synthesize structural carbon not found in phytoplankton. A shift from macrophytes to phytoplankton is generally indicative of lake eutrophication and decreasing water transparency.

Diatom microfossils in Lake Dora and Lake Eustis shift upcore from benthic forms to planktonic forms as the TC/TN ratio of organic matter decreases. The decrease in TC/TN ratio in Lake Apopka is an inference for a historic shift in the primary producer community from macrophytes to phytoplankton. Therefore, the change in TC/TN ratio in Lake Dora and Lake Eustis also appears to be a proxy for increased abundance of planktonic or meroplanktonic diatoms as the lakes became more eutrophic. Such a change also can be a proxy for decreased water transparency as phytoplankton become more abundant or replace macrophytes.

- v -

Limnetic TP inferred from analysis of microfossil diatoms in sediment cores also provides evidence of eutrophication in Lake Dora and Lake Eustis. Inferred limnetic TP in Lake Dora indicates a large increase in TP concentration with time, a peak in TP concentration in the 1970s and a concentration of 95 μ g/L in surface sediments. Mean TP concentrations in samples measured by Florida Lake Watch fall within the 95% confidence interval for the inferred TP concentration. However, a mean measured TP of 138 μ g/L from samples compiled by SJRWMD is greater than the 95% confidence interval for inferred limnetic TP (127 μ g/L). Inferred limnetic TP in Lake Eustis also indicates a large increase in TP concentration with time, with the greatest change occurring after 1950. After the peak period, inferred TP concentrations were relatively constant over the remainder of the sediment record. Total P inferences for the most recent samples are approximately 100 μ g/L and are high compared to reported water quality measurements of 68 μ g/L (SJRWMD) and 39 μ g/L (Florida Lake Watch). Absolute TP inference values may not be reliable for recent decades in Lake Eustis, but overall trends in Lake Dora and Lake Eustis suggest an increase in trophic state documented by distinct qualitative shifts in diatom species composition over time.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	iii
LIST OF FIGURES	viii
LIST OF TABLES	xii
ACKNOWLEDGMENTS	x v
INTRODUCTION	1
METHODS	2

LAKE DORA

Gravimetric Results	9
Total Carbon and Total Nitrogen	9
Non-Apatite Inorganic and Total Phosphorus	9
Mass Sedimentation Rate	12
Stratigraphy of NAIP and TP	
NAIP and TP Accumulation Rate	
Stratigraphy of TC/TN and % Dry Weight	
Stratigraphy of Ash Fraction	
Cluster Analyses	
Sediment and TP Deposition	
Diatom Microfossils	43
SummaryLake Dora	

LAKE EUSTIS

Gravimetric Results	
Total Carbon and Total Nitrogen	53
Non-Apatite Inorganic and Total Phosphorus	55
Sediment Dating	
Stratigraphy of NAIP and TP	
NAIP and TP Accumulation Rate	
Stratigraphy of TC/TN and % Dry Weight	
Stratigraphy of Ash Fraction	
Cluster Analyses	
Sediment and TP Deposition	
Diatom Microfossils	92
SummaryLake Eustis	
	_

COMPARISON EUSTIS	OF TP	SEDIME	NTATION	IN LAKE	; DORA	AND	LAKE	102
LITERATURE	CITED .	••••					••••	110

APPENDICES

LIST OF FIGURES

Figure	Page
1.	Map of Lake Dora showing locations of 22 stations. Stations 1-20 were arranged on an equal area grid. Historic stations are designated by an H 3
2.	Map of Lake Eustis showing locations of 29 stations. Stations 1-27 were arranged on an equal area grid. Historic stations are designated by an H 4
3.	Maximum TP concentration in near-surface sediments at 22 stations in Lake Dora. Data plotted are the average concentration for the zone of highest concentration at each station. The zone of highest concentration among cores ranged from 5 to 20 cm (see Appendix E)11
4.	Correlation of TP and NAIP concentration in sediment samples from Lake Dora. Data for survey cores are plotted in upper panel and data for historic cores in the two lower panels
5.	Mass sedimentation rate (MSR) for historic cores LD-3H and LD-10H collected in Lake Dora. Data for MSR (open diamonds) are smoothed using a three-point running average (open squares)
6.	Mass sedimentation rate (MSR) for historic cores LD-14H, LD-21H, and LD-22H collected in Lake Dora. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares)
7.	Mass sedimentation rate (MSR) for historic cores LD-6H-98 and LD-12H-98 collected in Lake Dora. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares)
8.	NAIP and TP concentration plotted vs. sediment date for historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-9821
9.	NAIP and TP accumulation rate plotted vs. sediment date for historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-98. Data plotted are smoothed using a three-point running average
10.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-3H, LD-10H, and LD-14H27
11.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-21H and LD-22H
12.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-6H-98 and LD-12H-9829
13.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-1S, LD-2S, and LD-4S
14.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-5S, LD-6S, and LD-7S31

15.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-8S, LD-9S, and LD-11S
16.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-12S, LD-15S, and LD-16S
17.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-17S and LD-19S
18.	Ash fraction and TP concentration plotted vs. date for Lake Dora historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-98.
19.	Ash fraction and TP concentration plotted vs. core depth for survey cores LD-1S, LD-2S, LD-4S, LD-5S, LD-6S, LD-7S, LD-8S, LD-9S, and LD-11S.
20.	Ash fraction and TP concentration plotted vs. core depth for survey cores LD-12S, LD-15S, LD-16S, LD-17S, and LD-19S
21.	Diatom assemblages in Lake Dora sediment core LD-3H-95
22.	Inferred limnetic total P based on diatom assemblages in Lake Dora sediment core LD-3H-95 with 95% confidence intervals for the inferences45
23.	Diatom assemblages in Lake Dora sediment core LD-10H-9547
24.	Inferred limnetic total P based on diatom assemblages in Lake Dora sediment core LD-10H-95 with 95% confidence intervals for the inferences
25.	Maximum TP concentration in near-surface sediments at 27 stations in Lake Eustis. Data plotted are the average concentration for the zone of highest concentration at each station. The zone of highest concentration among cores ranged from 5 to 20 cm (see Appendix G)
26.	Correlation of TP and NAIP concentration in sediment samples from Lake Eustis survey cores. Data for phase I cores are plotted in upper panel, data for phase II/sort are plotted in middle panel and data for all phase II samples are plotted in the lower panel
27.	Correlation of TP and NAIP concentration in sediment samples from Lake Eustis historic cores. Data for phase I historic cores are plotted in upper panel and data for phase II historic cores are plotted in the lower panel
28.	Mass sedimentation rate (MSR) for historic cores LE-11H, LE-13H, LE-16H, and LE-28H collected in Lake Eustis. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares)
29.	Mass sedimentation rate (MSR) for historic cores LE-29H, LE-3H-98, LE-13Pb-98, and LE-27H-98 collected in Lake Eustis. Data for MSR (open diamonds) are smoothed using a three-point running average (open squares).

30.	NAIP and TP concentration plotted vs. sediment date for historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98.
31.	NAIP and TP accumulation rate plotted vs. sediment date for historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98. Data plotted are smoothed using a three-point running average
32.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-11H, LE-13H, and LE-16H72
33.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-28H and LE-29H73
34.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-3H-98 and LE-27H-9874
35.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth or Lake Eustis Phase II survey cores LE-3S-97, LE-6S-97, and LE-7S-97.
36.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-8S-97, LE-9S-97, and LE-10S-97.
37.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-11S-97, LE-12S-97, and LE-13S-97
38.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-14S-97, LE-15S-97, and LE-16S-97
39.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-17S-97, LE-18S-97, and LE-19S-97
40.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-21S-97, LE-22S-97, and LE-23S-97
41.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-24S-97, LE-25S-97, and LE-26S-97
42.	TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-27S-97 and LE-20S-9783
43.	Ash fraction and TP concentration plotted vs. date for Lake Eustis historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98.

.

44.	Ash fraction and TP concentration plotted vs. depth for Lake Eustis historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98
45.	Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-3S-97, LE-6S-97, LE-7S-97, LE-8S-97, LE-9S-97, LE-10S-97, LE-11S-97, LE-12S-97, and LE-13S-97
46.	Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-14S-97, LE-15S-97, LE-16S-97, LE-17S-97, LE-18S-97, LE-19S-97, LE-21S-97, LE-22S-97, and LE-23S-97
47.	Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-24S-97, LE-25S-97, LE-26S-97, and LE-27S-97
48.	Diatom assemblages in Lake Eustis sediment core LE-13H-9593
49.	Diatom assemblages in Lake Eustis sediment core LE-28H-9694
50.	Inferred limnetic total P based on diatom assemblages in Lake Eustis sediment core LE-13H-95 with 95% confidence intervals for the inferences
51.	Inferred limnetic total P based on diatom assemblages in Lake Eustis sediment core LE-28H-96 with 95% confidence intervals for the inferences97

.

LIST OF TABLES

1.	Statistical summary of selected sediment variables in survey and historic cores collected from Lake Dora. Data are presented as averages, minima, maxima and standard deviations
2.	Decadal mass sedimentation rates (MSR) in mg cm ⁻² yr ⁻¹ for Lake Dora historic cores by decades since core collection. MSR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in MSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H.
3.	Decadal organic matter sedimentation rates (OMSR) in mg cm ⁻² yr ⁻¹ for Lake Dora historic cores by years since core collection. OMSR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in OMSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H
4.	Decadal total phosphorus accumulation rates (TPAR) in μ g cm ⁻² yr ⁻¹ for Lake Dora historic cores by years since core collection. TPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in TPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H
5.	Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR) in μ g cm ⁻² yr ⁻¹) for Lake Dora historic cores by years since core collection. NAIPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in NAIPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H
6.	Cumulative storage by station of total dry mass, TP and NAIP for two stratigraphic groups of sediments in Lake Dora. Depth of sediments for each group determined from cluster analysis and visual examination of profiles of each station. The first stratigraphic group was assigned an age of 5 yr, the underlying stratigraphic group was assigned an age of 45 yr. See Appendices E and F for data and text for additional explanation
7.	Whole-basin storage of total dry mass, total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) for two stratigraphic groups of sediments in Lake Dora. Calculations are based on summing data for cum mass, cum TP and cum NAIP from Table 6 and then averaging sums over the 20 survey stations that were distributed on an equal area grid (this procedure assumes zero storage for erosional sites not included in Table 6). The area of the lake used in the calculations was $17.74 \times 10^6 \text{ m}^2$. Units are 10^3 larger for mass than for phosphorus. Average storage is calculated using assumptions about ages for each stratum. See Table 6 and text for additional explanation41

8.	Inferred limnetic total P with 95% confidence intervals for the inferences for Lake Dora core LD-3H-95
9.	Inferred limnetic total P with 95% confidence intervals for the inferences for Lake Dora core LD-10H-95
10.	Statistical summary of selected sediment variables in survey and historic cores collected from Lake Eustis. Data are presented as averages, minima, maxima and standard deviations
11.	Tabulation by station of statistical outliers in phase 2 Lake Eustis survey cores. Data were omitted in analyses for LE/sort in Table 10. See Table 10 and text for additional explanation
12.	Decadal mass sedimentation rates (MSR) in mg cm ⁻² yr ⁻¹ for Lake Eustis historic cores by decades since core collection. MSR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in MSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H
13.	Decadal organic matter sedimentation rates (OMSR) in mg cm ⁻² yr ⁻¹ for Lake Eustis historic cores by years since core collection. OMSR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in OMSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H
14.	Decadal total phosphorus accumulation rates (TPAR) in µg cm ⁻² yr ⁻¹ for Lake Eustis historic cores by years since core collection. TPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in TPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H
15.	Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR) in μg cm ⁻² yr ⁻¹) for Lake Eustis historic cores by years since core collection. NAIPAR (upper half) calculated from ²¹⁰ Pb geochronology using a CRS model and changes in NAIPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H
16.	Cumulative storage by station of total dry mass, TP and NAIP for one stratigraphic group of sediments in Lake Eustis. Depth of sediments in this group determined from cluster analysis and visual examination of profiles from each station. This stratigraphic group was assigned two ages, 25 and 45 yr, to bracket the range of probable ages. See Appendix G for data and text for additional explanation

Whole-basin storage of total dry mass, total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) for the recent stratigraphic group of sediments in Lake Eustis. Calculations are based on summing data for cum mass, cum TP and cum NAIP from Table 16 and then averaging sums over the 27 survey stations that were distributed on an equal area grid (this procedure assumes zero storage for erosional sites not included in Table 16). The area of the lake used in the calculations was $31.39 \times 10^6 \text{ m}^2$. Units are 10^3 larger for mass than for phosphorus. Two estimates are based on probable sediment ages ranging from 25 to 45 yr for this stratum. See Table 16 and text for additional explanation.
Inferred limnetic total P with 95% confidence intervals for the inferences for Lake Eustis core LE-13H-95
Inferred limnetic total P with 95% confidence intervals for the inferences for Lake Eustis core LE-28H-96
Comparison of morphometric data and whole-basin storage and retention of total phosphorus (TP) in Lake Dora and Lake Eustis. Average storage is calculated from data in Tables 7 and 17. Morphometric data and data for TP and whole-basin retention are from Fulton (1995)
Comparison of average and relative increases in decadal mass sedimentation rate (MSR), organic matter sedimentation rate (OMSR), total phosphorus accumulation rate (TPAR) and non-apatite inorganic phosphorus accumulation rate (NAIPAR) for Lake Dora and Lake Eustis historic cores. Data are averages (upper half) and increases (bottom half) relative to the base decade (91-100 yr) since core collection. Units are mg cm ⁻² yr ⁻¹ for MSR and OMSR and μ g cm ⁻² yr ⁻¹ for TPAR and NAIPAR. Averages are from Tables 2-5 and 12-15

ACKNOWLEDGMENTS

A number of people are acknowledged for their role in successfully completing this project. Margaret Glenn, Peter Myers, and Donny Smoak ably assisted with the extensive field work during Phase II. Professor William Haller generously provided the use of his pontoon boat for Phase II field work and the capable assistance of Margaret Glenn for boat operation. The assistance of Jason Kahne in layout of the equal area grid and in ²¹⁰Pb dating of Phase I cores is acknowledged. Matt Fisher assisted with some of the graphics. William Kenney analyzed samples for total phosphorus, non-apatite inorganic phosphorus, biogenic silica and mineral silica. William Pothier and Jason Curtis analyzed samples for total carbon and total nitrogen.

Phyllis Hansen supervised gravimetric analyses, coordinated laboratory working during Phase II and compiled data files for the project. Peter Myers and Raymond Roach assisted with laboratory work. Dr. Donny Smoak conducted radiometric analyses for Phase II cores and calculated ²¹⁰Pb ages and mass sedimentation rates. Martha Love ably and cheerfully assisted with administrative matters and preparation of reports. The assistance of these people and others is gratefully acknowledged.

Finally, Dr. Rolland Fulton, St. Johns River Water Management District, is acknowledged for his careful reading of the report for matters of style and continuity.

INTRODUCTION

Lake Dora and Lake Eustis are two of the lakes in the upper Ocklawaha River basin. The headwaters of this basin originate with the Apopka Spring in Lake Apopka. Water from Lake Apopka flows to Lake Beauclair through the Apopka-Beauclair Canal which was completed in 1887 to lower water levels in Lake Apopka. Before the construction of this canal, water flowed from Lake Apopka to Little Lake Harris through Double Run Swamp. Presently, the major hydrologic flow to Lake Dora is from Lake Beauclair whereas the hydrologic flows to Lake Eustis are more complex (Fulton 1995). The major hydrologic flows to Lake Eustis are from Lake Harris-Little Lake Harris through the Dead River, from Lake Dora through the Dora Canal, from Haines Creek periodically and from the drainage basin. The poorest water quality in the upper basin is in Lake Apopka (Fulton 1995). Discharges from Lake Apopka undoubtedly have affected water quality in the downstream lakes, particularly in the last 50 yr as the lake has become phosphorus enriched (Schelske 1997). Studies of sediment and nutrient deposition have been conducted on Lake Griffin, which is downstream from Lake Eustis, and on Lake Apopka (Schelske 1997, 1998). Nutrient loading and retention for lakes in the upper Ocklawaha River basin have been estimated by Fulton (1995).

A study of sediment and nutrient deposition in Lake Dora and Lake Eustis was undertaken in two phases with two major goals: 1) quantitative estimates of temporal changes in net nutrient accumulation rates in sediments and 2) inference of historic lake total phosphorus (TP) concentrations from paleolimnological analyses of sedimentary diatoms. To accomplish this goal, approximately 80 sediment cores (50 during Phase I and 30 during Phase II) were collected at stations located on equal area grids. The major purpose of Phase I was to determine the feasibility and to evaluate the methodology necessary to obtain quantitative estimates of net sedimentation and net nutrient accumulation rates for the entire lake basins of Lake Dora and Lake Eustis. Phase II was undertaken after the feasibility of the methodology was demonstrated with results from Phase I. To accomplish the primary goal of quantitatively estimating temporal changes in net nutrient accumulation rates in sediments, a large number of cores were collected from each lake to characterize spatial variability, to assess changes in nutrients with depth and to determine whether stratigraphic time-dependent features were present that could be correlated across cores. If present these stratigraphic features can be assigned ages by stratigraphic correlation with dated cores. For this purpose historic cores from each lake were aged using ²¹⁰Pb, a naturally occurring radionuclide with a 22-yr half-life. The primary goal was divided into two subgoals based on this approach. The first is to quantitatively estimate temporal changes in net nutrient accumulation rates using ²¹⁰Pb dating of the historic cores and the second is to extrapolate these results by stratigraphic correlation or other means to basin-wide estimates using data from the entire suite of cores.

METHODS

Survey and historic cores were collected in Lake Dora and Lake Eustis. Twenty survey stations were located in Lake Dora on an equal area grid (Fig. 1) and 27 survey stations were located in Lake Eustis on an equal area grid (Fig. 2). Survey stations in Lake Dora were occupied only during Phase I. No appreciable, soft sediment was found at 3 of the Lake Dora survey sites, LD-13S-96, LD-18S-96 and LD-20S-96 (Appendix A). Only historic cores were collected at three of the sites on the equal area grid, LD-3H-95, LD-10H-95 and LD-14H-95 (Appendix B). All of the 27 survey stations were occupied during Phase I and II sampling of Lake Eustis (Appendix C). No appreciable amounts of soft sediment was found at LE-1S and LE-2S during Phase I or Phase II sampling.

Seven historic cores (to be aged using ²¹⁰Pb) were collected from each lake at sites shown in Figs. 1 and 2. Historic cores were collected either at sites specified as survey stations or at new sites not positioned on the equal area grid. Five historic cores were collected from Lake Dora during Phase I: LD-3H-95, LD-10H-95 and LD-14H-95 were collected at survey sites and LD-21H-96 and LD-22H-96 were collected at sites not positioned on the equal area grid (Fig. 1). Two additional historic cores, LD-6H-98 and LD-12H-98, positioned at survey sites were collected from Lake Dora during Phase II. Five historic cores were collected from Lake Eustis during Phase I: LE-11H-95, LE-13H-95 and LE-16H-95 were collected at survey sites and LE-28H-96 and LE-29H-96 were collected at sites not positioned on the equal area grid (Fig. 2). Two additional historic cores, LE-3H-98 and LE-27H-98, positioned at survey sites were collected from Lake Eustis during Phase II. A third core, LE-13Pb-97, which was not required by terms of the contract, was collected to represent a high sedimentation site; but when aged using ²¹⁰Pb dating, results showed that Station 13 had been identified incorrectly during Phase I as a high sedimentation site. Data for LE-13S-97 also confirmed that Station 13 was not a high sedimentation site. As a result, LE-13Pb-97 was not used as a historic core and no chemical analyses were undertaken.

Stations were located with a Global Positioning System and latitude and longitude were recorded. Collection date, latitude and longitude, water depth and soft sediment thickness at these stations are listed in Appendices A-D.

At each station, thickness of soft sediment was determined using a steel spudding rod and a Secchi disc. The steel spudding rod calibrated in 5-cm intervals was driven vertically to hard bottom and depth relative to the water surface was recorded. Depth of the water column was determined by lowering a 20-cm Secchi disk to the sediment surface and this depth was subtracted from the spudding value to yield soft-sediment depth. A sediment core of up to 1.5 m in length was collected with a piston corer (Fisher et al. 1992) when sufficient thickness of soft sediment was present. Survey cores were collected using a 1.8-m clear plastic core

Fig. 1.

Map of Lake Dora showing locations of 22 stations. Stations 1-20 were arranged on an equal area grid. Historic stations are designated by an H.

Fig. 2. Map of Lake Eustis showing locations of 29 stations. Stations 1-27 were arranged on an equal area grid. Historic stations are designated by an H.

barrel (4.0-cm inside diameter) and historic cores were collected using a 1.8-m clear plastic core barrel (6.99-cm inside diameter). Depths of stratigraphic features in sediment cores were determined visually on deck after retrieval and measured directly in the core tube when such features were distinguishable visually (see Appendices A-D). Cores were either sectioned at the station immediately after collection or at an onshore site adjacent to the lake. Samples from each section were placed in Whirl-Pak bags which were stored in insulated freezer chests during transit to the laboratory in Gainesville. In the laboratory, samples were stored frozen until they were freeze dried. After freeze drying, dry samples were ground to fine powder using a mortar and pestle.

Cores were sectioned at different intervals during the two phases of the investigation. Survey cores for Phase I were sectioned at finer intervals and to greater depths than at 10-cm intervals to a depth of 50 cm as specified in the Scope of Work. Because the thickness of soft sediments was greater than anticipated, survey cores from Lake Dora were sectioned at 5-cm intervals to approximately 130 cm if adequate soft sediment was present. Survey cores from Lake Eustis were sectioned at 8-cm intervals to a depth of 80 cm. Phase I historic cores from both lakes were sectioned at 2-cm intervals to depths >100 cm. Analysis of results from Phase I demonstrated that some of the 80-cm, survey cores from Lake Eustis were truncated and sectioned too coarsely to infer the stratigraphic patterns found in the historic cores. Therefore, longer survey cores collected during Phase II were sectioned at 4-cm intervals. The four historic cores collected during Phase II (two from each lake) were sectioned at 4-cm intervals.

Gravimetric analyses were conducted by weighing each section before and after freeze drying and calculating the dry weight mass and dry weight fraction (% dry weight). Organic matter content of dried sediments was measured as percent loss on ignition (LOI) at 550°C for 2 hr in a Sybron Thermolyne muffle furnace (Håkanson and Jansson 1983). Inorganic or mineral sediment (ash fraction) was considered to represent the fraction remaining after combustion. Rho (r) was calculated using an equation by Binford (1990)

$$r = \underline{D(2.5I_X + 1.6C_X)}$$

D + (1-D) (2.5I_X + 1.6C_X)

where r is dry density (g dry cm⁻³ wet), x is depth in the sediment profile (cm), D is proportion of dry mass in wet sediment (dry mass/wet mass), I is the inorganic proportion of dry mass, with density = 2.5 g cm⁻³ dry, and C is the organic proportion of dry material with density = 1.6 g cm⁻³ dry.

Two forms of phosphorus were measured in dried sediment samples (Schelske et al. 1986, 1988). Total phosphorus (TP) was analyzed using persulfate digestion. Non-apatite

inorganic phosphorus (NAIP), a chemically determined form of phosphorus that has been shown to be biologically available (Williams et al. 1976), was leached from small samples for 17 hr at 25°C in a solution of 0.1 N NaOH. Phosphate was measured after digestion or leaching with a segmented flow autoanalyzer and an electronic data acquisition system.

Total carbon (TC) and total nitrogen (TN) were measured with a Carlo Erba NA1500 CNS elemental analyzer equipped with an autosampler. Analysis of sediment samples was based on methodology described by Verardo et al. (1990).

Cluster analysis (JMP 1995) on gravimetric and chemical data for survey cores was used to make an objective separation of sediment samples into stratigraphic zones so they could be stratigraphically correlated with temporal changes in historic cores. Cluster analyses utilizes an algorithm that groups data to produce data sets that are statistically different from each other. We used K-means clustering, specifying a specific set of clusters in the analysis of variables that varied with depth. These variables were TP, TC/TN, dry weight density (rho) and fraction ash. Samples from Lake Dora were clustered using TP, TC/TN and fraction ash and those from Lake Eustis were clustered using TP, TC/TN and dry weight density (rho). Employing more variables for either data set resulted in clusters with non-continuous depth distribution. Data for Lake Dora were grouped using three clusters and those for Lake Eustis with two clusters. One cluster (deepest samples) for each lake could not be utilized to resolve time dependence because it included the deepest samples with unknown and probably different ages from core to core. Specifying a larger number of clusters for either data set produced clusters that were randomly distributed with depth. Thus, this analysis also was used to determine whether sediment composition varied directionally or randomly over time. If the variation was directional, sediment types would be expected to group stratigraphically; if not, sediment types would be randomly interspersed with depth in cores. Results obtained from cluster analysis are the mean and standard deviation for each variable in the statistically determined clusters.

Sediments were aged using measurements of the activity of naturally occurring radioisotopes in sediment samples. The method is based on determining the activity of total ²¹⁰Pb (22.3 yr half-life), a decay product of ²²⁶Ra (half-life 1622 yr) in the ²³⁸U decay series. Total ²¹⁰Pb represents the sum of excess ²¹⁰Pb and supported ²¹⁰Pb activity in sediments. The ultimate source of excess ²¹⁰Pb is the outgassing of chemically inert ²²²Rn (3.83 d half-life) from continents as ²²⁶Ra incorporated in soils and rocks decays. In the atmosphere, ²²²Rn decays to ²¹⁰Pb which is deposited at the earth's surface with atmospheric washout as unsupported or excess ²¹⁰Pb. Supported ²¹⁰Pb in lake sediments is produced by the decay of ²²⁶Ra that is deposited as one fraction of erosional inputs. In the sediments gaseous ²²²Rn produced from ²²⁶Ra is trapped and decays to ²¹⁰Pb. By definition, supported ²¹⁰Pb is in secular equilibrium with sedimentary ²²⁶Ra and is equal to total ²¹⁰Pb activity at depths where excess ²¹⁰Pb activity is not measurable due to decay. Because the decay of excess ²¹⁰Pb activity in sediments provides the basis for estimating sediment ages, it is necessary to make estimates of total and supported ²¹⁰Pb activities so excess ²¹⁰Pb activity can be determined by difference.

Radiometric measurements were made using low-background gamma counting systems with well-type intrinsic germanium detectors (Schelske et al. 1994). To prepare samples for radiometric analysis, dry sediment from each section was packed to a nominal height of 30 mm in a tared polypropylene tube (84 mm high x 14.5 mm outside diameter, 12 mm inside diameter). Sample height was recorded and tubes were weighed to obtain sample mass. Samples in the tubes were sealed with a layer of epoxy resin and polyamine hardener, capped, and stored before counting to ensure equilibrium between ²²⁶Ra and ²¹⁴Bi. Activities for each radionuclide were calculated using empirically derived factors of variation in counting efficiency with sample mass and height (Schelske et al. 1994). Total ²¹⁰Pb activity was obtained from the 46.5 kev photon peak and ²²⁶Ra activity was obtained from the 609 kev peak of ²¹⁴Bi. ²²⁶Ra activity was assumed to represent supported ²¹⁰Pb activity. Excess ²¹⁰Pb activity was calculated either by subtracting ²²⁶Ra activity from total ²¹⁰Pb activity at each depth or by subtracting an estimate of supported ²¹⁰Pb activity based on measurements of total ²¹⁰Pb activity at depths where excess ²¹⁰Pb activity is negligible. Excess ²¹⁰Pb activity was corrected for decay from the coring date. The 662 kev photon peak was used to measure 137 Cs activity. The peak in 137 Cs activity was measured to evaluate its usefulness as an independent time marker for the peak period of fallout from nuclear weapons testing in 1962-63, but the absence of a sharp peak in activity limited its usefulness as an independent time marker.

Sediment ages were calculated using a CRS model (Appleby and Oldfield 1983). This model calculates ages based on the assumption that the flux of excess ²¹⁰Pb to the lake was constant and therefore that variation in ²¹⁰Pb activity from a pattern of exponential decrease with depth was dependent on variation in rate of sedimentation. For small lakes, the assumption that sedimentation rate was not constant appears to be appropriate. The age of sediments at depth x is given by

$$t = (1/k) [ln (A_0/A)]$$

where t is time in yr, k is 0.03114 (the ²¹⁰Pb decay constant), A₀ is the total residual excess ²¹⁰Pb activity in the sediment core, and A is the integrated excess ²¹⁰Pb activity below depth x. Calculations for each depth provide a continuous profile of ages as a function of depth. Mass sedimentation rate (MSR) at depth x is given by

$$MSR = m/t$$

- 7 -

where m is dry mass of sediment (mg cm⁻²) for the sampling interval. Errors in age and mass sedimentation rate were propagated using first-order approximations and calculated according to Binford (1990).

Diatom microfossils were enumerated in two historic cores from each lake, LD-3H-95 and LD-10H-95 from Lake Dora and LE-13H-95 and LE-28H-96 from Lake Eustis. Sedimentary diatom analyses were performed on 15 sediment samples from each historic core. Samples were cleaned of organic matter using the potassium dichromate and hydrogen peroxide method of Van der Werff (1955), then mounted for microscopic analysis. A minimum of 500 diatom valves were counted per sample and identified to the lowest taxon possible. Historic concentrations of TP in the water column were inferred from transfer functions based on relative abundance of diatom microfossils (Whitmore 1989).

A tabulation of field notes taken at the time of core collection in Lake Dora and Lake Eustis is given in Appendices A-D. Gravimetric and chemical data for survey and historic cores from both lakes are listed in Appendices E-H. Data presented include fraction dry weight, organic matter determined by loss on ignition (LOI) at 550° C, TP, NAIP, TC, TN, and TC/TN. In addition, cumulative dry mass (g cm⁻²), cumulative NAIP (mg NAIP cm⁻²) and cumulative TP (mg TP cm⁻²) are presented for each core. Cumulative dry mass ($g cm^{-2}$) was calculated by dividing the sample dry mass for each sediment section by the area of the core tube and summing the results with depth. Cumulative dry mass and the concentration of NAIP and TP for each section were used to calculate TP and NAIP storage with depth in each core; thus storage is determined independently of nominal measurements of section thickness. Missing data were interpolated so cumulative storage of nutrients could be calculated. Missing data resulted primarily from inadequate amounts of sample for all analyses, primarily at the tops of cores. Missing data in approximately 20 samples represent a very small fraction of the more than 1200 samples analyzed. One entire sample, LD-14H-42 cm, was missing, probably due to skipping a sample container while collecting samples in the field or while processing and archiving samples in the laboratory.

Data on radiometric dating are given in Appendices I and J.

Data on enumeration of sedimentary diatoms are given in Appendices K and L.

Data obtained from multi-variate, K-means cluster analysis are presented in Appendix M.

LAKE DORA

Sediments in Lake Dora can be characterized from a statistical analysis of the large data sets for survey and historic cores (Table 1). These descriptions are based on the mean and standard deviation and maximum and minimum values for selected variables. Data for each data set are tabulated by station in Appendices E and F.

Gravimetric Results

Sediments in Lake Dora were generally high in water content and highly organic with little difference between samples from survey and historic cores. The % dry weight increased downcore in all cores to values >5% (Appendices E and F). Maximum dry weight ranged from 8.9 to 14% (Table 1), but samples with dry weight >10% were not common and were found only at depth in cores. Mean dry weight ranged only from 4.6 to 4.9%. LOI was high in surface samples with the smallest values at depth. Mean LOI ranged from 60 to 61% and ranged to a maximum of 89% in the survey samples from Phase I; however, only a few samples exceeded 80%. Means for ash fraction ranged among the three data sets ranged from 39.0 to 39.9%.

Total Carbon and Total Nitrogen

Average values for TC and TN were similar for historic and survey cores. TC ranged from 29.9 to 32.9% for the three sets of data, or roughly half of the % LOI (Table 1). Mean % TC for phase II historic cores was more than half as large as the % LOI. Mean TN ranged from 2.6 to 3.2%. Like % TC for phase II historic cores, % TN was also greater in this data set. The mean TC/TN ratio ranged from 10.7 to 11.8 with the smallest ratio for the phase II historic cores. TC/TN increased downcore in a pattern that closely paralleled that for % dry weight (Appendices E and F).

Non-Apatite Inorganic and Total Phosphorus

Concentrations of NAIP and TP were largest in near-surface sediments and decreased to minimum values at depth in all cores (Appendices E and F). The maximum TP concentration for near-surface sediments at Phase I stations are plotted in Fig. 3. Stations with the largest TP concentration (>2.5 mg/g) were located in the eastern end of the lake and those with the smallest TP concentration (<2.1 mg/g) were in the western end of the lake. With the exception of LD-5S with the largest TP concentration (3.8 mg/g), TP generally decreased along the east-west axis of the lake. Low TP concentrations (<0.035 mg/g) were found at LD-13S, LD-18S and LD-20S which are erosional sites with sand sediments.

Table 1. Statistical summary of selected sediment variables in survey and historic corescollected from Lake Dora. Data are presented as averages, minima, maximaand standard deviations.

	Dry (%)	Ash (%)	LOI (%)	NAIP (mg/g)	TP (mg/g)	TN (%)	TC (%)	TC/TN
Lake Dora Surve	ey Phase I							
Average	4.56	39.70	60.06	0.361	0.869	2.74	30.17	11.37
Minimum	0.23	11.31	19.83	0.005	0.050	0.94	12.35	6.72
Maximum	14.07	80.20	88.69	1.485	5.656	4.77	39.29	16.51
Std. Dev.	2.22	11.00	10.66	0.345	0.829	0.65	4.15	1.83
Lake Dora Histo	oric Phase	[
Average	4.85	39.90	60.10	0.259	0.683	2.64	29.90	11.80
Minimum	0.19	17.10	30.20	0.010	0.049	1.08	15.60	6.03
Maximum	11.90	70.00	82.90	1.450	2.830	5.44	37.20	15.50
Std. Dev.	1.80	10.00	9.90	0.320	0.680	0.66	3.65	2.04
Lake Dora Historic Phase II								
Average	4.57	39.01	60.99	0.323	1.042	3.15	32.91	10.72
Minimum	0.87	21.20	36.86	0.046	0.146	1.96	25.72	8.85
Maximum	8.92	63.14	78.80	0.929	2.844	4.31	38.21	14.08
Std. Dev.	1.69	8.77	8.77	0.237	0.736	0.58	2.70	1.59

Fig. 3. Maximum TP concentration in near-surface sediments at 22 stations in Lake Dora. Data plotted are the average concentration for the zone of highest concentration at each station. The zone of highest concentration among cores ranged from 5 to 20 cm (see Appendix E).

Mean TP among the three data sets ranged from 0.68 mg/g in the phase I historic cores to 1.04 mg/g in the phase II historic cores (Table 1). Mean NAIP for the three sets of data only ranged from 0.26 to 0.36 mg/g, but standard deviations also were relatively large for this variable. Differences in means for TP are not significant statistically because of the large standard deviations. The two largest concentrations of TP were found in 5 and 10 cm samples from survey stations LD-5S. These values were 3.32 and 5.66 mg TP/g, greater than the maximum concentrations (approximately 3.0 mg/g) at other survey stations (Appendices E and F) and greater than the maximum values for either set of historic stations (2.8 mg/g). The coefficient of variation (standard deviation/mean) was much greater for TP and NAIP concentration, as large as the mean in some cases, were the result of the down core variation in both TP and NAIP (Appendices E and F).

Concentrations of TP and NAIP in sediment samples were highly correlated in both the survey and historic cores (Fig. 4). Slopes of the regressions varied among the three data sets. The largest slope was found for samples from the phase II historic cores (LD-H-98). The slope for the survey samples from phase I was larger than for the phase I historic samples. The slope decreased in the same rank order as the range in mean TP concentration (0.68 to 1.04 mg/g, Table 1). Some of these differences can be attributed to the large spatial variation in maximum TP concentrations over the lake basin (Fig. 3).

Mass Sedimentation Rate

The five historic cores collected during phase I were sectioned at 2-cm intervals and dated with ²¹⁰Pb using a CRS model. Data generated from the model show that the sectioning employed was much finer than necessary because the age difference between sections is small particularly at the stations with the highest mass sedimentation rate (MSR) (Figs. 5 and 6, Appendix I). This conclusion is confirmed by data from the two cores collected during phase II which were sectioned at 4-cm intervals. Adequate resolution was obtained with coarser sectioning in these cores (Appendix I).

MSR for LD-3H, LD-10H, LD-6H-98 and LD-12H-98 was greater than for the other three cores (Figs. 5-7). Ages represented in the upper sections are small, particularly those for the phase I cores, because of the fine sectioning of these cores and the high water content (Table 1). For example, the upper 3 sections in LD-3H and LD-10H accounted for only 0.6 yr (Appendix I). Thus, data from these sections represent a small time interval and a relatively small amount of mass in the core even though MSR was high. The MSR for the remaining three cores was lower and the age span represented by the upper 6 cm was greater (Appendix I).

Fig. 4. Correlation of TP and NAIP concentration in sediment samples from Lake Dora. Data for survey cores are plotted in upper panel and data for historic cores in the two lower panels.

Fig. 5. Mass sedimentation rate (MSR) for historic cores LD-3H and LD-10H collected in Lake Dora. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares).

Fig. 6. Mass sedimentation rate (MSR) for historic cores LD-14H, LD-21H, and LD-22H collected in Lake Dora. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares).

Fig. 7. Mass sedimentation rate (MSR) for historic cores LD-6H-98 and LD-12H-98 collected in Lake Dora. Data for MSR (open diamonds)) are smoothed using a three-point running average (open squares).

MSR varied greatly among the seven historic cores and over depth in individual cores. Data for MSR were smoothed using a three-point moving average. MSR for LD-14H and LD-6H-98, even with smoothing, showed two distinct peaks in MSR in addition to an increase near the surface (Figs. 6 and 7). With smoothing, MSR ranged from roughly 10 mg cm⁻² yr⁻¹ at 1900 to 50 mg cm⁻² yr⁻¹ for sections that date in the early 1990s for cores LD-3H and LD-10H (Fig. 5) and from roughly 10 mg cm⁻² yr⁻¹ at 1900 to 50 mg cm⁻² yr⁻¹ in the 1990s at LD-6H-98 and LD-12H-98 (Fig. 7); thus, ranges for both sets of cores represent an approximate 5-fold increase in MSR during this century. The increase in MSR during the 20th century was less at the remaining stations with lower MSR, ranging only from 2- or 3-fold at LD-21H, LD-22H and LD-14H (Fig. 6). MSR for core LD-21H increased upcore to about 25 mg cm⁻² yr⁻¹, or at least 3-fold from 1900 to the 1990s (Fig. 7). Only one point in core LD-22H was older than 1900 (Appendix I). The lack of data for pre-1920 sediments does not provide adequate data to compare 1990 rates with 1900. However, maxima >20 mg cm⁻² yr⁻¹ for LD-22H (Fig. 6) show that MSR probably increased 2- to 3-fold in this core also. Therefore, the increase in MSR among cores from 1900 to 1990 ranged from approximately 2- or 3-fold to 5-fold.

Decadal MSR were calculated as a means of equally weighting temporal data. MSR for the most recent decade ranged from 19.0 to 63.5 mg cm⁻² yr⁻¹ with a mean of 43.0 mg cm⁻² yr⁻¹ (Table 2). Decadal MSR ranged from 45.7 to 63.5 mg cm⁻² yr⁻¹ in the four cores with the highest MSR and from 19.0 to 25.7 mg cm⁻² yr⁻¹ in the three cores with the lowest MSR. Relative increases in MSR compared to the 10th decade (91-100 yr since core collection) were calculated. Relative increases in MSR for decades 1-8 were much greater for LD-22H than for any other core because lack of data from pre-1920 sediments caused unusually low estimated MSR in the 10th decade. Excluding data for LD-22H, the relative increase in MSR for the most recent decade ranged from 2.91 to 5.82 and averaged 3.85.

Because sediments in Lake Dora are highly organic, the decadal organic matter sedimentation rate (OMSR) was calculated and compared to decadal MSR. The OMSR for the most recent decade ranged from 12.1 to 41.0 mg cm⁻² yr⁻¹ with a mean of 30.0 mg cm⁻² yr⁻¹ (Table 3). Decadal OMSR ranged from 32.9 to 41.0 mg cm⁻² yr⁻¹ in the four cores with the highest OMSR and from 12.1 to 18.5 mg cm⁻² yr⁻¹ in the three cores with the lowest OMSR. The relative increase in OMSR for the most recent decade compared to the 10th decade (91-100 yr since core collected) in LD-22H was 8.27, much greater than that for any core. Therefore, data for this core were not used in calculating the average relative increase in OMSR. The relative increase in OMSR per decade was comparable to that for MSR with the exception of the most recent decade. Average OMSR for the most recent decade was 4.67 which was greater than the average MSR of 3.85 for the most recent decade. The greater relative increase in OMSR is a result of higher organic matter content in recent sediments. Table 2. Decadal mass sedimentation rates (MSR) in mg cm⁻² yr⁻¹ for Lake Dora historic cores by decades since core collection. MSR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in MSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H¹.

Decade	Avg ¹	3H	10H	14H	21H	22H	6H-98	12H-98
1	42.95	48.58	45.71	25.73	25.64	18.95	48.57	63.48
2	35.96	47.53	34.54	20.77	20.70	18.24	45.17	47.07
3	34.63	42.88	38.96	23.30	21.43	17.12	44.84	36.35
4	33.16	30.15	37.63	25.20	19.13	22.33	55.74	31.10
5	26.85	28.69	31.52	18.62	22.42	16.74	35.96	23.85
6	21.31	22.02	20.01	12.86	18.04	10.01	34.40	20.53
7	20.60	17.29	17.79	9.79	14.76	7.75	48.22	15.72
8	18.18	15.69	15.97	6.35	9.19	7.16	47.40	14.52
9	17.34	16.30	16.97	6.29	9.03	2.59	40.04	15.42
10	11.58	11.91	15.91	6.23	7.83	2.59	16.67	10.92
11	10.49	12.16	16.08	7.05	7.54	2.59	9.61	10.49
12	11.83	19.76	21.12	7.57	7.51		7.88	7.15
13	8.40	10.39	7.84	14.08	3.39		1.13	7.15
1	3.85	4.08	2.87	4.13	3.27	7.31	2.91	5.82
2	3.19	3.99	2.17	3.33	2.64	7.04	2.71	4.31
3	3.09	3.60	2.45	3.74	2.74	6.61	2.69	3.33
4	2.93	2.53	2.36	4.04	2.44	8.62	3.34	2.85
5	2.43	2.41	1.98	2.99	2.86	6.46	2.16	2.19
6	1.90	1.85	1.26	2.06	2.30	3.86	2.06	1.88
7	1.73	1.45	1.12	1.57	1.88	2.99	2.89	1.44
8	1.45	1.32	1.00	1.02	1.17	2.77	2.84	1.33
9	1.40	1.37	1.07	1.01	1.15	1.00	2.40	1.41
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.94	1.02	1.01	1.13	0.90	1.00	0.38	0.90
12	1.03	1.00	1.33	1.22	0.90		0.47	0.00
15	0.07	0.07	0.49	2.20	0.40		0.40	0.00

1) LD-22H is omitted from the averages because values for relative increases are anomalously high. See text for additional explanation.

Table 3. Decadal organic matter sedimentation rates (OMSR) in mg cm⁻² yr⁻¹ for Lake Dora historic cores by years since core collection. OMSR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in OMSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H¹.

Decade	Avg ¹	3H	1 0H	14H	21 H	22H	6H-98	12H-98
1	29.97	34.08	32.92	18.08	18.48	12.08	35.27	40.99
2	21.74	27.34	21.16	13.42	12.15	7.15	26.62	29.75
3	18.64	24.63	20.84	13.03	7.60	7.12	24.05	21.70
4	17.34	16.81	18.64	13.67	7.63	9.59	29.93	17.38
5	14.79	16.30	16.45	10.76	11.38	8.10	21.32	12.53
6	12.48	13.67	10.58	7.77	9.78	5.27	22.02	11.02
7	12.80	11.24	9.53	6.01	8.09	4.24	32.97	8.96
8	11.04	10.60	7.24	3.81	4.94	3.95	31.62	8.06
9	10.17	11.23	6.56	3.75	5.36	1.46	26.58	7.51
10	6.72	8.36	6.06	3.68	5.18	1.46	11.02	5.98
11	5.89	8.46	5.99	3.98	4.86	1.46	6.40	5.65
12	6.53	13.88	8.75	4.14	4.49		5.27	2.64
13	4.90	7.31	3.93	8.25	2.09		5.19	2.64
1	4.67	4.07	5.43	4.91	3.57	8.27	3.20	6.85
2	3.36	3.27	3.49	3.64	2.34	4.90	2.42	4.97
3	2.87	2.94	3.44	3.54	1.47	4.88	2.18	3.63
4	2.65	2.01	3.07	3.71	1.47	6.57	2.72	2.90
5	2.30	1.95	2.71	2.92	2.20	5.55	1.94	2.09
6	1.87	1.63	1.75	2.11	1.89	3.60	2.00	1.84
7	1.77	1.34	1.57	1.63	1.56	2.90	2.99	1.50
8	1.44	1.27	1.19	1.03	0.95	2.70	2.87	1.35
9	1.36	1.34	1.08	1.02	1.04	1.00	2.41	1.26
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.92	1.01	0.99	1.08	0.94	1.00	0.58	0.94
12	1.00	1.66	1.44	1.12	0.87		0.48	0.44
13	0.85	0.87	0.65	2.24	0.40		0.47	0.44

1) LD-22H is omitted from the averages because values for relative increases are anomalously high. See text for additional explanation.

Comparing MSR data among cores demonstrates how temporal resolution within cores is affected by patterns of sedimentation in the lake. Sediments with ages of approximately 150 yr (ca. 1850) were found at depths >80 cm at the high sedimentation stations (LD-6H-98, LD-12H-98, LD-3H and LD-10H); whereas at the lowest sedimentation station (LD-22H) sediments this old were found above 38 cm (Appendix I). Cumulative mass also was relatively low for sections with measurable excess ²¹⁰Pb activity at low sedimentation sites compared to sites with high sedimentation rates (Appendix I).

Stratigraphy of NAIP and TP

Time-dependent trends in phosphorus concentration were obtained by plotting NAIP and TP concentration vs. date for the seven historic cores. NAIP and TP concentration increased upcore at the four stations with the highest sedimentation rate: LD-3H, LD-10H, LD-6H-98 and LD-12H-98 (Fig. 8), but the relative increase was less at LD-12H-98 than at the other stations. The increase in both forms of phosphorus occurred in steps at most of the stations compared to fairly general increase in concentration for LD-14H and LD-12H-98. In all cores the largest increase in concentration occurred after 1950, but a smaller increase in concentration for some cores was also apparent when the 1930s are compared with older sediments. These trends in concentration with time are more pronounced for TP than for NAIP and are not apparent for NAIP in some cores. For example no increase in NAIP was apparent before 1950 in LD-14H, LD-21H and LD-22H. A relative increase in TP concentration was apparent in all cores with an increase of at least 4 fold after 1900 in all cores with the exception of LD-12H-98.

NAIP and TP Accumulation Rate

Time-dependent relative increases in phosphorus accumulation rate in ²¹⁰Pb dated cores (Fig. 9) were greater than relative increases in phosphorus concentration (Fig. 8), because phosphorus accumulation rates over time were determined by the product of MSR and NAIP or TP concentration which increase upcore. The largest rates of NAIP and TP accumulation, therefore, were found in cores LD-3H, LD-10H, LD-6H-98 and LD-12H-98 or in the cores with the largest MSR (Figs. 5-7). A sharp increase in rates occurred after 1950 with smaller increases from 1900 to 1950. Similar patterns were found for cores LD-14H, LD-21H and LD-22H, but in these cores the maximum accumulation rates were several fold less than that for the other cores. The small sediment mass found in the upper core sections must be considered in establishing maximum rates. Therefore, the maximum flux of practical interest was 100 to 150 μ g TP cm⁻² yr⁻¹ for cores LD-3H and LD-10H and approximately 100 μ g TP cm⁻² yr⁻¹ for cores

Fig. 8. NAIP and TP concentration plotted vs. sediment date for historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-98.

Fig. 9. NAIP and TP accumulation rate plotted vs. sediment date for historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-98. Data plotted are smoothed using a three-point running average.
LD-6H-98 and LD-12H-98. The maximum accumulation rate in the remaining three cores ranged from approximately 50-70 μ g TP cm⁻² yr⁻¹ or >40 μ g TP cm⁻² yr⁻¹ if the upper few sections are excluded. Taken together these data indicate that the phosphorus accumulation rate increased rapidly after 1950 and at a slower rate from 1900 to 1950.

Decadal TP accumulation rate (TPAR) were calculated as a means of equally weighting the large near-surface TP accumulation rates so relative increases in TPAR could be calculated for each core. Decadal TPAR for the most recent decade ranged from 32.4 to 109 μ g cm⁻² yr⁻¹ with a mean of 81.8 μ g cm⁻² yr⁻¹ (Table 4). Decadal TPAR for the most recent decade ranged from 82.1 to 109 μ g cm⁻² yr⁻¹ in the four cores with the highest TPAR and from 32.4 to 54.5 μ g cm⁻² yr⁻¹ in the three cores with the lowest MSR. Relative increases in TPAR for the most recent decade compared to the 10th decade (91-100 yr since core collected) ranged from 10.5 to 46.8. The largest relative increase for the most recent decade was for LD-22H, a pattern also noted for decadal MSR and decadal OMSR. Therefore, data for this core were not used in calculating the average relative increase in TPAR which was 15.5 for the most recent decade. Relative decadal TPAR for the remaining cores ranged from 10.5 to 18.4 in the most recent decade. Average relative decadal TPAR in the most recent decade increased 57.0% compared to the preceding decade. Another large relative increase of 63.8% was found by comparing the 4th decade (31-40 yr since core collection) to the 5th decade (41-50 yr since core collection).

Relative increases for decadal NAIPAR were similar to those for decadal TPAR. However, the relative increase in decadal NAIPAR for the most recent decade compared to the 10th decade (91-100 yr since core collection) was 20.9 (Table 5), greater than the average relative increase of 15.5 for TPAR (Table 4). Relative decadal NAIPAR in the most recent decade, excluding LD-22H, ranged from 14.1 to 38.0. Average decadal NAIPAR in the most recent decade increased 94.5% compared to the preceding decade, much greater than the 57.0% relative increase for decadal TPAR. The relative increase for the 4th decade (31-40 yr since core collection) compared to the 5th decade (41-50 yr since core collection) was 75.2%, larger than 63.8% relative increase for decadal TPAR. The greater relative increase in NAIPAR is attributed to increased storage of polyphosphate by phytoplankton. A relative increase in polyphosphate storage is attributed to increasing phosphorus enrichment of overlying lake waters and is proposed as an index of nutrient enrichment (Kenney et al. in revision).

Increases and patterns in phosphorus accumulation were different among the seven historic cores (Fig. 9). A peak in accumulation rate of TP was found in the 1960s or 1970s in LD-3H, LD-10H, LD-14H, LD-22H and LD-6H-98. A peak in TP accumulation rate was not obvious in cores LD-21H and LD-12H-98. However, an obvious increase in NAIP and TP concentration after 1980 occurred at 22 and 18 cm in LD-21H and LD-22H, respectively; these sections were dated at 1979 and 1981, respectively (Appendix I). Results from five of the

Table 4. Decadal total phosphorus accumulation rates (TPAR) in μg cm⁻² yr⁻¹ for Lake Dora historic cores by years since core collection. TPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in TPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H¹.

Decade	Avg ¹	3H	10H	14H	21H	22H	6H-98	12H-98
1	81.78	82.13	90.77	47.49	54.52	32.37	106.87	108.89
2	53.63	63.46	43.02	30.22	33.96	21.34	70.04	81.10
3	44.45	56.66	46.62	25.63	18.62	17.02	64.42	54.76
4	36.12	41.73	34.66	21.02	15.10	19.73	57.63	46.57
5	21.50	27.41	24.73	12.09	12.49	9.24	22.11	30.14
6	16.91	19.48	14.47	15.81	7.53	5.21	17.84	26.31
7	11.88	10.86	10.44	4.79	5.77	3.33	19.90	19.51
8	9.45	8.81	6.81	3.05	3.91	2.92	17.41	16.73
9	8.69	8.58	5.77	2.99	3.80	0.69	14.76	16.23
10	5.65	6.27	4.93	2.93	2.97	0.69	6.42	10.40
11	4.81	6.05	4.13	2.59	2.44	0.69	3.78	9.85
12	4.73	9.61	5.67	2.27	2.19		3.13	5.51
13	3.59	5.12	2.82	4.09	0.96		3.00	5.51
1	15.53	13.10	18.40	16.22	18.37	46.81	16.63	10.47
2	9.89	10.13	8.72	10.32	11.44	30.86	10.90	7.80
3	8.14	9.04	9.45	8.75	6.28	24.61	10.03	5.26
4	6.57	6.66	7.03	7.18	5.09	28.53	8.97	4.48
5	4.01	4.37	5.01	4.13	4.21	13.37	3.44	2.90
6	3.21	3.11	2.93	5.40	2.54	7.53	2.78	2.53
7	2.07	1.73	2.12	1.64	1.95	4.81	3.10	1.88
8	1.58	1.41	1.38	1.04	1.32	4.23	2.71	1.61
9	1.45	1.37	1.17	1.02	1.28	1.00	2.30	1.56
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.84	0.97	0.84	0.88	0.82	1.00	0.59	0.95
12	0.87	1.53	1.15	0.78	0.74		0.49	0.53
13	0.68	0.82	0.57	1.40	0.32		0.47	0.53

1) LD-22H is omitted from the averages because values for relative increases are anomalously high. See text for additional explanation.

Table 5. Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR) in μg cm⁻² yr⁻¹ for Lake Dora historic cores by years since core collection. NAIPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in NAIPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LD-22H¹.

Decade	Avg ¹	3H	10H	14H	21H	22H	6H-98	12H-98
1	31.94	33.25	39.39	23.68	21.96	10.85	33.17	40.18
2	17.62	18.08	15.62	10.54	10.81	4.90	20.21	30.47
3	13.39	18.21	14.92	8.12	5.70	3.31	16.77	16.61
4	12.26	16.11	13.55	5.59	4.49	1.78	19.13	14.69
5	7.19	9.70	9.07	2.28	4.41	1.82	7.61	10.05
6	5.38	6.93	5.86	1.31	3.14	0.90	6.56	8.48
7	3.97	4.14	3.85	0.98	2.24	0.75	7.37	5.25
8	3.08	3.42	2.62	0.64	1.43	0.69	6.31	4.09
9	2.57	2.93	2.13	0.63	1.15	0.12	4.33	4.24
10	1.76	2.11	1.85	0.62	1.17	0.12	1.94	2.84
11	1.54	1.98	1.77	0.58	1.00	0.12	1.18	2.71
12	1.61	3.29	2.50	0.53	0.75		0.99	1.62
13	1.13	1.87	1.18	0.81	0.36		0.96	1.62
1	20.85	15.73	21.30	38.01	18.83	91.11	17.13	14.14
2	10.72	8.55	8.44	16.92	9.27	41.11	10.43	10.72
3	8.18	8.61	8.06	13.04	4.88	27.77	8.66	5.84
4	7.13	7.62	7.32	8.97	3.85	14.97	9.88	5.17
5	4.07	4.59	4.90	3.66	3.79	15.25	3.93	3.54
6	2.93	3.28	3.17	2.10	2.69	7.56	3.39	2.98
7	2.20	1.96	2.08	1.57	1.92	6.29	3.81	1.85
8	1.66	1.62	1.42	1.02	1.22	5.83	3.26	1.44
9	1.38	1.39	1.15	1.01	0.99	1.00	2.24	1.49
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.87	0.94	0.96	0.93	0.86	1.00	0.61	0.95
12	0.91	1.56	1.35	0.85	0.64	0.00	0.51	0.57
13	0.70	0.88	0.64	1.30	0.31	0.00	0.50	0.57

1) LD-22H is omitted from the averages because values are anomalously high for relative increases. See text for additional explanation.

cores, therefore, indicate that phosphorus loading decreased in the late 1960s to 1970s after the peak in TP accumulation rate and then increased rapidly after 1980. These cores with high sedimentation rates taken from the central parts of the lake are considered to provide more reliable records than low sedimentation rate cores LD-21H, LD-22H and LD-12H-98 that were collected closer to the shoreline.

Stratigraphy of TC/TN and % Dry Weight

The stratigraphy of NAIP and TP concentration was compared with the stratigraphy of TC/TN and % dry weight (Figs. 10-12) because TC/TN and % dry weight generally increased down core (Appendices E and F). In cores LD-3H, LD-10H, LD-6H-98 and LD-12H-98, TC/TN and % dry weight increased down core to approximately 70 cm (Figs. 10 and 12), or to depths with dates of approximately 1910 (Appendix I). A large increase in TP concentration after 1950 (Fig. 8) in all the cores except LD-12H-98 was not associated with a discontinuity in either TC/TN or % dry weight. The relative increase in TP in LD-12H-98 was much less than in the other three high sedimentation cores (Fig. 8). In the low sedimentation cores (LD-14H, LD-21H and LD-22H), TC/TN and % dry weight also increased down core; but the TC/TN ratio increased to values >11.0 at depths below 40 cm in all cores (Figs. 10 and 11). For cores LD-21H and LD-22H, % dry weight increased with depth, but the increase was step-wise rather than gradual. These results show that the stratigraphy of TC/TN or % dry weight provides a time-dependent stratigraphic marker for a horizon that occurred at approximately 1910 for the high sedimentation cores, but that no discontinuity is obvious across cores for earlier dates.

Data for TC/TN, % dry weight and NAIP and TP concentration were plotted vs. depth for survey cores to determine whether stratigraphic features could be correlated across cores (Figs. 13-17). Discontinuities in TC/TN and TP concentration were in general correlated across cores. At least three zones based on TP concentration with increasing depth were identified in many cores: a zone of high concentration that decreased to a level of approximately 1.0 mg/g, a zone of relatively constant concentration of approximately 1.0 mg/g and a zone in which TP concentration decreased to the baseline concentration. These zones were not present in LD-7S because no sediments with the baseline concentration were found in this truncated core. The zones based on TP concentration, however, also can be identified in the historic cores except for LD-14H and LD-12H-98 (Figs. 10-12). The TC/TN ratio generally varied in a reverse pattern compared to TP concentration. A small TC/TN was found at the top of the core, and the ratio generally increased to a value as large as the maximum at depths at which TP concentration was at the baseline level. Therefore, the TC/TN ratio may provide a stratigraphic marker to correlate with the discontinuities in TP concentration.

Fig. 10.

TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-3H, LD-10H, and LD-14H.

Fig. 11.

TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-21H and LD-22H.

Fig. 12. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LD-6H-98 and LD-12H-98.

Fig. 13. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-1S, LD-2S, and LD-4S.

Fig. 14. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-5S, LD-6S, and LD-7S.

Fig. 15. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-8S, LD-9S, and LD-11S.

Fig. 16. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-12S, LD-15S, and LD-16S.

Fig. 17. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for survey cores LD-17S and LD-19S.

Stratigraphy of Ash Fraction

The stratigraphic record of the fraction of dry sediment remaining after LOI (ash fraction) was plotted vs. date (Fig. 18). The ash fraction peaked at depth in every core except LD-12H-98; but the time dependence of the peak spanned a broad range in dates among the remaining historic cores. In addition, the peak was broad in some cores. Above each peak, the ash fraction decreased to the top of the core showing that LOI increased in these sections. The timing of this decrease was fairly consistent among cores, generally beginning after 1980. These profiles also demonstrated that the largest TP concentrations at the top of the cores were associated with the highest organic matter content as measured by loss on ignition. Therefore, sediments with the largest TP and largest organic matter content were deposited after 1980.

The ash fraction and TP concentration were plotted vs. depth for survey cores to determine whether stratigraphic features could be correlated across cores (Figs. 19 and 20). These plots showed that a low ash fraction was stratigraphically correlated with the zone of high TP concentration at the top of cores. This relationship is not apparent for cores 12S, 15S and 19S; but is valid for 7S, a core with a truncated TP profile. In some cores, a decrease in ash fraction is stratigraphically correlated with depths at which TP concentration first increased and, therefore, may be useful for stratigraphic correlation.

Large values for TP concentration in some cores appear to be outliers. However, it should be pointed out that these values in cores 4S, 5S, 12S and 15S are at depths where NAIP concentration is also relatively high (Figs. 13, 14 and 16). Because the two forms of phosphorus are measured independently, high values for both forms indicate the values truly represent a section with high TP and NAIP concentration and are not analytical errors.

Inspecting data for TP concentration in the survey cores can be used to determine spatial variability in net TP sedimentation (Figs. 19 and 20). Cores in the eastern third of the lake (Stations 1, 2, 3H, 4, 5 and 6, Fig. 1) generally have higher TP concentration and a greater depth of TP concentration above baseline levels, indicating high sedimentation and net TP accumulation. By contrast, the opposite pattern is present in the western third of the lake (Stations 14H, 15, 16, 17 and 19) which indicates low sedimentation and low net TP accumulation. Therefore, TP data for the survey stations show that sediment accumulation and net TP accumulation are highest in the eastern end of the lake.

Cluster Analyses

Core sections from Phase I survey cores were separated into three groups using Kmeans cluster analysis of TP concentration, TC/TN ratio and fraction ash, variables with distinct discontinuities in their depth profiles. The three groups, when present in a specific core, clustered in stratigraphic sequence. The shallowest samples were in Group 1 and the

Fig. 18. Ash fraction and TP concentration plotted vs. date for Lake Dora historic cores LD-3H, LD-10H, LD-14H, LD-21H, LD-22H, LD-6H-98, and LD-12H-98.

Fig. 20. Ash fraction and TP concentration plotted vs. core depth for survey cores LD-12S, LD-15S, LD-16S, LD-17S, and LD-19S.

deepest samples (when present) were in Group 3. Data from three historic stations LD-3H, LD-10H and LD-14H sampled during Phase 1 were also separated into the three groups by visual examination of the profiles. No data were available for three non-depositional sites (LD-13S, LD-18S and LD-20S). Means and standard deviations for each stratigraphic group identified by cluster analysis are presented in Appendix M.

The three sets of sediment data for Phase 1 survey cores from Lake Dora provided two data sets that could be stratigraphically correlated with ²¹⁰Pb-aged sediments in historic cores. The two groups were unconsolidated sediments which stratigraphically were shallower than the underlying, consolidated sediments (Table 6). Identifying these groups was important because the maximum depth for each group could be related to stratigraphic feature of known age in historic cores. For a few stations, ambiguities in the separation were found in that one or two samples that were clearly unconsolidated sediments based on dry weight density (rho) were grouped with the underlying consolidated sediments. In these cases, the deepest unconsolidated sample based on the profiles of dry weight density (rho) or TP was selected to obtain a break point for TP concentration consistent with that in other cores. Variables associated with the maximum depth for unconsolidated sediments are shown in Table 6. Ambiguities between cluster break points and subjectively determined changes in Group 1 were found for the following stations: LD-1S, LD-2S, LD-4S, LD-5S, LD-6S, LD-7S, LD-12S, LD-16S and LD-17S. Ambiguities were fewer in Group 2 samples being found only at LD-5S, LD-8S, LD-11S, LD-15S, LD-17S and LD-19S. Comparing data in Table 6 and Appendices E and F can be used to evaluate decisions used to establish the stratigraphic breaks.

Sediment and TP Deposition

Two data sets were identified with cluster analysis of Phase I survey cores. Break points in these cores for ash fraction and TP concentration were compared with similar break points in the dated historic cores (Fig. 18) in an attempt to establish a dated stratigraphic horizons. A horizon dated at approximately 1990 was identified for the bottom age of the most recently deposited samples. This break occurred earlier in LD-10H and LD-21H and was not distinct for LD-12H-98. The second dated horizon was set at approximately 1945; this horizon was determined largely by an increase in TP concentration that was larger than the baseline concentration. Ages for the two stratigraphic groups were set at 5 yr and 45 yr, respectively. Combined the two groups represented 50 years of sedimentation in the lake basin and reflect changes that affected the lake beginning about 1945. Cumulative accumulation of sediment dry mass, TP and NAIP for these age groups (Table 6) were then used to calculate dry mass, TP and NAIP storage for the lake basin for the two time periods (Table 7).

Table 6. Cumulative storage by station of total dry mass, TP and NAIP for two stratigraphic groups of sediments in Lake Dora. Depth of sediments for each group determined from cluster analysis and visual examination of profiles of each station. The first stratigraphic group was assigned an age of 5 yr, the underlying stratigraphic group was assigned an age of 45 yr. See Appendices E and F for data and text for additional explanation.

Group	1 (5 yr)							Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Mass	NAIP	NAIP	TP	TP
1	20	1.37	0.014	69.2	3.73	34.1	9.13	0.178	0.96	0.201	2.11	0.437
2	30	1.59	0.016	73.9	3.64	36.0	9.90	0.297	0.95	0.330	2.17	0.709
3H	16	2.54	0.026	73.4	3.61	32.0	8.86	0.253	0.53	0.231	1.67	0.494
4	20	1.62	0.016	71.1	3.71	34.0	9.15	0.223	0.79	0.223	2.05	0.518
5	15	1.40	0.014	72.1	3.81	34.7	9.12	0.167	1.03	0.205	2.42	0.616
6	25	2.34	0.024	84.4	3.71	34.2	9.22	0.414	0.80	0.451	1.78	0.999
7	20	1.83	0.018	79.5	3.57	32.9	9.21	0.265	0.87	0.255	2.04	0.614
8	15	2.54	0.026	64.9	3.52	33.2	9.44	0.294	0.56	0.221	1.60	0.558
9	20	2.40	0.024	63.2	3.22	30.6	9.49	0.305	0.59	0.213	1.61	0.561
10H	20	2.43	0.025	71.0	3.49	33.0	9.45	0.283	0.70	0.279	1.87	0.597
11	15	2.48	0.025	66.8	3.57	33.1	9.27	0.298	0.76	0.277	1.88	0.635
12	25	2.24	0.023	68.8	3.53	33.2	9.41	0.331	1.03	0.302	2.06	0.710
14H	10	2.41	0.024	68.4	3.59	33.2	9.25	0.167	0.98	0.182	1.87	0.333
15	5	1.55	0.016	66.7	3.46	31.7	9.17	0.073	0.73	0.053	1.63	0.119
16	20	1.91	0.019	70.2	3.79	34.8	9.18	0.255	0.91	0.240	1.97	0.530
17	10	1.56	0.016	71.9	3.89	34.8	8.94	0.105	0.98	0.099	2.08	0.213
19	5	1.54	0.016	68.0	3.58	32.8	9.15	0.108	0.71	0.077	1.52	0.164
Mean	17	1.99	0.020	70.8	3.61	33.4	9.26	0.236	0.82	0.226	1.90	0.518
Std dev	6.8	0.45	0.0046	5.2	0.16	1.32	0.24	0.091	0.16	0.095	0.24	0.219

Cluster analysis breaks were 25 cm at 1S, 40 cm at 2S, 25 cm at 4S, 20 cm at 5S, 35 cm at 6S, 45 cm at 7S, 60 cm at 12S, 35 cm at 16S and 25 cm at 17 S.

Group	2	(45	yr)
		· · ·	

	-											
1	80	5.06	0.052	58.0	2.71	29.5	10.87	2.908	0.23	1.184	0.66	3.396
2	75	3.39	0.034	58.7	2.49	27.6	11.09	1.744	0.34	0.934	0.87	2.388
3H	66	4.62	0.047	65.1	2.88	29.4	10.22	2.203	0.33	1.024	0.91	2.913
4	55	3.86	0.039	58.4	2.73	29.1	10.67	1.386	0.22	0.775	0.65	1.993
5	65	4.65	0.048	62.5	2.76	30.3	10.96	2.123	0.23	0.953	0.61	2.880
6	60	4.21	0.043	57.6	2.71	29.1	10.75	1.779	0.40	1.100	0.82	2.572
7	50	4.77	0.049	53.8	2.86	27.7	09.68	1.442	0.44	0.926	1.26	2.348
8	45	5.40	0.056	52.7	2.32	26.2	11.28	1.596	0.25	0.674	0.55	1.779
9	35	6.99	0.073	40.8	1.89	21.4	11.31	1.368	0.22	0.465	0.48	1.283
10H	68	6.22	0.064	53.6	2.43	26.4	10.86	2.283	0.20	1.047	0.56	2.689
11	35	6.04	0.062	48.2	2.10	23.9	11.39	1.374	0.21	0.612	0.92	1.694
12	100	5.40	0.056	51.6	2.22	27.8	12.52	3.269	0.28	1.982	0.54	4.795
14H	44	5.53	0.057	59 .1	2.51	28.5	11.32	1.572	0.10	0.546	0.47	1.718
15	15	4.01	0.041	50.4	2.36	25.9	10.99	0.411	0.24	0.170	0.94	0.463
16	90	5.21	0.053	54.1	2.31	26.7	11.55	3.078	0.34	1.496	0.67	3.486
17	35	5.50	0.057	39.0	2.05	23.0	11.20	0.965	0.21	0.478	0.79	1.135
19	30	6.13	0.063	47.7	2.19	24.6	11.24	1.788	0.24	0.578	0.54	1.322
Mean	56	5.12	0.053	53.6	2.44	26.9	11.05	1.841	0.26	0.879	0.72	2.285
Std dev	22.8	0.95	0.010	7.0	0.30	2.50	0.59	0.745	0.08	0.430	0.21	1.048

Cluster analysis breaks were 60 cm at 5S, 50 cm at 8S, 40 cm at 11S, 20 cm at 15S, 40 cm at 17S and 50 cm at 19S.

Table 7.	Whole-basin storage of total dry mass, total phosphorus (TP) and non-apatite
	inorganic phosphorus (NAIP) for two stratigraphic groups of sediments in Lake
	Dora. Calculations are based on summing data for cum mass, cum TP and cum
	NAIP from Table 6 and then averaging sums over the 20 survey stations that
	were distributed on an equal area grid (this procedure assumes zero storage for
	erosional sites not included in Table 6). The area of the lake used in the
	calculations was 17.74 x 10^6 m ² . Units are 10^3 larger for mass than for
	phosphorus. Average storage is calculated using assumptions about ages for
	each stratum. See Table 6 and text for additional explanation.

5-Yr Period

,

	Dry Mass	TP	NAIP
Sum (g cm ⁻²) or (mg cm ⁻²)	4.017	8.808	3.838
Average/station (g cm ⁻²) or (mg cm ⁻²)	0.2009	0.4404	0.1919
Whole Basin Storage (10 ⁶ kg) or (10 ⁶ g)	35.63	78.12	34.04
Average Storage/yr (10 ⁶ kg) or (10 ⁶ g)	7.13	15.6	6.81
45-Yr Period			
Sum (g cm ⁻²) or (mg cm ⁻²)	27.27	30.05	11.11
Average/station (g cm ⁻²) or (mg cm ⁻²)	0.1364	0.1502	0.5553
Whole Basin Storage (10 ⁶ kg) or (10 ⁶ g)	241.9	266.5	98.51
Average Storage/yr (10 ⁶ kg) or (10 ⁶ g)	5.38	5.92	2.19

Whole-basin dry mass accumulation rates calculated for the two stratigraphic sets of data were greater in recent sediments compared to older sediments (Table 7). Rates calculated by dividing the 50-yr record into 5- and 45-yr periods produced average dry mass sedimentation rates that were greater for the 5-yr period than for the older 45-yr period. An increase in sedimentation was anticipated based on other studies of other Ocklawaha lakes (Schelske 1997, 1998) and on data for MSR in historic cores (Figs. 5-7) and in relative increases in decadal MSR and OMSR (Tables 2 and 3). The dry mass sedimentation rate in the 5-yr period was 1.33 times greater than in the 45-yr period (Table 7). Sediments in Lake Dora are highly organic, being greater than 70% LOI in recent sediments, and the proportion of organic matter is greater in recent sediments (Table 6). MSR obtained from ²¹⁰Pb-dated cores also increased with time, indicating that the sedimentation of highly organic sediments increased sediments of Ocklawaha lakes (Schelske 1997, 1998) also show similar patterns of increased sedimentation of organic matter with time. Therefore, based on MSR data, we conclude that dry mass sedimentation and production of organic matter in the lake increased with time.

Average whole-basin rates of TP sedimentation also were greater in the recent sediments than in older sediments (Table 7). TP sedimentation increased at a greater rate being 2.64 times greater in the 5-yr period than in the older 45-yr period. An increase in TP sedimentation was anticipated because TP flux and TP concentration increased with time in ²¹⁰Pb-dated cores (Figs. 8 and 9) and TP concentration increased upcore in undated survey cores (Appendix E). Likewise, average whole-basin rates of NAIP sedimentation were greater in recent sediments than in older sediments. Average NAIP sedimentation in the recent 5-yr period was 3.11 times greater than in the older 45-yr period. Thus, NAIP sedimentation increased at a greater rate than TP sedimentation. NAIP represents 43.7% of TP in recent sediments and only 37.0% in older sediments. Because NAIP is a measure of bioavailable phosphorus, these results are evidence for anthropogenic nutrient enrichment.

Estimates for TP sedimentation calculated from whole-basin inventories of TP were compared to estimates of TP sedimentation obtained by other methods. Fulton (1995) estimated TP sedimentation (retention) in Lake Dora of 6230 kg/yr from nutrient budgets for lakes in the upper Ocklawaha basin. This estimated retention is less than half of our estimated TP storage (15,600 kg/yr) for the recent 5-yr period (Table 7). We also calculated TP sedimentation rates in ²¹⁰Pb-dated cores (Fig. 9) by multiplying MSR (Figs. 5-7) and TP concentration. Maximum TP sedimentation rates ranged from 100 to 200 μ g TP cm⁻² yr⁻¹ in recent sediments of high sedimentation rate cores (LD-3H, LD-10H, LD-6H-98 and LD-12H-98) and from approximately 50 to 150 μ g TP cm⁻² yr⁻¹ if the upper most samples are excluded. In most cores rates decrease sharply with depth. Rates in recent sediments (deposited since 1990 according to 210 Pb ages) are consistent with the average rate of 88.1 µg TP cm⁻² yr⁻¹ that can be calculated from whole-basin storage (Table 7) and with the average decadal TP storage rate (81.8 µg TP cm⁻² yr⁻¹) for the most recent decade in 210 Pb-dated cores (Table 4). A lower value might be expected from the whole-basin calculation than from that obtained from 210 Pb-dated cores because sedimentation on some areas of the lake bottom is low as evidenced by the large variability in dry mass or TP sedimentation over the lake basin (Table 6); whereas dated cores are collected at sites biased toward high sedimentation rates. However, results are essentially equal for the two methods.

Diatom Microfossils

Diatoms at the base of LD-3H in Lake Dora (Fig. 21, Appendix K) are primarily benthic species of *Navicula* and species of *Pinnularia, Neidium, Stauroneis* and *Mastogloia* that suggest shallower conditions, clearer water or inputs to the lake from adjacent wetland areas (Hanna 1933). A shift in the diatom assemblage takes place at approximately 60-70 cm where planktonic species that include *Cyclotella meneghiniana, Aulacoseira italica* and *Aulacoseira ambigua*, suggest deeper water and mesotrophic to eutrophic conditions. Between the 60- and 20-cm levels, the diatom assemblage is dominated by the benthic taxa *Pseudostaurosira brevistriata* and *Staurosirella pinnata* that indicate eutrophic to hypereutrophic conditions (Whitmore 1989). Recent sediments in core LD-3H, between 20 and 0 cm, show a decline in *P. brevistriata* and *S. pinnata*. Increased importance of *Aulacoseira ambigua* and *Stauroneis construens* var. *venter* above the 20-cm level indicates that the lake has been eutrophic in recent years.

Inferred limnetic TP values (Fig. 22) based on diatom assemblages from core LD-3H indicate that Lake Dora began as a mesotrophic lake, proceeded to eutrophic conditions by the 55- to 65-cm levels, and was hypereutrophic in the intervals between the 45- to 5-cm levels. The recent diatom sample indicates an inferred limnetic TP value of 95 μ g/L (Table 8). Modern measured means for limnetic TP of 71 μ g/L for west Lake Dora and 92 μ g/L for east Lake Dora (Canfield et al. 1995) are within the 95% confidence interval for inferred limnetic TP, which suggests that the diatom-based TP predictive model (Brenner et al. 1993) is reliable in Lake Dora. However, a higher mean TP of 138 μ g/L for Lake Dora (Fulton 1995) is greater than the 95% confidence interval for inferred limnetic TP.

Diatom assemblages in core LD-10H from Lake Dora (Fig. 23, Appendix K) show a trend very similar to those from LD-3H, and similar trends of inferred limnetic TP (Table 9, Fig. 24). Benthic diatom assemblages in core LD-10H persist to about the 70-cm level. The peak in *Aulacoseira ambigua* that indicates deeper water and more productive conditions occurs

Fig. 21. Diatom assemblages in Lake Dora sediment core LD-3H-95.

Fig. 22. Inferred limnetic total P based on diatom assemblages in Lake Dora sediment core LD-3H-95 with 95% confidence intervals for the inferences.

Depth Interval (cm)	Inferred total P (ug/L)	Lower bound of 95% c.i. (ug/L)	Upper bound of 95% c.i. (ug/L)
0-2	95	71	127
6-8	141	101	198
10-12	167	116	239
16-18	151	107	214
22-24	190	130	277
28-30	160	112	229
34-36	171	119	246
40-42	264	173	404
46-48	203	138	299
56-58	84	64	109
62-64	75	58	97
70-72	48	39	59
82-84	41	34	50
96-98	23	20	27
110-112	27	23	31

Table 8.Inferred limnetic total P with 95% confidence intervals for the inferences for
Lake Dora core LD-3H-95.

Depth Interval (cm)	Inferred total P (ug/L)	Lower bound of 95% c.i. (ug/L)	Upper bound of 95% c.i. (ug/L)
6-8	95	72	127
14-16	132	95	183
22-24	127	92	176
28-30	190	130	277
36-38	204	139	301
40-42	213	144	316
46-48	170	118	244
52-54	126	91	174
56-58	126	91	174
62-64	99	74	133
68-70	59	47	74
74-76	42	35	52
88-90	23	20	27
102-104	20	18	24

Table 9.Inferred limnetic total P with 95% confidence intervals for the inferences for
Lake Dora core LD-10H-95.

Fig. 24. Inferred limnetic total P based on diatom assemblages in Lake Dora sediment core LD-10H-95 with 95% confidence intervals for the inferences.

at the 60-cm level. The increase in *Pseudostaurosira brevistriata* and *Staurosirella pinnata* occurs lower in LD-10H than in LD-3H, at approximately the 60-cm level. The recent decline in *P. brevistriata* and increase in *A. ambigua* begins at approximately the 25-cm level. Recent limnetic TP inferences for LD-10H were not possible because there was insufficient sediment for diatom analyses in the top sample. The 6-8 cm interval, however, may provide a reliable inference for recent limnetic TP because its ²¹⁰Pb age is approximately one year (Appendix I).

Summary--Lake Dora

Several chemical and gravimetric variables measured in survey and historic cores change predictably from core to core including an upcore increase in NAIP and TP concentration, an upcore increase in rate of TP and NAIP accumulation and an upcore decrease in TC/TN and % dry weight. In addition, relative increases in decadal MSR, OMSR, TPAR and NAIP calculated for historic cores all increase progressively with time in relation to the base decade (91-100 yr since core collection). These changes were found in depth intervals that were aged with ²¹⁰Pb in historic cores and occurred primarily since 1900 or possibly a decade earlier given that errors in ²¹⁰Pb ages are relatively large at older ages. Increases in TP and NAIP accumulation accelerated beginning approximately 1945 or in the 50 yr before core collection. The conclusion from these results is that eutrophication has been progressive beginning at least as early as 1900. The general trend is an increase in the rate of eutrophication with time.

Data on NAIP or TP concentration and MSR can be used to estimate historic changes in either TP concentration in lake water or TP loading to the lake basin in the past 100 years. The change in NAIP and TP concentration with time is attributed to an increase in phosphorus loading. Because a large fraction (>60% on average) of lake sediments deposited in the 50 yr before core collection are organic matter as measured by LOI, increases in MSR with time indicate production of organic matter has increased and lake eutrophication has been progressive. These inferred changes are reflected in relative increases in decadal MSR and OMSR (Tables 2 and 3), both of which increase progressively in all decades relative to the base decade (91-100 yr since core collection). Rates of NAIP or TP accumulation, which are the product of MSR and NAIP or TP concentration, increase at a greater rate than MSR because the concentration of both forms of phosphorus increase with time. These increased rates of accumulation (given the implicit assumption in commonly used phosphorus loading models, i.e. that net phosphorus sedimentation is proportional to phosphorus loading) can be used to infer that phosphorus loading to the lake has increased in proportion to the increase in TP accumulation in the sediments. This increase in net phosphorus sedimentation, based on increased rates of TP sedimentation in ²¹⁰Pb-dated cores relative to the base period of

approximately 1900, is inferred to be as much as 15-fold since 1900, and nearly 4-fold since approximately 1945.

Limnetic TP concentrations inferred from diatom microfossils in core LD-3H-95 and LD-10H-95 also indicate a large increase in phosphorus concentration with time. These inferred TP concentrations indicate that TP in the water column peaked in the 1970s at a time when measured TP in the sediment record had also increased sharply compared to 1950. After the peaks in inferred limnetic TP of 213 μ g/L (LD-3H) and 264 μ g/L (LD-10H), inferred concentrations decreased to 95 μ g/L in surface sediments of both cores; a concentration that is consistent with present TP concentrations in the water column determined by Lakewatch (limnetic TP of 71 µg/L for west Lake Dora and 92 µg/L for east Lake Dora), but the upper 95% confidence interval (127 μ g/L) is smaller than the mean TP of 138 μ g/L reported by Fulton (1995). Measured TP concentrations in sediments, however, were greater during the 1990s in surface sediments than in the 1970s when inferred limnetic TP concentrations were largest. We believe that polyphosphate storage by phytoplankton, as discussed by Kenney et al. (in revision), may confound predictions of water column TP concentration in some models. Although we have no direct measurements of polyphosphate in Lake Dora sediments, the much larger relative increase in decadal NAIPAR than in decadal TPAR in the most recent decade (Tables 2 and 3) would be expected if polyphosphate storage by phytoplankton had increased in recent sediments.

An upcore change in species composition of microfossil diatoms corresponded to a stratigraphic change in the TC/TN ratio of organic matter. Benthic species of *Navicula* and species of *Pinnularia, Neidium, Stauroneis* and *Mastogloia* were found in older sediments and indicate pre-disturbance conditions until approximately 1900. A shift in the diatom assemblage begins at approximately 60-70 cm (in the 1920s) when the appearance of planktonic species that include *Cyclotella meneghiniana, Aulacoseira italica* and *Aulacoseira ambigua* indicate a shift from mesotrophic to eutrophic conditions. At the time of this shift, the TC/TN ratio begins to decrease, an inference for a decrease in macrophytes or an increase in planktonic diatoms or both. Because macrophytes produce more structural carbon than single-celled algae, their TC/TN ratio is larger than that of phytoplankton. In Lake Apopka, the well-known shift in the composition of the primary producer community from macrophytes to phytoplankton is accompanied by a sharp decrease in the TC/TN ratio of organic matter (Schelske 1997). The decrease in the TC/TN ratio in Lake Dora is gradual over a long period of time indicating that macrophytes were not replaced rapidly by phytoplankton.

A combination of data for TP concentration, TC/TN ratio, ash fraction and % dry weight provided time-dependent stratigraphic features that were identified by K-means (multivariate) cluster analyses and correlated across survey cores. Three groups of sediments which ordered stratigraphically with depth in each core were identified with this approach. As a result, the two stratigraphic horizons separating these groups were correlated with stratigraphic changes in historic cores. Two time zones were identified based on this approach, the first roughly spans the 45-yr interval from 1945 to 1990 and the second spans a 5-yr interval from 1990 to approximately 1995 (the date of core collection). Accumulation rates for dry mass, TP and NAIP for the two time periods were estimated from whole-basin storage of dry mass, TP and NAIP. Comparing the increase in estimated dry mass sedimentation rate for the 5-yr period relative to the 45-yr period yields an average annual rate that is 1.33 times larger for the 5-yr period (Table 7). A 32% greater annual rate is found by comparing the most recent decadal MSR with an average rate for the 2nd to 5th decades since core collection (Table 2). Thus, annual MSR estimated for recent sediments, either from survey cores (whole-basin storage) or historic (²¹⁰Pb-dated) cores, increased comparably compared to sediments deposited in the previous 45 yr. By comparison, annual TP sedimentation based on wholebasin storage increased at a greater rate, being 2.64 times greater in the 5-yr period than in the earlier 45-yr period (Table 7) or an average decadal TPAR in the most recent decade that is 210% greater than the average rate for the 2nd to 5th decades (Table 4). These data show that the increase in TP sedimentation was roughly twice as large as that for MSR using either set of data.

The annual whole-basin storage of TP for the 5-yr period is 15.6×10^6 g/yr (Table 7), more than twice the annual net TP retention (6.23 x 10^6 g/yr) calculated by Fulton (1995) using an independent approach and entirely different data. Some of the apparent discrepancy in our estimates may be a result of the time periods selected for each time zone. For example, a one-year change in the time period for the 5-yr period results in a 20% change in either dry mass or TP sedimentation for that period. Whole-basin storage of sediments and nutrients is discussed in greater detail in the final section of the report on Comparison of TP Sedimentation in Lake Dora and Lake Eustis.

LAKE EUSTIS

Sediments in Lake Eustis can be characterized from a statistical analysis of the large data sets for survey and historic cores (Table 10). These descriptions are based on the mean and standard deviation and maximum and minimum values for selected variables. Data for each data set are tabulated by station in Appendices G and H.

Survey cores collected during Phase I were sampled only to a depth of 80 cm. As a consequence of this truncation, at least three cores (LE-3S, LE-4S and LE-6S) were too short to retrieve the entire post-disturbance sedimentary record of changes in TP concentration (Appendix G). In addition, sectioning these cores at 8-cm intervals was too coarse to resolve adequately some of the changes in phosphorus concentration with depth. Data for the Phase I survey cores are not plotted nor analyzed in great detail because it is evident that data from the Phase II survey provided a better data base to determine lake-basin nutrient storage of either dry mass or phosphorus.

Gravimetric Results

Sediments in Lake Eustis were generally high in water content and highly organic with little difference in % ash and % LOI among means for the historic and survey cores. Mean LOI ranged from 61 to 63% among the four data sets, and mean % ash ranged from 37 to 39% (Table 10). The % dry weight increased downcore in all cores to values >5% (Appendices G and H). The maximum dry weight ranged from 8.3 to 15.8%, among historic and survey cores (Table 10), but samples with dry weight >10% were not common and were found only at depth in cores (Appendices G and H). Mean dry weight was <5% , or >95% water, with the exception of Phase I historic samples (mean = 5.4%) (Table 10).

Total Carbon and Total Nitrogen

Means for TC and TN were similar for historic and survey cores. Mean TC ranged from 29.4 to 33.4% for the four data sets, roughly half mean LOI for each data set (Table 10). Mean TC ranged from 48 to 51% of mean LOI excluding Phase II historic cores (mean = 54%). Mean TN ranged from 2.63 to 2.80% for all sets of historic and survey cores. Mean TC/TN ranged from 11.3 to 12.2 among the four data sets with the largest mean for Phase II historic data. Given the relatively large standard deviations, none of these differences would be statistically significant. TC/TN in cores increased downcore in a pattern that closely paralleled that for % dry weight (Appendices G and H). Table 10.Statistical summary of selected sediment variables in survey and historic cores
collected from Lake Eustis. Data are presented as averages, minima, maxima
and standard deviations.

	Dry	Ash (%)	LOI	NAIP	TP (mg/g)	TN	TC	TC/TN
	(70)	(70)	(70)	(IIIg/g)	(1116/6)	(70)	(70)	
Lake Eustis S	urvey Ph	ase I						
Average	4.75	39.10	60.95	0.180	0.530	2.630	29.42	11.29
Minimum	0.87	24.70	19.72	0.020	0.090	0.840	9.21	9.57
Maximum	12.47	80.30	75.27	0.650	1.470	3.430	34.57	14.32
Std. Dev.	1.92	10.10	10.07	0.160	0.370	0.420	3.42	1.10
Lake Eustis S	urvey Ph	ase II						
Average	4.78	38.37	61.63	0.136	0.454	2.65	31.24	11.94
Minimum	0.62	16.10	22.60	0.019	0.055	0.98	12.13	8.30
Maximum	11.86	77.40	83.90	0.715	1.461	3.88	42.43	15.32
Std. Dev.	1.79	10.19	10.19	0.126	0.329	0.43	4.04	1.46
Lake Eustis H	listoric P	hase I						
Average	5.42	37.80	62.24	0.140	0.450	2.680	30.86	11.64
Minimum	1.06	19.70	24.68	0.019	0.006	0.820	9.92	7.35
Maximum	15.79	75.30	80.27	0.591	1.490	4.590	42.80	14.11
Std. Dev.	2.21	10.80	10.84	0.119	0.323	0.480	4.88	1.32
Lake Eustis H	Iistoric P	hase II						
Average	4.60	37.16	62.84	0.138	0.532	2.80	33.37	12.21
Minimum	1.08	16.18	37.86	0.015	0.126	1.48	22.61	9.06
Maximum	8.30	62.14	83.82	0.441	1.244	3.61	43.49	18.04
Std. Dev.	1.26	9.54	9.54	0.097	0.262	0.44	4.43	2.34

Non-Apatite Inorganic and Total Phosphorus

Statistical data for NAIP and TP concentration were similar for survey and historic cores. Mean NAIP among the four data sets ranged from 0.14 to 0.18 mg/g, and mean TP ranged from 0.45 to 0.53 mg/g (Table 10). Standard deviations were nearly as large as the means due to the large decrease in concentration with depth (Appendices G and H), and none of the differences would be significant statistically because of the large variation in concentration with depth. Maximum values for NAIP ranged from 0.44 to 0.72 mg/g and for TP ranged from 1.24 to 1.49 mg/g.

Concentrations of NAIP and TP were largest in samples at the tops of cores and decreased to minimum values at depth in historic cores and survey cores collected during Phase II, but not to baseline levels in some truncated survey cores from Phase I (Appendices G and H). The depth zone of high concentration and the minimum concentration varied from core to core. The average or maximum TP concentration of sections near the surface are plotted in Fig. 25. Stations with TP concentration >1.0 mg/g were found in the northeastern and southwestern parts of the lake and stations with a concentration as low as 0.48 mg/g were found in an area between these two zones of high concentration. The TP concentration at 7 stations was 1.00 mg/g or less, not including LE-1S and LE-2S. Very little soft sediment was found at LE-1S and LE-2S along the southeastern shoreline and TP concentrations (<0.1 mg/g) and cumulative TP were small and unimportant in relation to other stations (Appendix G).

Concentrations of TP and NAIP in sediment samples were highly correlated in both the survey and historic cores (Figs. 26 and 27). The low correlation in the initial analysis of Phase II survey cores (LE-S-97/all) resulted from inclusion of outlier samples, generally from depths deeper than 80 cm that were not sampled during Phase I (Fig. 26). When these outliers (Table 11) were removed, linear regressions and correlations coefficients for Phase I and Phase II cores were similar. The slope of the regression for historic samples from Phase I was larger than that for the survey samples, but the slope for Phase II historic samples was similar to that for survey cores (Fig. 27). This difference between the two sets of historic cores is probably an artifact of the small and unequal sample sizes for the two sets of historic cores. It should be noted that NAIP and TP concentrations, as either averages or maxima, were considerably lower in Lake Eustis than in Lake Dora (Tables 1 and 10).

Outlier samples from the Phase II survey (Table 11) differed statistically in many respects from other statistical data and statistical data from the Phase II survey excluding these outliers (Table 10). The outliers were characterized by high % dry weight, only one sample was smaller than the mean % dry weight (5%) for the four data sets in Table 10. In general, these samples contained less organic matter with only three samples with LOI >60%, approximately the mean LOI for the four data sets in Table 10. By contrast, the mean LOI for

Fig. 25. Maximum TP concentration in near-surface sediments at 27 stations in Lake Eustis. Data plotted are the average concentration for the zone of highest concentration at each station. The zone of highest concentration among cores ranged from 5 to 20 cm (see Appendix G).

Fig. 26. Correlation of TP and NAIP concentration in sediment samples from Lake Eustis survey cores. Data for phase I cores are plotted in upper panel, data for phase II/sort are plotted in middle panel and data for all phase II samples are plotted in the lower panel.

Fig. 27. Correlation of TP and NAIP concentration in sediment samples from Lake Eustis historic cores. Data for phase I historic cores are plotted in upper panel and data for phase II historic cores are plotted in the lower panel.
Table 11.Tabulation by station of statistical outliers in phase 2 Lake Eustis survey
cores. Data were omitted in analyses for LE/sort. See Table 6 and text for
additional explanation.

	Depth	Dry	Fraction	Fraction	TN	TC	TC/TN	NAIP	TP
Station	(cm)	(%)	Ash	LOI	(%)	(%)		(mg/g)	(mg/g)
			0.000	0.044		~		0.070	0.070
LE- 4-97	16	24.11	0.936	0.064	0.37	3.41	9.22	0.069	0.069
LE- 7-97	52	13.09	0.678	0.322	1.11	14.15	12.75	0.043	0.043
LE-10-97	92	13.25	0.705	0.295	1.28	16.51	12.9	0.030	0.075
LE-14-97	52	12.83	0.717	0.283	1.14	14.61	12.81	0.045	0.246
LE-14-97	88	6.99	0.511	0.489	1.78	28.82	16.2	0.385	2.767
LE-14-97	92	6.43	0.453	0.547	1.82	30.48	16.76	0.203	2.111
LE-14-97	96	6.70	0.464	0.536	1.78	30.4	17.11	0.300	3.850
LE-14-97	100	7.51	0.483	0.517	1.69	29.84	17.68	0.309	4.275
LE-14-97	104	8.47	0.551	0.449	1.53	26.89	17.56	0.216	3.088
LE-14-97	108	10.07	0.635	0.365	1.27	23.69	18.63	0.242	2.584
LE-14-97	112	11.27	0.679	0.321	1.08	22.76	21.17	0.269	2.040
LE-14-97	116	13.26	0.742	0.258	0.87	20.01	23.09	0.169	1.517
LE-14-97	120	12.78	0.699	0.301	1.01	21.93	21.79	0.151	1.309
LE-14-97	128	16.05	0.731	0.269	0.95	19.59	20.56	0.108	0.743
LE-14-97	132	19.36	0.767	0.233	0.8	18.29	22.81	0.098	0.777
LE-14-97	136	20.97	0.763	0.237	0.88	17.49	19.89	0.120	0.764
LE-14-97	140	14.12	0.728	0.272	0.98	21.27	21.75	0.133	1.129
LE-18-97	120	5.22	0.326	0.674	2.35	33.67	14.33	0.201	2.848
LE-20-97	28	74.52	0.993	0.007	0.16	0.53	3.31	0.011	0.026
LE-24-97	80	24.64	0.874	0.126	0.55	6.48	11.78	0.036	0.068
LE-24-97	84	15.87	0.76	0.24	0.79	8.57	10.85	0.031	0.127
LE-24-97	104	3.71	0.188	0.812	2.89	41	14.19	0.550	3.728
LE-26-97	112	17.26	0.806	0.194	1.11	14.33	12.91	0.033	0.148
LE-27-97	72	5.44	0.347	0.653	2.47	34.28	13.88	0.186	1.690
Average		15.16	0.65	0.35	1.28	20.79	16.00	0.16	1.50
Maximum		74.52	0.99	0.81	2.89	41.00	23.09	0.55	4.28
Minimum		3.71	0.19	0.01	0.16	0.53	3.31	0.01	0.03
St Deviation	n	13.92	0.20	0.20	0.66	10.15	4.85	0.13	1.38

the outlier samples was only 35%. In addition, most of these samples were from depths >80 cm, the maximum depth sampled in the Phase I survey. Exceptions were 16 cm at LE-4-97, the deepest sample at this low-depositional site; 52 cm at LE-7-97, a low deposition site based on NAIP and TP concentrations; 52 cm at LE-14-97, a sample from baseline NAIP and TP concentrations; 28 cm at LE-20-97, the deepest sample at this low sedimentation site; and 72 cm at LE-27-97, a sample with high TP in the baseline zone that exists below 36 cm. It will be shown in the section on NAIP and TP Accumulation Rate that baseline concentrations were found in sediments deposited more than 100 to 150 years before core collection. Thus, exclusion of these outliers will not affect calculations of nutrient and sediment deposition during the 20th century or in the last half of the 19th century.

Sediment Dating

The five historic cores collected during Phase I were sectioned at 2-cm intervals whereas the three cores collected during Phase II were sectioned at 4-cm intervals. Data generated from excess ²¹⁰Pb using a CRS model show that the sectioning employed during Phase I was generally finer than necessary because the age difference between sections is small (Appendix J). This is particularly evident for LE-13H where excess ²¹⁰Pb activity was found at 88 cm and to a lesser extent at LE-28H where excess ²¹⁰Pb activity was found at 52 cm.

MSR at all stations, with the possible exceptions of LE-16H and LE-27H, increased over time (Figs. 28 and 29). MSR increased at least 3-fold in cores LE-11H, LE-28H and LE-29H in the interval from 1900 to the 1990s and at least 6-fold in core LE-13H and LE-3H-98 in the same time interval. These increases, except those for LE-13H and LE-3H-98, were relatively small compared to those found in historic cores from Lake Dora.

Age/depth and chemical data for LE-13H, an historic core collection during Phase I (Appendices J and H), were not consistent with chemical data obtained at LE-13S, either during Phase I or Phase II (Appendix G). The TP concentration for LE-13S reached baseline levels at 28 and 32 cm for Phase I and II cores, respectively; where chemical data for LE-13H showed a long record of TP and NAIP enrichment (to 90 cm) consistent with excess ²¹⁰Pb activity to a depth of 88 cm. A second historic core, LE-13Pb-98, collected at Station 13 during Phase II was used to check the age/depth relationship for LE-13H. Results showed that the MSR for LE-13H (Fig. 28) was much greater than that for LE-13Pb-98 (Fig. 29). Therefore, data collected during Phase II verified that Station 13 was a low sedimentation site compared to that for data given for LE-13H. MSR at LE-13H in fact was larger than any other Lake Eustis historic station. MSR at only one other station, LE-3H-98, was comparable. No explanation can be given for this discrepancy except to note that data from the historic cores and nutrient and other profiles at the survey sites indicate that sedimentation rate does vary

Fig. 28. Mass sedimentation rate (MSR) for historic cores LE-11H, LE-13H, LE-16H, and LE-28H collected in Lake Eustis. Data for MSR (open diamonds) are smoothed using a three-point running average (open squares).

Fig. 29. Mass sedimentation rate (MSR) for historic cores LE-29H, LE-3H-98, LE-13Pb-98, and LE-27H-98 collected in Lake Eustis. Data for MSR (open diamonds) are smoothed using a three-point running average (open squares).

greatly over the lake. We have concluded that ²¹⁰Pb dates from this core are not valid and believe that a laboratory error resulted in selection of the wrong samples for analysis. Because data from LE-13H were atypical in many respects, results from this core were not used in quantitative assessments of dry mass, NAIP and TP accumulation for the lake basin.

Because core LE-13Pb-98 represented a low sedimentation site, no chemical analyses were run on this core. It had been sectioned at 2-cm intervals so it could be used to obtain a high-resolution stratigraphy. However, as pointed out above, two survey cores at this site confirmed that LE-13S was a low sedimentation site (Appendix G).

Maximum rates for MSR were >80 mg cm⁻² yr⁻¹ in core LE-13H, but were >60 mg cm⁻² yr⁻¹ in only one other core LE-3H-98 (Fig. 28 and 29). Rates were generally <20 mg cm⁻² yr⁻¹ for cores LE-16H, LE-29H and LE-27H-98 and ranged to as large as 30 mg cm⁻² yr⁻¹ in LE-28H. In cores LE-11H, LE-28H and LE-29H, MSR increased sharply about 1950. In LE-13H, MSR also increased sharply, but the increase was earlier, about 1920. MSR in LE-13H also differed from other cores with the exception of LE-3H-98 in that values were high and variable after 1960. Stations LE-28H and LE-29H were found in the zone of low average TP concentration in surface sediments (Fig. 25). LE-16H is near the center of the lake, at a site where the lowest maximum MSR might not be expected. However, sites with low MSR were also found near the center of Lake Apopka (Schelske 1997). Mid-lake sites in shallow lakes with sufficient fetch for wind-induced resuspension, therefore, may be in non-depositional areas of the lake basin. LE-11H and LE-3H-98 were cores collected in the northeastern end of the lake where surface TP is high. In all cores, MSR increased with time.

Decadal MSR were calculated for the historic cores as a means of equally weighting temporal data (Table 12). Data for LE-13H were tabulated even though data from this core are not considered here and were omitted in whole-basin calculations of dry mass and phosphorus sedimentation. MSR for the most recent decade ranged from 14.7 to 49.8 mg cm⁻² yr⁻¹ with a mean of 24.9 mg cm⁻² yr⁻¹ (Table 12). Decadal MSR in the most recent decade was 49.8 mg cm⁻² yr⁻¹ in LE-3H-98, the core with the highest MSR, and only ranged from 14.7 to 25.9 mg cm⁻² yr⁻¹ in the five cores with lower MSR. Relative increases in MSR for the most recent decade (91-100 yr since core collection) ranged from 1.82 to 5.18 with an average of 3.80 for all cores (excluding LE-13H).

Because sediments in Lake Eustis are highly organic, the decadal organic matter sedimentation rate (OMSR) was calculated and compared to decadal MSR. The OMSR for the most recent decade ranged from 9.0 to 29.5 mg cm⁻² yr⁻¹ (excluding LE-13H) with a mean of 16.5 mg cm⁻² yr⁻¹ (Table 13). Decadal OMSR was 29.5 mg cm⁻² yr⁻¹ in LE-3H-98, the core with the highest OMSR, and ranged from 9.0 to 18.8 mg cm⁻² yr⁻¹ in the five cores with lower OMSR. Relative increases in OMSR for the most recent decade compared to the 10th decade

Table 12. Decadal mass sedimentation rates (MSR) in mg cm⁻² yr⁻¹ for Lake Eustis historic cores by decades since core collection. MSR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in MSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H¹.

	Avg ¹	LE-11H	LE-13H	LE-16H	LE-28H	LE-29H	LE- 3H-98	LE-27H-98
1 2 3 4 5	24.94 21.70 19.63 19.40 15.89	25.91 16.44 13.19 14.02 11.61	75.67 68.93 76.41 57.00 48.93	14.67 12.46 9.83 9.05 9.74	25.31 18.81 15.93 17.22 16.55	14.80 11.48 9.85 9.62 8.05	49.79 62.08 59.30 55.86 43.09	19.16 8.96 9.69 10.60 6.27
6 7 8 9	15.18 12.49 10.65	11.08 11.41 11.13 7.03	43.64 36.60 32.41 20.07	8.97 12.67 5.90	12.20 8.90 8.88 7.11	6.23 5.14 4.64 4.45	46.67 31.49 29.64 25.05	5.96 5.32 3.70 3.70
10 11 12 13	7.39 8.07 6.99 7.76	7.03 5.54 5.47 7.89 4 74	9.90 12.34 7.92 6.01	8.05 4.60 4.35 5.89	5.34 4.81 3.82	4.16 3.54 3.54	23.03 17.54 21.91 15.35 12.64	3.70
15	7.70	т./т	0.01	5.07			12.04	
1 2 3 4 5 6 7	3.80 2.79 2.49 2.54 2.08 1.86 1.63	4.68 2.97 2.38 2.53 2.10 2.00 2.06	7.64 6.96 7.72 5.76 4.94 4.41 3.70	1.82 1.55 1.22 1.12 1.21 1.11	4.74 3.52 2.98 3.22 3.10 2.28	3.55 2.76 2.37 2.31 1.93 1.50	2.84 3.54 3.38 3.19 2.46 2.66	5.18 2.42 2.62 2.86 1.69 1.61
8 9 10 11 12 13	1.03 1.37 1.14 1.00 0.91 0.88 0.77	2.06 2.01 1.27 1.00 0.99 1.43 0.86	3.70 3.27 2.03 1.00 1.25 0.80 0.61	0.73 0.75 1.00 0.57 0.54 0.73	1.67 1.66 1.33 1.00 0.90 0.72	1.24 1.11 1.07 1.00 0.85 0.85	1.80 1.69 1.43 1.00 1.25 0.88 0.72	1.44 1.00 1.00 1.00

1) LE-13H is omitted from the averages because values are anomalously high. See text for additional explanation.

Table 13. Decadal organic matter sedimentation rates (OMSR) in mg cm⁻² yr⁻¹ for Lake Eustis historic cores by years since core collection. OMSR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in OMSR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H¹.

	Avg ¹	LE-11H	LE-13H	LE-16H	LE-28H	LE-29H	LE- 3H-98	LE-27H-98
1	16.45	18.81	50.79	10.15	17.87	9.04	29.53	13.30
2	12.88	11.22	40.71	8.50	12.98	6.50	32.34	5.71
3	12.45	8.29	45.18	6.60	10.91	4.69	38.17	6.03
4	12.13	8.61	35.12	5.97	11.82	5.45	34.51	6.40
5	10.16	7.29	31.72	6.49	11.14	4.98	27.20	3.85
6	9.74	6.83	28.80	6.15	8.14	3.86	29.81	3.67
7	8.23	7.37	23.78	8.69	5.90	3.05	21.11	3.26
8	6.96	7.42	20.99	4.00	6.00	2.33	19.81	2.21
9	5.81	4.72	13.43	4.09	4.83	2.05	16.97	2.21
10	4.76	3.57	6.80	5.50	3.58	1.91	11.77	2.21
11	5.10	3.49	8.38	3.00	3.21	1.62	14.19	
12	4.40	5.09	5.18	2.82	2.54	1.62	9.92	
13	5.01	3.14	3.84	3.62			8.28	
1	4.23	5.27	7.46	1.85	4.99	4.72	2.51	6.02
2	2.84	3.14	5.98	1.55	3.62	3.39	2.75	2.59
3	2.50	2.32	6.64	1.20	3.04	2.45	3.24	2.73
4	2.58	2.41	5.16	1.09	3.30	2.84	2.93	2.90
5	2.17	2.04	4.66	1.18	3.11	2.60	2.31	1.74
6	1.92	1.91	4.23	1.12	2.27	2.02	2.53	1.66
7	1.69	2.06	3.50	1.58	1.65	1.59	1.79	1.47
8	1.40	2.08	3.08	0.73	1.67	1.22	1.68	1.00
9	1.15	1.32	1.97	0.74	1.35	1.07	1.44	1.00
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.89	0.98	1.23	0.55	0.90	0.85	1.21	
12	0.87	1.42	0.76	0.51	0.71	0.85	0.84	
13	0.75	0.88	0.56	0.66			0.70	

1) LE-13H is omitted from the averages because values are anomalously high. See text for additional explanation.

(91-100 yr since core collection) ranged from 1.85 to 6.02 with an average of 4.23. Relative increases in average OMSR per decade were comparable to those for MSR with the exception of the most recent decade. Average OMSR for the most recent decade was 4.23 which was greater than the average MSR of 3.80 (Table 12). The greater relative increase in OMSR in the most recent decade is a result of higher organic matter content in recent sediments.

Stratigraphy of NAIP and TP

The time dependence of changes in phosphorus concentration were obtained by plotting NAIP and TP concentration vs. date for the seven historic cores (Fig. 30). The redundancy in sampling is evident for stations LE-13H and LE-28H where many samples of fairly uniform TP concentration represented an age of approximately 10 yr, or 7 sediment sections (Appendix J). This redundancy in sampling was found to a lesser extent for LE-11H where dates since 1980 were represented by 8 sections. NAIP and TP concentration increased upcore at all stations; but other than larger concentrations after 1950 no pattern was obvious. The change in concentration was least at LE-27H-98, the station with the smallest MSR. In addition, poor temporal resolution precluded determining changes in concentration with time at this low sedimentation site where effects of sediment mixing would be greater than at higher sedimentation sites.

NAIP and TP Accumulation Rate

Time-dependent relative increases in phosphorus accumulation rate (Fig. 31) in ²¹⁰Pb dated cores were greater than relative increases in phosphorus concentration (Fig. 30), because phosphorus accumulation rates over time were determined by the product of MSR and NAIP or TP concentration which increase upcore. The largest rates of NAIP and TP accumulation were found in cores with high sedimentation rates (LE-11H, LE-13H, LE-28H and LE-3H-98) and lower rates of TP and NAIP accumulation were found in the cores with low sedimentation rates (LE-16H, LE-29H and LE-27H-98). Maximum accumulation rates ranged from approximately 90 μ g TP cm⁻² yr⁻¹ for LE-13H to 15 μ g TP cm⁻² yr⁻¹ for LE-16H and LE-27H-98. The greatest increase in rates in all cores occurred after 1950 with smaller increases from 1900 to 1950.

Phosphorus accumulation rates increased sharply after 1950 in all historic cores with at least a 3-fold relative increase at most stations (Fig. 31). A small increase in TP accumulation rate was found in the 1930s or 1940s in all cores. These patterns cannot be resolved in the core with the lowest sedimentation rate (LE-27H-98). It should be noted that stations or areas of the lake with low sedimentation rates are not important in determining historic, basin-wide sedimentation of nutrients because nutrient storage at these sites is low (Appendix H).

Fig. 30. NAIP and TP concentration plotted vs. sediment date for historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98.

Fig. 31. NAIP and TP accumulation rate plotted vs. sediment date for historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98. Data plotted are smoothed using a three-point running average.

Decadal TP accumulation rates (TPAR) were calculated as a means of equally weighting the large near-surface TP accumulation rates so relative increases in TPAR could be calculated for each core. Decadal TPAR for the most recent decade, excluding LE-13H, ranged from 15.0 to 51.5 μ g cm⁻² yr ⁻¹ with a mean of 27.5 μ g cm⁻² yr⁻¹ (Table 14). Decadal TPAR for the most recent decade ranged from 28.2 to 51.5 μ g cm⁻² yr⁻¹ in the three cores with the highest TPAR and from 15.0 to 20.8 μ g cm⁻² yr⁻¹ in the three cores with the lowest TPAR. Relative increases in TPAR for the most recent decade compared to the 10th decade (91-100 yr since core collection) ranged from 6.54 to 18.3 with a mean of 11.0. Average relative increase in decadal TPAR in the most recent decade was 50.3% compared to the preceding decade. Another large average relative increase of 49.5% was found by comparing the 4th decade (31-40 yr since core collection) to the 5th decade (41-50 yr since core collection).

Average relative increases for decadal NAIPAR were similar to those for decadal TPAR, but the relative increase for NAIPAR was greater for every decade (Table 15). The average relative increase in decadal NAIPAR for the most recent decade compared to the 10th decade (91-100 yr since core collection) was 13.2, greater than the average relative increase of 11.0 for TPAR (Table 14). Average relative increase in decadal NAIPAR in the most recent decade was 50.3% compared to the preceding decade, equal to the 50.3% average relative increase for decadal TPAR. The relative increase for the 4th decade (31-40 yr since core collection) compared to the 5th decade (41-50 yr since core collection) also was essentially the same for NAIPAR and TPAR, 49.6% and 49.5%, respectively.

Three of the historic cores, LE-16H, LE-28H and LE-29H, were located in the area of the lake where the TP concentration of surface sediments is low (Fig. 25). This fact and the relatively small depth range of high TP concentration for LE-16H and LE-29H (Figs. 32 and 33) indicate that the site selection for historic cores may have biased the data toward sites with low sedimentation rate. Even with this possible bias, the rate of TP accumulation at stations in Lake Eustis was low compared to those in Lake Dora (see Tables 4 and 14) because of the much lower TP concentration in Lake Eustis sediments (see Tables 1 and 10).

Stratigraphy of TC/TN and % Dry Weight

The stratigraphy of NAIP and TP concentration in the seven historic cores was compared with the stratigraphy of TC/TN and % dry weight to determine if the downcore increase in TC/TN or % dry weight was stratigraphically correlated with upcore variability in NAIP or TP concentration (Figs. 32-34). An increase in TP concentration, and possibly NAIP concentration, from the baseline appeared to be correlated stratigraphically with an inflection point in the TC/TN profile in some cores, but the discontinuity was deeper than 1850 and therefore could not be dated. Time-dependent changes in phosphorus concentration (Fig. 30),

Table 14. Decadal total phosphorus accumulation rates (TPAR) in μ g cm⁻² yr⁻¹ for Lake Eustis historic cores by years since core collection. TPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in TPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H¹.

	Avg ¹	LE-11H	LE-13H	LE-16H	LE-28H	LE-29H	LE- 3H-98	LE-27H-98
1 3 4 5 6 7 8 9 10 11 12 13	27.48 19.46 13.39 12.73 8.72 8.07 5.69 4.50 3.74 2.88 3.00 2.45 2.58	$\begin{array}{c} 34.36\\ 20.50\\ 12.06\\ 11.15\\ 8.04\\ 7.92\\ 5.32\\ 4.13\\ 3.03\\ 1.87\\ 1.65\\ 2.15\\ 1.22 \end{array}$	83.15 54.29 50.27 33.13 27.39 23.79 18.53 18.05 11.20 5.15 6.53 3.90 2.93	$15.11 \\ 15.50 \\ 10.43 \\ 9.09 \\ 5.56 \\ 3.34 \\ 3.73 \\ 1.66 \\ 1.70 \\ 2.31 \\ 1.17 \\ 1.08 \\ 1.43$	28.15 17.10 10.71 9.20 8.11 5.87 3.95 3.67 3.02 2.03 1.80 1.53	$14.96 \\11.01 \\7.19 \\6.51 \\4.44 \\3.22 \\2.31 \\1.92 \\1.77 \\1.57 \\1.12 \\1.12 \\1.12$	51.50 42.89 29.16 28.40 20.67 22.99 14.66 13.72 11.04 7.61 9.27 6.35 5.09	20.78 9.79 10.77 12.02 5.51 5.04 4.15 1.91 1.91 1.91
1 3 4 5 6 7 8 9 10 11 12 13	10.99 7.31 5.05 4.77 3.19 2.71 2.00 1.46 1.24 1.00 0.84 0.78 0.65	$18.33 \\ 10.93 \\ 6.43 \\ 5.95 \\ 4.29 \\ 4.23 \\ 2.84 \\ 2.20 \\ 1.62 \\ 1.00 \\ 0.88 \\ 1.15 \\ 0.65 \\ 1.05 $	$16.15 \\10.54 \\9.76 \\6.43 \\5.32 \\4.62 \\3.60 \\3.51 \\2.18 \\1.00 \\1.27 \\0.76 \\0.57 \\$	6.54 6.71 4.51 3.94 2.41 1.45 1.61 0.72 0.74 1.00 0.51 0.47 0.62	13.84 8.41 5.27 4.52 3.99 2.89 1.94 1.80 1.49 1.00 0.88 0.75	$\begin{array}{c} 9.56 \\ 7.03 \\ 4.59 \\ 4.16 \\ 2.83 \\ 2.06 \\ 1.48 \\ 1.23 \\ 1.13 \\ 1.00 \\ 0.72 \\ 0.72 \\ 0.72 \end{array}$	$\begin{array}{c} 6.77\\ 5.64\\ 3.83\\ 3.73\\ 2.72\\ 3.02\\ 1.93\\ 1.80\\ 1.45\\ 1.00\\ 1.22\\ 0.84\\ 0.67\end{array}$	10.88 5.13 5.64 6.30 2.89 2.64 2.17 1.00 1.00 1.00

1) LE-13H is omitted from the averages because values are anomalously high. See text for additional explanation.

Table 15. Decadal non-apatite inorganic phosphorus accumulation rates (NAIPAR) in μg cm⁻² yr⁻¹ for Lake Eustis historic cores by years since core collection. NAIPAR (upper half) calculated from ²¹⁰Pb geochronology using a CRS model and changes in NAIPAR (bottom half) relative to the base decade (91-100 yrs) are shown for seven historic cores. Averages (Avg) by decade for both sets of data are presented for six cores excluding LE-13H¹.

	Avg ¹	LE-11H	LE-13H	LE-16H	LE-28H	LE-29H	LE- 3H-98	LE-27H-98
1 3 4 5 6 7 8 9 10 11 12 13	9.20 6.07 4.36 3.95 2.60 2.66 1.98 1.59 1.31 0.91 1.04 0.80 0.94	$12.17 \\7.43 \\4.68 \\3.63 \\2.47 \\2.73 \\1.85 \\1.54 \\1.06 \\0.54 \\0.44 \\0.66 \\0.42$	$\begin{array}{c} 30.90 \\ 17.86 \\ 16.13 \\ 10.35 \\ 7.67 \\ 6.13 \\ 5.86 \\ 5.75 \\ 3.42 \\ 1.68 \\ 1.98 \\ 1.27 \\ 0.99 \end{array}$	5.14 4.89 3.29 2.68 1.78 1.13 1.22 0.42 0.41 0.47 0.27 0.26 0.34	$10.09 \\ 5.58 \\ 3.37 \\ 2.62 \\ 2.22 \\ 1.47 \\ 0.99 \\ 1.02 \\ 0.77 \\ 0.52 \\ 0.44 \\ 0.28$	5.16 4.64 2.43 1.86 1.31 1.00 0.88 0.71 0.64 0.54 0.33 0.33	$17.29 \\ 11.21 \\ 9.53 \\ 9.81 \\ 6.24 \\ 8.13 \\ 5.75 \\ 5.38 \\ 4.48 \\ 2.87 \\ 3.69 \\ 2.47 \\ 2.07 \\ 1.07 $	5.34 2.68 2.87 3.08 1.60 1.49 1.20 0.48 0.48 0.48
1 2 3 4 5 6 7 8 9 10 11 12 13	13.21 8.79 5.96 5.10 3.41 3.00 2.33 1.64 1.34 1.00 0.83 0.75 0.74	$\begin{array}{c} 22.57\\ 13.79\\ 8.68\\ 6.73\\ 4.59\\ 5.07\\ 3.43\\ 2.85\\ 1.96\\ 1.00\\ 0.82\\ 1.22\\ 0.78\end{array}$	$18.36 \\10.61 \\9.58 \\6.15 \\4.56 \\3.64 \\3.48 \\3.41 \\2.03 \\1.00 \\1.18 \\0.75 \\0.59$	$10.82 \\ 10.29 \\ 6.94 \\ 5.64 \\ 3.74 \\ 2.37 \\ 2.57 \\ 0.87 \\ 0.87 \\ 1.00 \\ 0.57 \\ 0.54 \\ 0.71 \\ 0.71 \\ 0.51 \\ 0.71 \\ 0.52 \\ 0.52 $	$19.34 \\10.70 \\6.47 \\5.03 \\4.25 \\2.82 \\1.91 \\1.95 \\1.48 \\1.00 \\0.85 \\0.54$	9.47 8.51 4.46 3.42 2.40 1.84 1.61 1.30 1.18 1.00 0.61 0.61	6.02 3.90 3.32 3.41 2.17 2.83 2.00 1.87 1.56 1.00 1.29 0.86 0.72	11.02 5.54 5.91 6.36 3.29 3.07 2.49 1.00 1.00 1.00

¹⁾ LE-13H is omitted from the averages because values are anomalously high. See text for additional explanation.

Fig. 32. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-11H, LE-13H, and LE-16H.

Fig. 33. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-28H and LE-29H.

Fig. 34. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for historic cores LE-3H-98 and LE-27H-98.

that could be correlated with stratigraphic changes in TC/TN and % dry weight occurred after 1950 in some cores. Some of the sharpest discontinuities in TC/TN or TP, such as 80 cm for LE-11H, 90 cm for LE-13H, 60 cm for 28H and 34 cm for 29H occurred in sediments too old to be aged with ²¹⁰Pb. Therefore, only one time horizon for TP concentration or TC/TN and % dry weight can be correlated stratigraphically across cores.

An upcore increase in TP concentration for survey cores from Phase II was correlated stratigraphically with an inflection point in the TC/TN profile (Figs. 35-42). Survey cores from Phase I could not be used to test the feasibility of stratigraphic correlation because they were truncated above the depths that could be aged with ²¹⁰Pb. Data for LE-20S-97 (Fig. 42) is presented to illustrate a truncated TP profile at a low sedimentation site. The inflection point in Phase II survey cores was at a TP concentration larger than the baseline concentration and appears to be stratigraphically correlated with discontinuities in TC/TN ratio and % dry weight that occurred after 1950 in historic cores (Figs 32-34).

Stratigraphy of Ash Fraction

The stratigraphic records of ash fraction and TP concentration were plotted vs. date for the seven historic cores (Fig. 43) to evaluate ash fraction as another proxy for stratigraphic correlation. No relationship between high TP and low ash fraction in surface sediments such as that found in Lake Dora sediments was found in Lake Eustis historic cores. Only two Lake Eustis historic cores (LE-11H and LE-13H) clearly showed this relationship, when plotted either in relation to date (Fig. 43) or depth (Fig. 44). The ash fraction in historic cores from Lake Eustis, therefore, appeared to have little utility for stratigraphic correlation, particularly to establish a time horizon.

Although a relationship between high TP and low ash fraction in surface sediments such as that found in Lake Dora sediments was not found consistently in Lake Eustis historic cores (Figs. 43 and 44), the pattern was fairly consistent in Lake Eustis survey cores from Phase II (Figs. 45-47). In fact, high TP concentration and low ash fraction were found in 20 of the 22 cores shown in Figs. 45-47. This relationship was most pronounced in cores with largest TP concentrations in surface and near-surface samples. Therefore, the set of data collected from Phase II survey cores also supports the hypothesis that the highest TP concentrations occur in sediments with high LOI or high organic matter content (low ash fraction).

Cluster Analyses

Core sections from Phase II survey cores were separated into two groups using Kmeans cluster analysis of TP concentration, TC/TN and dry density (rho). The two groups

Fig. 35. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth or Lake Eustis Phase II survey cores LE-3S-97, LE-6S-97, and LE-7S-97.

Fig. 36. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-8S-97, LE-9S-97, and LE-10S-97.

Fig. 37. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-11S-97, LE-12S-97, and LE-13S-97.

Fig. 38.

TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-14S-97, LE-15S-97, and LE-16S-97.

Fig. 39.

TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-17S-97, LE-18S-97, and LE-19S-97.

Fig. 40. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-21S-97, LE-22S-97, and LE-23S-97.

Fig. 41. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-24S-97, LE-25S-97, and LE-26S-97.

Fig. 42. TC/TN, % dry weight and NAIP and TP concentration plotted vs. core depth for Lake Eustis Phase II survey cores LE-27S-97 and LE-20S-97.

Fig. 43. Ash fraction and TP concentration plotted vs. date for Lake Eustis historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98.

Fig. 44. Ash fraction and TP concentration plotted vs. depth for Lake Eustis historic cores LE-11H, LE-13H, LE-16H, LE-28H, LE-29H, LE-3H-98, and LE-27H-98.

Fig. 45. Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-3S-97, LE-6S-97, LE-7S-97, LE-8S-97, LE-9S-97, LE-10S-97, LE-11S-97, LE-11S-97, and LE-13S-97.

Fig. 46. Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-14S-97, LE-15S-97, LE-16S-97, LE-17S-97, LE-18S-97, LE-19S-97, LE-21S-97, LE-22S-97, and LE-23S-97.

0.0 0.2 0.4 0.6 0.8 Ash Fraction

Ash fraction and TP concentration plotted vs. depth for Lake Eustis survey cores LE-24S-97, LE-25S-97, LE-26S-97, and LE-27S-97. Fig. 47.

clustered in stratigraphic sequence in each core. The shallower samples were in Group 1 and the deeper samples were in Group 2. Neither cluster analysis nor visual inspection of data provided a means of establishing another distinct stratigraphic break. Because only two groups of sediments were identified, only one stratigraphic horizon was established and only one group of data is presented in Table 16. Only one ambiguity between visually determined breaks and the cluster-analysis separation was found in that two samples at LE-12S that were clearly unconsolidated sediments based on dry density were grouped with underlying, more consolidated sediments (Table 16). In this instance, the deepest unconsolidated sample based on dry density was selected for the stratigraphic break. Means and standard deviations for each stratigraphic group are presented in Appendix M.

Identifying a group of unconsolidated sediments by cluster analysis was important because the stratigraphic features could be correlated with an age in historic cores. Similar to the historic cores for Lake Dora, the age for the stratigraphic break point in the Lake Eustis cores was variable. In Lake Eustis the date for the break point ranged from approximately 1950 to 1970. Break depths (the deepest core section) that identified the upper, stratigraphic group of samples were inspected to determine whether this separation represented a distinct break point in the TP profile for each core. The break point for TP concentration was consistent among all cores in the group with no exceptions other than the adjustment noted above for LE-12S (see Table 16). Variables associated with the maximum depth for this set of unconsolidated sediments are shown in Table 16.

Sediment and TP Deposition

Only one stratigraphic group of samples was identified with cluster analysis of Phase II survey cores (Table 16). Although the age for the stratigraphic break point in historic cores was variable, ranging from approximately 1950 to 1970, recent ages for the break point are more realistic because these ages were found for cores with larger sedimentation rates than the cores with an older age for the break point. This result is expected because temporal resolution in high sedimentation cores generally should be better than in low sedimentation cores. Cumulative accumulation of sediment dry mass, NAIP and TP at the break point at each station (Table 16) was then used to calculate dry mass, NAIP and TP storage for the lake basin for two time periods (25 and 45 yr) since core collection (Table 17). The two time periods roughly span the dates, 1950 to 1970, for the break points in the historic cores.

Estimating total dry mass, NAIP and TP sedimentation in Lake Eustis from Phase II survey cores is confounded by the lack of stratigraphic features that can be correlated among cores. Only one such stratigraphic break was determined using K-means cluster analysis. In

Table 16. Cumulative storage by station of total dry mass, TP and NAIP for one stratigraphic group of sediments in Lake Eustis. Depth of sediments in this group determined from cluster analysis and visual examination of profiles from each station. This stratigraphic group was assigned two ages, 25 and 45 yr, to bracket the range of probable ages. See Appendix G for data and text for additional explanation.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Mass	NAIP	NAIP	TP	TP
3	44	3.679	0.037	59.7	2.77	29.4	10.61	1.385	0.23	0.441	0.72	1.480
4	12	3.290	0.033	52.5	2.57	24.6	9.55	0.300	0.44	0.126	1.01	0.324
5	16	2.667	0.027	53.7	2.13	22.5	10.58	0.382	0.14	0.070	0.63	0.275
6	24	3.170	0.032	59.7	2.66	28.5	10.72	0.616	0.19	0.171	0.69	0.612
7	4	2.125	0.021	56.3	2.47	25.7	10.41	0.100	0.17	0.017	0.48	0.048
8	24	3.008	0.031	66.0	2.79	30.9	11.09	0.612	0.19	0.200	0.60	0.513
9	32	3.610	0.037	62.7	2.71	29.3	10.82	0.817	0.27	0.375	0.68	0.812
10	16	3.379	0.034	58.0	2.84	29.2	10.26	0.467	0.25	0.138	0.71	0.377
11	24	2.768	0.028	64.6	2.78	30.2	10.85	0.520	0.24	0.240	0.66	0.536
12	64	6.104	0.063	54.6	2.34	27.0	11.54	2.628	0.26	0.765	0.75	2.512
13	20	3.824	0.039	55.1	2.32	26.2	11.29	0.560	0.17	0.171	0.65	0.543
14	24	4.369	0.045	47.2	2.07	21.5	10.38	0.630	0.30	0.239	0.88	0.735
15	28	3.250	0.033	63.1	3.65	30.31	8.304	0.744	0.12	0.209	0.51	0.642
16	20	3.120	0.032	64.1	2.87	31.45	10.96	0.501	0.22	0.175	0.64	0.453
17	24	3.354	0.034	65.4	2.81	31.18	11.1	0.595	0.26	0.290	0.54	0.615
18	24	3.477	0.035	61.6	2.80	30.56	10.91	0.640	0.14	0.220	0.56	0.695
19	20	2.840	0.029	60.5	2.86	30.51	10.67	0.461	0.22	0.154	0.67	0.460
20	24	5.847	0.060	34.1	1.38	13.59	9.848	0.829	0.27	0.284	0.84	0.762
21	20	2.849	0.029	65.8	3.13	31.9	10.18	0.475	0.25	0.131	0.76	0.418
22	28	3.672	0.037	63.3	2.85	30.8	10.82	0.797	0.12	0.184	0.52	0.659
23	24	3.311	0.034	67.2	3.07	31.8	10.36	0.645	0.25	0.177	0.73	0.594
24	20	3.053	0.031	62.1	2.92	30.3	10.37	0.495	0.25	0.136	0.73	0.439
25	20	3.822	0.039	55.3	2.98	30.2	10.12	0.626	0.28	0.169	0.86	0.626
26	20	4.020	0.041	59.0	2.83	29.0	10.23	0.608	0.25	0.158	0.83	0.604
27	28	4.851	0.050	58.4	3.48	31.6	9.066	0.995	0.12	0.263	0.48	0.870
Moor	24.2	2 570	0.026	500	272	1 0 2	10.44	0 607	0.22	0 220	0.69	0664
Std dow	24.2	J.J/0 0.016	0.030	J0.0 7 1	2.12	∠0.3 ∕ 1 2	10,44	0.09/	0.22	0.220	0.00	0.004
Sid dev	11	0.910	0.010	1.1	0.40	4.4	0.7	0.409	0.07	0.144	0.13	0.403

Cluster analysis break was 56 cm at 12S.

Table 17. Whole-basin storage of total dry mass, total phosphorus (TP) and non-apatite inorganic phosphorus (NAIP) for the recent stratigraphic group of sediments in Lake Eustis. Calculations are based on summing data for cum mass, cum TP and cum NAIP from Table 16 and then averaging sums over the 27 survey stations that were distributed on an equal area grid (this procedure assumes zero storage for erosional sites not included in Table 16). The area of the lake used in the calculations was $31.39 \times 10^6 \text{ m}^2$. Units are 10^3 larger for mass than for phosphorus. Two estimates are based on probable sediment ages ranging from 25 to 45 yr for this stratum. See Table 16 and text for additional explanation.

	Dry Mass	TP	NAIP
Sum (g cm ⁻²) or (mg cm ⁻²)	17.43	16.60	5.503
Average/station (g cm ⁻²) or (mg cm ⁻²)	0.6455	0.6149	0.2038
Whole Basin Storage (10 ⁶ kg) or (10 ⁶ g)	202.6	193.0	63.98
Average Storage/yr (25 yr) $(10^6 \text{ kg}) \text{ or } (10^6 \text{ g})$ (45 yr)	8.11 4.50	7.72 4.29	2.56 1.42

addition, no clear stratigraphic break to identify a baseline TP concentration was found consistently among cores. Such a feature was present in the Lake Dora cores and in cores from other Ocklawaha lakes (Schelske 1997, 1998).

Whole-basin dry mass and TP accumulation rates were calculated for the probable range in sediment ages for the stratigraphic set of data (Table 17). Rates calculated for 25- and 45-yr periods yielded average, annual TP sedimentation of 7800 and 4330 kg, respectively. The larger estimate is considered to be more reliable because a later age horizon occurs in cores with a high sedimentation rate than in cores with a lower sedimentation rate (Fig. 30). This generality is important because the greatest accumulation of sediment and TP occurs at high sedimentation sites based on other studies of Ocklawaha lakes (Schelske 1997, 1998).

Estimates for TP sedimentation calculated from whole-basin inventories of TP were compared to estimates of TP sedimentation obtained by other methods. Fulton (1995) estimated TP sedimentation (retention) in Lake Eustis of 17,490 kg/yr from nutrient budgets. This is more than twice as large as our high estimate of 7720 kg/yr for the 25-yr period (Table 17). Our high estimate may be low compared to recent estimates of TP sedimentation because it is based on a 25-year period during which TP accumulation increased more than 2-fold in dated historic cores (Fig. 31) and average decadal TPAR also increased more than 2-fold when the most recent decade is compared to the third decade (Table 14). In addition, the selection of a somewhat arbitrary time period of 25 yr is only one estimate that could be used in calculation. Selecting a shorter time period would increase the sedimentation rate. Our decadal averages for TPAR can be used to calculate an average for the most recent 25-yr period. This calculation shows that the 25-yr average is 22% smaller than the average TPAR for the most recent decade. We conclude that our average estimate for the 25-yr period may underestimate TP storage in the 1990s, but by less than a factor of two difference necessary to reconcile our estimate with that calculated by Fulton (1995).

Diatom Microfossils

Diatom assemblages show very similar trends in cores LE-13H and LE-28H (Figs. 48 and 49) from Lake Eustis. Diatom preservation is poor at the base of both cores, and broken fragments of *Navicula sp.* and *Pinnularia sp.* are common. *Cyclotella stelligera*, which is found in oligotrophic to eutrophic conditions, is relatively common throughout both cores. *Navicula radiosa* and *Navicula radiosa* var. *parva* also indicate oligotrophic to eutrophic conditions and are abundant in both cores to approximately the 40-cm level. A shift in the diatom assemblages of both cores takes place at approximately the 60-cm level. *Aulacoseira ambigua*, which indicates eutrophic conditions, begins to increase at the 60-cm level. *Pseudostaurosira*

brevistriata and *Staurosirella pinnata* are eutrophic to hypereutrophic taxa (Whitmore 1989) that increase in abundance at the 50-cm level, but decline again near the 10-cm level. *Aulacoseira ambigua* shows a significant increase in both cores proceeding upward. High percentages of *Aulacoseira ambigua* in uppermost samples from both cores (e.g. 85% at the 8-cm level in 28H) is a distinct indication of eutrophic conditions.

Limnetic TP reconstructions for cores LE-13H and LE-28H (Figs. 50 and 51, Tables 18 and 19, respectively) indicate that Lake Eustis has proceeded from mesotrophic to eutrophic conditions during the last century. Total P inferences for the most recent (2-cm level) samples are approximately 100 μ g/L and are high with respect to means from reported water quality measurements of 68 μ g/L (Fulton 1995) and 39 μ g/L (Canfield et al. 1995). Recent limnetic TP inferences are high as the result of the high representation of the eutrophic species *Aulacoseira ambigua*. Absolute TP inference values may not be reliable for recent decades in Lake Eustis, but overall trends (Figs. 50 and 51) suggest an increase in trophic state that is substantiated by distinct qualitative shifts seen in the diatom assemblages over time (Figs. 48 and 49).

Summary--Lake Eustis

Several variables measured in historic cores change predictably from core to core including upcore increases in NAIP and TP concentration, upcore increases in rate of TP and NAIP accumulation and upcore decreases in TC/TN and % dry weight. These changes were found in depth intervals that were aged with ²¹⁰Pb in historic cores and occurred primarily since the 1930s, with the largest changes occurring after 1950. No clear stratigraphic indicator of earlier changes, including an increase in TP concentration from baseline levels, could be identified in all historic cores (dated) or in all survey cores (undated). Such a stratigraphic discontinuity was found in dated and undated cores from Lake Dora and dated and undated cores from other Ocklawaha lakes studied previously (Schelske 1997, 1998).

This study provides several lines of evidence that phosphorus loading to Lake Eustis increased historically. First, data on NAIP or TP concentration increased upcore in the past 100 to 150 yr. An increase in TP concentration in lake water or TP loading to the lake basin is inferred from the upcore increase in TP concentration of sediments. Second, because a large fraction (>60% on average) of the lake sediments are organic matter as measured by LOI, increases in MSR with time indicate production of organic matter has increased and lake eutrophication has been progressive. These inferred changes are reflected in relative increases in decadal MSR and OMSR (Tables 12 and 13), both of which increase progressively in all decades relative to the base decade (91-100 yr since core collection) with the exception of a

Fig. 50.

Inferred limnetic total P based on diatom assemblages in Lake Eustis sediment core LE-13H-95 with 95% confidence intervals for the inferences.

Fig. 51. Inferred limnetic total P based on diatom assemblages in Lake Eustis sediment core LE-28H-96 with 95% confidence intervals for the inferences.

	Depth Interval (cm)	Inferred total P (ug/L)	Lower bound of 95% c.i. (ug/L)	Upper bound of 95% c.i. (ug/L)
	0-2	94	71	125
:	8-10	114	84	156
1	6-18	97	73	129
2	4-26	121	88	166
3	4-36	133	95	185
4	2-44	87	66	115
4	8-50	87	66	115
5	4-56	58	46	74
6	2-66	72	56	93
6	8-70	87	66	115
7	4-76	70	55	90
8	0-82	66	53	86
8	8-90	48	39	59
9	6-98	53	42	65
11	4-116	40	33	49

Table 18.Inferred limnetic total P with 95% confidence intervals for the inferences for
Lake Eustis core LE-13H-95.

1

Depth Interval (cm)	Inferred total P (ug/L)	Lower bound of 95% c.i. (ug/L)	Upper bound of 95% c.i. (ug/L)
0-2	123	89	169
6-8	229	153	342
12-14	99	74	133
18-20	87	66	115
24-26	94	71	125
30-32	104	77	140
37-38	81	62	106
46-48	72	56	93
54-56	50	41	62
62-64	45	37	55
70-72	34	29	41
78-80	34	29	41
86-88	37	31	44
94-96	30	26	36
114-116	31	26	37

Table 19.Inferred limnetic total P with 95% confidence intervals for the inferences for
Lake Eustis core LE-28H-96.

slight decrease in MSR and OMSR from the 4th decade to the third decade. Third, rates of NAIP or TP accumulation in historic cores, which are the product of MSR and NAIP or TP concentration, increase at the greater rate than MSR because the concentration of both forms of phosphorus increase with time. On a decadal scale, TPAR and NAIPAR increase progressively from decade to decade. Finally, these increased rates of TP and NAIP accumulation (given the implicit assumption in commonly used phosphorus loading models, i.e. that net phosphorus sedimentation is proportional to phosphorus loading) indicate that phosphorus loading to the lake has increased in proportion to the increase in TP accumulation in the sediments. This increase in net phosphorus sedimentation is inferred to be at least three-fold since the 1950s.

Inferences from analysis of microfossil diatoms in two sediment cores also provide evidence of eutrophication in Lake Eustis. A shift in the composition of the microfossil provides evidence of progressive eutrophication. In addition, limnetic TP concentrations inferred from diatom microfossils indicate a large increase in phosphorus concentration with time, with the greatest change after 1950 in LE-28H and after 1970 in LE-13H. These inferred TP concentrations indicate that TP in the water column increased in the 1950s and 1970s at a time when measured TP in the sediment record increased. After this increase, inferred TP concentrations were relatively constant over the remainder of the sediment record with the exception of one large value for LE-28H. Inferred limnetic TP in surface sediments was greater than reported mean TP concentrations in the water column with the lower bound for the 95% confidence interval in both cores being greater than the reported mean of 68 µg/L. Diatom microfossils also shift upcore from benthic forms to planktonic forms as the TC/TN ratio of organic matter decreases. The decrease in TC/TN ratio was used to infer a shift in the phytoplankton community from macrophytes to phytoplankton in Lake Apopka (Schelske 1997).

A combination of data for TP concentration, TC/TN ratio and dry density provided a time-dependent stratigraphic horizon that was identified by K-means (multi-variate) cluster analysis and correlated across cores. Data for ash fraction, which was used successfully in the Lake Dora analysis, were not useful in the analysis of Lake Eustis samples. Only one time zone was identified using a combination of multi-variate cluster analysis and subjective analysis. Based on stratigraphic features in dated historic cores, the probable age span for this zone ranged from 25 to 45 yr. The shorter time period, based on sediment ages at high sedimentation sites, is considered to be more reliable. The relatively low MSR and NAIP and TP concentration in Lake Eustis sediments, compared to Lake Dora, limits the ability to resolve stratigraphic features and thus to estimate temporal changes in basin-wide storage of sediments or nutrients in Lake Eustis.

Accumulation rates for dry mass, NAIP and TP were estimated from estimated wholebasin storage of sediment dry mass, TP and NAIP in the single stratigraphic group of sediments identified from K-means cluster analysis. TP sedimentation estimated from the whole-basin inventory of TP was compared to estimated TP sedimentation obtained by other methods. Fulton (1995) estimated recent TP retention (sedimentation) in Lake Eustis of 17,490 kg/yr from nutrient budgets. This is more than twice as large as our high estimate of 7,720 kg/yr for the 25-yr period (Table 17). Our high estimate may be low compared to recent estimates of TP sedimentation because it is the average of a 25-yr period during which TP accumulation increased more than 2-fold in dated historic cores (Fig. 31) and average decadal TPAR also increased more than 2-fold when the most recent decade is compared to the third decade (Table 14). We conclude that our estimate for the 25-yr period may underestimate TP storage in the 1990s, but by less than a factor of two difference necessary to reconcile our estimate with that calculated by Fulton (1995). Whole-basin storage of sediments and nutrients is discussed in the final section of the report on Comparison of TP Sedimentation in Lake Dora and Lake Eustis.

COMPARISON OF TP SEDIMENTATION AND OTHER CHARACTERISTICS IN LAKE DORA AND LAKE EUSTIS

Lake Dora and Lake Eustis are two of the lakes in the Harris Chain of Lakes in the upper Ocklawaha River basin (Fulton 1995). Lake Dora with a mean depth of 3.00 m has less than half the surface area of Lake Eustis with a mean depth of 3.46 m (Table 20). Because of the deeper mean depth and larger surface area in Lake Eustis, the volume of Lake Eustis is more than twice as large as that for Lake Dora. Mean hydraulic detention is essentially equal for the two lakes, 0.82 yr for Lake Dora and 0.79 yr for Lake Eustis (Fulton 1995). The mean TP in the water column is 138 μ g/L in Lake Dora, twice as large as the mean TP (68 μ g/L) in Lake Eustis (Table 20). Annual TP retention (net TP sedimentation) of 6230 kg/yr in Lake Dora and 17,500 kg/yr in Lake Eustis was obtained from TP mass balances (Fulton 1995). Our estimate of TP sedimentation in Lake Dora obtained from whole basin storage is 15,600 kg/yr, more than twice as large as estimated TP retention; but our estimate of TP sedimentation in Lake Eustis is 7720 kg/yr, less than half the estimated TP retention of 17,500 kg/yr (Table 20). Calculations based on the mass balances by Fulton (1995) show that 2.81 times more phosphorus is sedimented in Lake Eustis than in Lake Dora (Table 20) even though the lake surface area is only 1.77 times larger. These data indicate that areal TP sedimentation is greater in Lake Eustis than in Lake Dora. Results from our study, however, indicate that annual whole-basin TP sedimentation in Lake Dora is 2.02 times greater in than in Lake Eustis, that annual whole-basin TP sedimentation in Lake Dora is greater than TP retention reported by Fulton (1995), that annual whole-basin TP sedimentation in Lake Eustis is smaller than TP retention reported by Fulton (1995) and that the areal TP sedimentation rate is larger in Lake Dora than in Lake Eustis. Some of the differences and similarities in the results we obtained for the two lakes will be used to address the apparent discrepancies in estimated TP retention and sedimentation for Lake Dora and Lake Eustis.

Sediments in Lake Dora and Lake Eustis were similar in most of the measured characteristics, but differed markedly in TP concentration (Tables 1 and 10, Appendices E-H) and in MSR and TPAR in ²¹⁰Pb-dated historic cores (Tables 2, 4, 12 and 14; Appendices I and J). Comparison of mean values for the different gravimetric and chemical data sets collected during Phase I and Phase II shows some of the similarities and differences (Tables 1 and 10). Mean values for % dry weight for both lakes ranged from 4.5 to 5.4%, with only one mean being >5.0% (Phase I, Lake Eustis). Likewise, mean % LOI was similar for both lakes, ranging only from 60-61% in Lake Dora and from 61 to 63% in Lake Eustis. By contrast, mean TP concentration in Lake Dora ranged from 0.68 to 1.04 mg/g and only from 0.45 to 0.53 mg/g in Lake Eustis. These comparisons for TP concentration are biased by data from historic cores that are relatively small data sets compared to the survey cores. The mean for

Table 20.Comparison of morphometric data and whole-basin storage and retention of
total phosphorus (TP) in Lake Dora and Lake Eustis. Average storage is
calculated from data in Tables 7 and 17. Morphometric data and data for TP
and whole-basin retention are from Fulton (1995).

	Lake Dora	Lake Eustis
Area (10 ⁶ m ²)	17.74	31.39
Volume (10 ⁶ m ³)	53.28	108.6
Mean Depth (m)	3.00	3.46
Mean TP (mg L ⁻¹)	0.138	0.068
Average Whole-Basin Storage (10 ⁶ g yr ⁻¹)	15.6	7.72
Average Areal Whole-Basin Storage (g m ⁻² yr ⁻¹)	0.879 (5 yr)	0.246 (25 yr)
Whole-Basin Retention (10 ⁶ g yr ⁻¹)	6.23	17.5
Average Areal Whole-Basin Retention (g m ⁻² yr ⁻¹)	0.351	0.558

the survey cores from Lake Dora was 0.87 mg/g, much greater than the means for survey cores from Lake Eustis which ranged from 0.45 to 0.53 mg/g. The large difference in TP concentration is also evident by comparing data on TP concentrations in near-surface sediments of the two lakes (Figs. 3 and 25). This comparison shows that TP concentrations in Lake Dora surface sediments are generally >2.0 mg/g, approximately twice as large as those in Lake Eustis. Finally, several variables measured in survey and historic cores from Lake Dora and Lake Eustis change predictably from core to core, including an upcore increase in NAIP and TP concentration and an upcore decrease in the TC/TN ratio and % dry weight. The upcore increase in TP concentration was greater in Lake Dora cores than in Lake Eustis cores, indicating a greater temporal change in water-column TP concentrations in Lake Dora.

We used two approaches to estimate TP sedimentation in Lake Dora and Lake Eustis. The first is based on MSR and TP concentration in ²¹⁰Pb-dated historic cores and the second is based on estimating whole-basin storage from TP inventories in undated survey cores. Comparison of MSR obtained from ²¹⁰Pb-dated historic cores, which varied greatly among cores, indicates values generally were greater in Lake Dora than in Lake Eustis, particularly if LE-13H is excluded in the comparison (Tables 2 and 12). Average decadal MSR in the most recent decade (1986-95) was 43.0 mg cm⁻² yr⁻¹ in Lake Dora, 1.73 times greater than the average of 24.9 mg cm⁻² yr⁻¹ in Lake Eustis (Table 21). Because TP concentrations were greater in Lake Dora, average TPAR in the most recent decade (1986-95) in Lake Dora was 81.8 μ g cm⁻² yr⁻¹, roughly three times as large as in Lake Eustis (27.5 μ g cm⁻² yr⁻¹). Thus, based on ²¹⁰Pb-dated cores, whole-basin TP sedimentation should be greater in Lake Dora the Lake Dora that for Lake Eustis; whereas, the surface area of Lake Eustis is roughly twice as large as Lake Dora.

Estimates based on whole-basin storage also indicate that TP sedimentation is greater in Lake Dora than in Lake Eustis. Recent TP sedimentation calculated from whole-basin storage is 15,600 kg/yr in Lake Dora and 7,720 kg/yr in Lake Eustis (Table 20). Areal estimates of recent TP sedimentation obtained from whole-basin storage were 87.9 μ g cm⁻² yr⁻¹ in Lake Dora and 24.6 μ g cm⁻² yr⁻¹ in Lake Eustis (Table 20), values that are similar to the most recent average decadal TPAR for the two lakes (Table 21). Values for Lake Eustis are probably underestimated because a 25-yr period of storage was used in the calculation, whereas only a 5-yr period was used to estimate recent storage in Lake Dora. Even given problematic estimates, which will be discussed below, both approaches indicate that recent whole-basin TP sedimentation in Lake Dora is greater than in Lake Eustis.

TP sedimentation apparently is greater in Lake Dora than in Lake Eustis even though whole-basin dry mass sedimentation is larger in Lake Eustis. The estimated whole-basin dry mass sedimentation rate of 8.11 x 10^6 kg/yr in Lake Eustis is 1.38 times greater than the rate of

Table 21. Comparison of average and relative increases in decadal mass sedimentation rate (MSR), organic matter sedimentation rate (OMSR), total phosphorus accumulation rate (TPAR) and non-apatite inorganic phosphorus accumulation rate (NAIPAR) for Lake Dora and Lake Eustis historic cores. Data are averages (upper half) and increases (bottom half) relative to the base decade (91-100 yr) since core collection. Units are mg cm⁻² yr⁻¹ for MSR and OMSR and μg cm⁻² yr⁻¹ for TPAR and NAIPAR. Averages are from Tables 2-5 and 12-15.

Lake Dora				<u>Lake</u>	<u>Eustis</u>			
Decade	MSR	OMSR	TPAR	NAIPAR	MSR	OMSR	TPAR	NAIPAR
1	42.95	29.97	81.78	31.94	24.94	16.45	27.48	9.20
2	35.96	21.74	53.63	17.62	21.70	12.88	19.46	6.07
· 3	34.63	18.64	44.45	13.39	19.63	12.45	13.39	4.36
4	33.16	17.34	36.12	12.26	19.40	12.13	12.73	3.95
5	26.85	14.79	21.50	7.19	15.89	10.16	8.72	2.60
6	21.31	12.48	16.91	5.38	15.18	9.74	8.07	2.66
7	20.60	12.80	11.88	3.97	12.49	8.23	5.69	1.98
8	18.18	11.04	9.45	3.08	10.65	6.96	4.50	1.59
9	17.34	10.17	8.69	2.57	8.89	5.81	3.74	1.31
10	11.58	6.72	5.65	1.76	7.39	4.76	2.88	0.91
11	10.49	5.89	4.81	1.54	8.07	5.10	3.00	1.04
12	11.83	6.53	4.73	1.61	6.99	4.40	2.45	0.80
13	8.46	4.90	3.59	1.13	7.76	5.01	2.58	0.94
1	3.85	4.67	15.53	20.85	3.80	4.23	10.99	13.21
2	3.19	3.36	9.89	10.72	2.79	2.84	7.31	8.79
3	3.09	2.87	8.14	8.18	2.49	2.50	5.05	5.96
4	2.93	2.65	6.57	7.13	2.54	2.58	4.77	5.10
5	2.43	2.30	4.01	4.07	2.08	2.17	3.19	3.41
6	1.90	1.87	3.21	2.93	1.86	1.92	2.71	3.00
7	1.73	1.77	2.07	2.20	1.63	1.69	2.00	2.33
8	1.45	1.44	1.58	1.66	1.37	1.40	1.46	1.64
9	1.40	1.36	1.45	1.38	1.14	1.15	1.24	1.34
10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
11	0.94	0.92	0.84	0.87	0.91	0.89	0.84	0.83
12	1.05	1.00	0.87	0.91	0.88	0.87	0.78	0.75
13	0.87	0.85	0.68	0.70	0.77	0.75	0.65	0.74

7.13 x 10^{6} kg/yr in Lake Dora (Tables 7 and 17). However, the areal rate of dry mass sedimentation calculated from these data for Lake Dora (40.2 mg cm⁻² yr⁻¹) is 1.56 times larger than that for Lake Eustis (25.8 mg cm⁻² yr⁻¹). Average decadal dry mass sedimentation rates calculated from ²¹⁰Pb-dated cores for the most recent decade are 43.0 and 24.9 mg cm⁻² yr⁻¹ for Lake Dora and Lake Eustis, respectively (Table 21), 1.73 times larger for Lake Dora. TP sedimentation is greater in Lake Dora, either as an areal or whole-basin estimate, because TP concentrations in recent Lake Dora sediments are more than twice as large as in Lake Eustis sediments.

Other factors, however, may be important in determining the accuracy of estimated whole-basin storage of dry mass and phosphorus. It is possible that site selection for historic cores in Lake Eustis was biased toward stations with low MSR or that Lake Dora data were biased by selecting sites with high MSR. In addition, the relatively low MSR and TP concentration and accumulation rate in Lake Eustis sediments limit the ability to resolve stratigraphic features; thus determining ages for specific stratigraphic features and estimating temporal changes in basin-wide storage of sediments or nutrients in Lake Eustis is more problematic than in Lake Dora which generally has higher MSR and TP concentrations. Finally, uncertainty in absolute ages for stratigraphic zones is undoubtedly a potential source of error in estimating storage rates. For example, a one-yr error in age for the recent stratigraphic zone in Lake Dora (5 yr) amounts to a 20% error in calculations and for Lake Eustis amounts to a 4% error in calculations (25 yr). Additional analysis is needed to resolve the discrepancies for Lake Dora and Lake Eustis between our whole-basin estimate of annual TP sedimentation calculated directly from historic accumulation in sediment cores and the estimate by Fulton (1995) of whole-basin TP retention calculated from mass balances.

Because a large fraction of lake sediments is organic matter as measured by LOI (>60% on average), increases in MSR and OMSR with time (Tables 2, 3, 12 and 13) indicate photosynthetic production of organic matter has increased and lake eutrophication has been progressive. Average relative increases in MSR and OMSR by decade for Lake Dora and Lake Eustis historic cores were comparable over the past 80 yr which indicates that organic matter production contributed to increased MSR of both lakes (Table 21). Finally, average decadal OMSR in the most recent decade in both lakes increased at a greater rate than average decadal MSR which is the expected result of primary production being driven by increasing TP concentrations. These comparisons indicate that photosynthetic production of organic matter contributed to the increased MSR of both lakes, but that organic matter is not fully degraded and therefore is high in recent sediments. Diagenesis in deeper sediments has largely reduced organic matter to refractory compounds.

Data on NAIP or TP concentration and MSR can be used to calculate NAIP or TP storage and then to infer changes in TP concentration in lake water or TP loading to the lake basin in the past 100 years. Decadal rates of NAIP or TP accumulation (Tables 4, 5, 14, and 15), which are the product of MSR and NAIP or TP concentration, increase at a greater rate than MSR because the concentration of both forms of phosphorus increase with time. Average decadal TPAR in Lake Dora increased 15.5 fold and in Lake Eustis increased 11.0 fold compared to the base period (Table 21). The increase in TPAR since 1945 is more than 3-fold in Lake Eustis, and possibly as much as 4-fold in Lake Dora (Table 21). However, the relative increase in NAIPAR was greater than the relative increase in TPAR for both lakes. Since 1945, NAIPAR increased 5-fold in Lake Dora and nearly 4-fold in Lake Eustis. These increased rates of phosphorus accumulation (given the implicit assumption in commonly used phosphorus loading models, i.e., that net phosphorus loading to both lakes increased in proportion to the increase in TP accumulation in the sediments.

Estimating TP sedimentation rates from whole-basin storage depended first on identifying stratigraphic sets of data and second on determining the age represented by each stratigraphic zone of sedimented material. K-means cluster analysis of TP concentration, TC/TN ratio and ash fraction was used to identify two stratigraphic groups of sediments in Lake Dora. Ages for these time-dependent stratigraphic zones were estimated in dated historic cores; the first roughly spanned the interval from 1990 to present (5 yr) and the second from 1945 to 1990 (45 yr). Then the stratigraphic features that identified boundaries between zones were correlated across survey cores. In Lake Eustis, TP concentration, TC/TN ratio and dry density (rho) were used as input variables in K-means cluster analysis to establish stratigraphic zones. Only one zone could be identified and correlated with age-dependent stratigraphic features in dated historic cores. Because establishing an age for this zone was problematic, probable ages ranging from 25 to 45 yr were used in the calculations of TP sedimentation.

Our unpublished results on K-means cluster analysis for Lake Apopka and other Florida lakes have shown that only a few variables are needed to separate sediment samples into stratigraphic groups, either from individual cores or from larger data sets for individual lakes, into two or more groups. Sediment variables used in these studies include TP concentration, % dry weight or dry density (rho), TC/TN ratio and ash fraction. TP concentration was used because phosphorus is the major limiting nutrient for fresh-water phytoplankton or macrophytes. In addition, TP concentration generally increases upcore (Schelske 1997, 1998), and an upcore increase in TP is an inference for TP enrichment of surface waters and a proportional increase in phosphorus loading. The % dry weight or dry density is an important variable because it generally increases downcore as the result of sediment compaction and may increase with a change in other sediment characteristics. For example, % dry weight increases sharply in Lake Apopka at the boundary between sediments produced during the phytoplankton phase and sediments produced during the older macrophyte phase (Schelske 1997). If phytoplankton is the major source of sedimented organic matter, the TC/TN ratio will be lower than if macrophytes are the source because macrophytes contain structural carbon not found in phytoplankton. The TC/TN ratio, therefore, is a proxy for the source of organic matter in sediments. Finally, ash fraction is an important variable to use in cluster analysis of highly organic sediments because its relative variation is greater than that of organic matter determined by LOI (see Tables 1 and 10). The ash fraction is an important variable because recent sediments in the eutrophic or hypereutrophic Ocklawaha lakes are probably derived largely from byproducts of phytoplankton production (Schelske 1997). Such sediments are highly organic (relatively small ash fraction) compared to deeper sediments.

The composition of diatom microfossils in the two lakes is similar in that the predisturbance community (at least an age of 100 yr) is composed of benthic and periphytic species that are associated with moderate nutrient enrichment. This microfossil flora found at depth is more diverse and generally is used to infer a macrophyte-dominated lake, lake water with a lower nutrient content than at present, or some combination of both. It is characterized by benthic taxa including the genera Pinnularia, Nitzschia, Navicula, Amphora, Epithemia, Gomphonema, Stauroneis and Cymbella. By contrast, the community in surface sediments of Lake Eustis is composed mainly of Aulacoseira ambigua, a meroplanktonic taxon that is associated with eutrophic or hypereutrophic conditions. A similar meroplankton species, Aulacoseira italica, is dominant in near-surface sediment assemblages in Lake Apopka (Schelske 1997). The meroplanktonic A. ambigua is much less abundant in the surface assemblage in Lake Dora than in Lake Eustis. Dominant taxa in Lake Dora surface sediments are *Pseudostaurosira brevistriata*, Staurosirella pinnata and several subspecies of Staurosira construens. These taxa are also indicators of eutrophic to hypereutrophic conditions in which macrophytes are relatively unimportant (Whitmore 1989). Historic diatom assemblages in many eutrophic or hypereutrophic Florida lakes are similar to those found in the surface sediments of Lake Dora and Lake Eustis.

Diatom microfossils in Lake Dora and Lake Eustis also shift upcore from benthic forms to planktonic forms as the TC/TN ratio of organic matter decreases. The decrease in TC/TN ratio was used to infer a primary producer community shift from macrophytes to phytoplankton in Lake Apopka (Schelske 1997). Therefore, the change in TC/TN ratio in Lake Dora and Lake Eustis appears to be a proxy for increased abundance of planktonic or meroplanktonic diatoms as the lakes became more eutrophic. Such a change also can be a proxy for decreased water transparency as phytoplankton become more abundant or replace macrophytes.

Inferences of limnetic TP from analysis of microfossil diatoms in historic sediment cores also provide evidence of eutrophication in Lake Dora and Lake Eustis. Inferences of limnetic TP in Lake Dora indicate a large increase in TP concentration with time, a peak in TP concentration in the 1970s and a concentration of 95 μ g/L in surface sediments. Modern measured means for limnetic TP of 71 μ g/L for west Lake Dora and 92 μ g/L for east Lake Dora (Canfield et al. 1995) are within the 95% confidence interval for inferred limnetic TP, which suggests that the diatom-based TP predictive model (Brenner et al. 1993) is reliable in Lake Dora. However, a higher mean measured TP of 138 µg/L for Lake Dora (Fulton 1995) is greater than the 95% confidence interval for inferred limnetic TP (127 μ g/L). Inferences of limnetic TP in Lake Eustis also indicate a large increase in phosphorus concentration with time, with the greatest change after 1950 in LE-28H-98 and after 1970 in LE-13H. These inferred TP concentrations indicate that water column TP increased and peaked in the 1950s and 1970s. After this increase, inferred TP concentrations over the remainder of the sediment record were relatively constant with the exception of one large value for LE-28H. Total P inferences for the most recent samples of approximately 100 μ g/L are high compared to means from reported water quality measurements of 68 μ g/L (Fulton 1995) and 39 μ g/L (Canfield et al. 1995). Absolute TP inference values may not be reliable for recent decades in Lake Eustis, but overall trends suggest an increase in trophic state that is documented by distinct qualitative shifts in the diatom assemblages over time.

Two different diatom communities are found in surface sediments of eutrophic or hypereutrophic Florida lakes which for purposes of convenience have been termed Case 1 and Case 2 lakes (Schelske 1998). Case 1 lakes are those in which either A. *italica* or A. *ambigua* is dominant in surface sediments and Case 2 lakes are those in which one or more taxa of Pseudostaurosira brevistriata, Staurosirella pinnata and several subspecies of Staurosira construens are dominant in surface sediments. Lake Eustis is a Case 1 lake because A. ambigua in two cores from this lake comprised from 64 to 85% of the surface microfossil assemblage. Case 2 species were found at deeper depths. By contrast, A. ambigua comprises only 33% of surface microfossil assemblage in Lake Dora; by including P. brevistriata, the two species combined comprise more than half of the surface microfossil community. Case 1 and Case 2 lakes cannot be separated on the basis of trophic state (Schelske 1998). For example, Case 1 lakes such as Lake Apopka and Lake Griffin are more phosphorus enriched than Lake Eustis; and Lake Dora which is a Case 2 lake is more phosphorus enriched than Lake Eustis. Biological, physical or morphometric factors in addition to nutrient enrichment may play a role in determining whether the surface diatom assemblage fits the Case 1 or Case 2 category. Polyphosphate storage by meroplanktonic algae (Kenney et al. in revision, Schelske 1997) may provide one important mechanism for this distinction.

LITERATURE CITED

- Appleby, P. G. and F. Oldfield. 1983. The assessment of ²¹⁰Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29-35.
- Binford, M. W. 1990. Calculation and uncertainty analysis of ²¹⁰Pb dates for PIRLA project lake sediment cores. J. Paleolim. 3:253-267.
- Brenner, M., T. J. Whitmore, M. S. Flannery and M. W. Binford. 1993. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake Reserv. Manage. 7: 209-217.
- Canfield, D., Jr., S. Fisher, M. Hoyer, C. Horsburgh, M. Stonecipher, D. Willis, J. Bishop and E. Schulz. 1995. Florida LAKE WATCH Data- 1995. University of Florida IFAS Publication, Gainesville, FL. 400 pp.
- Fisher, M. M., M. Brenner and K. R. Reddy. 1992. A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. J. Paleolim. 7:157-161.
- Fulton, R. S., III. 1995. External nutrient budget and trophic state modeling for lakes in the upper Ocklawaha River basin. Technical Publication SJ95-6. St. Johns River Water Management District, Palatka, Florida.
- Håkanson, L. and M. Jansson. 1983. Principles of lake sedimentology. Springer-Verlag, NY. 316 pp.
- Hanna, D. G. 1933. Diatoms of the Florida peat deposits. 23rd-24th Annual Report of the Florida Geological Survey, pp. 59-120.
- JMP Version 3. 1995. SAS Institute, Inc., Cary, NC. 593 pp.
- Kenney, W.F., C.L. Schelske and A. Chapman. (in revision). Polyphosphate sedimentation in a hypereutrophic lake: Implications for modeling, management and paleolimnology.
- Schelske, C. L. 1997. Sediment and phosphorus deposition in Lake Apopka. Special Publication SJ97-SP21. St. Johns River Water Management District.
- Schelske, C. L. 1998. Sediment and Nutrient Deposition in Lake Griffin. Special Publication SJ98-SP13. St. Johns River Water Management District.
- Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry and C. D. Campbell. 1986.
 Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143:79-86.
- Schelske, C. L., J. A. Robbins, W. D. Gardner, D. J. Conley and R. A. Bourbonniere.
 1988. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario. Can. J. Fish. Aquat. Sci. 45:1291-1303.
- Schelske, C. L., A. Peplow, M. Brenner and C. N. Spencer. 1994. Low-background gamma counting: Applications for ²¹⁰Pb dating of sediments. J. Paleolim. 10:115-128.

- Van der Werff, A. 1955. A new method of concentrating and cleaning diatoms and other organisms. Verh. Internat. Verein. Limnol. 12:276-277.
- Verardo, D. J., P. N. Froelich and A. McIntyre. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res. 37:157-165.
- Whitmore, T. J. 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882-895.
- Williams, J. D. H., T. P. Murphy and T. Mayer. 1976. Rates of accumulation on phosphorus forms in Lake Erie sediments. J. Fish Res. Bd. Can. 33:430-439.

LIST OF APPENDICES

- Appendix A. Lake Dora Survey Sites
- Appendix B. Lake Dora Historic Sites
- Appendix C. Lake Eustis Survey Sites
- Appendix D. Lake Eustis Historic Sites

Appendix E. Physical and Chemical Data: Lake Dora Survey Cores

Appendix F. Physical and Chemical Data: Lake Dora Historic Cores

Appendix G. Physical and Chemical Data: Lake Eustis Survey Cores

Appendix H. Physical and Chemical Data: Lake Eustis Historic Cores

Appendix I. Radiometric Data: Lake Dora Historic Cores

Appendix J. Radiometric Data: Lake Eustis Historic Cores

- Appendix K. Diatom Counts: Lake Dora Historic Cores, LD-3H-95 and LD-10H-95
- Appendix L. Diatom Counts: Lake Eustis Historic Cores, LE-13H-95 and LE-28H-96
- Appendix M. Results of Cluster Analyses for Lake Dora Survey Cores, Phase I and Lake Eustis Survey Cores, Phase II

APPENDIX A

LAKE DORA SURVEY SITES

Field core description and station location for survey cores collected during Phase I, Lake Dora.

Key to Field Notes

- Station Location Data for stations are latitude and longitude values obtained from a Trimble Navigation Global Positioning System Pathfinder. Station locations were stored as waypoint values on the system. An initial reading was taken after anchoring on station and a second reading was taken when work was completed. Only one reading is recorded here.
- Sediment Survey Data include information on water depth, sediment thickness, and descriptions of the sediment cores retrieved.
- Depth of the water column was determined by sounding with a Secchi disc on a metered line.
- Depth to hard bottom was measured by inserting metered electrical conduit rods into the sediment until they bottomed on hard, sandy deposits.
- Soft sediment thickness was estimated by subtracting the depth of the water column from the depth to hard bottom.
- Sediment core length was determined by measuring the retrieved core with a meter stick.
- Sediment core descriptions were made before sediment cores were extruded. Additional descriptions were made as the cores were sectioned.

LAKE DORA PHASE I SURVEY

Station #1		Station #5	
Core ID:	LD-1S-96	Core ID:	LD-5S-96
Collected: Location: Length: Description: Water Depth:	23 January 1996 28° 47' 37.3" N 81° 39' 01.0" W 130 cm 0-23 cm unconsolidated floc. No visible stratigraphy 360 cm	Collected: Location: Length: Description:	23 January 1996 28° 47' 35.3" N 81° 39' 49.0" W 125 cm 0-25 cm unconsolidated floc. Red-brown floc to 63 cm, blue- grey to 94 cm, dark grey-brown below
Soft Sediment	(10)	Water Depth:	420 cm
Thickness:	613 cm	Soft Sediment Thickness:	464 cm
Station #2		Station #6	
Core ID:	LD-2S-96	Core ID:	LD-6S-96
Collected: Location: Length: Description: Water Depth: Soft Sediment Thickness:	23 January 1996 28° 47' 57.9" N 81° 39' 16.0" W 165 cm, sectioned to 130 cm. 0-33 cm unconsolidated red brown floc. 65-115 cm light grey brown 115 cm brown 164/165 cm blue grey 370 cm	Collected: Location: Length: Description: Water Depth: Soft Sediment Thickness:	 23 January 1996 28° 47' 53.2" N 81° 40' 00.6" W 130 cm 0-27 cm unconsolidated floc. Red-brown floc to 63 cm, blue- grey to 71 cm, darker grey- brown below 400 cm 414 cm
Station #4		Station #7	
Core ID:	LD-4S-96	Core ID:	LD-7S-96
Collected: Location: Length: Description:	23 January 1996 28° 47' 54.7" N 81° 39' 36.5" W 130 cm 0-43 cm unconsolidated floc. Red-brown floc to 52 cm, blue- grey sediment from 52 to 95 cm, dark grey-brown below 95 cm	Collected: Location: Length: Description:	25 January 1996 28° 47' 04.6" N 81° 40' 31.9" W 55 cm 0-37 cm unconsolidated floc. Red-brown floc to 52 cm, sand below
Water Depth:	390 cm	water Depin:	590 UII
Soft Sediment Thickness:	585 cm	Thickness:	55 cm

Station #8		Station #12	
Core ID:	LD-8S-96	Core ID:	LD-12S-96
Collected: Location: Length: Description:	26 January 1996 28° 47' 20.9" N 81° 40' 48.5" W 130 cm 0-41 cm unconsolidated floc. Red-brown floc to 41 cm, green smoother sediments to 122 cm, lighter green mottled below	Collected: Location: Length: Description:	6 February 1996 28° 47' 20.4" N 81° 41' 46.0" W 130 cm 0-18 cm unconsolidated floc. Light brown floc to 87 cm, darker brown with some sand to 100 cm, darker (chocolate) brown below
Water Depth:	360 cm	Water Depth:	410 cm
Soft Sediment Thickness:	220 cm	Soft Sediment Thickness:	170 cm
Station #9		Station #13	
Core ID:	LD-9S-96	Core ID:	LD-13S-96
Collected: Location: Length: Description:	25 January 1996 28° 46' 44.7" N 81° 40' 38.5" W 70 cm 0-21 cm unconsolidated floc.Red-brown floc to 21 cm, light green brown to 32 cm, dark green to 70 cm, sand below	Collected: Location: Length: Description: Water Depth:	6 February 1996 28° 46′ 53.0" N 81° 41′ 56.2" W 5 cm Sand 290 cm
Water Depth:	350 cm		
Soft Sediment Thickness:	60 cm		
Station #11		Station #15	
Core ID:	LD-11S-96	Core ID:	LD-15S-96
Collected: Location: Length: Description:	26 January 1996 28° 47' 22.5" N 81° 41' 14.4" W 90 cm (lost bottom on extrusion) 0-42 unconsolidated floc. Red- brown floc to 42 cm, dark green smother textured sediment to 113 cm, darker green mottled below	Collected: Location: Length: Description: Water Depth: Soft Sediment	6 February 1996 28° 47' 50.3" N 81° 42' 34.0" W 127 cm Light red-brown floc to 17 cm, green-brown sediments with some sand below 320 cm
Water Depth:	400 cm	Thickness:	165 cm

.

Station #16		Station #19	
Core ID:	LD-16S-96	Core ID:	LD-19S-96
Collected: Location: Length: Description:	6 February 1996 28° 46' 55.0" N 81° 42' 28.5" W 130 cm Light brown floc to 67 cm, darker green-grey sediments to 114 cm, dark brown below	Collected: Location: Length: Description: Water Depth:	8 February 1996 28° 47' 22.0" N 81° 43' 23.4" W 115 cm Dark green-grey sediments lighten down core 340 cm
Water Depth:	360 cm	Soft Sediment	
Soft Sediment Thickness:	248 cm	Thickness:	125 cm
Station #17		Station #20	
Core ID:	LD-17S-96	Core ID:	LD-20S-96
Collected: Location: Length: Description:	6 February 1996 28° 47' 21.4" N 81° 42' 50.8" W 130 cm 0-38 cm unconsolidated floc. Red-brown floc with plant fibers to 42 cm, grey-green smoother sediments below	Collected: Location: Length: Description:	8 February 1996 28° 47′ 18.5" N 81° 43′ 57.8" W 5 cm Approximately 7 cm of sand mixed with dark organic sediment, layer of gastropod shells followed by pure sand below
Water Depth:	340 cm	Water Depth:	220 cm
Soft Sediment Thickness:	275 cm	Soft Sediment Thickness:	15 cm
Station #18			
Core ID:	LD-18S-96		
Collected: Location: Length: Description: Water Depth:	8 February 1996 28° 47′ 47.5" N 81° 43′ 07.8" W 0 cm Loose sand, No samples 360 cm		

Soft Sediment Thickness: 4

45 cm

APPENDIX B

LAKE DORA HISTORIC SITES

Field core description and station location for historic cores collected during Phase I and Phase II, Lake Dora.

Key to Field Notes

- Station Location Data for stations are latitude and longitude values obtained from a Trimble Navigation Global Positioning System Pathfinder. Station locations were stored as waypoint values on the system. An initial reading was taken after anchoring on station and a second reading was taken when work was completed. Only one reading is recorded here.
- Sediment Survey Data include information on water depth, sediment thickness, and descriptions of the sediment cores retrieved.
- Depth of the water column was determined by sounding with a Secchi disc on a metered line.
- Depth to hard bottom was measured by inserting metered electrical conduit rods into the sediment until they bottomed on hard, sandy deposits.
- Soft sediment thickness was estimated by subtracting the depth of the water column from the depth to hard bottom.

Sediment core length was determined by measuring the retrieved core with a meter stick.

Sediment core descriptions were made before sediment cores were extruded. Additional descriptions were made as the cores were sectioned.

LAKE DORA PHASE I HISTORIC

Station #3

Collected:

Location:

Length:

Station #10

Core ID: LD-3H-95

26 May 1995

28° 47' 35" N

81° 39' 37" W

150 cm

Station #22 Core ID:

> Collected: Location:

Length: Description: 13 February 1996 28° 47' 29.9" N 81° 41' 13.1" W 130 cm 20-24 cm and 38-40 cm, sand 0-45 cm red-brown 45-end darker brown 66-78 cm plant fibers

LD-22H-96

Core ID:	LD-10H-95	Water Depth:	360 cm
Collected: Location:	26 May 1995 28° 46' 59" N 81° 40' 54" W	Soft Sediment Thickness:	225 cm
Length:	136 cm		

Station #14

Core ID:	LD-14H-95
Collected: Location:	26 May 1995 28° 47' 20" N 81° 42' 16" W
Length:	124 cm

Water Depth: 300 cm

Station #21

Core ID:LD-21H-96Collected:13 February 1996Location:28° 48' 07.6" N
81° 39' 51.0" WLength:122 cmDescription:26-28 cm and 54-56 cm, sand
0-58 cm, red-brown floc
58-end darker brown-green 75-
76 cm and 95-97 cm, plant
fibers

Water Depth: 340 cm

Soft Sediment Thickness: 299 cm

Station #6

Core ID:	LD-6H-98
Collected:	24 March 1998
Location:	28° 47' 54.8" N
	81° 40' 00.7" W
Length:	136 cm
Description:	dark organic sediment "floc" to 36 cm, consolidated single peds below 60 cm
Water Depth:	410 cm

Soft Sediment Thickness: 480 cm

Station #12

LD-12H-98
24 March 1998
28° 47' 21.8" N
81° 41' 43.5" W
124 cm
dark brown organic sediment,
gas formation in core tube,
color is darker below 75 cm,
color darkens with H ₂ S smell at
68-72 cm

Water Depth: 425 cm

Soft Sediment

Thickness: 225 cm

APPENDIX C

LAKE EUSTIS SURVEY SITES

Field core description and station location for survey cores collected during Phase I and Phase II, Lake Eustis.

Key to Field Notes

- **Station Location Data** for stations are latitude and longitude values obtained from a Trimble Navigation Global Positioning System Pathfinder. Station locations were stored as waypoint values on the system. An initial reading was taken after anchoring on station and a second reading was taken when work was completed. Only one reading is recorded here.
- Sediment Survey Data include information on water depth, sediment thickness, and descriptions of the sediment cores retrieved.
- Depth of the water column was determined by sounding with a Secchi disc on a metered line.
- Depth to hard bottom was measured by inserting metered electrical conduit rods into the sediment until they bottomed on hard, sandy deposits.
- Soft sediment thickness was estimated by subtracting the depth of the water column from the depth to hard bottom.

Sediment core length was determined by measuring the retrieved core with a meter stick.

Sediment core descriptions were made before sediment cores were extruded. Additional descriptions were made as the cores were sectioned.

LAKE EUSTIS PHASE I SURVEY

Station #1		Station #5	
Core ID:	LE-1S-95	Core ID:	LE-5S-95
Collected: Location:	26 July 95 28° 49' 47.0" N 81° 42' 11.6" W	Collected: Location:	26 July 95 28° 49' 13.4" N 81° 44' 46.1" W
Length: Description:	0 cm No soft sediments, sand and shells	Length: Description:	40 cm Sand at 36 cm
Water Depth:	450 cm	Water Depth:	300 cm
Station #2		Station #6	
Core ID:	LE-2S-95	Core ID:	LE-6S-95
Collected: Location:	26 July 95 28° 50'14.5" N 81° 42' 47.3" W	Collected: Location:	26 July 95 28° 49' 33.2" N 81° 44' 15.1" W
Length: Description:	0 cm No soft sediments, sand and shells	Length: Description:	72 cm Sand at 76 cm
Water Depth:	530 cm	Water Depth:	310 cm
Station #3		Station #7	
Core description	and location are missing.	Core ID:	LE-7S-95
		Collected: Location:	26 July 95 28° 49' 58.5" N 81° 43' 50.7" W
		Length: Description:	80 cm No visible stratigraphy
Station #4		Water Depth:	390 cm
Core ID:	LE-4S-95	04 4 40	
Collected	25 July 95	Station #8	
Location:	28° 50' 59" N ±2 " 81° 41' 51" W ±2 "	Core ID:	LE-8S-95
Length: Description:	80 cm No data	Collected: Location:	26 July 95 28° 50' 20.2" N 81° 43' 23 3" W
Water Depth:	No data	Length: Description:	80 cm Sand at 84-86 cm
Soft Sediment Thickness:	No data	Water Depth:	380 cm

Station #9 Station #14 Core ID: Core ID: LE-9S-95 LE-14S-95 Collected: 26 July 95 Collected: 26 July 95 28° 50' 43.5" N 28° 50' 07.4" N Location: Location: 81° 42' 57.8" W 81° 44' 27.8" W Length: Length: 80 cm 80 cm Description: No visible stratigraphy Description: No visible stratigraphy 370 cm Water Depth: 440 cm Water Depth: Station #10 LE-10S-95 Core ID: Station #15 26 July 95 Collected: 28° 51′ 07.8" N LE-15S-95 Location: Core ID:

43 J. - 18

81° 42' 29.8" W 26 July 95 Length: Collected: 80 cm Description: 28° 50' 30.2" N No visible stratigraphy Location: 81° 43' 59.0" W Water Depth: 320 cm Length: 80 cm Description: No visible stratigraphy Water Depth: 350 cm

Station #11

Core description and location are missing.

Station #12

Core ID:	LE-12S-95	Core ID:	LE-16S-95
Collected:	26 July 95	Collected:	26 July 95
Location:	28° 49' 18.5" N 81° 45' 22.1" W	Location:	28° 50' 53.6" N 81° 43' 31.5" W
Length:	80 cm	Length:	80 cm
Description:	No visible stratigraphy	Description:	No visible stratigraphy
Water Depth:	250 cm	Water Depth:	350 cm

Station #16

Station #17

Station #13

Core ID:	LE-13S-95	Core ID:	LE-17S-95
Collected:	26 July 95	Collected:	26 July 95
Location:	28° 49' 43.7" N 81° 44' 53.9" W	Location:	28° 51' 16.9" N 81° 43' 04.7" W
Length:	80 cm	Length:	80 cm
Description:	No visible stratigraphy	Description:	No visible stratigraphy
Water Depth:	340 cm	Water Depth:	380 cm

Station #18

Core ID:	LE-18S-95	Core ID:	LE-22S-95
Collected: Location:	26 July 95 28° 51' 40.7" N 81° 42' 38.4" W	Collected: Location:	26 July 95 28° 51' 03.2" N 81° 44' 10.0" W
Length: Description:	80 cm Sand at 92 cm	Length: Description:	80 cm No visible stratigraphy
Water Depth:	310 cm	Water Depth:	330 cm

Station #22

Station #23

Station #19

Core ID:	LE-19S-95	Core ID:	LE-238-95
Collected:	26 July 95	Collected:	26 July 95
Location:	28° 52' 03.6" N 81° 42' 11.8" W	Location:	28° 51' 26.6" N 81° 43' 42.7" W
Length:	80 cm	Length:	80 cm
Description:	Sand at 46 cm	Description:	No visible stratigraphy
Water Depth:	250 cm	Water Depth:	320 cm

Station #20		Station #24	Station #24	
Core ID:	LE-20S-95	Core ID:	LE-24S-95	
Collected: Location:	26 July 95 28° 50' 18.5" N 81° 45' 00.6" W	Collected: Location:	26 July 95 28° 51' 49.7" N 81° 43' 14.0" W	
Length: Description:	56 cm Sand at 50 cm	Length: Description:	80 cm No visible stratigraphy	
Water Depth:	350 cm	Water Depth:	330 cm	

Station #21		Station #25	Station #25	
Core ID:	LE-21S-95	Core ID:	LE-25S-95	
Collected:	26 July 95	Collected:	26 July 95	
Location:	28° 50' 42.3" N 81° 44' 35.9" W	Location:	28° 51' 10.7" N 81° 44' 48.2" W	
Length:	80 cm	Length:	80 cm	
Description:	No visible stratigraphy	Description:	No visible stratigraphy	
Water Depth:	290 cm	Water Depth:	310 cm	

Station #26		Station #27	
Core ID:	LE-26S-95	Core ID:	LE-27S-95
Collected: Location:	26 July 95 28° 51' 34.0" N 81° 44' 20.5" W	Collected: Location:	26 July 95 28° 51' 57.6" N 81° 43' 52.3" W
Length: Description:	80 cm No visible stratigraphy	Length: Description:	80 cm No visible stratigraphy
Water Depth:	290 cm	Water Depth:	300 cm

LAKE EUSTIS PHASE II SURVEY

Station LE-1

Station LE-3

Core ID:	LE-1S-97	Core ID:	LE-3S-97
Collected:	19 December 1997	Collected:	18 December 1997
Location:	28° 49' 48.2" N 81° 43' 13.7" W	Location:	28° 50' 36.5" N 81° 42´ 18.2" W
Length:	10 cm, no samples.	Length:	116 cm
Description:	Sand with organic material. 0-10 cm, sand mixed with organic matter, white/brown	Description:	Dark-brown sediment. Floc with worm casings to 27 cm, dark-brown organic matter below 27 cm.
Water Depth: Soft Sediment	515 cm		0-24 cm, suspension with worm casings to 36 cm. White
Thickness:	5 cm		particles 40-44 cm. Extruded as single ped below 52 cm. Plant material at 56-60 and 64- 68 cm.

Water Depth:	330 cm
Soft Sediment	
Thickness:	270 cm

Station	LE-2
Station	

× .

Core ID:	LE-2S-97
Collected: Location:	19 December 1997 28° 50' 14.0" N 81° 42' 44 6" W
Length: Description:	10 cm, no samples. Floc over sand over clay 0-1 cm floc, 1-6 cm sand and organic matter, 6-10 cm grey clay and sand.
Water Depth:	545 cm

Soft Sediment Thickness: 5 cm

Station LE-6

.

LE-4S-97	Core ID:	LE-6S-97
18 December 1997 28° 50' 59.4" N 81° 41' 51.9" W	Collected: Location:	8 December 1997 28° 49' 34.7" N 81° 44' 16.8" W
16 cm Dark-brown organic matter over sand. Floc to 6 cm with shells at 5 cm. Change in consistency at 11 cm. Green algae at sediment water interface. H_2S smell and sandy at 12-16 cm.	Length: Description:	 135 cm Loose unconsolidated floc to 18 cm with a gradual change over the next 18 cm in color and consistency. 4-8 cm, worm-like tubes, 8-12 cm, shells. Sediment becoming lumpy at 16-20 cm, at 28-32 cm much stiffer.
340 cm 30 cm		Extruded as single ped from 36-40 cm. Few shells at 56-60 cm. Less consolidated at 100 cm
	Water Depth: Soft Sediment Thickness:	315 cm 90 cm
	LE-4S-97 18 December 1997 28° 50' 59.4" N 81° 41' 51.9" W 16 cm Dark-brown organic matter over sand. Floc to 6 cm with shells at 5 cm. Change in consistency at 11 cm. Green algae at sediment water interface. H ₂ S smell and sandy at 12-16 cm. 340 cm 30 cm	LE-4S-97Core ID:18 December 1997Collected:28° 50' 59.4" NLocation:81° 41' 51.9" WLocation:16 cmLength:Dark-brown organic matterDescription:over sand. Floc to 6 cm withbells at 5 cm. Change inconsistency at 11 cm.Green algae at sediment waterGreen algae at sediment waterinterface. H ₂ S smell andsandy at 12-16 cm.340 cm30 cmWater Depth:Soft SedimentThickness:

Sta	tion	LE-5

Core ID:	LE-5-937	Core ID:	LE-7S-97
Collected: Location:	8 December 1997 28° 49' 14.1" N 81° 44´ 43 6" W	Collected: Location:	8 December 1997 28° 49' 56.7" N 81° 43' 49 5" W
Length: Description:	16 cm Unconsolidated organic matter to 13 cm. Interbedded sand and mud from 13 to 31 cm with distinct bands at 15, 19 and 24 cm with a thick band at 26-28 cm. 31-43 cm pure fine white sand, difficult to extrude. First 16 cm saved as composite sample.	Length: Description:	 116 cm Entire core is dark brown soft sediment with no distinct stratigraphy to 46 cm where scattered sand veins are found to 69 cm. 0-4 cm, worm-like structures. Algae (green color), 4-8 cm. Shells to 20 cm where sediments become stiffer.
Water Depth: Soft Sediment Thickness:	315 cm 60 cm	Water Depth: Soft Sediment Thickness:	Plant fibers and single ped at 20-24 cm. Sand at 28 cm with scattered large sand grains at 32-36 and 44-48 cm. 72-76 cm, red oval structures, probably of plant origin. 400 cm 315 cm

Core ID:	LE-8S-97
Collected:	8 December 1997
Location:	28° 50' 22.2" N
	81° 43' 23.4" W
Length:	110 cm
Description:	Core is mostly soft sediment with some evidence of sand. Worm-like structures 0-8 cm. 24-28 cm sediment becoming lumpy. 28-32 cm single ped, jelly-like texture. 52-56 cm shells, white fragments or
	precipitate.
Water Depth: Soft Sediment	370 cm
Thickness:	375 cm

Station LE-9

Core ID:	LE-9S-97
Collected:	8 December 1997
Location:	28° 50' 44.8" N
I ength:	81° 42' 58.0" W
Denorintiana	
Description:	Soft brown sediment over
	entire core with a few shells at
	28 cm. Sediment similar to
	LE-8.
	0-4 cm worm-like structures.
	28-36 cm clumpy. 36-40
	single ped.
Water Depth:	380 cm
Soft Sediment	500 011
Thickness:	340 cm

Station LE-10

Core ID:	LE-10S-97
Collected:	18 December 1997 28° 51' 08 0" N
Location.	81° 42' 28.6" W
Length:	140 cm
Description:	Dark-brown sediment with floc
	and few worm casings to 1/
	cm. White particles at 9 cm,
	shells at 22 cm, plant fibers at
	60 cm. Sand at 93-95, 98-193
	and 106-107 cm. Red"rust"
	particles at 95-98 cm and plant
	material at 132 cm.
	0-20 cm suspension with
	worm casings to 38 cm Shells
	4-8 cm white particles 20-24
	cm with live chironomid at 24
	om Extruded as single pod
	halam 29 and Lange and
й. Г	below 28 cm. Large sand
	grains 68-72 cm and sand
	present 92-104 cm.
XXZ-A D	240

Water Depth: Soft Sediment Thickness: 340 cm 270 cm

Core ID:	LE-11S-97
Collected:	9 December 1997
Location:	28° 51' 32.6" N 81° 42' 02.6" W
Length:	143 cm
Description:	Same dark-brown organic
-	material as found in previous
	cores. Color change at 34.5
	cm. Plant fiber at 85 and 111
	cm. Sand at 95, 100, and 119
	cm.
	12-16 cm, large plant
	fragment. Unconsolidated
	sediment becoming stiffer
	from 28-36 cm. Ped section
	at 30-40 cm contains plant
Water Donth	200 om
Soft Sediment	290 UIII
Thickness:	435 cm

Core ID:	LE-12S-97
Collected:	10 December 1997
Location:	28° 49' 19.6" N
	81° 45' 22.3" W
Length:	77 cm
Description:	Soft-brown organic sediment
Description.	except bottom with sand at
	bottom
	0.8 cm worm like material
	0-8 cm, worm-like material.
	8-16 cm no longer suspension,
	plant fragments. 16-24 cm,
	orange particles, smooth
	oblong shapes, possible
	mineral material. 24-28 cm.
	ped-like section, 44-48 cm.
	some consistency but not
	single ped Macrophytes
	68 cm to bottom
Water Deptn:	250 cm
Soft Sediment	
Thickness:	150 cm

Station LE-13

Core ID:	LE-13S-97
Collected:	19 December 1997
Location:	28° 49' 42.0" N 81° 44' 55 4" W
Length:	131 cm
Description:	Dark-brown sediment. 0-17 cm floc with sand at 37, 51.
	74, 83 and 97 cm.
	Hydra-like"critters" and green
	algae at sed/water interface. 0-
	4 cm worm-like casts, live red
	worm at 8 cm. Suspension
	above 12 cm. Extruded as
	single ped below 28 cm. 28-
	32 cm plant fibers. Sand
	grains present below 32 cm
	and plant fibers below 92 cm.
Water Depth: Soft Sediment	330 cm
Thickness:	275 cm

Station LE-14

Core ID:LE-14S-97Collected:18 December 1997Location:28° 50' 06.5" N
81° 44' 27.1" WLength:140 cm
Dark-brown sedime
lighter color materia
floc with worm case

140 cm Dark-brown sediments over lighter color material. 0-18 cm floc with worm casings, 28 cm darker brown, 49-56 small sand layer, 63 cm sand, 70 cm lighter brown, 93 cm down shells intermixed, 96-108 mottled matrix (dark and light brown), 108-125 light brown with shells, 125-130 clay-like material, 130-140 similar to 108-125.

0-12 cm suspension, 24-28 small white particles, 28-32 extruded as single ped, 44-48 plant fragments, 84-88 texture change, 88-92 shells, and 96-100 many shells.

Water Depth:	525 cm
Soft Sediment	
Thickness:	545 cm

Core ID:	LE-15S-97
Collected:	18 December 1997
Location:	28° 50' 30.5" N 81° 43' 58 6" W
Length:	140 cm
Description:	Dark-brown sediment with floc and worm casings to 22 cm. Sand at 63, 86-89 and 91 cm. Plant fibers at 79, 106, 131 cm. Gas formation throughout core. 0-12 cm worm casings. 0-16 cm suspension, extruded as single ped below 52 cm. 64- 76 cm very sandy, plant fibers from 112-116 cm.
Water Depth:	375 cm
Thickness:	305 cm

Core ID:	LE-16S-97
Collected: Location:	18 December 1997 28° 50' 53.7" N 81° 43' 32.3" W
Length: Description:	148 cm Dark-brown sediment with change in consistency at 18 cm. 47 cm plant material, 53 cm white particles. Sand at 57, 64-65 and 72 cm. Plant material and sand at 61 cm. Rust-colored particle at 67 cm. 133-145 cm mottled brown and black. 145 cm and below light brown with shells. 0-4 cm algae and worm casts. Suspension above 16 cm. Plant fibers 16-20 cm. Extruded as single ped below 32-36 cm. 48-52 cm H ₂ S
Water Depth:	370 cm

Station LE-18

Station LE-19

LE-18S-97
9 December 1997
28° 51' 40.0" N
81° 42' 37.4" W
120 cm
Dark-brown sediment like
other stations with thin sand
layer at 41 cm and small
amount of sand at 64 and 67
cm.
16-24 cm, slightly clumped.
First, jelly-like ped at 24-28
cm. Fish vertebrae at 116-120
cm
320 cm
270 cm

Water Depth: 370 cm Soft Sediment Thickness: 320 cm

Core ID:	LE-17S-97	Core ID:	LE-19S-97
Collected: Location:	18 December 1997 28° 51' 17.8" N 81° 43' 02 4" W	Collected: Location:	9 December 1997 28° 52' 02.0" N 81° 42' 12 1" W
Length: Description:	123 cm Dark-brown sediment. Floc from 0-20 cm with worm casings to 16 cm. with suspension above 12 cm. White particles at 25 cm. Rust-colored particles at 93 cm. 0-12 cm suspension with invertebrates (Daphnia?) at sed/water interface. Below 32 cm extruded as single ped. H ₂ S smell at 62 cm.	Length: Description: Water Depth:	130 cm Green glob (ball) at surface with one shell at 15 cm. Sand at 59, 67, 84, 90 and 99 cm. Sharp contact and distinct color, more orange at 125 cm. Bottom orange-colored section contains gelatinous and spongy plant material. 24-28 cm lumpy, extracted as ped. 28-36 cm lumpy with first ped section at 36-40 cm. 265 cm
Water Depth: Soft Sediment	395 cm	Soft Sediment Thickness:	275 cm
Thickness:	420 cm		

Station LE-20		Station LE-22		
Core ID:	LE-20S-97	Core ID:	LE-22S-97	
Collected: Location: Length: Description:	19 December 1997 28° 50' 15.8" N 81° 44' 59.7" W 40 cm Dark brown organic sediments to 23 cm. 0-10 cm floc with green algae and worm castings. 10-17 cm somewhat	Collected: Location: Length: Description:	18 December 1997 28° 51' 04.4" N 81° 44' 09.2" W 136 cm Dark-brown sediment with floc and worm castings to 23 cm. Sand at 75-77 cm. Mottled light and dark brown at 129	
	consolidated. Floc 17-23 cm. 23-34 cm fine sand with organic matter and shells. 34- 36 cm dark layer. 36-40 cm coarse sand with very little organic matter.		cm. 0-16 cm suspension with worm castings to 36 cm. Extruded as single ped below 36 cm. Plant fibers at 4-8 and 32-36 cm. Sand at 56-64 cm. HoS smell at 120 cm	
Water Depth: Soft Sediment	370 cm	Water Depth:	360 cm	
Thickness:	65 cm	Soft Sediment Thickness:	320 cm	

Station LE-21

Station LE-23

.

Core ID:	LE-21S-97	Core ID:	LE-23S-97
Collected: Location:	9 December 1997 28° 50' 41.3" N 81° 44' 35.2" W	Collected: Location:	18 December 1997 28° 51' 26.7" N 81° 43' 40.6" W
Length: Description:	120 cm Very little visible stratigraphy. Sand visible at 42, 57, 85, 92 and 117 cm. Lost approximately 1 cm surface flocculent material. Worm-like structures at 4-20 cm. 16-20 cm sediments becoming clumpy, 20-24 more consolidated and jelly-like to 32 cm. 28-32 cm, single ped.	Length: Description:	 136 cm Dark-brown sediment with floc to 23.5 cm and worm casings to 33 cm. Sand at 77, 103, and 126 cm and plant fibers at 96 cm. 0-16 cm suspension with worm castings to 36 cm. Extruded as single ped below 32 cm. Plant fibers at 80-84 cm. H₂S smell at 104-108 cm.
Water Depth: Soft Sediment Thickness:	310 cm 600 cm	Water Depth: Soft Sediment Thickness:	345 cm 610 cm

Core ID:	LE-23S-97	Core ID:	LE-26S-97
Collected:	9 December 1997	Collected:	9 December 1997
Location:	28° 51' 51.6" N 81° 43' 13 2" W	Location:	28° 51' 32.1" N 81° 44' 22 3" W
Length:	125 cm	Length:	120 cm
Description:	Dark-brown sediment with sand layers at 70 and 80-84 cm and some sand at 89 cm. 0-8 cm, worm-like structures and small balls of green algae like balls at LE-7. Clumpy at 24-28 cm and a single ped at 32-36 cm. Part of leaf, possibly Vallisneria or sedge at	Description:	Dark-brown sediment with very little stratigraphy, sand layer at 106 cm and sand from 107-120 cm but no layer. 0-8 cm, worm-like structures, sediment becoming clumpy from 12-20 cm. 24-28 cm jelly-like sediment. H ₂ S odor at 84-88 cm.
	92-96 cm.	water Depth:	300 cm
Water Depth: Soft Sediment	330 cm	Soft Sediment Thickness:	345 cm
Thickness:	230 cm		

Station LE-26

Station LE-27

.

Core ID:	LE-25S-97	Core ID:	LE-27S-97
Collected:	9 December 1997	Collected:	9 December 1997
Location:	28° 51' 09.5" N 81° 44' 47.0" W	Location:	28° 51' 56.7" N 81° 43' 51.5" W
Length:	115 cm	Length:	110 cm
Description:	Dark brown sediment, like other cores, little visible stratigraphy, small shells at 11 cm, sand at 73 and 91 cm. 0-4 cm, worm-like structures. 16-26 cm, still loose sediment with jelly-like ped at 22-24 and 24-28 cm.	Description:	Dark-brown sediment, with sand layers at 47, 66 and 80 cm and a pocket of sand at 70 cm. 0-12 cm, worm-like structures. Nearly ped-like and fairly loose sediment from 20-36 cm. Single ped section, 36-40 cm.
Water Depth: Soft Sediment	310 cm	Water Depth: Soft Sediment	315 cm
Thickness:	335 cm	Thickness:	215 cm
APPENDIX D

LAKE EUSTIS HISTORIC SITES

Field core description and station location for historic cores collected during Phase I and Phase II, Lake Eustis.

Key to Field Notes

- Station Location Data for stations are latitude and longitude values obtained from a Trimble Navigation Global Positioning System Pathfinder. Station locations were stored as waypoint values on the system. An initial reading was taken after anchoring on station and a second reading was taken when work was completed. Only one reading is recorded here.
- Sediment Survey Data include information on water depth, sediment thickness, and descriptions of the sediment cores retrieved.
- Depth of the water column was determined by sounding with a Secchi disc on a metered line.
- Depth to hard bottom was measured by inserting metered electrical conduit rods into the sediment until they bottomed on hard, sandy deposits.
- Soft sediment thickness was estimated by subtracting the depth of the water column from the depth to hard bottom.

Sediment core length was determined by measuring the retrieved core with a meter stick.

Sediment core descriptions were made before sediment cores were extruded. Additional descriptions were made as the cores were sectioned.

LAKE EUSTIS PHASE I HISTORIC

Station #11

Station #29

Core ID:	LE-11H-95	Core ID	LE-29H-96
Collected: Location:	26 May 1995 28° 51' 32.6" N 81° 42' .013" W	Collected: Location:	20 February 1996 28° 50' 14.5" N 81° 43' 59.4" W
Length:	138 cm	Length: Description:	130 cm sand at 65 cm, no other stratigraphy
Station #13		Water Depth:	430 cm
Core ID:	LE-13H-95	Soft Sediment Thickness:	220 cm
Collected: Location:	19 May 1995 28° 49' 46.6" N 81° 44' 54.2" W		
Length:	130 cm		

Station #16

Water Depth: 340 cm

Core ID:	LE-16H-95
Collected Location:	26 May 1995 28° 50' 54" N 81° 43' 43 34" W
Length:	122 cm
Water Depth:	120 cm

Station #28

Core ID:	LE-28H-96
Collected: Location:	20 February 1996 28° 50' 55.4" N 81° 44' 30.9" W
Length: Description:	120 cm sand layers at 57 cm and 79 cm no other stratigraphy
Water Depth:	330 cm
Soft Sediment Thickness:	615 cm

LAKE EUSTIS PHASE II HISTORIC

Station #3

Station #27

Core ID	LE-3H-98	Core ID	LE-27H-98
Collected: Location:	24 March 1998 28° 50' 36.0" N	Collected: Location:	24 March 1998 28° 51' 57.6" N
Length: Description:	81° 42° 17.3" W 134 cm dark brown organic matter "floc" to 26 cm worm-like castings to 10 cm some gas development at and below 46 cm single ped, H ₂ S below 28 cm plant fibers below 128 cm	Length: Description:	81° 43' 52.6" W 146 cm dark brown organic matter over banded mineral seds ~1.1 m, worm-like castings to 10 cm, thin sand layer at ~18 cm, "floc" above 22 cm, sand layer at 61- 63 cm, red-colored plant material 64-68 cm, sand layer with plant material 75 cm, sand
Water Depth:	365 cm		layer ~80-86 cm, transition to pink materials ~106 cm, light
Soft Sediment Thickness:	265 cm		band of sediment ~120-123 cm, dark band of sediment 125-130 cm, dark band of sediment 130- 140 cm, shell layer 140-146
Station LE-13	3	cm,	invertebrates at sed/water interface, single ped below 24 cm. plant fibers below 124 cm
Core ID:	LE-13Pb-97	Water Depth	345 cm
Collected: Location:	19 December 1997 28° 49' 42.0" N	Soft Sediment	545 CIII
Length: Description:	81° 44' 55.3" W 131 cm Dark-brown sediment. Green algae at sed/water interface. Suspension above 16 cm. Worm cases visible to 16 cm. Extruded as single ped below 22 cm. 10-12 cm few sand grains. 30-32 cm coarse sand grains. 32 cm live red worm. 32-34 cm fine sand	Thickness:	210 cm

Water Depth: Soft Sediment Thickness: 330 cm 275 cm

terrestrial leaf.

grains and plant fibers to 40 cm. 38-40 plant fragment. 40-48 cm vertical sand vein. 64-68 cm few

sand grains. 68-108 cm organic

matter intermixed with sand grains. 108-110 cm sand pocket. 114-116 and 128-130 cm

D - 2

APPENDIX E

PHYSICAL AND CHEMICAL DATA LAKE DORA SURVEY CORES

Gravimetric and chemical data, Lake Dora survey cores, Phase I. See Appendix A for collection date, location and description of cores.

CODES:

Depth is depth (cm) Dry is % dry weight Rho is dry weight density (g dry/g cc wet) LOI is % loss on ignition TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio Cum weight is cumulative mass (g cm⁻²) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum NAIP is cumulative NAIP (mg cm⁻²) TP is total phosphorus (mg g⁻¹) Cum TP is cumulative TP (mg cm⁻²)

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-		0.000		4 1 1		0.64	0.010		0.010		0.004
I	5	0.232	0.002	77.8	4.11	35.5	8.64	0.013	1.49	0.019	2.65	0.034
1	10	0.875	0.009	75.4	4.24	36.3	8.57	0.054	1.31	0.073	2.65	0.144
1	15	0.956	0.010	74.5	3.99	35.4	8.88	0.108	1.12	0.134	2.70	0.289
1	20	1.365	0.014	69.2	3.73	34.1	9.13	0.178	0.96	0.201	2.11	0.437
1	25	1.997	0.020	62.4	3.31	30.9	9.34	0.283	0.70	0.274	1.78	0.624
1	30	3.039	0.031	45.5	2.91	27.8	9.56	0.445	0.54	0.361	1.47	0.863
1	35	4.375	0.045	64.1	2.81	27.4	9.74	0.673	0.35	0.440	1.19	1.134
1	40	3.724	0.038	47.0	2.74	27.4	10.00	0.866	0.39	0.514	1.19	1.363
1	45	5.326	0.055	56.1	2.30	23.6	10.24	1.162	0.37	0.623	1.19	1.714
1	50	3.903	0.040	52.3	2.64	27.5	10.41	1.368	0.37	0.699	1.15	1.950
1	55	4.372	0.045	53.2	2.42	24.7	10.22	1.586	0.38	0.783	1.23	2.218
1	60	4.490	0.046	48.6	2.37	25.3	10.67	1.827	0.42	0.885	1.22	2.512
1	65	4.821	0.049	48.3	2.40	25.7	10.72	2.082	0.35	0.975	1.15	2.807
1	70	5.139	0.053	51.0	2.34	25.3	10.79	2.350	0.27	1.047	0.79	3.019
1	75	5.314	0.055	54.6	2.47	26.8	10.83	2.619	0.26	1.118	0.69	3.204
1	80	5.057	0.052	58.0	2.71	29.5	10.87	2.908	0.23	1.184	0.66	3.396
1	85	4.877	0.050	63.2	2.90	32.4	11.18	3.169	0.21	1.239	0.47	3.520
1	90	4.767	0.049	64.9	2.86	32.7	11.43	3.422	0.19	1.288	0.43	3.629
1	95	4.641	0.047	69.2	2.93	33.1	11.30	3.680	0.18	1.333	0.39	3.731
1	100	3.991	0.041	67.8	2.81	32.1	11.42	3.881	0.16	1.366	0.36	3.804
1	105	4.366	0.045	65.6	2.62	30.3	11.58	4.112	0.15	1.401	0.35	3.885
1	110	4.838	0.050	55.4	2.41	28.0	11.60	4.376	0.16	1.444	0.34	3.974
1	115	4.103	0.042	65.6	2.73	32.9	12.04	4.599	0.14	1.475	0.30	4.041
1	120	5.029	0.051	70.2	2.63	31.3	11.89	4.872	0.10	1.503	0.26	4.113
1	125	4.253	0.043	65.8	2.76	33.0	11.96	5.089	0.12	1.528	0.27	4.171
1	130	4.679	0.048	69.1	2.75	33.2	12.08	5.347	0.11	1.557	0.26	4.237

Lake Dora Survey Cores

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
-	-										• • • •	
2	5	0.697	0.007	81.8	3.93	35.8	9.11	0.036	1.21	0.044	2.40	0.086
2	10	0.752	0.008	80.4	4.77	32.1	6.72	0.076	1.19	0.091	2.55	0.188
2	15	0.829	0.008	81.7	3.92	35.7	9.11	0.120	1.23	0.145	2.68	0.306
2	20	0.877	0.009	77.9	3.79	36.4	9.60	0.167	1.16	0.200	2.58	0.426
2	25	0.941	0.009	74.6	3.65	35.9	9.83	0.213	1.10	0.251	2.18	0.527
2	30	1.589	0.016	73.9	3.64	36.0	9.90	0.297	0.95	0.330	2.17	0.709
2	35	2.036	0.021	66.5	3.38	33.8	10.01	0.404	0.71	0.406	1.81	0.902
2	40	2.242	0.023	61.2	2.94	30.8	10.47	0.518	0.53	0.467	1.60	1.085
2	45	2.836	0.029	58.8	3.02	32.3	10.68	0.679	0.45	0.539	1.26	1.289
2	50	2.795	0.028	55.8	2.53	27.3	10.77	0.819	0.47	0.604	1.35	1.477
2	55	3.616	0.037	55.1	2.44	27.6	11.30	1.014	0.43	0.688	1.29	1.728
2	60	3.453	0.035	56.4	2.45	27.9	11.37	1.197	0.38	0.757	1.03	1.917
2	65	3.471	0.035	61.4	2.59	28.1	10.86	1.365	0.33	0.812	0.93	2.073
2	70	3.629	0.037	58.2	2.61	28.8	11.05	1.563	0.30	0.872	0.79	2.230
2	75	3.390	0.034	58.7	2.49	27.6	11.09	1.744	0.34	0.934	0.87	2.388
2	80	3.937	0.040	62.5	2.70	30.6	11.33	1.932	0.23	0.977	0.59	2.499
2	85	3.792	0.039	67.9	2.83	33.0	11.65	2.150	0.19	1.019	0.45	2.597
2	90	3.592	0.037	70.1	2.86	33.8	11.83	2.357	0.18	1.057	0.36	2.672
2	95	3.484	0.035	68.5	2.80	32.7	11.68	2.525	0.16	1.084	0.34	2.728
2	100	3.522	0.036	71.5	2.86	34.2	11.96	2.717	0.15	1.113	0.30	2.787
2	105	3.553	0.036	69.5	2.90	33.3	11.47	2.909	0.16	1.143	0.31	2.847
2	110	3.787	0.039	69.5	2.87	33.3	11.61	3.110	0.12	1.168	0.26	2.898
2	115	3.515	0.036	70.7	2.89	34.0	11.77	3.293	0.13	1.191	0.25	2.944
2	120	3.774	0.038	67.2	2.86	33.7	11.78	3.481	0.11	1.211	0.22	2.986
2	125	4.159	0.042	64.7	2.76	32.4	11.72	3.707	0.10	1.233	0.22	3.035
2	130	3.932	0.040	71.1	2.82	33.7	11.94	3.921	0.09	1.253	0.22	3.082

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
4	5	0.635	0.006	78.7	4.35	37.0	8.51	0.028	1.36	0.037	2.87	0.079
4	10	0.889	0.009	76.2	4.10	36.5	8.90	0.072	1.25	0.094	2.65	0.197
4	15	1.240	0.012	73.2	3.90	35.1	8.99	0.138	0.95	0.156	2.22	0.343
4	20	1.622	0.016	71.1	3.71	34.0	9.15	0.223	0.79	0.223	2.05	0.518
4	25	1.919	0.019	62.9	3.44	32.0	9.31	0.318	0.61	0.281	1.67	0.675
4	30	2.530	0.026	56.5	3.15	30.6	9.70	0.451	0.49	0.346	1.33	0.853
4	35	2.571	0.026	57.8	2.83	27.8	9.83	0.588	0.47	0.411	1.39	1.044
4	40	3.516	0.036	54.9	2.66	26.6	10.02	0.776	0.37	0.480	1.27	1.281
4	45	3.783	0.039	52,8	2.50	26.0	10.41	0.976	0.92	0.665	1.98	1.678
4	50	3.960	0.040	55.0	2.63	27.8	10.56	1.187	0.31	0.730	0.88	1.864
4	55	3.855	0.039	58.4	2.73	29.1	10.67	1.386	0.22	0.775	0.65	1.993
4	60	3.853	0.039	63.4	2.88	31.6	10.96	1.597	0.21	0.818	0.55	2.108
4	65	4.022	0.041	67.9	2.89	32.2	11.13	1.814	0.17	0.854	0.47	2.211
4	70	3.787	0.039	69.9	2.95	33.5	11.35	2.013	0.12	0.878	0.38	2.287
4	75	3.642	0.037	66.6	2.89	33.0	11.41	2.207	0.13	0.904	0.38	2.361
4	80	3.577	0.036	68.5	2.96	34.2	11.56	2.392	0.12	0.927	0.36	2.427
4	85	3.707	0.038	69.1	2.87	33.6	11.71	2.590	0.12	0.950	0.31	2.487
4	90	3.643	0.037	66.6	2.83	33.2	11.74	2.784	0.16	0.981	0.40	2.565
4	95	3.918	0.040	70.3	2.94	34.6	11.78	2.990	0.11	1.003	0.27	2.620
4	100	3.791	0.039	71.1	2.90	34.5	11.91	3.195	0.11	1.026	0.27	2.675
4	105	3.974	0.040	70.4	2.86	34.4	12.04	3.422	0.11	1.052	0.25	2.731
4	110	4.962	0.051	68.5	2.73	33.5	12.26	3.680	0.11	1.079	0.23	2.792
4	115	4.635	0.047	65.8	2.63	33.3	12.68	3.935	0.10	1.104	0.22	2.848
4	120	4.857	0.050	64.1	2.54	32.7	12.89	4.183	0.08	1.124	0.21	2.900
4	125	4.327	0.044	65.0	2.52	32.9	13.06	4.393	0.09	1.142	0.20	2.941
4	130	5.346	0.055	63.7	2.45	32.1	13.08	4.735	0.09	1.172	0.19	3.005

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
5	5	0 845	0.008	77 4	A 7A	36 5	8 60	0.044	1 28	0.056	3 3 2	0 1/6
5	10	1 018	0.000	73.1	3.01	34.0	8.00	0.044	1.20	0.050	5.52	0.140
5	15	1 307	0.010	72 1	3.81	34.7	0.71	0.077	1.45	0.152	2 42	0.440
5	20	1.327	0.019	63.9	3.62	33.5	9.12	0.107	0.81	0.203	2.42	0.830
5	25	2 378	0.012	52.0	2.76	26.8	9.70	0.204	0.61	0.205	1.98	1.073
5	30	2.370	0.024	497	2.70	28.4	9.81	0.507	0.01	0.337	1.50	1.321
5	35	3.392	0.035	49.0	2.88	28.8	9.99	0.719	0.42	0.501	1.38	1.521
5	40	3.389	0.034	53.4	2.84	28.6	10.06	0.900	0.54	0.599	1.54	1.845
5	45	4.549	0.047	46.8	2.51	26.0	10.34	1.140	0.45	0.707	1.29	2.156
5	50	4.716	0.048	50.9	2.60	27.5	10.58	1.392	0.32	0.788	0.95	2.394
5	55	4.729	0.048	52.7	2.51	26.7	10.63	1.640	0.25	0.851	0.73	2.575
5	60	4.373	0.045	61.4	2.85	30.9	10.86	1.869	0.20	0.896	0.66	2.726
5	65	4.649	0.048	62.5	2.76	30.3	10.96	2.123	0.23	0.953	0.61	2.880
5	70	5.036	0.052	62.8	2.78	31.2	11.22	2.388	0.16	0.994	0.47	3.004
5	75	5.355	0.055	59.4	2.64	30.4	11.50	2.682	0.12	1.030	0.37	3.112
5	80	5.147	0.053	53.5	2.70	31.6	11.71	2.958	0.10	1.058	0.32	3.200
5	85	4.389	0.045	63.2	2.78	33.0	11.87	3.190	0.13	1.088	0.31	3.272
5	90	4.301	0.044	69.0	2.89	34.1	11.81	3.416	0.12	1.114	0.31	3.341
5	95	5.480	0.056	58.7	2.44	29.2	11.98	3.726	0.09	1.142	0.26	3.422
5	100	5.415	0.056	58.0	2.47	31.2	12.64	4.040	0.10	1.173	0.26	3.502
5	105	5.187	0.053	61.1	2.51	31.6	12.58	4.271	0.11	1.199	0.26	3.563
5	110	5.833	0.060	56.8	2.46	31.3	12.73	4.589	0.12	1.237	0.23	3.637
5	115	5.388	0.055	61.7	2.53	32.1	12.69	4.907	0.10	1.269	0.24	3.714
5	120	5.460	0.056	63.6	2.44	31.4	12.87	5.212	0.17	1.322	0.24	3.786
5	125	5.110	0.052	60.7	2.46	31.5	12.80	5.441	0.19	1.365	0.24	3.840

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
6	5	0.889	0.009	75.0	4.19	36.0	8.60	0.050	1.33	0.067	2.95	0.148
6	10	1.269	0.013	77.7	4.34	37.3	8.60	0.121	1.48	0.172	2.96	0.359
6	15	1.398	0.014	76.7	4.20	36.4	8.66	0.196	1.34	0.272	2.97	0.581
6	20	1.883	0.019	83.4	3.62	32.8	9.05	0.294	0.86	0.356	2.08	0.785
6	25	2.344	0.024	84.4	3.71	34.2	9.22	0.414	0.80	0.451	1.78	0.999
6	30	2.753	0.028	65.2	2.92	28.3	9.71	0.561	0.55	0.532	1.56	1.228
6	35	3.037	0.031	68.3	2.84	27.9	9.83	0.724	0.54	0.621	1.34	1.447
6	40	3.184	0.032	52.0	2.79	28.0	10.05	0.894	0.53	0.710	1.43	1.689
6	45	3.686	0.038	50.8	2.48	25.2	10.18	1.081	0.54	0.812	1.32	1.936
6	50	4.395	0.045	49.2	2.22	23.1	10.42	1.325	0.47	0.925	1.10	2.204
6	55	4.412	0.045	52.4	2.50	26.4	10.56	1.560	0.37	1.012	0.80	2.393
6	60	4.213	0.043	57.6	2.71	29.1	10.75	1.779	0.40	1.100	0.82	2.572
6	65	4.372	0.045	62.0	2.87	31.0	10.80	2.005	0.33	1.175	0.55	2.696
6	70	4.426	0.045	62.8	2.79	30.6	10.97	2.256	0.35	1.262	0.55	2.835
6	75	4.752	0.049	63.8	2.95	32.9	11.15	2.502	0.29	1.333	0.44	2.942
6	80	5.241	0.054	64.4	2.90	32.7	11.28	2.804	0.28	1.416	0.37	3.054
6	85	4.885	0.050	66.3	2.89	32.8	11.34	3.057	0.22	1.471	0.34	3.141
6	90	4.507	0.046	68.0	2.91	33.2	11.40	3.287	0.19	1.515	0.35	3.221
6	95	4.416	0.045	67.0	2.93	33.1	11.30	3.525	0.22	1.568	0.35	3.305
6	100	4.512	0.046	68.1	2.86	33.0	11.52	3.772	0.16	1.608	0.32	3.385
6	105	4.438	0.045	69.2	2.92	33.7	11.54	4.013	0.14	1.642	0.30	3.457
6	110	4.572	0.047	69.0	2.91	32.6	11.21	4.276	0.11	1.671	0.29	3.532
6	115	4.623	0.047	68.7	2.92	33.3	11.40	4.497	0.11	1.696	0.27	3.592
6	120	4.605	0.047	67.5	2.89	32.5	11.26	4.746	0.10	1.722	0.26	3.657
6	125	4.486	0.046	68.5	3.00	33.8	11.26	4.993	0.12	1.751	0.26	3.722
6	130	4.345	0.044	70.3	3.00	33.9	11.30	5.238	0.11	1.777	0.25	3.784

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
7	5	0.704	0.007	• • •	3.94	34.3	8.71	0.036	0.98	0.035	2.26	0.081
7	10	1.353	0.014	75.3	3.97	35.3	8.89	0.109	1.08	0.114	2.52	0.265
7	15	1.251	0.013	• • •	4.02	36.3	9.03	0.172	0.94	0.174	2.50	0.424
7	20	1.827	0.018	79.5	3.57	32.9	9.21	0.265	0.87	0.255	2.04	0.614
7	25	3.064	0.031	59.4	3.32	30.8	9.28	0.424	0.68	0.362	1.73	0.889
7	30	3.222	0.033	69.6	2.86	26.8	9.38	0.599	0.58	0.464	1.64	1.175
7	35	3.322	0.034	78.1	3.37	31.7	9.40	0.764	0.66	0.573	1.64	1.445
7	40	4.044	0.041	62.7	2.55	24.3	9.54	0.987	0.57	0.699	1.41	1.759
7	45	3.686	0.038	70.9	3.17	30.3	9.57	1.160	0.58	0.800	1.36	1.993
7	50	4.771	0.049	53.8	2.86	27.7	9.68	1.442	0.44	0.926	1.26	2.348

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
-	_					.						
8	5	1.074	0.011	74.6	3.96	34.4	8.69	0.064	0.96	0.062	2.34	0.150
8	10	1.844	0.019	71.6	3.82	34.8	9.11	0.159	0.88	0.145	2.02	0.342
8	15	2.537	0.026	64.9	3.52	33.2	9.44	0.294	0.56	0.221	1.60	0.558
8	20	3.164	0.032	52.0	3.06	29.8	9.73	0.450	0.52	0.302	1.24	0.752
8	25	3.269	0.033	50.4	2.78	27.8	9.99	0.625	0.50	0.390	1.41	0.998
8	30	3.673	0.037	48.7	2.66	26.8	10.08	0.808	0.32	0.449	1.12	1.204
8	35	4.307	0.044	53.0	2.56	26.9	10.50	1.041	0.34	0.529	1.01	1.440
8	40	5.286	0.054	49.0	2.25	25.1	11.16	1.313	0.27	0.603	0.67	1.623
8	45	5.400	0.056	52.7	2.32	26.2	11.28	1.596	0.25	0.674	0.55	1.779
8	50	5.524	0.057	55.9	2.42	27.5	11.34	1.876	0.19	0.726	0.49	1.917
8	55	6.218	0.064	57.8	2.71	31.2	11.50	2.199	0.17	0.781	0.44	2.058
8	60	6.030	0.062	61.8	2.54	29.6	11.65	2.496	0.14	0.823	0.35	2.161
8	65	6.163	0.064	60.7	2.60	30.6	11.76	2.807	0.15	0.871	0.31	2.257
8	70	5.989	0.062	61.1	2.66	31.0	11.65	3.127	0.11	0.906	0.31	2.356
8	75	5.934	0.061	62.0	2.62	30.6	11.69	3.429	0.09	0.934	0.31	2.449
8	80	5.183	0.053	62.2	2.67	31.3	11.73	3.713	0.12	0.967	0.26	2.523
8	85	5.724	0.059	57.9	2.45	29.3	11.95	4.013	0.15	1.011	0.22	2.589
8	90	5.637	0.058	55.6	2.39	29.2	12.23	4.314	0.14	1.054	0.24	2.662
8	95	6.281	0.065	56.3	2.15	28.1	13.07	4.655	0.10	1.087	0.20	2.730
8	100	6.759	0.070	51.8	2.14	28.7	13.39	5.003	0.10	1.122	0.16	2.786
8	105	6.276	0.065	58.4	2.21	29.6	13.39	5.339	0.10	1.157	0.18	2.848
8	110	6.432	0.066	55.9	2.14	28.9	13.52	5.684	0.11	1.193	0.17	2.906
8	115	7.009	0.073	54.3	2.14	29.2	13.63	6.063	0.07	1.218	0.15	2.962
8	120	6.863	0.071	51.8	2.06	28.9	14.04	6.435	0.06	1.239	0.14	3.014
8	125	6.369	0.066	54.1	1.95	28.5	14.63	6.766	0.05	1.254	0.13	3.055
8	130	6.225	0.064	54.1	1.94	28.6	14.74	7.094	0.05	1.270	0.12	3.096

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
9	5	0.609	0.006	75.9	3.89	34.7	8.93	0.029	0.76	0.022	2.04	0.058
9	10	1.152	0.012	73.8	3.89	35.0	9.00	0.089	0.80	0.070	2.15	0.187
9	15	1.868	0.019	65.6	3.60	34.3	9.53	0.183	0.75	0.141	1.87	0.364
9	20	2.400	0.024	63.2	3.22	30.6	9.49	0.305	0.59	0.213	1.61	0.561
9	25	6.723	0.070	36.5	2.28	22.5	9.88	0.724	0.22	0.305	0.79	0.892
9	30	6.095	0.063	38.8	2.08	22.0	10.57	1.007	0.28	0.385	0.77	1.109
9	35	6.987	0.073	40.8	1.89	21.4	11.31	1.368	0.22	0.465	0.48	1.283
9	40	5.536	0.057	52.0	2.30	28.1	12.22	1.669	0.18	0.520	0.32	1.380
9	45	9.410	0.099	38.5	0.94	12.4	13.14	2.206	0.06	0.553	0.22	1.498
9	50	8.391	0.088	46.7	1.16	15.8	13.65	2.660	0.05	0.576	0.10	1.545
9	55	7.284	0.076	42.5	1.94	27.5	14.18	3.032	0.04	0.590	0.16	1.605
9	60	13.519	0.146	25.7	0.95	12.5	13.20	3.745	0.01	0.600	0.05	1.641
9	65	6.686	0.069	53.2	1.87	27.9	14.91	4.105	0.02	0.607	0.13	1.687
9	70	14.068	0.153	19.8	1.08	14.4	13.34	4.695	0.03	0.625	0.05	1.717

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
11	5	1 204	0.012	76 2	A 11	25.0	0 71	0 000	1 1 1	0.000	0.01	0.104
11	5	1.204	0.012	70.5	4.11	33.9	0.74	0.080	1.11	0.089	2.31	0.184
11	10	1.789	0.018	73.0	3.95	35.4	8.96	0.177	0.99	0.185	2.30	0.408
11	15	2.481	0.025	66.8	3.57	33.1	9.27	0.298	0.76	0.277	1.88	0.635
11	20	3.142	0.032	59.4	2.81	27.8	9.90	0.482	0.53	0.375	1.39	0.891
11	25	3.799	0.039	53.8	2.70	27.7	10.24	0.679	0.37	0.449	1.21	1.130
11	30	6.233	0.064	46.7	1.82	20.3	11.14	1.006	0.26	0.535	0.69	1.354
11	35	6.036	0.062	48.2	2.10	23.9	11.39	1.374	0.21	0.612	0.92	1.694
11	40	7.323	0.076	45.0	2.28	28.2	12.36	1.775	0.11	0.658	0.35	1.835
11	45	6.455	0.067	52.6	2.11	27.5	13.03	2.184	0.07	0.685	0.21	1.922
11	50	7.471	0.078	43.7	2.01	26.7	13.26	2.693	0.07	0.723	0.22	2.031
11	55	5.344	0.055	55.5	2.27	30.2	13.32	3.061	0.05	0.742	0.15	2.086
11	60	4.901	0.050	63.5	2.37	31.9	13.48	3.342	0.04	0.754	0.14	2.126
11	65	6.031	0.062	48.5	2.05	28.5	13.90	3.701	0.06	0.776	0.13	2.173
11	70	6.222	0.064	55.1	2.08	29.9	14.38	4.046	0.04	0.789	0.11	2.212
11	75	5.260	0.054	59.9	2.25	31.8	14.12	4.353	0.04	0.801	0.13	2.251
11	80	5.781	0.060	55.9	2.11	30.4	14.43	4.710	0.06	0.821	0.13	2.297
11	85	6.086	0.063	53.1	1.92	29.1	15.16	5.039	0.04	0.834	0.11	2.334
11	90	6.181	0.064	56.2	1.96	30.1	15.35	5.374	0.03	0.846	0.12	2.373

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	_											
12	5	0.317	0.003	73.8	3.59	29.1	8.10	0.013	0.80	0.010	1.81	0.024
12	10	0.783	0.008	74.3	3.78	34.3	9.08	0.048	0.78	0.027	2.08	0.097
12	15	1.410	0.014	68.9	3.73	33.8	9.06	0.125	0.91	0.097	2.21	0.266
12	20	1.762	0.018	70.8	3.71	34.3	9.25	0.218	0.95	0.186	2.28	0.477
12	25	2.243	0.023	68.8	3.53	33.2	9.41	0.331	1.03	0.302	2.06	0.710
12	30	2.576	0.026	66.5	3.49	33.7	9.67	0.468	1.08	0.450	1.82	0.960
12	35	2.884	0.029	64.6	3.43	32.8	9.57	0.620	0.84	0.577	1.84	1.239
12	40	3.125	0.032	66.0	3.57	34.4	9.63	0.765	0.97	0.717	1.89	1.512
12	45	3.275	0.033	67.2	3.52	34.4	9.78	0.929	0.87	0.861	1.68	1.788
12	50	3.194	0.032	64.2	3.33	32.6	9.80	1.041	0.74	0.943	1.63	1.971
12	55	3.325	0.034	63.4	3.18	31.9	10.03	1.219	0.72	1.071	1.72	2.277
12	60	3.653	0.037	61.1	3.09	31.3	10.13	1.407	0.61	1.185	1.40	2.539
12	65	3.733	0.038	60.7	2.87	29.3	10.22	1.617	0.55	1.300	1.29	2.811
12	70	4.508	0.046	49.6	2.68	28.3	10.56	1.834	0.45	1.398	1.06	3.040
12	75	3.915	0.040	54.7	2.81	28.6	10.16	2.032	0.48	1.492	1.16	3.271
12	80	4.326	0.044	51.3	2.62	27.0	10.29	2.248	0.43	1.585	1.08	3.505
12	85	4.896	0.050	49.2	2.30	25.8	11.21	2.502	0.39	1.685	1.05	3.770
12	90	4.197	0.043	51.0	2.44	25.1	10.27	2.724	0.56	1.808	2.88	4.408
12	95	5.285	0.054	49.8	2.14	25.3	11.83	2.986	0.36	1.903	0.90	4.643
12	100	5.401	0.056	51.6	2.22	27.8	12.52	3.269	0.28	1.982	0.54	4.795
12	105	6.225	0.064	52.2	2.05	27.6	13.44	3.587	0.15	2.030	0.25	4.875
12	110	5.569	0.057	61.1	2.22	30.3	13.64	3.903	0.13	2.070	0.21	4.941
12	115	7.037	0.073	49.9	2.00	27.3	13.67	4.289	0.10	2.109	0.40	5.095
12	120	6.410	0.066	55.1	2.03	28.0	13.78	4.600	0.09	2.137	0.18	5.151
12	125	5.943	0.061	57.7	2.19	30.0	13.69	4.909	0.09	2.166	0.18	5.207
12	130	6.409	0.066	53.6	2.04	28.1	13.76	5.206	0.09	2.193	0.17	5.257

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
15	5	1.549	0.016	66.7	3.46	31.7	9.17	0.073	0.73	0.053	1.63	0.119
15	10	3.041	0.031	52.0	2.72	27.3	10.04	0.233	0.46	0.127	1.10	0.295
15	15	4.005	0.041	50.4	2.36	25.9	10.99	0.411	0.24	0.170	0.94	0.463
15	20	13.118	0.142	21.2	1.46	17.3	11.87	1.174	0.09	0.237	0.11	0.548
15	25	5.572	0.057	54.1	2.17	26.7	12.30	1.481	0.08	0.261	0.15	0.593
15	30	5.412	0.056	59.8	2.35	29.9	12.72	1.765	0.05	0.275	0.15	0.637
15	35	5.421	0.056	61.1	2.42	30.9	12.77	2.053	0.10	0.303	0.16	0.683
15	40	5.384	0.055	62.4	2.45	31.0	12.67	2.348	0.04	0.315	0.23	0.751
15	45	5.786	0.060	58.0	2.24	28.5	12.71	2.640	0.19	0.372	0.66	0.942
15	50	5.085	0.052	63.8	2.48	31.5	12.71	2.924	0.07	0.391	0.17	0.990
15	55	5.274	0.054	64.0	2.41	31.2	12.93	3.212	0.11	0.422	0.15	1.033
15	60	5.377	0.055	63.7	2.44	31.7	13.01	3.506	0.08	0.445	0.15	1.076
15	65	5.803	0.060	61.0	2.27	31.0	13.64	3.797	0.05	0.461	0.14	1.116
15	70	7.828	0.082	46.2	1.65	23.3	14.14	4.248	0.05	0.484	0.09	1.156
15	75	5.462	0.056	63.5	2.22	32.2	14.49	4.534	0.05	0.498	0.11	1.187
15	80	6.290	0.065	58.9	2.00	30.1	15.07	4.866	0.05	0.516	0.11	1.223
15	85	5.962	0.061	63.8	2.22	34.1	15.36	5.171	0.04	0.528	0.13	1.262
15	90	5.535	0.057	70.7	2.44	38.6	15.84	5.479	0.04	0.539	0.16	1.311
15	95	5.958	0.061	68.2	2.31	36.9	15.99	5.779	0.06	0.556	0.15	1.357
15	100	6.346	0.065	66.4	2.30	37.7	16.38	6.146	0.08	0.584	0.13	1.406
15	105	6.590	0.068	59.1	2.09	33.0	15.79	6.461	0.05	0.599	0.14	1.449
15	110	5.446	0.056	72.8	2.43	38.4	15.81	6.759	0.06	0.617	0.15	1.495
15	115	5.489	0.056	72.1	2.38	39.3	16.51	7.070	0.06	0.636	0.16	1.544
15	120	4.864	0.050	73.7	2.46	38.5	15.66	7.314	0.04	0.646	0.18	1.589
15	125	4.701	0,048	68.6	2.48	37.0	14.90	7.565	0.05	0.659	0.13	1.622
15	127	4.714	0.048	70.4	2.40	36.7	15.28	7.760	0.05	0.660	0.13	1.622

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
16	5	0.490	0.005	72.8	4.00	35.5	8.90	0.023	0.95	0.022	1.95	0.045
16	10	1.120	0.011	73.6	3.98	35.5	8.91	0.083	0.92	0.077	2.24	0.179
16	15	1.437	0.014	72.7	3.92	35.7	9.11	0.148	1.00	0.142	2.16	0.319
16	20	1.912	0.019	70.2	3.79	34.8	9.18	0.255	0.91	0.240	1.97	0.530
16	25	2.310	0.023	65.6	3.52	32.6	9.25	0.368	0.71	0.320	1.73	0.726
16	30	2.800	0.028	88.7	3.68	33.6	9.14	0.504	0.77	0.425	1.72	0.961
16	35	3.430	0.035	66.3	3.66	33.7	9.20	0.674	0.64	0.533	1.53	1.219
16	40	3.467	0.035	57.4	3.33	30.9	9.29	0.847	0.46	0.613	1.18	1.423
16	45	3.395	0.035	59.4	3.26	30.3	9.29	1.025	0.41	0.685	0.99	1.598
16	50	3.550	0.036	53.6	3.23	29.9	9.26	1.202	0.43	0.762	0.98	1.772
16	55	4.065	0.042	50.2	3.02	27.5	9.10	1.422	0.34	0.837	0.95	1.981
16	60	3.909	0.040	57.9	3.13	28.5	9.09	1.631	0.40	0.922	1.04	2.199
16	65	3.975	0.041	54.5	2.64	26.8	10.14	1.820	0.39	0.995	1.00	2.389
16	70	4.138	0.042	53.1	2.49	25.7	10.33	2.043	0.43	1.091	1.04	2.619
16	75	4.637	0.047	54.2	2.51	26.5	10.56	2.277	0.39	1.181	0.96	2.843
16	80	5.044	0.052	53.7	2.33	25.4	10.91	2.541	0.43	1.294	0.87	3.073
16	85	5.051	0.052	52.9	2.31	25.7	11.13	2.803	0.42	1.404	0.87	3.302
16	90	5.209	0.053	54.1	2.31	26.7	11.55	3.078	0.34	1.496	0.67	3.486
16	95	5.427	0.056	57.2	2.35	27.8	11.82	3.347	0.29	1.574	0.52	3.626
16	100	5.323	0.055	58.6	2.48	29.0	11.70	3.628	0.28	1.651	0.49	3.763
16	105	5.382	0.055	59.1	2.58	29.5	11.42	3.917	0.29	1.734	0.51	3.910
16	110	5.731	0.059	61.5	2.62	29.9	11.43	4.247	0.29	1.829	0.47	4.065
16	115	5.762	0.059	63.1	2.64	30.4	11.53	4.522	0.25	1.896	0.42	4.179
16	120	5.799	0.060	63.4	2.65	31.0	11.71	4.826	0.24	1.969	0.39	4.297
16	125	6.204	0.064	64.0	2.64	31.2	11.81	5.159	0.19	2.031	0.33	4.406
16	130	6.052	0.062	64.9	2.64	31.2	11.81	5.474	0.19	2.092	0.31	4.504

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	_											
17	5	0.903	0.009	73.5	3.96	35.0	8.83	0.035	0.86	0.030	1.91	0.066
17	10	1.559	0.016	71.9	3.89	34.8	8.94	0.105	0.98	0.099	2.08	0.213
17	15	2.226	0.022	63.3	3.42	32.2	9.43	0.212	0.80	0.184	1.47	0.369
17	20	2.672	0.027	64.2	3.33	32.4	9.71	0.345	0.58	0.261	1.31	0.543
17	25	3.153	0.032	65.7	3.18	31.6	9.94	0.500	0.48	0.336	1.18	0.725
17	30	3.459	0.035	59.9	2.85	29.2	10.23	0.693	0.45	0.422	1.00	0.919
17	35	5.503	0.057	39.0	2.05	23.0	11.20	0.965	0.21	0.478	0.79	1.135
17	40	6.217	0.064	48.9	2.02	24.0	11.90	1.310	0.13	0.523	0.31	1.242
17	45	6.811	0.071	53.0	2.04	24.9	12.23	1.647	0.09	0.554	0.22	1.318
17	50	6.438	0.067	56.3	2.15	27.9	12.96	1.999	0.12	0.596	0.19	1.386
17	55	5.916	0.061	63.2	2.45	32.5	13.27	2.329	0.06	0.615	0.16	1.438
17	60	6.057	0.062	60.7	2.26	29.6	13.10	2.629	0.06	0.632	0.16	1.485
17	65	8.154	0.085	42.3	1.66	22.1	13.32	3.059	0.10	0.676	0.10	1.526
17	70	6.676	0.069	52.2	2.19	30.0	13.71	3.418	0.05	0.695	0.11	1.565
17	75	6.906	0.072	54.4	2.20	30.6	13.89	3.773	0.08	0.724	0.09	1.596
17	80	8.126	0.085	43.9	2.07	28.9	13.95	4.251	0.07	0.758	0.07	1.627
17	85	6.999	0.073	54.0	2.03	28.3	13.93	4.612	0.07	0.782	0.08	1.654
17	90	6.475	0.067	58.3	2.12	30	14.04	4.987	0.05	0.802	0.08	1.685
17	95	6.811	0.070	59.0	2.05	28.5	13.90	5.336	0.07	0.826	0.08	1.714
17	100	6.618	0.068	57.8	2.14	29.4	13.72	5.687	0.04	0.840	0.08	1.742
17	105	6.463	0.067	57.3	2.13	29.2	13.72	5.992	0.06	0.858	0.08	1.767
17	110	6.279	0.065	57.7	2.19	30.0	13.70	6.385	0.04	0.873	0.08	1.798
17	115	5.693	0.059	62.0	2.30	31.0	13.46	6.651	0.06	0.888	0.08	1.819
17	120	5.594	0.058	61.4	2.26	30.6	13.55	6.956	0.03	0.899	0.08	1.844
17	125	5.802	0.060	61.7	2.27	30.8	13.55	7.266	0.04	0.912	0.08	1.868
17	130	6.000	0.062	60.8	2.22	30.2	13.58	7.575	0.06	0.930	0.07	1.890

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	_			<i>.</i>				-				
19	5	1.542	0.016	68.0	3.58	32.8	9.15	0.108	0.71	0.077	1.52	0.164
19	10	3.362	0.034	51.4	3.15	30.2	9.59	0.277	0.51	0.162	1.03	0.338
19	15	5.153	0.053	42.3	2.24	22.2	9.91	0.556	0.39	0.270	0.90	0.589
19	20	10.256	0.109	21.2	2.37	25.1	10.59	1.126	0.24	0.408	0.60	0.933
19	25	6.190	0.064	42.6	2.29	25.6	11.17	1.437	0.27	0.493	0.64	1.131
19	30	6.135	0.063	47.7	2.19	24.6	11.24	1.788	0.24	0.578	0.54	1.322
19	35	6.366	0.066	49.2	2.30	26.6	11.54	2.112	0.20	0.644	0.47	1.473
19	40	6.611	0.068	48.9	2.16	25.4	11.78	2.428	0.21	0.708	0.40	1.598
19	45	7.480	0.078	44.9	2.32	27.2	11.74	2.868	0.16	0.779	0.24	1.702
19	50	7.096	0.074	47.4	2.02	24.6	12.17	3.143	0.09	0.805	0.23	1.765
19	55	7.034	0.073	50.7	2.13	27.1	12.73	3.499	0.08	0.833	0.18	1.831
19	60	7.025	0.073	50.2	2.23	27.9	12.51	3.796	0.11	0.866	0.23	1.898
19	65	7.773	0.081	44.7	2.09	27.0	12.90	4.305	0.11	0.921	0.15	1.976
19	70	7.668	0.080	53.9	2.21	29.0	13.13	4.702	0.07	0.950	0.13	2.027
19	75	7.705	0.080	55.1	2.14	28.3	13.21	5.120	0.05	0.969	0.11	2.071
19	80	9.845	0.104	38.7	1.88	24.9	13.25	5.659	0.03	0.986	0.09	2.118
19	85	10.651	0.113	33.9	1.77	24.1	13.59	6.235	0.07	1.024	0.07	2.160
19	90	11.292	0.120	58.2	1.67	23.0	13.79	6.866	0.03	1.040	0.07	2.205
19	95	9.904	0.105	41.1	1.71	23.3	13.63	7.434	0.02	1.051	0.07	2.245
19	100	9.872	0.104	38.8	1.78	24.5	13.74	7.973	0.01	1.055	0.06	2.278
19	105	12.739	0.137	29.6	1.54	21.2	13.78	8.653	0.01	1.059	0.05	2.315

APPENDIX F

PHYSICAL AND CHEMICAL DATA LAKE DORA HISTORIC CORES

Gravimetric and chemical data, Lake Dora historic cores, Phase I and Phase II. See Appendix B for collection date, location and description of cores.

CODES: Depth is depth (cm) Dry is % dry weight Rho is dry weight density (g dry/g cc wet) LOI is % loss on ignition TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio Cum weight is cumulative mass (g cm⁻²) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum NAIP is cumulative NAIP (mg cm⁻²) TP is total phosphorus (mg g⁻¹) Cum TP is cumulative TP (mg cm⁻²)

.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-											
3H	2	1.093	0.011	82.9	3.90	35.1	9.01	0.016	•••	•••	•••	•••
3H	4	1.020	0.010	78.4	3.85	34.7	9.02	0.035	•••	• • •	2.50	0.048
3H	6	1.002	0.010	78.9	3.84	34.8	9.07	0.055	1.45	0.030	1.73	0.083
3H	8	1.494	0.015	77.4	3.95	34.7	8.79	0.085	1.28	0.068	2.08	0.145
3H	10	2.009	0.020	76.9	4.07	35.3	8.67	0.123	0.83	0.099	2.06	0.223
3H	12	2.194	0.022	69.4	3.86	33.9	8.78	0.164	0.71	0.129	1.89	0.301
3H	14	2.439	0.025	68.1	3.75	33.3	8.87	0.205	0.65	0.156	1.78	0.375
3H	16	2.539	0.026	73.4	3.61	32.0	8.86	0.253	0.53	0.181	1.67	0.455
3H	18	1.220	0.012	58.4	2.94	26.5	9.04	0.277	0.43	0.191	1.38	0.488
3H	20	3.030	0.031	73.4	3.34	30.4	9.11	0.347	0.44	0.222	1.40	0.585
3H	22	3.100	0.031	64.1	3.26	30.8	9.47	0.417	0.43	0.252	1.40	0.683
3H	24	3.455	0.035	62.2	3.19	29.5	9.27	0.480	0.45	0.280	1.44	0.773
3H	26	3.532	0.036	58.6	3.16	29.3	9.27	0.545	0.34	0.302	1.42	0.866
3H	28	3.726	0.038	61.2	3.45	31.4	9.11	0.626	0.38	0.333	1.40	0.979
3H	30	3.627	0.037	58.8	3.12	29.1	9.35	0.711	0.39	0.367	1.34	1.094
3H	32	3.754	0.038	51.6	2.68	25.4	9.50	0.793	0.36	0.396	1.23	1.194
3H	34	3.677	0.037	56.4	2.85	27.4	9.60	0.860	0.39	0.422	1.21	1.275
3H	36	3.704	0.038	58.9	2.87	28.2	9.83	0.941	0.40	0.455	1.42	1.391
3H	38	3.663	0.037	56.2	2.83	26.9	9.50	1.011	0.43	0.485	1.30	1.482
3H	40	3.795	0.039	55.9	2.68	26.7	9.96	1.089	0.40	0.516	1.28	1.581
3H	42	4.071	0.042	53.3	2.59	25.1	9.71	1.176	0.43	0.553	1.27	1.691
3H	44	3.722	0.038	61.5	2.77	27.5	9.93	1.250	0.41	0.584	1.36	1.792
3H	46	3.826	0.039	59.1	2.92	27.8	9.54	1.326	0.45	0.618	1.45	1.902
3H	48	3.936	0.040	59.2	2.97	28.1	9.45	1.406	0.43	0.652	1.26	2.004
3H	50	4.257	0.043	59.7	2.80	27.4	9.77	1.486	0.42	0.686	1.34	2.111
3H	52	4.420	0.045	55.4	2.66	26.2	9.83	1.573	0.71	0.747	1.54	2.244
3H	54	4.246	0.043	52.4	2.90	28.4	9.81	1.662	0.53	0.795	1.36	2.365
3H	56	4.526	0.046	54.5	2.49	25.5	10.25	1.755	0.40	0.832	1.19	2.476
3H	58	4.656	0.048	54.0	2.50	25.5	10.23	1.843	0.33	0.861	0.96	2.561
3H	60	4.495	0.046	59.9	2.74	28.2	10.30	1.934	0.33	0.891	0.88	2.641
3H	62	4.701	0.048	59.4	2.74	27.8	10.12	2.027	0.28	0.917	0.76	2.712
3H	64	4.501	0.046	60.8	2.83	28.2	9.99	2.118	0.32	0.946	0.93	2.796
3H	66	4.615	0.047	65.1	2.88	29.4	10.22	2.203	0.33	0.974	0.91	2.874
3H	68	4.686	0.048	64.8	2.91	30.4	10.44	2.298	0.25	0.998	0.65	2.936
3H	70	4.823	0.049	65.3	2.91	30.8	10.59	2.399	0.22	1.020	0.58	2.994
3H	72	4.858	0.050	68.3	2.98	31.7	10.65	2.496	0.23	1.043	0.57	3.049
3H	74	5.043	0.052	67.2	3.08	32.2	10.45	2.591	0.18	1.059	0.52	3.098
3H	76	5.030	0.052	70.0	3.11	32.8	10.56	2.699	0.18	1.079	0.53	3.156
3H	78	5.161	0.053	70.4	3.03	32.7	10.80	2.795	0.18	1.096	0.53	3.207
3H	80	5.281	0.054	69.3	3.10	32.7	10.53	2.901	0.16	1.113	0.50	3.260
3H	82	5.127	0.053	70.3	3.18	33.4	10.49	3.012	0.17	1.132	0.49	3.314
3H	84	5.109	0.052	70.1	3.11	33.3	10.71	3.105	0.16	1.147	0.48	3.359
3H	86	4.735	0.048	70.4	3.13	33.3	10.63	3.198	0.18	1.164	0.50	3.405
3H	88	4.923	0.050	70.2	3.09	33.1	10.71	3.294	0.18	1.181	0.48	3.451

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
3H	90	5.030	0.052	69.7	3.15	33.2	10.55	3.398	0.16	1.198	0.46	3.499
3H	92	5.249	0.054	70.6	3.10	32.8	10.58	3.497	0.14	1.212	0.41	3.540
3H	94	4.877	0.050	70.9	3.11	34.0	10.92	3.604	0.15	1.227	0.42	3.585
3H	96	4.592	0.047	71.5	3.13	33.8	10.83	3.696	0.19	1.245	0.46	3.627
3H	9 8	4.602	0.047	73.4	3.22	35.2	10.93	3.784	0.17	1.260	0.42	3.664
3H	100	4.588	0.047	72.7	3.14	34.6	11.01	3.859	0.15	1.271	0.42	3.696
3H	102	4.532	0.046	71.9	3.23	34.9	10.81	3.961	0.15	1.287	0.40	3.736
3H	104	4.593	0.047	71.9	3.23	34.3	10.63	4.047	0.14	1.299	0.37	3.768
3H	106	4.495	0.046	72.0	3.26	34.7	10.66	4.140	0.13	1.311	0.36	3.802
3H	108	4.492	0.046	71.6	3.15	33.8	10.73	4.229	0.15	1.324	0.39	3.837
3H	110	4.638	0.047	69.4	3.15	33.8	10.73	4.328	0.21	1.345	0.45	3.881
3H	112	4.852	0.050	68.4	3.02	32.8	10.88	4.418	0.17	1.360	0.41	3.918
3H	114	4.731	0.048	68.7	3.05	32.9	10.79	4.511	0.17	1.376	0.41	3.956
3H	116	4.602	0.047	70.0	3.16	33.9	10.75	4.613	0.14	1.390	0.37	3.994
3H	118	4.642	0.047	70.1	3.13	34.1	10.90	4.693	0.14	1.401	0.37	4.023
3H	120	4.616	0.047	70.5	3.13	34.6	11.06	4.779	0.14	1.413	0.38	4.056
3H	122	4.604	0.047	70.5	3.04	33.6	11.04	4.858	0.16	1.426	0.39	4.087
3H	124	4.782	0.049	69.7	3.05	34.0	11.12	4.968	0.17	1.445	0.39	4.130
3H	126	4.864	0.050	70.0	3.12	33.3	10.67	5.050	0.13	1.455	0.35	4.158
3H	128	4.769	0.049	71.5	3.15	34.2	10.87	5.146	0.15	1.470	0.42	4.199
3H	130	4.723	0.048	71.4	3.09	34.3	11.10	5.239	0.15	1.484	0.37	4.233
3H	132	4.966	0.051	71.2	3.14	34.5	10.97	5.336	0.16	1.499	0.38	4.270
3H	134	4.827	0.049	70.2	3.10	34.1	11.01	5.431	0.13	1.512	0.34	4.302
3H	136	4.862	0.050	69.7	3.08	33.9	11.01	5.540	0.12	1.525	0.34	4.339
3H	138	4.817	0.049	71.2	3.06	33.6	11.01	5.632	0.16	1.539	0.36	4.372
3H	140	5.093	0.052	67.9	3.01	33.7	11.18	5.735	0.14	1.554	0.33	4.407
3H	142	5.510	0.057	67.3	2.88	33.2	11.51	5.840	0.12	1.566	0.33	4.441
3H	144	5.334	0.055	66.4	2.79	32.6	11.68	5.939	0.23	1.589	0.42	4.483
3H	146	5.577	0.057	64.7	2.83	32.9	11.62	6.040	0.12	1.601	0.34	4.517
3H	148	5.552	0.057	69.1	2.76	32.2	11.66	6.169	0.11	1.616	0.33	4.560
3H	150	6.591	0.068	64.1	2.74	31.9	11.62	6.326	0.11	1.633	0.29	4.605

Note: In calculations of cumulative NAIP and TP in the text, cumulative NAIP and TP were increased by 0.050 and 0.039, respectively, to account for missing data at 2 and 4 cm for NAIP and 2 cm for TP. Values of 1.45 and 2.50, respectively, were used for missing NAIP and TP data. Cumulative NAIP and TP reported in these appendix tables do not include this adjustment.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	•						<u> </u>					
IOH	2	0.395	0.004	74.4	3.92	34.3	8.74	0.010	•••	• • •	•••	• • •
IOH	4	0.709	0.007	79.2	3.86	34.5	8.93	0.023	• • •	• • •	•••	•••
IOH	6	0.900	0.009	77.0	3.90	34.5	8.85	0.039	• • •	• • •	• • •	•••
IOH	8	1.074	0.011	78.1	3.88	34.5	8.89	0.058	•••		2.35	0.046
IOH	10	1.208	0.012	77.9	3.95	35.1	8.89	0.083	1.37	0.034	2.39	0.105
IOH	12	1.739	0.018	74.2	3.83	33.6	8.77	0.109	0.87	0.057	2.11	0.161
10H	14	1.965	0.020	75.1	4.13	35.4	8.56	0.150	0.87	0.092	2.13	0.246
10H	16	2.091	0.021	75.1	3.89	34.1	8.77	0.188	0.89	0.127	2.09	0.327
10H	18	2.193	0.022	71.3	3.82	33.7	8.82	0.233	0.81	0.163	1.93	0.413
10H	20	2.434	0.025	71.0	3.49	33.0	9.45	0.283	0.70	0.198	1.87	0.506
10H	22	2.759	0.028	67.1	3.50	31.3	8.93	0.335	0.72	0.235	1.79	0.600
10H	24	2.598	0.026	70.0	3.76	33.7	8.96	0.382	0.74	0.270	1.87	0.688
10H	26	2.921	0.030	70.5	3.70	33.3	9.01	0.437	0.73	0.310	1.84	0.788
10H	28	3.090	0.031	67.5	3.58	32.2	9.01	0.503	0.71	0.357	1.82	0.909
10H	30	3.192	0.032	65.1	3.44	31.9	9.28	0.557	0.57	0.388	1.49	0.989
10H	32	3.312	0.034	59.4	3.08	30.2	9.80	0.632	0.45	0.422	1.15	1.075
10H	34	3.394	0.035	58.6	3.26	31.3	9.61	0.697	0.40	0.448	1.18	1.152
10H	36	3.441	0.035	59.5	2.72	27.5	10.11	0.764	0.36	0.472	1.02	1.221
10H	38	3.425	0.035	62.1	2.97	29.0	9.76	0.834	0.38	0.498	1.19	1.304
10H	40	3.603	0.037	53.3	2.83	27.4	9.69	0.898	0.35	0.521	1.15	1.378
10H	42	3.702	0.038	49.6	2.65	26.0	9.82	0.973	0.37	0.549	1.22	1.470
10H	44	3.713	0.038	57.3	2.48	25.9	10.44	1.050	0.43	0.582	1.39	1.576
10H	46	4.009	0.041	53.7	2.64	26.2	9.94	1.131	0.38	0.612	1.20	1.674
10H	48	4.293	0.044	51.9	2.56	26.6	10.38	1.212	0.38	0.643	1.02	1.756
10H	50	4.398	0.045	52.2	2.25	23.9	10.61	1.307	0.39	0.680	0.99	1.850
10H	52	5.013	0.051	46.4	2.23	23.3	10.46	1.392	0.34	0.709	0.88	1.925
10H	54	4.966	0.051	50.1	2.33	24.6	10.54	1.481	0.37	0.742	0.92	2.007
10H	56	5.652	0.058	49.1	2.35	24.6	10.44	1.611	0.34	0.786	0.89	2.123
10H	58	5.955	0.061	52.4	2.43	25.8	10.61	1.736	0.30	0.824	0.81	2.224
10H	60	3.966	0.040	51.1	2.31	24.9	10.78	1.806	0.27	0.843	0.72	2.274
10H	62	6.100	0.063	53.5	2.48	26.3	10.63	1.924	0.27	0.874	0.77	2.365
10H	64	5.874	0.061	52.6	2.42	26.4	10.90	2.050	0.31	0.914	0.74	2.458
10H	66	5.687	0.059	53.4	2.36	25.6	10.84	2.148	0.26	0.939	0.66	2.523
10H	68	6.220	0.064	53.6	2.43	26.4	10.86	2.283	0.20	0.966	0.56	2.598
10H	70	4.316	0.044	50.3	1.99	22.8	11.47	2.368	0.19	0.982	0.49	2.640
10H	72	8.743	0.092	38.7	1.73	19.4	11.22	2.531	0.13	1.003	0.34	2.696
10H	74	7.878	0.082	38.6	1.72	19.4	11.31	2.707	0.12	1.025	0.34	2.756
10H	76	8.234	0.086	37.3	1.97	23.5	11.93	2.880	0.11	1.044	0.26	2.801
10H	78	8.276	0.087	37.2	1.56	19.8	12.68	3.066	0.11	1.064	0.25	2.847
10H	80	3.659	0.037	49.3	1.51	19.7	13.01	3.124	0.13	1.072	0.29	2.864
10H	82	7.042	0.073	50.1	2.02	25.7	12.74	3.291	0.15	1.097	0.36	2.924
10H	84	6.993	0.072	52.9	1.97	26.5	13.43	3.439	0.11	1.113	0.26	2.962
10H	86	6.583	0.068	55.9	2.05	29.0	14.15	3.559	0.09	1.124	0.25	2.992
10H	88	6.162	0.064	61.0	2.21	32.0	14.48	3.693	0.11	1.138	0.26	3.027

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
10H	90	6.111	0.063	58.9	2.05	30.3	14.74	3.807	0.10	1.150	0.25	3.056
10H	92	5.899	0.061	60.1	2.21	30.5	13.81	3.920	0.12	1.163	0.24	3.083
10H	94	6.075	0.063	57.0	2.13	30.2	14.20	4.040	0.10	1.175	0.21	3.108
10H	96	6.272	0.065	56.4	2.16	30.4	14.10	4.166	0.11	1.189	0.24	3.138
10H	98	7.303	0.076	50.8	1.86	25.9	13.92	4.341	0.10	1.207	0.19	3.171
10H	100	7.016	0.073	48.1	1.75	24.5	14.01	4.460	0.09	1.217	0.24	3.200
10H	102	7.920	0.083	43.8	1.62	22.5	13.86	4.647	0.09	1.234	0.18	3.234
10H	104	8.657	0.091	41.7	1.63	23.4	14.35	4.820	0.07	1.246	0.16	3.261
10H	106	8.737	0.092	40.0	1.49	20.8	13.94	4.989	0.07	1.258	0.16	3.288
10H	108	8.611	0.090	41.7	1.69	23.5	13.87	5.181	0.06	1.270	0.16	3.319
10H	110	10.534	0.112	34.2	1.30	18.2	14.06	5.414	0.07	1.286	0.14	3.352
10H	112	10.330	0.109	35.6	1.42	20.0	14.14	5.635	0.04	1.295	0.09	3.372
10H	114	11.955	0.128	30.2	1.08	15.6	14.47	5.869	0.06	1.309	0.13	3.402
10H	116	8.095	0.084	48.3	1.72	25.8	14.96	6.040	0.08	1.323	0.12	3.423
10H	118	7.099	0.074	56.9	1.99	30.0	15.06	6.166	0.09	1.334	0.18	3.445
10H	120	6.975	0.072	56.1	1.96	28.7	14.65	6.302	0.09	1.346	0.20	3.473
10H	122	6.904	0.072	55.3	2.01	29.1	14.48	6.439	0.12	1.363	0.19	3.499
10H	124	6.984	0.072	56.2	1.99	28.9	14.52	6.589	0.09	1.376	0.18	3.526
10H	126	7.573	0.079	52.8	1.93	27.1	13.99	6.776	0.09	1.393	0.18	3.559
10H	128	7.512	0.078	56.4	2.07	29.4	14.19	6.940	0.07	1.404	0.18	3.589
10H	130	7.911	0.082	54.0	1.92	28.5	14.82	7.101	0.06	1.414	0.17	3.616
10H	132	6.816	0.071	60.3	2.14	31.2	14.56	7.235	0.07	1.424	0.18	3.640
10H	134	6.259	0.065	62.1	2.21	32.4	14.63	7.349	0.08	1.433	0.19	3.662

Note: In calculations of cumulative NAIP and TP in the text, cumulative NAIP and TP were increased by 0.081 and 0.091, respectively, to account for missing data at 2, 4, 6 and 8 cm for NAIP and 2, 4 and 6 cm for TP. Values of 1.40 and 2.35, respectively, were used for missing NAIP and TP data. Cumulative NAIP and TP reported in these appendix tables do not include this adjustment.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	•	0.004				• • •						
14H	2	0.894	0.009	75.0	3.85	34.9	9.06	0.025	1.31	0.033	2.03	0.051
14H	4	1.380	0.014	72.9	3.70	33.2	8.98	0.046	1.14	0.057	2.07	0.094
14H	6	1.884	0.019	72.2	3.76	33.8	8.98	0.085	1.04	0.097	2.04	0.173
14H	8	2.090	0.021	71.8	3.69	33.2	9.00	0.125	1.10	0.141	2.02	0.254
14H	10	2.406	0.024	68.4	3.59	33.2	9.25	0.167	0.98	0.182	1.87	0.333
14H	12	2.550	0.026	66.8	3.32	32.0	9.64	0.210	• • •	•••	1.62	0.403
14H	14	2.723	0.028	68.5	3.65	32.4	8.88	0.266	0.49	0.210	1.53	0.489
14H	16	2.946	0.030	67.5	3.70	33.6	9.09	0.346	0.63	0.260	1.61	0.616
14H	18	3.251	0.033	61.6	3.38	30.7	9.10	0.412	0.45	0.290	1.44	0.712
14H	20	3.277	0.033	63.3	2.73	27.8	10.18	0.476	0.40	0.316	1.23	0.791
14H	22	3.449	0.035	62.6	2.40	26.0	10.70	0.544	0.36	0.340	1.16	0.870
14H	24	4.342	0.044	50.5	2.16	24.1	11.17	0.630	0.30	0.366	0.94	0.950
14H	26	3.911	0.040	54.8	2.59	27.0	10.42	0.712	0.39	0.398	1.22	1.051
14H	28	4.241	0.043	55.0	2.47	26.0	10.54	0.796	0.22	0.416	0.86	1.123
14H	30	4.557	0.047	53.9	2.52	26.8	10.64	0.879	0.23	0.436	0.89	1.197
14H	32	4.897	0.050	53.7	2.36	26.0	11.02	0.969	0.18	0.452	0.66	1.256
14H	34	4.766	0.049	57.3	2.47	27.8	11.24	1.062	0.12	0.463	0.71	1.322
14H	36	4.634	0.047	59.5	2.62	29.3	11.19	1.157	0.11	0.473	0.57	1.376
14H	38	4.669	0.048	60.6	2.72	30.4	11.17	1.258	0.10	0.483	1.42	1.519
14H	40	4.933	0.051	61.5	2.63	29.6	11.24	1.352	0.10	0.493	0.49	1.565
14H	42	5.200	0.050	60.0	• • •		• • •	1.452			• • •	• • •
14H	44	5.527	0.057	59.1	2.51	28.5	11.32	1.572	0.10	0.504	0.47	1.670
14H	46	6.291	0.065	54.7	2.33	27.2	11.69	1.706	0.07	0.513	0.30	1.710
14H	48	5.533	0.057	60.1	2.27	27.9	12.31	1.818	0.04	0.518	0.29	1.742
14H	50	5.753	0.059	50.6	1.75	23.0	13.14	1.938	0.20	0.542	0.29	1.777
14H	52	5.730	0.059	61.6	2.45	31.3	12.74	2.033	0.05	0.546	0.27	1.802
14H	54	5.990	0.062	58.0	2.33	28.8	12.35	2.160	0.04	0.551	0.25	1.834
14H	56	6.670	0.069	54.3	2.16	26.9	12.43	2.314	0.04	0.558	0.20	1.865
14H	58	6.384	0.066	53.1	2.14	27.3	12.79	2.416	0.03	0.561	0.17	1.882
14H	60	6.303	0.065	55.1	1.62	21.3	13.22	2.547	0.02	0.563	0.17	1.904
14H	62	5.878	0.061	56.3	2.26	28.1	12.43	2.687	0.04	0.569	0.21	1.934
14H	64	5.731	0.059	56.9	2.35	29.7	12.63	2.795	0.04	0.573	0.21	1.957
14H	66	6.349	0.066	55.3	2.31	29.6	12.83	2.928	0.02	0.576	0.18	1.981
14H	68	6.563	0.068	55.8	2.32	29.9	12.87	3.050	0.02	0.578	0.17	2.001
14H	70	6.977	0.072	56.1	1.99	25.9	12.98	3.205	0.01	0.580	0.17	2.028
14H	72	6.726	0.070	56.8	2.23	28.5	12.77	3.347	0.02	0.583	0.17	2.052
14H	74	6.868	0.071	57.3	2.30	29.6	12.89	3.490	0.07	0.593	0.19	2.079
14H	76	7.317	0.076	56.8	2.37	29.9	12.63	3.637	0.05	0.600	0.17	2.104
14H	78	7.447	0.077	55.5	2.08	27.6	13.26	3.803	0.04	0.607	0.16	2.131
14H	80	6.678	0.069	58.1	2.27	30.3	13.35	3.932	0.06	0.615	0.18	2.154
14H	82	6.376	0.066	61.4	2.25	30.6	13.60	4.065	0.07	0.624	0.15	2.174
14H	84	6.212	0.064	60.5	2.24	30.2	13.49	4.188	0.04	0.629	0.15	2.192
14H	86	6.672	0.069	59.5	2.20	29.8	13.54	4.329	0.06	0.637	0.16	2.215
14H	88	6.596	0.068	60.9	2.26	30.3	13.37	4.466	0.05	0.644	0.15	2.235

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
14H	90	6.437	0.066	60.6	2.26	29.9	13.22	4.585	0.05	0.650	0.14	2.252
14H	92	6.461	0.067	60.5	2.32	30.3	13.09	4.723	0.06	0.658	0.16	2.274
14H	94	6.354	0.066	60.3	2.31	30.3	13.14	4.856	0.04	0.664	0.14	2.293
14H	96	6.483	0.067	59.8	2.18	29.9	13.72	4.976	0.04	0.668	0.13	2.308
14H	98	6.344	0.065	60.4	2.28	30.0	13.18	5.113	0.04	0.674	0.13	2.326
14H	100	6.356	0.066	59.7	2.23	30.0	13.43	5.241	0.03	0.678	0.13	2.343
14H	102	6.473	0.067	60.9	2.33	30.7	13.15	5.375	0.04	0.683	0.14	2.361
14H	104	6.498	0.067	59.6	2.30	30.3	13.15	5.501	0.04	0.688	0.15	2.380
14H	106	6.582	0.068	54.5	2.34	30.9	13.17	5.645	0.04	0.694	0.14	2.400
14H	108	6.254	0.065	59.8	2.33	30.4	13.06	5.779	0.03	0.698	0.13	2.418
14H	110	6.451	0.067	60.7	2.30	30.3	13.17	5.901	0.03	0.702	0.13	2.434
14H	112	4.854	0.050	60.1	2.30	30.1	13.08	5.987	0.04	0.705	0.15	2.447
14H	114	5.214	0.053	65.0	2.18	28.8	13.21	6.095	0.04	0.709	0.13	2.461
14H	116	5.113	0.052	60.6	2.11	29.7	14.03	6.206	0.03	0.713	0.13	2.475
14H	118	4.848	0.050	60.0	2.21	29.6	13.40	6.292	0.03	0.715	0.14	2.487
14H	120	5.154	0.053	62.5	2.25	29.2	12.97	6.387	0.03	0.718	0.14	2.500
14H	122	5.373	0.055	71.1	2.25	29.9	13.26	6.501	0.04	0.723	0.14	2.516
14H	124	5.482	0.056	61.9	2.24	29.9	13.35	6.612	0.04	0.727	0.14	2.532

Note: In calculations of cumulative NAIP and TP in the text, cumulative NAIP was increased by 0.032 from 12 to 42 cm and by 0.043 from 42 to 124 cm, and TP was increased by 0.048 to account for missing data at 12 and 42 cm for NAIP and 42 cm for TP. Values of 0.73 and 0.100, respectively, were used for missing NAIP data, and a value of 0.470 was used for missing TP datum. Cumulative NAIP and TP reported in these appendix tables do not include this adjustment.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-											_
21H	2	0.783	0.008	77.4	4.11	36.0	8.77	0.016	1.11	0.018	1.95	0.031
21H	4	1.352	0.014	76.0	5.44	32.8	6.03	0.041	1.16	0.047	2.08	0.084
21H	6	1.380	0.014	74.2	4.05	37.2	9.18	0.069	0.99	0.075	2.01	0.140
21H	8	1.382	0.014	74.1	3.93	34.0	8.64	0.093	0.88	0.095	2.83	0.207
21H	10	1.618	0.016	72.4	3.64	31.6	8.68	0.124	0.89	0.123	2.57	0.288
21H	12	1.845	0.019	73.1	3.85	35.0	9.09	0.159	0.84	0.152	1.64	0.344
21H	14	2.114	0.021	69.8	2.96	27.1	9.15	0.203	0.71	0.184	2.10	0.437
21H	16	2.222	0.022	67.5	3.71	35.1	9.45	0.245	0.68	0.212	2.03	0.522
21H	18	2.492	0.025	67.9	3.82	35.3	9.23	0.292	0.62	0.242	2.03	0.617
21H	20	2.641	0.027	65.8	3.73	34.6	9.27	0.345	0.64	0.275	2.15	0.731
21H	22	2.777	0.028	65.5	3.74	35.2	9.42	0.395	0.61	0.306	2.02	0.833
21H	24	4.559	0.047	43.2	2.76	26.1	9.45	0.487	0.31	0.335	0.76	0.902
21H	26	5.155	0.053	34.1	3.16	29.8	9.43	0.588	0.36	0.371	1.01	1.005
21H	28	5.606	0.058	35.0	2.22	21.9	9.86	0.699	0.15	0.388	0.73	1.087
21H	30	4.479	0.046	40.7	2.20	22.8	10.33	0.792	0.22	0.408	0.82	1.163
21H	32	4.688	0.048	40.3	2.71	28.7	10.58	0.876	0.28	0.432	0.77	1.228
21H	34	4.422	0.045	50.8	2.39	26.6	11.12	0.970	0.17	0.448	0.49	1.273
21H	36	4.294	0.044	50.9	2.52	28.1	11.16	1.050	0.24	0.467	0.70	1.329
21H	38	4.354	0.045	52.1	2.41	27.0	11.21	1.129	0.16	0.479	0.41	1.362
21H	40	4.101	0.042	53.8	2.75	30.9	11.23	1.217	0.18	0.495	0.44	1.401
21H	42	4.042	0.041	56.3	2.71	30.7	11.32	1.289	0.18	0.508	0.38	1.428
21H	44	3.858	0.039	53.9	2.47	28.1	11.37	1.374	0.15	0.520	0.39	1.461
21H	46	3.961	0.040	56.0	2.34	26.6	11.36	1.454	0.15	0.532	0.40	1.493
21H	48	4.109	0.042	52.5	2.71	30.2	11.17	1.532	0.16	0.545	0.44	1.527
21H	50	4.610	0.047	61.2	2.47	27.9	11.33	1.635	0.12	0.557	0.42	1.570
21H	52	4.727	0.048	69.4	2.36	27.0	11.41	1.718	0.17	0.571	0.36	1.600
21H	54	4.777	0.049	59.9	2.72	32.1	11.80	1.828	0.10	0.582	0.29	1.632
21H	56	4.518	0.046	58.2	2.71	32.1	11.83	1.916	0.10	0.591	0.27	1.655
21H	58	4.289	0.044	58.6	2.80	33.1	11.85	1.997	0.10	0.599	0.27	1.677
21H	60	4.220	0.043	63.0	2.72	32.5	11.94	2.078	0.09	0.606	0.24	1.697
21H	62	4.289	0.044	64.7	2.77	33.6	12.13	2.165	0.10	0.615	0.25	1.718
21H	64	4.570	0.047	65.0	2.66	32.0	12.01	2.255	0.10	0.624	0.26	1.742
21H	66	4.719	0.048	63.9	2.62	32.0	12.22	2.347	0.09	0.632	0.25	1.764
21H	68	5.276	0.054	60.1	2.55	31.6	12.39	2.465	0.07	0.640	0.25	1.794
21H	70	5.590	0.057	60.6	2.43	31.1	12.78	2.573	0.06	0.647	0.20	1.816
21H	72	5.458	0.056	67.7	2.28	29.3	12.85	2.692	0.07	0.655	0.19	1.839
21H	74	5.344	0.055	62.2	2.54	32.3	12.72	2.798	0.08	0.664	0.20	1.860
21H	76	5.537	0.057	59.0	2.46	31.7	12.89	2.913	0.07	0.672	0.19	1.881
21H	78	5.794	0.060	61.0	2.24	29.4	13.15	3.026	0.04	0.676	0.19	1.903
21H	80	5.060	0.052	62.3	2.49	32.4	13.01	3.133	0.07	0.684	0.20	1.924
21H	82	4.859	0.050	65.9	2.50	32.9	13.18	3.222	0.08	0.691	0.19	1.941
21H	84	5.012	0.051	67.3	2.55	33.3	13.07	3.326	0.06	0.697	0.18	1.960
21H	86	4.958	0.051	65.0	2.35	31.2	13.26	3.410	0.07	0.703	0.18	1.976
21H	88	4.823	0.049	66.0	2.59	33.6	12.99	3.515	0.06	0.710	0.19	1.996

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-											
21H	90	4.404	0.045	66.1	2.57	33.7	13.13	3.603	0.06	0.716	0.18	2.012
21H	92	4.643	0.047	65.2	2.49	32.5	13.03	3.697	0.07	0.722	0.17	2.027
21H	94	4.977	0.051	61.5	2.52	33.0	13.08	3.784	0.05	0.726	0.16	2.041
21H	96	4.692	0.048	61.4	2.56	33.3	13.01	3.880	0.05	0.731	0.17	2.057
21H	98	4.647	0.048	64.6	2.63	34.8	13.23	3.972	0.05	0.736	0.18	2.073
21H	100	4.616	0.047	68.2	2.63	34.3	13.04	4.064	0.06	0.742	0.17	2.089
21H	102	4.641	0.047	68.1	2.52	32.9	13.07	4.159	0.05	0.747	0.17	2.105
21H	104	3.800	0.039	45.3	2.27	30.0	13.23	4.231	0.02	0.748	0.17	2.117
21H	106	4.933	0.050	68.9	2.70	35.1	13.01	4.331	0.04	0.752	0.16	2.133
21H	108	4.564	0.047	72.4	2.79	36.0	12.88	4.436	0.04	0.756	0.17	2.151
21H	110	4.616	0.047	72.0	2.58	33.3	12.92	4.522	0.06	0.761	0.17	2.166
21H	112	4.830	0.049	72.9	2.63	33.9	12.91	4.615	0.06	0.767	0.17	2.181
21H	114	4.751	0.049	69.8	2.62	34.9	13.34	4.719	0.05	0.772	0.17	2.199
21H	116	4.563	0.047	71.3	2.70	35.8	13.25	4.804	0.05	0.777	0.17	2.213
21H	118	4.568	0.047	69.2	2.68	34.6	12.92	4.898	0.04	0.781	0.16	2.228
21H	120	4.378	0.045	71.9	2.73	34.8	12.77	4.986	0.06	0.786	0.17	2.243

Lake Dora Historic Cores, Phase I

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
0011	•	0.100	0.000	7 0 7	0.00		0.60	0.000	0.55			0.000
22H	2	0.189	0.002	/0./	3.82	33.2	8.68	0.002	0.77	0.001	1.44	0.003
22H	4	0.584	0.006	//.6	3.12	33.7	9.06	0.012	0.79	0.009	1.91	0.022
22H	6	0.797	0.008	77.0	4.22	31.3	7.42	0.026	0.74	0.020	1.98	0.050
22H	8	0.981	0.010	74.7	3.78	33.9	8.97	0.044	0.76	0.033	2.05	0.086
22H	10	1.249	0.013	74.1	3.72	33.6	9.04	0.064	0.81	0.049	2.12	0.129
22H	12	1.789	0.018	72.1	3.60	32.2	8.95	0.100	0.75	0.077	1.97	0.200
22H	14	2.380	0.024	63.2	3.60	32.8	9.13	0.147	0.62	0.105	1.67	0.278
22H	16	3.207	0.033	54.8	3.32	31.7	9.55	0.209	0.48	0.135	1.52	0.372
22H	18	2.936	0.030	58.5	3.38	32.3	9.55	0.269	0.35	0.156	1.47	0.460
22H	20	4.748	0.049	32.4	2.67	27.6	10.33	0.368	0.34	0.190	1.41	0.601
22H	22	4.248	0.043	39.5	2.56	26.7	10.43	0.449	0.21	0.207	0.97	0.679
22H	24	4.468	0.046	39.3	2.50	26.2	10.50	0.553	0.21	0.228	0.98	0.782
22H	26	4.567	0.047	43.5	2.47	26.8	10.86	0.639	0.18	0.244	1.00	0.868
22H	28	5.345	0.055	40.9	2.32	26.6	11.46	0.759	0.08	0.254	1.24	1.016
22H	30	5.929	0.061	44.1	1.68	19.7	11.73	0.902	0.07	0.264	0.64	1.108
22H	32	5.830	0.060	4/.4	2.27	26.9	11.83	1.047	0.11	0.280	0.50	1.189
22H	34	5.709	0.059	52.6	2.40	28.2	11.75	1.182	0.09	0.292	0.52	1.259
22H	30	5.725	0.059	55.1	2.34	28.0	10.24	1.323	0.10	0.300	0.41	1.31/
22H	38	5.917	0.061	50.4	2.20	21.9	12.34	1.4/4	0.05	0.313	0.27	1.357
2211	40	5.985	0.002	JU.7	1.89	24.1	13.03	1.594	0.04	0.317	0.21	1.383
22H	42	7.511	0.078	41.5	1.97	21.2	13.00	1.744	0.02	0.320	0.15	1.405
2211	44	0.290	0.005	44.2	1.07	20.0	14.50	1.000	0.04	0.323	0.15	1.425
22H 22H	40 70	5 072	0.004	JO.Z	1.00	27.0	14.51	2.000	0.04	0.330	0.15	1.450
22FI	40 50	5.615	0.001	41.0	2.01	20.9	14.41	2.120	0.03	0.333	0.05	1.444
2211	50	5.007	0.059	18.3	1.74	20.2	14.49	2.247	0.02	0.330	0.15	1.439
22H 22H	54	5.912 6.178	0.001	40.J 50.2	2.01	22.0	14.59	2.571	0.02	0.338	0.14	1.470
2211	56	6 152	0.004	18 1	1.83	26.5	14.22	2.509	0.01	0.346	0.15	1.510
2211	58	5 02/	0.004	40.4	1.05	20.1	14.20	2.017	0.03	0.340	0.14	1.510
22H	60	1 808	0.001	56.5	2.14	30.7	14.05	2.750	0.03	0.354	0.13	1.530
22H	62	4.652	0.030	55.9	2.14	30.0	14.52	2.042	0.04	0.358	0.15	1.542
22H	64	4 366	0.045	61.0	2.26	31.2	13.85	3 023	0.04	0.361	0.14	1.555
22H	66	5 332	0.055	48 1	1.95	28.1	14.38	3,135	0.03	0.365	0.13	1.582
22H	68	5.002	0.051	58.7	2.15	29.5	13.71	3.236	0.03	0.368	0.12	1.594
22H	70	4.365	0.045	62.0	2.22	30.4	13.70	3.318	0.04	0.371	0.14	1.605
22H	72	5.936	0.061	48.8	1.95	27.2	13.95	3.442	0.02	0.374	0.11	1.619
22H	74	4.433	0.045	62.6	2.24	31.5	14.07	3.528	0.04	0.377	0.15	1.632
22H	76	4.576	0.047	61.0	2.25	31.3	13.90	3.626	0.04	0.380	0.13	1.645
22H	78	5.266	0.054	57.2	1.86	28.1	15.10	3.741	0.04	0.384	0.12	1.659
22H	80	5.478	0.056	56.6	2.02	29.7	14.67	3.851	0.03	0.388	0.12	1.672
22H	82	5.421	0.056	57.5	1.96	29.8	15.19	3.952	0.03	0.391	0.13	1.685
22H	84	5.514	0.057	57.2	1.98	30.0	15.18	4.076	0.03	0.395	0.13	1.700
22H	86	6.328	0.065	54.4	1.87	28.4	15.18	4.196	0.03	0.398	0.12	1.715
22H	88	6.426	0.066	53.0	1.85	28.1	15.21	4.329	0.03	0.402	0.13	1.732

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	_											
22H	90	5.725	0.059	77.9	1.98	29.8	15.03	4.451	0.03	0.405	0.13	1.748
22H	92	5.576	0.057	60.0	1.99	30.2	15.17	4.564	0.04	0.410	0.13	1.762
22H	94	5.571	0.057	58.9	2.00	30.1	15.02	4.670	0.04	0.415	0.13	1.775
22H	96	5.539	0.057	58.5	2.03	30.0	14.79	4.778	0.04	0.419	0.13	1.790
22H	98	5.598	0.058	59.8	2.01	30.2	15.02	4.912	0.04	0.424	0.13	1.807
22H	100	5.746	0.059	58.1	1.98	29.6	14.97	5.026	0.03	0.428	0.12	1.821
22H	102	6.196	0.064	57.2	1.86	28.8	15.48	5.147	0.04	0.433	0.11	1.835
22H	104	6.332	0.065	57.2	1.90	29.3	15.45	5.284	0.04	0.439	0.12	1.851
22H	106	6.146	0.063	56.2	1.87	28.3	15.14	5.415	0.04	0.443	0.15	1.871
22H	108	7.127	0.074	49.8	1.76	26.5	15.09	5.559	0.02	0.447	0.12	1.888
22H	110	6.502	0.067	54.9	1.85	27.8	15.02	5.684	0.03	0.451	0.11	1.902
22H	112	6.309	0.065	55.6	1.92	28.8	14.98	5.820	0.02	0.454	0.11	1.916
22H	114	6.810	0.071	52.1	1.81	27.9	15.40	5.955	0.02	0.457	0.12	1.932
22H	116	6.477	0.067	56.4	1.92	29.2	15.21	6.096	0.02	0.460	0.13	1.950
22H	118	6.304	0.065	57.1	1.96	30.1	15.39	6.220	0.03	0.463	0.12	1.964
22H	120	6.781	0.070	53.7	1.84	28.5	15.43	6.365	0.03	0.467	0.11	1.980
22H	122	6.623	0.069	53.8	1.90	29.2	15.38	6.505	0.02	0.470	0.20	2.009
22H	124	6.872	0.071	54.1	1.97	30.0	15.25	6.647	0.02	0.473	0.12	2.025
22H	126	6.938	0.072	54.5	1.78	27.4	15.39	6.781	0.02	0.475	0.11	2.040
22H	128	7.492	0.078	49.6	1.88	28.9	15.40	6.934	0.01	0.477	0.13	2.059
22H	130	7.354	0.076	49.5	1.86	28.3	15.21	7.093	0.01	0.479	0.13	2.080

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
6H	4	0.873	0.009	78.8	4.06	36.6	9.01	0.031	• • •	• • •	2.65	0.083
6H	8	1.566	0.016	78.2	4.31	38.2	8.87	0.097	0.93	0.061	2.84	0.269
6H	12	1.913	0.019	74.3	4.20	37.2	8.85	0.167	0.76	0.114	2.29	0.431
6H	16	2.021	0.020	71.2	3.93	35.7	9.08	0.226	0.64	0.152	2.07	0.552
6H	20	2.068	0.021	72.0	4.00	36.4	9.10	0.305	0.62	0.201	2.06	0.715
6H	24	2.700	0.027	73.2	3.74	34.0	9.10	0.408	0.53	0.255	1.94	0.915
6H	28	2.549	0.026	64.9	3.47	31.7	9.13	0.518	0.61	0.322	1.99	1.132
6H	32	2.744	0.028	60.4	3.77	35.1	9.30	0.623	0.46	0.371	1.77	1.320
6H	36	3.961	0.040	64.0	3.09	29.6	9.56	0.786	0.42	0.440	1.34	1.538
6H	40	3.671	0.037	51.2	3.19	30.7	9.63	0.928	0.43	0.501	1.53	1.755
6H	44	2.920	0.030	51.7	3.48	33.7	9.68	1.056	0.40	0.551	1.51	1.947
6H	48	3.876	0.040	51.7	3.30	32.1	9.74	1.194	0.39	0.605	1.61	2.170
6H	52	5.209	0.053	56.2	2.55	25.7	10.09	1.398	0.35	0.676	1.27	2.429
6H	56	5.168	0.053	55.5	2.55	25.9	10.17	1.589	0.38	0.750	1.24	2.666
6H	60	4.749	0.049	51.4	2.89	29.7	10.29	1.780	0.36	0.819	1.06	2.868
6H	64	4.952	0.051	54.1	2.97	31.1	10.48	1.981	0.27	0.874	0.75	3.019
6H	68	4.816	0.049	59.0	3.01	31.9	10.59	2.173	0.20	0.913	0.61	3.137
6H	72	4.924	0.050	61.2	2.93	31.3	10.70	2.375	0.21	0.955	0.58	3.253
6H	76	5.205	0.053	61.5	3.08	33.3	10.81	2.568	0.20	0.992	0.51	3.352
6H	80	5.205	0.053	72.6	3.14	34.3	10.92	2.774	0.17	1.027	0.48	3.451
6H	84	5.358	0.055	66.0	3.20	35.1	10.96	2.987	0.16	1.061	0.41	3.538
6H	88	6.081	0.063	68.2	2.94	31.9	10.84	3.227	0.13	1.092	0.36	3.625
6H	92	5.112	0.052	66.7	3.12	33.9	10.88	3.428	0.14	1.120	0.37	3.698
6H	96	4.991	0.051	65.9	3.26	35.1	10.76	3.622	0.13	1.145	0.37	3.770
6H	100	4.918	0.050	66.3	3.28	35.7	10.90	3.808	0.11	1.166	0.37	3.839
6H	104	5.084	0.052	66.5	3.26	35.2	10.80	4.025	0.10	1.188	0.37	3.919
6H	108	5.434	0.056	66.0	3.23	35.0	10.83	4.206	0.12	1.209	0.39	3.989
6H	112	5.369	0.055	66.9	3.26	35.5	10.90	4.415	0.13	1.236	0.40	4.072
6H	116	5.191	0.053	69.1	3.16	34.8	11.02	4.625	0.11	1.259	0.33	4.140
6H	120	5.060	0.052	68.2	3.19	35.5	11.12	4.844	0.10	1.281	0.31	4.208
6H	124	4.846	0.050	68.2	3.19	35.3	11.07	5.050	0.08	1.297	0.28	4.266
6H	128	4.658	0.048	67.1	3.16	35.0	11.09	5.249	0.08	1.313	0.26	4.317
6H	132	4.385	0.045	68.8	3.19	35.0	10.97	5.430	0.09	1.328	0.26	4.363

Note: In calculations of cumulative NAIP in the text, cumulative NAIP were increased by 0.029 to account for missing data at 2 cm for NAIP. A value of 0.93 was used for missing NAIP. Cumulative NAIP reported in these appendix tables do not include this adjustment.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-											
12H	4	1.557	0.016	67.6	3.73	33.7	9.04	0.059	0.62	0.037	1.83	0.108
12H	8	2.381	0.024	68.4	3.98	35.2	8.85	0.153	0.81	0.113	2.07	0.303
12H	12	2.536	0.026	65.1	3.84	35.1	9.15	0.246	0.69	0.177	1.94	0.483
12H	16	2.854	0.029	63.4	3.74	34.4	9.20	0.371	0.56	0.248	1.58	0.681
12H	20	3.080	0.031	62.6	3.74	35.0	9.36	0.491	0.55	0.314	1.58	0.870
12H	24	3.305	0.034	63.2	3.70	34.6	9.35	0.627	0.00	0.314	1.51	1.076
12H	28	3.335	0.034	61.3	3.72	34.7	9.32	0.755	0.66	0.398	1.73	1.297
12H	32	3.768	0.038	64.1	3.62	33.5	9.25	0.909	0.57	0.487	1.68	1.556
12H	36	3.380	0.034	64.8	3.82	35.7	9.35	1.033	0.76	0.580	1.79	1.777
12H	40	3.376	0.034	61.7	3.57	34.0	9.52	1.154	0.59	0.652	1.69	1.983
12H	44	3.664	0.037	61.2	3.50	33.8	9.66	1.289	0.45	0.713	1.52	2.187
12H	48	3.964	0.040	58.2	3.44	33.3	9.67	1.437	0.41	0.773	1.46	2.403
12H	52	4.021	0.041	57.2	3.45	33.7	9.75	1.619	0.52	0.867	1.40	2.658
12H	56	4.345	0.044	54.7	3.29	32.8	9.98	1.793	0.43	0.942	1.59	2.934
12H	60	7.416	0.077	52.4	3.04	31.5	10.37	2.099	0.42	1.071	1.25	3.315
12H	64	4.987	0.051	54.5	2.92	30.0	10.26	2.287	0.41	1.147	1.30	3.560
12H	68	4.876	0.050	58.7	2.96	30.1	10.18	2.480	0.29	1.203	1.20	3.792
12H	72	5.195	0.053	48.7	2.59	29.2	11.26	2.684	0.28	1.259	1.05	4.007
12H	76	5.395	0.055	55.0	2.41	28.8	11.96	2.889	0.26	1.312	0.95	4.201
12H	80	6.522	0.068	36.9	2.38	28.8	12.11	3.165	0.23	1.374	0.77	4.414
12H	84	7.895	0.082	41.6	2.27	29.5	12.99	3.481	0.19	1.433	0.47	4.561
12H	88	8.921	0.094	38.5	1.96	26.4	13.47	3.849	0.07	1.459	0.22	4.643
12H	92	7.093	0.074	55.7	2.26	30.8	13.63	4.130	0.07	1.480	0.22	4.705
12H	96	6.436	0.066	57.8	2.27	31.7	13.96	4.410	0.06	1.498	0.18	4.756
12H	100	6.539	0.068	57.6	2.28	32.1	14.08	4.666	0.06	1.512	0.18	4.801
12H	104	8.337	0.087	41.9	2.16	29.9	13.83	5.020	0.06	1.533	0.15	4.855
12H	108	6.741	0.070	49.7	2.34	32.3	13.79	5.280	0.06	1.547	0.17	4.900
12H	112	5.803	0.060	60.4	2.34	32.8	14.01	5.506	0.05	1.559	0.17	4.939
12H	116	6.266	0.065	59.7	2.25	31.1	13.83	5.780	0.05	1.571	0.15	4.979
12H	120	5.569	0.057	61.1	2.32	31.7	13.68	6.014	0.05	1.582	0.16	5.017
12H	124	5.391	0.055	62.7	2.41	33.0	13.69	6.228	0.05	1.592	0.15	5.049

APPENDIX G

PHYSICAL AND CHEMICAL DATA LAKE EUSTIS SURVEY CORES

Gravimetric and chemical data, Lake Eustis survey cores, Phase I and Phase II. See Appendix C for collection date, location and description of cores.

CODES:

e a ser i sina

Depth is depth (cm) Dry is % dry weight Rho is dry weight density (g dry/g cc wet) LOI is % loss on ignition TN is total nitrogen (%) TC is total carbon (%) TC/TN is TC/TN mass ratio Cum weight is cumulative mass (g cm⁻²) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum NAIP is cumulative NAIP (mg cm⁻²) TP is total phosphorus (mg g⁻¹) Cum TP is cumulative TP (mg cm⁻²)

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
1	0	81.488	1.593	0.4	0.13	0.0	0.00	15.265	0.01	0.214	0.02	0.290
2	0	78.013	1.464	0.9	0.18	0.0	0.00	23.567	0.01	0.189	0.02	0.354
_		1.016	0.010	70.1	0.07		0.57	0.045	0.40	0.105	1.00	
3	0	1.816	0.018	/0.1	3.31	32.3	9.57	0.245	0.43	0.105	1.22	0.299
3	16	2.793	0.028	68.2	3.29	32.0	9.71	0.453	0.55	0.218	1.32	0.573
3	24	4.308	0.044	54.4	2.61	26.2	10.02	0.819	0.31	0.333	0.88	0.897
3	32	4.316	0.044	54.5	2.41	25.4	10.56	1.173	0.25	0.421	0.69	1.139
3	40	4.692	0.048	55.8	2.59	27.8	10.75	1.567	0.20	0.500	0.67	1.403
3	48	4.822	0.049	65.0	2.78	30.6	10.99	1.979	0.22	0.588	0.64	1.664
3	56	5.853	0.060	55.7	2.69	29.8	11.09	2.508	0.15	0.667	0.47	1.914
3	64	5.081	0.052	65.2	2.80	30.9	11.05	2.940	0.17	0.742	0.49	2.125
3	72	5.002	0.051	66.9	2.80	30.9	11.04	3.323	0.17	0.808	0.47	2.304
3	80	4.969	0.051	66.7	2.73	30.4	11.14	3.763	0.18	0.888	0.46	2.507
4	8	1.586	0.016	70.8	3.33	32.2	9.65	0.146	0.46	0.067	1.19	0.174
4	16	3.182	0.032	67.3	3.15	31.1	9.87	0.413	0.48	0.193	1.12	0.471
4	24	4.710	0.048	56.1	2.68	27.4	10.23	0.717	0.29	0.282	0.83	0.723
4	32	4.037	0.041	61.1	2.89	29.7	10.27	1.056	0.30	0.383	0.85	1.011
4	40	4.502	0.046	57.0	2.62	27.4	10.47	1.478	0.25	0.486	0.80	1.349
4	48	6.304	0.065	42.0	1.78	19.1	10.71	2.032	0.13	0.560	0.52	1.638
4	56	5.247	0.054	53.3	2.43	26.2	10.80	2.475	0.18	0.641	0.60	1.903
4	60	8.353	0.087	42.1	2.07	22.3	10.76	2.932	0.12	0.696	0.45	2.110
5	8	2.324	0.024	66.8	3.15	31.0	9.84	0.192	0.42	0.080	1.13	0.216
5	16	4.220	0.043	60.4	2.87	29.7	10.36	0.515	0.28	0.171	0.81	0.479
5	24	5.525	0.057	49.1	2.37	25.2	10.63	1.010	0.19	0.266	0.59	0.773
5	32	6.280	0.065	42.4	2.41	26.3	10.90	1.543	0.13	0.335	0.45	1.010
5	40	63.587	1.025	2.2	0.32	1.5	4.72	10.145	0.01	0.447	0.03	1.268

G-1

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
					·							
6	8	2.217	0.022	66.6	3.11	30.2	9.69	0.124	0.45	0.056	1.19	0.148
6	16	2.802	0.028	61.9	3.02	30.0	9.94	0.368	0.40	0.153	1.23	0.449
6	24	3.548	0.036	57.8	2.91	29.3	10.05	0.665	0.33	0.250	1.03	0.755
6	32	4.051	0.041	57.0	2.52	26.5	10.53	1.022	0.23	0.332	0.68	0.999
6	40	4.785	0.049	55.7	2.57	27.9	10.86	1.447	0.23	0.431	0.90	1.383
6	48	4.594	0.047	58.5	2.64	28.8	10.90	1.846	0.28	0.541	0.69	1.658
6	56	5.075	0.052	58.6	2.56	28.0	10.94	2.304	0.23	0.647	0.58	1.922
6	64	5.372	0.055	55.4	2.49	27.2	10.94	2.815	0.22	0.761	0.60	2.229
6	72	5.288	0.054	64.9	2.87	31.3	10.91	3.058	0.25	0.821	0.60	2.375
7	8	3.250	0.033	27.1	2.50	25.8	10.31	0.317	0.24	0.076	0.72	0.229
7	16	6.326	0.065	39.5	1.86	20.2	10.88	0.587	0.13	0.109	0.73	0.425
7	24	6.695	0.069	38.6	2.09	24.2	11.58	1.263	0.06	0.150	0.25	0.592
7	32	6.147	0.063	47.9	2.30	27.2	11.80	1.762	0.04	0.170	0.17	0.679
7	40	8.540	0.090	35.3	1.92	23.2	12.10	2.574	0.03	0.195	0.15	0.800
7	48	5.737	0.059	62.4	2.33	29.4	12.63	3.082	0.03	0.211	0.19	0.897
7	56	5.580	0.057	66.2	2.16	27.5	12.72	3.553	0.03	0.226	0.21	0.994
7	64	7.657	0.080	46.1	1.79	23.0	12.87	4.249	0.02	0.237	0.12	1.081
7	72	8.747	0.092	41.3	1.72	22.6	13.11	5.042	0.02	0.255	0.16	1.208
7	80	11.680	0.125	19.7	1.29	16.9	13.13	5.782	0.03	0.275	0.11	1.291
8	8	1.254	0.013	71.1	• • •	• • •	• • •	0.099	0.36	0.036	1.11	0.109
8	16	2.653	0.027	69.4	3.12	31.5	10.09	0.328	0.55	0.162	1.33	0.414
8	24	3.336	0.034	67.5	3.11	31.7	10.20	0.609	0.44	0.285	1.14	0.734
8	32	3.857	0.039	60.5	2.96	30.4	10.27	0.932	0.34	0.394	0.02	0.741
8	40	4.245	0.043	62.1	2.62	28.2	10.74	1.294	0.27	0.491	0.77	1.018
8	48	4.490	0.046	56.5	2.54	28.3	11.13	1.689	0.19	0.567	0.71	1.297
8	56	4.655	0.048	63.3	2.66	29.6	11.12	2.107	0.16	0.634	0.58	1.539
8	64	12.471	0.134	20.1	0.84	9.2	10.96	3.193	0.04	0.674	0.09	1.640
8	72	10.576	0.112	29.4	1.65	21.3	12.92	4.196	0.03	0.700	0.14	1.779
8	80	5.307	0.054	68.6	2.56	34.5	13.46	4.653	0.07	0.732	0.29	1.909

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
9	8	1.437	0.014	70.9	3.12	31.1	9.98	0.126	0.39	0.048	1.09	0.137
9	16	2.614	0.026	68.9	3.28	32.0	9.74	0.320	0.45	0.136	1.23	0.375
9	24	3.523	0.036	61.1	2.93	29.5	10.06	0.647	0.35	0.249	1.24	0.780
9	32	4.243	0.043	61.8	2.65	28.7	10.84	1.010	0.20	0.321	0.66	1.021
9	40	4.669	0.048	63.9	2.74	30.9	11.28	1.420	0.13	0.375	0.49	1.220
9	48	4.980	0.051	64.1	2.63	29.8	11.33	1.866	0.10	0.421	0.40	1.399
9	56	5.124	0.053	63.4	2.53	28.9	11.42	2.317	0.10	0.468	0.42	1.590
9	64	5.194	0.053	63.4	2.64	30.1	11.39	2.748	0.07	0.496	0.30	1.719
9	72	4.809	0.049	64.6	2.63	30.1	11.45	3.188	0.08	0.532	0.28	1.841
9	80	5.240	0.054	64.9	2.65	30.3	11.45	3.657	0.05	0.555	0.26	1.964
10	8	1.105	0.011	70.2	3.28	32.4	9.88	0.096	0.29	0.027	1.03	0.099
10	16	2.362	0.024	70.9	3.35	32.7	9.75	0.274	0.37	0.093	1.10	0.295
10	24	3.331	0.034	66.2	2.91	30.4	10.43	0.556	0.35	0.190	0.92	0.556
10	32	4.472	0.046	63.8	2.67	29.9	11.21	0.843	0.16	0.236	0.52	0.706
10	40	4.410	0.045	65.1	2.73	31.0	11.34	1.282	0.11	0.282	0.42	0.890
10	48	4.379	0.045	64.7	2.70	31.2	11.56	1.704	0.07	0.313	0.39	1.053
10	56	4.549	0.046	67.9	2.71	31.9	11.76	2.083	0.04	0.330	0.27	1.155
10	64	4.335	0.044	67.6	2.65	31.5	11.89	2.446	0.05	0.346	0.21	1.230
10	72	5.380	0.055	65.3	2.48	30.4	12.26	2.942	0.03	0.362	0.19	1.322
10	80	5.636	0.058	61.6	2.14	26.7	12.46	3.422	0.04	0.380	0.17	1.405
11	8	1.345	0.014	73.5	3.39	32.7	9.64	0.108	0.38	0.041	1.18	0.127
11	16	2.047	0.021	71.1	3.37	32.5	9.64	0.266	0.65	0.144	1.47	0.358
11	24	2.796	0.028	69.4	3.16	31.0	9.80	0.504	0.53	0.270	1.22	0.649
11	32	3.510	0.036	64.2	2.93	30.2	10.31	0.803	0.33	0.369	0.90	0.918
11	40	4.133	0.042	61.4	2.65	28.9	10.91	1.170	0.20	0.441	0.57	1.127
11	48	4.699	0.048	66.0	2.76	31.4	11.38	1.547	0.09	0.474	0.35	1.260
11	56	5.026	0.051	67.1	2.74	31.5	11.50	1.966	0.08	0.507	0.31	1.389
11	64	4.509	0.046	67.3	2.76	31.5	11.40	2.352	0.08	0.538	0.29	1.502
11	72	4.400	0.045	67.4	2.81	31.7	11.28	2.744	0.08	0.568	0.29	1.616
11	80	4.597	0.047	67.7	2.80	31.5	11.25	3.143	0.07	0.596	0.28	1.727

G-3

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
12	8	1.040	0.010	69.3	3.20	31.8	9.94	0.112	0.49	0.055	1.14	0.128
12	16	1.683	0.017	65.8	3.20	32.0	10.01	0.265	0.55	0.139	1.15	0.303
12	24	2.689	0.027	61.4	2.93	29.2	9.96	0.464	0.58	0.254	1.22	0.547
12	32	4.841	0.050	47.2	2.38	24.1	10.14	0.862	0.47	0.442	1.02	0.951
12	40	6.054	0.063	44.8	2.15	22.2	10.34	1.409	0.25	0.578	0.68	1.321
12	48	5.753	0.059	43.3	2.30	24.6	10.68	1.920	0.27	0.716	0.66	1.655
12	56	6.387	0.066	53.0	2.47	26.2	10.60	2.461	0.23	0.842	0.65	2.007
12	64	11.619	0.124	27.3	1.61	18.8	11.65	3.504	0.12	0.962	0.17	2.179
12	72	10.727	0.114	27.2	1.74	20.1	11.53	4.497	0.07	1.027	0.26	2.433
12	80	29.336	0.355	4.7	0.28	0.6	2.29	7.428	0.04	1.147	0.13	2.820
13	8	2.040	0.021	61.7	3.06	29.8	9.75	0.161	0.40	0.065	0.91	0.146
13	16	3.640	0.037	51.7	2.57	26.4	10.26	0.438	0.34	0.158	0.76	0.356
13	24	5.426	0.056	44.5	1.70	18.5	10.89	0.870	0.23	0.258	0.49	0.568
13	32	6.517	0.067	48.5	2.07	24.6	11.87	1.473	0.07	0.300	0.20	0.686
13	40	7.225	0.075	49.4	1.85	22.6	12.21	2.103	0.04	0.326	0.14	0.771
13	48	7.746	0.081	41.8	1.86	22.8	12.28	2.787	0.04	0.354	0.14	0.866
13	56	7.177	0.074	51.7	2.28	28.3	12.40	3.449	0.04	0.382	0.14	0.956
13	64	8.447	0.088	40.1	1.95	25.0	12.79	4.198	0.04	0.413	0.12	1.044
13	72	7.067	0.073	58.1	2.30	29.4	12.78	4.811	0.03	0.432	0.15	1.137
13	80	7.587	0.079	44.6	2.33	29.8	12.78	5.491	0.03	0.454	0.16	1.247
14	8	2.388	0.024	54.5	2.66	26.9	10.12	0.204	0.31	0.063	074	0.151
14	16	4.397	0.045	62.0	2.61	29.7	11 39	0.757	0.10	0.120	0.33	0.334
14	24	5.659	0.058	67.5	2.76	32.0	11.55	1.178	0.05	0.140	0.22	0.221
14	32	4.866	0.050	68.5	2.77	32.1	11.50	1.602	0.05	0.164	0.21	0.120
14	40	4.765	0.049	68.0	2.79	32.4	11.62	2.016	0.06	0.188	0.22	0.604
14	48	4.850	0.050	67.1	2.78	33.1	11.90	2.449	0.06	0.213	0.20	0.691
14	56	6.897	0.071	68.1	2.72	31.9	11.71	2.902	0.07	0.244	0.22	0.789
14	64	5.216	0.053	66.7	2.69	31.0	11.53	3.356	0.08	0.280	0.23	0.891
14	72	4.933	0.051	68.2	2.73	31.8	11.63	3.789	0.08	0.314	0.22	0.985
14	80	5.146	0.053	70.0	2.74	32.2	11.76	4.208	0.07	0.342	0.22	1.076
								Cum		Cum		Cum
-----	-------	-------	-------	------	------	------	-------	-------	------	-------	------	-------
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
15	8	1.537	0.015	72.9	3.38	32.6	9.64	0.142	0.33	0.046	0.91	0.129
15	16	2.150	0.022	72.9	3.38	32.9	9.72	0.333	0.35	0.113	0.99	0.318
15	24	2.807	0.028	70.1	3.17	31.8	10.04	0.576	0.48	0.230	1.07	0.578
15	32	3.888	0.040	60.4	2.76	28.7	10.41	0.927	0.32	0.341	0.83	0.869
15	40	4.345	0.044	63.5	2.76	29.9	10.85	1.287	0.19	0.408	0.56	1.072
15	48	4.535	0.046	67.0	2.81	31.0	11.04	1.696	0.14	0.464	0.42	1.243
15	56	4.942	0.051	69.1	2.73	30.7	11.26	2.126	0.09	0.505	0.34	1.390
15	64	5.485	0.056	48.5	2.47	27.9	11.30	2.607	0.11	0.559	0.37	1.566
15	72	8.274	0.087	41.0	1.86	23.3	12.52	3.398	0.05	0.597	0.17	1.700
15	80	5.925	0.061	63.4	2.51	31.1	12.40	3.886	0.06	0.627	0.19	1.794
16	8	7.485	0.019	71.2	3.29	32.2	9.79	0.128	0.34	0.044	0.95	0.121
16	16	2.767	0.028	68.8	3.04	30.5	10.05	0.344	0.40	0.130	0.97	0.330
16	24	3.461	0.035	66.2	2.88	30.8	10.68	0.644	0.25	0.206	0.58	0.504
16	32	4.275	0.044	67.7	2.84	32.2	11.33	1.018	0.36	0.340	0.33	0.627
16	40	4.531	0.046	61.2	2.60	29.9	11.51	1.427	0.08	0.372	0.25	0.730
16	48	6.131	0.063	49.3	2.21	27.3	12.35	1.930	0.05	0.395	0.20	0.830
16	56	6.276	0.065	55.9	2.26	29.1	12.87	2.501	0.04	0.415	0.16	0.921
16	64	6.259	0.065	64.4	2.41	31.4	13.03	2.973	0.03	0.431	0.16	0.998
16	72	8.841	0.093	38.0	1.98	26.0	13.12	3.808	0.03	0.458	0.13	1.107
16	80	6.418	0.066	68.9	2.42	32.3	13.33	4.285	0.04	0.476	0.21	1.209
17	8	1.198	0.012	74.0	3.10	31.3	10.10	0.092	0.34	0.032	1.06	0.098
17	16	1.983	0.020	72.4	3.28	32.4	9.87	0.257	0.38	0.095	1.12	0.282
17	24	2.960	0.030	69.7	3.14	31.6	10.08	0.486	0.42	0.191	1.11	0.536
17	32	4.258	0.043	63.7	2.63	29.3	11.13	0.878	0.16	0.252	0.53	0.744
17	40	4.563	0.047	62.4	2.36	27.6	11.71	1.255	0.11	0.291	0.38	0.886
17	48	4.579	0.047	67.5	2.61	31.3	12.00	1.654	0.09	0.325	0.78	1.199
17	56	6.058	0.062	66.8	2.55	31.1	12.21	2.056	0.04	0.342	0.21	1.282
17	64	4.938	0.051	66.1	2.58	31.1	12.04	2.493	0.03	0.357	0.19	1.364
17	72	5.380	0.055	66.3	2.55	31.7	12.45	2.962	0.04	0.374	0.17	1.445
17	80	5.415	0.056	67.5	2.49	31.3	12.58	3.438	0.04	0.393	0.17	1.527

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
10	•				- <i>.</i>	•••						
18	8	2.388	0.024	71.6	3.43	33.0	9.63	0.204	0.34	0.069	1.07	0.217
18	16	4.397	0.045	69.2	3.20	32.0	9.99	0.757	0.39	0.287	1.06	0.805
18	24	5.659	0.058	65.8	2.84	30.8	10.84	1.178	0.16	0.355	0.53	1.030
18	32	4.866	0.050	64.8	2.69	30.8	11.45	1.602	0.09	0.391	0.31	1.160
18	40	4.765	0.049	59.4	2.49	29.2	11.73	2.016	0.04	0.409	0.21	1.244
18	48	4.850	0.050	66.1	2.63	31.7	12.06	2.449	0.04	0.425	0.20	1.329
18	56	6.897	0.071	62.9	2.63	31.9	12.13	2.902	0.03	0.439	0.12	1.385
18	64	5.216	0.053	64.8	2.51	31.0	12.36	3.356	0.05	0.461	0.13	1.444
18	72	4.933	0.051	60.6	2.47	30.7	12.43	3.789	0.04	0.479	0.17	1.518
18	80	5.146	0.053	66.7	2.61	33.3	12.75	4.208	0.02	0.489	0.13	1.574
19	8	1.537	0.015	69.7	3.31	32.0	9.66	0.142	0.40	0.057	0.97	0.138
19	16	2.150	0.022	64.2	2.95	29.1	9.87	0.333	0.41	0.136	1.01	0.332
19	24	2.807	0.028	62.2	2.87	29.6	10.31	0.576	0.34	0.218	0.82	0.529
19	32	3.888	0.040	62.6	2.79	30.4	10.89	0.927	0.16	0.273	0.46	0.689
19	40	4.345	0.044	65.6	2.75	30.8	11.19	1.287	0.10	0.309	0.31	0.802
19	48	4.535	0.046	66.6	2.72	30.7	11.27	1.696	0.10	0.348	0.33	0.938
19	56	4.942	0.051	66.8	2.76	31.4	11.39	2.126	0.10	0.393	0.26	1.050
19	64	5.485	0.056	67.2	2.75	31.1	11.31	2.607	0.08	0.431	0.25	1.171
19	72	8.274	0.086	56.8	2.52	28.7	11.39	3.398	0.07	0.490	0.24	1.358
19	80	5.925	0.061	39.8	1.46	17.6	12.05	3.886	0.05	0.516	0.14	1.425
20	8	0.868	0.009	72.1	• • •	• • •		0.077	0.03	0.033	1.07	0.082
20	16	1.318	0.013	71.0	• • •	• • •		0.179	0.04	0.077	1.13	0.198
20	24	1.983	0.020	69.4	3.20	31.4	9.80	0.335	0.42	0.142	1.22	0.388
20	32	2.912	0.030	67.7	3.17	31.4	9.91	0.531	0.47	0.234	1.15	0.614
20	40	3.709	0.038	62.4	2.91	29.1	9.99	0.802	0.41	0.346	1.10	0.912
20	48	8.028	0.084	32.7	2.04	20.2	9.91	1.477	0.25	0.518	0.57	1.295
20	56	62.415	0.995	1.9	0.19	0.0	0.00	10.481	0.05	0.450	0.01	1.340

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	_											
21	8	1.584	0.016	68.9	3.07	31.5	10.27	0.128	0.33	0.042	0.79	0.102
21	16	2.965	0.030	64.5	2.80	30.6	10.91	0.348	0.20	0.086	0.51	0.214
21	24	4.303	0.044	67.7	2.72	31.7	11.66	0.740	0.09	0.122	0.25	0.311
21	32	4.404	0.045	66.6	2.67	31.1	11.65	1.126	0.07	0.148	0.21	0.390
21	40	4.279	0.044	67.8	2.67	31.4	11.74	1.492	0.06	0.169	0.19	0.460
21	48	4.284	0.044	65.8	2.57	31.5	12.27	1.874	0.05	0.188	0.18	0.527
21	56	5.249	0.054	58.3	2.10	26.5	12.61	2.344	0.06	0.214	0.14	0.592
21	64	5.395	0.055	62.0	2.38	30.7	12.89	2.827	0.05	0.239	0.14	0.659
21	72	5.739	0.059	63.1	2.39	31.1	13.00	3.327	0.04	0.260	0.13	0.722
21	80	5.726	0.059	64.6	2.47	31.9	12.93	3.827	0.06	0.290	0.16	0.801
22	8	1.915	0.019	66.0	2.85	30.0	10.53	0.172	0.35	0.060	0.98	0.168
22	16	3.308	0.034	62.0	2.82	29.4	10.43	0.462	0.38	0.171	0.84	0.412
22	24	3.932	0.040	62.9	2.63	29.6	11.27	0.852	0.20	0.248	0.52	0.613
22	32	4.703	0.048	55.7	2.38	28.2	11.87	1.236	0.10	0.286	0.30	0.729
22	40	5.057	0.052	67.1	2.39	31.4	13.14	1.703	0.05	0.311	0.19	0.818
22	48	5.313	0.054	68.4	2.49	34.6	13.88	2.154	0.03	0.326	0.18	0.897
22	56	6.047	0.062	59.3	2.25	30.3	13.45	2.718	0.04	0.346	0.17	0.992
22	64	6.010	0.062	62.6	2.40	31.0	12.90	3.239	0.03	0.363	0.16	1.078
22	72	6.368	0.066	56.3	2.14	28.5	13.32	3.781	0.04	0.386	0.14	1.154
22	80	6.381	0.066	58.9	2.41	31.7	13.15	4.353	0.04	0.406	0.14	1.231
~~			0.017		0.40		0.67	0.000	0.04	0.000	0.01	0.000
23	8	1.723	0.017	75.3	3.40	32.9	9.67	0.098	0.34	0.033	0.91	0.089
23	16	2.532	0.026	70.1	3.21	32.0	9.96	0.264	0.42	0.104	1.01	0.257
23	24	2.926	0.030	66.3	3.02	30.5	10.10	0.547	0.45	0.231	1.00	0.539
23	32	4.382	0.045	61.3	2.50	27.8	11.12	0.949	0.12	0.280	0.40	0.701
23	40	4.404	0.045	65.1	2.57	30.3	11.80	1.347	0.05	0.298	0.23	0.794
23	48	4.634	0.047	67.4	2.62	31.1	11.87	1.737	0.06	0.320	0.23	0.882
23	56	5.307	0.054	67.1	2.54	32.0	12.60	2.201	0.05	0.342	0.18	0.967
23	64	5.053	0.052	66.0	2.48	31.6	12.75	2.667	0.05	0.365	0.18	1.048
23	72	5.303	0.054	66.5	2.40	30.6	12.73	3.143	0.04	0.381	0.17	1.130
23	80	6.121	0.063	63.1	2.41	31.3	12.98	3.658	0.04	0.403	0.18	1.220

.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
24	0	1 702	0.017	70 7	2.05	20.1	0.00	0 120	0.25	0.046	1.00	0 1 2 2
24	0	1.725	0.017	12.1	3.23	32.1	9.88	0.132	0.35	0.046	1.00	0.133
24	10	2.755	0.028	08.3	3.10	31.7	10.22	0.344	0.39	0.129	0.99	0.343
24	24	4.016	0.041	62.9	2.81	30.2	10.75	0.680	0.32	0.237	0.78	0.604
24	32	4.792	0.049	65.3	2.71	31.0	11.43	1.114	0.13	0.294	0.36	0.760
24	40	4.467	0.046	66.2	2.66	31.1	11.71	1.511	0.05	0.313	0.21	0.843
24	48	4.761	0.049	67.1	2.69	32.4	12.03	1.943	0.06	0.340	0.20	0.929
24	56	4.996	0.051	67.4	2.69	32.8	12.20	2.384	0.06	0.367	0.18	1.010
24	64	5.095	0.052	67.3	2.50	31.4	12.54	2.811	0.05	0.390	0.17	1.084
24	72	5.796	0.060	60.2	2.38	30.2	12.70	3.326	0.04	0.411	0.16	1.165
24	80	6.030	0.062	55.9	2.02	26.0	12.85	3.866	0.04	0.434	0.14	1.240
25	8	2.073	0.021	62.6	2.90	29.1	10.03	0.165	0.28	0.047	0.84	0.138
25	16	4.090	0.042	53.2	2.76	28.0	10.14	0.460	0.31	0.138	0.78	0.368
25	24	4.211	0.043	64.7	2.68	30.3	11.29	0.848	0.12	0.185	0.35	0.505
25	32	4.806	0.049	65.1	2.64	31.4	11.88	1.261	0.04	0.202	0.20	0.588
25	40	5.664	0.058	60.8	2.54	31.8	12.52	1.778	0.03	0.216	0.15	0.666
25	48	6.476	0.067	56.3	2.25	28.6	12.69	2.366	0.04	0.239	0.18	0.769
25	56	6.296	0.065	57.1	2.36	29.9	12.67	2.929	0.04	0.260	0.15	0.852
25	64	6.967	0.072	50.4	2.07	26.4	12.76	3.577	0.02	0.275	0.14	0.940
25	72	6.067	0.063	60.6	2.49	31.5	12.64	4.080	0.04	0.296	0.17	1.025
25	80	7.625	0.079	46.9	1.95	24.8	12.73	4.748	0.03	0.315	0.12	1.104
											0.05	o 401
26	8	1.352	0.014	71.0	3.22	32.0	9.93	0.107	0.35	0.037	0.95	0.101
26	16	2.870	0.029	67.8	3.13	31.0	9.89	0.329	0.48	0.144	1.03	0.329
26	24	3.670	0.037	64.8	2.84	29.0	10.22	0.660	0.46	0.297	1.00	0.659
26	32	4.936	0.051	65.5	2.77	30.6	11.05	1.116	0.15	0.366	0.45	0.864
26	40	5.129	0.053	60.8	2.45	27.5	11.22	1.524	0.08	0.399	0.25	0.967
26	48	5.299	0.054	59.4	2.52	29.6	11.73	2.001	0.06	0.425	0.20	1.061
26	56	5.322	0.055	61.4	2.38	28.7	12.07	2.450	0.05	0.449	0.17	1.138
26	64	5.470	0.056	63.0	2.44	30.6	12.54	2.937	0.04	0.466	0.17	1.219
26	72	5.447	0.056	64.3	2.15	27.7	12.87	3.446	0.03	0.480	0.16	1.298
26	80	5.964	0.061	63.5	2.36	30.5	12.91	3.967	0.04	0.500	0.15	1.373

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
27	8	1.862	0.019	70.2	3.32	32.4	9.74	0.153	0.29	0.044	0.97	0.148
27	16	3.015	0.031	65.4	3.13	30.8	9.85	0.391	0.51	0.165	1.06	0.399
27	24	4.113	0.042	59.1	2.88	29.7	10.30	0.725	0.37	0.290	0.91	0.703
27	32	4.944	0.051	60.3	2.59	29.1	11.22	1.200	0.15	0.359	0.48	0.930
27	40	5.130	0.053	58.3	2.67	31.5	11.81	1.643	0.07	0.389	0.23	1.030
27	48	5.156	0.053	64.7	2.51	31.6	12.58	2.115	0.07	0.421	0.20	1.122
27	56	5.067	0.052	60.4	2.57	29.5	11.49	2.545	0.08	0.453	0.29	1.246
27	64	5.057	0.052	66.1	2.58	32.5	12.59	2.990	0.07	0.483	0.19	1.331
27	72	6.616	0.069	46.9	2.36	30.8	13.05	3.578	0.06	0.515	0.20	1.448
27	80	5.529	0.057	61.4	2.33	33.4	14.32	4.077	0.04	0.537	0.32	1.609

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
3	4	1.534	0.015	71.1	3.54	32.7	9.24	0.065	0.36	0.024	1.21	0.078
3	8	1.922	0.019	70.6	3.57	32.4	9.07	0.138	0.41	0.053	1.33	0.175
3	12	2.136	0.022	71.5	3.61	33.0	9.13	0.220	0.40	0.086	1.30	0.283
3	16	3.828	0.039	69.8	3.62	33.0	9.12	0.413	0.43	0.168	1.37	0.546
3	20	2.517	0.025	62.8	3.14	29.9	9.51	0.518	0.35	0.205	1.19	0.671
3	24	3.007	0.031	63.0	3.21	30.8	9.60	0.675	0.42	0.270	1.43	0.896
3	28	2.866	0.029	59.6	2.84	28.3	9.95	0.813	0.25	0.305	0.91	1.022
3	32	3.161	0.032	58.6	2.73	27.8	10.18	0.945	0.22	0.334	0.88	1.138
3	36	3.546	0.036	52.6	2.54	26.1	10.27	1.090	0.26	0.372	0.88	1.266
3	40	3.367	0.034	56.8	2.64	27.4	10.37	1.230	0.23	0.405	0.73	1.368
3	44	3.679	0.037	59.7	2.77	29.4	10.61	1.385	0.23	0.441	0.72	1.480
3	48	4.200	0.043	59.7	2.74	29.8	10.87	1.570	0.18	0.474	0.53	1.578
3	52	4.953	0.051	51.0	2.48	27.1	10.93	1.781	0.19	0.513	0.50	1.684
3	56	5.705	0.059	56.4	2.60	28.5	10.94	2.018	0.17	0.554	0.45	1.791
3	60	4.705	0.048	64.5	2.87	31.6	11.00	2.214	0.17	0.587	0.44	1.878
3	64	4.197	0.043	64.3	2.88	31.6	10.97	2.408	0.16	0.617	0.43	1.962
3	68	4.251	0.043	66.5	2.90	32.2	11.10	2.575	0.16	0.644	0.45	2.036
3	72	4.764	0.049	67.0	2.83	31.4	11.08	2.785	0.16	0.677	0.45	2.130
3	76	5.066	0.052	66.3	2.83	30.9	10.93	3.000	0.16	0.711	0.46	2.229
3	80	4.738	0.048	65.9	2.90	32.0	11.05	3.201	0.18	0.746	0.36	2.301
3	84	4.650	0.048	65.8	2.92	32.2	11.01	3.406	0.19	0.785	0.42	2.387
3	88	4.540	0.046	64.6	2.86	31.8	11.11	3.598	0.19	0.821	0.40	2.463
3	92	4.530	0.046	66.1	2.93	32.5	11.09	3.791	0.18	0.855	0.48	2.555
3	96	4.430	0.045	64.9	2.89	32.2	11.13	3.976	0.18	0.888	0.37	2.624
3	100	4.501	0.046	67.6	2.87	32.7	11.41	4.175	0.17	0.921	0.43	2.710
3	104	4.540	0.046	67.8	2.85	32.4	11.35	4.359	0.17	0.952	0.41	2.785
3	108	4.547	0.046	67.0	2.85	31.3	11.00	4.545	0.18	0.985	0.37	2.855
3	112	4.721	0.048	64.5	2.79	31.0	11.11	4.746	0.16	1.017	0.39	2.934
3	116	5.018	0.051	60.5	2.76	31.0	11.25	4.950	0.18	1.053	0.46	3,027
									<i>.</i>			
4	4	1.537	0.015	66.4	3.30	30.8	9.33	0.062	0.35	0.022	1.04	0.065
4	8	2.447	0.025	60.9	2.97	27.9	9.38	0.161	0.43	0.065	1.20	0.184
4	12	3.290	0.033	52.5	2.57	24.6	9.55	0.300	0.44	0.126	1.01	0.324
4	16	24.106	0.281	6.4	0.37	3.4	9.22	1.404	0.07	0.203	0.07	0.400
5	Λ	0 623	0.006	67.0	3.04	307	10 11	0 053	0.23	0.012	0.85	0.045
5	+ 8	0.025	0.000	667	3.01	30.7	10.11	0.119	0.23	0.012	0.35	0.045
5	12	1 457	0.003	64.8	2.88	30.7	10.19	0.240	0.22	0.027	074	0.020
5	16	2.667	0.027	53.7	2.13	22.5	10.58	0.382	0.14	0.070	0.63	0.275
-												

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
6	4	1.397	0.014	70.7	3.47	32.5	9.38	0.054	0.29	0.016	1.10	0.060
6	8	1.974	0.020	68.6	3.18	29.8	9.36	0.125	0.29	0.036	1.01	0.132
6	12	2.393	0.024	63.2	3.31	31.1	9.39	0.221	0.33	0.068	1.11	0.239
6	16	2.789	0.028	62.1	3.22	30.8	9.57	0.326	0.34	0.104	1.17	0.361
6	20	3.084	0.031	59.9	2.84	28.9	10.17	0.459	0.29	0.142	1.08	0.504
6	24	3.170	0.032	59.7	2.66	28.5	10.72	0.616	0.19	0.171	0.69	0.612
6	28	3.604	0.037	61.3	2.50	28.2	11.29	0.752	0.17	0.194	0.58	0.691
6	32	3.825	0.039	58.1	2.48	28.0	11.29	0.903	0.16	0.219	0.57	0.778
6	36	3.923	0.040	61.7	2.55	29.0	11.36	1.069	0.18	0.249	0.58	0.874
6	40	4.130	0.042	64.0	2.67	30.6	11.45	1.247	0.20	0.283	0.56	0.973
6	44	4.236	0.043	65.8	2.73	31.2	11.43	1.440	0.18	0.319	0.51	1.072
6	48	4.204	0.043	67.3	2.73	31.3	11.48	1.619	0.21	0.357	0.48	1.158
6	52	4.200	0.043	66.9	2.76	31.5	11.42	1.794	0.20	0.391	0.53	1.251
6	56	4.252	0.043	68.6	2.80	31.8	11.37	1.981	0.22	0.431	0.50	1.344
6	60	4.646	0.047	67.6	2.87	32.4	11.27	2.177	0.23	0.477	0.51	1.443
6	64	4.534	0.046	66.4	2.82	31.6	11.22	2.358	0.23	0.519	0.51	1.535
6	68	5.063	0.052	67.9	2.84	31.9	11.23	2.561	0.24	0.568	0.51	1.638
6	72	4.535	0.046	67.5	2.74	31.2	11.38	2.751	0.22	0.609	0.47	1.728
6	76	4.589	0.047	66.1	2.77	31.3	11.31	2.940	0.21	0.649	0.50	1.823
6	80	4.744	0.049	67.2	2.78	31.2	11.24	3.153	0.23	0.698	0.47	1.922
6	84	3.843	0.039	67.8	2.80	31.5	11.24	3.297	0.23	0.730	0.41	1.981
6	88	3.893	0.040	67.4	2.86	31.8	11.12	3.449	0.22	0.764	0.41	2.043
6	92	5.542	0.057	67.3	2.89	32.0	11.09	3.681	0.23	0.817	0.46	2.149
6	96	5.628	0.058	68.1	2.88	32.3	11.21	3.919	0.21	0.867	0.43	2.251
6	100	4.900	0.050	66.3	2.83	31.5	11.14	4.134	0.23	0.915	0.46	2.349
6	104	4.997	0.051	64.9	2.73	30.5	11.19	4.318	0.23	0.958	0.46	2.434
6	108	5.466	0.056	67.0	2.87	32.0	11.14	4.554	0.24	1.015	0.47	2.544
6	112	5.499	0.056	67.1	2.95	31.9	10.82	4.776	0.23	1.066	0.46	2.645
6	116	3.988	0.041	67.7	2.96	32.0	10.82	4.944	0.22	1.102	0.46	2.723
6	120	3.890	0.040	68.2	3.00	32.5	10.84	5.088	0.21	1.132	0.43	2.784
6	124	4.097	0.042	66.9	2.84	31.0	10.91	5.268	0.21	1.169	0.40	2.856
6	128	4.739	0.048	67.5	2.94	32.0	10.88	5.472	0.21	1.212	0.37	2.932

ł

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
7	4	2.125	0.021	56.3	2.47	25.7	10.41	0.100	0.17	0.017	0.48	0.048
7	8	4.824	0.050	34.3	1.85	20.0	10.78	0.295	0.11	0.038	0.28	0.103
7	12	6.559	0.068	32.9	1.92	21.5	11.20	0.610	0.08	0.062	0.27	0.187
7	16	5.494	0.057	48.6	2.56	30.2	11.80	0.827	0.05	0.072	0.14	0.218
7	20	5.260	0.054	56.7	2.39	29.2	12.23	1.050	0.04	0.081	0.11	0.242
7	24	5.224	0.054	57.3	2.36	29.1	12.35	1.279	0.04	0.090	0.11	0.267
7	28	6.391	0.066	46.6	2.29	28.6	12.49	1.569	0.05	0.103	0.10	0.297
7	32	6.675	0.069	46.2	2.18	27.0	12.39	1.852	0.05	0.117	0.18	0.348
7	36	10.117	0.107	30.2	2.03	25.8	12.72	2.308	0.04	0.137	0.12	0.402
7	40	5.521	0.057	59.3	2.27	29.7	13.08	2.554	0.06	0.152	0.14	0.437
7	44	5.913	0.061	59.0	2.36	30.7	12.99	2.818	0.05	0.165	0.11	0.465
7	48	11.079	0.118	34.9	1.68	21.5	12.81	3.321	0.06	0.192	0.06	0.493
7	52	13.091	0.141	32.2	1.11	14.2	12.75	3.905	0.04	0.218	0.04	0.518
7	56	7.794	0.081	40.0	1.57	20.7	13.17	4.248	0.06	0.236	0.07	0.543
7	60	9.306	0.098	49.1	1.84	24.7	13.43	4.658	0.06	0.260	0.06	0.567
7	64	9.219	0.097	46.5	1.68	22.6	13.45	5.081	0.06	0.284	0.10	0.608
7	68	9.810	0.104	24.1	2.07	27.9	13.48	5.479	0.06	0.307	0.06	0.631
7	72	8.873	0.093	42.0	1.55	20.9	13.48	5.881	0.05	0.328	0.09	0.667
7	76	5.840	0.060	66.1	2.44	33.3	13.66	6.150	0.08	0.349	0.15	0.706
7	80	6.156	0.063	64.5	2.38	33.1	13.89	6.404	0.08	0.369	0.17	0.750
7	84	5.678	0.058	60.5	2.59	36.7	14.16	6.662	0.08	0.390	0.22	0.807
7	88	5.219	0.053	69.4	2.57	36.0	14.00	6.906	0.10	0.413	0.17	0.850
7	92	4.345	0.044	65.3	2.38	33.0	13.88	7.081	0.06	0.424	0.12	0.871
7	96	5.078	0.052	73.5	2.44	33.8	13.86	7.302	0.09	0.445	0.18	0.911
7	100	4.380	0.045	68.0	2.67	36.5	13.66	7.508	0.07	0.459	0.15	0.942
7	104	6.232	0.064	67.3	2.59	36.1	13.95	7.757	0.06	0.473	0.18	0.986
7	108	5.470	0.056	69.5	2.62	36.8	14.03	7.987	0.08	0.492	0.18	1.027
7	112	6.049	0.062	67.0	2.27	32.4	14.27	8.262	0.13	0.529	0.31	1.112

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
8	4	1.368	0.014	70.5	3.50	32.4	9.25	0.062	0.35	0.022	0.88	0.054
8	8	2.917	0.030	69.6	3.38	31.8	9.39	0.175	0.37	0.064	0.98	0.166
8	12	2.383	0.024	70.3	3.37	32.5	9.64	0.267	0.48	0.108	1.02	0.259
8	16	1.968	0.020	67.7	3.10	31.7	10.23	0.349	0.40	0.141	0.94	0.337
8	20	3.125	0.032	67.5	2.92	31.1	10.66	0.482	0.26	0.176	0.74	0.436
8	24	3.008	0.031	66.0	2.79	30.9	11.09	0.612	0.19	0.200	0.60	0.513
8	28	3.654	0.037	59.1	2.63	29.6	11.27	0.769	0.13	0.220	0.44	0.582
8	32	5.558	0.057	45.3	1.70	19.7	11.56	1.007	0.08	0.238	0.31	0.655
8	36	3.812	0.039	65.7	2.71	31.1	11.46	1.173	0.08	0.252	0.30	0.706
8	40	3.804	0.039	67.1	2.73	31.3	11.46	1.337	0.08	0.265	0.31	0.756
8	44	3.695	0.038	68.1	2.67	31.0	11.59	1.495	0.08	0.277	0.29	0.801
8	48	3.460	0.035	67.9	2.67	30.9	11.59	1.639	0.07	0.288	0.27	0.840
8	52	3.730	0.038	65.1	2.55	30.2	11.86	1.805	0.07	0.299	0.24	0.880
8	56	6.126	0.063	40.1	1.60	20.3	12.69	2.076	0.05	0.314	0.19	0.933
8	60	7.768	0.081	44.3	2.32	28.9	12.45	2.424	0.04	0.329	0.15	0.985
8	64	4.838	0.050	64.5	2.57	32.3	12.57	2.626	0.06	0.341	0.17	1.019
8	68	6.687	0.069	52.2	2.63	34.4	13.07	2.939	0.04	0.353	0.20	1.082
8	72	5.942	0.061	60.5	2.69	35.7	13.28	3.190	0.06	0.368	0.20	1.132
8	76	8.123	0.085	44.1	2.20	28.5	12.93	3.559	0.13	0.416	0.38	1.272
8	80 ·	7.472	0.078	35.2	1.57	20.6	13.09	3.893	0.05	0.432	0.17	1.330
8	84	5.777	0.060	50.7	2.34	30.3	12.94	4.137	0.06	0.447	0.22	1.382
8	88	6.755	0.070	42.2	2.71	35.8	13.21	4.439	0.07	0.469	0.21	1.446
8	92	5.941	0.061	63.8	2.58	34.3	13.30	4.706	0.06	0.484	0.21	1.501
8	96	4.628	0.047	71.2	2.75	35.8	13.00	4.900	0.05	0.494	0.20	1.541
8	100	6.425	0.066	58.7	2.47	32.7	13.23	5.185	0.06	0.512	0.24	1.609
8	104	4.668	0.048	70.7	2.81	36.9	13.12	5.385	0.05	0.522	0.21	1.651
8	108	5.464	0.056	68.4	2.66	35.4	13.29	5.636	0.06	0.539	0.20	1.702

and grade the state of the stat

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
9	4	1.351	0.014	72.3	3.60	32.7	9.09	0.048	0.43	0.021	1.01	0.049
9	8	1.682	0.017	72.3	3.57	32.8	9.19	0.129	0.46	0.058	1.07	0.135
9	12	2.166	0.022	72.2	3.58	32.8	9.16	0.220	0.50	0.103	1.12	0.237
9	16	2.433	0.025	71.5	3.59	33.0	9.20	0.326	0.60	0.167	1.23	0.367
9	20	2.141	0.022	69.9	3.39	32.2	9.49	0.422	0.59	0.223	1.17	0.479
9	24	2.778	0.028	65.7	3.15	30.8	9.76	0.535	0.45	0.274	0.99	0.591
9	28	3.154	0.032	62.8	2.86	29.3	10.26	0.671	0.46	0.336	0.90	0.713
9	32	3.610	0.037	62.7	2.71	29.3	10.82	0.817	0.27	0.375	0.68	0.812
9	36	3.863	0.039	63.0	2.72	29.9	11.00	0.980	0.14	0.397	0.35	0.869
9	40	3.870	0.039	64.8	2.77	30.6	11.04	1.148	0.11	0.415	0.30	0.920
9	44	3.989	0.041	65.7	2.72	29.9	11.00	1.323	0.12	0.436	0.30	0.972
9	48	4.107	0.042	65.9	2.76	30.5	11.03	1.499	0.11	0.454	0.29	1.023
9	52	4.177	0.043	63.6	2.70	30.1	11.13	1.672	0.08	0.468	0.26	1.069
9	56	4.187	0.043	64.7	2.69	30.3	11.26	1.862	0.12	0.491	0.24	1.114
9	60	3.875	0.039	66.1	2.69	30.6	11.38	2.036	0.09	0.506	0.22	1.152
9	64	3.775	0.038	64.1	2.67	30.5	11.43	2.195	0.07	0.518	0.22	1.186
9	68	3.653	0.037	68.4	2.81	31.8	11.32	2.353	0.07	0.529	0.20	1.218
9	72	4.665	0.048	68.2	2.75	31.4	11.40	2.554	0.07	0.544	0.22	1.262
9	76	4.221	0.043	69.2	2.77	31.6	11.40	2.744	0.08	0.558	0.20	1.300
9	80	4.045	0.041	68.7	2.77	31.7	11.43	2.922	0.08	0.573	0.22	1.339
9	84	4.269	0.044	64.5	2.63	30.0	11.39	3.111	0.07	0.585	0.21	1.378
9	88	3.342	0.034	66.8	2.71	30.8	11.36	3.251	0.06	0.594	0.19	1.405
9	92	3.246	0.033	68.9	2.75	31.8	11.55	3.386	0.07	0.604	0.18	1.430
9	96	4.987	0.051	54.4	2.44	28.3	11.59	3.600	0.06	0.617	0.15	1.463
9	100	4.735	0.048	58.3	2.53	30.5	12.06	3.806	0.06	0.628	0.15	1.494
9	104	5.331	0.055	55.8	2.36	29.6	12.55	4.035	0.05	0.639	0.14	1.527
9	108	5.266	0.054	63.2	2.47	30.0	12.15	4.266	0.06	0.653	0.15	1.562
9	112	4.365	0.045	64.8	2.53	31.2	12.33	4.456	0.06	0.664	0.15	1.589
9	116	5.224	0.054	65.3	2.54	31.2	12.30	4.666	0.05	0.675	0.14	1.618

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
10	Λ	2 367	0.024	68.8	3 35	31.6	0 1 4	0.113	0.20	0.022	0 70	0.000
10	7 8	2.507	0.024	68.6	3.33	31.0	0/3	0.115	0.29	0.033	0.79	0.009
10	12	2.577	0.020	64 1	3.24	30.0	0.53	0.210	0.33	0.007	0.00	0.179
10	16	2.210	0.034	58.0	2.24	20.9	10.26	0.527	0.52	0.103	0.90	0.270
10	20	3 600	0.034	66.6	2.04	31.3	10.20	0.407	0.23	0.158	0.71	0.377
10	20	4 050	0.050	61 1	2.00	29.4	11 17	0.029	0.14	0.101	0.44	0.449
10	24	3 771	0.041	64.6	2.05	30.9	11.17	0.005	0.05	0.170	0.29	0.501
10	20	3 658	0.030	68.6	2.70	30.2	11.45	1 1 56	0.00	0.100	0.20	0.557
10	36	4 092	0.037	67.9	2.50	29.5	11.42	1 335	0.04	0.124	0.10	0.507
10	40	4.600	0.042	57.9	2.51	22.5	11.02	1.555	0.03	0.202	0.20	0.634
10	40	4 533	0.047	65.9	2.41	31.6	11.00	1 735	0.04	0.210	0.15	0.654
10	48	4 326	0.044	66.8	2.05	31.2	12.15	1 920	0.05	0.210	0.13	0.669
10	52	4 696	0.048	62.5	2.48	30.6	12.13	2 127	0.03	0.220	0.17	0.002
10	56	4 876	0.050	62.8	2.10	30.5	12.31	2 331	0.04	0.241	0.11	0.736
10	60	5 094	0.052	62.6	2.45	30.8	12.58	2.567	0.04	0.251	0.11	0.762
10	64	5 264	0.054	61.5	2.28	28.4	12.46	2.798	0.03	0.258	0.12	0.791
10	68	6 849	0.071	36.9	2.19	27.2	12.43	3.114	0.03	0.268	0.12	0.827
10	72	5 782	0.060	58.8	2.38	30.1	12.65	3.363	0.04	0.279	0.09	0.848
10	76	5.138	0.053	68.2	2.58	32.9	12.73	3.590	0.04	0.288	0.11	0.873
10	80	6.154	0.063	59.0	2.41	30.9	12.81	3.847	0.03	0.297	0.11	0.902
10	84	6.569	0.068	55.2	2.02	25.5	12.62	4.129	0.03	0.307	0.10	0.930
10	88	6.649	0.069	53.8	2.44	31.3	12.84	4.435	0.04	0.319	0.12	0.965
10	92	13.247	0.143	29.5	1.28	16.5	12.90	5.046	0.03	0.337	0.08	1.011
10	96	8.885	0.093	32.5	1.57	21.1	13.46	5.450	0.09	0.372	0.28	1.124
10	100	9.759	0.103	39.0	1.37	18.1	13.18	5.888	0.08	0.405	0.35	1.276
10	104	11.023	0.118	24.0	1.13	14.9	13.14	6.387	0.04	0.423	0.20	1.373
10	108	10.529	0.112	34.3	1.76	23.7	13.48	6.888	0.05	0.448	0.19	1.469
10	112	4.238	0.043	77.0	2.76	38.5	13.95	7.061	0.04	0.455	0.33	1.525
10	116	4.674	0.048	75.4	2.64	37.5	14.22	7.263	0.06	0.467	0.37	1.600
10	120	5.944	0.061	65.7	2.60	36.5	14.02	7.528	0.08	0.487	0.33	1.687
10	124	5.050	0.052	70.9	2.69	38.2	14.21	7.744	0.08	0.504	0.37	1.767
10	128	4.925	0.050	77.0	2.69	37.8	14.04	7.965	0.05	0.515	0.36	1.845
10	132	5.389	0.055	74.8	2.72	38.9	14.31	8.189	0.11	0.539	0.42	1.938
10	136	5.189	0.053	73.8	2.70	38.6	14.30	8.418	0.11	0.564	0.37	2.023
10	140	5.098	0.052	74.1	2.54	36.3	14.28	8.602	0.07	0.577	0.42	2.100

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
11	4	1.187	0.012	73.1	3.55	33.3	9.37	0.054	0.46	0.025	1.11	0.060
11	8	1.797	0.018	71.7	3.49	32.6	9.35	0.127	0.47	0.059	1.17	0.145
11	12	1.971	0.020	71.9	3.36	31.7	9.43	0.208	0.57	0.105	1.20	0.242
11	16	2.262	0.023	70.2	3.23	31.7	9.82	0.299	0.52	0.153	1.23	0.354
11	20	2.644	0.027	69.5	3.07	31.2	10.17	0.402	0.58	0.212	1.01	0.458
11	24	2.768	0.028	64.6	2.78	30.2	10.85	0.520	0.24	0.240	0.66	0.536
11	28	3.063	0.031	64.7	2.56	28.9	11.29	0.650	0.16	0.260	0.47	0.597
11	32	3.570	0.036	61.4	2.47	28.2	11.41	0.799	0.16	0.284	0.43	0.662
11	36	4.159	0.042	76.3	2.55	30.0	11.78	0.979	0.09	0.301	0.26	0.709
11	40	4.404	0.045	67.5	2.64	31.7	12.02	1.164	0.08	0.316	0.22	0.751
11	44	4.761	0.049	66.4	2.66	31.8	11.94	1.371	0.07	0.330	0.21	0.794
11	48	4.433	0.045	66.4	2.62	30.7	11.73	1.569	0.07	0.345	0.20	0.834
11	52	4.241	0.043	66.8	2.66	31.1	11.68	1.742	0.07	0.357	0.33	0.891
11	56	3.808	0.039	71.9	2.70	31.4	11.63	1.916	0.07	0.369	0.33	0.949
11	60	4.003	0.041	64.9	2.58	29.9	11.57	2.089	0.08	0.382	0.35	1.009
11	64	3.900	0.040	68.4	2.66	30.8	11.57	2.255	0.07	0.394	0.34	1.065
11	68	3.881	0.040	68.8	2.72	31.4	11.53	2.416	0.07	0.406	0.32	1.116
11	72	4.041	0.041	67.3	2.67	30.9	11.58	2.564	0.06	0.415	0.30	1.161
11	76	3.931	0.040	68.8	2.68	30.8	11.50	2.725	0.06	0.425	0.31	1.210
11	80	3.867	0.039	68.4	2.71	31.1	11.47	2.889	0.06	0.435	0.31	1.261
11	84	4.233	0.043	60.6	2.40	28.2	11.75	3.067	0.06	0.445	0.28	1.310
11	88	5.784	0.060	55.4	2.24	28.6	12.75	3.330	0.04	0.457	0.19	1.361
11	92	5.386	0.055	61.1	2.30	29.7	12.89	3.573	0.05	0.468	0.22	1.413
11	96	1.283	0.013	56.4	2.35	30.1	12.80	3.626	0.04	0.470	0.26	1.427
11	100	6.472	0.067	44.3	2.16	27.6	12.77	3.913	0.04	0.481	0.25	1.499
11	104	5.358	0.055	58.8	2.38	30.9	13.00	4.152	0.04	0.491	0.31	1.574
11	108	4.604	0.047	63.1	2.29	29.8	13.01	4.355	0.05	0.501	0.28	1.631
11	112	7.527	0.078	39.1	2.03	26.4	13.02	4.675	0.05	0.515	0.30	1.728
11	116	5.826	0.060	56.9	2.47	31.4	12.70	4.944	0.12	0.547	0.96	1.986
11	120	7.108	0.074	43.4	2.11	27.3	12.94	5.268	0.05	0.562	0.25	2.066
11	124	6.214	0.064	60.2	2.37	31.5	13.28	5.524	0.04	0.572	0.24	2.128
11	128	5.029	0.052	65.9	2.39	32.2	13.45	5.742	0.04	0.579	0.25	2.182
11	132	5.101	0.052	64.5	2.34	32.0	13.66	5.963	0.05	0.591	0.25	2.237
11	136	5.739	0.059	61.6	2.26	31.3	13.85	6.212	0.05	0.604	0.28	2.308
11	140	5.222	0.054	64.2	2.43	34.1	14.02	6.432	0.05	0.615	0.31	2.376

G-16

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
12	4	1 860	0.019	68.6	3 14	31.5	10.03	0.081	0.30	0.032	1 3 1	0 106
12	8	2 530	0.012	67.5	3.06	30.8	10.05	0.001	0.32	0.032	1 42	0.100
12	12	2.952	0.020	64.4	2.90	30.2	10.00	0.174	0.40	0.070	1.42	0.238
12	16	3.416	0.035	58.1	2.65	28.0	10.10	0.450	0.44	0.152	0.98	0.400
12	20	3.095	0.031	63.0	2.69	29.2	10.86	0.589	0.39	0.227	1.35	0.744
12	24	3.452	0.035	62.3	2.58	28.7	11.13	0.733	0.25	0.263	1.00	0.887
12	28	3.569	0.036	63.5	2.62	28.9	11.04	0.891	0.21	0.297	0.87	1.025
12	32	3.619	0.037	62.0	2.61	28.9	11.05	1.048	0.23	0.333	0.93	1.171
12	36	4.077	0.042	57.3	2.41	26.7	11.07	1.232	0.25	0.379	0.91	1.338
12	40	3.777	0.038	59.9	2.49	27.5	11.06	1.392	0.29	0.424	0.94	1.488
12	44	4.041	0.041	58.4	2.38	26.7	11.20	1.560	0.30	0.475	0.95	1.648
12	48	4.390	0.045	56.1	2.39	27.0	11.29	1.748	0.28	0.527	0.86	1.810
12	52	4.370	0.045	56.5	2.42	27.3	11.29	1.932	0.28	0.578	0.89	1.973
12	56	4.717	0.048	57.1	2.35	26.8	11.38	2.137	0.28	0.636	0.81	2.140
12	60	5.299	0.054	57.0	2.34	27.0	11.54	2.370	0.27	0.698	0.77	2.319
12	64	6.104	0.063	54.6	2.34	27.0	11.54	2.628	0.26	0.765	0.75	2.512
12	68	7.213	0.075	43.5	1.84	21.7	11.78	2.938	0.21	0.831	0.63	2.706
12	72	8.175	0.086	36.8	1.98	23.9	12.06	3.268	0.18	0.892	0.49	2.867
12	76	11.069	0.118	27.3	1.98	22.6	11.42	3.648	0.17	0.957	0.51	3.061

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	ŤN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
13	4	1.567	0.016	69.2	3.30	31.3	9.49	0.059	0.36	0.021	1.18	0.070
13	8	2.161	0.022	65.5	3.11	30.0	9.64	0.153	0.38	0.057	1.16	0.179
13	12	2.420	0.024	63.9	3.10	29.9	9.65	0.254	0.41	0.099	1.24	0.305
13	16	3.505	0.036	50.8	2.36	24.4	10.33	0.397	0.32	0.144	0.93	0.438
13	20	3.824	0.039	55.1	2.32	26.2	11.29	0.560	0.17	0.171	0.65	0.543
13	24	3.930	0.040	62.4	2.41	28.9	12.00	0.736	0.08	0.186	0.34	0.603
13	28	4.410	0.045	58.1	2.20	27.2	12.35	0.923	0.05	0.196	0.27	0.653
13	32	4.686	0.048	57.4	2.21	27.8	12.56	1.131	0.06	0.207	0.27	0.709
13	36	5.491	0.057	49.7	1.95	25.0	12.79	1.371	0.05	0.218	0.23	0.764
13	40	6.013	0.062	47.2	1.77	22.8	12.85	1.638	0.04	0.230	0.20	0.816
13	44	4.636	0.047	64.6	2.38	31.2	13.11	1.839	0.05	0.239	0.23	0.862
13	48	4.479	0.046	68.7	2.54	33.1	13.04	2.037	0.04	0.247	0.20	0.900
13	52	5.666	0.058	51.6	2.13	27.8	13.04	2.284	0.04	0.257	0.22	0.954
13	56	5.363	0.055	54.1	1.80	23.4	12.98	2.516	0.04	0.266	0.21	1.004
13	60	5.337	0.055	55.8	2.22	28.2	12.72	2.757	0.04	0.276	0.21	1.055
13	64	5.918	0.061	52.1	2.14	27.8	12.99	3.017	0.05	0.288	0.23	1.115
13	68	5.707	0.059	53.1	2.12	26.3	12.39	3.273	0.04	0.298	0.21	1.168
13	72	5.851	0.060	54.7	2.33	29.2	12.52	3.534	0.04	0.308	0.20	1.221
13	76	5.923	0.061	54.7	2.43	31.1	12.80	3.797	0.05	0.320	0.22	1.279
13	80	6.673	0.069	45.9	2.43	30.7	12.63	4.099	0.05	0.334	0.21	1.341
13	84	7.237	0.075	42.6	2.08	26.8	12.86	4.428	0.05	0.352	0.21	1.410
13	88	6.394	0.066	54.6	2.31	30.3	13.13	4.718	0.05	0.367	0.27	1.488
13	92	6.591	0.068	52.4	2.20	29.5	13.41	5.005	0.04	0.379	0.20	1.546
13	96	6.436	0.067	51.5	2.14	28.7	13.39	5.284	0.04	0.390	0.24	1.614
13	100	9.795	0.104	31.6	1.64	22.2	13.52	5.742	0.06	0.417	0.29	1.745
13	104	4.680	0.048	68.4	2.68	36.0	13.43	5.948	0.05	0.427	0.32	1.812
13	108	5.496	0.056	58.2	2.30	31.0	13.46	6.187	0.09	0.448	0.43	1.914
13	112	6.483	0.067	47.5	2.56	34.8	13.61	6.465	0.08	0.469	0.34	2.009
13	116	4.818	0.049	70.7	2.79	38.5	13.78	6.679	0.09	0.489	0.62	2.142
13	120	5.417	0.056	64.0	2.61	36.3	13.92	6.925	0.10	0.512	0.88	2.359
13	124	4.749	0.049	76.6	2.73	38.4	14.07	7.132	0.05	0.523	0.51	2.465
13	128	4.656	0.048	75.2	2.74	38.8	14.16	7.341	0.07	0.537	0.52	2.574

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
1 /	4	1 624	0.016	71.0	2 42	22.7	0.50	0.064	0.00	0.010	1 10	0.075
14	4	1.034	0.010	71.2	3.43	32.1	9.52	0.004	0.29	0.019	1.18	0.075
14	8	1.8//	0.019	12.5	3.43	32.3	9.48	0.138	0.37	0.046	1.19	0.103
14	12	2.231	0.023	70.1	3.39	32.8	9.07	0.230	0.53	0.095	1.40	0.297
14	10	2.514	0.025	70.1	3.31	32.4	9.79	0.333	0.40	0.142	1.37	0.439
14	20	2.802	0.028	/0.0	3.22	32.1	10.10	0.449	0.37	0.185	1.17	0.575
14	24	4.309	0.045	47.2	2.07	21.5	10.38	0.030	0.30	0.239	0.88	0.735
14	28	6.049	0.063	31.2	2.13	22.6	10.60	0.881	0.18	0.285	0.69	0.908
14	32	4.961	0.051	52.1	2.12	30.9	11.35	1.100	0.09	0.304	0.40	0.997
14	36	5.047	0.052	67.5	2.47	29.1	11.78	1.314	0.06	0.316	0.28	1.057
14	40	4.415	0.045	62.8	2.61	30.8	11.81	1.504	0.05	0.325	0.30	1.114
14	44	4.547	0.047	54.9	2.29	27.8	12.15	1.701	0.05	0.335	0.31	1.1/6
14	48	5.471	0.056	44.1	2.29	28.9	12.60	1.930	0.05	0.346	0.27	1.238
14	52	12.830	0.138	28.3	1.14	14.6	12.81	2.543	0.05	0.373	0.25	1.389
14	56	11.713	0.125	32.8	1.31	17.8	13.54	3.045	0.05	0.400	0.39	1.584
14	60	7.844	0.081	67.0	1.80	24.9	13.82	3.403	0.04	0.413	0.35	1.708
14	64	4.784	0.049	72.4	2.72	36.9	13.56	3.605	0.05	0.423	0.37	1.783
14	68	6.408	0.066	54.5	2.39	32.8	13.74	3.886	0.06	0.439	0.48	1.916
14	72	5.137	0.053	60.5	2.23	31.2	13.99	4.105	0.14	0.469	0.72	2.073
14	76	4.278	0.044	74.7	2.69	37.7	14.02	4.285	0.07	0.480	0.68	2.196
14	80	6.068	0.063	58.1	2.11	31.1	14.74	4.556	0.05	0.494	0.78	2.407
14	84	7.491	0.078	46.1	1.96	29.2	14.88	4.883	0.08	0.519	0.83	2.676
14	88	6.991	0.073	48.9	1.78	28.8	16.20	5.203	0.39	0.642	2.77	3.562
14	92	6.427	0.066	54.7	1.82	30.5	16.76	5.471	0.20	0.697	2.11	4.127
14	96	6.701	0.069	53.6	1.78	30.4	17.11	5.741	0.30	0.778	3.85	5.168
14	100	7.513	0.078	51.7	1.69	29.8	17.68	6.090	0.31	0.886	4.28	6.659
14	104	8.472	0.089	44.9	1.53	26.9	17.56	6.467	0.22	0.967	3.09	7.822
14	108	10.069	0.106	36.5	1.27	23.7	18.63	6.920	0.24	1.077	2.58	8.994
14	112	11.265	0.120	32.1	1.08	22.8	21.17	7.392	0.27	1.204	2.04	9.956
14	116	13.262	0.143	25.8	0.87	20.0	23.09	8.028	0.17	1.311	1.52	10.921
14	120	12.782	0.138	30.1	1.01	21.9	21.79	8.597	0.15	1.397	1.31	11.666
14	124											
14	128	16.050	0.176	26.9	0.95	19.6	20.56	9.352	0.11	1.479	0.74	12.227
14	132	19.364	0.217	23.3	0.80	18.3	22.81	10.282	0.10	1.570	0.78	12.950
14	136	20.967	0.238	23.7	0.88	17.5	19.89	11.275	0.12	1.689	0.76	13.708
14	140	14.119	0.153	27.2	0.98	21.3	21.75	11.922	0.13	1.775	1.13	14.439

Note: No sample at 124 cm.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
15	4	1.764	0.018	69.9	3.41	32.4	9.49	0.072	0.37	0.027	1.05	0.076
15	8	2.056	0.021	67.7	3.43	31.9	9.29	0.158	0.39	0.060	1.04	0.165
15	12	2.208	0.022	68.5	3.54	32.8	9.25	0.244	0.40	0.094	1.06	0.256
15	16	2.511	0.025	65.2	3.10	30.9	9.96	0.347	0.36	0.131	0.99	0.358
15	20	2.917	0.030	61.5	2.78	29.0	10.43	0.474	0.27	0.165	0.86	0.467
15	24	3.214	0.033	60.9	2.79	30.3	10.87	0.614	0.20	0.193	0.78	0.575
15	28	3.250	0.033	63.1	3.65	30.3	8.30	0.744	0.12	0.209	0.51	0.642
15	32	3.436	0.035	64.7	2.65	30.8	11.62	0.893	0.08	0.221	0.43	0.706
15	36	4.009	0.041	66.1	2.66	31.3	11.76	1.067	0.08	0.235	0.39	0.773
15	40	4.143	0.042	67.0	2.66	31.6	11.88	1.240	0.09	0.251	0.40	0.843
15	44	3.876	0.039	67.2	2.67	31.4	11.76	1.404	0.09	0.265	0.41	0.909
15	48	4.006	0.041	63.4	2.58	30.8	11.94	1.577	0.15	0.291	0.40	0.979
15	52	6.430	0.067	43.6	1.93	24.3	12.61	1.864	0.08	0.315	0.24	1.047
15	56	4.982	0.051	64.8	2.62	33.8	12.90	2.083	0.09	0.334	0.23	1.096
15	60	4.601	0.047	64.6	2.57	33.6	13.09	2.284	0.09	0.352	0.22	1.141
15	64	4.890	0.050	65.7	2.47	32.5	13.14	2.494	0.10	0.372	0.23	1.188
15	68	6.276	0.065	52.4	2.08	27.3	13.12	2.752	0.07	0.391	0.22	1.246
15	72	8.838	0.093	34.9	1.53	20.2	13.19	3.154	0.08	0.422	0.19	1.321
15	76	5.927	0.061	58.2	2.40	31.1	12.95	3.409	0.08	0.442	0.26	1.387
15	80	5.509	0.057	61.2	2.40	30.7	12.78	3.648	0.10	0.465	0.26	1.450
15	84	7.321	0.076	41.2	2.22	27.7	12.48	3.972	0.16	0.516	0.48	1.604
15	88	10.818	0.115	23.7	1.40	17.3	12.37	4.436	0.17	0.596	0.40	1.787
15	92	11.726	0.126	22.6	0.98	12.3	12.54	4.978	0.05	0.621	0.19	1.888
15	96	5.619	0.058	57.7	2.27	29.1	12.83	5.211	0.10	0.644	0.26	1.950
15	100	6.223	0.064	54.0	2.41	31.8	13.20	5.498	0.08	0.666	0.27	2.027
15	104	6.557	0.068	52.3	2.13	28.1	13.21	5.783	0.10	0.695	0.25	2.099
15	108	6.011	0.062	65.1	2.35	31.5	13.40	6.040	0.10	0.721	0.37	2.195
15	112	5.410	0.056	63.9	2.54	34.3	13.50	6.285	0.07	0.738	0.29	2.264
15	116	6.074	0.063	57.2	2.29	30.9	13.50	6.541	0.10	0.763	0.34	2.350
15	120	5.403	0.055	64.2	2.38	32.6	13.71	6.776	0.09	0.783	0.32	2.424
15	124	4.954	0.051	70.0	2.72	37.2	13.67	6.993	0.11	0.808	0.41	2.513
15	128	7.958	0.083	44.9	1.70	22.8	13.44	7.340	0.08	0.835	0.28	2.610
15	132	6.994	0.073	50.2	2.19	29.5	13.47	7.653	0.11	0.868	0.31	2.706
15	136	9.903	0.104	42.0	1.73	23.0	13.29	8.120	0.08	0.906	0.26	2.828
15	140	6.064	0.063	55.6	2.53	35.0	13.83	8.397	0.10	0.933	0.30	2.911

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
					• • • •				• • • •			
16	4	1.816	0.018	66.5	3.18	31.8	9.98	0.081	0.41	0.033	1.01	0.082
16	8	2.182	0.022	63.1	3.21	31.4	9.77	0.165	0.40	0.067	1.04	0.169
16	12	2.477	0.025	65.8	3.11	30.9	9.94	0.267	0.42	0.109	1.01	0.272
16	16	2.578	0.026	64.3	3.07	30.6	9.96	0.378	0.36	0.148	0.92	0.374
16	20	3.120	0.032	64.1	2.87	31.5	10.96	0.501	0.22	0.175	0.64	0.453
16	24	4.209	0.043	64.3	2.61	30.5	11.67	0.684	0.10	0.192	0.34	0.515
16	28	4.914	0.050	51.9	2.42	28.8	11.88	0.904	0.11	0.217	0.30	0.582
16	32	4.311	0.044	61.7	2.49	30.6	12.29	1.092	0.12	0.240	0.26	0.630
16	36	4.357	0.045	62.0	2.61	30.5	11.67	1.273	0.13	0.265	0.33	0.689
16	40	4.377	0.045	65.2	2.60	31.5	12.10	1.464	0.14	0.291	0.30	0.747
16	44	5.016	0.051	57.1	2.25	27.8	12.37	1.686	0.14	0.321	0.30	0.814
16	48	5.280	0.054	57.6	2.37	29.7	12.54	1.912	0.12	0.349	0.32	0.887
16	52	5.566	0.057	49.0	2.31	29.2	12.63	2.159	0.15	0.385	0.30	0.960
16	56	6.455	0.067	50.8	1.96	25.2	12.84	2.441	0.13	0.420	0.25	1.029
16	60	8.281	0.087	36.8	1.65	21.4	12.98	2.820	0.10	0.459	0.22	1.113
16	64	10.595	0.112	32.6	1.48	19.2	12.97	3.301	0.08	0.499	0.17	1.196
16	68	6.110	0.063	52.5	2.40	31.2	13.00	3.557	0.16	0.541	0.36	1.288
16	72	11.856	0.127	30.7	1.00	12.1	12.13	4.111	0.14	0.619	0.39	1.502
16	76	6.954	0.072	51.7	1.93	25.8	13.36	4.428	0.12	0.657	0.27	1.587
16	80	4.928	0.050	69.5	2.69	36.4	13.52	4.639	0.09	0.677	0.27	1.644
16	84	4.955	0.051	71.6	2.60	36.0	13.85	4.855	0.12	0.702	0.27	1.702
16	88	4.814	0.049	74.6	2.63	36.2	13.75	5.056	0.14	0.730	0.32	1.766
16	92	5.200	0.053	67.4	2.51	35.0	13.94	5.292	0.11	0.757	0.29	1.834
16	96	6.386	0.066	57.2	2.39	32.8	13.73	5.576	0.15	0.799	0.34	1.931
16	100	4.568	0.047	75.9	2.70	37.4	13.85	5.774	0.11	0.822	0.34	1.998
16	104	4.513	0.046	75.4	2.65	36.4	13.72	5.961	0.17	0.853	0.37	2.067
16	108	4.508	0.046	75.0	2.65	36.3	13.69	6.159	0.17	0.886	0.38	2.142
16	112	4.890	0.050	73.4	2.58	35.5	13.74	6.373	0.15	0.918	0.36	2.219
16	116	6.172	0.064	71.7	2.35	32.2	13.70	6.639	0.18	0.965	0.36	2.315
16	120	5.039	0.052	67.7	2.48	34.9	14.06	6.866	0.24	1.019	0.64	2.461
16	124	4.912	0.050	77.5	2.67	38.2	14.30	7.078	0.26	1.073	1.19	2.712
16	128	5.242	0.054	77.7	2.68	38.4	14.34	7.300	0.17	1.112	0.47	2.816
16	132	5.144	0.053	76.2	2.69	38.6	14.35	7.535	0.17	1.152	0.57	2.950
16	136	5.497	0.056	74.5	2.55	38.2	15.00	7.758	0.16	1.188	0.58	3.078
16	140	5.546	0.057	69.7	2.46	36.4	14.80	7.998	0.17	1.228	0.83	3.276
16	144	5.611	0.058	66.2	2.21	32.9	14.88	8.244	0.20	1.276	0.92	3.503
16	148	5.320	0.055	68.5	2.30	35.2	15.32	8.467	0.17	1.313	0.55	3.625

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
17	4	1.563	0.016	71.2	3.54	32.5	9.17	0.065	0.54	0.035	1.29	0.085
17	8	2.065	0.021	69.5	3.50	32.4	9.26	0.149	0.57	0.083	1.24	0.189
17	12	2.060	0.021	70.0	3.54	32.9	9.30	0.235	0.61	0.135	1.26	0.296
17	16	2.347	0.024	69.7	3.43	32.5	9.49	0.334	0.72	0.206	1.31	0.427
17	20	2.926	0.030	61.5	3.01	30.6	10.15	0.452	0.40	0.253	0.94	0.537
17	24	3.354	0.034	65.4	2.81	31.2	11.10	0.595	0.26	0.290	0.54	0.615
17	28	3.617	0.037	67.1	2.77	31.8	11.49	0.749	0.19	0.319	0.40	0.676
17	32	4.210	0.043	57.8	3.24	27.4	8.47	0.929	0.15	0.346	0.33	0.736
17	36	3.803	0.039	63.7	2.54	29.9	11.78	1.095	0.14	0.369	0.31	0.787
17	40	4.153	0.042	65.4	2.51	30.1	12.00	1.281	0.12	0.391	0.28	0.839
17	44	4.380	0.045	63.7	2.65	31.2	11.77	1.456	0.16	0.418	0.33	0.897
17	48	4.339	0.044	64.2	2.56	30.6	11.96	1.653	0.12	0.443	0.30	0.955
17	52	4.348	0.044	63.3	2.46	30.0	12.20	1.841	0.13	0.467	0.27	1.006
17	56	4.943	0.051	62.7	2.36	29.1	12.32	2.064	0.11	0.491	0.26	1.063
17	60	5.378	0.055	68.0	2.43	30.2	12.41	2.326	0.12	0.522	0.25	1.129
17	64	4.571	0.047	67.8	2.57	32.2	12.53	2.545	0.11	0.545	0.26	1.185
17	68	4.723	0.048	65.2	2.46	31.2	12.67	2.683	0.11	0.560	0.26	1.221
17	72	5.124	0.053	65.1	2.34	30.2	12.90	2.910	0.10	0.582	0.24	1.274
17	76	4.794	0.049	67.3	2.38	31.1	13.05	3.107	0.11	0.603	0.24	1.321
17	80	5.390	0.055	62.8	2.30	29.8	12.97	3.352	0.04	0.612	0.25	1.383
17	84	5.132	0.053	63.4	2.36	30.4	12.86	3.581	0.04	0.620	0.24	1.438
17	88	5.000	0.051	65.3	2.40	31.3	13.05	3.793	0.04	0.629	0.26	1.493
17	92	5.023	0.051	65.2	2.44	31.6	12.94	4.010	0.03	0.637	0.25	1.546
17	96	5.038	0.052	65.9	2.43	31.3	12.87	4.232	0.03	0.644	0.24	1.600
17	100	5.258	0.054	65.2	2.54	31.7	12.46	4.463	0.03	0.651	0.25	1.657
17	104	5.367	0.055	64.3	2.40	31.4	13.10	4.695	0.03	0.659	0.24	1.714
17	108	5.318	0.055	66.4	2.80	32.2	11.49	4.930	0.04	0.668	0.27	1.778
17	112	5.209	0.053	66.3	2.59	31.8	12.27	5.161	0.05	0.679	0.29	1.843
17	116	5.399	0.055	66.2	2.63	32.1	12.21	5.391	0.03	0.686	0.26	1.903
17	120	5.313	0.055	66.3	2.70	32.4	11.98	5.633	0.03	0.693	0.25	1.963

•

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
18	4	1.678	0.017	71.6	3.81	33.4	8.76	0.076	0.38	0.029	1.23	0.093
18	8	1.898	0.019	70.8	3.88	33.3	8.58	0.153	0.41	0.061	1.28	0.192
18	12	2.163	0.022	68.7	3.59	33.8	9.42	0.244	0.47	0.104	1.29	0.310
18	16	2.663	0.027	66.0	3.30	32.8	9.93	0.355	0.47	0.156	1.07	0.428
18	20	3.284	0.033	61.5	2.83	29.1	10.29	0.494	0.31	0.199	1.33	0.613
18	24	3.477	0.035	61.6	2.80	30.6	10.91	0.640	0.14	0.220	0.56	0.695
18	28	3.691	0.038	65.1	2.75	32.2	11.69	0.801	0.08	0.234	0.33	0.748
18	32	3.688	0.038	66.8	3.01	33.0	10.96	0.955	0.07	0.244	0.33	0.799
18	36	3.855	0.039	66.9	2.88	32.4	11.26	1.138	0.06	0.254	0.30	0.854
18	40	5.571	0.057	44.2	2.31	26.5	11.46	1.364	0.06	0.268	0.26	0.913
18	44	4.508	0.046	59.1	2.45	28.9	11.80	1.545	0.05	0.276	0.22	0.953
18	48	5.207	0.053	51.5	2.59	30.4	11.75	1.789	0.03	0.283	0.19	0.998
18	52	4.868	0.050	61.7	2.71	31.9	11.79	2.008	0.03	0.290	0.22	1.047
18	56	4.215	0.043	67.0	2.85	34.1	11.96	2.180	0.04	0.298	0.24	1.087
18	60	5.002	0.051	55.9	2.40	28.5	11.88	2.407	0.04	0.307	0.20	1.132
18	64	5.428	0.056	50.3	2.47	29.6	11.98	2.640	0.03	0.315	0.19	1.177
18	68	6.280	0.065	48.6	2.32	28.5	12.28	2.918	0.02	0.321	0.17	1.224
18	72	5.053	0.052	63.4	2.58	31.8	12.33	3.138	0.03	0.327	0.21	1.271
18	76	5.483	0.056	58.9	2.43	30.5	12.55	3.384	0.04	0.337	0.18	1.315
18	80	4.966	0.051	64.7	2.54	32.2	12.68	3.596	0.02	0.342	0.19	1.355
18	84	7.634	0.080	41.8	1.93	24.4	12.64	3.932	0.03	0.352	0.24	1.436
18	88	5.012	0.051	60.0	2.59	33.5	12.94	4.160	0.06	0.366	0.46	1.540
18	92	5.755	0.059	71.1	2.91	37.7	12.96	4.413	0.05	0.378	0.33	1.624
18	96	4.681	0.048	63.6	2.48	31.8	12.83	4.612	0.03	0.385	0.28	1.679
18	100	4.506	0.046	65.1	2.63	34.4	13.09	4.803	0.05	0.395	0.32	1.740
18	104	4.559	0.047	67.1	2.41	32.5	13.49	4.994	0.07	0.408	0.36	1.809
18	108	4.022	0.041	76.5	2.71	37.6	13.87	5.173	0.09	0.425	0.50	1.898
18	112	4.487	0.046	78.7	2.86	40.2	14.05	5.369	0.08	0.441	0.50	1.996
18	116	4.690	0.048	77.0	2.80	39.5	14.11	5.569	0.07	0.455	0.50	2.096
18	120	5.222	0.054	67.4	2.35	33.7	14.33	5.787	0.20	0.499	2.85	2.716

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
19	4	1.519	0.015	70.9	3.57	32.7	9.17	0.058	0.40	0.023	1.02	0.059
19	8	1.883	0.019	70.4	3.55	32.9	9.28	0.140	0.38	0.054	1.18	0.156
19	12	2.153	0.022	66.8	3.44	32.3	9.38	0.230	0.38	0.089	1.22	0.266
19	16	2.614	0.026	58.2	3.16	30.9	9.78	0.341	0.35	0.128	1.02	0.380
19	20	2.840	0.029	60.5	2.86	30.5	10.67	0.461	0.22	0.154	0.67	0.460
19	24	3.951	0.040	60.9	2.65	29.5	11.12	0.630	0.10	0.170	0.45	0.536
19	28	4.144	0.042	63.7	2.77	31.0	11.18	0.807	0.08	0.185	0.38	0.604
19	32	4.278	0.044	64.8	2.85	32.4	11.36	0.989	0.09	0.200	0.32	0.661
19	36	4.333	0.044	63.0	2.88	32.6	11.31	1.174	0.07	0.214	0.22	0.702
19	40	3.682	0.037	65.8	2.86	32.1	11.22	1.335	0.06	0.224	0.24	0.741
19	44	3.711	0.038	64.9	2.88	32.2	11.19	1.498	0.05	0.232	0.29	0.788
19	48	3.829	0.039	65.0	2.80	31.5	11.24	1.670	0.05	0.240	0.29	0.839
19	52	3.845	0.039	65.6	2.92	33.0	11.32	1.823	0.04	0.246	0.28	0.882
19	56	4.760	0.049	57.0	2.65	30.9	11.66	2.036	0.04	0.255	0.23	0.930
19	60	4.993	0.051	56.0	2.47	29.3	11.86	2.249	0.04	0.263	0.20	0.971
19	64	4.878	0.050	56.9	2.67	32.3	12.11	2.471	0.04	0.273	0.21	1.018
19	68	5.359	0.055	51.2	2.72	33.2	12.22	2.698	0.03	0.280	0.20	1.063
19	72	6.871	0.071	46.5	2.65	32.8	12.37	3.010	0.03	0.290	0.18	1.120
19	76	4.463	0.046	68.2	2.68	33.0	12.32	3.196	0.04	0.297	0.20	1.157
19	80	4.325	0.044	66.7	2.80	34.8	12.41	3.385	0.03	0.303	0.18	1.191
19	84	4.702	0.048	68.4	2.65	32.8	12.39	3.593	0.05	0.314	0.16	1.225
19	88	5.272	0.054	58.2	2.49	30.8	12.37	3.828	0.08	0.331	0.17	1.265
19	92	5.671	0.058	46.1	2.58	32.7	12.68	4.078	0.06	0.347	0.23	1.323
19	96	5.285	0.054	56.6	2.45	31.4	12.81	4.320	0.04	0.356	0.20	1.371
19	100	9.380	0.099	32.1	1.78	23.3	13.10	4.734	0.04	0.373	0.20	1.453
19	104	4.648	0.048	64.1	2.76	36.0	13.05	4.930	0.07	0.386	0.30	1.511
19	108	4.095	0.042	75.3	2.92	37.8	12.93	5.104	0.08	0.400	0.40	1.581
19	112	4.346	0.044	78.6	3.04	39.5	12.98	5.296	0.10	0.418	0.34	1.645
19	116	4.506	0.046	72.5	2.94	37.9	12.88	5.488	0.05	0.427	0.27	1.697
19	120	4.340	0.044	62.3	2.51	32.5	12.95	5.666	0.05	0.436	0.28	1.747
19	124	4.126	0.042	60.5	2.57	33.7	13.10	5.839	0.07	0.447	0.29	1.797
19	128	6.648	0.069	44.1	2.20	29.5	13.41	6.142	0.09	0.475	0.36	1.904
19	132	7.236	0.075	45.0	2.17	30.2	13.91	6.568	0.13	0.531	0.73	2.214

.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
• •					.							
20	4	1.353	0.014	70.4	3.44	32.7	9.51	0.057	0.47	0.027	1.05	0.060
20	8	2.142	0.022	63.9	3.34	32.4	9.69	0.138	0.46	0.063	0.97	0.139
20	12	2.622	0.027	59.3	3.22	31.4	9.76	0.242	0.38	0.103	0.99	0.241
20	16	4.009	0.041	51.2	3.19	31.2	9.77	0.397	0.34	0.156	0.89	0.379
20	20	4.473	0.046	52.6	3.13	30.6	9.78	0.576	0.34	0.216	0.96	0.550
20	24	5.847	0.060	34.1	1.38	13.6	9.85	0.829	0.27	0.284	0.84	0.762
20	28	74.517	1.346	0.7	0.16	0.5	3.31	6.393	0.01	0.345	0.03	0.906
21	4	1.536	0.015	71.7	3.42	32.6	9.52	0.040	0.26	0.011	0.86	0.035
21	8	2.231	0.023	67.0	3.38	32.3	9.54	0.126	0.25	0.032	0.91	0.113
21	12	2.546	0.026	65.7	3.35	31.8	9.50	0.242	0.27	0.063	0.89	0.215
21	16	2.676	0.027	68.1	3.31	31.6	9.53	0.355	0.33	0.101	0.98	0.327
21	20	2.849	0.029	65.8	3.13	31.9	10.18	0.475	0.25	0.131	0.76	0.418
21	24	3.192	0.032	67.0	3.06	32.9	10.75	0.613	0.09	0.144	0.37	0.469
21	28	3.464	0.035	67.8	3.01	33.2	11.04	0.756	0.05	0.151	0.27	0.507
21	32	3.473	0.035	68.2	3.02	33.4	11.06	0.914	0.05	0.159	0.25	0.546
21	36	3.691	0.038	68.3	3.01	33.8	11.24	1.073	0.05	0.166	0.25	0.586
21	40	3.785	0.039	67.8	2.98	33.1	11.12	1.223	0.05	0.174	0.24	0.622
21	44	5.228	0.054	49.7	2.80	32.8	11.71	1.472	0.04	0.182	0.22	0.676
21	48	4.435	0.045	65.2	2.81	33.6	11.96	1.649	0.04	0.189	0.19	0.710
21	52	4.312	0.044	63.4	2.90	33.7	11.62	1.852	0.04	0.197	0.19	0.749
21	56	5.125	0.053	54.4	2.40	27.8	11.59	2.079	0.04	0.206	0.20	0.795
21	60	5.486	0.056	53.7	2.60	30.5	11.72	2.310	0.03	0.213	0.17	0.834
21	64	5.410	0.056	60.0	2.60	30.0	11.52	2.552	0.04	0.224	0.18	0.878
21	68	5.817	0.060	62.0	2.98	33.1	11.09	2.803	0.04	0.233	0.17	0.922
21	72	6.252	0.065	58.7	2.90	33.5	11.53	3.084	0.03	0.242	0.16	0.967
21	76	7.021	0.073	51.7	2.86	32.1	11.23	3.395	0.04	0.253	0.16	1.017
21	80	5.545	0.057	60.9	2.90	32.8	11.32	3.642	0.04	0.262	0.17	1.060
21	84	8.013	0.084	50.4	2.52	26.5	10.53	3.998	0.04	0.275	0.15	1.114
21	88	8.744	0.092	45.8	2.77	31.2	11.25	4.393	0.04	0.290	0.15	1.175
21	92	7.271	0.075	54.1	2.62	32.2	12.29	4.711	0.04	0.301	0.16	1.226
21	96	7.491	0.078	57.1	2.30	27.7	12.05	5.051	0.03	0.312	0.16	1.282
21	100	7.800	0.081	53.6	2.58	31.4	12.17	5.396	0.04	0.324	0.17	1.342
21	104	7.592	0.079	53.1	2.58	31.5	12.20	5.731	0.04	0.335	0.15	1.391
21	108	8.565	0.090	53.3	1.99	24.3	12.21	6.056	0.04	0.347	0.15	1.440
21	112	7.385	0.077	61.2	2.63	32.2	12.25	6.374	0.03	0.355	0.17	1.495
21	116	7.167	0.074	62.5	2.81	35.1	12.48	6.681	0.04	0.366	0.17	1.548
21	120	10.213	0.108	37.8	2.05	26.1	12.73	7.140	0.03	0.381	0.14	1.614

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
22	4	1.778	0.018	68.4	3.60	33.2	9.21	0.071	0.24	0.017	0.98	0.070
22	8	2.099	0.021	69.5	2.55	32.7	12.82	0.153	0.27	0.039	1.08	0.158
22	12	2.429	0.025	68.6	3.65	33.6	9.20	0.252	0.25	0.064	1.01	0.258
22	16	2.653	0.027	67.9	3.44	32.3	9.39	0.383	0.42	0.118	1.10	0.401
22	20	2.916	0.030	63.3	2.94	29.6	10.07	0.502	0.25	0.148	0.83	0.500
22	24	3.144	0.032	62.3	2.82	30.3	10.73	0.636	0.12	0.164	0.56	0.575
22	28	3.672	0.037	63.3	2.85	30.8	10.82	0.797	0.12	0.184	0.52	0.659
22	32	3.752	0.038	63.5	2.81	30.6	10.88	0.958	0.11	0.201	0.44	0.729
22	36	4.434	0.045	56.5	2.47	28.0	11.34	1.148	0.12	0.223	0.54	0.832
22	40	5.109	0.052	53.4	2.67	31.4	11.77	1.377	0.05	0.233	0.22	0.882
22	44	5.242	0.054	60.2	2.60	31.4	12.07	1.598	0.04	0.241	0.21	0.928
22	48	7.404	0.077	48.4	1.56	18.6	11.93	1.927	0.03	0.250	0.14	0.974
22	52	5.039	0.052	61.9	2.69	33.5	12.46	2.141	0.04	0.258	0.18	1.012
22	56	4.684	0.048	68.2	2.76	34.6	12.55	2.356	0.07	0.272	0.29	1.073
22	60	4.817	0.049	66.8	2.76	35.1	12.71	2.559	0.03	0.278	0.23	1.119
22	64	5.063	0.052	66.4	2.71	34.7	12.81	2.777	0.02	0.282	0.20	1.161
22	68	5.104	0.052	63.7	2.82	36.1	12.81	3.009	0.03	0.288	0.19	1.206
22	72	5.445	0.056	62.8	2.50	32.7	13.08	3.245	0.03	0.296	0.21	1.256
22	76	7.553	0.079	42.8	2.40	31.2	13.00	3.569	0.02	0.303	0.26	1.341
22	80	6.060	0.063	52.5	2.59	34.2	13.22	3.837	0.05	0.316	0.34	1.432
22	84	4.836	0.049	71.8	2.80	37.6	13.41	4.041	0.04	0.324	0.21	1.476
22	88	5.520	0.057	58.7	2.50	33.9	13.56	4.281	0.04	0.335	0.23	1.531
22	92	5.265	0.054	62.9	2.48	33.5	13.52	4.514	0.03	0.342	0.25	1.588
22	96	4.991	0.051	65.9	2.70	36.9	13.66	4.739	0.03	0.349	0.29	1.653
22	100	4.803	0.049	74.3	2.70	36.3	13.46	4.949	0.05	0.360	0.27	1.709
22	104	5.127	0.053	69.1	2.62	35.2	13.45	5.172	0.05	0.372	0.30	1.775
22	108	5.241	0.054	67.8	2.67	36.4	13.65	5.402	0.07	0.387	0.31	1.846
22	112	5.006	0.051	72.1	2.80	38.3	13.68	5.614	0.03	0.394	0.30	1.909
22	116	4.706	0.048	78.8	2.87	39.3	13.70	5.828	0.08	0.410	0.35	1.983
22	120	4.845	0.049	81.2	2.75	38.4	13.96	6.033	0.09	0.428	0.42	2.068
22	124	5.581	0.057	78.2	2.71	38.3	14.11	6.271	0.09	0.449	0.42	2.169
22	128	5.007	0.051	76.1	2.73	39.0	14.27	6.497	0.07	0.466	0.42	2.264
22	132	4.883	0.050	74.6	2.60	38.8	14.92	6.712	0.08	0.482	0.46	2.362
22	136	5.886	0.060	77.7	2.49	37.4	15.00	6.983	0.10	0.509	0.47	2.490

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
23	4	1.995	0.020	71.3	3.53	33.1	9.38	0.083	0.28	0.023	0.96	0.080
23	8	2.310	0.023	70.4	3.47	32.5	9.35	0.174	0.27	0.047	0.97	0.168
23	12	2.346	0.024	71.3	3.50	32.7	9.34	0.273	0.28	0.075	1.01	0.268
23	16	2.649	0.027	70.5	3.57	33.3	9.32	0.386	0.27	0.105	0.97	0.378
23	20	2.943	0.030	66.9	3.32	31.7	9.56	0.501	0.32	0.142	0.98	0.490
23	24	3.311	0.034	67.2	3.07	31.8	10.36	0.645	0.25	0.177	0.73	0.594
23	28	4.486	0.046	53.9	2.18	24.8	11.37	0.829	0.05	0.186	0.34	0.657
23	32	3.767	0.038	65.9	2.77	32.2	11.64	0.993	0.05	0.194	0.28	0.703
23	36	3.935	0.040	67.1	2.81	32.8	11.69	1.160	0.04	0.200	0.23	0.741
23	40	4.138	0.042	68.4	2.76	32.6	11.82	1.343	0.04	0.206	0.22	0.781
23	44	4.917	0.050	66.6	2.56	30.6	11.95	1.562	0.04	0.215	0.20	0.825
23	48	4.463	0.046	64.4	2.75	33.2	12.08	1.758	0.05	0.223	0.20	0.865
23	52	4.755	0.049	66.2	2.55	31.8	12.46	1.958	0.05	0.233	0.19	0.904
23	56	4.862	0.050	66.4	2.60	32.7	12.57	2.177	0.03	0.239	0.16	0.940
23	60	5.117	0.052	70.1	2.57	32.1	12.50	2.402	0.03	0.246	0.15	0.974
23	64	5.064	0.052	65.1	2.51	31.8	12.66	2.623	0.03	0.252	0.15	1.006
23	68	5.338	0.055	64.8	2.48	31.8	12.82	2.858	0.04	0.261	0.14	1.039
23	72	4.978	0.051	73.0	2.63	35.2	13.38	3.076	0.09	0.280	0.38	1.121
23	76	5.489	0.056	59.4	2.67	36.4	13.63	3.312	0.05	0.291	0.20	1.167
23	80	5.327	0.055	61.0	2.40	31.0	12.91	3.533	0.04	0.300	0.18	1.206
23	84	5.472	0.056	62.9	2.42	31.6	13.06	3.781	0.03	0.308	0.19	1.253
23	88	5.611	0.058	64.6	2.43	31.6	12.99	4.014	0.05	0.319	0.18	1.296
23	92	5.814	0.060	54.1	2.13	27.5	12.91	4.288	0.04	0.329	0.16	1.340
23	96	5.253	0.054	66.7	2.49	33.7	13.54	4.509	0.03	0.335	0.20	1.383
23	100	6.172	0.063	75.0	2.65	35.6	13.42	4.784	0.03	0.343	0.20	1.439
23	104	5.234	0.054	69.8	2.59	35.2	13.60	5.009	0.04	0.353	0.23	1.490
23	108	5.196	0.053	75.6	2.70	36.6	13.54	5.237	0.05	0.364	0.23	1.544
23	112	6.267	0.065	73.6	2.57	34.7	13.50	5.512	0.05	0.378	0.23	1.606
23	116	5.147	0.053	75.0	2.82	37.3	13.24	5.738	0.05	0.391	0.24	1.659
23	120	4.977	0.051	76.6	2.80	37.6	13.44	5.936	0.06	0.402	0.27	1.712
23	124	5.747	0.059	74.5	2.78	37.9	13.64	6.199	0.06	0.418	0.26	1.781
23	128	4.762	0.049	76.2	2.67	37.4	14.02	6.406	0.13	0.445	0.42	1.868
23	132	4.179	0.043	81.0	2.77	39.4	14.22	6.583	0.11	0.465	0.40	1.938
23	136	4.332	0.044	80.1	2.75	39.1	14.22	6.734	0.09	0.479	0.43	2.003

S . 144

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
24	4	1 481	0.015	73 /	3 51	33 3	0 / 0	0.063	0.26	0.016	0.03	0.050
24	ч 8	1 801	0.015	60.6	3 3 8	32.1	0.40	0.005	0.20	0.010	0.95	0.039
24	12	2 1.021	0.019	68.0	3.30	30.7	0.47	0.145	0.20	0.057	0.92	0.133
24	16	2.440	0.023	68.0	3.24	33.0	0.76	0.245	0.23	0.000	1.00	0.224
24	20	2.052	0.031	62.1	2.20	30.3	9.70 10.27	0.307	0.37	0.104	0.72	0.340
24	20	2 576	0.031	61.5	2.92	30.5	10.57	0.495	0.25	0.150	0.75	0.459
24	24	1 025	0.030	63.2	2.70	31.0	11.22	0.047	0.10	0.151	0.40	0.499
24	20	4.033	0.041	57.8	2.15	20.1	11.30	1 000	0.07	0.103	0.30	0.550
24	26	4.000	0.046	64.0	2.55	27.1	11.40	1.009	0.05	0.172	0.25	0.597
24	40	4.322	0.040	66.5	2.70	31.0	11.00	1.221	0.05	0.101	0.21	0.042
24	40	4.200	0.043	60.5	2.14	30.8	11.04	1.407	0.04	0.107	0.20	0.079
24	18	4.090	0.048	66.0	2.59	31.4	12.13	1.377	0.04	0.197	0.18	0.715
24	40 52	4.223	0.045	67.3	2.59	33.0	12.13	1.770	0.04	0.203	0.16	0.745
24	56	4.410	0.043	66.6	2.12	33.0	12.47	2 158	0.04	0.212	0.10	0.772
24	60	4.000	0.047	65.1	2.04	33.0	12.50	2.150	0.04	0.220	0.10	0.805
24	64	5 4 5 1	0.047	53.8	2.07	27.6	12.44	2.555	0.04	0.227	0.10	0.873
24	68	6.020	0.050	51.0	2.25	20.5	12.55	2.020	0.03	0.230	0.15	0.075
$\frac{24}{24}$	72	4 628	0.002	62.8	2.40	34.6	13.07	3 111	0.04	0.240	0.10	0.910
$\frac{24}{24}$	76	5 746	0.047	53.0	2.03 2.41	31.2	12.07	3 370	0.03	0.250	0.22	1.016
$\frac{24}{24}$	80	24 638	0.037	12.6	0.55	65	11 78	<i>4</i> 543	0.04	0.207	0.21	1.010
$\frac{2}{2}$	84	15 871	0.200	24.0	0.55	8.6	10.85	5 304	0.04	0.302	0.07	1 192
24	88	7 659	0.080	38.9	1 76	23.9	13 56	5 644	0.05	0.365	0.15	1 319
$\frac{24}{24}$	92	4 203	0.000	77 9	2.81	39.0	13.80	5 828	0.10	0.382	0.40	1 392
$\frac{24}{24}$	96	4 440	0.045	747	2.87	40 5	14 11	6.033	0.02	0.403	0.43	1 480
$\frac{24}{24}$	100	4 062	0.041	78.2	2.92	41.2	14 12	6 205	0.09	0.418	0.44	1 555
$\frac{24}{24}$	100	3 708	0.038	81.2	2.89	41.0	14 19	6 363	0.55	0.505	3 73	2 146
$\frac{2}{24}$	108	3 556	0.036	83.9	2.90	42.4	14 61	6 517	0.19	0.505	0.53	2.226
$\frac{2}{24}$	112	3 927	0.040	81.4	2.85	417	14 62	6 684	0.16	0.561	0.79	2.358
$\frac{2}{24}$	116	3 869	0.039	82.5	2.85	41.8	14.66	6.854	0.09	0.576	0.45	2.434
24	120	4.084	0.042	80.0	2.88	41.3	14.33	7.036	0.08	0.591	0.43	2.513
	~ ~ ~											

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
		-						•				
25	4	1.677	0.017	69.6	2.67	34.2	12.79	0.087	0.28	0.025	1.12	0.097
25	8	2.534	0.026	67.2	3.42	32.1	9.37	0.199	0.25	0.053	1.09	0.220
25	12	2.897	0.029	61.0	3.29	31.1	9.45	0.322	0.23	0.082	1.02	0.346
25	16	3.380	0.034	61.6	3.07	29.5	9.62	0.461	0.30	0.123	1.00	0.484
25	20	3.822	0.039	55.3	2.98	30.2	10.12	0.626	0.28	0.169	0.86	0.626
25	24	4.442	0.045	53.8	2.70	29.5	10.91	0.812	0.10	0.188	0.52	0.722
25	28	4.182	0.043	65.4	2.93	32.6	11.13	0.992	0.06	0.199	0.40	0.793
25	32	4.102	0.042	65.9	2.80	31.7	11.33	1.164	0.06	0.208	0.35	0.854
25	36	4.008	0.041	65.9	2.86	32.6	11.41	1.340	0.05	0.217	0.34	0.914
25	40	4.347	0.044	64.0	2.67	31.2	11.69	1.528	0.05	0.226	0.28	0.967
25	44	4.518	0.046	62.8	2.72	32.1	11.81	1.734	0.04	0.234	0.27	1.022
25	48	5.000	0.051	59.3	2.65	30.8	11.63	1.956	0.04	0.243	0.26	1.079
25	52	6.854	0.071	45.6	2.33	28.2	12.11	2.261	0.03	0.253	0.20	1.138
25	56	4.859	0.050	64.8	2.66	32.6	12.24	2.469	0.04	0.260	0.24	1.188
25	60	5.796	0.060	57.6	2.28	28.2	12.35	2.736	0.04	0.269	0.22	1.246
25	64	6.094	0.063	54.7	2.28	28.6	12.53	2.998	0.03	0.278	0.22	1.304
25	68	7.370	0.076	57.4	2.43	30.6	12.58	3.327	0.03	0.287	0.21	1.374
25	72	6.993	0.072	54.2	2.42	30.7	12.68	3.646	0.04	0.298	0.21	1.440
25	76	9.244	0.097	45.5	1.91	24.1	12.63	4.049	0.03	0.311	0.19	1.518
25	80	6.195	0.064	53.4	2.36	30.3	12.83	4.328	0.04	0.323	0.30	1.600
25	84	6.692	0.069	53.9	2.75	34.7	12.63	4.635	0.03	0.332	0.23	1.669
25	88	9.276	0.097	45.8	2.67	34.3	12.84	5.068	0.13	0.386	0.36	1.824
25	92	7.196	0.075	43.6	2.74	36.0	13.14	5.379	0.04	0.399	0.22	1.893
25	96	5.975	0.062	61.1	2.60	34.2	13.14	5.620	0.05	0.410	0.26	1.957
25	100	5.422	0.056	70.0	2.83	37.0	13.08	5.877	0.05	0.422	0.27	2.026
25	104	4.800	0.049	58.3	2.50	33.0	13.19	6.072	0.05	0.432	0.28	2.080
25	108	7.186	0.075	50.2	2.46	32.3	13.11	6.389	0.04	0.445	0.26	2.161
25	112	4.954	0.051	69.1	2.81	37.1	13.21	6.613	0.05	0.457	0.33	2.236

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
26	Λ	1 803	0.010	71 1	3 57	32.8	0 33	0.088	0.24	0.021	1.00	0.088
20	- 1 Q	1.035	0.019	68.3	2 12	32.0	9.55	0.000	0.24	0.021	1.00	0.000
20	0	2.273	0.020	65.6	2 20	21.0	9.39	0.190	0.24	0.040	1.04	0.203
20	12	2.035	0.029	62.0	2.27	21.9	9.40	0.307	0.25	0.075	1.00	0.310
20	20	3.170	0.032	50.0	2.22	20.0	9.01	0.430	0.35	0.115	1.11	0.402
20	20	4.020	0.041	59.0	2.05	29.0	10.25	0.000	0.23	0.130	0.03	0.004
20	24	2.600	0.039	61.0	2.02	29.2	11.15	0.760	0.08	0.172	0.50	0.000
20	20	3.013	0.037	657	2.02	21.0	11.57	0.942	0.04	0.179	0.31	0.710
20	32	2.092	0.040	50.7	2.00	21.1	11.59	1.110	0.04	0.100	0.30	0.709
20	30 40	4.301	0.045	J9.2 12 0	2.40	20.3	11.37	1.505	0.04	0.192	0.27	0.019
20	40	J.022 1 507	0.038	42.9	2.57	20.1	11.71	1.331	0.03	0.200	0.40	0.917
20	44	4.302	0.047	59.9	2.50	29.5	11.70	1.752	0.03	0.200	0.20	1.021
20	40	4./10	0.040	58.2	2.02	20.9	12.04	1.957	0.05	0.212	0.23	1.021
20	56	5 200	0.053	50.5	2.12	30.0	12.04	2.10J 2 115	0.04	0.221	0.24	1 1 2 2
20	50	J.209 1 005	0.055	657	2.52	30.9	12.23	2.415	0.04	0.230	0.23	1.120
20	64	5 251	0.051	63.3	2.08	31.0	12.07	2.025	0.04	0.250	0.24	1.177
20	68	5 8 8 7	0.054	55.6	2.45	22.2	12.07	2.920	0.04	0.250	0.24	1.240
20	72	5.007	0.001	57.0	2.50	31.5	12.91	3 /27	0.04	0.201	0.19	1.2.94
20	76	6 8 2 1	0.039	JT.2 16 1	2.72	30.8	12.02	3.437	0.04	0.272	0.25	1.334
20	80	6 765	0.071	45.2	2.37 2.40	31.5	12.99	<i>J</i> .722 <i>A</i> 024	0.04	0.202	0.20	1.411
26	84	7 251	0.075	45.1	2.40	27.5	13.15	4 353	0.04	0.275	0.21	1.470
26	88	5 950	0.061	593	2 30	31.1	13 53	4 617	0.03	0.315	0.22	1.605
26	92	6 892	0.071	47.1	2.37	32.3	13.64	4 910	0.05	0.313	0.21	1.678
26	96	7 166	0.074	49.9	$\frac{2.01}{2.01}$	26.9	13 38	5.239	0.05	0.346	0.22	1.751
$\frac{1}{26}$	100	6.323	0.065	57.4	2.36	31.9	13.50	5.516	0.06	0.363	0.25	1.819
$\frac{1}{26}$	104	6.529	0.067	58.3	2.47	33.1	13.42	5.817	0.05	0.377	0.25	1.894
26	108	10.791	0.115	33.3	2.39	31.2	13.06	6.266	0.06	0.402	0.18	1.976
26	112	17.256	0.191	19.4	1.11	14.3	12.91	7.049	0.03	0.428	0.15	2.092
26	116	7.036	0.073	47.2	2.06	26.8	13.01	7.366	0.06	0.446	0.22	2.162
26	120	6.390	0.066	61.0	2.38	27.6	11.61	7.662	0.06	0.463	0.24	2.233

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
27	4	1.974	0.020	70.4	3.76	33.3	8.86	0.088	0.33	0.029	1.10	0.097
27	8	2.804	0.028	67.8	3.76	33.3	8.85	0.207	0.31	0.066	1.12	0.231
27	12	2.918	0.030	68.4	3.48	32.4	9.32	0.326	0.33	0.105	1.14	0.366
27	16	3.194	0.032	68.2	3.50	33.1	9.46	0.464	0.49	0.173	1.25	0.539
27	20	3.837	0.039	57.7	2.82	29.4	10.42	0.623	0.22	0.208	0.78	0.662
27	24	3.963	0.040	61.8	2.86	30.7	10.73	0.785	0.18	0.237	0.66	0.770
27	28	4.851	0.050	58.4	3.48	31.6	9.07	0.995	0.12	0.263	0.48	0.870
27	32	4.841	0.050	55.1			• • •	1.203	0.09	0.283	0.38	0.949
27	36	5.226	0.054	57.4	• • •		• • •	1.436	0.06	0.296	0.25	1.007
27	40	4.426	0.045	62.8				1.637	0.05	0.306	0.25	1.056
27	44	4.784	0.049	60.6	2.73	32.0	11.74	1.850	0.07	0.320	0.31	1.121
27	48	5.337	0.055	56.5	2.58	31.3	12.13	2.073	0.05	0.331	0.23	1.173
27	52	5.598	0.058	52.3	2.21	27.0	12.21	2.315	0.05	0.343	0.26	1.234
27	56	5.263	0.054	58.5	2.44	31.2	12.79	2.559	0.05	0.355	0.30	1.307
27	60	5.287	0.054	59.1	2.38	30.7	12.89	2.786	0.05	0.366	0.25	1.364
27	64	5.121	0.053	57.9	2.83	36.8	12.99	3.005	0.03	0.373	0.27	1.423
27	68	10.497	0.111	29.5	2.60	34.3	13.18	3.497	0.05	0.395	0.40	1.620
27	72	5.438	0.056	65.3	2.47	34.3	13.88	3.751	0.19	0.443	1.69	2.050
27	76	3.976	0.040	77.0	2.85	39.4	13.82	3.923	0.10	0.459	0.48	2.132
27	80	6.874	0.071	46.0	2.43	33.1	13.63	4.226	0.15	0.505	0.80	2.373
27	84	7.053	0.073	51.9	2.75	37.5	13.62	4.520	0.09	0.531	0.44	2.502
27	88	6.797	0.070	49.9	2.56	35.5	13.85	4.821	0.08	0.554	0.56	2.670
27	92	4.285	0.044	82.5	2.99	42.4	14.19	5.011	0.12	0.577	0.45	2.755
27	96	4.088	0.042	82.0	2.96	41.8	14.12	5.189	0.06	0.588	0.43	2.831
27	100	4.754	0.049	73.3	2.44	34.4	14.10	5.390	0.09	0.607	0.46	2.922
27	104	4.849	0.050	64.8	2.73	39.3	14.40	5.605	0.10	0.629	0.52	3.033

APPENDIX H

PHYSICAL AND CHEMICAL DATA LAKE EUSTIS HISTORIC CORES

Gravimetric and chemical data, Lake Eustis historic cores, Phase I and Phase II. See Appendix D for collection date, location and description of cores.

CODES:

Depth is depth (cm) Dry is % dry weight Rho is dry weight density (g dry/g cc wet) LOI is % loss on ignition TN is total nitrogen (%) TC/TN is TC/TN mass ratio Cum weight is cumulative mass (g cm⁻²) NAIP is non-apatite inorganic phosphorus (mg g⁻¹), Cum NAIP is cumulative NAIP (mg cm⁻²) TP is total phosphorus (mg g⁻¹) Cum TP is cumulative TP (mg cm⁻²)

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
11H	2	1.061	0.011	75.0	4.59	42.8	9.32	0.027	0.36	0.010	1.16	0.031
11H	4	1.516	0.015	73.4	3.65	33.4	9.15	0.052	0.37	0.019	1.19	0.061
11H	6	1.655	0.017	73.7	3.66	34.0	9.28	0.084	0.39	0.031	1.24	0.101
11H	8	1.717	0.017	74.0	3.24	33.5	10.34	0.118	0.31	0.042	1.19	0.141
11H	10	1.995	0.020	71.9	3.69	33.0	8.95	0.158	0.55	0.064	1.39	0.197
11H	12	2.182	0.022	71.3	3.07	34.0	11.09	0.201	0.59	0.089	1.49	0.262
11H	14	2.216	0.022	71.2	3.48	32.5	9.33	0.244	0.56	0.113	1.41	0.321
11H	16	2.506	0.025	71.0	3.62	32.6	9.02	0.298	0.56	0.143	1.45	0.400
11H	18	3.154	0.032	66.7	3.47	32.7	9.45	0.359	0.46	0.171	1.24	0.476
11H	20	3.200	0.032	68.1	3.39	32.6	9.60	0.425	0.38	0.197	1.13	0.550
11H	22	3.305	0.034	66.5	3.31	31.7	9.58	0.483	0.42	0.221	1.07	0.612
11H	24	3.613	0.037	59.8	2.95	28.3	9.59	0.558	0.30	0.244	0.79	0.671
11H	26	3.583	0.036	60.4	3.02	29.8	9.88	0.635	0.27	0.264	0.82	0.734
11H	28	3.488	0.035	62.7	2.78	28.8	10.37	0.701	0.24	0.280	0.77	0.785
11H	30	3.683	0.037	63.8	2.82	29.6	10.51	0.775	0.19	0.294	0.63	0.831
11H	32	4.217	0.043	60.8	2.65	29.0	10.95	0.864	0.25	0.317	0.81	0.903
11H	34	4.561	0.047	62.4	2.74	30.0	10.94	0.952	0.24	0.338	0.63	0.959
11H	36	4.567	0.047	65.4	2.89	31.6	10.95	1.053	0.14	0.352	0.41	1.000
11H	38	4.573	0.047	66.9	2.92	31.6	10.84	1.143	0.14	0.364	0.36	1.032
11H	40	4.489	0.046	67.0	2.96	32.1	10.85	1.232	0.15	0.378	0.43	1.071
11H	42	4.741	0.049	63.6	2.90	31.5	10.87	1.320	0.08	0.385	0.31	1.098
11H	44	4.287	0.044	64.4	2.88	30.7	10.69	1.418	0.08	0.393	0.27	1.125
11H	46	3.959	0.040	66.7	2.90	31.4	10.82	1.494	0.09	0.400	0.25	1.144
11H	48	4.062	0.041	68.0	2.94	31.7	10.78	1.568	0.09	0.406	0.28	1.164
11H	50	3.889	0.040	67.8	2.96	32.7	11.05	1.656	0.10	0.415	0.36	1.196
11H	52	4.024	0.041	70.8	3.02	32.2	10.66	1.726	0.08	0.421	0.26	1.214
11H	54	3.983	0.041	67.7	2.92	31.8	10.91	1.797	0.08	0.427	0.25	1.232
11H	56	3.911	0.040	68.1	3.01	31.8	10.58	1.877	0.08	0.433	0.24	1.251
11H	58	3.929	0.040	68.6	3.01	32.1	10.65	1.959	0.10	0.441	0.24	1.271
11H	60	3.896	0.040	68.3	2.91	31.8	10.92	2.038	0.10	0.449	0.35	1.299
11H	62	3.924	0.040	68.0	2.99	31.8	10.61	2.119	0.09	0.456	0.29	1.322
11H	64	3.958	0.040	67.8	2.94	31.7	10.79	2.194	0.08	0.463	0.27	1.342
11H	66	4.012	0.041	68.0	3.05	32.1	10.51	2.273	0.08	0.469	0.25	1.362
11H	68	3.884	0.040	67.6	3.02	31.8	10.52	2.359	0.08	0.476	0.29	1.386
11H	70	4.046	0.041	68.7	2.91	31.5	10.81	2.435	0.10	0.484	0.34	1.412
11H	72	4.103	0.042	69.2	3.00	31.8	10.59	2.516	0.07	0.490	0.26	1.434
11H	74	4.320	0.044	67.2	2.90	31.3	10.78	2.601	0.08	0.497	0.26	1.455
11H	76	4.553	0.047	62.0	2.73	28.8	10.53	2.705	0.07	0.504	0.25	1.481
11H	78	4.187	0.043	67.4	2.87	31.0	10.80	2.787	0.07	0.509	0.26	1.502
11H	80	6.287	0.065	40.3	1.76	19.4	11.03	2.922	0.06	0.517	0.23	1.533
11H	82	6.384	0.065	•••	1.91	22.6	11.83	3.064	0.05	0.523	0.15	1.554
11H	84	4.935	0.051	66.5	2.66	31.3	11.79	3.154	0.09	0.531	0.16	1.569
11H	86	5.166	0.053	64.2	2.70	32.0	11.83	3.262	0.07	0.539	0.15	1.585
11H	88	5.141	0.053	68.1	2.80	33.5	11.99	3.352	0.07	0.545	0.16	1.600

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
11H	90	5.111	0.052	64.9	2.68	32.2	12.02	3.479	0.07	0.555	0.25	1.631
11H	92	5.353	0.055	66.3	2.67	32.0	12.01	3.585	0.09	0.564	0.16	1.648
11H	94	5.444	0.056	67.0	2.78	33.4	12.03	3.690	0.09	0.573	0.13	1.662
11H	96	5.801	0.060	61.4	2.51	30.1	12.02	3.812	0.07	0.581	0.21	1.687
11H	98	6.173	0.064	59.7	2.25	27.5	12.22	3.926	0.07	0.589	0.15	1.704
11H	100	7.228	0.075	49.4	2.11	25.6	12.15	4.084	0.06	0.599	0.13	1.723
11H	102	8.126	0.085	51.3	2.07	25.3	12.22	4.285	0.08	0.614	0.14	1.752
11H	104	6.647	0.069	63.5	2.50	30.4	12.15	4.460	0.06	0.624	0.16	1.779
11H	106	6.597	0.068	69.1	2.81	33.8	12.06	4.602	0.07	0.634	0.16	1.802
11H	108	6.559	0.068	69.4	2.83	34.1	12.05	4.749	0.08	0.645	0.16	1.826
11H	110	7.140	0.074	63.0	2.79	33.5	11.98	4.889	0.06	0.653	0.14	1.846
11H	112	7.485	0.078	59.3	2.54	30.5	12.03	5.037	0.07	0.663	0.20	1.875
11H	114	8.195	0.086	49.9	1.98	24.3	12.27	5.200	0.08	0.676	0.18	1.905
11H	116	9.854	0.104	35.3	1.95	23.7	12.17	5.398	0.06	0.687	0.14	1.933
11H	118	8.639	0.091	42.1	2.54	31.4	12.38	5.608	0.05	0.698	0.14	1.962
11H	120	7.342	0.076	56.6	2.19	27.6	12.60	5.764	0.06	0.708	0.16	1.988
11H	122	6.750	0.070	64.0	2.57	32.3	12.55	5.903	0.06	0.717	0.19	2.014
11H	124	8.471	0.089	48.3	1.95	24.4	12.49	6.094	0.07	0.729	0.14	2.041
11H	126	11.207	0.119	35.0	1.52	19.2	12.63	6.325	0.04	0.739	0.15	2.076
11H	128	9.003	0.095	41.3	1.76	22.2	12.63	6.524	0.06	0.751	0.26	2.127
11H	130	7.998	0.083	50.7	2.09	26.4	12.68	6.689	0.08	0.763	0.25	2.169
11H	132	6.029	0.062	54.3	2.78	35.7	12.81	6.806	0.09	0.773	0.24	2.198
11H	134	5.892	0.061	62.6	3.07	39.0	12.73	6.942	0.09	0.785	0.24	2.230
11H	136	6.387	0.066	65.9	2.64	33.0	12.52	7.075	0.10	0.798	0.23	2.260
11H	138	6.232	0.064	66.6	2.56	32.4	12.64	7.240	0.11	0.816	0.25	2.301

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-											
13H	2	2.278	0.023	72.1	3.71	33.5	9.04	0.054	0.40	0.021	1.17	0.063
13H	4	2.716	0.027	72.6	3.33	32.6	9.78	0.105	0.39	0.042	1.15	0.122
13H	6	3.030	0.031	72.6	3.37	32.3	9.58	0.157	0.42	0.063	1.14	0.181
13H	8	2.332	0.024	72.8	3.38	32.7	9.66	0.225	0.41	0.091	1.19	0.261
13H	10	2.906	• • •	• • •	3.72	42.7	11.49	0.283	•••	• • •	•••	•••
13H	12	2.973	0.030	71.4	3.39	31.9	9.39	0.343	0.41	0.115	1.19	0.332
13H	14	4.220	0.043	68.2	3.26	31.8	9 <i>.</i> 75	0.422	0.46	0.152	1.21	0.429
13H	16	4.544	0.046	65.7	3.15	30.5	9.66	0.507	0.44	0.189	1.17	0.528
13H	18	4.442	0.045	60.4	3.14	29.5	9.39	0.621	0.39	0.233	0.99	0.641
13H	20	5.096	0.052	59.8	3.24	31.2	9.61	0.728	0.40	0.276	0.90	0.737
13H	22	4.923	0.050	60.9	3.41	32.8	9.62	0.851	0.32	0.315	0.86	0.843
13H	24	5.251	0.054	57.4	2.80	27.1	9.69	0.974	0.30	0.352	0.82	0.944
13H	26	5.030	0.052	57.5	2.88	28.2	9.78	1.085	0.24	0.379	0.78	1.030
13H	28	4.784	0.049	59.3	3.01	29.8	9.89	1.195	0.23	0.404	0.77	1.115
13H	30	4.918	0.050	61.0	2.96	29.5	9.97	1.303	0.24	0.430	0.80	1.202
13H	32	5.086	0.052	58.3	2.84	29.0	10.19	1.413	0.24	0.457	0.72	1.281
13H	34	4.872	0.050	60.4	2.81	28.8	10.24	1.530	0.22	0.482	0.73	1.366
13H	36	5.005	0.051	60.6	2.77	28.4	10.25	1.648	0.26	0.513	0.72	1.451
13H	38	5.196	0.053	57.3	2.77	27.9	10.10	1.792	0.20	0.542	0.68	1.549
13H	40	5.265	0.054	57.7	2.54	26.2	10.30	1.934	0.19	0.569	0.62	1.637
13H	42	5.703	0.059	57.9	2.68	27.7	10.31	2.059	0.17	0.590	0.63	1.716
13H	44	5.758	0.059	61.3	2.67	27.9	10.45	2.172	0.25	0.618	0.62	1.786
13H	46	5.733	0.059	61.8	2.91	30.2	10.40	2.290	0.18	0.640	0.57	1.853
13H	48	5.453	0.056	60.5	2.93	30.6	10.43	2.433	0.18	0.665	0.62	1.942
13H	50	5.787	0.060	62.7	2.85	29.3	10.29	2.560	0.22	0.693	0.57	2.014
13H	52	5.833	0.060	61.5	2.88	29.6	10.27	2.675	0.19	0.715	0.60	2.083
13H	54	5.933	0.061	61.8	2.96	31.0	10.49	2.786	0.13	0.730	0.53	2.142
13H	56	6.000	0.062	63.3	3.01	31.4	10.45	2.900	0.16	0.748	0.56	2.206
13H	58	5.659	0.058	64.8	2.98	31.0	10.40	3.025	0.12	0.763	0.56	2.276
13H	60	5.772	0.059	65.4	2.93	31.0	10.59	3.146	0.18	0.785	0.57	2.345
1 3H	62	6.023	0.062	65.8	3.03	31.3	10.33	3.260	0.17	0.804	0.55	2.407
13H	64	6.039	0.062	65.2	2.99	31.5	10.51	3.383	0.16	0.824	0.56	2.476
13H	66	5.819	0.060	66.4	3.01	31.5	10.44	3.536	0.11	0.840	0.54	2.559
13H	68	5.718	0.059	66.5	3.05	32.0	10.50	3.679	0.15	0.862	0.54	2.636
13H	70	5.865	0.060	64.7	2.78	29.3	10.55	3.828	0.18	0.889	0.54	2.717
13H	72	6.276	0.065	64.6	2.77	29.8	10.75	3.956	0.15	0.908	0.48	2.778
13H	74	6.317	0.065	65.8	2.86	30.4	10.62	4.073	0.15	0.925	0.50	2.836
13H	76	6.074	0.063	65.3	2.91	30.9	10.61	4.210	0.20	0.953	0.53	2.909
13H	78	6.756	0.070	65.0	2.81	30.6	10.88	4.319	0.14	0.968	0.61	2.976
13H	80	6.275	0.065	63.5	2.95	30.9	10.50	4.461	0.19	0.995	0.53	3.051
13H	82	6.356	0.066	68.6	3.27	34.1	10.45	4.578	0.16	1.014	0.58	3.119
13H	84	6.214	0.064	68.7	3.14	33.0	10.53	4.703	0.17	1.035	0.52	3.184
13H	86	5.953	0.061	67.8	2.86	31.0	10.82	4.823	0.16	1.054	0.53	3.247
13H	88	6.175	0.064	65.3	2.94	31.4	10.70	4.944	0.16	1.074	0.49	3.307
					-							

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-	•										
13H	90	6.396	0.066	58.3	2.68	28.9	10.78	5.070	0.18	1.096	0.48	3.367
13H	92	6.333	0.065	56.0	2.32	24.8	10.67	5.206	0.13	1.114	0.42	3.424
13H	94	7.158	0.074	43.9	2.07	22.1	10.66	5.341	0.12	1.130	0.37	3.474
13H	96	7.700	0.080	38.6	1.66	18.2	10.98	5.556	0.08	1.147	0.33	3.545
13H	98	8.112	0.085	37.2	1.66	18.1	10.87	5.758	0.10	1.168	0.34	3.614
13H	100	8.851	0.093	33.5	1.30	14.2	10.96	5.969	0.09	1.187	0.29	3.675
13H	102	9.968	0.105	34.7	1.51	16.8	11.11	6.151	0.09	1.203	0.29	3.728
13H	104	10.896	0.116	30.7	1.14	12.7	11.12	6.372	0.10	1.225	0.29	3.792
13H	106	11.353	0.121	30.5	1.05	11.8	11.25	6.627	0.09	1.248	0.31	3.871
13H	108	12.005	0.128	33.6	1.59	17.6	11.08	6.872	0.10	1.273	0.30	3.944
13H	110	12.864	0.139	27.2	1.17	12.7	10.86	7.141	0.11	1.302	0.34	4.036
13H	112	12.839	0.138	27.4	1.29	14.2	10.97	7.410	0.10	1.329	0.32	4.122
13H	114	15.790	0.173	24.7	1.05	11.6	11.02	7.770	0.09	1.361	0.27	4.219
13H	116	15.094	0.165	25.6	1.59	19.4	12.22	8.140	0.06	1.384	0.24	4.308
13H	118	8.351	0.087	51.9	2.39	29.9	12.50	8.326	0.10	1.402	0.34	4.371
13H	120	7.849	0.082	58.1	2.15	27.1	12.63	8.494	0.09	1.417	0.33	4.427
13H	122	10.016	0.106	40.9	1.41	17.6	12.51	8.725	0.09	1.438	0.31	4.498
13H	124	14.511	0.158	28.3	0.82	9.9	12.10	9.082	0.07	1.463	0.29	4.602
13H	126	9.956	0.105	42.1	2.62	32.5	12.42	9.334	0.08	1.483	0.29	4.675
13H	128	8.067	0.084	54.0	2.36	29.1	12.33	9.531	0.09	1.501	0.34	4.742
13H	130	7.611	0.079	61.9	2.62	32.7	12.51	9.722	0.10	1.520	0.37	4.813

Note: In calculations of cumulative NAIP and TP reported in the text, cumulative NAIP and TP were increased by 0.024 and 0.069, respectively, to account for missing data at 10 cm. A value of 0.408 and 1.188, respectively, were used for the missing data. Cumulative NAIP and TP reported in these appendix tables do not include this adjustment.

.

								Cum		Cum		Cum	
Sta	Depth	Dry	Rho	LOI	TN	TĊ	TC/TN	Wt	NAIP	NAIP	TP	TP	
4 / 11	•	0 5 40	0.000	<i>(</i>))			0.50	0.004					
16H	2	2.543	0.026	69.9	3.35	31.8	9.50	0.081	0.35	0.028	1.02	0.082	
16H	4	3.865	0.039	68.4	3.31	31.9	9.64	0.148	0.36	0.052	1.05	0.152	
16H	6	4.679	0.048	68.9	3.25	31.6	9.74	0.214	0.40	0.078	1.07	0.224	
16H	8	4.356	0.044	67.5	3.14	31.3	9.96	0.303	0.39	0.113	1.45	0.353	
16H	10	4.334	0.044	67.0	3.14	31.6	10.07	0.395	0.31	0.141	0.87	0.433	
16H	12	4.856	0.050	65.5	2.98	30.8	10.34	0.480	0.29	0.166	1.06	0.522	
16H	14	4.658	0.048	67.0	3.00	31.4	10.46	0.580	0.16	0.181	0.45	0.567	
16H	16	4.722	0.048	69.2	2.89	31.8	11.02	0.678	0.12	0.193	0.35	0.601	
16H	18	5.327	0.055	68.5	2.88	32.3	11.21	0.775	0.09	0.201	0.28	0.628	
16H	20	4.775	0.049	67.8	2.88	31.0	10.73	0.886	0.07	0.209	0.28	0.659	
16H	22	5.393	0.055	68.3	2.97	31.9	10.73	0.979	0.06	0.215	0.29	0.686	
16H	24	5.170	0.053	64.7	2.74	30.3	11.09	1.095	0.06	0.221	0.25	0.715	
16H	26	5.451	0.056	57.6	2.66	30.4	11.42	1.216	0.06	0.228	0.24	0.743	
16H	28	6.760	0.070	46.2	1.58	18.9	11.94	1.357	0.05	0.234	0.19	0.771	
16H	30	6.198	0.064	61.4	2.56	29.7	11.58	1.474	0.04	0.240	0.19	0.793	
16H	32	6.129	0.063	61.3	2.56	30.0	11.69	1.606	0.04	0.244	0.17	0.816	
16H	34	6.532	0.067	61.0	2.38	28.6	12.00	1.739	0.05	0.251	0.19	0.842	
16H	36	6.250	0.064	63.9	2.49	30.6	12.28	1.867	0.05	0.258	0.19	0.865	
16H	38	6.228	0.064	66.5	2.71	32.1	11.84	1.989	0.04	0.263	0.19	0.888	
16H	40	6.097	0.063	65.7	2.68	31.4	11.73	2.119	0.06	0.270	0.19	0.913	
16H	42	6.261	0.065	65.8	2.60	31.4	12.09	2.246	0.04	0.275	0.20	0.938	
16H	44	6.049	0.062	65.5	2.66	31.5	11.82	2.375	0.04	0.280	0.20	0.964	
16H	46	6.559	0.068	66.1	2.62	31.8	12.10	2.502	0.04	0.285	0.18	0.987	
16H	48	6.419	0.066	65.1	2.61	31.7	12.14	2.671	0.02	0.288	0.01	0.988	
16H	50	6.978	0.072	60.8	2.25	29.4	13.04	2.832	0.08	0.302	0.21	1.022	
16H	52	7.616	0.079	58.3	2.42	29.1	12.02	2.986	0.02	0.305	0.18	1.049	
16H	54	7.882	0.082	55.1	1.99	24.3	12.21	3.155	0.02	0.308	0.15	1.075	
16H	56	6.548	0.068	62.6	2.58	32.2	12.47	3.304	0.05	0.316	0.17	1.101	
16H	58	7.159	0.074	65.3	2.65	33.8	12.74	3.450	0.05	0.323	0.20	1.129	
16H	60	7.061	0.073	64.7	2.35	31.7	13.49	3.585	• • •	• • •			
16H	62	6.810	0.070	62.9	2.43	30.0	12.31	3.745	0.03	0.328	0.21	1.163	
16H	64	7.371	0.076	58.5	2.22	28.2	12.68	3.908	0.06	0.339	0.23	1.201	
16H	66	7.270	0.075	61.9	2.46	31.1	12.66	4.049	0.07	0.348	0.23	1.233	
16H	68	8.808	0.092	48.5	2.53	31.2	12.34	4.202	0.04	0.355	0.21	1.265	
16H	70	10.321	0.109	31.3	2.39	32.5	13.60	4.398	0.08	0.369	0.25	1.315	
16H	72	10.052	0.106	39.8	1.92	24.3	12.67	4.617	0.07	0.384	0.30	1.381	
16H	74	12.535	0.135	32.7	1.57	20.2	12.87	4.902	0.04	0.395	0.15	1.424	
16H	76	8.172	0.085	54.4	1.22	15.9	13.02	5.057	0.04	0.401	0.15	1.447	
16H	78	7.574	0.079	63.2	2.44	31.1	12.75	5.202	0.04	0.407	0.19	1.475	
16H	80	7.348	0.076	67.0	1.94	27.4	14.11	5.369	0.07	0.418	0.22	1.512	
16H	82	6.961	0.072	66.8	2.49	31.9	12.79	5.519	0.05	0.426	0.20	1.542	
16H	84	6.828	0.071	70.8	2.76	35.5	12.84	5.640	0.06	0.433	0.17	1.563	
16H	86	6.356	0.065	71.3	2.77	35.6	12.85	5.792	0.06	0.442	0.16	1.588	
16H	88	6.410	0.066	70.8	2.73	35.5	13.00	5.937	0.04	0.448	0.16	1.611	

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
16H	90	6.224	0.064	72.3	2.69	34.8	12.93	6.090	0.05	0.455	0.17	1.637
16H	92	7.492	0.078	66.6	2.20	29.0	13.18	6.250	0.05	0.463	0.20	1.669
16H	94	6.569	0.068	69.2	2.58	33.7	13.06	6.381	0.07	0.472	0.18	1.692
16H	96	6.250	0.064	72.5	2.62	34.3	13.09	6.517	0.05	0.479	0.19	1.718
16H	98	6.892	0.071	70.2	2.84	37.0	13.05	6.639	0.07	0.487	0.20	1.743
16H	100	6.237	0.064	72.7	2.78	36.3	13.05	6.776	0.08	0.498	0.29	1.782
16H	102	5.974	0.061	78.2	2.82	37.7	13.38	6.910	0.09	0.511	0.34	1.829
16H	104	6.336	0.065	78.3	3.02	39.0	12.94	7.043	0.08	0.521	0.33	1.873
16H	106	6.735	0.069	76.2	2.97	38.2	12.90	7.180	0.07	0.530	0.35	1.921
16H	108	6.331	0.065	77.0	2.80	36.6	13.06	7.317	0.07	0.540	0.33	1.966
16H	110	6.282	0.065	80.0	2.98	39.4	13.23	7.447	0.07	0.549	0.35	2.012
16H	112	6.113	0.063	78.6	2.89	39.4	13.61	7.575	0.06	0.556	0.39	2.062
16H	114	5.946	0.061	80.3	2.89	39.4	13.63	7.706	0.10	0.569	0.40	2.114
16H	116	6.366	0.065	79.3	2.84	39.3	13.86	7.820	0.08	0.578	0.40	2.160
16H	118	5.782	0.059	79.3	2.98	39.8	13.37	7.975	0.09	0.591	0.38	2.219
16H	120	6.149	0.063	79.5	2.93	40.2	13.74	8.105	0.08	0.602	0.40	2.270
16H	122	6.305	0.065	75.6	2.85	38.7	13.59	8.267	0.09	0.616	0.56	2.361

Note: In calculations of cumulative NAIP and TP reported in the text, cumulative NAIP and TP were increased by 0.005 and 0.028, respectively, to account for missing data at 60 cm. A value of 0.034 and 0.210, respectively, were used for the missing data. Cumulative NAIP and TP reported in these appendix tables do not include this adjustment.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
							_*					
28H	2	1.319	0.013	70.7	3.79	32.1	8.48	0.026	0.38	0.010	1.14	0.029
28H	4	1.434	0.014	71.0	3.35	30.6	9.14	0.049	0.36	0.018	1.14	0.056
28H	6	1.640	0.017	71.0	3.23	30.6	9.50	0.082	0.35	0.030	1.11	0.092
28H	8	1.702	0.017	70.5	3.34	32.3	9.69	0.112	0.36	0.041	1.09	0.125
28H	10	1.787	0.018	69.9	3.24	30.9	9.55	0.141	0.37	0.052	1.13	0.158
28H	12	1.985	0.020	70.2	3.18	30.8	9.70	0.175	0.45	0.066	1.06	0.194
28H	14	2.239	0.023	72.1	3.33	32.6	9.78	0.224	0.45	0.089	1.09	0.248
28H	16	2.537	0.026	68.3	3.09	30.5	9.87	0.274	0.42	0.110	1.17	0.306
28H	18	2.461	0.025	69.4	3.05	29.6	9.68	0.325	0.33	0.127	0.98	0.355
28H	20	2.749	0.028	69.1	3.10	31.8	10.26	0.375	0.29	0.141	0.85	0.398
28H	22	2.930	0.030	69.0	3.08	32.4	10.52	0.438	0.24	0.156	0.82	0.450
28H	24	3.042	0.031	67.6	2.83	29.5	10.46	0.488	0.23	0.167	0.75	0.487
28H	26	3.130	0.032	68.6	2.97	31.8	10.72	0.552	0.23	0.182	0.68	0.531
28H	28	3.197	0.032	69.1	2.86	31.4	10.97	0.612	0.18	0.192	0.59	0.567
28H	30	3.251	0.033	69.2	2.86	31.3	10.93	0.667	0.16	0.201	0.56	0.597
28H	32	3.130	0.032	69.0	2.85	31.5	11.05	0.725	0.15	0.210	0.53	0.628
28H	34	3.276	0.033	67.5	2.89	31.9	11.04	0.785	0.14	0.218	0.50	0.658
28H	36	3.253	0.033	67.8	2.78	31.0	11.15	0.848	0.14	0.227	0.49	0.689
28H	38	3.289	0.033	66.6	2.71	30.7	11.32	0.906	0.13	0.234	0.50	0.718
28H	40	3.300	0.034	67.6	2.83	31.9	11.30	0.975	0.14	0.244	0.46	0.750
28H	42	3.254	0.033	66.3	2.71	30.7	11.33	1.039	0.11	0.251	0.50	0.781
28H	44	3.292	0.033	66.1	2.68	30.4	11.36	1.109	0.11	0.259	0.46	0.814
28H	46	3.399	0.035	66.4	2.77	31.2	11.27	1.173	0.11	0.266	0.42	0.841
28H	48	3.468	0.035	68.0	2.71	31.2	11.49	1.245	0.12	0.274	0.41	0.870
28H	50	3.864	0.039	68.0	2.64	30.4	11.50	1.320	0.11	0.283	0.43	0.902
28H	52	3.987	0.041	66.9	2.84	32.7	11.50	1.403	0.10	0.290	0.37	0.933
28H	54	4.167	0.043	66.4	2.68	30.9	11.54	1.482	0.07	0.296	0.40	0.965
28H	56	4.389	0.045	64.7	2.71	31.5	11.60	1.569	0.09	0.304	0.35	0.995
28H	58	8.418	0.088	31.2	2.28	27.0	11.84	1.748	0.07	0.316	0.32	1.051
28H	60	5.206	0.053	50.9	2.56	30.4	11.86	1.861	0.05	0.323	0.20	1.074
28H	62	4.238	0.043	65.3	2.64	32.0	12.11	1.943	0.05	0.327	0.22	1.091
28H	64	4.107	0.042	57.0	2.68	32.3	12.08	2.016	0.05	0.331	0.21	1.106
28H	66	4.427	0.045	64.7	2.61	31.9	12.24	2.099	0.05	0.335	0.20	1.123
28H	68	4.398	0.045	65.7	2.56	31.8	12.44	2.187	0.05	0.339	0.20	1.141
28H	70	4.349	0.044	68.4	2.69	33.1	12.30	2.279	0.05	0.343	0.20	1.159
28H	72	4.475	0.046	68.0	2.59	32.3	12.48	2.364	0.05	0.347	0.20	1.177
28H	74	4.187	0.043	68.0	2.69	33.4	12.45	2.453	0.04	0.351	0.20	1.194
28H	76	4.221	0.043	68.9	2.61	32.6	12.49	2.531	0.05	0.355	0.20	1.210
28H	78	4.319	0.044	68.5	2.56	32.0	12.50	2.618	0.05	0.360	0.19	1.226
28H	80	4.573	0.047	67.3	2.45	31.1	12.66	2.709	0.05	0.364	0.21	1.245
28H	82	4.517	0.046	67.6	2.55	32.0	12.58	2,816	0.05	0.369	0.19	1.265
28H	84	4.481	0.046	66.9	2.59	32.7	12.59	2.895	0.05	0.373	0.18	1.279
28H	86	4.276	0.044	67.5	2.61	32.7	12.53	2.978	0.05	0.377	0.19	1.295
28H	88	4.272	0.044	67.0	2.56	32.5	12.67	3.070	0.05	0.382	0.19	1.312

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-	-										
28H	90	4.358	0.045	66. 6	2.60	32.4	12.47	3.148	0.04	0.385	0.18	1.326
28H	92	4.690	0.048	65.1	2.51	31.9	12.70	3.253	0.03	0.388	0.19	1.346
28H	94	4.973	0.051	64.5	2.42	30.5	12.61	3.348	0.04	0.392	0.18	1.363
28H	96	5.065	0.052	64.4	2.52	31.7	12.60	3.451	0.08	0.400	0.19	1.382
28H	98	5.075	0.052	63.6	2.54	32.3	12.71	3.558	0.07	0.408	0.17	1.401
28H	100	4.946	0.051	65.2	2.55	32.4	12.72	3.653	0.07	0.415	0.19	1.419
28H	102	5.005	0.051	62.5	2.58	32.0	12.40	3.751	0.07	0.422	0.18	1.436
28H	104	4.872	0.050	63.9	2.49	31.2	12.53	3.840	0.06	0.427	0.18	1.452
28H	106	4.888	0.050	64.1	2.61	33.2	12.69	3.927	0.07	0.433	0.18	1.468
28H	108	4.684	0.048	65.5	2.60	32.5	12.52	4.017	0.07	0.440	0.18	1.484
28H	110	5.486	0.056	60.8	2.53	32.0	12.64	4.121	0.06	0.447	0.23	1.508
28H	112	5.385	0.055	58.9	2.53	31.6	12.52	4.235	0.06	0.453	0.19	1.530
28H	114	5.102	0.052	64.3	2.62	32.3	12.34	4.323	0.06	0.458	0.20	1.548
28H	116	5.239	0.054	64.1	2.63	32.8	12.45	4.430	0.07	0.466	0.21	1.571
28H	118	5.698	0.059	59.7	2.63	32.9	12.51	4.552	0.06	0.473	0.20	1.595
28H	120	5.822	0.060	58.6	2.50	31.2	12.49	4.665	0.06	0.479	0.24	1.622
								Cum		Cum		Cum
-----	-------	--------	-------	------	------	------	-------	-------	------	-------	------	-------
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
29H	2	1.664	0.017	72.2	3.90	28.6	7.35	0.028	0.35	0.010	1.00	0.028
29H	4	2.280	0.023	48.6	3.39	33.0	9.72	0.066	0.24	0.019	0.99	0.065
29H	6	2.715	0.028	64.2	3.28	30.5	9.31	0.115	0.38	0.037	1.00	0.115
29H	8	2.878	0.029	61.3	3.05	29.4	9.64	0.165	0.43	0.059	1.05	0.167
29H	10	3.286	0.033	56.2	2.92	28.6	9.79	0.226	0.45	0.086	1.00	0.228
29H	12	3.591	0.037	55.2	2.90	29.3	10.13	0.290	0.32	0.107	0.85	0.283
29H	14	4.150	0.042	44.7	2.72	28.3	10.40	0.373	0.22	0.125	0.69	0.340
29H	16	3.013	0.031	57.3	2.66	28.7	10.79	0.427	0.20	0.136	0.72	0.379
29H	18	3.361	0.034	60.3	2.55	28.0	10.97	0.485	0.17	0.146	0.59	0.413
29H	20	3.307	0.034	62.7	2.61	28.6	10.97	0.542	0.16	0.155	0.53	0.443
29H	22	3.460	0.035	62.0	2.62	29.0	11.07	0.602	0.16	0.164	0.52	0.474
29H	24	3.786	0.039	59.2	2.51	28.4	11.33	0.667	0.17	0.175	0.45	0.503
29H	26	5.144	0.053	46.0	2.11	24.4	11.58	0.773	0.14	0.191	0.40	0.545
29H	28	5.150	0.053	45.9	2.38	27.8	11.72	0.868	0.09	0.199	0.32	0.576
29H	30	6.272	0.065	42.0	2.29	27.9	12.18	0.987	0.09	0.210	0.24	0.604
29H	32	4.766	0.049	52.9	2.41	30.1	12.49	1.069	0.08	0.216	0.21	0.622
29H	34	5.700	0.059	51.2	2.42	31.1	12.85	1.170	0.08	0.224	0.18	0.640
29H	36	4.293	0.044	60.6	2.51	32.0	12.75	1.253	0.08	0.231	0.21	0.657
29H	38	5.027	0.052	56.6	2.40	30.9	12.87	1.356	0.07	0.238	0.20	0.678
29H	40	4.942	0.051	60.2	2.41	30.1	12.49	1.455	0.07	0.245	0.21	0.698
29H	42	4.913	0.050	56.2	2.52	32.2	12.78	1.550	0.07	0.252	0.21	0.718
29H	44	4.282	0.044	65.3	2.64	33.6	12.70	1.631	0.07	0.257	0.23	0.737
29H	46	4.086	0.042	61.7	2.68	34.1	12.73	1.722	0.06	0.263	0.22	0.757
29H	48	4.375	0.045	63.9	2.50	31.8	12.72	1.809	0.05	0.267	0.21	0.775
29H	50	4.152	0.042	69.3	2.70	34.1	12.65	1.888	0.07	0.273	0.37	0.805
29H	52	3.898	0.040	72.1	2.56	33.1	12.92	1.960	0.08	0.278	0.26	0.823
29H	54	4.046	0.041	67.3	2.63	33.9	12.93	2.040	0.11	0.287	0.68	0.878
29H	56	4.400	0.045	68.3	2.38	31.4	13.18	2.137	0.07	0.293	0.27	0.904
29H	58	4.315	0.044	66.7	2.76	36.0	13.04	2.214	0.07	0.299	0.27	0.924
29H	60	7.718	0.080	60.9	2.52	32.7	13.01	2.307	0.06	0.305	0.24	0.946
29H	62	5.056	0.052	60.5	2.66	35.2	13.26	2.396	0.06	0.310	0.31	0.974
29H	64	4.778	0.049	64.6	2.53	34.0	13.46	2.495	0.06	0.316	0.25	0.999
29H	66	5.043	0.052	61.0	2.67	35.3	13.21	2.599	0.07	0.323	0.28	1.028
29H	68	5.330	0.055	59.1	2.61	34.6	13.24	2.710	0.06	0.330	0.27	1.058
29H	70	5.108	0.052	61.1	2.35	31.2	13.28	2.807	0.08	0.338	0.26	1.083
29H	72	4.933	0.051	64.4	2.39	31.8	13.31	2.894	0.07	0.344	0.25	1.105
29H	74	4.625	0.047	67.7	2.76	36.8	13.32	2.987	0.09	0.353	0.28	1.132
29H	76	4.752	0.049	66.7	2.49	32.9	13.25	3.087	0.07	0.360	0.27	1.158
29H	78	4.830	0.049	68.5	2.57	34.2	13.31	3.179	0.06	0.365	0.26	1.182
29H	80	6.284	0.065	55.0	2.34	30.9	13.25	3.294	0.10	0.376	0.44	1.233
29H	82	7.689	0.080	44.9	2.32	30.3	13.06	3.454	0.07	0.386	0.26	1.275
29H	84	8.385	0.088	31.3	1.57	20.8	13.26	3.640	0.05	0.396	0.23	1.317
29H	86	10.037	0.106	36.6	1.96	25.8	13.21	3.854	0.06	0.409	0.25	1.370
29H	88	6.300	0.065	46.0	2.42	31.9	13.19	3.984	0.08	0.419	0.26	1.404

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
	-	-										
29H	90	4.850	0.050	65.4	2.80	37.2	13.29	4.083	0.07	0.426	0.29	1.432
29H	92	4.655	0.048	66.6	2.84	37.9	13.36	4.187	0.08	0.434	0.32	1.465
29H	94	4.681	0.048	70.2	2.80	37.3	13.33	4.282	0.07	0.441	0.34	1.498
29H	96	4.644	0.047	72.3	2.74	36.9	13.44	4.369	0.10	0.450	0.39	1.531
29H	98	4.476	0.046	73.1	2.83	38.1	13.46	4.447	0.09	0.456	0.37	1.560
29H	100	5.099	0.052	64.0	2.67	36.1	13.51	4.545	0.23	0.478	0.84	1.642
29H	102	6.269	0.065	52.4	2.25	30.5	13.57	4.659	0.21	0.502	0.88	1.743
29H	104	6.609	0.068	45.3	2.33	31.8	13.64	4.802	0.19	0.529	1.16	1.908
29H	106	4.531	0.046	68.9	2.50	34.1	13.64	4.885	0.08	0.535	0.38	1.940
29H	108	4.236	0.043	76.0	2.86	38.4	13.45	4.968	0.09	0.542	0.43	1.975
29H	110	4.856	0.050	74.6	2.88	38.6	13.40	5.066	0.08	0.550	0.52	2.026
29H	112	5.156	0.053	66.0	2.59	35.1	13.56	5.158	0.09	0.558	0.37	2.060
29H	114	4.878	0.050	71.8	2.78	37.6	13.53	5.261	0.06	0.564	0.41	2.102
29H	116	5.163	0.053	71.3	2.50	33.7	13.50	5.364	0.06	0.570	0.34	2.137
29H	118	5.754	0.059	62.4	2.44	33.0	13.55	5.477	0.05	0.576	0.31	2.173
29H	120	8.375	0.088	38.9	2.40	32.1	13.38	5.645	0.06	0.586	0.32	2.227
29H	122	5.399	0.055	68.4	2.57	34.7	13.53	5.756	0.06	0.593	0.64	2.297
29H	124	5.062	0.052	73.2	2.74	37.5	13.66	5.851	0.09	0.601	0.53	2.348
29H	126	4.787	0.049	77.6	2.77	38.1	13.75	5.944	0.08	0.609	0.45	2.389
29H	128	4.728	0.048	78.2	2.82	39.0	13.80	6.037	0.10	0.618	0.50	2.435
29H	130	4.801	0.049	79.2	2.83	39.3	13.89	6.135	0.06	0.624	0.50	2.484

.

								Cum		Cum		Cum
Sta	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
3H	4	1.078	0.011	67.2	3.61	32.7	9.06	0.060	0.37	0.022	1.08	0.064
3H	8	2.351	0.024	62.4	3.47	31.9	9.18	0.154	0.40	0.060	1.24	0.182
3H	12	3.099	0.031	55.7	2.98	28.1	9.44	0.267	0.44	0.110	1.21	0.318
3H	16	3.257	0.033	56.5	2.94	28.3	9.63	0.401	0.33	0.154	0.90	0.439
3H	20	3.278	0.033	59.5	3.03	29.8	9.83	0.534	0.20	0.180	0.78	0.543
3H	24	3.677	0.037	47.2	2.22	22.6	10.18	0.675	0.18	0.205	0.66	0.636
3H	28	3.647	0.037	53.9	2.93	30.3	10.35	0.820	0.18	0.231	0.72	0.741
3H	32	4.178	0.043	48.7	2.56	26.8	10.46	0.985	0.20	0.265	0.76	0.867
3H	36	4.094	0.042	57.5	2.86	30.6	10.71	1.147	0.15	0.289	0.58	0.960
3H	40	4.035	0.041	65.4	2.97	32.4	10.91	1.326	0.14	0.315	0.51	1.051
3H	44	4.043	0.041	62.9	3.07	33.6	10.94	1.514	0.18	0.349	0.49	1.143
3H	48	4.112	0.042	66.3	2.99	32.4	10.84	1.686	0.16	0.376	0.47	1.223
3H	52	4.625	0.047	62.5	2.92	31.8	10.88	1.852	0.16	0.403	0.48	1.302
3H	56	4.692	0.048	57.2	2.82	30.9	10.97	1.996	0.18	0.428	0.51	1.376
3H	60	4.290	0.044	64.2	2.96	32.1	10.84	2.212	0.19	0.470	0.53	1.490
3H	64	4.601	0.047	62.4	2.80	30.5	10.89	2.395	0.14	0.496	0.50	1.581
3H	68	4.880	0.050	61.6	2.83	30.7	10.84	2.590	0.15	0.525	0.47	1.674
3H	72	4.473	0.046	66.6	3.03	32.6	10.77	2.771	0.15	0.551	0.47	1.759
3H	76	4.589	0.047	63.4	2.76	29.8	10.78	2.940	0.17	0.580	0.46	1.837
3H	80	4.699	0.048	62.7	3.00	32.5	10.84	3.125	0.19	0.614	0.53	1.936
3H	84	4.418	0.045	66.4	3.13	33.6	10.73	3.315	0.18	0.649	0.47	2.026
3H	88	4.530	0.046	67.6	3.12	33.4	10.71	3.493	0.18	0.681	0.46	2.107
3H	92	4.512	0.046	67.0	3.20	34.3	10.70	3.658	0.19	0.713	0.47	2.185
3H	96	4.470	0.046	66.5	3.18	34.3	10.79	3.841	0.17	0.744	0.45	2.268
3H	100	4.474	0.046	68.2	3.15	33.8	10.71	4.017	0.18	0.776	0.44	2.345
3H	104	4.720	0.048	67.4	3.03	32.9	10.87	4.186	0.16	0.804	0.44	2.418
3H	108	4.674	0.048	64.8	3.08	33.4	10.84	4.392	0.17	0.839	0.43	2.506
3H	112	5.004	0.051	64.6	2.94	32.0	10.88	4.588	0.16	0.870	0.41	2.587
3H	116	5.006	0.051	65.6	3.00	33.1	11.03	4.790	0.16	0.903	0.40	2.668
3H	120	4.681	0.048	67.6	3.03	33.0	10.89	4.953	0.17	0.930	0.40	2.733
3H	124	4.453	0.045	68.3	3.08	33.4	10.85	5.106	0.17	0.956	0.40	2.794
3H	128	4.425	0.045	68.8	3.05	33.1	10.86	5.207	0.17	0.973	0.38	2.832

								Cum		Cum		Cum
Sta 1	Depth	Dry	Rho	LOI	TN	TC	TC/TN	Wt	NAIP	NAIP	TP	TP
27H	4	2.415	0.024	71.0	3.56	33.8	9.49	0.084	0.28	0.024	1.06	0.089
27H	8	3.090	0.031	68.2	3.34	31.8	9.53	0.193	0.28	0.054	1.10	0.209
27H	12	3.620	0.037	63.7	3.51	33.5	9.56	0.334	0.30	0.096	1.09	0.363
27H	16	3.993	0.041	60.4	3.22	30.8	9.56	0.490	0.29	0.142	1.13	0.541
27H	20	3.886	0.040	61.6	3.30	32.9	9.98	0.648	0.25	0.181	0.85	0.674
27H	24	4.634	0.047	59.7	2.78	30.7	11.03	0.828	0.13	0.205	0.52	0.767
27H	28	4.586	0.047	62.1	2.89	34.0	11.75	1.018	0.05	0.215	0.28	0.819
27H	32	3.986	0.041	68.0	2.73	33.0	12.08	1.179	0.03	0.220	0.23	0.856
27H	36	4.317	0.044	62.7	2.65	32.1	12.09	1.348	0.03	0.225	0.22	0.894
27H	40	4.571	0.047	58.6	2.38	29.4	12.37	1.539	0.06	0.237	0.36	0.963
27H	44	4.320	0.044	64.7	2.68	33.3	12.43	1.719	0.03	0.241	0.19	0.997
27H	48	5.215	0.054	54.8	2.33	29.3	12.57	1.925	0.02	0.245	0.17	1.033
27H	52	6.368	0.066	45.6	2.08	26.8	12.88	2.178	0.02	0.249	0.13	1.065
27H	56	5.478	0.056	57.9	2.23	28.9	12.98	2.374	0.02	0.253	0.20	1.104
27H	60	8.036	0.084	37.9	2.27	30.0	13.20	2.756	0.02	0.262	0.21	1.183
27H	64	4.635	0.047	61.1	2.76	37.3	13.53	2.949	0.06	0.273	0.77	1.332
27H	68	4.294	0.044	67.4	2.96	41.6	14.06	3.110	0.07	0.283	0.38	1.393
27H	72	3.980	0.041	74.3	2.90	41.8	14.40	3.271	0.05	0.292	0.44	1.464
27H	76	4.039	0.041	78.0	2.95	42.0	14.22	3.428	0.07	0.302	0.40	1.527
27H	80	4.511	0.046	73.9	2.80	39.5	14.11	3.610	0.04	0.310	0.41	1.601
27H	84	4.846	0.050	68.2	2.71	38.6	14.23	3.807	0.07	0.324	0.41	1.681
27H	88	7.813	0.082	40.4	2.66	38.1	14.32	4.121	0.05	0.341	0.96	1.983
27H	92	4.975	0.051	65.1	2.74	40.4	14.74	4.334	0.10	0.363	0.55	2.101
27H	96	3.734	0.038	83.5	2.95	43.5	14.74	4.485	0.08	0.375	0.43	2.165
27H	100	3.758	0.038	83.8	2.86	42.8	14.97	4.625	0.03	0.380	0.41	2.223
27H	104	3.925	0.040	80.7	2.88	41.6	14.45	4.781	0.11	0.397	0.43	2.290
27H	108	4.282	0.044	78.6	2.93	42.3	14.43	4.961	0.10	0.415	0.56	2.391
27H	112	4.666	0.048	76.7	2.73	40.9	15.00	5.136	0.06	0.426	0.44	2.467
27H	116	4.902	0.050	72.5	2.64	40.2	15.21	5.345	0.07	0.440	0.53	2.578
27H	120	5.179	0.053	63.8	2.35	36.2	15.40	5.547	0.05	0.451	0.37	2.652
27H	124	5.417	0.056	60.8	2.10	33.4	15.90	5.788	0.04	0.461	0.36	2.739
27H	128	6.207	0.064	53.7	1.85	30.9	16.69	6.008	0.05	0.473	0.69	2.891
27H	132	6.308	0.065	52.0	1.86	31.3	16.84	6.263	0.04	0.482	0.33	2.974
27H	136	8.298	0.087	40.7	1.48	26.7	18.04	6.613	0.05	0.498	0.43	3.126
27H	140	8.067	0.084	44.5	1.64	28.9	17.65	6.991	0.03	0.511	0.38	3.270
27H	144	7.581	0.079	50.0	1.70	30.2	17.78	7.274	0.04	0.521	0.30	3.355

APPENDIX I

RADIOMETRIC DATA LAKE DORA HISTORIC CORES

Radiometric data for 7 historic cores collected during Phase I and Phase II, Lake Dora. See Appendix A for collection date, location and description of cores.

CODES:

Depth is depth (cm) Total ²¹⁰Pb is activity (dpm g⁻¹) ²²⁶Ra is activity (dpm g⁻¹) ¹³⁷Cs is activity (dpm g⁻¹) ²¹⁰Pb error is error in Total ²¹⁰Pb activity (dpm g⁻¹) ²²⁶Ra error is error in ²²⁶Ra activity (dpm g⁻¹) ¹³⁷Cs error is error in ¹³⁷Cs activity (dpm g⁻¹) Excess ²¹⁰Pb is activity (dpm g⁻¹) Excess ²¹⁰Pb error is error in ²¹⁰Pb activity (dpm g⁻¹) Age is age in years at relative to bottom of each section Date is calendar year at each depth Age error is error in age in years MSR is mass sedimentation rate (mg cm⁻² g⁻¹) MSR error is error in mass sedimentation rate (mg cm⁻² g⁻¹)

	Total			Pb-210	Ra-226	Cs-137	Excess I	Ex Pb-21() Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
•													
LD-3	H-95												
2	15.29	1.80	1.08	1.18	1.00	0.14	13.74	1.56	0.2	1995.3	0.6	79.73	9.17
4	10.64	1.80	0.01	1.05	0.59	0.05	9.00	1.22	0.4	1995.1	0.6	120.98	16.50
6	13.26	1.80	0.95	0.78	0.74	0.12	11.74	1.09	0.6	1994.9	0.6	92.22	8.68
8	17.57	1.80	1.84	1.32	1.00	0.23	16.07	1.67	1.0	1994.4	0.6	66.70	7.05
10	16.61	1.80	1.40	1.00	1.09	0.16	15.15	1.50	1.6	1993.9	0.6	69.68	7.00
12	20.23	1.80	1.34	1.20	0.63	0.17	18.78	1.38	2.3	1993.1	0.6	55.09	4.16
14	22.67	1.80	2.12	1.25	0.94	0.22	21.37	1.59	3.2	1992.3	0.6	47.19	3.62
16	24.93	1.80	1.66	0.76	0.54	0.10	23.57	0.94	4.3	1991.1	0.6	41.46	1.79
18	17.41	1.80	1.32	0.78	0.53	0.12	16.00	0.96	4.8	1990.7	0.7	59.61	3.70
20	24.97	1.80	1.63	1.25	1.74	0.17	23.62	2.16	6.5	1988.9	0.7	39.03	3.71
22	23.47	1.80	2.00	0.91	0.43	0.15	22.20	1.03	8.3	1987.1	0.7	39.29	1.97
24	21.72	1.80	1.89	0.96	0.38	0.15	20.30	1.05	9.9	1985.6	0.7	40.78	2.25
26	20.43	1.80	1.75	1.05	0.62	0.17	19.10	1.24	11.4	1984.0	0.7	41.32	2.83
28	20.36	1.80	1.91	1.07	0.42	0.18	18.93	1.17	13.5	1982.0	0.7	39.40	2.60
30	17.41	1.80	2.19	1.32	0.45	0.26	16.00	1.43	15.4	1980.0	0.7	43.79	4.11
32	13.22	1.80	3.82	0.72	0.43	0.21	11.65	0.86	16.9	1978.6	0.7	57.06	4.41
34	13.01	1 80	5.04	0.79	0.33	0.27	11.50	0.88	18.1	1977.4	0.7	55.48	4.43
36	12.57	1.80	5 89	0.84	0.60	0.30	10.98	1.04	19.5	1975.9	0.8	55.70	5.50
38	15 42	1.80	4 29	0.61	0.38	0.18	13.97	0.73	21.2	1974 2	0.8	41 71	2.38
40	11.63	1.00	4.06	0.01	0.30	0.10	10.03	0.75	21.2	1072.8	0.0	55 38	5 40
42	13 47	1.00	4 33	0.02	0.42	0.20	11.05	0.24	22.0	1970.9	0.0	44 09	3 78
44	12.47	1.00	5.62	0.78	0.37	0.24	11.05	0.90	24.0	1969.2	0.0	45.00	3.80
46	13 75	1.00	5.86	0.70	0.30	0.27	12.05	0.00	20.2	1067.2	0.0	38 53	2.60
48	13.07	1.80	6.21	0.05	0.59	0.21	12.22	0.75	20.2	1965.0	0.9	35.33	2.00
50	14.74	1.00	6 50	0.70	0.32	0.24	12.72	0.89	33.1	1963.0	0.9	30.83	1.07
50	11.10	1.00	5.34	0.00	0.33	0.24	0.50	0.75	35.1	1902.4	1.0	30.05	2.61
54	16 17	1.00	1 22	0.47	0.27	0.10	15.02	1 10	20.1	1056.2	1.0	22.20	2.01
56	10.47	1.00	4.55	0.54	0.70	0.27	0.52	0.70	39.1 41 0	1950.5	1.0	22.99	2.04
50	10.71	1.00	2.55	0.04	0.45	0.13	9.55	0.79	41.9	1955.5	1.1	21 10	2.00
20	10.71	1.00	2.05	0.55	0.55	0.15	9.15	0.00	44.0	1930.7	1.1	25.04	2.50
60	11.54	1.80	1.55	0.75	1.05	0.12	9.93	1.29	40.3	1947.2	1.1	25.94	3.03
02	10.30	1.80	0.97	0.48	0.34	0.08	8.98 0.72	0.00	51.9	1943.3	1.2	23.13	2.04
04	10.35	1.80	0.54	0.57	0.27	0.07	8.75	0.64	55.8 60.2	1939.7	1.5	23.33	2.04
00	0.52	1.80	1.00	0.54	0.40	0.09	9.54	0.08	60.3	1935.2	1.5	18.93	1.00
08	9.55	1.80	0.74	0.54	0.33	0.08	7.90	0.77	05.1	1930.4	1.0	19.78	2.27
70	10.44	1.80	0.87	0.55	0.39	0.08	8.85	0.67	71.9	1923.0	1.9	14.75	1.47
12	8.30	1.80	0.43	0.46	0.50	0.05	0.91	0.69	18.2	1917.2	2.2	15.38	1.94
74	6.66	1.80	0.61	0.31	0.34	0.05	4.97	0.4/	83.5	1911.9	2.5	17.83	2.22
76	6.44	1.80	0.75	0.41	0.28	0.07	4.74	0.51	90.5	1905.0	3.0	15.47	2.27
78	6.51	1.80	0.49	0.37	0.31	0.05	4.82	0.49	98.5	1896.9	3.7	12.06	1.87
80	6.11	1.80	0.87	0.46	0.41	0.09	4.40	0.62	109.2	1886.3	4.8	9.88	2.11
82	2.69	1.80	0.47	0.27	1.18	0.05	0.91	1.21	112.1	1883.4	3.4	38.42	53.60
84	3.51	1.80	0.59	0.33	0.33	0.06	1.75	0.47	117.4	1878.1	3.7	17.62	5.49
86	4.36	1.80	0.45	0.37	0.27	0.06	2.62	0.47	127.3	1868.1	4.6	9.32	2.29
88	3.13	1.80	0.42	0.19	0.16	0.03	1.40	0.26	134.6	1860.9	5.5	13.31	3.44
90	3.73	1.80	0.38	0.27	0.23	0.04	2.03	0.37	150.7	1844.7	8.3	6.44	2.04
92	4.18	1.80	0.58	0.34	0.58	0.06	2.43	0.67					
94	2.53	1.80	0.54	0.23	0.19	0.05	0.77	0.31					
96	1.46	1.80	0.52	0.19	0.19	0.04	0.00	0.19					
98	1.68	1.80	0.36	0.17	0.16	0.03	0.00	0.16					

	Total			Pb-210	Ra-226	Cs-137	Excess E	Ex Pb-210) Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LD-1	0H-95												
2	21.42	2.00		1.63	0.60		20.63	1.83	0.0	1995.6	0.6	51.00	
4	21.42	2.00	1.17	1.63	0.61	0.17	19.92	1.78	0.1	1995.4	0.6	59.63	5.39
6	13.34	2.00	1.33	1.61	0.47	0.23	11.57	1.71	0.3	1995.2	0.6	102.10	15.19
8	18.15	2.00	0.72	1.72	1.06	0.17	16.53	2.05	0.5	1994.9	0.6	70.98	8.89
10	20.32	2.00	0.74	1.53	1.58	0.15	18.68	2.23	0.9	1994.5	0.6	62.13	7.49
12	24.54	2.00	1.09	1.59	0.73	0.18	23.05	1.78	1.5	1994.0	0.6	49.62	3.91
14	25.00	2.00	1.00	1.63	0.78	0.17	23.47	1.83	2.3	1993.1	0.6	47.71	3.83
16	23.91	2.00	1.48	1.23	0.72	0.16	22.34	1.45	3.1	1992.4	0.6	48.86	3.27
18	23.89	2.00	1.17	1.22	0.32	0.14	22.33	1.28	4.0	1991.4	0.6	47.58	2.84
20	21.99	2.00	1.12	1.05	0.40	0.14	21.23	1.18	5.1	1990.4	0.6	48.54	2.83
22	20.09	2.00	1.17	1.05	0.40	0.13	18.46	1.14	6.0	1989.4	0.6	54.13	3.48
24	28.29	2.00	1.77	0.99	0.35	0.13	26.87	1.07	7.3	1988.1	0.6	35.89	1.55
26	28.25	2.00	2.10	1.87	0.40	0.27	26.80	1.95	8.9	1986.5	0.6	34.40	2.62
28	26.62	2.00	1.67	1.21	0.32	0.16	25.17	1.27	10.8	1984.6	0.6	34.69	1.89
30	26.32	2.00	1.56	1.67	0.45	0.22	24.83	1.76	12.4	1983.0	0.7	33.28	2.48
32	21.72	2.00	1.81	1.03	0.34	0.16	20.15	1.11	14.4	1981.1	0.7	38.80	2.29
34	26.96	2.00	2.32	1.55	0.49	0.24	25.48	1.66	16.7	1978.8	0.7	28.74	2.00
36	18.93	2.00	2.51	0.91	0.30	0.17	17.31	0.98	18.3	1977.1	0.7	39.78	2.42
38	21.07	2.00	2.60	0.73	0.25	013	19.47	0.78	20.4	1975.0	0.7	33.35	1.52
40	20.01	2.00	3.06	1.08	0.38	0.22	18.42	1 17	22.4	1973 1	07	33 10	2.25
40	16 23	2.00	3 33	0.83	0.30	0.22	14 53	0.00	24.4	1071 2	0.7	39.54	2.25
	16.25	2.00	4 40	0.05	0.31	0.12	14.33	0.20	24.5	1060 1	0.0	37.45	2.05
44	12.67	2.00	4.40	0.05	0.27	0.22	14.42	0.09	20.5	1909.1	0.0	12 62	2.51
40	13.07	2.00	5.00	0.75	0.24	0.25	10.01	0.60	20.2	1907.2	0.0	42.02	2.07
48	12.00	2.00	5.00	0.54	0.22	0.10	10.91	0.00	20.1	1903.4	0.9	43.92	2.07
50	14.40	2.00	5.52	0.58	0.21	0.17	12.00	0.03	32.8	1902.7	0.9	33.28	2.02
52	12.01	2.00	3.93	0.07	0.28	0.19	10.24	0.74	34.9	1900.0	0.9	40.44	3.19
54	12.33	2.00	3.21	0.87	0.30	0.22	10.55	0.94	37.3	1958.2	1.0	30.00	3.54
56	10.94	2.00	3.70	0.50	0.21	0.14	9.15	0.56	40.7	1954.8	1.0	38.30	2.71
58	12.12	2.00	3.27	0.75	0.34	0.19	10.34	0.84	44.8	1950.7	1.1	30.40	2.80
60	9.74	2.00	2.73	0.67	0.31	0.17	7.92	0.75	46.7	1948.7	1.1	36.10	3.74
62	10.86	2.00	3.26	0.48	0.20	0.12	9.04	0.53	50.8	1944.7	1.3	28.79	2.08
64	13.04	2.00	2.70	0.86	0.33	0.19	11.30	0.94	57.3	1938.2	1.4	19.57	1.96
66	11.76	2.00	1.89	0.59	0.22	0.11	9.97	0.64	62.6	1932.9	1.6	18.45	1.53
68	10.37	2.00	1.22	0.72	0.38	0.12	8.57	0.83	70.2	1925.2	1.8	17.56	2.13
70	9.70	2.00	1.25	0.46	0.38	0.08	7.87	0.61	75.7	1919.7	2.1	15.57	1.60
72	7.75	2.00	0.67	0.38	0.19	0.05	5.89	0.43	85.7	1909.8	2.7	16.41	1.84
74	5.92	2.00	0.91	0.36	0.27	0.06	4.01	0.46	95.6	1899.8	3.4	17.69	2.89
76	5.58	2.00	0.52	0.33	0.27	0.04	3.66	0.43	108.3	1887.1	4.6	13.63	2.59
78	3.27	2.00	0.59	0.33	0.33	0.06	1.30	0.47	114.9	1880.6	5.0	28.39	12.32
80	3.73	2.00	0.74	0.32	0.26	0.05	1.77	0.42	118.1	1877.3	5.5	17.86	5.30
82	4.73	2.00	1.00	0.44	0.33	0.08	2.80	0.56	139.3	1856.1	8.7	7.84	2.81
84	3.02	2.00	0.55	0.33	0.27	0.05	1.05	0.43	151.3	1844.1	11.1	12.37	7.35
86	2.29	2.00	0.65	0.32	0.42	0.06	0.30	0.53	154.8	1840.6	10.5	34.17	65.80
88	4.23	2.00	0.74	0.40	0.26	0.07	2.29	0.48			-		
90	1.14	2.00	0.46	0.27	0.42	0.04	0.00	0.42					
92	1.86	2.00	0.40	0.31	0.32	0.05	0.00	0.32					
94	2.05	2.00	0.49	0.31	0.33	0.05	0.00	0.33					
96	3.60	2.00	0.44	0.44	0.21	0.06	0.00	0.21					
98	2.18	2.00	0.44	0.27	0.34	0.04							

	Total			Pb-210	Ra-226	Cs-137	Excess H	Ex Pb-210) Age at		age	Mass	MSR
Deptl	nPb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
I D_1	411-05												
2	19 70	2.05	1 19	1 47	0.35	0.19	17 97	1 54	07	1004 8	06	35.05	3 16
4	22.71	2.05	1.12	1.47	0.33	0.15	21.04	1.54	14	1994.0	0.0	30.05	2 17
6	26.76	2.05	1.22	1 34	0.30	0.15	25.17	1.17	3.0	1992.5	0.7	24.24	1 43
8	29.82	2.05	1.87	1.67	0.35	0.22	28.30	1.74	5.0	1990.5	0.7	20.40	1 33
10	24.88	2.05	1.76	1.25	0.33	0.17	23.30	1 32	6.8	1988.7	0.7	23 36	1 41
12	18.41	2.05	1.13	1.09	0.26	0.14	16.68	1.14	8.2	1987.3	0.7	31.05	2.24
14	20.83	2.05	2.38	0.96	0.27	0.17	19.17	1.02	10.4	1985.1	0.7	25.54	1.47
16	21.80	2.05	1.92	1.15	0.30	0.18	20.13	1.21	13.9	1981.5	0.7	22.26	1.47
18	21.93	2.05	1.90	1.17	0.35	0.18	20.27	1.24	17.2	1978.2	0.8	19.84	1.33
20	20.43	2.05	2.14	0.87	0.26	0.14	18.76	0.92	20.6	1974.9	0.8	19.33	1.07
22	17.73	2.05	3.25	0.57	0.17	0.12	15.98	0.61	23.9	1971.5	0.8	20.46	0.93
24	14.40	2.05	3.13	0.60	0.18	0.13	12.60	0.64	27.6	1967.9	0.9	23.25	1.35
26	11.24	2.05	4.21	0.74	0.25	0.22	9.36	0.79	30.5	1964.9	0.9	28.24	2.59
28	11.34	2.05	4.20	0.64	0.24	0.18	9.48	0.70	33.8	1961.7	1.0	25.33	2.07
30	11.33	2.05	3.00	0.99	0.30	0.24	9.46	1.05	37.5	1958.0	1.0	22.78	2.76
32	8.93	2.05	2.36	0.52	0.19	0.12	6.95	0.56	40.7	1954.7	1.0	27.86	2.49
34	9.35	2.05	1.64	0.50	0.19	0.10	7.44	0.55	44.7	1950.7	1.1	23.23	1.94
36	12.37	2.05	0.88	0.56	0.20	0.07	10.51	0.61	51.5	1943.9	1.2	13.92	1.00
38	10.93	2.05	1.24	0.53	0.18	0.08	9.06	0.57	59.3	1936.1	1.4	12.86	1.05
40	10.47	2.05	0.77	0.48	0.16	0.06	8.58	0.52	68.4	1927.1	1.7	10.46	0.88
42	11.39	2.05	1.00	0.46	0.16	0.06	9.52	0.50	85.2	1910.2	2.5	6.35	0.59
44	7.49	2.05	0.91	0.42	0.15	0.06	5.55	0.45	104.4	1891.0	4.0	6.23	0.93
46	4.57	2.05	0.52	0.34	0.13	0.05	2.57	0.37	122.1	1873.3	6.0	7.57	1.88
48	2.52	2.05	0.59	0.33	0.13	0.05	0.47	0.36	126.0	1869.4	6.0	28.90	23.84
50	4.40	2.05	0.80	0.44	0.19	0.07	2.39	0.49	164.1	1831.4	12.8	3.16	1.49
52	3.36	2.05	0.74	0.35	0.16	0.06	1.33	0.39					
54	2.18	2.05	0.59	0.35	0.18	0.06	0.00	0.18					
56	1.92	2.05	0.48	0.00	0.13	0.04	0.00	0.13					
58	2.06	2.05	0.48	0.00	0.16	0.05	0.00	0.16					

/

	Total			Pb-210	Ra-226	Cs-137	Excess I	Ex Pb-210	Age at		age	Mass	MSR
Deptl	nPb-210) Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LD-2	21 H-96												
2	18.73	1.93	0.49	1.01	1.00	0.08	16.86	1.42	0.4	1995.7	0.8	36.36	3.15
4	20.14	1.93	1.37	1.56	0.54	0.21	18.27	1.66	1.2	1994.9	0.8	32.93	3.09
6	23.04	1.93	1.54	1.48	0.73	0.20	21.18	1.65	2.2	1993.9	0.8	27.63	2.24
8	22.66	1.93	1.54	1.76	2.14	0.24	20.81	2.77	3.1	1993.1	0.8	27.32	3.72
10	18.64	1.93	1.02	1.49	0.60	0.18	16.78	1.62	4.0	1992.1	0.8	32.94	3.28
12	25.79	1.93	1.27	1.47	0.42	0.17	23.95	1.53	5.6	1990.6	0.8	22.19	1.51
14	25.06	1.93	1.49	1.23	0.29	0.15	23.22	1.26	7.6	1988.5	0.8	21.64	1.29
16	21.28	1.93	1.19	1.59	0.27	0.19	19.44	1.62	9.4	1986.8	0.9	24.38	2.15
18	26.95	1.93	1.55	1.71	0.41	0.21	25.12	1.77	12.0	1984.1	0.9	17.62	1.35
20	26.98	1.93	0.99	1.02	0.34	0.10	25.17	1.08	15.3	1980.8	0.9	16.03	0.81
22	12.80	1.93	0.79	0.58	3.00	0.07	10.92	3.05	16.8	1979.4	0.9	34.29	9.84
24	18.03	1.93	0.97	0.79	0.54	0.09	16.18	0.96	21.1	1975.1	0.9	21.17	1.42
26	15.42	1.93	1.06	0.87	0.36	0.11	13.56	0.95	25.7	1970.4	0.9	21.98	1.73
28	14.08	1.93	1.11	0.50	0.23	0.07	12.21	0.55	31.0	1965.1	1.0	20.92	1.14
30	13.69	1.93	1.82	0.58	0.27	0.10	11.81	0.64	36.0	1960.1	1.1	18.42	1.20
32	11.49	1.93	2.25	0.87	0.37	0.18	9.61	0.95	40.4	1955.8	1.1	19.56	2.16
34	8.08	1.93	1.09	0.45	0.20	0.07	6.19	0.49	43.8	1952.3	1.2	26.89	2.41
36	8.56	1.93	1.11	0.84	0.31	0.14	6.67	0.90	47.4	1948.7	1.1	22.37	3.29
38	9.65	1.93	0.95	0.78	0.30	0.11	7.76	0.84	52.1	1944.0	1.2	16.89	2.04
40	8.03	1.93	1.15	0.64	0.30	0.11	6.14	0.71	56.9	1939.2	1.2	18.44	2.37
42	7.20	1.93	0.58	0.34	0.22	0.04	5.42	0.41	60.9	1935.3	1.3	18.21	1.60
44	7.52	1.93	0.63	0.31	0.16	0.04	5.75	0.36	66.6	1929.6	1.4	14.77	1.15
46	6.91	1.93	0.66	0.30	0.16	0.04	5.13	0.34	72.3	1923.8	1.6	13.86	1.18
48	8.91	1.93	0.79	0.44	0.23	0.06	7.18	0.51	82.4	1913.7	2.0	7.75	0.77
50	6.07	1.93	0.85	0.32	0.18	0.05	4.26	0.37	93.3	1902.8	2.4	9.44	1.17
52	5.83	1.93	0.53	0.32	0.26	0.04	4.01	0.42	105.2	1891.0	3.1	7.04	1.08
54	4.22	1.93	0.49	0.33	0.19	0.04	2.36	0.39	118.7	1877.4	3.8	8.07	1.88
56	4.83	1.93	0.50	0.36	0.22	0.05	2.98	0.43	143.3	1852.9	6.2	3.59	0.96
58	3.78	1.93	0.42	0.25	0.13	0.03	1.90	0.29	179.7	1816.5	16.4	2.24	0.92
60	2.81	1.93	0.38	0.28	0.16	0.04	0.91	0.33					
62	1.93	1.93	0.45	0.24	0.16	0.03	0.00	0.30					

	Total			Pb-210	Ra-226	Cs-137	Excess	Ex Pb-210	Age at		age	Mass	MSR
Deptl	hPb-210	Ra-226	Cs-137	Error	error	error	РЬ-210	error	bottom	Date	erroi	Sed Rate	error
LD-2	22H-96												
2	8.36	1.35	2.44	2.72	0.29	0.33	7.03	2.75	0.0	1996.1	0.9	59.31	23.21
4	18.18	1.35	1.57	2.34	0.40	0.32	16.89	2.38	0.4	1995.7	0.9	24.53	3.52
6	18.04	1.35	1.13	1.77	0.23	0.22	16.75	1.79	1.0	1995.1	0.9	24.36	2.68
8	18.68	1.35	1.35	1.83	0.39	0.25	17.40	1.88	1.8	1994.4	0.9	22.97	2.55
10	25.24	1.35	1.29	1.98	0.68	0.24	23.98	2.10	3.0	1993.1	0.9	16.15	1.49
12	22.00	1.35	1.44	1.31	0.20	0.17	20.73	1.33	5.1	1991.1	1.0	17.75	1.24
14	22.59	1.35	1.56	1.27	0.19	0.17	21.33	1.29	8.0	1988.2	1.0	15.97	1.08
16	15.86	1.35	1.18	1.14	0.21	0.16	14.57	1.16	10.9	1985.2	1.0	21.35	1.86
18	19.51	1.35	1.79	1.38	0.20	0.21	18.23	1.40	14.8	1981.3	1.1	15.35	1.32
20	13.50	1.35	1.23	0.67	0.14	0.10	12.21	0.69	19.8	1976.4	1.1	19.98	1.34
22	13.80	1.35	2.43	0.54	0.11	0.11	12.51	0.56	24.6	1971.5	1.3	16.72	0.96
24	11.44	1.35	2.88	0.49	0.13	0.11	10.14	0.51	30.6	1965.6	1.4	17.46	1.16
26	7.85	1.35	3.75	0.59	0.16	0.18	6.53	0.62	34.3	1961.9	1.5	23.29	2.52
28	7.23	1.35	3.53	0.46	0.11	0.14	5.91	0.48	39.6	1956.5	1.7	22.40	2.23
30	6.79	1.35	2.80	0.47	0.09	0.12	5.46	0.48	46.8	1949.4	1.9	19.95	2.21
32	9.13	1.35	1.67	0.74	0.12	0.15	7.82	0.76	61.3	1934.9	2.2	10.01	1.38
34	7.68	1.35	1.48	0.37	0.08	0.07	6.37	0.38	79.5	1916.7	3.6	7.42	0.88
36	7.84	1.35	1.05	0.59	0.14	0.10	6.53	0.61	134.1	1862.0	13.6	2.59	0.77
38	2.42	1.35	0.81	0.46	0.12	0.09	1.07	0.48	183.2	1812.9	34.2	3.06	3.69
40	1.72	1.35	0.46	0.31	0.13	0.05	0.37	0.34					
42	0.17	1.35	0.30	0.19	0.09	0.03	0.00	0.09					
44	1.46	1.35	0.43	0.19	0.08	0.02	0.00	0.08					
46	1.09	1.35	0.39	0.23	0.14	0.04	0.00	0.14					

	Total			Pb-210	Ra-226	Cs-137	Excess 1	Ex Pb-210	Age at		age	Mass	MSR
Depth	nPb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LD-6	6H-98												
4	18.56	1.98	1.00	0.66	0.29	0.08	16.66	0.72	0.4	1997.8	0.5	76.14	3.40
8	21.38	1.48	0.74	0.72	0.34	0.07	20.01	0.80	1.5	1996.8	0.5	61.98	2.55
12	23.63	1.27	0.86	0.54	0.09	0.06	22.49	0.55	2.8	1995.5	0.5	53.15	1.43
16	23.98	1.34	1.30	0.56	0.13	0.07	22.77	0.58	4.0	1994.3	0.5	50.48	1.40
20	25.34	1.09	1.26	0.82	0.11	0.10	24.40	0.83	5.7	1992.5	0.6	45.03	1.60
24	24.56	0.93	1.17	0.56	0.18	0.07	23.77	0.59	8.1	1990.2	0.6	43.33	1.19
28	24.30	1.08	1.36	0.46	0.09	0.06	23.38	0.47	10.8	1987.5	0.6	40.73	0.98
32	21.20	1.52	1.54	0.60	0.15	0.09	19.81	0.62	13.2	1985.1	0.6	44.41	1.51
36	19.04	1.58	1.54	0.75	0.23	0.11	17.57	0.79	16.7	1981.5	0.7	45.66	2.09
40	16.63	1.24	2.09	0.36	0.27	0.06	15.49	0.45	19.8	1978.5	0.7	46.74	1.54
44	17.85	1.80	2.43	0.69	0.38	0.13	16.22	0.79	22.9	1975.3	0.7	40.53	2.05
48	14.75	1.68	3.56	0.56	0.16	0.14	13.21	0.59	26.0	1972.3	0.8	45.19	2.12
52	13.62	2.57	4.55	0.57	0.56	0.16	11.17	0.80	30.2	1968.0	0.8	47.67	3.39
56	8.96	2.25	2.58	0.45	0.26	0.12	6.78	0.52	33.0	1965.3	0.8	70.38	5.45
60	10.19	1.75	1.83	0.54	0.30	0.11	8.53	0.62	36.7	1961.5	0.9	50.60	3.68
64	9.02	1.47	0.64	0.50	0.21	0.07	7.63	0.55	40.8	1957.5	0.9	50.10	3.63
68	10.23	1.67	0.75	0.41	0.32	0.06	8.66	0.53	45.8	1952.5	1.0	38.36	2.41
72	10.28	1.32	0.60	0.40	0.08	0.05	9.06	0.41	52.3	1945.9	1.1	30.64	1.57
76	8.27	1.75	0.59	0.24	0.14	0.03	6.59	0.28	57.9	1940.4	1.3	34.87	1.83
80	6.66	1.54	0.56	0.38	0.31	0.06	5.18	0.50	63.4	1934.9	1.4	37.33	3.64
84	5.34	1.49	0.51	0.29	0.23	0.04	3.90	0.37	68.4	1929.8	1.5	42.11	4.19
88	3.15	1.58	0.21	0.27	0.11	0.03	1.59	0.29	71.1	1927.2	1.6	91.67	16.88
92	4.30	1.37	0.34	0.26	0.28	0.04	2.97	0.38	75.6	1922.6	1.7	43.80	5.73
96	4.25	1.51	0.30	0.27	0.24	0.03	2.78	0.36	80.5	1917.8	1.8	40.42	5.38
100	3.37	1.47	0.26	0.20	0.17	0.02	1.92	0.27	84.1	1914.2	2.0	51.32	7.42
104	3.99	1.48	0.29	0.23	0.20	0.03	2.54	0.31	90.6	1907.6	2.2	33.12	4.24
108	5.57	1.54	0.33	0.29	0.21	0.04	4.09	0.37	102.2	1896.0	2.9	15.59	1.72
112	5.84	1.33	0.47	0.30	0.41	0.04	4.57	0.52	128.7	1869.6	4.7	7.88	1.19
116	3.66	1.49	0.14	0.17	0.10	0.02	2.20	0.20	160.0	1838.3	11.5	6.73	1.59
120	2.41	1.47	0.22	0.20	0.24	0.02	0.95	0.32					
124	1.74	1.40	0.25	0.22	0.27	0.03	0.35	0.36					

	Total			Pb-210	Ra-226	Cs-137	Excess	Ex Pb-210	Age at		age	Mass	MSR
Depth	nPb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LD-1	2H-98												
4	26.76	3 80	1 40	0.66	0.88	0.09	23 13	1 1 1	0.9	19974	06	67 10	3 28
8	23 32	2.03	1 17	0.65	0.00	0.02	23.13	1 15	22	1996.0	0.0	69.00	3.20
12	25.32	2.05	1.17	0.67	0.29	0.02	21.44	0.73	37	1994 5	0.0	61 11	2.03
16	23.76	3 76	1.50	0.61	2 41	0.10	20.40	2 50	5.6	1992.6	0.0	67 53	2.0 <i>5</i> 8.10
20	23.42	214	1.45	0.51	0.60	0.09	20.14	0.84	7.6	1990 7	0.0	59 74	2 41
20	22.32	2.14	1.00	0.50	0.57	0.09	19.84	0.04	99	1988 4	0.0	60 44	2.41
28	23.41	2.02	2 04	0.55	0.70	0.02	20.67	0.00	12.2	1986.0	0.6	53 97	2.40
32	23.00	1 70	1 97	0.65	0.70	0.12	20.07	0.73	15.5	1982.8	0.0	47 51	1.60
36	22.00	2 44	1.57	0.65	0.52	0.11	19.81	0.75	18.1	1980.2	0.0	47.00	2.25
40	22.00	2.44	1.91	0.04	0.00	0.10	22.01	0.95	21.3	1977 0	0.7	38.25	1 38
40	27.65	2.51	1.52	0.50	0.30	0.00	20.17	0.75	21.5	1973.4	0.7	38.08	1.50
48	22.00	2.75	1.52	0.05	0.02	0.10	10.17	0.71	24.0 29.0	1969.2	0.7	35 30	1.75
52	19 64	1 75	1.02	0.55	0.02	0.10	19.29	0.00	34.6	1963.6	0.0	32.20	1.20
56	18 30	2 22	2 34	0.35	0.12	0.10	16.11	0.57	40.4	1957.8	1.0	30.07	1.20
60	17 54	2.22	2.54 2.46	0.37	0.22	0.00	15 58	0.50	53.4	1944 9	13	23 50	1.17
64	15 29	1.92	2.40	0.47	0.22	0.10	13.50	0.55	63.3	1035.0	1.5	18.96	1.05
68	14.29	1.92	3 30	0.50	0.33	0.12	12.54	0.75	77.0	1021 3	$\frac{1.7}{24}$	14 13	1.20
73	10.00	2/0	1 28	0.34	0.27	0.14	7.60	0.37	00.2	1008 1	2.7	15/3	1.50
76	10.00	2.77	4.20	0.34	1.06	0.15	6.62	1.15	100.2	1880.7	13	10.93	2.06
20	7 20	2.05	ч .ээ 6 34	0.41	0.45	0.17	1 28	0.55	109.1	1850 5	10.5	7 16	2.00
00 Q/	3.50	2.70	2.29	0.50	0.45	0.17	4.20	0.55	14/./	1000.0	10.5	1.10	1.70
04	5.50	1.74	2.20	0.14	0.50	0.00	1.01	0.55					

APPENDIX J

RADIOMETRIC DATA LAKE EUSTIS HISTORIC CORES

Radiometric data for 8 historic cores collected during Phase I and Phase II, Lake Eustis. See Appendix A for collection date, location and description of cores.

CODES:

Depth is depth (cm) Total ²¹⁰Pb is activity (dpm g⁻¹) ²²⁶Ra is activity (dpm g⁻¹) ¹³⁷Cs is activity (dpm g⁻¹) ²¹⁰Pb error is error in Total ²¹⁰Pb activity (dpm g⁻¹) ²²⁶Ra error is error in ²²⁶Ra activity (dpm g⁻¹) ¹³⁷Cs error is error in ¹³⁷Cs activity (dpm g⁻¹) Excess ²¹⁰Pb is activity (dpm g⁻¹) Excess ²¹⁰Pb error is error in ²¹⁰Pb activity (dpm g⁻¹) Age is age in years at relative to bottom of each section Date is calendar year at each depth Age error is error in age in years MSR is mass sedimentation rate (mg cm⁻² g⁻¹)

	Total			Pb-210	Ra-226	Cs-137	Excess	Ex Pb-210	Age at		age	Mass	MSR
Depth	Pb-210) Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LE-1	1H-95												
2	15.68	1.62	1.65	0.88	0.54	0.15	14.39	1.05	0.6	1994.8	0.7	42.0	3.2
4	21.71	1.62	2.79	1.56	0.73	0.31	20.54	1.75	1.5	1993.9	0.7	28.7	2.5
6	21.32	1.62	2.26	1.30	0.52	0.24	20.16	1.43	2.6	1992.8	0.7	28.4	2.1
8	19.3	1.62	2.13	1.13	0.46	0.21	18.05	1.24	3.8	1991.7	0.7	30.6	2.2
10	22.88	1.62	2.85	1.37	0.49	0.27	21.74	1.49	5.4	1990.1	0.7	24.4	1.8
12	20.5	1.62	2.87	1.04	0.40	0.21	19.28	1.14	7.1	1988.4	0.8	26.1	1.6
14	24.03	1.62	2.79	1.12	0.33	0.21	22.92	1.19	9.1	1986.3	0.8	20.7	1.2
16	26.68	1.62	2.76	1.48	0.51	0.26	25.59	1.60	12.3	1983.2	0.8	17.1	1.2
18	23.46	1.62	3.02	1.04	0.34	0.21	22.35	1.12	15.7	1979.7	0.8	17.7	1.0
20	24.33	1.62	2.95	1.50	0.38	0.29	23.20	1.58	20.1	1975.3	0.9	15.1	1.2
22	23.83	1.62	3.27	0.91	0.26	0.19	22.73	0.97	24.4	1971.0	0.9	13.4	0.7
24	21.33	1.62	4.28	0.96	0.25	0.23	20.14	1.01	30.2	1965.2	1.0	13.0	0.8
26	15.95	1.62	5.63	0.79	0.26	0.26	14.67	0.85	35.3	1960.2	1.1	15.0	1.0
28	15.76	1.62	5.44	0.73	0.22	0.23	14.44	0.78	40.4	1955.0	1.2	13.0	0.9
30	14.77	1.62	5.92	0.78	0.29	0.27	13.46	0.85	46.7	1948.7	1.4	11.7	0.9
32	12.6	1.62	3.06	0.84	0.47	0.25	11.22	1.51	54.6	1940.8	1.2	11.3	1.8
34	10.43	1.62	1.92	0.61	0.25	0.14	9.02	0.67	62.7	1932.8	1.4	10.9	1.0
36	8.027	1.62	1.65	0.45	0.20	0.10	6.55	0.51	71.5	1924.0	1.6	11.6	1.1
38	6.618	1.62	1.75	0.26	0.15	0.07	5.12	0.31	79.2	1916.2	1.9	11.4	1.0
40	7.565	1.62	1.64	0.54	0.25	0.13	6.08	0.60	91.9	1903.5	2.3	7.0	1.0
42	6.724	1.62	1.37	0.35	0.19	0.08	5.23	0.41	108.9	1886.5	3.3	5.2	0.7
44	3.732	1.62	0.93	0.27	0.14	0.05	2.16	0.31	121.3	1874.1	4.4	7.9	1.7
46	4.072	1.62	0.86	0.28	0.19	0.06	2.51	0.34	139.3	1856.1	6.9	4.3	1.1
48	4.643	1.62	0.46	0.45	0.25	0.07	3.09	0.52	208.5	1787.0	42.7	1.1	0.7
50	1.949	1.62	0.20	0.21	0.20	0.03	0.34	0.30					
52	3.861	1.62	0.84	0.37	0.26	0.08	0.00	0.26					
54	1.532	1.62	0.86	0.18	0.20	0.06	0.00	0.20					
56	2.022	1.62	0.86	0.27	0.24	0.08	0.00	0.24					

	Total			Pb-210	Ra-226	Cs-137	Excess I	Ex Pb-210) Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	e error
LE-1	3H-95												
2	20.47	2.43	2.26	1.21	0.25	0.15	18.15	1.25	0.6	1994.8	0.5	85.2	6.0
4	20.74	2.43	1.60	1.52	0.54	0.23	18.50	1.63	1.3	1994.2	0.5	82.0	7.3
6	19.36	2.43	3.23	1.45	0.55	0.31	17.11	1.56	1.8	1993.6	0.5	87.0	8.1
8	20.71	2.43	2.13	0.94	0.21	0.13	18.41	0.97	2.7	1992.7	0.5	79.1	4.3
10	20.21	2.43	2.42	1.69	0.52	0.28	17.90	1.78	3.4	1992.0	0.5	79.3	8.0
12	17.72	2.43	2.33	0.84	0.26	0.16	15.45	0.89	4.1	1991.3	0.5	89.9	5.4
14	21.09	2.43	2.85	0.61	0.17	0.12	18.79	0.64	5.2	1990.2	0.5	71.9	2.6
16	21.77	2.43	2.70	0.58	0.16	0.10	19.49	0.60	6.5	1989.0	0.5	66.8	2.3
18	19.42	2.43	2.45	0.82	0.19	0.16	17.12	0.85	8.0	1987.4	0.5	72.8	3.8
20	19.21	2.43	2.80	0.52	0.14	0.10	16.91	0.54	9.6	1985.9	0.6	70.3	2.5
22	19.23	2.43	2.76	0.55	0.16	0.11	16.93	0.58	11.4	1984.0	0.6	66.6	2.5
24	18.3	2.43	3.17	0.53	0.13	0.11	16.00	0.55	13.3	1982.2	0.6	66.5	2.5
26	17.51	2.43	3.54	0.51	0.13	0.11	15.20	0.54	14.9	1980.5	0.6	66.3	2.6
28	16.64	2.43	4.07	0.53	0.15	0.13	14.33	0.55	16.6	1978.8	0.6	66.8	2.9
30	14.63	2.43	4.55	0.78	0.22	0.23	12.31	0.81	18.1	1977.4	0.6	74.0	5.2
32	14.75	2.43	6.16	0.63	0.15	0.20	12.43	0.65	19.6	1975.8	0.6	69.9	3.9
34	11.77	2.43	7.08	0.72	0.25	0.28	9.43	0.76	20.9	1974.5	0.7	88.1	7.5
36	10.81	2.43	7.68	0.80	0.16	0.35	8.45	0.82	22.2	1973.2	0.7	94.4	9.5
38	12.19	2.43	7.02	0.57	0.20	0.21	9.85	0.61	24.1	1971.4	0.7	77.2	5.1
40	12.44	2.43	6.81	1.21	0.14	0.49	10.04	1.22	26.1	1969.4	0.7	71.3	9.0
42	12.69	2.43	6.39	0.78	0.19	0.29	10.36	0.81	28.0	1967.5	0.7	65.0	5.4
44	11.57	2.43	4.65	0.75	0.24	0.25	9.23	0.79	29.6	1965.8	0.7	69.1	6.2
46	8.524	2.43	3.84	0.42	0.13	0.12	6.15	0.44	30.8	1964.6	0.7	99.1	7.5
48	10.22	2.43	3.95	0.62	0.16	0.20	7.87	0.65	32.7	1962.7	0.7	73.8	6.4
50	12.5	2.43	4.35	0.52	0.18	0.15	10.17	0.55	35.1	1960.3	0.8	53.5	3.2
52	14.72	2.43	4.33	0.92	0.23	0.26	12.41	0.95	38.0	1957.5	0.8	40.4	3.4
54	11.32	2.43	3.30	0.71	0.21	0.20	8.97	0.75	40.1	1955.3	0.8	51.7	4.6
56	9.855	2.43	2.92	0.73	0.26	0.20	7.49	0.78	42.1	1953.4	0.8	58.0	6.4
58	10.03	2.43	2.69	0.68	0.17	0.18	7.67	0.71	44.4	1951.0	0.8	53.0	5.2
60	10.9	2.43	2.47	0.42	0.13	0.09	8.55	0.45	47.2	1948.2	0.9	43.9	2.6
62	10.2	2.43	1.95	0.51	0.16	0.11	7.84	0.54	49.8	1945.7	0.9	44.1	3.4
64	9.885	2.43	2.46	0.50	0.14	0.12	7.52	0.53	52.7	1942.7	1.0	42.1	3.3
66	7.643	2.43	2.09	0.42	0.14	0.10	5.26	0.44	55.5	1940.0	1.1	55.1	5.1
68	9.383	2.43	2.34	0.44	0.16	0.11	7.02	0.47	59.3	1936.1	1.1	37.3	2.9
70	8.53	2.43	1.61	0.86	0.44	0.22	6.12	0.97	63.2	1932.2	1.1	37.9	6.5
72	7.678	2.43	1.98	0.44	0.15	0.10	5.30	0.47	66.5	1928.9	1.2	39.1	3.9
74	8.021	2.43	1.85	0.44	0.17	0.10	5.65	0.48	70.0	1925.4	1.2	33.0	3.2
76	7.05	2.43	1.42	0.57	0.18	0.13	4.67	0.60	73.9	1921.5	1.3	35.6	5.1
78	7.542	2.43	1.75	0.43	0.13	0.10	5.17	0.45	77.7	1917.7	1.4	28.6	2.9
80	6.289	2.43	2.00	0.38	0.14	0.10	3.90	0.41	81.9	1913.5	1.5	33.4	4.0
82	8.204	2.43	2.26	0.65	0.23	0.17	5.84	0.69	88.1	1907.3	1.6	19.0	2.6
84	10.73	2.43	1.69	0.68	0.22	0.14	8.39	0.72	100.8	1894.7	1.9	9.9	12
86	7.053	2.43	1.68	0.40	0.13	0.09	4.67	0.42	110.3	1885.1	2.4	12.5	1.6
88	7.387	2.43	1.20	0.35	0.13	0.06	5.27	0.40	126.4	1869.0	3.6	7.5	1.0
90	7,491	2.43	0.92	0.32	0.13	0.05	5.38	0.37	164.2	1831.2	10.4	3.3	0.7
92	4.031	2.43	0.54	0.37	0.14	0.06	1.62	0.40	206.1	1789.4	31.8	3.2	24
94	3	2.43	1.68	0.40	0.40	0.40	0.61	0.58		~ ~ ~ • •	0	~	
96	2.109	2.43	0.35	0.22	0.09	0.03	0.00	0.09					
100	2.697	2.43	0.46	0.26	0.14	0.04	0.00	0.14					
102	2.359	2.43	0.24	0.17	0.08	0.02	0.00	0.08					
104	2.238	2.43	0.20	0.20	0.09	0.02	0.00	0.09					

	Total			Pb-210	Ra-226	Cs-137	Excess I	Ex Pb-210) Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	e error
LE-1	6H-95	1.0	0.54		0.00	0.00	14.40	1 10		1001 0	1.0	10.5	• •
2	17.87	1.8	2.54	1.11	0.29	0.22	16.43	1.18	4.1	1991.3	1.2	19.7	1.6
4	20.04	1.8	2.90	1.44	0.35	0.26	24.70	1.51	10.1	1985.3	1.2	11.2	0.8
0	18.03	1.8	1.93	1.12	0.17	0.19	10.00	1.15	14.8	1980.0	1.5	14.1	1.1
8 10	18.80	1.8	2.20	1.02	0.30	0.19	17.43	1.08	22.9	1972.5	1.5	11.0	0.9
10	17.03	1.8	2.02	0.80	0.20	0.10	13.38	0.91	32.1	1962.7	1.7	9.3	0.8
12	13.38	1.8	1.80	0.60	0.29	0.17	12.03	0.93	42.2	1955.2	2.0	8.9	0.9
14	9.390	1.8	1.14	0.01	0.18	0.11	1.90	0.05	52.2	1945.2	2.5	10.0	1.2
10	8.233	1.8	1.01	0.00	0.23	0.10	0.37	0.03	05.0	1931.9	5.1 27	0./ 1/0	1.5
18	4.032	1.8	0.80	0.55	0.13	0.00	2.90	0.38	/0.1	1923.4	5.1	14.9 5 0	2.0
20	0.722	1.0	0.62	0.37	0.20	0.09	2.05	0.01	09.1 100 7	1900.4	ו.כ דד	2.0 0 0	1.5
22	3.992	1.0	0.09	0.30	0.14	0.00	2.24	0.41	100.7	1020 1	1.1	0.0	2.4
24	4.069	1.0	0.65	0.34	0.11	0.00	2.54	0.30	127.5	1000.1	10.4	4.4	1.0
20	2.320	1.0	0.33	0.32	0.13	0.00	0.54	0.30	159.5	1020.2	26.5	10.1 6 A	10.1
20	2.290	1.0	0.40	0.34	0.15	0.07	0.31	0.37	101.5	1034.2	54.0	0.4 7 0	0.0
20	2.041	1.0	0.42	0.29	0.11	0.04	0.23	0.31	1//.4	1010.1	54.0	1.2	15.7
52 24	2.120	1.0	0.01	0.32	0.09	0.00	0.33	0.54					
26	1.000	1.0	0.04	0.31	0.17	0.07	0.00	0.17					
20	1.907	1.0	0.01	0.34	0.10	0.07	0.00	0.10					
30	2.437	1.0	0.47	0.50	0.14	0.05	0.00	0.14					
LE-2	8H-96												
2	18.135	1.457	1.96	0.66	0.30	0.09	16.80	0.73	0.8	1995.3	0.5	30.6	1.4
4	20.030	1.457	2.02	1.18	0.53	0.16	18.71	1.29	1.7	1994.5	0.5	26.8	1.9
6	19.056	1.457	2.21	1.26	0.47	0.17	17.73	1.34	2.9	1993.3	0.5	27.4	2.1
8	18.304	1.457	1.96	0.60	0.27	0.08	16.97	0.66	4.0	1992.2	0.5	27.6	1.1
10	19.466	1.457	2.30	0.81	0.45	0.12	18.15	0.93	5.2	1991.0	0.5	24.9	1.3
12	17.846	1.457	2.18	0.88	0.41	0.12	16.52	0.97	6.4	1989.7	0.5	26.4	1.6
14	19.930	1.457	2.22	0.53	0.23	0.06	18.62	0.58	8.7	1987.5	0.6	22.1	0.7
16	18.876	1.457	2.32	0.48	0.21	0.07	17.54	0.53	10.9	1985.2	0.6	21.9	0.7
18	19.473	1.457	2.47	0.51	0.24	0.06	18.16	0.56	13.5	1982.6	0.6	19.6	0.7
20	19.652	1.457	2.76	0.76	0.20	0.08	18.34	0.79	16.3	1979.8	0.6	17.9	0.8
22	17.538	1.457	2.55	0.54	0.21	0.08	16.21	0.58	19.8	1976.4	0.7	18.4	0.7
24	18.845	1.457	2.33	0.65	0.57	0.10	17.53	0.87	23.0	1973.1	0.7	15.3	0.8
26	15.984	1.457	2.56	0.54	0.16	0.03	14.73	0.56	27.0	1969.1	0.8	16.3	0.7
28	14.511	1.457	2.61	0.62	0.34	0.11	13.16	0.71	30.7	1965.4	0.8	16.1	0.9
30	12.386	1.457	2.28	0.46	0.23	0.07	11.02	0.51	33.9	1962.3	0.8	17.3	0.9
32	10.801	1.457	1.94	0.30	0.17	0.05	9.42	0.35	37.0	1959.1	0.9	18.3	0.8
34	10.986	1.457	1.84	0.37	0.36	0.04	9.61	0.52	40.7	1955.4	1.0	16.2	0.9
36	7.967	1.457	1.76	0.40	0.08	0.05	6.57	0.41	43.7	1952.4	1.0	21.3	1.4
38	9.834	1.457	1.74	0.33	0.30	0.05	8.45	0.45	47.6	1948.5	1.1	14.9	0.9
40	9.549	1.457	1.81	0.34	0.18	0.04	8.17	0.39	52.8	1943.4	1.3	13.4	0.8
42	8.401	1.457	1.46	0.59	0.27	0.09	7.01	0.65	57.5	1938.6	1.4	13.4	1.3
44	10.243	1.457	1.76	0.54	0.29	0.09	8.87	0.61	65.7	1930.5	1.7	8.7	0.7
46	7.960	1.457	1.64	0.45	0.41	0.06	6.57	0.60	72.6	1923.6	2.0	9.2	0.9
48	6.885	1.457	1.51	0.36	0.22	0.06	5.47	0.42	80.8	1915.4	2.4	8.8	0.8
50	6.524	1.457	1.45	0.39	0.24	0.04	5.14	0.46	91.6	1904.6	3.1	7.0	0.8
52	6.059	1.457	1.21	0.39	0.11	0.07	4.67	0.41	108.1	1888.1	4.9	5.0	0.7
54	4.874	1.457	1.22	0.46	0.22	0.06	3.47	0.51	128.8	1867.4	8.2	3.8	0.9
56	4.91	1.457	0.90	0.41	0.10	0.06	3.51	0.43					
58	1.664	1.457	0.37	0.30	0.06	0.04	0.00	0.30					

J-3

	Total			Pb-210	Ra-226	Cs-137	Excess E	Ex Pb-210	0 Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	e error
-													
LE-29	9H-96				o 10								
2	16.76	1.51	3.00	1.21	0.48	0.18	15.30	1.30	1.5	1994.7	1.0	19.4	1.7
4	19.61	1.51	2.76	1.19	0.41	0.17	18.15	1.26	3.9	1992.3	1.0	15.4	1.2
6	18.71	1.51	2.26	1.06	0.33	0.14	17.25	1.11	7.2	1988.9	1.1	14.8	1.1
8	20.54	1.51	1.89	1.20	0.38	0.19	19.09	1.26	11.4	1984.7	1.1	11.9	0.9
10	17.75	1.51	2.32	1.06	0.30	0.15	16.29	1.10	16.5	1979.7	1.2	12.1	1.0
12	17.23	1.51	2.98	0.94	0.28	0.15	15.77	0.98	22.6	1973.6	1.3	10.5	0.8
14	15.12	1.51	3.09	0.88	0.30	0.10	13.66	0.94	31.3	1964.9	1.4	9.6	0.8
16	11.38	1.51	4.66	0.97	0.36	0.16	9.90	1.04	36.3	1959.9	1.5	10.7	1.3
18	12.26	1.51	4.09	1.04	0.24	0.13	10.79	1.07	43.3	1952.8	1.6	8.1	1.0
20	10.28	1.51	4.17	0.71	0.29	0.13	8.80	0.77	50.5	1945.7	1.8	8.0	0.9
22	10.32	1.51	4.41	0.52	0.21	0.11	8.85	0.56	60.2	1935.9	2.2	6.1	0.6
24	8.976	1.51	4.27	0.62	0.26	0.12	7.50	0.68	72.9	1923.3	2.9	5.1	0.7
26	6.451	1.51	2.57 ·	0.44	0.17	0.08	4.96	0.47	96.9	1899.3	4.8	4.4	0.8
28	4.342	1.51	2.48	0.33	0.15	0.06	2.84	0.36	123.6	1872.5	9.6	3.5	1.0
30	3.25	1.51	1.34	0.35	0.16	0.06	1.75	0.38					
32	1.431	1.51	1.06	0.36	0.16	0.06	0.00	0.16					
34	1.56	1.51	0.89	0.29	0.13	0.04	0.00	0.13					
LE-31	H-98	0.51	2 20	0.50	0.76	0.10	20.12	0.02	1.0	1007 1	0.5	51 60	2 41
4	22.33	2.51	2.29	0.52	0.70	0.10	20.12	0.93	1.2	1997.1	0.5	57.41	2.41
8	19.02	1.//	2.41	0.54	0.39	0.11	17.32	0.07	2.0	1995.4	0.5	59.41	2.27
12	17.93	1.89	2.64	0.44	0.38	0.10	10.10	0.58	4./	1993.5	0.0	28.42	2.17
16	21.53	1.70	2.58	0.43	0.22	0.09	19.85	0.49	1.8	1990.5	0.0	43.83	1.10
20	20.60	2.66	3.31	0.51	0.69	0.12	18.02	0.80	10.8	1987.4	0.6	43.93	2.10
24	14.58	1.67	3.28	0.44	0.27	0.12	12.97	0.51	13.3	1984.9	0.6	50.01	2.30
28	12.53	2.43	4.57	0.40	0.79	0.14	10.15	0.89	15.5	1982.7	0.6	00.52	5.70
32	10.56	1.76	4.33	0.34	0.31	0.13	8.84	0.46	17.8	1980.4	0.6	/1.15	3.11
36	11.30	1.91	2.98	0.37	0.12	0.11	9.44	0.39	20.5	1977.8	0.7	61.75	2.63
40	9.91	1.93	1.31	0.35	0.17	0.08	8.02	0.39	23.1	1975.1	0.7	66.89	3.35
44	9.27	1.20	1.06	0.34	0.52	0.07	8.17	0.63	26.3	1972.0	0.7	60.03	4.56
48	9.75	1.19	0.94	0.38	0.34	0.07	8.66	0.52	29.6	1968.6	0.7	51.19	3.05
52	7.07	1.21	1.06	0.30	0.18	0.07	5.93	0.35	32.0	1966.2	0.7	68.28	4.11
56	6.19	1.02	1.08	0.27	0.62	0.07	5.23	0.68	34.1	1964.2	0.7	72.27	9.29
60	8.62	1.39	1.06	0.22	0.10	0.05	7.32	0.24	38.7	1959.6	0.8	46.61	1.74
64	8.29	1.64	0.76	0.33	0.34	0.06	6.73	0.48	42.8	1955.4	0.8	44.19	3.12
68	8.06	1.62	0.76	0.33	0.18	0.06	6.52	0.39	47.7	1950.5	0.9	39.64	2.38
72	5.48	0.96	0.84	0.19	0.24	0.04	4.58	0.31	51.4	1946.8	0.9	49.29	3.39
76	4.85	1.36	0.67	0.18	0.03	0.04	3.54	0.18	54.4	1943.9	1.0	57.58	3.25
80	5.32	1.24	0.61	0.19	0.16	0.04	4.13	0.25	58.5	1939.7	1.1	44.14	2.85
84	6.48	1.29	0.48	0.28	0.16	0.05	5.26	0.33	65.0	1933.3	1.2	29.42	1.94
88	4.81	1.02	0.58	0.23	0.17	0.05	3.84	0.29	70.3	1928.0	1.3	33.56	2.65
92	4.87	1.19	0.48	0.13	0.09	0.03	3.73	0.16	76.0	1922.3	1.6	29.10	1.73
96	4.59	1.63	0.41	0.17	0.40	0.03	3.00	0.44	82.1	1916.2	1.6	30.13	4.28
100	4.30	1.34	0.35	0.16	0.13	0.03	3.01	0.21	89.3	1909.0	1.9	24.44	2.02
104	4.39	1.12	0.23	0.19	0.09	0.03	3.32	0.22	99.2	1899.0	2.4	17.00	1.48
108	2.68	0.92	0.20	0.13	0.11	0.02	1.78	0.17	107.9	1890.4	3.0	23.69	2.86
112	2.83	0.88	0.13	0.13	0.39	0.02	1.97	0.41	120.7	1877.6	3.0	15.35	3.14
116	2.55	1.02	0.19	0.13	0.25	0.02	1.56	0.29	136.9	1861.4	3.1	12.45	2.32
120	1.92	0.83	0.26	0.11	0.07	0.02	1.10	0.14	152.0	1846.2	4.4	10.77	1.68
124	2.64	1.07	0.14	0.13	0.10	0.02	1.60	0.17	207.0	1791.3	18.7	2.78	0.79
128	1.63	1.11	0.17	0.10	0.29	0.02	0.53	0.31					

	Total			Pb-210	Ra-226	Cs-137	Excess	Ex Pb-210	Age at		age	Mass	MSR
Depth	Pb-210	Ra-226	Cs-137	Error	error	error	Pb-210	error	bottom	Date	error	Sed Rate	error
LE-27	7H-98												
4	23.77	2.40	3.06	0.47	0.41	0.10	21.49	0.63	4.1	1994.1	1.1	20.17	0.73
8	22.25	2.26	3.15	0.50	0.34	0.11	20.09	0.61	10.1	1988.2	1.2	18.45	0.71
12	35.97	6.16	4.08	0.67	1.08	0.13	29.99	1.28	25.9	1972.3	1.4	8.88	0.44
16	20.60	5.12	3.86	0.49	1.01	0.13	15.58	1.13	40.7	1957.6	1.6	10.60	0.79
20	17.09	2.31	2.44	0.44	0.71	0.10	14.87	0.84	67.2	1931.1	2.4	5.96	0.45
24	10.21	2.32	1.54	0.30	0.33	0.07	7.93	0.45	115.9	1882.3	8.3	3.70	0.52
28	3.95	1.98	0.87	0.18	0.39	0.05	1.98	0.43	203.5	1794.8	75.8	2.16	1.62
32	2.01	1.84	0.55	0.12	0.36	0.03	0.16	0.38					
LE-13	3Pb-97												
2	13.89	1.94	2.16	0.47	0.22	0.11	12.05	0.53	1.9	1996.0	0.8	20.17	0.92
4	14.92	1.87	2.31	0.54	0.33	0.12	13.15	0.64	4.5	1993.4	0.8	17.22	0.86
6	14.37	2.05	2.17	0.49	0.56	0.11	12.42	0.75	6.9	1991.0	0.8	16.87	1.03
8	17.03	1.73	2.31	0.43	0.39	0.09	15.41	0.59	11.2	1986.7	0.9	12.27	0.51
10	14.49	1.89	1.90	0.36	0.42	0.08	12.70	0.56	14.9	1983.0	0.9	13.15	0.62
12	18.09	1.35	1.94	0.57	0.39	0.11	16.88	0.69	21.5	1976.4	1.0	8.43	0.38
14	15.87	1.85	1.78	0.43	0.18	0.09	14.14	0.47	30.1	1967.8	1.2	7.95	0.34
16	12.06	1.64	1.73	0.33	0.10	0.07	10.51	0.35	40.9	1957.0	1.6	7.92	0.39
18	7.97	1.96	1.23	0.28	0.37	0.07	6.07	0.47	52.4	1945.5	1.9	9.70	0.82
20	8.21	1.55	0.96	0.35	0.35	0.07	6.72	0.50	70.0	1927.9	2.7	5.61	0.52
22	7.13	1.96	1.11	0.27	0.10	0.06	5.22	0.29	93.5	1904.4	5.1	3.84	0.46
24	4.89	1.56	0.73	0.20	0.50	0.05	3.36	0.55	139.3	1858.6	13.3	2.16	0.66
26	2.35	1.63	0.52	0.10	0.50	0.03	0.73	0.52	161.6	1836.3	13.8	3.22	2.42
28	1.69	1.46	0.44	0.11	0.06	0.03	0.23	0.13	173.4	1824.5	18.2	6.03	4.16
30	1.58	1.25	0.33	0.11	0.14	0.03	0.33	0.18	254.5	1743.4	108.8	1.23	1.92
32	1.06	1.03	0.18	0.07	0.08	0.02	0.03	0.11					

APPENDIX K

DIATOM COUNTS LAKE DORA HISTORIC CORES LD-3H-95 AND LD-10H-95

Microfossil data for diatoms from 2 historic cores collected during Phase I, Lake Dora. See Appendix B for collection date, location and description of cores.

Appendix K. Diatom Counts: Lake Dora Historic cores, LD-3H-95 and LD-10H-95.

Acronym	Taxonomic name					
AMPCOF	Amphora coffeiformis (Ag.) Kutz.					
AULAAM	Aulacoseira ambigua (Gr.) Sim.					
AULAITAL	Aulacoseira italica (Ehr.) Sim.					
CYCSTEL	Cyclotella stelligera (Cl. & Gr.)					
NAVCENT	Navicula spp. central areas					
NAVBAC	Navicula bacillum Ehr.					
NAVGOT	Navicula gottlandica Gr.					
NAVOBL	Navicula oblonga (Kutz) Kutz.					
NAVPURE	Navicula pupula var. rectangularis (Greg.) Gr.					
NAVRA	Navicula radiosa Kutz.					
NAVRAPA	Navicula radiosa var. parva Wallace					
NEIIRAMH	Neidium iridis var. amphigomphus (Ehr.) Mai.					
NITZAM	Nitzschia amphibia Gr.					
PINCENT	<i>Pinnularia</i> spp. central areas					
PINVIRMI	Pinnularia viridis var. minor Cl.					
PSSTBREV	Pseudostaurosira brevistriata (Gr.)W&R					
STAUPHGR	Stauroneis phoenocenteron var. gracilis					
STASCON	Staurosira construens Ehr.					
STASCONP	Staurosira construens var. pumila (Gr.)W&R					
STASCONV	Staurosira construens var. venter (Gr.)W&R					
SSRLPIN	Staurosirella pinnata (Ehr.) W&R					

Key to Diatom Taxa in Appendices K and L.

Appendix K.	Diatom	Counts: L	ake Dora	Historic	Cores]	LD-3H-95	and LD-	10H-95
-ppononi in	D 1000111	004		11000110	\sim			1011 /0.

Depth (cm)	AULA AM	AULA ITAL	CYCS STEL	NAV BAC	NAV CENT	AMP COF	NAV OBL	NAV PURE
0-2	31.262	2.136	0.971	0.000	0.000	0.000	0.000	0.000
6-8	36.170	0.967	2.708	0.000	0.000	0.000	0.000	0.000
10-12	23.503	1.347	0.449	0.000	0.000	0.000	0.000	0.449
16-18	12.928	0.951	2.662	0.000	0.000	0.000	0.000	0.000
22-24	2.982	2.187	0.000	0.000	0.000	0.000	0.000	0.000
28-30	6.420	0.778	0.000	0.000	0.000	0.000	0.000	0.000
34-36	2.376	0.792	0.396	0.000	0.000	0.000	0.000	0.000
40-42	6.496	1.575	0.197	0.000	0.000	0.000	0.000	0.000
46-48	4.724	1.181	0.197	0.000	0.000	0.000	0.197	0.197
56-58	7.313	8.410	0.000	0.000	0.000	0.000	0.000	0.183
62-64	19.094	10.827	2.756	0.197	0.000	0.000	0.197	0.197
70-72	13.663	7.723	7.327	0.000	0.000	0.000	0.792	1.386
82-84	8.124	3.482	12.379	0.774	0.000	0.000	1.161	2.515
96-98	1.972	1.183	10.848	2.170	3.353	0.000	5.917	6.509
110-112	4.200	3.400	10.000	1.000	3.600	0.000	3.000	6.000

Percentages of diatoms with >3% abundance in Lake Dora core LD-3H-95.

Lake Dora core LD-3H-95 cont'd.

Depth (cm)	NAV RA	NAV RAPA	NEI IRAMH	NITZ AM	PIN CENT	PIN VIRMI	PSST BREV	SSRL PIN
0.2	0.071	1 851	0.000	1 553	0.000	0.000	30.874	6 408
68	1 35/	4.854	0.000	2 515	0.000	0.000	30.874	0.408
10 12	0.200	0.907	0.000	2.515	0.000	0.000	<i>AA</i> 162	8 837
16-12	0.299	0.299	0.000	1 001	0.000	0.000	54 943	8 935
10-10 22-24	0.000	0.570	0.000	1 988	0.000	0.000	66 402	12 724
22-24	0.000	0.778	0.000	3 1 1 3	0.000	0.000	59 922	13 230
20-30	0.000	0.770	0.000	0 594	0.000	0.000	64 554	22 970
40-42	0.000	0.000	0.000	0.000	0.000	0.000	71 063	10 039
46-48	0.000	0.000	0.197	0.000	0.000	0.000	65 748	16 732
56-58	0.000	0.197	0.127	1 007	0.000	0.000	25 / 11	36.015
62-64	0.000	0.000	0.000	2 362	0.000	0.000	17 717	9 252
70-72	0.000	6 1 3 0	1 188	3 168	0.000	1 584	18 812	3 762
82-84	5 600	5 996	1 354	1 034	0.000	0 774	17 705	6 3 8 3
06-08	6312	18 738	3 3 5 3	0.086	0.000	2 761	8 / 8 1	3 550
110-112	3 000	12 400	3,200	0.200	3 800	3 200	12,000	5 600

Depth (cm)	AULA GR	AULA GRAN	STAS CONV	STAU PHGR	CYC MEN	MAST SMLA	NITZ PAL	PIN SP
0-2	0.388	2.136	10.097	0.000	0.971	0.000	3.495	0.000
6-8	0.387	1.934	5.029	0.000	2.708	0.000	0.193	0.000
10-12	0.299	2.695	8.832	0.000	2.844	0.150	0.000	0.000
16-18	0.190	1.141	11.407	0.000	2.662	0.000	0.000	0.000
22-24	0.000	0.398	9.145	0.000	1.988	0.000	0.000	0.000
28-30	0.000	1.167	8.949	0.000	2.529	0.000	0.778	0.000
34-36	0.396	1.188	1.386	0.000	1.188	0.000	0.594	0.198
40-42	2.165	2.756	1.181	0.000	2.756	0.000	0.591	0.000
46-48	0.000	2.756	0.984	0.000	3.543	0.000	0.394	0.197
56-58	1.463	9.324	4.936	0.000	1.828	0.366	0.366	0.000
62-64	3.346	6.693	2.559	0.394	5.512	3.543	0.787	0.000
70-72	0.198	1.980	5.545	0.792	2.772	8.713	0.396	0.198
82-84	1.741	3.095	3.482	0.774	1.161	3.095	0.000	0.000
96-98	0.000	0.592	0.592	1.972	1.775	3.156	0.000	0.000
110-112	0.600	2.000	1.800	2.600	2.200	0.800	1.000	0.000

Lake Dora core LD-3H-95 cont'd.

Depth (cm)	AULA AM	AULA ITAL	CYCS STEL	NAV BAC	NAV CENT	AMP COF	NAV OBL	NAV PURE
6-8 14-16 22-24 28-30 36-38 40-42 46-48 52-54 56-58 62-64 68-70	34.709 21.663 20.656 10.465 14.230 10.092 15.686 3.755 13.396 31.538 22.837	3.940 8.511 6.950 5.426 2.144 3.119 3.529 3.557 7.170 8.269 4.671	2.814 3.675 2.896 0.194 0.780 1.101 0.392 0.198 0.000 0.000 3.460	$\begin{array}{c} 0.000\\ 0.193\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.196\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.692\\ 0.692\\ \end{array}$	0.000 0.000 0.386 0.000 0.000 0.183 0.000 0.198 0.000 0.000 0.346	$\begin{array}{c} 0.000\\ 0.$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.588\\ 0.000\\ 0.755\\ 1.346\\ 4.498\\ 7.100\end{array}$	0.375 0.387 0.000 0.000 0.000 0.183 0.392 0.198 0.755 0.577 3.114
74-76 88-90 102-104	8.755 2.462 0.769	4.280 1.326 0.385	2.335 6.250 6.923	0.778 2.462 3.462	1.556 0.947 0.385	0.000 4.167 0.000	7.198 18.750 18.462	12.500 17.692

Percentages of diatoms with >3% abundance in Lake Dora core LD-10H-95.

Lake Dora core LD-10H-95 cont'd.

Depth (cm)	NAV RA	NAV RAPA	NEI IRAMH	NITZ AM	PIN CENT	PIN VIRMI	PSST BREV	SSRL PIN
6-8	1.126	5.441	0.000	2.251	0.188	0.000	27.392	5.816
14-16	0.193	0.580	0.000	2.321	0.000	0.000	41.586	4.255
22-24	0.000	0.386	0.193	3.668	0.386	0.000	41.506	6.950
28-30	0.000	0.581	0.000	4.651	0.000	0.194	56.202	7.364
36-38	0.195	0.390	0.000	6.238	0.000	0.585	57.310	3.119
40-42	0.550	0.550	0.000	3.486	0.183	0.000	62.936	9.725
46-48	0.196	1.176	0.392	1.176	0.196	0.196	52.941	12.157
52-54	0.000	0.000	0.000	1.186	0.198	0.198	52.964	26.087
56-58	0.189	0.377	0.377	1.509	0.000	0.189	40.000	19.434
62-64	0.000	0.577	0.192	0.962	0.000	0.000	21.538	15.385
68-70	12.111	2.076	1.730	1.730	0.000	1.211	14.360	4.325
74-76	0.584	3.891	6.226	1.751	0.000	3.891	25.681	6.031
88-90	5.114	5.303	7.765	0.758	0.000	4.924	4.735	0.568
102-104	2.308	5.192	7.692	0.577	0.000	3.654	0.962	0.962

Depth (cm)	AULA GR	AULA GRAN	STAS CONV	STAU PHGR	CYC MEN	MAST SMLA	NITZ PAL	PIN SP
6.9	0.000	1 2 1 2	6 370	0.000	2 9 1 4	0 562	2 1 8 0	0.000
0-0 14_16	0.000	0.580	10.058	0.000	2.014	0.303	0 103	0.000
22-24	0.175	1 931	10.030	0.000	0 579	0.000	0.175	0.000
28-30	0.388	0.581	9.496	0.000	2.326	0.194	0.000	0.000
36-38	0.585	0.390	9.747	0.195	2.339	0.000	0.000	0.000
40-42	0.183	0.734	3.486	0.000	0.550	0.000	0.000	0.000
46-48	0.000	0.784	3.333	0.196	3.333	0.392	0.392	0.000
52-52	0.395	0.791	4.743	0.198	0.395	0.000	1.581	0.000
56-58	0.943	3.396	1.887	0.189	3.774	0.566	1.132	0.000
62-64	0.385	3.654	1.731	0.577	1.923	1.538	3.654	0.000
68-70	0.173	1.384	1.903	0.346	1.730	5.190	0.000	0.000
74-76	0.195	0.973	1.167	3.891	2.335	2.724	0.389	0.000
88-90	0.000	0.000	0.568	5.303	0.758	3.220	0.189	0.758
102-104	0.192	0.000	0.000	2.885	2.308	5.000	0.000	4.231

Lake Dora core LD-10H-95 cont'd.

APPENDIX L

DIATOM COUNTS LAKE EUSTIS HISTORIC CORES LE-13H-95 AND LE-28H-96

Microfossil data for diatoms from 2 historic cores collected during Phase I, Lake Eustis. See Appendix D for collection date, location and description of cores.

Appendix L. Diatom Counts: Lake Eustis Historic Cores LE-13H-95 and LE-28H-96.

Depth (cm)	AULA AM	AULA ITAL	CYCS STEL	NAV BAC	NAV CENT	NAV GOT	NAV OBL	NAV PURE	NAV RA	NAV RAPA
0-2	63 790	1.876	10.882	0.000	0.000	0.938	0.000	0.375	1.876	1.126
8-10	67.525	0.990	6.931	0.000	0.000	0.198	0.198	0.000	3.168	0.594
16-18	56.977	5.233	6.202	0.000	0.194	1.163	0.000	0.194	3.101	2.132
24-26	51.389	2.579	3.968	0.000	1.190	1.190	0.000	0.595	3.968	0.397
34-36	41.815	2.170	3.748	0.000	0.197	1.578	0.000	0.394	4.734	1.381
42-44	38.009	4.676	7.541	0.000	0.302	0.754	0.000	0.302	7.240	2.112
48-50	34.556	3.282	6.950	0.193	1.351	2.317	0.000	0.579	11.969	1.931
54-56	28.571	1.957	10.176	0.000	1.174	1.174	0.000	0.978	8.806	5.675
62-66	35.452	2.174	5.184	0.000	0.334	3.010	0.000	1.003	8.696	2.341
68-70	35.171	1.521	4.563	0.000	0.951	2.281	0.570	1.901	14.639	2.471
74-76	26.693	3.386	8.566	0.000	0.000	4.183	0.797	1.594	17.331	2.789
80-82	26.357	3.488	9.109	0.194	0.581	2.907	0.775	1.357	14.147	3.488
88-90	17.822	3.366	8.911	0.396	1.188	2.574	2.376	1.782	12.673	5.149
96-98	26.044	1.590	4.374	0.000	0.795	2.386	2.982	3.976	13.718	5.169
114-16	5 17.357	2.367	3.748	3.156	4.142	2.367	2.170	8.679	12.426	5.523

Percentages of diatoms with >3% abundance in Lake Eustis core LE-13H-95.

Lake Eustis core LE-13H-95 cont'd.

Depth	NEI	NITZ	PIN	PIN	PSST	SSRL	STAS	STAS	STAS	STAU
(cm)	IRAMH	AM	CENT	VIRMI	BREV	PIN	CON	CONP	CONV	PHGR
0-2 8-10 16-18 24-26 34-36 42-44 48-50 54-56 62-66 68-70 74-76 80-82 88-90 96-98	0.188 0.396 0.388 0.397 0.394 0.302 0.000 0.196 0.167 0.380 0.199 0.969 1.584 1.392	2.627 2.574 1.744 1.786 2.170 3.771 4.440 3.523 4.682 5.703 3.187 5.814 7.921 2.187	0.750 0.000 0.000 0.197 0.452 0.193 0.783 4.013 0.190 2.191 0.581 0.396 2.386	0.563 0.594 0.194 0.397 0.000 0.302 0.193 0.391 1.003 0.951 0.199 0.969 2.574 2.386	2.064 2.970 4.264 15.278 19.132 9.351 7.722 8.806 6.187 1.901 3.187 3.488 1.188 0.596	0.000 0.990 1.163 3.968 13.018 6.637 4.054 5.479 3.846 3.802 1.793 0.969 1.188 0.000	1.501 1.584 2.907 0.397 3.156 3.469 5.598 6.458 6.020 7.034 7.570 8.333 7.327 12.525 6.500	0.000 0.000 0.000 0.000 0.000 0.000 0.587 0.334 1.901 0.398 0.194 1.782 0.199	3.189 3.366 4.845 4.960 1.183 3.167 3.282 3.523 3.177 1.711 2.590 1.357 0.990 0.000	0.938 0.792 0.969 0.397 0.197 0.603 0.772 0.391 3.679 1.901 1.394 1.357 3.366 2.783

Percentages of diatoms with >3% abundance in Lake Eustis core LE-28H-96.

Depth AUL	A AULA	A CYCS	NAV	NAV	NAV	NAV	NAV	NAV	NAV
(cm) AM	ITAL	STEL	BAC	CENT	GOT	OBL	PURE	RA	RAPA
0-2 72.44 6-8 84.80 12-14 64.99 18-20 43.39 24-26 58.97 30-32 59.92 37-38 46.05 46-48 41.24 54-56 38.41 62-64 19.68 70-72 21.56 78-80 21.58 86-88 17.78 94-96 21.98	7 0.385 08 2.692 01 1.975 03 3.156 04 1.775 05 2.554 07 3.047 05 2.724 07 4.826 05 0.000 04 0.198 07 1.186 00 0.990 05 2.178	5 7.129 3.462 5 6.822 5 8.087 5 2.761 4.322 7 4.122 4.864 5 4.247 6.958 0 10.000 8 6.139 5 11.067 7.921 8 11.089	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.197\\ 0.196\\ 0.538\\ 0.389\\ 0.193\\ 2.386\\ 1.961\\ 3.366\\ 3.557\\ 4.356\\ 3.762\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.584\\ 0.386\\ 0.000\\ 1.176\\ 0.990\\ 0.791\\ 2.178\\ 1.782\end{array}$	0.771 0.385 0.359 0.592 0.789 0.589 4.122 2.918 3.089 3.976 4.118 2.970 2.964 3.564 3.366	0.193 0.192 0.180 0.197 0.000 0.589 1.254 2.918 3.668 5.368 8.627 7.525 5.929 8.515 6 139	0.578 0.000 0.718 1.381 1.572 0.896 2.918 4.440 7.555 7.647 6.535 7.312 7.921	2.119 0.962 2.513 7.101 5.128 4.126 10.394 12.840 7.722 21.074 17.843 17.030 19.763 10.891	1.734 0.192 1.436 2.564 3.156 3.536 2.688 3.113 6.371 3.380 8.627 8.713 9.091 11.287 10.693

Lake Dora core LE-28H-96 cont'd.

Depth	NEI	NITZ	PIN	PIN	PSST	SSRL	STAS	STAS	STAS	STAU
(cm)	IRAMH	AM	CENT	VIRMI	BREV	PIN	CON	CONP	CONV	PHGR
0-2 6-8 12-14 18-20 24-26 30-32 37-38 46-48 54-56 62-64 70-72 78-80 86-88 94-96	0.385 0.000 0.718 0.394 1.381 1.572 2.509 1.167 3.089 1.590 2.549 3.564 2.767 2.772	2.312 0.577 1.436 2.761 1.578 2.161 1.971 2.918 3.668 2.584 0.588 1.584 1.383 0.990	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.965 0.994 1.176 0.198 0.000 0.396	0.000 0.192 0.180 0.000 0.986 0.196 0.717 0.584 2.510 1.988 1.961 0.990 1.779 1.188 2.168	$\begin{array}{c} 2.505\\ 0.577\\ 2.873\\ 10.059\\ 5.917\\ 6.287\\ 5.197\\ 2.918\\ 1.351\\ 0.994\\ 0.196\\ 0.000\\ 0$	0.000 0.385 1.795 2.170 0.986 0.786 2.151 0.973 0.193 0.000 0.000 0.000 0.593 0.000	0.771 0.192 1.077 2.959 2.170 1.179 2.688 2.724 2.124 1.789 0.980 1.584 2.372 0.198 2.574	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.572\\ 0.000\\ 0.778\\ 0.000\\ 0.398\\ 0.000\\ 0.198\\ 0.198\\ 0.000\\ 4.752\end{array}$	1.541 1.346 5.386 3.550 5.523 2.947 1.434 5.058 0.579 0.398 0.000 0.594 0.593 0.594 0.594	0.193 0.192 1.077 0.789 1.183 1.572 2.509 0.973 2.703 5.567 4.902 3.762 3.953 4.752 2.574

APPENDIX M

RESULTS OF CLUSTER ANALYSES LAKE DORA SURVEY CORES, PHASE I AND LAKE EUSTIS SURVEY CORES, PHASE II

CODES ARE LISTED FOR EACH APPENDIX TABLE.

Cluster means and standard deviations (S. D.) for Phase I survey cores, Lake Dora. Clusters were identified initially by k-means cluster analysis and then the stratigraphic breaks were adjusted in some cores by visual inspection. Cluster 1 represents sediment samples from core depths above the first stratigraphic break in each core, Cluster 2 represents the sediment samples from core depths above the second stratigraphic break in each core, and Cluster 3 represents the remaining samples. See text for additional explanation. TP is total phosphorus concentration in mg/g, TC/TN is the total carbon/ total nitrogen ratio, rho is dry density in grams dry/ g wet sediment, and n is the number of samples in each cluster.

	Cluster 1		Clust	ter 2	Cluster 3		
	Mean	S. D.	Mean	S. D.	Mean	S. D.	
ТР	2.08	0.63	0.87	0.44	0.25	0.13	
TC/TN	9.22	0.54	10.92	1.14	12.77	1.34	
Ash	0.29	0.07	0.5	0.09	0.38	0.07	
n	74	n. a.	97	n. a.	149	n. a.	

Cluster means and standard deviations (S. D.) for Phase II survey cores, Lake Eustis. Clusters were identified initially by k-means cluster analysis and then the stratigraphic breaks were adjusted in some cores by visual inspection. Cluster 1 represents sediment samples from core depths above the stratigraphic break in each core, and Cluster 2 represents the remaining samples. See text for additional explanation. TP is total phosphorus concentration in mg/g, TC/TN is the total carbon/ total nitrogen ratio, rho is dry density in grams dry/ g wet sediment, and n is the number of samples in each cluster.

	Clus	ster 1	Clus	ter 2	
	Mean	S. D.	Mean	S.D.	
TP	1.09	0.53	0.31	0.21	
TC/TN	10.2	1.55	12.66	1.48	
Rho	0.03	0.01	0.06	0.03	
n	158	n. a.	530	n. a.	