Special Publication SJ99-SP7

## Nassau River Basin Comprehensive Floodplain Management Study

Submitted to:

U.S. Army Corps of Engineers Jacksonville District Jacksonville, Florida

## NASSAU RIVER COMPREHENSIVE FLOODPLAIN MANAGEMENT STUDY

**Prepared for:** 

U.S. Army Corps of Engineers Jacksonville District Jacksonville, Florida

**Prepared By:** 

**Ayres Associates** 

January 1999

## **TABLE OF CONTENTS**

| <u>Section</u> | on Page                                          |
|----------------|--------------------------------------------------|
| EXEC           | UTIVE SUMMARY 1                                  |
| 1.0            | OBJECTIVES                                       |
|                |                                                  |
| 2.0            | STUDY AREA DESCRIPTION                           |
|                | 2.1 Topography                                   |
|                | 2.2 Soils                                        |
|                | 2.3 Land Use                                     |
|                | 2.4 Climate                                      |
| 3.0            | DATA RECONNAISSANCE                              |
|                | 3.1 Topographic Maps 10                          |
| . · ·          | 3.2 Climate 12                                   |
|                | 3.2.1 Rainfall                                   |
|                | 3.2.2 Synthetic Storms                           |
|                | 3.3 Geographic Information Systems (GIS) Data 17 |
|                | 3.3.1 Solis                                      |
|                | 3.3.2 Lattu Use                                  |
|                | 3.4 Water Quantity Data 18                       |
|                | 3.4.1 Stream Flow 18                             |
|                | 3.4.2 Ocean Stage 18                             |
| 4              | 3.5 Hvdraulic Data                               |
|                |                                                  |
| 4.0            | WATERSHED SIMULATION                             |
|                | 4.1 Data                                         |
|                | 4.1.1 Meterological                              |
|                | 4.1.2 Hydrological Data                          |
|                | 4.1.3 Watershed Data                             |
|                | 4.1.4 Synthetic Rainfall                         |
|                | 4.2 Water Quality Wodeling                       |
|                | 4.2.1 Model Calibration 42                       |
|                | 4.2.2 Nodel Calibration 43                       |
|                |                                                  |
| 5.0            | SUMMARY AND CONCLUSIONS                          |
| 6.0            | REFERENCES                                       |
|                |                                                  |

## FIGURES

- 2.1 Nassau River Basin Location Map
- 2.2 Nassau River Basin
- 3.1 Nassau River Basin USGS Quadrangle Maps
- 3.2 Nassau River Basin Rain Gages
- 3.3 10-Year 24-Hour Maximum Rainfall for Northeast Florida
- 3.4 25-Year 24-Hour Maximum Rainfall for Northeast Florida
- 3.5 100-Year 24-Hour Maximum Rainfall for Northeast Florida
- 3.6 Nassau River Basin Stream Gages
- 3.7 Nassau River Basin Cross-Section Locations
- 4.1 Jacksonville Airport Total Daily Rainfall (1992/1996)
- 4.2 Fernandina Beach Total Daily Rainfall (1992/1996)
- 4.3 Nassau River Basin Delineation
- 4.4 Nassau River Basin Hydrologic Basins I & II
- 4.5 Nassau River Basin Hydrologic Basin I Rainfall Mass Curves (west of I-95)
- 4.6 Nassau River Basin Hydrologic Basin II Rainfall Mass Curves (east of I-95)
- 4.7 Nassau River Basin UNET / HEC-RAS Reach Schematic
- 4.8 October 1996 Calibration Rainfall and Discharges
- 4.9 April 1996 Calibration Rainfall and Discharges
- 4.10 October 1992 Calibration Rainfall and Discharges
- 4.11 Alligator Creek Gage Observed Peaks versus UNET Results
- 4.12 Observed, HEC-HMS, and UNET Calibration Hydrographs for Alligator Creek
- 4.13 4.22 Nassau River Basin Flood Profiles (10 Total)

## TABLES

- 2.1 Nassau River Basin Characteristics
- 2.2 Nassau River Basin Hydrologic Soil Groups
- 2.3 Nassau River Basin Land Uses
- 3.1 Nassau River Basin USGS Quadrangle Maps
- 3.2 Nassau River Basin Rain Gages
- 3.3 Nassau River Basin USGS Stream Flow Gages
- 3.4 Nassau River Basin NOAA Tide Gages
- 4.1 Nassau River Basin Existing FLUCCS Land Uses
- 4.2 Nassau River Basin Aggregated Land Uses
- 4.3 Nassau River Basin Soils and Hydrologic Soil Groupings
- 4.4 Typical Curve Number Matrix
- 4.5 . Nassau River Basin Curve Numbers for AMC-1, AMC-2, and AMC-3
- 4.6 Nassau River Rainfall Distributions (west of I-95)
- 4.7 Nassau River Rainfall Distributions (east of I-95)
- 4.8 Manning's n Values
- 4.9 Summary of HEC-RAS Discharges and Water Surface Elevations



## PLATES

- 1. Nassau River Basin Land Uses
- 2. Nassau River Basin Soils Groups
- 3. Nassau River Basin Composite Curve Numbers
- 4. Nassau River Basin Flood Delineations

### **EXECUTIVE SUMMARY**

The Nassau River Basin drains approximately 418 square miles of northeast Florida. The basin includes four principal tributaries; Thomas, Alligator, Boggy, and Lofton creeks, which ultimately discharge into the Atlantic Ocean.

This report describes the data reconnaissance, model development, model calibration, and results of the hydrologic and hydraulic simulations of the Nassau River Basin using models maintained and distributed by the U.S. Army Corps of Engineers Hydraulic Engineering Center. These models include: 1) the Hydrologic Modeling System (HEC-HMS) for hydrologic simulation, 2) One-Dimensional Unsteady Flow Through a Full Network of Open Channels (UNET) for routing and tidal hydraulics and, 3) the Riverine Analysis System (HEC-RAS) for hydraulic simulation.

HEC-HMS replaces the HEC-1 hydrologic model. HEC-HMS accepts rainfall hyetographs and calculates rainfall excess. It employs several methods for calculating rainfall losses, performing runoff transformations, and basin routing. UNET is capable of routing the flows generated by HEC-HMS and accounting for storage and attenuation as the flood flows move down the channel. Although project hydraulics could have been modeled by UNET alone, HEC-RAS is better suited for floodplain management. HEC-RAS uses steady state conditions and is more easily modified to account for improvements or encroachments into the floodplain.

saharan Russian (Dragging, Crist Loates) -

subha shi Tarki shiƙasi sant

the state of the state of the state of the

and the company of the former of the second

The model study included a reconnaissance task where data from various agencies were researched and gathered for model development and calibration. The data collected were sufficient to develop flood profiles accurate to approximately one foot. Further model refinements can be made through collection of additional data; especially survey, rainfall, and stream gaging.

The model developed for the Nassau River Basin includes simulation of 87 sub-basins, 22 aggregate land uses, and 14 reaches based on 63 channel and bridge opening cross-sections. Flows were calibrated for volume and peak discharge at two hydrologic model locations and for stage at one routing and hydraulic model location.

Model results were examined and compared with other estimates. Given the limited calibration data, the models prepared for the Nassau River Basin produce reasonable results and are suitable for the simulation of basin improvements and floodplain encroachments.

Service of each of each of the service of the service

## **1.0 OBJECTIVES**

The work completed for the Nassau River Basin Comprehensive Floodplain Management Study consisted of the development of hydrologic and hydraulic models for the 418 square mile basin located in Northeast Florida. The models compute discharges and water surface profiles for various locations within the Nassau River Basin. Simulated discharges were used to determine the 10-, 25-, and 100-year 24-hour flood profiles in the primary waterways. The models constitute the basic framework for development of this floodplain analysis and can be utilized for determining tailwater conditions for future development within the basin. The existing models can also be used for predicting future impacts to the watershed associated with land use changes.

## 2.0 STUDY AREA DESCRIPTION

The Nassau River Basin is located in the northeast part of Florida (see Figure 2.1). The Basin is approximately 418 square miles in size and ultimately discharges to the Atlantic Ocean to the east. The basin (see Figure 2.2) drains much of Nassau County and a portion of Duval County to the south. The main drainage features include the Nassau River, along with associated tidal estuary, four principal tributaries and numerous lesser tributaries. Larger communities within the Basin include Callahan, Hilliard, Yulee, and Fernandina Beach. These communities came into existence primarily due to railroads, lumbering, and navigation on the Nassau River in the early to mid 1800's.

The principal tributaries are Thomas Creek, Alligator Creek, Boggy Creek and Lofton Creek. Table 2.1 summarizes information regarding the Nassau River and it's tributaries. Thomas Creek provides drainage for the southwest portion of the Nassau River Basin. After crossing US 301 and US 1, Thomas Creek continues northeast to its confluence with the Nassau River just west of I-95. Thomas Creek is the largest of all the Nassau River tributaries.

Drainage for the west-central portion of the watershed is provided by Alligator Creek, which begins in the northwest part of the Nassau River Basin, flows southeast and then crosses US 1 on the north side of Callahan. Alligator Creek continues east approximately 9.5 miles to its confluence with the Nassau River. The downstream portion of Alligator Creek is also identified as Mills Creek on topographic maps. To avoid confusion with Boggy Creek, which is alternately identified as its major tributary Mills Creek, the Alligator/Mills Creek system will be simply identified hereafter as Alligator Creek.

Boggy Creek begins as Mills Creek and drains the northwest portion of the Nassau River Basin. Mills Creek flows mostly eastward and crosses US 1 several miles north of Callahan. Mills Creek then continues in a southeast direction, picking up several tributaries before becoming known as Boggy Creek upstream of its confluence with Alligator Creek forming the Nassau River.

Lofton Creek along with Plummer Creek drain the north-central portion of the Basin. Both Creeks flow south and discharge under tidal influence directly into the Nassau River. Tidal waterways drain the eastern portion of the Nassau River Basin. Larger tidal waterways include: Pumpkin Hill Creek, Edwards Creek, another Alligator Creek and the South Amelia River, through which the Intracoastal Waterway is maintained.





|                 |               |           |                       | <b>A</b> 14 H  |
|-----------------|---------------|-----------|-----------------------|----------------|
| Waterway        | Drainage Area | S1        | Principal Tributaries | Outfall        |
|                 | (mi²)         | Channel   |                       |                |
|                 |               | Slope     |                       |                |
|                 |               | (ft/mile) |                       |                |
| Nassau River    | 418           | 0.6       | Thomas Creek          | Atlantic Ocean |
|                 |               |           | Alligator Creek       |                |
|                 |               |           | Boggy Creek           |                |
|                 |               |           | Lofton Creek          |                |
|                 |               |           | Plummer Creek         |                |
|                 |               |           | Pumpkin Hill Creek    |                |
|                 |               |           | South Amelia River    |                |
|                 |               |           | Edwards Creek         |                |
|                 |               |           | Tidal Alligator Creek |                |
| Thomas Creek    | 103           | 2.9       | Ben Branch            | Nassau River   |
|                 |               |           | Seaton Creek          |                |
| Boggy Creek     | 72            | 3.8       | Mills Creek           | Nassau River   |
|                 |               |           | Little Boggy Creek    |                |
|                 |               |           | Spell Swamp           |                |
|                 |               |           | Tom Mann Swamp        |                |
| Alligator Creek | 64            | 5.0       | Little Mills Creek    | Nassau River   |
|                 |               |           | Cushing Creek         |                |
| Lofton Creek    | 57            | 1.3       | McQueen Swamp         | Nassau River   |
| Plummer Creek   | 24            | 2.0       | Plummer Swamp         | Nassau River   |

## Table 2.1 Nassau River Basin Characteristics

## 2.1 Topography

Geomorphic features within the Nassau River are characterized by low lying coastal plains and tidal marshes to the east, and forested wetlands and uplands to the west and north. Average sub-basin slopes range from more than 1 percent in the western portion of the watershed to less than 0.1 percent for sub-basins located in the eastern portion of the basin. Surface elevations generally range from 35 to 80 feet NGVD within the westernmost sub-basins and 3 to 25 feet NGVD for eastern sub-basins near the Atlantic Ocean.

## 2.2 Soils

Soils within the Nassau River Basin were identified by the U.S. Natural Resource Conservation Service (NRCS) in the Nassau and Duval County soil surveys. Eighty-three (83) individual soil types were found within the Nassau River Basin. Each soil type has been assigned to one of the four hydrologic soil groups (HSG) based on infiltration and runoff potential. Table 2.2 presents the acreages and percentages of the HSGs within the basin. Many soils have been assigned a dual hydrologic soil grouping (e.g. A/D or B/D), representing a drained and undrained condition. The drained condition generally represents runoff improvements to the basin due to development or agricultural improvements. The Nassau River basin is predominantly unimproved, therefore, a HSG of "D" has been assigned to soils with the dual HSG. Consequently, approximately 86 percent of Basin soils are considered poorly drained. HSGs "A", "B" and "C" make up less than 10 percent of the basin.

| HSG            | Area (Ac.) | Percent of<br>Total % |
|----------------|------------|-----------------------|
| Α              | 9,653      | 3.572                 |
| В              | 217        | 0.080                 |
| С              | 7,621      | 2.820                 |
| D              | 125,034    | 46.261                |
| A/D            | 225        | 0.083                 |
| B/D            | 113,451    | 41.976                |
| Urban          | 461        | 0.171                 |
| Excavated Pits | 7          | 0.003                 |
| Water          | 13,589     | 5.028                 |
| Unknown        | 18         | 0.007                 |
| Total          | 270,278    | 100.00                |

#### Table 2.2 Nassau River Basin Hydrologic Soil Groups

#### 2.3 Land Use

The land uses of the Nassau River Basin were identified by the Florida Department of Natural Resources. Eighty-one (81) individual Florida Land Use Classification Code Schemes (FLUCCS) were identified within the Nassau River Basin. The Nassau River Basin is predominantly undeveloped. Water and wetland areas accounted for approximately 38 percent of total basin area. Tree plantations were the next largest land use with over 36 percent of total basin area (see Table 2.3). Residential, commercial, and industrial uses occupy less than 8 percent of the total.

|    | Land Use Description                         | Area    | Percent of     |
|----|----------------------------------------------|---------|----------------|
| #  |                                              | (ac.)   | Total Area (%) |
| 1  | Low Density Residential                      | 12,452  | 4.61           |
| 2  | Medium Density Residential                   | 7,085   | 2.62           |
| 3  | High Density Residential                     | 347     | 0.13           |
| 4  | Commercial                                   | 336     | 0.12           |
| 5  | Industrial                                   | 164     | 0.06           |
| 6  | Extractive                                   | 59      | 0.02           |
| 7  | Institutional                                | 123     | 0.05           |
| 8  | Recreational                                 | 953     | 0.35           |
| 9  | Open Land                                    | 950     | 0.35           |
| 10 | Agricultural                                 | 13,829  | 5.12           |
| 11 | Rangeland                                    | 6,240   | 2.31           |
| 12 | Hardwood Forest                              | 10,933  | 4.05           |
| 13 | Coniferous Forest                            | 14,901  | 5.51           |
| 14 | Tree Plantation                              | 98,707  | 36.52          |
| 15 | Water                                        | 12,451  | 4.61           |
| 16 | Hardwood Forested Wetland                    | 22,294  | 8.25           |
| 17 | Coniferous Forested Wetland                  | 1,449   | 0.54           |
| 18 | Mixed Forested Wetland                       | 28,442  | 10.52          |
| 19 | Non-Forested Wetland                         | 34,053  | 12.60          |
| 20 | Non-Vegetated Wetland                        | 1,284   | 0.48           |
| 21 | Barren Land                                  | 520     | 0.19           |
| 22 | Transportation, Communication, and Utilities | 2,706   | 1.00           |
|    | Total                                        | 270,278 | 100.0          |

## Table 2.3 Nassau River Basin Land Uses

### 2.4 Climate

The climate of the Nassau River Basin is classified as humid subtropical, with an average summer maximum temperature of 90 degrees Fahrenheit. In the winter, the Nassau River Basin experiences below freezing temperatures an average of 3 to 10 times per year starting as early as November 1 and ending as late as March 31. The last severe freeze in Florida was during December 22 - 25, 1989, where temperatures in Jacksonville were reported in the low teens.

Average annual rainfall for the basin is approximately 52 inches with the wettest month of the year generally being in July. The maximum rainfall in 24 hours was 22 inches

recorded in November of 1969 near Fernandina Beach. Since as far back as 1886, Hurricane Dora (Sept. 1964) has been the only hurricane to come near the Nassau River Basin. Hurricane Dora was rated as a 2 on the Saffir/Simpson Scale, which equates to wind speeds of 96 - 110 mph. The Florida Panhandle experiences the greatest number of hurricanes, with over 21 during this same time period. Pan evaporation is estimated at 54 inches annually (Henry et al., 1994). Over 65 percent of the annual rainfall occurs between June and October when convective activity, caused by density differences within the atmosphere, generates showers and thunderstorms often described as a "downpour". Of the most important factors associated with convective rain in Florida is the "sea breeze"; characterized by the warming and cooling of the land and sea, resulting in convective currents. Extensive data reconnaissance was required to define the physical features within the basin for the hydrologic and hydraulic simulation of the Nassau River Basin. The required data included topography, stream cross-sections, roadway crossings (bridge and culvert data), sub-basin area, land use, soils, etc. In addition, hydrologic and meteorological data are required to define input and calibrate the hydrologic and hydraulic models. The data was found through researching numerous sources and interviewing personnel at the St. Johns River Water Management District, U.S. Army Corps of Engineers - Jacksonville District, U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), Florida Department of Transportation (FDOT), and other local governmental agencies. The data are described in the following subsections.

### 3.1 Topographic Maps

Topographic maps were used to delineate sub-basins within the watershed and to determine specific parameters in the hydrologic model (e.g. basin lag times, area, etc.). The Nassau River Basin covers, in whole or in part, fifteen 7.5 minute - 1:24,000 scale USGS quadrangle topographic maps. These maps are listed in Table 3.1 and Figure 3.1 illustrates the extents of their coverage of the Nassau River Basin.

| Quadrangle Name  | Contour Interval | Date Last Revised or<br>Photo-inspected |
|------------------|------------------|-----------------------------------------|
| Amelia City      | 5 ft             | 1988                                    |
| Bryceville       | 5 ft             | 1976                                    |
| Callahan         | 5 ft             | 1983                                    |
| Dinsmore         | 5 ft             | 1983                                    |
| Eastport         | 1.5 m            | 1992                                    |
| Fernandina Beach | 1.5 m            | 1992                                    |
| Gross            | 1.5 m            | 1979                                    |
| Hedges           | 5 ft             | 1988                                    |
| Hilliard         | 5 ft             | 1970                                    |
| Hilliard NE      | 5 ft             | 1983                                    |
| Hilliard SW      | 5 ft             | 1984                                    |
| Italia           | 5 ft             | 1988                                    |
| Mayport          | 10 ft            | 1982                                    |
| St. Mary's       | 5 ft             | 1993                                    |
| Trout River      | 1.5 m            | 1992                                    |

Table 3.1 Nassau River Basin USGS Quadrangle Maps



## 3.2 Climate

## 3.2.1 Rainfall

In order to simulate the hydrology of the basin, rainfall data at short time intervals are necessary to reproduce the dynamics of changing rainfall intensity, soil infiltration, and runoff rates. Daily rainfall information was available from rainfall gage stations at Jacksonville International Airport, Fernandina Beach, and Hilliard. Hourly rainfall data was available for only the Jacksonville International Airport station. Figure 3.2 shows the location of these rainfall gages, and Table 3.2 summarizes their attributes.

| Station I.D. | Location                           | Period of Record  | Data<br>Interval |
|--------------|------------------------------------|-------------------|------------------|
| 4358         | Jacksonville International Airport | 1948-current year | Hourly           |
| 2944         | Fernandina Beach                   | 1948-current year | Daily            |
| 3978         | Hilliard                           | 1948-1956         | Daily            |

## Table 3.2 Nassau River Basin Rain Gages

## 3.2.2 Synthetic Storms

Discharges for a drainage basin are often calculated by rainfall-runoff models using hypothetical or synthetic storm data. Two basic components of a hypothetical storm are the total rainfall amount during the storm event (depth) and the time distribution of rainfall (rainfall distribution). Generalized rainfall distributions, developed by the Natural Resources Conservation Service (NRCS) of the U.S. Department of Agriculture (USDA), have been extensively used throughout the United States.

Generalized distributions, however, lack accuracy because they are based on the rainfall distributions occurring over a large region. Site-specific distributions predict peak discharges more accurately and are therefore more desirable. Procedures for developing site-specific hypothetical storm distributions were described by Rao (1988a). Hypothetical rainfall distributions for the Nassau River Basin were developed by Rao (1991) and incorporated into this study.

Rainfall depths for a particular return period will vary spatially. Rao (1988) studied the variability of the rainfall depths and produced isohyetal maps (lines of equal rainfall) for the SJRWMD. Figures 3.3, 3.4, and 3.5 are the isohyetal maps for the 10-, 25-, and 100-year 24-hour rainfall depths, which were used in this study.







Figure 3.3: 10-Year 24-Hour Maximum Rainfall for Northeast Florida, Inches. Source: Rao 1988a



Figure 3.4: 25-Year 24-Hour Maximum Rainfall for Northeast Florida, Inches. Source: Rao 1988a



Figure 3.5: 100-Year 24-Hour Maximum Rainfall for Northeast Florida, Inches. Source: Rao 1988a

## 3.3 Geographic Information System (GIS) Data

GIS software is capable of quickly querying and manipulating complex digital spatial information such as soils, land use, and related data. Therefore, digital soils, land use, and watershed sub-basin data were obtained from a GIS analysis of the Nassau River Basin.

## 3.3.1 Soils

Soils for the Nassau River Basin were provided in ARC/INFO coverage format by the SJRWMD. These data were digitized from 1:24,000-scale SSURGO data. Soils data for both Nassau and Duval Counties were needed for complete coverage of the study area and are current as of 1996 and 1997, respectively. Soils were coded with a Mapping Unit Identification Code (MUID) that combines a county's FIPS code and a soils identification number. Eighty-three (83) different soils were identified within the Nassau River Basin.

## 3.3.2 Land Use

The SJRWMD provided land-use information for the Nassau River Basin as an ARC/INFO coverage. The land-use data were compiled using the Florida Land Use Cover Classification Scheme (FLUCCS) developed by the Florida Department of Natural Resources. Land-use data for Nassau and Duval Counties were collected from 1:24,000-scale black and white aerial photographs taken in 1989 and 1988, respectively. The data were provided by the SJRWMD in USGS 1:24,000-scale quadrangle format. Eighty-one (81) different FLUCCS land uses were identified within the Nassau River Basin.

## 3.3.3 Sub-basin Boundaries

The Nassau River Basin was delineated into 47 sub-basins by the SJRWMD and provided to the study consultant in the GIS database. These sub-basins were plotted on mylar along with roads, water features, and the surveyed cross section locations. The mylar plots were then used as overlays on USGS 7.5 minute quadrangle sheets to refine the sub-basin delineation. The refinement resulted in a total of 87 sub-basins. The objectives of the refinement were to develop sub-basins that (1) accurately depict the drainage network within the basin, (2) provide additional detail in the area of Callahan, Florida, (3) include in sufficient detail all the upstream and lateral inflow hydrographs to the stormwater routing model (UNET, Barkau 1997), and (4) maintain relatively uniform topographic and land use characteristics. The sub-basin boundaries were digitized and imported into the GIS to determine sub-basin area, land use, and composite curve numbers for the hydrologic model, HEC-HMS.



## 3.4 Water Quantity Data

## 3.4.1 Stream Flow

There are four USGS gaging stations in the Nassau River Basin capable of providing stage/discharge data for model calibrations. Characteristics of the gages are shown in Table 3.3 and their locations are shown by Figure 3.6. Of these gages, two are suitable for hydrologic model (HEC-HMS) calibration and one is suitable for the stormwater routing model (UNET) and hydraulic model (HEC-RAS, HEC 1997) calibration. The Alligator Creek gage at Callahan and the Thomas Creek gage near Crawford each have recorded (hourly) hydrographs available for selected storms occurring in the 1990's. These gages are well suited for hydrologic model calibration with the one drawback that the nearest hourly rainfall gage (at the Jacksonville Airport) is 8 miles from the Thomas Creek gage.

Only the Alligator Creek gage is suitable for the routing and hydraulic model calibration because the Thomas Creek gage is 4 miles upstream of the upstream extent of these models. The Alligator Creek gage provides discharge and stage records which can be used for UNET and HEC-RAS calibration. The remaining USGS stream flow gages only record mean daily discharge for a short gage record and are not useful for the model calibration.

| USGS Gage # | Location                  | Period of Record    | Drainage Area, sq<br>miles | Mean Daily<br>Discharge | Peak Discharge<br>and Stage | Hourty Hydrographs<br>for some events |
|-------------|---------------------------|---------------------|----------------------------|-------------------------|-----------------------------|---------------------------------------|
| 02231268    | Alligator Cr. at Callahan | 1981 - Current Year | 14.0                       | n                       | n                           | n                                     |
| 02231280    | Thomas Creek nr Crawford  | 1965 - Current Year | 29.9                       | n                       | n                           | n                                     |
| 022312672   | Mills Creek nr Italia     | 1986 - 1988         | 56.6                       | n                       |                             |                                       |
| 02231289    | Nassau River nr Hedges    | 1983 - 1989         | 274                        | n                       |                             |                                       |

| Table | 33  | Nassau | River   | Rasin  | USGS | Stream | Flow   | Ganes |
|-------|-----|--------|---------|--------|------|--------|--------|-------|
| Iavic | J.J | nassau | 1/14.01 | Dasili | 0000 | Sucam  | 1 1011 | Jayes |

### 3.4.2 Ocean Stage

Water surface stage at the ocean has no backwater effect on the Alligator Creek gage at Callahan, Florida. A suitable downstream (ocean) stage is, however, needed for the synthetic storm event simulations (10-, 25-, 100-year flood conditions). To determine a downstream water surface stage for the Nassau River Basin, the NOAA Tide Gages at the Nassau River Entrance and at Fernandina Beach were used. NOAA tide gages



relate tide levels to the local Mean Lower Low Water level and some gages include a conversion to NGVD. Two low and two high tides occur daily along the coast of Florida. Mean Lower Low Water is the long-term average of the lower of the two low daily tides and Mean Higher High Water is the long-term average of the higher of the two high daily tides. Because Mean Higher High Water is a frequent yet reasonably high water surface, this level was selected as the downstream water surface for the extreme event modeling.

The Nassau River Entrance gage was active for only 3 months and a conversion to NGVD is not provided for this location. The Fernandina Beach gage on the South Amelia River was active for 18 years and is located approximately 12 miles north of the Nassau River entrance. The data for these tide gages are shown in Table 3.4. The Fernandina Beach gage also includes a conversion to NGVD. Based on this conversion, Mean Tide Level = 0.28 ft NGVD. It was assumed that this conversion can be applied to the Nassau River Entrance gage. Therefore, Mean Higher High Water at Nassau River Entrance can be estimated as 5.68 ft – 2.77 ft + 0.28 ft = 3.19 ft NGVD. This value was used as a constant downstream boundary water surface for the UNET and HEC-RAS modeling.

The fact that the Nassau River entrance gage was only operated for 3 months does not diminish the accuracy of the Mean Higher High Water prediction significantly. This is because temporary gages are related to local long term gages and the predictions are adjusted accordingly.

| NOAA Tide Gage # | Location                    | Period of Record   | Mean Lower<br>Low Water (ft) | Mean Tide<br>Level (ft) | Mean Higher<br>High Water (ft) | Zero NGVD (ft) |
|------------------|-----------------------------|--------------------|------------------------------|-------------------------|--------------------------------|----------------|
| 872 0135         | Nassau River Entrance       | Jun, Sept-Oct 1978 | 0.00                         | 2.77                    | 5.68                           | -              |
| 872 0030         | Fernandina Beach, Amelia R. | 1960 - 1978        | 0.00                         | 3.23                    | 6.60                           | 2.95           |

 Table 3.4 Nassau River Basin NOAA Tide Gages

#### 3.5 Hydraulic Data

The primary hydraulic modeling data are cross sections provided by the U.S. Army Corps of Engineers, Jacksonville District. The locations of the surveyed cross sections are shown in Figure 3.7. These cross sections include channel and floodplain elevations along the Nassau River, Boggy Creek, Thomas Creek, a tributary to Thomas Creek, Alligator Creek, Little Mills Creek, Cushing Creek, and a tributary to Cushing Creek. In addition to these cross sections, the UNET and HEC-RAS models include bridge and culvert geometry and road profiles for road and railroad crossings. The sources of the



structure data include (1) bridge plans obtained from Florida Department of Transportation - District 2, (2) measurements taken during a site visit and (3) information from the USGS 7.5 minute quadrangles. USGS quadrangle maps were used to estimate the bridge length of the railroad bridge on Alligator Creek and to estimate the crest elevations of all railroad embankments and some roads. Because no as-built surveys are available for any of these structures, the bridge and culvert geometry included in the model is considered approximate. Observations and photographs taken during the site visit indicate that channel and floodplain flow resistance (Manning's n) is expected to be relatively high for all the tributary channels upstream of the Nassau River. Vegetation consists of thick stands of shrubs and trees in the floodplains and encroaches into the channels. Due to tidal influence, the Nassau River is a large channel with relatively little vegetation encroachment. The floodplain along the Nassau River consists primarily of a saltwater marsh which appears to be less resistant to flow at flood stages.

### 4.0 WATERSHED SIMULATION

Watershed simulation for the Nassau River Basin was accomplished using several hydrologic and hydraulic models. These included the Hydrologic Modeling System (HEC-HMS, Version 1, HEC 1998) for the hydrologic simulation and HEC-RAS and UNET for the hydraulic simulation. The HEC-HMS software is the replacement software for HEC-1. HEC-RAS (HEC 1997) was used to determine hydraulic profiles in the upper reaches of the Basin, while UNET (Barkau, 1997) was used to simulate the hydrodynamic response of the tidally influenced and main channel area of the Nassau River. The flows and stages were calibrated to several storm events which occurred during 1992 and 1996. The calibrated model was used to predict peak flows and stages for the 10-, 25- and 100-year, 24-hour storm events.

#### 4.1 Data

#### 4.1.1 Meteorological

#### Rainfall

Hourly rainfall data was only found for the gage located at Jacksonville International Airport. Therefore, this gage was used exclusively for generating flows for the calibration events. The gages located at Fernandina Beach and Hilliard only had daily rainfall data. The Fernandina Beach and Jacksonville International Airport gages have been in service since 1948, whereas, the Hilliard gage was only in service from 1948 to 1956. Daily rainfall depths measured by the gages located at the Jacksonville International Airport and at Fernandina Beach were compared (see Figures 4.1 and 4.2). The comparison suggests that there may be substantial variation between rainfall depths at the two locations. For rainfall events greater than 1.5 inches, the measurements typically varied by 75 percent. For larger events with daily rainfalls greater than 3.0 inches, approximately 45 percent variation was indicated. Three rainfall events were chosen for model calibration. These events occurred in April and October of 1996 and during October of 1992. To account for the Antecedent Moisture Condition (AMC) corresponding with the calibration storm events, the SCS curve numbers were adjusted accordingly.







Figure 4.1: Jacksonville Airport Total Daily Rain (1192/1996)





Figure 4.2: Fernandina Beach Total Daily Rain (1992/1996)

#### 4.1.2 Hydrologic Data

Stream stage and discharge data sources included the USGS gages on Thomas Creek near Crawford (1965-1997), Alligator Creek at Callahan (1981-1997), Mills Creek near Italia (1986-1988) and Nassau River near Hedges (1985-1997). The gage data included the historical daily average stages and discharges, peak values, and selected hourly data used for model calibration. In addition, log-Pearson Type III, regression equation, and weighted flood estimates from the USGS Water Resource Investigations 82-4012 for the Thomas Creek gage location were consulted.

Average daily discharge data for the Alligator, Mills, and Thomas Creek gage locations were used to estimate stream base flows. Based on the 60 day minimum flows, a base flow of 0.5 cfs per square mile was used for HEC-HMS modeling.

The Nassau River gage near Hedges was found to be tidally controlled. Thus, it was not suitable for hydrologic calibration of the HEC-HMS model. Also, the gage on Mills Creek was in service for just two water years, in which no extreme events occurred. Finally, provisional gage data for water year 1998 was not included in this study; including two Alligator Creek peak flows in February 1998, which would have been ranked number 2 and 3 if included.

4.1.3 Watershed Data

Sub-basin Delineation

The original 47 sub-basins identified in Planning Unit 1A for the Nassau River Basin were further subdivided, using the USGS quadrangle maps, into a total of 87 sub-basins. Sub-basin boundaries are depicted by Figure 4.3. For a more in-depth discussion on the method and objectives of the refined delineation, see Section 3.3.3.



#### Land Use

Land-use data for the Nassau River Basin were provided by the SJRWMD in USGS 1:24,000-scale quadrangle format (see Section 3.3.2). These files were joined and clipped to the Nassau River Basin boundary to form one seamless land-use coverage for the entire study area. GIS analysis of the land-use coverage indicated 81 existing FLUCCS land uses. These land uses are listed in Table 4.1.

The FLUCCS land uses were later aggregated into 22 aggregate land uses. Table 4.2 lists the aggregate land uses and their source FLUCCS codes. Differences in area between Tables 4.1 and 4.2 are insignificant (0.5% of the Nassau River Basin) and result from inconsistencies in the clipping process. The land-use data were aggregated to simplify the calculation of area-weighted basin and sub-basin composite curve numbers which were used as inputs to the hydrologic model. A map of aggregate land uses within the Nassau River Basin is included as Plate 1.

#### Soils

The soils GIS data for the Nassau River Basin were obtained from the SJRWMD (see Section 3.3.1), joined together, and clipped to form one seamless soils coverage. Several sliver polygons with no associated MUID resulted from this process and were identified. These areas comprise only 0.007% of the Nassau River Basin and are therefore insignificant.

Using ARC/INFO's relational database capabilities, a data file containing soils names and HSGs was joined to the existing soils coverage. In some cases, more than one HSG was assigned to a soil (ex. B-A). In these instances, a more conservative approach was followed and the HSG which yielded the greatest runoff was assigned. Other soils were coded a HSG for improved and unimproved conditions (ex. B/D and A/D). Due to the mostly rural landscape of the Nassau River Basin, these soils were assumed to be unimproved and coded D. All urban soils were assigned a D HSG and water areas were coded W to distinguish them from soil areas. All sliver polygons and excavated pits were coded with a null value because their soil type was unknown. A list of all soils and assigned HSGs is presented in Table 4.3. A map of assigned HSGs within the Nassau River Basin is included as Plate 2.

|        | Hubbuu | River Buoi |                                                             |
|--------|--------|------------|-------------------------------------------------------------|
| FLUCCS | Area   | Percent of | Description                                                 |
|        | (ac.)  | 1 otal (%) |                                                             |
|        | 40.404 | 4 000      | URBAN AND BUILT-UP                                          |
| 1100   | 12,434 | 4.622      | Residential, Low Density - < 2 Dweiling Units per Acre.     |
| 1120   | 19     | 0.007      |                                                             |
| 1200   | 7,085  | 2.634      | Residential, Med. Density - 2 to 5 Dwelling Units per Acre. |
| 1300   | 347    | 0.129      | Residential, High Density                                   |
| 1400   | 316    | 0.117      | Commercial and Services. Condos and Motels Combined.        |
| 1450   | 8      | 0.003      |                                                             |
| 1470   | 5      | 0.002      | Mixed Commercial and Services                               |
| 1480   | 7      | 0.003      | Cemeteries                                                  |
| 1500   | 43     | 0.016      | Industrial                                                  |
| 1520   | 54     | 0.020      | Timber Processing                                           |
| 1550   | 63     | 0.024      | Other Light Industry                                        |
| 1560   | 4      | 0.001      | Other Heavy Industrial                                      |
| 1600   | 8      | 0.003      | Extractive                                                  |
| 1620   | 51     | 0.019      | Sand and Gravel Pits                                        |
| 1700   | 116    | 0.043      | Institutional                                               |
| 1750   | 7      | 0.003      | Governmental                                                |
| 1800   | 51     | 0.019      | Recreational                                                |
| 1810   | 51     | 0.019      | Swimming Beach                                              |
| 1820   | 802    | 0.298      | Golf Course                                                 |
| 1830   | 42     | 0.016      | Race Tracks                                                 |
| 1850   | 6      | 0.002      | Parks and Zoos                                              |
| 1900   | 277    | 0.103      | Open Land                                                   |
| 1920   | 673    | 0.250      | Inactive Land with Street Pattern but Without Structures    |
|        |        |            |                                                             |
|        |        |            | AGRICULTURE                                                 |
| 2100   | 13     | 0.005      | Cropland and Pastureland                                    |
| 2110   | 8,007  | 2.977      | Improved Pastures                                           |
| 2120   | 699    | 0.260      | Unimproved Pastures                                         |
| 2130   | 980    | 0.364      | Woodland Pastures                                           |
| 2140   | 114    | 0.043      | Row Crops                                                   |
| 2150   | 1,729  | 0.643      | Field Crops                                                 |
| 2160   | 9      | 0.003      | Mixed Crops                                                 |
| 2200   | 41     | 0.015      | Tree Crops                                                  |
| 2210   | 98     | 0.037      | Citrus Groves                                               |
| 2300   | 17     | 0.006      | Feeding Operations                                          |
| 2310   | 417    | 0.155      | Cattle Feeding Operations                                   |
| 2320   | 341    | 0.127      | Poultry Feeding Operations                                  |
| 2400   | 1,132  | 0.421      | Nurseries and Vineyards                                     |
| 2410   | 16     | 0.006      | Tree Nurseries                                              |
| 2430   | 3      | 0.001      | Ornamentals                                                 |
| 2510   | 51     | 0.019      | Horse Farms                                                 |
| 2520   | 55     | 0.021      | Dairies                                                     |
| 2600   | 106    | 0.039      | Other Open Lands - Rural                                    |

## Table 4.1 Nassau River Basin Existing FLUCCS Land Uses

|      | RANGELAND |        |                                   |  |  |  |
|------|-----------|--------|-----------------------------------|--|--|--|
| 3100 | 78        | 0.029  | Herbaceous                        |  |  |  |
| 3200 | 2,015     | 0.749  | Shrub and Brushland               |  |  |  |
| 3300 | 4,147     | 1.542  | Mixed Rangeland                   |  |  |  |
|      |           |        |                                   |  |  |  |
|      |           |        | UPLAND FORESTS                    |  |  |  |
| 4110 | 13,945    | 5.184  | Pine Flatwoods                    |  |  |  |
| 4120 | 956       | 0.355  | Longleaf Pine - Xeric Oak         |  |  |  |
| 4200 | 22        | 0.008  | Upland Hardwood Forest            |  |  |  |
| 4300 | 20        | 0.007  | Upland Hardwood Forests Continued |  |  |  |
| 4340 | 10,892    | 4.049  | Hardwood and Conifer              |  |  |  |
| 4400 | 54,701    | 20.336 | Tree Plantations                  |  |  |  |
| 4410 | 81        | 0.030  | Coniferous Pine                   |  |  |  |
| 4430 | 43,925    | 16.330 | Forest Regeneration               |  |  |  |
| 4460 | 1         | 0.000  |                                   |  |  |  |
|      |           |        |                                   |  |  |  |
|      |           |        | WATER                             |  |  |  |
| 5100 | 10,212    | 3.797  | Streams and Waterways             |  |  |  |
| 5200 | 96        | 0.036  | Lakes                             |  |  |  |
| 5300 | 790       | 0.294  | Reservoirs                        |  |  |  |
| 5400 | 47        | 0.018  | Bays and Estuaries                |  |  |  |
| 5510 | 13        | 0.005  |                                   |  |  |  |
|      |           |        |                                   |  |  |  |
|      |           |        | WETLANDS                          |  |  |  |
| 6110 | 382       | 0.142  | Bay Swamps                        |  |  |  |
| 6150 | 21,912    | 8.146  | River/Lake Swamp (Bottomland)     |  |  |  |
| 6200 | 391       | 0.145  | Wetland Coniferous Forest         |  |  |  |
| 6210 | 1,058     | 0.393  | Cypress                           |  |  |  |
| 6300 | 28,437    | 10.572 | Wetland Forested Mixed            |  |  |  |
| 6310 | 1         | 0.000  |                                   |  |  |  |
| 6350 | 3         | 0.001  |                                   |  |  |  |
| 6400 | 3         | 0.001  | Vegetated Non-Forested Wetlands   |  |  |  |
| 6410 | 733       | 0.272  | Freshwater Marshes                |  |  |  |
| 6420 | 27,197    | 10.111 | Saltwater Marshes                 |  |  |  |
| 6430 | 415       | 0.154  | Wet Prairies                      |  |  |  |
| 6440 | 93        | 0.035  | Emergent Aquatic Vegetation       |  |  |  |
| 6460 | 5,613     | 2.087  | Mixed Scrub-Shrub Wetland         |  |  |  |
| 6500 | 1,284     | 0.477  | Non-Vegetated Wetland             |  |  |  |
|      |           |        |                                   |  |  |  |

## Table 4.1 Nassau River Basin Existing FLUCCS Land Uses (con't.)

| BARREN LAND |     |       |                                     |  |  |
|-------------|-----|-------|-------------------------------------|--|--|
| 7100        | 19  | 0.007 | Beaches other than Swimming Beaches |  |  |
| 7200        | 112 | 0.041 | Sand other than Beaches             |  |  |
| 7400        | 281 | 0.105 | Disturbed Land                      |  |  |
| 7430        | 108 | 0.040 | Spoil Areas                         |  |  |

## Table 4.1 Nassau River Basin Existing FLUCCS Land Uses (con't.)

|                                     | TRANSPORTATION, COMMUNICATION, AND UTILITIES |                         |                                     |  |  |  |  |  |
|-------------------------------------|----------------------------------------------|-------------------------|-------------------------------------|--|--|--|--|--|
| 8110                                | 691                                          | 0.257                   | Airports                            |  |  |  |  |  |
| 8120                                | 36                                           | 0.014                   | Railroads                           |  |  |  |  |  |
| 8140 1,198 0.445 Roads and Highways |                                              |                         |                                     |  |  |  |  |  |
| 8200                                | 21                                           | 21 0.008 Communications |                                     |  |  |  |  |  |
| 8320                                | 751                                          | 0.279                   | Electrical Power Transmission Lines |  |  |  |  |  |
| 8330                                | 8                                            | 0.003                   | Water Supply Plants                 |  |  |  |  |  |
|                                     |                                              |                         |                                     |  |  |  |  |  |
|                                     |                                              |                         | TOTALS                              |  |  |  |  |  |
| Total                               | 268,986                                      | 100.000                 |                                     |  |  |  |  |  |

## Table 4.2 Nassau River Basin Aggregated Land Uses

| Aggregate | Source FLUCCS code               | Area    | Percent of | Description                              |
|-----------|----------------------------------|---------|------------|------------------------------------------|
| Land Use  |                                  | (ac.)   | Total (%)  |                                          |
| 1         | 1100, 1120                       | 12,452  | 4.61       | Low Density Residential                  |
| 2         | 1200                             | 7,085   | 2.62       | Medium Density Residential               |
| 3         | 1300                             | 347     | 0.13       | High Density Residential                 |
| 4         | 1400, 1450, 1470-1480            | 336     | 0.12       | Commercial                               |
| 5         | 1500, 1520, 1550-1560            | 164     | 0.06       | Industrial                               |
| 6         | 1600, 1620                       | 59      | 0.02       | Extractive                               |
| 7         | 1700, 1750                       | 123     | 0.05       | Institutional                            |
| 8         | 1800-1830, 1850                  | 953     | 0.35       | Recreational                             |
| 9         | 1900, 1920                       | 950     | 0.35       | Open Land                                |
| 10        | 2100-2160, 2200-2210, 2300-2320, | 13,829  | 5.12       | Agricultural                             |
|           | 2400-2410, 2430, 2510-2520, 2600 |         |            |                                          |
| 11        | 3100-3300                        | 6,240   | 2.31       | Rangeland                                |
| 12        | 4200, 4300, 4340                 | 10,933  | 4.05       | Hardwood Forest                          |
| 13        | 4110-4120                        | 14,901  | 5.51       | Coniferous Forest                        |
| 14        | 4400-4410, 4430, 4460            | 98,707  | 36.52      | Tree Plantation                          |
| 15        | 5100-5400, 5510                  | 12,451  | 4.61       | Water                                    |
| 16        | 6110, 6150                       | 22,294  | 8.25       | Hardwood Forested Wetland                |
| 17        | 6200-6210                        | 1,449   | 0.54       | Coniferous Forested Wetland              |
| 18        | 6300-6310, 6350                  | 28,442  | 10.52      | Mixed Forested Wetland                   |
| 19        | 6400-6440, 6460                  | 34,053  | 12.60      | Non-Forested Wetland                     |
| 20        | 6500                             | 1,284   | 0.48       | Non-Vegetated Wetland                    |
| 21        | 7100-7200, 7400, 7430            | 520     | 0.19       | Barren Land                              |
| 22        | 8110-8120, 8140, 8200, 8320-8330 | 2,706   | 1.00       | Transportation, Communication, Utilities |
|           |                                  |         |            | ·····                                    |
| Total     |                                  | 270,278 | 100.00     |                                          |

| MUID Area |        | Soil Name                    | HSG          | Assigned |
|-----------|--------|------------------------------|--------------|----------|
|           | (AC.)  |                              |              | 130      |
| 000000    | 204    |                              | <u> </u>     |          |
| 089002    | 304    |                              |              |          |
| 089003    | 57     |                              | <u>D</u>     | <u> </u> |
| 089004    | 147    |                              | A            | <u> </u> |
| 089005    | 350    |                              | A            | <u>A</u> |
| 089006    | 9,462  | HURRICANE-POTTSBURG          | <u>C-B/D</u> | D        |
| 089007    | 225    | KINGSLAND                    | AVD          | D        |
| 089008    | 191    | KUREB                        | <u>A</u>     | A        |
| 089009    | 20,461 | LEON                         | B/D          | D        |
| 089010    | 1,905  | MANDARIN                     | C            | C        |
| 089011    | 13,958 | CHAIRES                      | B/D          | D        |
| 089012    | 76     | NEWHAN-COROLLA               | A-D          | D        |
| 089013    | 30,805 | GOLDHEAD                     | B/D          | D        |
| 089014    | 4,765  | RUTLEGE                      | D            | D        |
| 089015    | 16,282 | BUCCANEER                    | D            | D        |
| 089016    | 9,181  | ELLABELLE                    | D            | D        |
| 089017    | 159    | URBAN                        | U            | D        |
| 089018    | 652    | LYNN-WESCONNETT-LEON         | D-D-D        | D        |
| 089019    | 553    | LEON                         | D            | D        |
| 089020    | 2,210  | ORTEGA                       | A            | A        |
| 089021    | 161    | BLANTON                      | В            | В        |
| 089022    | 8,671  | SAPELO-LEON                  | D-B/D        | D        |
| 089023    | 488    | OCILLA                       | С            | С        |
| 089024    | 8,952  | KINGSFERRY                   | B/D          | D        |
| 089025    | 3,882  | MAUREPAS                     | D            | D        |
| 089026    | 1,089  | CENTENARY                    | • <b>A</b>   | A        |
| 089027    | 3,902  | RIDGEWOOD                    | A            | A        |
| 089028    | 13,463 | TISONIA                      | D            | D        |
| 089029    | 87     | RESOTA                       | A            | A        |
| 089030    | 568    | KUREB-RESOTA                 | A-A          | A        |
| 089031    | 140    | KERSHAW                      | Α            | A        |
| 089032    | 237    | AQUALFS                      | С            | С        |
| 089033    | 8,771  | GOLDHEAD-PLUMMER             | D-D          | D        |
| 089034    | 1,466  | CROATAN                      | D            | D        |
| 089036    | 10,840 | BOULOGNE                     | B/D          | D        |
| 089037    | 8,440  | MEGGETT                      | D            | D        |
| 089038    | 1,955  | MEGGETT                      | D            | D        |
| 089039    | 5,622  | EVERGREEN-LEON               | D-D          | D        |
| 089040    | 1,033  | BROOKMAN                     | D            | D        |
| 089045    | 334    | MEGGETT                      | D            | D        |
| 089046    | 249    | BUCCANEER                    | D            | D        |
| 089047    | 142    | LEEFIELD                     | C            | С        |
| 089051    | 1.542  | ALBANY                       | C            | C        |
| 089053    | 248    | PLUMMER                      | B/D          | D        |
| 089054    | 75     | SAPELO                       | <br>         |          |
| 089055    | 32     | MEADOWBROOK-GOLDHEAD-MEGGETT | B/D-B/D-D    | <br>D    |
| 089056    | 57     | BLANTON-ORTEGA               | B-A          | <br>B    |
| 089057    | 393    | PENNEY                       | A            | Ā        |
| 089099    | 7,439  | WATER                        | W            | Ŵ        |

## Table 4.3 Nassau River Basin Soils and Hydrologic Soil Groupings

| DUVAL COUNTY |        |                      |         |      |  |  |  |  |  |
|--------------|--------|----------------------|---------|------|--|--|--|--|--|
| 726002       | 178    | ALBANY               | C       | C    |  |  |  |  |  |
| 726007       | 261    | ARENTS               | С       | С    |  |  |  |  |  |
| 726010       | 135    | BEACHES              | D       | D    |  |  |  |  |  |
| 726014       | 1,455  | BOULOGNE             | B/D     | D    |  |  |  |  |  |
| 726018       | 17     | COROLLA              | D       | D    |  |  |  |  |  |
| 726019       | 367    | CORNELIA             | A       | A    |  |  |  |  |  |
| 726022       | 988    | EVERGREEN-WESCONNETT | D       | D    |  |  |  |  |  |
| 726023       | 52     | FRIPP-COROLLA        | A-D     | D    |  |  |  |  |  |
| 726024       | 945    | HURRICANE-RIDGEWOOD  | C-C     | С    |  |  |  |  |  |
| 726025       | 20     | KERSHAW              | A       | A    |  |  |  |  |  |
| 726029       | 133    | KUREB                | A       | A    |  |  |  |  |  |
| 726032       | 7,459  | LEON                 | B/D     | D    |  |  |  |  |  |
| 726033       | 335    | LEON                 | D       | D    |  |  |  |  |  |
| 726035       | 1,433  | LYNN HAVEN           | B/D     | D    |  |  |  |  |  |
| 726036       | 897    | MANDARIN             | С       | С    |  |  |  |  |  |
| 726038       | 7,270  | MASCOTTE             | B/D     | D    |  |  |  |  |  |
| 726040       | 572    | MAUREPAS             | D       | D    |  |  |  |  |  |
| 726042       | 20     | NEWHAN-COROLLA       | A-D     | D    |  |  |  |  |  |
| 726044       | 96     | MASCOTTE-PELHAM      | B/D-B/D | D    |  |  |  |  |  |
| 726046       | 57     | ORTEGA               | A       | A    |  |  |  |  |  |
| 726049       | 391    | PAMLICO              | D       | D    |  |  |  |  |  |
| 726051       | 8,484  | PELHAM               | B/D     | D    |  |  |  |  |  |
| 726055       | 7      | PITS                 | UNK     | NULL |  |  |  |  |  |
| 726058       | 488    | POTTSBURG            | С       | С    |  |  |  |  |  |
| 726062       | 33     | RUTLEGE              | B/D     | D    |  |  |  |  |  |
| 726063       | 3,594  | SAPELO               | D       | D    |  |  |  |  |  |
| 726066       | 4,761  | SURRENCY             | D       | D    |  |  |  |  |  |
| 726067       | 256    | SURRENCY             | D       | D    |  |  |  |  |  |
| 726068       | 14,221 | TISONIA              | D       | D    |  |  |  |  |  |
| 726069       | 302    | URBAN LAND           | U       | D    |  |  |  |  |  |
| 726078       | 796    | YONGES               | D       | D    |  |  |  |  |  |
| 726079       | 1,655  | YULEE                | D       | D    |  |  |  |  |  |
| 726081       | 988    | STOCKADE             | B/D     | D    |  |  |  |  |  |
| 726082       | 969    | PELHAM               | B/D     | D    |  |  |  |  |  |
| 726086       | 2,195  | YULEE                | D       | D    |  |  |  |  |  |
| 726087       | 25     | DOROVAN              | D       | D    |  |  |  |  |  |
| 726088       | 234    | LYNCHBURG            | С       | С    |  |  |  |  |  |
| 726099       | 6,150  | WATER                | W       | W    |  |  |  |  |  |
| SLIVER       | 18     |                      | UNK     | NULL |  |  |  |  |  |

## Table 4.3 Nassau River Basin Soils and Hydrologic Soil Groupings (con't)

Sub-basin Composite Curve Numbers

A GIS analysis, based on area-weighted averages, generated the sub-basin composite curve numbers from a land use/soils matrix. The matrix was created by overlaying the land-use and soils coverages. A table of curve numbers for different land uses and HSG's (Table 4.4) was developed based on the runoff curve number tables in the SCS National Engineering Handbook, and based on discussions with David Clapp of the SJRWMD. These curve numbers were then assigned to each polygon in the matrix.

|    | Land Use Description                         |     | Hydrologic | Soil Group |     |
|----|----------------------------------------------|-----|------------|------------|-----|
| #  |                                              | A   | В          | С          | D   |
| 1  | Low Density Residential                      | 51  | 68         | 79         | 84  |
| 2  | Medium Density Residential                   | 57  | 72         | 81         | 86  |
| 3  | High Density Residential                     | 77  | 85         | 90         | 92  |
| 4  | Commercial (85 % impervious)                 | 89  | 92         | 94         | 95  |
| 5  | Industrial (72 % impervious)                 | 81  | 88         | 91         | 93  |
| 6  | Extractive                                   | 77  | 86         | 91         | 94  |
| 7  | Institutional                                | 69  | 80         | 87         | 90  |
| 8  | Recreational                                 | 49  | 69         | 79         | 84  |
| 9  | Open Land                                    | 68  | 79         | 86         | 89  |
| 10 | Agricultural                                 | 72  | 81         | 88         | 89  |
| 11 | Rangeland                                    | 39  | 61         | 74         | 80  |
| 12 | Hardwood Forest                              | 36  | 60         | 73         | 79  |
| 13 | Coniferous Forest                            | 30  | 55         | 70         | 77  |
| 14 | Tree Plantation                              | 43  | 65         | 76         | 82  |
| 15 | Water                                        | 100 | 100        | 100        | 100 |
| 16 | Hardwood Forested Wetland                    | 65  | 84         | 90         | 94  |
| 17 | Coniferous Forested Wetland                  | 63  | 80         | 87         | 94  |
| 18 | Mixed Forested Wetland                       | 70  | 85         | 91         | 97  |
| 19 | Non-Forested Wetland                         | 78  | 90         | 94         | 98  |
| 20 | Non-Vegetated Wetland                        | 87  | 95         | 97         | 99  |
| 21 | Barren Land                                  | 77  | 86         | 91         | 94  |
| 22 | Transportation, Communication, and Utilities | 89  | 92         | 94         | 95  |

#### Table 4.4 Typical Curve Number Matrix

Sliver polygons and excavated pits (< 0.01% of Nassau River Basin) were assigned a curve number of 0 and were therefore ignored in the composite curve number calculation. Polygons with a land use of water were assigned a curve number of 100.

Sub-basin composite curve numbers were calculated using Equation 4.1.

$$B = (a / A) (CN)$$
(Equation 4.1)

where *B* = area-weighted curve number for matrix polygon *a* = area of matrix polygon *A* = area of sub-basin in which matrix polygon resides *CN* = curve number of matrix polygon

The sub-basin composite curve numbers were calculated by summing all matrix polygon *B* values within each sub-basin. Sub-basin composite curve numbers for the Nassau River Basin are listed in Table 4.5 and shown in Plate 3.

#### **Basin Composite Curve Number**

The basin composite curve number was computed by substituting different values into Equation 4.1. The area of each sub-basin and the total area of the Nassau River Basin were substituted for variables a and A, respectively. In addition, each sub-basin's composite curve number was substituted for *CN*. The results were summed to obtain a composite curve number of 86.49 for the Nassau River Basin.

#### 4.1.4 Synthetic Rainfall

The flood stages in the modeled systems were simulated for three rainfall events, the 10-, 25-, and 100-year / 24-hour storms. The input for the three storms were developed as discussed in Section 3.2.2 from site-specific hypothetical rainfall distributions by Rao (1991). The Nassau River Basin has a significant variation in rainfall depths across the basin for varying return periods. Similarly the variation in rainfall will also result in a variation in the rainfall distribution. Based on this, the Nassau River Basin has been divided into two hydrologic basins located east and west of I-95 (see Figure 4.4). The cumulative rainfall depths for the three rainfall frequency distributions used in the study are listed in Tables 4.6 and 4.7. Similarly the unit rainfall mass curves for the 10-, 25-, and 100-year, 24-hour storms are illustrated in Figures 4.5 and 4.6.

The rainfall depths for each storm event were determined from the isohyetal maps of maximum rainfall (see Figures 3.3, 3.4, and 3.5). The rainfall depths determined for the 10-, 25-, and 100-year, 24-hour storm events were 7.2, 9.1 and 11.8 inches for Hydrologic Basin I and 7.5, 9.5 and 12.7 inches for Hydrologic Basin II.

|           | COMPOSITE CURVE NUMBER COMPO |                                        |       | COMPOS    | SITE CURVE NUMBER |       |       |
|-----------|------------------------------|----------------------------------------|-------|-----------|-------------------|-------|-------|
| SUB-BASIN | AMC-1                        | AMC-2                                  | AMC-3 | SUB-BASIN | AMC-1             | AMC-2 | AMC-3 |
|           |                              | ······································ |       |           |                   |       |       |
| 1         | 66.4                         | 82.4                                   | 92.4  | 45        | 73.6              | 87.2  | 94.9  |
| 2         | 68.3                         | 83.8                                   | 93.3  | 46        | 71.0              | 85.6  | 94.3  |
| 3         | 57.5                         | 75.4                                   | 88.2  | 47        | 73.6              | 87.2  | 94.9  |
| 4         | 68.7                         | 84.0                                   | 93.4  | 48        | 73.9              | 87.5  | 95.0  |
| 5         | 71.4                         | 85.9                                   | 94.3  | 49        | 73.4              | 87.1  | 94.8  |
| 6         | 56.6                         | 74.7                                   | 87.8  | 50        | 77.3              | 89.6  | 95.8  |
| 7         | 70.9                         | 85.6                                   | 94.2  | 51        | 71.3              | 85.8  | 94.3  |
| 8         | 71.5                         | 86.0                                   | 94.4  | 52        | 74.1              | 87.6  | 95.0  |
| 9         | 75.3                         | 88.3                                   | 95.3  | 53        | 75.2              | 88.2  | 95.3  |
| 10        | 73.7                         | 87.3                                   | 94.9  | 54        | 73.3              | 87.1  | 94.8  |
| 11        | 71.7                         | 86.1                                   | 94.4  | 55        | 71.3              | 85.8  | 94.3  |
| 12        | 73.1                         | 86.9                                   | 94.8  | 56        | 71.3              | 85.8  | 94.3  |
| 13        | 69.9                         | 84.9                                   | 94.0  | 57        | 74.9              | 88.1  | 95.2  |
| 14        | 76.5                         | 89.1                                   | 95.6  | 58        | 78.9              | 90.5  | 96.2  |
| 15        | 70.8                         | 85.5                                   | 94.2  | 59        | 88.2              | 95.5  | 98.2  |
| 16        | 72.3                         | 86.4                                   | 94.6  | 60        | 79.6              | 90.9  | 96.3  |
| 17        | 71.2                         | 85.7                                   | 94.3  | 61        | 67.7              | 83.4  | 93.0  |
| 18        | 75.9                         | 88.7                                   | 95.5  | 62        | 69.4              | 84.6  | 93.8  |
| 19        | 70.5                         | 85.3                                   | 94.1  | 63        | 70.5              | 85.3  | 94.1  |
| 20        | 78.0                         | 90.0                                   | 96.0  | 64        | 80.9              | 91.6  | 96.6  |
| 21        | 71.6                         | 86.0                                   | 94.4  | 65        | 76.0              | 88.8  | 95.5  |
| 22        | 69.9                         | 84.9                                   | 94.0  | 66        | 79.6              | 90.9  | 96.3  |
| 23        | 73.2                         | 87.0                                   | 94.8  | 67        | 71.4              | 85.9  | 94.4  |
| 24        | 72.6                         | 86.6                                   | 94.6  | 68        | 73.2              | 87.0  | 94.8  |
| 25        | 67.1                         | 82.9                                   | 92.8  | 69        | 69.5              | 84.6  | 93.8  |
| 26        | 75.1                         | 88.2                                   | 95.3  | 70        | 72.1              | 86.3  | 94.5  |
| 27        | 72.5                         | 86.6                                   | 94.6  | 71        | 70.0              | 85.0  | 94.0  |
| 28        | 67.8                         | 83.4                                   | 93.1  | 72        | 69.6              | 84.7  | 93.8  |
| 29        | 72.9                         | 86.8                                   | 94.7  | 73        | 69.5              | 84.7  | 93.8  |
| 30        | 72.1                         | 86.3                                   | 94.5  | 74        | 71.0              | 85.6  | 94.2  |
| 31        | 70.4                         | 85.2                                   | 94.1  | 75        | 64.5              | 81.1  | 91.6  |
| 32        | 71.0                         | 85.6                                   | 94.2  | . 76      | 61.1              | 78.4  | 90.0  |
| 33        | 73.8                         | 87.4                                   | 95.0  | 77        | 61.1              | 78.4  | 90.0  |
| 34        | 72.2                         | 86.4                                   | 94.6  | 78        | 62.5              | 79.6  | 90.8  |
| 35        | 68.4                         | 83.9                                   | 93.3  | 79        | 71.7              | 86.1  | 94.4  |
| 36        | 74.0                         | 87.5                                   | 95.0  | 80        | 76.8              | 89.2  | 95.7  |
| 37        | 67.3                         | 83.1                                   | 92.8  | 81        | 70.9              | 85.5  | 94.2  |
| 38        | 69.3                         | 84.5                                   | 93.7  | 82        | 76.9              | 89.3  | 95.7  |
| 39        | 68.0                         | 83.6                                   | 93.2  | 83        | 88.5              | 95.6  | 98.2  |
| 40        | 69.1                         | 84.3                                   | 93.6  | 84        | 80.0              | 91.1  | 96.4  |
| 41        | 69.7                         | 84.8                                   | 93.9  | 85        | 75.5              | 88.5  | 95.4  |
| 42        | 71.6                         | 86.0                                   | 94.4  | 86        | 80.0              | 91.1  | 96.4  |
| 43        | 71.0                         | 85.6                                   | 94.3  | 87        | 77.2              | 89.5  | 95.8  |
| 44        | 77.0                         | 89.4                                   | 95.7  |           |                   |       |       |

## Table 4.5 Nassau River Basin Curve Numbers for AMC-1, AMC-2, and AMC-3



| Time  | Cum     | ulative Ra | uinfall  | Time  | Cum     | nulative Rainfall |          | Time  | Cum     | ulative Ra | infall   |
|-------|---------|------------|----------|-------|---------|-------------------|----------|-------|---------|------------|----------|
| (hr.) | 10-vear | 25-vear    | 100-vear | (hr.) | 10-year | 25-vear           | 100-vear | (hr.) | 10-year | 25-vear    | 100-year |
| 0.25  | 0.003   | 0.003      | 0.004    | 8.25  | 0.135   | 0.145             | 0.178    | 16.25 | 0.879   | 0.870      | 0.839    |
| 0.50  | 0.006   | 0.006      | 0.008    | 8.50  | 0.142   | 0.152             | 0.187    | 16.50 | 0.885   | 0.876      | 0.846    |
| 0.75  | 0.009   | 0.009      | 0.012    | 8.75  | 0.149   | 0.160             | 0.195    | 16.75 | 0.891   | 0.882      | 0.853    |
| 1.00  | 0.012   | 0.013      | 0.016    | 9.00  | 0.156   | 0.168             | 0.205    | 17.00 | 0.896   | 0.888      | 0.860    |
| 1.25  | 0.015   | 0.016      | 0.020    | 9.25  | 0.166   | 0.176             | 0.212    | 17.25 | 0.901   | 0.893      | 0.867    |
| 1.50  | 0.018   | 0.019      | 0.025    | 9.50  | 0.176   | 0.186             | 0.219    | 17.50 | 0.906   | 0.899      | 0.873    |
| 1.75  | 0.021   | 0.023      | 0.029    | 9.75  | 0.187   | 0.195             | 0.227    | 17.75 | 0.911   | 0.904      | 0.880    |
| 2.00  | 0.024   | 0.026      | 0.033    | 10.00 | 0.199   | 0.206             | 0.236    | 18.00 | 0.916   | 0.909      | 0.886    |
| 2.25  | 0.027   | 0.030      | 0.038    | 10.25 | 0.212   | 0.217             | 0.246    | 18.25 | 0.920   | 0.914      | 0.892    |
| 2.50  | 0.030   | 0.033      | 0.042    | 10.50 | 0.227   | 0.230             | 0.257    | 18.50 | 0.925   | 0.918      | 0.897    |
| 2.75  | 0.034   | 0.037      | 0.047    | 10.75 | 0.239   | 0.245             | 0.269    | 18.75 | 0.929   | 0.923      | 0.903    |
| 3.00  | 0.037   | 0.041      | 0.052    | 11.00 | 0.253   | 0.261             | 0.284    | 19.00 | 0.933   | 0.927      | 0.909    |
| 3.25  | 0.041   | 0.044      | 0.056    | 11.25 | 0.271   | 0.282             | 0.301    | 19.25 | 0.937   | 0.932      | 0.914    |
| 3.50  | 0.044   | 0.048      | 0.061    | 11.50 | 0.294   | 0.308             | 0.324    | 19.50 | 0.941   | 0.936      | 0.919    |
| 3.75  | 0.048   | 0.052      | 0.066    | 11.75 | 0.401   | 0.411             | 0.421    | 19.75 | 0.945   | 0.940      | 0.924    |
| 4.00  | 0.052   | 0.056      | 0.071    | 12.00 | 0.608   | 0.599             | 0.588    | 20.00 | 0.949   | 0.944      | 0.929    |
| 4.25  | 0.056   | 0.060      | 0.076    | 12.25 | 0.668   | 0.657             | 0.642    | 20.25 | 0.952   | 0.948      | 0.934    |
| 4.50  | 0.059   | 0.065      | 0.081    | 12.50 | 0.718   | 0.705             | 0.688    | 20.50 | 0.956   | 0.952      | 0.939    |
| 4.75  | 0.063   | 0.069      | 0.087    | 12.75 | 0.738   | 0.728             | 0.707    | 20.75 | 0.960   | 0.956      | 0.944    |
| 5.00  | 0.068   | 0.073      | 0.092    | 13.00 | 0.754   | 0.746             | 0.723    | 21.00 | 0.963   | 0.960      | 0.949    |
| 5.25  | 0.072   | 0.078      | 0.098    | 13.25 | 0.767   | 0.761             | 0.737    | 21.25 | 0.966   | 0.963      | 0.953    |
| 5.50  | 0.076   | 0.082      | 0.104    | 13.50 | 0.778   | 0.775             | 0.748    | 21.50 | 0.970   | 0.967      | 0.958    |
| 5.75  | 0.081   | 0.087      | 0.109    | 13.75 | 0.792   | 0.787             | 0.758    | 21.75 | 0.973   | 0.971      | 0.963    |
| 6.00  | 0.085   | 0.092      | 0.115    | 14.00 | 0.805   | 0.798             | 0.768    | 22.00 | 0.976   | 0.974      | 0.967    |
| 6.25  | 0.090   | 0.097      | 0.122    | 14.25 | 0.816   | 0.808             | 0.776    | 22.25 | 0.979   | 0.978      | 0.971    |
| 6.50  | 0.095   | 0.103      | 0.128    | 14.50 | 0.827   | 0.818             | 0.784    | 22.50 | 0.982   | 0.981      | 0.976    |
| 6.75  | 0.100   | 0.108      | 0.134    | 14.75 | 0.837   | 0.826             | 0.791    | 22.75 | 0.986   | 0.984      | 0.980    |
| 7.00  | 0.105   | 0.114      | 0.141    | 15.00 | 0.846   | 0.835             | 0.798    | 23.00 | 0.989   | 0.987      | 0.984    |
| 7.25  | 0.111   | 0.119      | 0.148    | 15.25 | 0.853   | 0.842             | 0.807    | 23.25 | 0.991   | 0.991      | 0.988    |
| 7.50  | 0.116   | 0.125      | 0.155    | 15.50 | 0.860   | 0.850             | 0.816    | 23.50 | 0.994   | 0.994      | 0.992    |
| 7.75  | 0.122   | 0.132      | 0.163    | 15.75 | 0.867   | 0.857             | 0.824    | 23.75 | 0.997   | 0.997      | 0.996    |
| 8.00  | 0.128   | 0.138      | 0.170    | 16.00 | 0.873   | 0.863             | 0.832    | 24.00 | 1.000   | 1.000      | 1.000    |

## Table 4.6 Nassau River Rainfall Distributions (west of I-95)

| Time  | Cumulative Rainfall<br>Distribution |         |          | Time  | ne Cumulative Rainfall<br>Distribution |         |          | Time  | Cum     | ulative Ra<br>Distributio | ninfall  |
|-------|-------------------------------------|---------|----------|-------|----------------------------------------|---------|----------|-------|---------|---------------------------|----------|
| (hr.) | 10-year                             | 25-year | 100-year | (hr.) | 10-year                                | 25-year | 100-year | (hr.) | 10-year | 25-year                   | 100-year |
| 0.25  | 0.003                               | 0.003   | 0.004    | 8.25  | 0.133                                  | 0.161   | 0.191    | 16.25 | 0.881   | 0.855                     | 0.827    |
| 0.50  | 0.006                               | 0.007   | 0.009    | 8.50  | 0.140                                  | 0.169   | 0.200    | 16.50 | 0.887   | 0.862                     | 0.835    |
| 0.75  | 0.008                               | 0.011   | 0.013    | 8.75  | 0.147                                  | 0.177   | 0.209    | 16.75 | 0.892   | 0.868                     | 0.842    |
| 1.00  | 0.011                               | 0.014   | 0.018    | 9.00  | 0.155                                  | 0.186   | 0.219    | 17.00 | 0.897   | 0.875                     | 0.849    |
| 1.25  | 0.014                               | 0.018   | 0,022    | 9.25  | 0.165                                  | 0.193   | 0.225    | 17.25 | 0.902   | 0.881                     | 0.856    |
| 1.50  | 0.017                               | 0.022   | 0.027    | 9.50  | 0.176                                  | 0.201   | 0.232    | 17.50 | 0.907   | 0.887                     | 0.863    |
| 1.75  | 0.020                               | 0.026   | 0.032    | 9.75  | 0.188                                  | 0.209   | 0.240    | 17.75 | 0.912   | 0.892                     | 0.870    |
| 2.00  | 0.024                               | 0.029   | 0.036    | 10.00 | 0.200                                  | 0.218   | 0.248    | 18.00 | 0.917   | 0.898                     | 0.876    |
| 2.25  | 0.027                               | 0.033   | 0.041    | 10.25 | 0.214                                  | 0.228   | 0.257    | 18.25 | 0.921   | 0.903                     | 0.883    |
| 2.50  | 0.030                               | 0.037   | 0.046    | 10.50 | 0.229                                  | 0.239   | 0.267    | 18.50 | 0.926   | 0.908                     | 0.889    |
| 2.75  | 0.033                               | 0.041   | 0.051    | 10.75 | 0.242                                  | 0.254   | 0.279    | 18.75 | 0.930   | 0.914                     | 0.895    |
| 3.00  | 0.037                               | 0.046   | 0.056    | 11.00 | 0.258                                  | 0.271   | 0.294    | 19.00 | 0.934   | 0.919                     | 0.901    |
| 3.25  | 0.040                               | 0.050   | 0.061    | 11.25 | 0.276                                  | 0.291   | 0.311    | 19.25 | 0.938   | 0.923                     | 0.907    |
| 3.50  | 0.044                               | 0.054   | 0.066    | 11.50 | 0.301                                  | 0.318   | 0.334    | 19.50 | 0.942   | 0.928                     | 0.912    |
| 3.75  | 0.047                               | 0.059   | 0.072    | 11.75 | 0.404                                  | 0.416   | 0.425    | 19.75 | 0.946   | 0.933                     | 0.918    |
| 4.00  | 0.051                               | 0.063   | 0.077    | 12.00 | 0.604                                  | 0.594   | 0.582    | 20.00 | 0.949   | 0.937                     | 0.923    |
| 4.25  | 0.055                               | 0.068   | 0.083    | 12.25 | 0.663                                  | 0.649   | 0.634    | 20.25 | 0.953   | 0.942                     | 0.929    |
| 4.50  | 0.059                               | 0.072   | 0.088    | 12.50 | 0.712                                  | 0.695   | 0.677    | 20.50 | 0.957   | 0.946                     | 0.934    |
| 4.75  | 0.063                               | 0.077   | 0.094    | 12.75 | 0.733                                  | 0.718   | 0.697    | 20.75 | 0.960   | 0.950                     | 0.939    |
| 5.00  | 0.067                               | 0.082   | 0.100    | 13.00 | 0.750                                  | 0.736   | 0.713    | 21.00 | 0.964   | 0.955                     | 0.944    |
| 5.25  | 0.071                               | 0.087   | 0.106    | 13.25 | 0.764                                  | 0.752   | 0.726    | 21.25 | 0.967   | 0.959                     | 0.949    |
| 5.50  | 0.075                               | 0.092   | 0.112    | 13.50 | 0.776                                  | 0.766   | 0.738    | 21.50 | 0.970   | 0.963                     | 0.954    |
| 5.75  | 0.080                               | 0.098   | 0.118    | 13.75 | 0.790                                  | 0.776   | 0.747    | 21.75 | 0.973   | 0.967                     | 0.959    |
| 6.00  | 0.084                               | 0.103   | 0.125    | 14.00 | 0.804                                  | 0.786   | 0.756    | 22.00 | 0.977   | 0.971                     | 0.964    |
| 6.25  | 0.089                               | 0.109   | 0.131    | 14.25 | 0.816                                  | 0.795   | 0.763    | 22.25 | 0.980   | 0.975                     | 0.969    |
| 6.50  | 0.094                               | 0.115   | 0.138    | 14.50 | 0.827                                  | 0.803   | 0.771    | 22.50 | 0.983   | 0.978                     | 0.973    |
| 6.75  | 0.099                               | 0.120   | 0.145    | 14.75 | 0.838                                  | 0.810   | 0.777    | 22.75 | 0.986   | 0.982                     | 0.978    |
| 7.00  | 0.104                               | 0.127   | 0.152    | 15.00 | 0.848                                  | 0.817   | 0.784    | 23.00 | 0.989   | 0.986                     | 0.982    |
| 7.25  | 0.109                               | 0.133   | 0.160    | 15.25 | 0.855                                  | 0.825   | 0.793    | 23.25 | 0.992   | 0.989                     | 0.987    |
| 7.50  | 0.115                               | 0.140   | 0.167    | 15.50 | 0.862                                  | 0.833   | 0.802    | 23.50 | 0.994   | 0.993                     | 0.991    |
| 7.75  | 0.121                               | 0.146   | 0.175    | 15.75 | 0.869                                  | 0.841   | 0.811    | 23.75 | 0.997   | 0.997                     | 0.996    |
| 8.00  | 0.127                               | 0.154   | 0.183    | 16.00 | 0.875                                  | 0.848   | 0.819    | 24.00 | 1.000   | 1.000                     | 1.000    |

## Table 4.7 Nassau River Rainfall Distributions (east of I-95)









67

0.3 0.2 0.1 0

0 1 2 3

45

Time (hr.)

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

## 4.2 Water Quantity Modeling

### 4.2.1 Model Framework

#### HYDROLOGIC MODELING

The precipitation - runoff conditions for the Nassau River Basin were simulated using HEC-HMS "Hydrologic Modeling System" (Version 1, March 1998), the USACE's replacement software for HEC-1. Like HEC-1, HEC-HMS includes several watershed-runoff and routing methods. Perhaps one of the greatest advantages of the HEC-HMS model is the Graphical User Interface (GUI) capabilities. As a result, watershed basins, reaches, junctions, etc. can be schematically represented as a network of hydrologic elements. HEC-HMS includes various methods for calculating losses, determining runoff transformation and routing from basin to basin.

HEC-HMS can calculate infiltration losses based on the Green and Ampt or the SCS Curve Number methods. Because of the availability of the land use and soils coverage's, the SCS Method was used for determining infiltration losses. Other losses included the initial abstraction or depressional storage for each sub-basin, a value of 0.2 was used for the synthetic storm simulations. However, for calibration this value was adjusted for varying antecedent moisture conditions (AMC).

The SCS and Snyder's methods were considered for transformation of rainfall excesses to runoff. In HEC-HMS the SCS method utilizes an invariable unit-hydrograph peaking factor of 484, which may not accurately describe the runoff characteristics of a flat, high-groundwater-table watershed such as this (Capece et al., 1984). Therefore, Snyder's method was selected for the ability to calibrate to an attenuated runoff response. Input variables used for the Snyder's method included lag time and peaking factor.

Initially the SCS Curve Number, Snyder's, and Velocity methods were used to calculate lag time. Based on calibration results, the velocity method was chosen. With the velocity method, the time of concentration,  $t_c$ , is first determined by summing travel times. The calculated  $t_c$ 's are then multiplied by a factor of 0.6 to obtain an estimate of lag time. Calculation of  $t_c$  was done using USGS Quadrangle Maps to determine the slope of the longest overland flow path in the basin. The slope of the flow path was determined by dividing the change in elevation by the length. The velocity was then determined from available velocity versus slope relationships for various land uses. The velocity was then divided by the flow length to obtain the  $t_c$ . For channelized flow the  $t_c$  was determined based on estimating flow velocities for the given channel. Generally in the upper reaches of the basins where the Manning's n roughness is very high and the physical slope is very flat, a velocity of 0.5 to 1 fps was used. In other areas, where the physical slope was greater and the channel was well defined, 1 to 2 fps was used. The  $t_c$  was



then calculated similarly to the overland flow method. The  $t_c$  for the entire sub-basin was then the sum of the overland and channelized flow  $t_c$ 's.

The Snyder's peaking factor used for modeling the synthetic storm events was 0.28. This value was based on the calibration runs for Thomas and Alligator Creeks.

HEC-HMS affords several methods for routing subbasin flows through reaches. The Muskingum Cunge method was selected due to its versatility, in allowing the user to input an 8 point cross-section with Manning's n roughness coefficients for the main channel and left and right overbank.

### HYDRAULIC MODELING

UNET (Barkau 1997) and HEC-RAS (HEC 1998) were used for the hydraulic modeling of the major channels within the Nassau River basin. UNET is capable of routing the flows generated by HEC-HMS, accounting for storage and attenuation as the flood flows move down the channel. Although UNET alone could have been used for this aspect of the project, the HEC-RAS model is better suited for floodplain management. HEC-RAS uses steady-state conditions and is more easily modified to account for improvements or encroachments into the floodplain. Figure 4.7 shows the reaches used for both UNET and HEC-RAS. The only difference between the models is that Reach 1 is not used in the HEC-RAS model. Reach 1 is located at the upstream ends of Reaches 5 and 6 in the UNET model where these reaches share a floodplain upstream of the Seaboard Railroad. The UNET model incorporates the surveyed channel geometry, bridge and culvert geometry, upstream hydrographs to Reaches 1, 2, 3, 4, 9 and 12, and lateral inflow hydrographs to all the reaches except Reach 1. The HEC-RAS model uses peak flows computed by UNET to perform a backwater analysis, also incorporating the channel, bridge and culvert geometries.

4.2.2 Model Calibration

### HYDROLOGIC MODELING

Hydrologic calibration for the 418 square mile watershed was based on a 32 square mile area upstream of the Thomas Creek stage/discharge gage and a 15 square mile area upstream of the Alligator Creek stage/discharge gage. The calibration basin areas were no less than 8 miles removed from the rainfall gage location at Jacksonville International Airport. Both calibration basin areas include significant forested wetland areas. Consequently, potential storages were difficult to estimate due to the lack of extensive survey data and knowledge of basin conditions prior to the calibration storm events. The Thomas Creek calibration basin appears mostly unimproved. Based on NRCS Soil Survey aerials, the Alligator Creek calibration area includes substantial agricultural areas with dual hydrologic group (B/D) soils. The Alligator Creek calibration model





assumes a conservative unimproved (D) hydrologic condition, which may not be the case.

During HEC-HMS calibration, the predicted runoff responses to the following potential calibration factors were investigated: Snyder's peaking factor ( $C_p$ ), Snyder's lag time ( $T_p$ ), Antecedent Moisture Condition (AMC), Initial Abstraction ( $I_a$ ), and Manning's n. Of these factors, Snyder's peaking factor and lag time were the most extensively adjusted. Adjustment of  $C_p$  greatly influenced the shape of the computed runoff hydrograph.  $C_p$ 's used during model calibration ranged from 0.14 to 0.35 with lower values producing a flatter runoff response indicative of greater sub-basin storage. Ultimately, a  $C_p$  of 0.28 was selected as the most appropriate value. The time to peak of the runoff hydrograph was adjusted using lag time. Based on adjustments made during calibration, the originally calculated lag times were increased. Antecedent Moisture Condition was set according to rainfall data for the previous two weeks and greatly affected the computed total runoff hydrograph. For normal to wet conditions, an  $I_a$  of 0.2 was used. The Manning's n values were adjusted based on field observation and are consistent with values determined during calibration of the hydraulic models.

Three storm events were selected for HEC-HMS model calibration. Calibration rainfall and runoff hydrographs are presented for each event by Figures 4.8, 4.9, and 4.10. The runoff hydrographs shown represent calibration results, which were adopted for inclusion in the final HEC-HMS models. Hydrographs calibrated to match the individual storms at either the Alligator Creek or Thomas Creek gage locations are not shown.

The first calibration event occurred in October 1996. For this event the Jacksonville rain gage measured a total rainfall depth of 7.27 inches in 39 hours with 7.16 inches occurring within a 30 hour interval. Corresponding peak flow measurements at the Alligator Creek and Thomas Creek gages were 931 cfs and 4,220 cfs, respectively. The Alligator Creek peak discharge ranked number 1 during the 17 year period of record whereas the Thomas Creek discharge ranked number 2 during the 33 year period of record. HEC-HMS calculated peak discharges at Alligator Creek and Thomas Creek were 1,230 cfs and 3,387 cfs, respectively. The model over-predicted the peak discharge at the Alligator Creek gage by 33 percent and under-predicted the peak discharge at Thomas Creek gage by 20 percent. For both events, calculated runoff volumes compared very well with the observed data.

The second calibration event occurred during April/May 1996. For this event the Jacksonville rain gage measured a total rainfall depth of 2.24 inches in 23 hours with 1.7 inches occurring within a 4 hour interval. Corresponding peak flow measurements at the Alligator Creek and Thomas Creek gages were 280 cfs and 466 cfs, respectively.

HEC-HMS calculated discharges at Alligator Creek and Thomas Creek were 286 cfs and 800 cfs, respectively. The model nearly matched observed peak discharge at the Alligator Creek gage but over-predicted the observed peak discharge at Thomas Creek gage by 72 percent. However, the calculated runoff volumes were comparable with the observed data at both gage locations.

The third and final calibration event occurred in October 1992. The Jacksonville rain gage measured a total rainfall depth of 8.11 inches in 36 hours with a 24 hour maximum rainfall depth of 7.83 inches for this storm event. The measured peak flows were approximately 479 cfs and 5,350 cfs at the Alligator Creek and Thomas Creek gages, respectively. The Alligator Creek peak discharge ranked number 3 during the 17 year period of record whereas the Thomas Creek discharge ranked number 1 during the 33 year period of record. Unfortunately, hourly measurements for the Thomas Creek gage were not available for this event, although instantaneous peak and daily values were. HEC-HMS model results compared well with the available observed data for Thomas Creek, under-predicting the observed flow by 10 percent and computing a similar runoff volume. However, computed peak flow and runoff volume for Alligator Creek were approximately 3 times greater than the observed values.

Rainfall variation and the high storage characteristics of the calibration basins may account for many of the differences between the observed and computed calibration hydrographs. With reliance on only the Jacksonville International Airport rain gage measurements for calibration data, spatial rainfall variation can not be discerned. Also, the calibration basin's small size and high storage capabilities suggest that actual runoff values for equivalent storms can vary appreciably with Antecedent Moisture Condition (AMC) and the depth of water already impounded within depressional areas.













Time



Figure 4.9: April 1996 Calibration Rainfall and Discharges





### HYDRAULIC MODELING

UNET model calibration was performed using the USGS Alligator Creek gage. The October, 1996 event and the peak stage and discharge record from 1982 through 1996 were used in the calibration. Figure 4.11 shows the gage peak stages and discharges and the UNET model computed stages and discharges for the 1996 event. Calibration was achieved by adjusting the channel and overbank Manning's n values until the computed results matched the observed data. Also, potential backwater effects from downstream structures were investigated and were not significant. Using a channel Manning's n of 0.045 and a floodplain Manning's n of 0.25 for Upper Alligator Creek provided a reasonable fit to the observed data. At the flood of record (October 8, 1996), the UNET model is 0.25 feet higher than the observed stage, but tends to be lower than most of the remaining data. The data for the period between 1994 and 1996 is plotted with a different symbol than the earlier data because there is a 2-year gap in the gage record. The reason for the gap is unknown. Compared to the more recent data, UNET tends to predict stages up to one foot above the gage data except for the October 12, 1994 event (419 cfs at 12.81 ft-NGVD) where UNET is 0.5 foot low. Given the range of scatter in the gage data, the calibrated Manning's n values produce reasonable results.



Figure 4.11 Alligator Creek Observed Peaks versus UNET Results

Figure 4.12 shows the observed, HEC-HMS and UNET hydrographs at the Alligator Creek gage for the October, 1996 event. HEC-HMS produces the highest flow and steepest hydrograph rising and falling limbs. When the UNET model is run for this event and more extreme conditions, the predicted water surfaces at the upstream ends of several reaches indicate widespread inundation. Although this is an expected outcome, it also indicates that storage would occur at these locations and the storage needs to be incorporated into the UNET model. Based on the topography of the areas upstream of the surveyed cross sections, several additional cross sections were added to the UNET



Figure 4.12 Observed, HEC-HMS and UNET Calibration Hydrographs for Alligator Creek

model. UNET used the HEC-HMS sub-basin hydrographs as input and routes the flow through the channel network based on the channel geometry and roughness characteristics. Figure 4.12 shows the UNET hydrograph at the Alligator Creek gage with the added cross sections included at the upstream end of Reach 3. If these additional cross sections were not included in the UNET model, the UNET and HEC-HMS hydrographs would be nearly identical. Additional cross sections were included at the upstream ends of Alligator Creek (Reach 3), Cushing Creek and Thomas Creek Tributary (Reach 1), Thomas Creek (Reach 9) and Boggy Creek (Reach 12) to account for storage.

Table 4.8 shows the Manning's n's for the UNET model. Based on the similarity of channels and floodplains in the upper reaches, the UNET model included the calibrated Manning's n's of 0.045 and 0.25 for the majority of the reaches. Because Reach 10 of Alligator Creek is channelized, the channel Manning's n was reduced to 0.040 although the floodplain Manning's n remained at 0.25. The Nassau River is much larger than the upstream channels, has less channel vegetation and has a floodplain which transitions to tidal marsh. Therefore, upstream of the confluence with Thomas Creek the channel and floodplain Manning's n values for Nassau River were reduced to 0.035 and 0.15 and downstream of the Thomas Creek confluence they were further reduced to 0.030 and 0.10, respectively.

|                               | UN        | IET          | HEC-RAS   |              |  |
|-------------------------------|-----------|--------------|-----------|--------------|--|
| Reach                         | Channel n | Floodplain n | Channel n | Floodplain n |  |
| Upper Alligator Creek         | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Little Mills Creek            | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Alligator Creek (channelized) | 0.040     | 0.25         | 0.036     | 0.225        |  |
| Cushing Creek                 | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Cushing Creek tributary       | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Thomas Creek (Reach 11)       | 0.045     | 0.25         | 0.038     | 0.213        |  |
| Thomas Creek (Reach 9)        | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Thomas Creek tributary        | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Boggy Creek                   | 0.045     | 0.25         | 0.041     | 0.225        |  |
| Nassau River U/S of Thomas    | 0.035     | 0.15         | 0.030     | 0.128        |  |
| Nassau River D/S of Thomas    | 0.030     | 0.10         | 0.027     | 0.090        |  |

#### Table 4.8 Manning's n Values.

#### 4.2.3 Synthetic Storm Simulation

The HEC-HMS model was run for the 10-, 25-, and 100-year 24-hour events using the rainfall distributions and depths discussed in Section 3.2.2. Model curve numbers were based on the normal Antecedent Moisture Condition 2 (AMC-2) only for the 25-year event. Because of an increased chance for a smaller event to occur during drier conditions, curve numbers were adjusted according to AMC-1 for the 10-year event. This resulted in decreased discharges for the 10-year event, which are more consistent with previous estimates. AMC-3 was used for the 100-year event to simulate very wet conditions.

The UNET model was run for the 10-, 25-, and 100-year 24-hour runoff events using the HEC-HMS results as input. The UNET model is considered accurate within the limitations of calibration data, although the complexity of the model limits it's utility for floodplain management purposes. Therefore, maximum discharge and water surface profiles were output from the UNET model to develop a HEC-RAS model which yield similar results. The HEC-RAS model incorporates the same geometry (channel and structure) as the UNET model and uses the peak discharges from the UNET model. Because the maximum discharge occurs simultaneously everywhere in the HEC-RAS model (steady state) and maximum discharge at a cross section in UNET generally occurs prior to the peak conditions downstream, water surfaces are higher in the HEC-RAS model. Manning's n values were reduced in the HEC-RAS model to generally match the UNET maximum water surface profile. A 10 percent reduction in Manning's n (both channel and floodplain) was used throughout the HEC-RAS model except for Reaches 12 and 11 where Manning's n was reduced by 15 percent and in Reach 13 where Manning's n was reduced by 20 percent. These reduced Manning's n values resulted in water surface profiles generally within 0.5 foot of the UNET results and typically within 0.2 ft. Water surface profiles plots are shown in Figures 4.13 –4.22.

The 10-, 25-, and 100-year flood boundaries are included in Plate 4. These flood boundaries and the profiles (Figures 4.13 - 4.22) are based on the HEC-RAS results. Table 4.9 is a summary of the discharges and water surfaces from the HEC-RAS model. Although the profiles and flood delineation indicate limited flood potential in the lower reaches, especially Nassau River, this study only included flooding from upland runoff. Although the potential for flooding due to a hurricane storm surge was not investigated, flooding from this source is likely to be greater than from upland runoff, at least for areas east of I-95.

| River/Creek Name and Comments                         | River Mile above   | Distance above | 10 Year Flood   | 10 Year Flood Water                     | 25 Year Flood   | 25 Year Flood Water             | 100 Year Flood  | 100 Year Floo        |
|-------------------------------------------------------|--------------------|----------------|-----------------|-----------------------------------------|-----------------|---------------------------------|-----------------|----------------------|
|                                                       | Nassau River mouth | mouth (tt)     | Discharge (cfs) | Surface Elevation (ft,<br><u>NGVD</u> ) | Discharge (cts) | Surface Elevation (ft,<br>NGVD) | Discharge (cts) | Surface Elev<br>NGVE |
| Nassau River                                          |                    |                |                 |                                         |                 |                                 |                 |                      |
| Confluence with Alligator and Boggy Creeks            | 31.961             | 168763         | 4616            | 4.63                                    | 7898            | 5.90                            | 12990           | 7.46                 |
| Upstream of confluence with Thomas Creek              | 24.356             | 128604         | 5495            | 3.64                                    | 9278            | 4.30                            | 15362           | 5.53                 |
| Downstream of confluence with Thomas Creek            | 24.356             | 128604         | 8867            | 3.62                                    | 15210           | 4.26                            | 25141           | 5.48                 |
| Upstream face of Interstate 95                        | 22.871             | 120764         | 9028            | 3.51                                    | 15419           | 3.99                            | 25558           | 4.97                 |
| Upstream face of Railroad Crossing                    | 19.918             | 105168         | 9596            | 3.40                                    | 15992           | 3.71                            | 26548           | 4.40                 |
| Upstream face of U. S. Highway 17                     | 18.856             | 99562          | 9596            | 3.37                                    | 15992           | 3.64                            | 26548           | 4.25                 |
| Upstream face of Highway A-1-A                        | 0.827              | 4367           | 21697           | 3.19                                    | 32981           | 3.20                            | 48674           | 3.20                 |
|                                                       | 0.000              | 0              | 22211           | 3.19                                    | 33/21           | 3.19                            | 49000           | 3.19                 |
| Boggy Creek                                           |                    |                |                 |                                         |                 |                                 |                 | · · ·                |
| Upstream end of reach                                 | 39.913             | 41984          | 1693            | 5.50                                    | 3321            | 7.33                            | 5678            | 9.38                 |
| Upstream face of S. R. 200                            | 39.657             | 40364          | 1693            | 5.46                                    | 3321            | 7.22                            | 5678            | 9.17                 |
| Confluence with Nassau River and Alligator Creek      | 31.961             | 0              | 1865            | 4.66                                    | 3502            | 5.94                            | 6074            | 7.50                 |
| Thomas Creek                                          |                    |                |                 |                                         | ·               |                                 |                 | ł                    |
| Upstream end of reach                                 | 43 625             | 101745         | 2591            | 11.48                                   | 4640            | 14.21                           | 7469            | 16.67                |
| Upstream face of U.S. Highway 1                       | 43.538             | 101285         | 2591            | 11.36                                   | 4640            | 14.12                           | 7469            | 16.56                |
| Upstream face of S. R. 115                            | 41.435             | 90177          | 2830            | 10.62                                   | 5054            | 13.10                           | 8224            | 15.62                |
| Upstream of confluence with Funks Creek               | 40.389             | 84654          | 2830            | 8.86                                    | 5054            | 10.99                           | 8224            | 13.18                |
| Downstream of confluence with Funks Creek             | 40.389             | 84654          | 2917            | 8.89                                    | 5209            | 11.03                           | 8439            | 13.23                |
| Confluence with Nassau River                          | 24.356             | 0              | 3118            | 3.63                                    | 5461            | 4.26                            | 8897            | 5.48                 |
|                                                       |                    |                |                 |                                         |                 |                                 |                 | ļ                    |
| Alligator Creek                                       | 4.004              |                |                 | 40.45                                   | 4500            | 10.00                           | 4000            | 1                    |
| Upstream end of reach                                 | 44.901             | 68332          | 989             | 18.15                                   | 1520            | 19.32                           | 1800            | 20.26                |
| Upstream face of Seaboard Halifoad                    | 44.483             | 64701          | 989             | 17.28                                   | 1520            | 18.54                           | 1800            | 19.0                 |
| Linstream of confluence with Little Mills Creek       | 44.251             | 60665          | 909             | 14.55                                   | 1520            | 10.05                           | 1866            | 11.17                |
| Downstream of confluence with Little Mills Creek      | 43.450             | 60665          | 1423            | 10.31                                   | 1020            | 12.10                           | 3234            | 14.00                |
| Linstream face of Seaboard Coastline Bailroad         | 43 170             | 50187          | 1420            | 0.42                                    | 2410            | 11.81                           | 3509            | 13.70                |
| Unstream face of S_B_200                              | 42.978             | 58173          | 1478            | 9 19                                    | 2547            | 10.80                           | 3509            | 12.56                |
| Upstream of confluence with Cushing Creek             | 42,725             | 56836          | 1478            | 8.79                                    | 2547            | 10.35                           | 3509            | 12.23                |
| Downstream of confluence with Cushing Creek           | 42.725             | 56836          | 2546            | 8.77                                    | 4009            | 10.34                           | 5845            | 12.21                |
| Confluence with Boggy Creek and Nassau River          | 31.961             | 0              | 2803            | 4.65                                    | 4367            | 5.94                            | 6854            | 7.51                 |
|                                                       |                    |                |                 |                                         |                 |                                 |                 |                      |
| Cushing Creek                                         |                    |                |                 |                                         |                 |                                 |                 | /                    |
| Upstream face of Seaboard Railroad                    | 45.770             | 16085          | 891             | 15.08                                   | 1223            | 15.99                           | 1802            | 17.42                |
| Upstream face of U. S. Highway 1                      | 45.089             | 12488          | 941             | 13.79                                   | 1314            | 14.88                           | 1981            | 16.50                |
| Upstream of confluence with Cushing Creek Tributary   | 43.931             | 6368           | 1015            | 11.41                                   | 1441            | 12.82                           | 2233            | 14.73                |
| Downstream of confluence with Cushing Creek Tributary | 43.931             | 6368           | 1071            | 11.30                                   | 1529            | 12.75                           | 2396            | 14.70                |
| Upstream face of S. R. 115                            | 43.737             | 5344           | 1071            | 10.81                                   | 1529            | 12.26                           | 2396            | 14.51                |
| Upstream face of Stratton Hoad                        | 43.184             | 2426           | 10/1            | 9.42                                    | 1529            | 10.81                           | 2396            | 13.33                |
|                                                       | 42.725             | 0              | 1089            | 8.//                                    | 1561            | 10.33                           | 2440            | 12.21                |
| Funks Creek                                           |                    |                |                 |                                         |                 |                                 |                 | <u> </u>             |
| Upstream face of Seaboard Railroad                    | 44.126             | 19730          | 35              | 15.43                                   | 72              | 16.21                           | 143             | 17.88                |
| Upstream face of U. S. Highway 1                      | 43.364             | 15708          | 116             | 15.27                                   | 187             | 15.88                           | 338             | 16.94                |
| Upstream face of S. R. 115                            | 41.507             | 5902           | 275             | 13.02                                   | 416             | 13.89                           | 653             | 15.04                |
| Confluence with Thomas Creek                          | 40.389             | 0              | 379             | 8.90                                    | 505             | 11.04                           | 718             | 13.24                |
| Outline Oright Title to a                             |                    | L              |                 |                                         |                 |                                 |                 | <u> </u>             |
| Linetroam and of reach                                | AA 706             | 4107           | 171             | 12.05                                   | 200             | 12 76                           | 270             | 16 40                |
| Upsiteant end of reach                                | 44.720             | 1670           | 065             | 11 57                                   | 200             | 12.10                           | 500             | 15.45                |
| Confluence with Cuching Crock                         | 44.24/             | 0              | 205             | 11.0/                                   | 410             | 10.14                           | 509             | 10.24                |
| Confidence with Cushing Creek                         | 40.001             |                | 231             | <u></u>                                 | 430             | 12.00                           |                 | 14./5                |
| Little Mills Creek                                    |                    |                |                 |                                         |                 |                                 |                 |                      |
| Downstream face of Seaboard Railroad                  | 44.245             | 4198           | 659             | 15.60                                   | 1146            | 16.78                           | 1660            | 18.07                |
| Upstream face of U.S. Highway 1                       | 43.768             | 1682           | 659             | 12.89                                   | 1146            | 14.66                           | 1660            | 16.98                |
| Confluence with Alligator Creek                       | 43.450             | 0              | 659             | 10.31                                   | 1146            | 12.18                           | 1660            | 14.03                |



1



STREAM DISTANCE IN FEET ABOVE MOUTH

Figure 4.13 Nassau River Downstream of Thomas Creek



STREAM DISTANCE IN FEET ABOVE MOUTH

Figure 4.14 Nassau River from Thomas Creek to Boggy Creek



STREAM DISTANCE IN FEET ABOVE MOUTH

Figure 4.15 Boggy Creek Upstream of Nassau River

## 5.0 SUMMARY AND CONCLUSIONS

States and the second states and the second s

 $(f_{ij}) = \int_{\mathbb{R}^{d}} \left[ f_{ij} f_{ij} + f_{ij} f_{ij} + f_{ij} f_{ij} + f_{ij} f_{ij} + f_{ij} f_{ij} f_{ij} f_{ij} + f_{ij} f_{ij} f_{ij} f_{ij} + f_{ij} f_{ij} f_{ij} f_{ij} f_{ij} + f_{ij} f_{ij} f_{ij} f_{ij} f_{ij} + f_{ij} f$ 

AT COMPANY AND STATE

的。在这些影响的意思

The Nassau River Basin HEC-HMS was developed using limited basin and calibration data for a predominately flat and poorly drained watershed that is not well represented by "textbook" hydrologic parameters. The model was calibrated based on the behavior of only 11 percent of the basin's total area using observed rainfall from a single source no less than 8 to 10 miles removed from the calibration basin areas. In addition, the runoff response of the tidal marsh and coastal plain topographies of the eastern portion of the Nassau River Basin cannot be expected to behave similar to the forested upland and wetland topographies found in the calibration basin areas.

As a consequence of these data limitations, the hydrologic model component can be refined with additional data. Significant improvements would involve additional recording rainfall gages within the basin, and additional stage/discharge gages located upstream of normal tidal influence on Lofton Creek and Boggy Creeks. Additionally, improvements can be realized through determination of actual drainage condition corresponding with dual hydrologic group (B/D and A/D) soils, and additional survey cross-sections across wetland storage areas.

For this study, the UNET model is considered generally more accurate than HEC-RAS in predicting peak water surface elevations and discharges throughout the modeled channels because UNET does not require maximum flow conditions occurring simultaneously throughout the model. The HEC-RAS model is less complex and better suited for floodplain management purposes than UNET and was calibrated to the UNET results. Given the uncertainties inherent in both the hydrologic and hydraulic modeling with limited calibration data, the accuracy of the flood profiles is approximately 1 foot. The areas where the model is most approximate are in the bridge and culvert geometry because no as-built surveys were available. In some cases, design plans were available, although it is uncertain that the plans are related to the model datum (NGVD). Another area where the model can be improved is extending the survey cross sections upstream of developed areas to accurately account for storage. Storage was incorporated into the upstream ends of several reaches based on the USGS quadrangle maps.

## 6.0 REFERENCES

建防衛的行動計

- 1. Bedient, P.B. and W.C. Huber. 1992. Hydrology and floodplain analysis. 2<sup>nd</sup> ed. Addison-Wesley: Reading, Massachusetts.
- 2. Federal Emergency Management Agency. 1988. Flood Insurance Study: Nassau County, Florida. Community Number 120170. Revised May 4, 1998.
- 3. Florida Department of Transportation, District 2, Various Bridge Design Plans, Inspection Reports, and Bridge Management Information System
- 4. Florida State University. 1984. Water resources: Atlas of Florida. Fernald, E. and D.J. Patton, eds. Tallahassee, Florida.
- 5. HEC, 1998, HEC-HMS Hydrologic Modeling System, Users Manual, CPD-74 Version 1.0, US Army Corps of Engineers, Hydraulic Engineering Center, Davis, CA.
- 6. HEC, 1997, HEC-RAS River Analysis System, Hydraulic Reference Manual, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.
- HEC, 1996, UNET One-dimensional Unsteady Flow Through a Full Network of Open Channels, Users Manual, CPD-66 Version 3.1, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.
- 8. HEC, 1990, HEC-1 Flood Hydrograph Package, Users Manual, CPD-1A Version 4.0, US Army Corps of Engineers, Hydraulic Engineering Center, Davis, CA.
- 9. Natural Resources Conservation Service. 1998. Interim Soil Survey Report: Maps and Interpretations, City of Jacksonville, Duval County, Florida. United States Department of Agriculture.
- Rao, D. 1991. 24-Hour Rainfall Distributions for Surface Water Basins within the SJRWMD, Northeast Florida. Tech. Pub. SJ 91-3, St. Johns River Water Management District, Palatka, FL.
- Rao, D. 1988a. 24-Hour to 96-Hour Maximum Rainfall for Return Periods 10 Years, 25 Years, and 100 Years. Tech. Pub. SJ 88-3, St. Johns River Water Management District, Palatka, FL.
- 12. Rao, D. 1988b. Development of Site-Specific Hypothetical Storm Distributions. Tech. Pub. SJ 88-6, St. Johns River Water Management District, Palatka, FL.

13. Soil Conservation Service. 1991. Soil Survey of Nassau County, Florida. United States Department of Agriculture.

องกันและสาน กล่างเป็น สนี่นั่นกัน

- 14. U.S. Army Corps of Engineers. 1997. Black Creek Basin: Comprehensive Floodplain Management Study, Phase II. Special Publication SJ98-SP10.
- 15. Henry, J.A., Portier, K.M., and Coyne, J. 1994. The climate and weather of Florida. Pineapple Press: Sarasota, Florida.
- 16. U.S. Department of the Interior, Geological Survey. 7.5-Minute Series Topographic Maps; scale 1:24,000, Various Maps.
- 17. U.S. Geological Survey. Water Resources Data: Florida. Various Water Years. Volume 1A, Northeast Florida Surface Water. U.S. Department of the Interior, Geological Survey, Tallahassee, Florida.
- U.S. Geological Survey. 1982. Technique for Estimating Magnitude and Frequency of Floods on Natural-Flow Streams in Florida. Water Resources Investigations 82-4012. U.S. Department of the Interior, Geological Survey, Tallahassee, Florida.
- 19. Capece, J. C., K. L. Campbell, and L. B. Baldwin, 1984 "Estimating Runoff Peak Rates and Volumes from Flat, High-Water-Table Watersheds," Paper no. 84-2020, ASAE, St. Joseph, Missouri.

· · · .

(1) 医脑桥 把操作的 建成化晶质 医结核结核 制度的 关键 (1) 的复数器具、 2004