Technical Publication SJ2002-2

NITRATE CONCENTRATIONS IN THE WEKIVA GROUNDWATER BASIN WITH EMPHASIS ON WEKIWA SPRINGS

by

David J. Toth, Ph.D., P.G. and Carlos Fortich

David J. Toth **Professional Geologist** License No. PG110 June 14, 2002 SEAL

St. Johns River Water Management District Palatka, Florida

2002

The St. Johns River Water Management District (SJRWMD) was created by the Florida Legislature in 1972 to be one of five water management districts in Florida. It includes all or part of 19 counties in northeast Florida. The mission of SJRWMD is to manage water resources to ensure their continued availability while maximizing environmental and economic benefits. SJRWMD accomplishes its mission through regulation; applied research; assistance to federal, state, and local governments; operation and maintenance of water control works; and land acquisition and management.

This document is published to disseminate information collected by SJRWMD in pursuit of its mission. Copies of this document can be obtained from:

Library St. Johns River Water Management District P.O. Box 1429 Palatka, FL 32178-1429

Phone: (386) 329-4132

ABSTRACT

Nitrate nitrogen (N) concentrations have been measured in Wekiwa Springs since 1961 and increased during the 1980s to a maximum in 1995 of 2.00 milligrams per liter (mg/L). Since 1995, nitrate N concentrations have decreased. In August 1999, the nitrate N concentration at Wekiwa Springs was measured at 1.30 mg/L. At this concentration, Wekiwa Springs discharges approximately 458 pounds of nitrogen per day, or 84 tons of nitrogen per year.

In a previous investigation (Toth 1999), the St. Johns River Water Management District (SJRWMD) determined that the delta nitrogen-15 value for Wekiwa Springs was +8.6 parts per thousand. This suggests that the source of the nitrates in Wekiwa Springs is a mixture of leachate from septic tanks and recharge water from fertilized lawns. In an effort to better locate the source of the nitrates, in 1999, SJRWMD, with the cooperation of the U.S. Geological Survey, sampled 50 sites in the Wekiva groundwater basin for nitrate N and 11 sites for isotopes (deuterium, oxygen-18, nitrogen-15, tritium, helium-3, helium-4, and neon). Twenty-two samples contained "elevated" concentrations of nitrate N above the background concentration of 0.2 mg/L. The highest concentration (7.5 mg/L) occurred to the west of Lake Apopka. N isotope concentrations indicated a piston flow fertilizer source for these nitrates, and tritium and helium-3 indicated a piston flow median age of 27.4 years for the water. The highest nitrate N concentrations corresponded to a cropland land use category in 1973 and are probably due to citrus fertilization.

The data indicate that the areas of the highest nitrate N concentrations probably do not contribute to the nitrate N discharging from Wekiwa Springs. Land use changes between 1973 and 1990 suggest that the sources for the nitrates at Wekiwa Springs are septic tanks and lawn fertilizers. The more locally developed flow of the Upper Floridan aquifer in the vicinity of the spring results in a more direct influence and source of the nitrate N contamination displayed at the spring. The contamination occurred by processes that took place approximately 17 years ago.

CONTENTS

Abstractv
List of Figures and Tablesix
INTRODUCTION
Purpose
Study Area2
Method
HYDROGEOLOGIC FRAMEWORK 11
Surficial Aquifer System11
Intermediate Aquifer System12
Floridan Aquifer System14
WATER QUALITY
Nitrate Nitrogen 19
Organic and Ammonia Nitrogen22
ISOTOPES
Stable Isotopes
Deuterium and Oxygen-1826
Nitrogen-15
Helium-3, Helium-4, Neon31
Radioactive Isotopes
Tritium
AGE
Tritium/Helium-3 Age 33
LAND USE
CONCLUSION
References
Appendix A—Station name, location, well characteristics, water quality, and isotope date for samples collected in this study

Appendix B—Tritium, helium-3, helium-4, and neon measurements and	
tritium/helium-3 age determinations for samples collected in this	
study	. 51

FIGURES AND TABLES

FIGURES

1	The St. Johns River Water Management District				
2	Wekiva groundwater basin study area4				
3	Wekiwa Springs groundwater basin5				
4	Ground and surface water basins in the study area				
5	Land surface elevation in the study area7				
6	Location of sampling sites in the Wekiva groundwater basin9				
7	⁷ Thickness of the upper confining unit for the Floridan aquifer in the Wekiva groundwater basin13				
8	Recharge areas to the Upper Floridan aquifer in the study area16				
9	Potentiometric surface of the Upper Floridan aquifer for May 1995 in the study area and direction of groundwater flow for Wekiwa Springs 17				
10	Total and dissolved nitrate nitrogen in the Wekiva groundwater basin				
11	(A) variation in the concentration of dissolved nitrate nitrogen in Wekiwa Springs, with time; (B) variation in the discharge of Wekiwa Springs, with time; (C) monthly rainfall at Wekiwa Springs				
12	Total nitrate as nitrogen from FDH-sampled wells in the study area 23				
13	Concentrations of total organic and ammonia nitrogen in the study area				
14	Relationship between delta deuterium and delta oxygen-18 for samples collected in this study				

Nitrate Concentrations in the Wekiva Groundwater Basin

15	Delta nitrogen-15 of nitrates and ammonia nitrogen in the Wekiva groundwater basin
16	Tritium/helium-3 age for samples in the Wekiva groundwater basin 34
17	Relationship between total and dissolved nitrate nitrogen and 1973 land use in the study area
18	Citrus acreage by year for Lake and Orange counties
19	Relationship between total and dissolved nitrate nitrogen and 1990 land use in the study area
20	Location of wastewater treatment plants processing 100,000 or more gallons per day in 1998 in Lake, Orange, and Seminole counties

TABLES

1	Hydrogeologic framework for the study area11
2	Total dissolved nitrate nitrogen, delta nitrogen-15, and tritium/helium-3 age for samples collected in this study 29

INTRODUCTION

Nitrate nitrogen (N) is a nutrient essential for plant and algal growth. High concentrations of nitrate N are detrimental to water bodies because it causes eutrophication. The St. Johns River Water Management District (SJRWMD) is charged with protecting the quality of its springs and therefore is concerned about concentrations of nitrate N in the springs. This paper focuses on Wekiwa Springs because it had the highest concentration of nitrate N among the 17 springs sampled in 1995–96 (Toth 1999).

Many springs in the Wekiva groundwater basin are known to have elevated concentrations (greater than 0.2 milligrams per liter [mg/L]) of nitrate N (Toth 1999). Total nitrate N concentrations were detected above the "elevated" threshold of 0.2 mg/L in Wekiwa Springs (1.92 mg/L as nitrogen), Rock Springs (1.62 mg/L), Seminole Springs (1.41 mg/L), Sanlando Springs (0.782 mg/L), Palm Springs (0.703 mg/L), and Starbuck Spring (0.447 mg/L). No nitrate N was detected in Messant Spring. Nitrate N was not measured in Gemini Springs in 1995 or 1996, but it was measured (0.8 mg/L) in this study.

The source of the nitrates differed by location of the springs (Toth 1999). The source was determined by measuring the delta nitrogen-15 ($\delta^{15}N$) content of the nitrate N. The elevated nitrate levels in Sanlando ($\delta^{15}N = +11.7\%$ [parts per thousand]) and Starbuck ($\delta^{15}N = +12.9\%$) springs, based on $\delta^{15}N$, are probably due to contamination by animal waste and/or sewage. The elevated nitrate levels in Palm Springs ($\delta^{15}N = +7.8\%$) and Wekiwa Springs ($\delta^{15}N = +8.6\%$) are probably due to contamination by animal waste and/or sewage, perhaps mixing with nitrates derived from fertilizers. Finally, the elevated nitrate levels in Rock ($\delta^{15}N = +5.8\%$) and Seminole springs ($\delta^{15}N = +5.1\%$) are probably due to contamination by nitrates from fertilizers. Concentrations of soil organic nitrogen are assumed to be low.

The nitrate concentrations in all springs are below the primary drinking water standard (FDER 1989) of 10 mg/L as N. However, there is concern that concentrations of "less than 1 mg/L cause a significant shift in the balance of spring ecological communities, leading to intensified

degradation of biological systems" (FDEP 2000). Both algal growth and eutrophication will cause the clarity of spring water to diminish.

PURPOSE

The purpose of this study was to determine the nitrate N concentrations in the Wekiva groundwater basin, the sources responsible for the elevated nitrate N concentrations, and the age of the water. Special emphasis was placed on Wekiwa Springs because it had one of the highest concentrations of nitrate N among the springs in the basin.

STUDY AREA

The study area occurs in SJRWMD (Figure 1) in east-central Florida. It occurs in what Tibbals (1990) defined as the Wekiva groundwater basin and includes western Seminole and Orange counties, a large part of Lake County, and a small portion of western Volusia and northern Polk counties (Figure 2). The boundaries of the Wekiva groundwater basin are based on the May 1980 potentiometric map for the Floridan aquifer. The study area includes most of the Wekiwa Springs groundwater basin (B. McGurk, SJRWMD, pers. com. 2000). The Wekiwa Springs groundwater basin lies in western Orange County and includes small portions of Seminole, Lake, and Polk counties (Figure 3). The Wekiwa Springs groundwater basin was defined on the basis of the 1995 average potentiometric map for the Floridan aquifer. The basin boundaries are approximate and may change from year to year.

The boundaries for the Wekiva groundwater basin and the Wekiwa Springs groundwater basin differ because they were defined by two different individuals who used two different potentiometric surface maps for the Floridan aquifer. In reality, they are the same. The Wekiwa Springs surface water basin is smaller than the groundwater basin. It occurs in western Orange and Seminole counties and eastern Lake County (Figure 4).

Land surface elevation is variable throughout the Wekiva groundwater basin (Figure 5). Elevations are above 150 feet mean sea level (ft msl) in the middle and western part of the groundwater basin, but are generally less than 100 ft msl in the surface water basin, and at Wekiwa Springs.

St. Johns River Water Management District 2

Figure 1. The St. Johns River Water Management District

St. Johns River Water Management District

St. Johns River Water Management District

Introduction

St. Johns River Water Management District

Method

Fifty water samples were collected from Upper Floridan aquifer wells, springs, and sinks in or close to the Wekiva groundwater basin for water quality analysis (Figure 6; Appendix A). Using standard sampling procedures, the samples were collected by SJRWMD with the cooperation of the U.S. Geological Survey (USGS) and analyzed in the USGS Ocala laboratory for total dissolved nitrate and nitrite nitrogen and total organic and ammonia nitrogen. In addition, eleven of the above samples were analyzed for deuterium (²H), oxygen-18 (¹⁸O), nitrogen-15 (¹⁵N), tritium (³H), helium-3 (³He), helium-4 (⁴He), and neon (Ne). The above isotopes were measured in contract laboratories for USGS. Tritium, helium-3, helium-4, and neon were measured in the Noble Gas Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York. All samples were collected in August and September 1999.

Results from the water quality analyses of the 50 water samples were used to prepare contour maps. The contours were generated using ArcView. In addition to the 50 samples, results from 35 other samples were included in the preparation of the contour maps. The other samples were collected from Upper Floridan aquifer wells and springs in the study area during 1996–99. Some of the other samples only reported total nitrate and nitrite nitrogen. However, it is assumed that there is little difference between total and dissolved nitrate and nitrite nitrogen. It is further assumed that nitrite concentrations are low to zero. Hence, future discussions will mention only nitrate.

Total nitrate as N was also plotted from Florida Department of Health (FDH)-sampled wells in Orange, Seminole, and Lake counties. FDH sampled domestic wells that are in the surficial and Floridan aquifers. For many wells, the total depth and casing depth were unknown. If a well was sampled more than once, the average concentration was plotted. The wells were sampled between 1994 and 2000. Over 3,000 wells were sampled. The total nitrate as N was plotted from all FDH wells to give an indication of the distribution of total nitrate in the Wekiva groundwater basin. Finally, 1973 and 1990 land use maps were compared to an Upper Floridan aquifer recharge map of the basin (Boniol et al. 1993) to identify potential sources for nitrate N.

St. Johns River Water Management District

HYDROGEOLOGIC FRAMEWORK

The hydrogeologic units in the study area are the surficial aquifer system; the intermediate aquifer system, or intermediate confining unit; and the Floridan aquifer system (Table 1). Detailed information about the geology and hydrology of these systems can be found in Puri and Vernon (1959), Stringfield (1966), Miller (1982, 1986), and Tibbals (1990). Karst features are common in the study area.

Hydrogeologic Unit	Epoch	Stratigraphic Unit	General Lithology
Surficial aquifer	Holocene	Surficial sands and	Sand, clayey sand, and clay,
system	Pleistocene	terrace deposits	with some shell locally
Intermediate	Pliocene	Undifferentiated	Sand, silt, clay, and shell
aquifer system,		deposits	
or intermediate	Miocene	Hawthorn Group	Phosphatic clay, silt, sand,
confining unit			dolostone, and limestones
Floridan aquifer	Eocene	Ocala limestone	Limestones and dolomitic
system			limestones
		Avon Park Formation	Limestones and dolostone
		Oldsmar Formation	Limestones and dolostone
	Paleocene	Cedar Keys	Dolostone, some limestone;
Lower confining		Formation	anhydrite occurs in lower
unit			two-thirds of formation

Table 1. Hydrogeologic framework for the study area

SURFICIAL AQUIFER SYSTEM

The uppermost water-bearing unit is the surficial aquifer system, which is composed of Holocene and Pleistocene sand, clayey sand, clay, and some shell. The sand and shell layers vary in thickness, extending from the land surface down to the uppermost areally extensive clay layer, which is less permeable.

Water in the surficial aquifer system is generally unconfined, and its level is free to rise and fall. Generally, the water table is a subdued reflection of the topography, but it can be several tens of feet below land surface. The surficial aquifer system is recharged primarily by rainfall. Along the St. Johns River, the surficial aquifer system also is recharged by upward movement of water from underlying aquifers. Some lakes, streams, and irrigation ditches, septic tank effluent, and stormwater retention ponds also recharge the surficial aquifer system. Water leaves the system through evapotranspiration, seepage to some lakes, discharge to some streams and wetlands, leakage to underlying aquifers, and pumpage from wells. The surficial aquifer system is tapped by wells for small to moderate amounts of water that are widely used for lawn and garden irrigation.

The lithology, texture, and thickness of deposits in the surficial aquifer system vary laterally as well as vertically. The sediments range from unconsolidated to poorly consolidated and generally grade from sand to clayey sand to clay. Shell beds, where present, may have a matrix of sand and/or clay. The clay layers can vary in extent, thickness, and permeability, but they do not significantly retard the downward movement of water.

INTERMEDIATE AQUIFER SYSTEM

Directly below the surficial aquifer system lies the intermediate aquifer system. The intermediate aquifer system in the study area consists of undifferentiated deposits of Pliocene sand, silt, shell, and clay and the phosphatic sand, silt, clay, limestone, and dolostone of the Miocene Hawthorn Group. The intermediate aquifer system is composed of thin, discontinuous layers, or lenses, of sand, shell, or limestone within the Hawthorn Group, which yield moderate amounts of water to domestic wells. Water in the intermediate aquifer system is confined. The intermediate aquifer system is recharged from the overlying surficial aquifer system or the underlying Floridan aquifer system, depending on the hydraulic pressure relationships and the degree of confinement of the intermediate aquifer and the Floridan aquifer systems.

The clays within the Pliocene sediments and the Hawthorn Group act as the upper confining unit for the Floridan aquifer system and retard the vertical movement of water between the surficial and intermediate aquifer systems and between the intermediate and Floridan aquifer systems. The thickness of the upper confining unit for the Floridan aquifer system is variable throughout much of the study area (Figure 7). The upper confining unit is absent over much of western Lake County, and its

St. Johns River Water Management District

thickness is less than 50 feet near Lake Apopka and over much of the Wekiva groundwater basin. At Wekiwa Springs, the thickness of the upper confining unit is between 50 and 100 feet. No information is available on the thickness of Pliocene deposits or of clays within the upper confining unit.

FLORIDAN AQUIFER SYSTEM

The Floridan aquifer system lies directly beneath the intermediate aquifer system. It consists of a thick sequence of limestone, dolomitic limestone, and dolostone. The top of the Floridan aquifer system is defined as the first occurrence of vertically persistent, permeable, consolidated, carbonate rocks. The top of the Floridan aquifer system is highest in Lake County, central Volusia County, western and northern Orange County, and western Seminole County. In those areas, the top is at, or slightly above, sea level.

The Floridan aquifer system is the principal source of fresh groundwater in the St. Johns River Water Management District (SJRWMD) and is capable of supplying large quantities of water to wells. Wells drilled into the Floridan aquifer system derive water both from the porous limestones and from fissures and cavities created by the dissolution and fracturing of limestones and dolostones. Throughout much of the study area, the Floridan aquifer system is confined. This aquifer system is unconfined in western Lake County.

The Floridan aquifer system consists of the Ocala Limestone (where present) and the Avon Park and Oldsmar Formations of the Eocene epoch and part of the Cedar Keys Formation of the Paleocene epoch. The Ocala Limestone constitutes the top of the Floridan aquifer system across much of the study area. The Ocala Limestone is absent and the Avon Park Formation constitutes the top of the Floridan aquifer system in southwestern Volusia County and northern Seminole County.

The Floridan aquifer system is divided vertically into three zones on the basis of permeability. Two zones have relatively high permeability and are referred to as the Upper and Lower Floridan aquifers. These zones are separated by a less-permeable dolomitic limestone referred to as the middle semiconfining unit. The Upper Floridan aquifer consists of the Ocala Limestone and the upper part of the Avon Park Formation. It generally contains potable water and is a major source of water for public supply. Near Orlando in Orange County, drainage wells are located in this aquifer. The city of Orlando and much of Orange County get their drinking water from the Lower Floridan aquifer. This paper only deals with the Upper Floridan aquifer.

High-rate (11–22 inches per year) recharge areas for the Upper Floridan aquifer generally occur in the center and western part of the Wekiva groundwater basin (Figure 8). High-rate recharge areas also occur near Wekiwa Springs in the Wekiwa Springs groundwater basin. The highest rate recharge areas in the Wekiwa Springs groundwater basin generally occur less than 5 miles from Wekiwa Springs. Some occur just to the south and southwest of Wekiwa Springs.

The potentiometric surface of the Upper Floridan aquifer ranged from less than 20 to greater than 120 ft msl in the study area for May 1995 (Figure 9). The potentiometric surface is the level to which water in the Floridan aquifer will rise in tightly cased wells in the aquifer. The level declines from the southwest to the northeast. At Wekiwa Springs, the level was about 25 ft msl in May 1995. Water flows at right angles to the potentiometric contours from areas of higher head to areas of lower head. Most water at Wekiwa Springs flows from the southwest.

St. Johns River Water Management District

St. Johns River Water Management District

WATER QUALITY

The water quality parameters analyzed for in this study are total and dissolved nitrate nitrogen and total organic and ammonia nitrogen. Total nitrate as N was also plotted from FDH-sampled wells.

NITRATE NITROGEN

Nitrate N concentrations are variable throughout the Wekiva groundwater basin. Concentrations are highest west and southwest of Lake Apopka, where concentrations above 5 mg/L occur (Figure 10). The highest concentration measured was 7.5 mg/L (at L-25, see Figure 6; Appendix A). Twenty-two samples had concentrations above the "elevated" concentration of 0.2 mg/L. This concentration was the maximum measured nitrate N concentration for five springs in the Ocala National Forest. Nitrate N concentrations for springs in the Ocala National Forest are assumed to not be affected by man. A sampled well near Wekiwa Springs was above 0.2 mg/L. The concentration of nitrate N at Wekiwa Springs was 1.3 mg/L (Appendix A).

The concentration of dissolved nitrate N in Wekiwa Springs has varied with time (Figure 11). It was 0.61 mg/L in 1961, peaked at 2.00 mg/L in 1995, and was 1.30 mg/L in August 1999. Using a discharge of 65.39 cubic feet per second measured on July 14, 1999, and a concentration of 1.30 mg/L, Wekiwa Springs discharged 458 pounds of nitrogen per day, or 84 tons of nitrogen per year in 1999. This concentration is diluted as it flows down the Wekiva River and enters the St. Johns River. Median nitrate N concentrations for six samples from a station in the Wekiva River near Sanford and a station in the St. Johns River near DeLand are 0.44 and 0.04 mg/L, respectively.

Nitrate N concentrations in Wekiwa Springs do not appear to be related to either discharge or monthly rainfall (Figure 11). Discharge measurements generally were made on the same day the spring was sampled for nitrate. Since 1995, nitrate N has generally declined. Discharge peaked in 1994 and was low in 1998, but was generally high between 1995 and 1999. However, both nitrate N and discharge decline for the last three measurements, which corresponds to the time period November 1999 to March 2000. Monthly rainfall was also low during that period. Yearly rainfall was significantly below average in 1998. Yearly rainfall was 45.18 inches in

Figure 11. (A) variation in the concentration of dissolved nitrate nitrogen in Wekiwa Springs, with time; (B) variation in the discharge of Wekiwa Springs, with time; (C) monthly rainfall at Wekiwa Springs 1993, 74.17 inches in 1994, 52.20 inches in 1995, 49.15 inches in 1996, 45.69 inches in 1997, 38.96 inches in 1998, and 52.25 inches in 1999.

Total nitrate as N from FDH wells is also variable throughout the basin (Figure 12). Concentration ranges of total nitrate N as high as 10–30 mg/L occur. These are generally located to the south and west of Lake Apopka. Concentrations near Wekiwa Springs fall in the range between 0.2 and 2 mg/L.

ORGANIC AND AMMONIA NITROGEN

Besides nitrate N, nitrogen can also be present in organic and ammonia nitrogen. In oxygenated waters, nitrogen is present as nitrate. In reducing waters, nitrogen is present as nitrite and ammonia.

Concentrations of total organic and ammonia nitrogen are generally below 0.2 mg/L throughout the basin (Figure 13). Concentrations are above 0.8 mg/L to the southeast of Wekiwa Springs. The low concentrations of organic and ammonia nitrogen suggest that most of the nitrogen is present as nitrate.

St. Johns River Water Management District

ISOTOPES

Isotopes are atoms of the same chemical element that differ in mass because of a difference in the number of neutrons in the nucleus. There are two types of isotopes: stable and radioactive. Stable isotopes are used in hydrologic studies to identify sources of water and to learn more about hydrologic processes such as recharge, evaporation, mixing, age of water recharge, and water-rock interactions. Stable isotopes monitored in this study are ²H, ³He, ⁴He, Ne, ¹⁵N, and ¹⁸O. Radioactive isotopes are generally used for age-dating water because these isotopes decay over a period of time at a known rate. The radioactive isotope monitored in this study is ³H.

STABLE ISOTOPES

The stable isotope content of samples generally is measured as a ratio and reported as a delta (δ) value; that is, these isotopes are compared to a standard (Equation 1, Gonfiantini 1981):

$$\delta_x = \left(\frac{R_x}{R_{standard}} - 1\right) 1,000 \tag{1}$$

where

- δ_x = delta values for a given stable isotope *x* in parts per thousand (‰), relative to a standard
- $R_x = \text{ratio of isotope } x \text{ in the sample (e.g., } {}^{2}\text{H}/{}^{1}\text{H}, {}^{15}\text{N}/{}^{14}\text{N}, {}^{18}\text{O}/{}^{16}\text{O})$
- $R_{standard} = \text{ratio of isotope } x \text{ in the standard (e.g., } {}^{2}\text{H}/{}^{1}\text{H}, {}^{15}\text{N}/{}^{14}\text{N}, {}^{16}\text{O}/{}^{16}\text{O})$

A water sample that had been analyzed for oxygen isotopes, for example, might have a δ^{18} O value of +2‰. The positive delta value means that the sample is enriched in ¹⁸O relative to the standard; in other words, the sample is isotopically "heavy" relative to the standard. A negative delta value indicates the sample is depleted in the isotope relative to the standard; that is, the sample is isotopically "light" relative to the standard.

Isotope standards represent the concentrations found in specific substances. The standard used for oxygen and hydrogen isotopic values of water is the Vienna Standard Mean Ocean Water (VSMOW). By convention, δ^2 H and δ^{18} O of VSMOW are both assigned a value of 0‰. Nitrogen in air is well mixed and is the nitrogen isotope standard. Its value is 0‰. The precision attainable in contract laboratories of USGS for sample preparation and analysis of stable isotope samples is 2% for ⁴He; 1% for ³He/⁴He; 4% for Ne (L.N. Plummer, USGS, pers. com. 1996); 2% for δ^2 H; and 0.2% for δ^{15} N and δ^{18} O (T.B. Coplen, USGS, pers. com. 1993).

Deuterium and Oxygen-18

Deuterium and ¹⁸O are stable isotopes of hydrogen and oxygen. Because hydrogen and oxygen are intimately associated in the water molecule, they are discussed together here.

Deuterium and ¹⁸O generally are used to determine the origin of water or to learn more about hydrologic processes. For different hydrologic processes such as evaporation, silicate hydrolysis, and geothermal exchange, the relationship between δ^2 H and δ^{18} O changes.

The global meteoric water (GMW) line represents the relationship between δ^2 H and δ^{18} O values contained in meteoric water worldwide. Equation 2 represents the GMW line (Craig 1961):

$$\delta^2 H = \left(8 \times \delta^{18} O\right) + 10 \tag{2}$$

where

 $\delta^2 H$ = delta value for deuterium $\delta^{18}O$ = delta value for oxygen-18

If values for samples fall on the GMW line, the water originated from rainwater.

Evaporation, evapotranspiration, geothermal reactions, and lowtemperature silicate hydrolysis produce different $\delta^2 H$ and $\delta^{18}O$ relationships compared with the GMW line. Evaporation from surface water bodies, such as lakes, is a non-equilibrium process that enriches ²H and ¹⁸O in the remaining water. Evaporation causes the plot of δ^2 H versus δ^{18} O to diverge from the GMW line. The slope of the resulting evaporation line generally ranges from 3 to 6, compared to a slope of 8 for the GMW line (Coplen 1993). Because of the difference in mass between water containing ²H and ¹⁸O and water not containing these isotopes, evapotranspiration preferentially transfers water containing the light isotopes ¹H and ¹⁶O into the atmosphere, thus enriching the remaining water in the heavier ²H and ¹⁸O. The enrichment of groundwater in ²H and ¹⁸O because of evapotranspiration is assumed to be similar to that of evaporation. Of the above processes, evaporation and evapotranspiration are most likely the only major processes that have affected the δ^2 H and δ^{18} O relationship in groundwater samples in the study area.

The relationship between the eleven samples of delta deuterium and delta oxygen-18 collected in this study do not plot along the GMW line (Figure 14). However, many samples, including that from Wekiwa Springs (Toth 1999), falls on a local meteoric water line. The local meteoric water line has a slope of 8 but a different intercept than the GMW line. The line signifies that the samples originate from local rainfall. Several samples fall on an evaporation trend line ($\delta^2 H = 4.51 \, \delta^{18} O - 0.41$), as defined by Sacks et al. (1998) for ten lakes in ridge areas of Polk and Highlands counties. This suggests that the Floridan aquifer in the study area is being recharged by evaporated water. The most likely sources for the evaporated water are Lake Apopka, karst lakes, and solution features in the study area. The sample in the lower left-hand corner to the left of the GMW line in Figure 14 is anomalous. It was collected from a Floridan aquifer well (L-38) in Lake Louisa State Park. Well L-38 is located next to a sinkhole lake.

Nitrogen-15

Nitrogen-15 is a stable isotope of nitrogen. It is generally used to identify sources of nitrate contamination (e.g., synthetic fertilizers versus animal wastes) or to document oxidation and reduction reactions. Metabolic processes tend to favor lighter isotopes (e.g., ¹⁴N). As a consequence, the heavier isotope (¹⁵N) is left behind. In this study, $\delta^{15}N$ was used to identify possible sources of nitrate contamination.

The $\delta^{15}N$ values for soil organic nitrogen generally range between +3‰ and +9‰ (Heaton 1986). However, the soils in the study area are assumed to have low concentrations of soil organic nitrogen. The $\delta^{15}N$ value of

Figure 14. Relationship between delta deuterium and delta oxygen-18 for samples collected in this study
nitrate in synthetic fertilizers ranges between -1% and +6%, but is generally less than +3%. The $\delta^{15}N$ value of nitrate from animal waste and/or sewage is generally above +10%. The $\delta^{15}N$ value of the ammonium ion (NH_4^+) has a range similar to nitrate for fertilizers, animal waste, and sewage.

In this study, the $\delta^{15}N$ value was determined for nine nitrate samples and two ammonium samples (L-16 and L-33) (Table 2). Nitrate N was insufficient in the two ammonium samples to measure $\delta^{15}N$. The 11 $\delta^{15}N$ values determined in this study ranged from 3.0% to 11.2%, with eight of the values falling below 5.3% (Figure 15). Only three samples had $\delta^{15}N$ values above +8%. The $\delta^{15}N$ values suggest that most of the nitrates in the study area are due to synthetic fertilizers.

Sampling Site ID	Station Name	Total Dissolved Nitrate Nitrogen	Delta Nitrogen-15	Tritium/ Helium-3 Age
L-2	Apopka Spring	4.9	3.9	24.5
L-40	Country Garden nursery	6.1	4.8	23.4
L-14	City of Eustis water plant	0.26	10.9	24.7
L-11	Gemini Springs	0.8	5.3	18.6
L-33	Groveland Tower	0.02	5.2 (NH ₄)	32.4
L-27	Town of Howey-in-the-Hills	0.71	8.6	26.2
L-38	Lake Louisa State Park	3.8	3.6	29.6
L-16	Lake Mary	0.02	3.0 (NH ₄)	27.4
L-43	City of Mascotte	1.4	11.2	28.7
L-44	Sunset Lakes Ski Center	3.3	4.4	29.9
L-3	Turnpike, site 38	6.7	4.1	27.5

Table 2. Total dissolved nitrate nitrogen, delta nitrogen-15, and tritium/helium-3 age for samples collected in this study

Note: NH₄ = ammonium

The $\delta^{15}N$ value for Wekiwa Springs is +8.6‰ (Toth 1999). This suggests that the nitrates in Wekiwa Springs are a mixture of those from septic tanks and those from synthetic fertilizers applied to lawns. The data suggest that the areas of highest nitrate N concentrations do not contribute to the nitrate N discharging from Wekiwa Springs. However,

St. Johns River Water Management District

the more locally developed flow of the Upper Floridan aquifer in the vicinity of the spring results in a more direct influence and source of the nitrate N contamination displayed at the spring.

However, the nitrates at the city of Eustis water plant (L-14) and the city of Mascotte (L-43) are probably due to animal waste and/or sewage because their $\delta^{15}N$ values are above 10‰. The nitrates for the town of Howey in the Hills (L-27) are probably due to a mixture resulting from synthetic fertilizers and animal waste and/or sewage because their $\delta^{15}N$ value is 8.6‰. The most likely source for sewage is septic tanks.

Helium-3, Helium-4, and Neon

Concentrations of ³He, ³H, and ⁴He can be used to determine an age for a water sample (Appendix B). Helium-3 is a radiogenic isotope of helium (He). It is produced by the radioactive decay of tritium (³H or T). Both ³He and ⁴He are stable isotopes of helium. Helium-3 was measured to calculate the tritium/helium-3 (³H/³He) age of the sample. Helium-4 was measured to correct the ³He concentration for ³He due mainly to atmospheric sources—that is, ³He concentrations arising from equilibration with air during recharge and entrainment of air bubbles. Both helium and neon are noble gases. Neon was measured to correct ⁴He for helium produced through the uranium and thorium decay series (Schlosser et al. 1989).

The ³He in the water is assumed to be of atmospheric and tritogenic origin. This condition usually prevails in shallow aquifers containing predominantly young waters occurring in sediments and rocks of relatively low uranium and thorium content. Additional He sources may be present in aquifers where the rocks are enriched in uranium or thorium, or in groundwater samples in which young water has mixed with relatively old water containing radiogenic He. In such cases, the measured neon content can be used to calculate the additional sources of He (Schlosser et al. 1989). In this study, most of the ³He has a tritogenic origin.

RADIOACTIVE ISOTOPES

The radioactive isotope measured in this study was tritium (³H). Tritium decays to helium-3. The error in the tritium analysis is listed in Appendix B.

Half-life is a fundamental property of radioactive isotopes. Half-life is a measure of decay rate (the time for a concentration of the isotope to decrease by one-half) and is unique for each radioactive isotope. The half-life for tritium is 12.43 years (Coplen 1993). The longer the half-life, the older the age that can be determined; the half-life of an isotope determines its utility as a measure of the age of groundwater.

In this study, the age of groundwater was determined by measuring the radioactive isotope ³H and the stable isotopes ³He, ⁴He, and Ne. Groundwater generally contains a mixture of waters of different age (Toth 1999). The tritium/helium-3 age of groundwater is the age of the young fraction. Tritium, helium-3, helium-4, and neon can generally identify water that is less than 30 years old (L.N. Plummer, USGS, pers. com. 1996). Carbon-14 can be used to determine the age of the old fraction of groundwater. Carbon-14 can be used to identify water that is less than 50,000 years old (Coplen 1993). Most of the tritium/helium-3 ages of groundwater in this study are less than 30 years.

Tritium

Tritium is a radioactive isotope of hydrogen that is produced naturally in small amounts by the interaction of cosmic rays with the earth's atmosphere. Cosmogenic ³H enters groundwater by way of rainfall at a concentration of approximately 3 to 5 tritium units (TU; 1 TU = 3.2 picocuries/liter). With the onset of atmospheric nuclear testing in 1953, the ³H concentration in rainfall began to increase. At Ocala, Florida, the ³H concentration in rainfall increased to as high as 700 TU in 1963 (Katz et al. 1995). In 1988, the ³H concentration in rain at Ocala was not measurably different from the estimated pre-1953 concentration (Katz et al. 1995). Because of the difference in ³H concentration in rainwater before and immediately after 1953 (i.e., before 1953 and after 1988), ³H has been used as a hydrologic tracer to date recent groundwater (Coplen 1988). The half-life of ³H is 12.43 years, which means that the ³H concentration decreases by one-half every 12.43 years.

In this study, tritium concentrations ranged from 1.92 TU to 4.65 TU (Appendix B). For comparison, the tritium concentration in Wekiwa Springs was 3.0 TU in 1995 (Toth 1999). Since tritium was present in all samples, all samples contain some fraction of water that is less than 46 years old (1953 to 1999).

Age

Groundwater generally contains a mixture of waters of different age (Toth 1999). The tritium/helium-3 age of groundwater is the age of the young fraction. Tritium/helium-3 age can generally identify water that is less than 30 years old. The carbon-14 age of groundwater likely represents the age of the old fraction and can generally identify water that is less than 50,000 years old. In Toth 1999, the carbon-14 age of groundwater ranged between 728 and 10,500 years old. Carbon-14 was not measured in this study.

TRITIUM/HELIUM-3 AGE

The tritium/helium-3 age of groundwater is an indicator of the time elapsed since recharge and isolation from the atmosphere. The method is based on the radioactive decay of ³H to ³He. Because these substances are virtually inert in groundwater and are unaffected by contamination from anthropogenic sources, ³H/³He dating can be applied to a wide range of hydrologic investigations. However, ³H/³He can be affected by dispersion processes. No attempt was made to correct for dispersion in this study.

The ${}^{3}H/{}^{3}He$ age of water samples collected in the Wekiva groundwater basin ranged from 18.6 years at Gemini Springs (L-11) to 32.4 years at the Groveland Tower (L-33) (Figure 16 and Table 2; Appendix B). The median age was 27.4 years. For comparison, the ${}^{3}H/{}^{3}He$ age of Wekiwa Springs was 17.1 years (Toth 1999). This age suggests that all samples in the study area contain some fraction of young water and that the age is less than 32 years old.

The youngest age occurs at Wekiwa Springs. This suggests that a significant fraction of spring water is coming from nearby sources. High-rate recharge areas occur just to the south of the spring (see Figure 8) and are the most likely source of the water discharging from the spring. This conclusion is consistent with a local meteoric origin for the waters discharging from Wekiwa Springs.

LAND USE

Because the median age of the wells sampled for tritium/helium-3 age dating was 27.4 years, the total nitrate N contours were superimposed on a map of 1973 land use (Figure 17). The three areas where total nitrate N is above 5 mg/L coincide with cropland land use and occur south and west of Lake Apopka. Lower nitrate N values also correspond to cropland areas. Hence, not all cropland areas have high nitrate N values.

This land use probably corresponds to citrus cultivation. Hence, the high nitrate N in groundwater is probably a result of citrus fertilization (prior to 1973). Citrus acreage in Lake and Orange counties peaked in 1968 (Figure 18). Acreage dropped significantly after 1984, a year of a severe freeze. No data are available for 1984.

The land use category in 1973 near Wekiwa Springs was pasture and urban. By 1990, most of the land use category south of Wekiwa Springs was urban and residential (Figure 19). In fact, urban areas in the Wekiwa Springs groundwater basin increased from 9.3% to 21.1% between 1973 and 1990. During this period, nitrate N increased in Wekiwa Springs. This indicates that the sources of the nitrates in Wekiwa Springs are likely a mixture of leachate from septic tanks and recharge from fertilized lawns. The urban areas are also high-rate recharge areas for the Upper Floridan aquifer (compare Figures 19 and 8), which suggests that young water is a substantial fraction of the mixture.

Because the $\delta^{15}N$ content of Wekiwa Springs suggests that the nitrates are mostly mixtures from animal waste and/or sewage and lawn fertilizers, the location of sewage treatment plants was examined. The nearest sewage treatment plant to Wekiwa Springs is in Seminole County (Figure 20). It was built in 1973, and may be responsible for the decline in nitrates at Wekiwa Springs. As urban areas continued to expand in close proximity to the spring, these developments have been brought on-line to the wastewater treatment facilities. This action and the more localized sources of recharge to the spring could account for the lower concentrations of nitrate and younger age of the water at the spring.

Nitrate Concentrations in the Wekiva Groundwater Basin

Figure 18. Citrus acreage by year for Lake and Orange counties (R. Johnson, Florida Agricultural Statistics Service, pers. comm., July 11, 2001) Nitrate Concentrations in the Wekiva Groundwater Basin

St. Johns River Water Management District

Land Use

St. Johns River Water Management District

CONCLUSION

Areas where the nitrate N concentrations are highest (above 5 mg/L) occur to the south and west of Lake Apopka. These concentrations occur in the cropland land use category for 1973 and likely are due to fertilizers applied in citrus production. The median age for groundwater in the Wekiva groundwater basin, based on 11 samples, is 27.4 years.

Based on its stable isotopic composition, groundwater in the Wekiva groundwater basin is being recharged by local precipitation and evaporated water. The most likely source for the evaporated water is the lakes within the study area.

Nitrate N concentrations at Wekiwa Springs increased during the 1980s. The δ^{15} N value at the spring suggests that the source of the nitrogen is from a mixture of animal waste or sewage and lawn fertilizers. Between 1973 and 1990, the urban land use category south of Wekiwa Springs increased. Land use changed from pasture to residential in high-recharge areas for the Upper Floridan aquifer during this period. This confirms that the source of the nitrates in Wekiwa Springs is a mixture of leachate from septic tanks and recharge water from fertilized lawns. The age of water discharging from Wekiwa Springs is 17 years. This suggests that past practices are affecting Wekiwa Springs today.

Nitrate N concentrations at Wekiwa Springs peaked at a value of 2.00 mg/L in 1995. Since 1995, nitrate N concentrations have declined. The decline in nitrates at Wekiwa Springs may be due to the construction of a wastewater treatment plant in Seminole County in 1973 or to lower discharge that might represent water from a deeper part of the aquifer. Rainfall at Wekiwa Springs was significantly below normal in 1998 and 2000. In 1999, Wekiwa Springs discharged 458 pounds of nitrogen per day or 84 tons of nitrogen per year.

The ^{15}N data suggest that the areas of the highest nitrate N concentrations do not contribute to the nitrate N discharging from Wekiwa Springs because the $\delta^{15}N$ of the highest nitrate N areas are below 5.0‰ but the $\delta^{15}N$ of Wekiwa Springs is 8.6‰. However, the more locally developed flow of the Upper Floridan aquifer in the vicinity of the spring results in a more direct influence and source of the nitrate N contamination displayed at the spring. Most of the water at Wekiwa Springs flows from the southwest.

The source of the nitrates is from the high-rate recharge areas just south and southwest of the spring.

Since the tritium/helium-3 age of Wekiwa Springs water is 17 years (Toth 1999), it is assumed that the processes that contaminated Wekiwa Springs occurred approximately 17 years ago. The groundwater discharging at Wekiwa Springs is a mixture of ages representing water traveling along many different flow paths. The young age suggests that most of the flow was from shallow flow paths in 1996 when the age was determined.

REFERENCES

- Boniol, D., M. Williams, and D. Munch. 1993. *Mapping recharge to the Floridan aquifer using a geographic information system*. Technical Publication <u>SJ93-5</u>. Palatka, Fla.: St. Johns River Water Management District.
- Coplen, T.B. 1988. Environmental isotopes in groundwater studies. In *Handbook on Hydrogeology*, edited by S.C. Csallany and R.A. Kanivetsky. New York: McGraw-Hill.
- ———. 1993. Uses of environmental isotopes. In *Regional Groundwater Quality*, edited by W. Alley. New York: V.N. Reinhold.
- Craig, H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural water. *Science* 133:1833–34.
- [FDEP] Florida Department of Environmental Protection. 2000. *Florida's springs— Strategies for protection and restoration*. Tallahassee, Fla.
- [FDER] Florida Department of Environmental Regulation. 1989. *Florida ground* water guidance concentrations. Tallahassee, Fla.
- Gonfiantini, R. 1981. The δ-notation and the mass-spectrometric measurement technique. In *Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle*, Chapter 4, edited by J.R. Gat and R. Gonfiantini. Vienna, Austria: International Atomic Energy Agency.
- Heaton, T.H.E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere—A review. *Chem. Geol.* 59:87–102.
- Katz, B.G., T.M. Lee, L.N. Plummer, and E. Busenberg. 1995. Chemical evolution of groundwater near a sinkhole lake, northern Florida: Flow patterns, age of groundwater, and influence of lake water leakage. *Water Resources Research* 31(6):1549–64.
- Knowles, L., Jr., A.M. O'Reilly, G.G. Phelps, and L.A. Bradner. 1995. Potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity. Open-File Report 95-0461. Tallahassee, Fla.: U.S. Geological Survey.
- Miller, J.A. 1982. *Geology and configuration of the top of the tertiary limestone aquifer system, southeastern United States.* Water Resources Investigations Open-File Report 81-1178. Atlanta: U.S. Geological Survey.

- ———. 1986. Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina. U.S. Geological Survey Professional Paper 1403-B. Washington, D.C.: U.S. Government Printing Office.
- Puri, H.S., and R.O. Vernon. 1959. *Summary of the geology of Florida and a guide to the classic exposures.* Special Publication 5. Tallahassee, Fla.: Florida Geological Survey.
- Sacks, L.A., A. Swancar, and T.M. Lee. 1998. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida. Water Resources Investigations Report 98-4133. Tallahassee, Fla.: U.S. Geological Survey.
- Schlosser, P., B.D. Turrin, and M. Klas. 2000. Tritium/He measurements for the USGS Project Fl-Knowles. Lamont-Doherty Earth Observatory, Palisades, N.Y.
- Schlosser, P., M. Stute, C. Sonntag, and K.O. Munnich. 1989. Tritogenic ³He in shallow groundwater. *Earth and Planetary Science Letters* 94:245–56.
- Stringfield, V.T. 1966. Artesian water in tertiary limestone in the southeastern states. U.S. Geological Survey Professional Paper 517. Washington, D.C.: U.S. Government Printing Office.
- Tibbals, C.H. 1990. *Hydrology of the Floridan aquifer system in east-central Florida*. Professional Paper 1403-E. Washington, D.C.: U.S. Geological Survey.
- Toth, D.J. 1999. Water quality and isotope concentrations from selected springs in the St. Johns River Water Management District. Technical Publication <u>SJ99-2</u>. Palatka, Fla.: St. Johns River Water Management District.

APPENDIX A—STATION NAME, LOCATION, WELL CHARACTERISTICS, WATER QUALITY, AND ISOTOPE DATA FOR SAMPLES COLLECTED IN THIS STUDY

\triangleleft
. <u>×</u>
Б
e
d
~

QW Source	SJRWMD/ DEP	USGS	SJRWMD/ DEP	NSGS	NSGS	NSGS	NSGS	NSGS	SJRWMD/ DEP	NSGS	NSGS	NSGS	NSGS	NSGS	NSGS	NSGS
GeoLog Type	Geol/Drill/ Gamma	6666-	6666-	6666-	6666-	6666-	Gamma	6666-	Gamma/Calip	Geol	Drill	6666-	6666-	6666-	6666-	6666-
Data Source	USGS (Mike)	USGS (Mike)	SJRWMD (Mike)	USGS (Mike)	NSGS	NSGS	USGS (Mike)	USGS (Mike)	SJRWMD (Mike)	SJRWMD	NSGS	NSGS	NSGS	NSGS	NSGS	NSGS
Data Frequency	Monthly	Semiannual	Monthly	Semiannual	Not sampled	Not sampled	Semiannual	Semiannual	Continuous	Quarterly	Not sampled	Not sampled	Not sampled	Not sampled	Not sampled	QW only
Well Depth (ft)	192	-9999	85	390	-9999	-9999	155	6666-	146	-9999	291	120	123	-9999	-9999	6666-
Casing Depth (ft)	105	6666	70	96	6666	6666	73	6666	110	6666	143	6666	6666	6666	6666	6666
Stickup	-3.40	-0.80	-0.40	-0.63		00.0	5	2.18 -	-4.24	40 -	-1.80	-1.75	- 00.0	-1.49 -	- 00.0	- 1.00
Station Type	UF	UF	UF	UF	UF	UF	UF	UF	UF	SP	UF	UF	UF	UF	UF	υF
LSD, ft msl	113.47	120	100.87	119.20	122	120	97.73	135.00	94.00	66	130.63	72	71.41	128.61	95	06
County	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69
Map	53	68	97	103	123	137	141	149	173	176	185	201	222	228	246	258
Longitude_dd	-81.82389	-81.70639	-81.74250	-81.83444	-81.76306	-81.84278	-81.67972	-81.66139	-81.68806	-81.68000	-81.88500	-81.67139	-81.69083	-81.70500	-81.89917	-81.81500
_atitude_dd	28.37917	28.41722	28.45806	28.47306	28.50778	28.52056	28.52444	28.54222	28.56528	28.56667	28.57556	28.59694	28.61528	28.62222	28.64111	28.65139
Quad	Lake Nellie	Lake Louisa	Lake Louisa	Lake Nellie	Clermont West	Clermont West	Clermont East	Clermont East	Clermont East	Clermont East	Mascotte	Clermont East	Clermont East	Clermont East	Center Hill	Howey in the Hills
Station Name	Eva 6" UFL	Lykes Bros. replacement 4" UFL (S Burger) near Keene Lake	Lake Louisa State Park 4" UFL (L-0053)	D Patton 6" UFL (prev. DD Gaffney) near Eva firetower	Country Garden Nursery 4" UFL, Clermont	Bernard DuFrene 2" UFL, SR 33 south of Groveland	Johns Lake 4" UFL (L-0052)	83213902 22S26E25 Edgewater Beach UFL near (East) Johns Lake	Site 38 Turnpike—Waits Junction 4" UFL (L-0199)	Apopka (Gourd Neck) Spring near Oakland	(City of) Mascotte 8" UFL	Montverde School 6" freeflow	Freeflow 4" UFL, Ferndale	Ferndale Baptist Church 4" UFL	Sunset Lakes Ski Center 4" UFL, north of Mascotte	Novelty Crystal Plant 4" UFL, O'Brien Road 0.1 mile south of the Florida Turnpike
Station ID	282245081492601	282502081422301	282729081443301	282823081500401	283028081454701	283114081503401	283128081404701	283232081394101	283355081411701	283400081405100	283432081530601	283549081401701	283655081412701	283720081421801	283828081535701	283905081485401
(Oxygen/ Deuterium) Delta H-2/ Delta O-18 [per mil]			-17.7 -3.82		-12.3 -2.57				-16.2 -3.13	-14.2 -2.88	-13.6 -2.62				-14.2 -2.75	
N14/N15 NO3 Fraction (NH4 in red) [per mil]			3.6		4.8				4.1	3.9	11.2				4.4	
Total P [mg/L]	0.07	0.11	0.02	0.06	0.1	0.08	0.17	0.14	0.02	0.03	0.04	0.02	0.02	0.02	0.24	0.04
Total Dis. Nitrate + Nitrite N [mg/L]	0.02	0.02	3.8	0.04	6.1	0.05	0.02	0.4	6.7	4.9	1.4	0.52	4.3	7.5	3.3	0.02
Total Drganic + Ammonia N [mg/L]	0.2	0.47	0.2	0.2	0.22	0.2	0.63	0.49	0.2	0.2	0.2	0.22	0.2	0.2	0.2	0.22
Measured (D.O. [mg/L]	0.0	0.0	I	0.0	1.7	I	0.0	0.8	I	1.7	0.0	0.0	2.2	3.5	1.1	0.0
Sampling Site ID	L-39	L-37	L-38	L-47	L-40	L-46	L-45	L-36	L-3	L-2	L-43	L-23	L-24	L-25	L-44	L-34

∢
.×
σ
Š
ĕ
ā
1

	QW Source	NSGS	SJRWMD/ DEP	NSGS	USGS	NSGS	SJRWMD/ DEP	NSGS	NSGS	USGS	NSGS	NSGS	NSGS	NSGS	NSGS	-9999	USGS	SJRWMD/ DEP
	GeoLog Type	6666-	Gamma/Calip	6666-	-9999	6666-	6666-	6666-	6666-	6666-	6666-	6666-	6666-	Geol/Drill	6666-	Gamma/Calip	-9999	6666-
	Data Source	NSGS	SJRWMD (Mike)	NSGS	NSGS	USGS (Mike)	SJRWMD/ DEP	NSGS	NSGS	Branham, Joe	NSGS	NSGS	NSGS	USGS (Mike)	NSGS	USGS (Jerry and Mike)	NSGS	SJRWMD/ DEP
	Data Frequency	Not sampled	Continuous/ monthly	QW only	Semiannual	Semiannual	Every 3 years	Not sampled	Not sampled	Not sampled	Logged	Not sampled	Not sampled	Semiannual	Not sampled	Monthly	Not sampled	Every 3 years
	Well Depth (ft)	141	368	6666-	650	539	350	6666-	6666-	170	205	120	170	752	6666-	364	6666-	750
	Casing Depth (ft)	6666-	148	6666-	575	145	162	6666-	6666-	6666-	160	84.5	6666-	155	6666-	102	-9999	274
	Stickup	-2.66	-2.93	-0.50	-1.90	-0.5	-1.30	0	0	0	-2.69	14.2	-1.00	-1.77	0	-1.60	0	6666
-	Station Type	Ŗ	UF	Π	UF	UF	ЧĽ	SP	SP	SP	UF	SP	UF	UF	SP	UF	SP	Γ
	LSD, ft msl	68.70	134.70	100	70.51	103.29	135	76	65	76	139.07	22	86.50	163.39	18	38.99	12	140
-	County	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69	69
	Map ID	265	293	318	322	324	326	337	347	353	374	381	391	431	461	484	488	511
	Longitude_dd	-81.70583	-81.89556	-81.73639	-81.68528	-81.86639	-81.77833	-81.81806	-81.82806	-81.90167	-81.60528	-81.42139	-81.53528	-81.64167	-81.51056	-81.42583	-81.45028	-81.65278
	Latitude_dd	28.66028	28.68944	28.71472	28.72222	28.72444	28.72500	28.74000	28.74861	28.75194	28.79028	28.79444	28.79917	28.81556	28.82778	28.84111	28.84389	28.85500
	Quad	Astatula	Center Hill	Astatula	Astatula	Howey in the Hills	Howey in the Hills	Howey in the Hills	Howey in the Hills	Leesburg West	Sorrento	Sanford SW	Sorrento	Eustis	Sorrento	Sanford SW	Sanford SW	Eustis
	Station Name	Lake Apopka Restoration Area (SJRVVMD) 4" ilntermittent, Clay Island	Groveland Tower 4" UFL (L-0095), SR 33 south of Okahumpka	Astatula (J. Swaffer Park) 4" UFL	Apopka-Beauclair Canal 4" (lower) UFL (L-0139) near SR 48	Creek Farms 8" UFL	(Town of) Howey in the Hills 14" UFL #3 (L-0591)	Holiday Springs at Yalaha	Blue Springs, Park Drive near Yalaha	Bugg Spring near Okahumpka	Wolf Sink (LCWA) 6" deep (L-0600) near Sorrento	Wekiva Falls Resort	L Knowles 4" UFL, 30845 CR 435, Mt. Plymouth	(City of) Mount Dora 20" UFL #3	Droty Springs near Sorrento	Seminole State Forest 4" UFL #1 (L-0037)	Palm Springs, Seminole State Forest	(City of) Eustis water plant 16" UFL (L-0593), CR 44A
	Station ID	283937081422101	284122081534401	284253081441101	284320081410701	284328081515901	284330081464201	284424081490500	284455081494100	284507081540600	284725081361901	284740081251700	284757081320701	284856081383001	284940081303800	285028081253301	285038081270100	285118081391001
	xygen/ uterium) Ita H-2/ ta O-18 er mil]		1 -1.32				3 -2.15											1 -2.05
-	Pee 0		-7-				-10.6											-10.
-	N14/N1 NO3 Fractio (NH4 ii red) [per mi		5.2				8.6											10.9
-	Total P [mg/L]	0.02	0.13	0.02	0.02	0.07	0.03	0.02	0.03	0.09	0.11	0.03	0.08	0.06	0.11	0.03	0.04	0.04
	Total Dis. Nitrate + Nitrite N [mg/L]	4.3	0.02	0.02	0.02	0.88	0.71	4.1	5.0	0.46	0.02	0.02	0.35	0.02	0.02	0.02	0.02	0.26
ŀ	Total Organic + Ammonia N [mg/L]	0.2	0.49	0.2	0.2	0.21	0.2	0.2	0.2	0.24	0.26	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Measured D.O. [mg/L]	I	0.0		I	0.0	0.0	0.5	1.0	0.0	0.0	0.0	0.1	I	I	0.0	0.2	
	Sampling Site ID	L-17	L-33	L-18	L-4	L-30	L-27	L-28	L-29	L-26 L-26 Dup	L-32	L-50	L-9 L-9 Dup	L-10	L-15	L-31	L-12	L-14

Nitrate Concentrations in the Wekiva Groundwater Basin

Appendix A

5																		
	QW Source	NSGS	USGS	NSGS	NSGS	USGS	NSGS	6666-	6666-	-9999	NSGS	NSGS	NSGS	NSGS	NSGS	NSGS	SJRWMD/ DEP	NSGS
	GeoLog Type	6666-	6666-	6666-	6666-	6666-	6666-	Geol	Drill	Drill	6666-	6666-	Apopka Well and Pump	6666-	6666-	6666-	6666-	6666-
	Data Source	NSGS	NSGS	USGS (Mike)	USGS (Mike)	NSGS	USGS (Jerry)	USGS (Jerry)	NSGS	NSGS	USGS (David)	NSGS	NSGS	NSGS	USGS (David)	NSGS	SJRWMD/ DEP	USGS/ SJRWMD
	Data Frequency	Not sampled	Not sampled	Semiannual	Semiannual	Not sampled	Semiannual	Semiannual	Not sampled	Not sampled	Monthly	Not sampled	Not sampled	Not sampled	Monthly	Not sampled	Every 3 years	Bimonthly
	Well Depth (ft)	6666-	109	6666-	350	65	6666-	370	117	565	6666-	403	150	6666-	6666-	6666-	6666-	80
	Casing Depth (ft)	6666	102	6666	6666-	6666-	6666	148.0	105	192	6666	127	6666	6666	6666	6666	6666-	6666.
	Stickup	0	-2.70	0.63	-0.10	-0.50	-1.30	-1.00	-2.90	-1.20	5.28	-2	-0.65	0	0.57	0	ကို	0
	Station Type	SP	Ъ	Ч	Ŀ	ΟF	ΟF	Ч	UF	UF	SP	UF	UF	UF	SP	SP	Ъ	SP
	-SD, ft msl	12	19.61	64.5	120.84	26.67	108.06	123.18	96	120.9	19.82	83	91	45	28	25	67	7
	County	69	69	69	69	69	95	95	95	95	95	95	95	95	95	95	117	127
	Map ID	534	538	550	557	582	1028	1029	1049	1091	1093	1096	1098	1105	1106	1114	1331	1493
	Longitude_dd	-81.44000	-81.40611	-81.48167	-81.56833	-81.40333	-81.65361	-81.62778	-81.54694	-81.55472	-81.46000	-81.60139	-81.51417	-81.51833	-81.49944	-81.50944	-81.34667	-81.31056
	Latitude_dd	28.87333	28.87500	28.88361	28.88833	28.91500	28.50472	28.55694	28.63583	28.68889	28.71194	28.72500	28.72778	28.75361	28.75556	28.77000	28.76472	28.86250
	Quad	Sanford SW	Sanford SW	Pine Lakes	Paisley	Pine Lakes	Clermont East	Clermont East	Apopka	Apopka	Forest City	. Apopka	Apopka	Sorrento	Sorrento	r Sorrento	Sanford	Sanford
	Station Name	Shark's Tooth Spring, Seminole State Forest	Lower Wekiva River State Preserve 2" freeflow #2 (south)	Reese 4" UFL near Cassia	Eustis Sand Co. 12" UFL (L-0375)	Lower Wekiva River State Preserve 2" intermittent flow #1 (north)	(17830) Davenport Road 4" UFL south of Oakland	(Town of) Oakland 12" UFL #2	Magnolia Park 6" UFL near Ocoee	Minute Maid/Plymouth Prod. 12" UFL #1	Wekiwa Springs, Wekiwa Springs State Park	World Foliage Resource, Inc 8" UFL near Zellwood	James Owens UFL, 132 W. Ponkan Road, 3.9 miles north of Apopka	Blue Sink, Orange Co. near Rock Springs	Rock Springs near Apopka	Sulphur (Camp) Springs nea Mt. Plymouth	S-0972 Lake Mary UFL #2	Gemini Springs near DeBary
	Station ID	285224081262400	285230081242201	285301081285401	285318081340601	285454081241201	283017081391301	283325081374001	283809081324801	284120081331701	284243081273600	284330081360501	284340081305101	284513081310601	284520081295800	284612081303400	284553081204801	285144081183900
	ygen/ terium) a H-2/ a O-18 r mil]																-2.28	-2.77
	[[[[[[[[[[[[[[[[[[[-11.3	-13.6
	N14/N13 NO3 Fractior (NH4 in red) [per mil																3.0	5.3
	Total P [mg/L]	0.05	0.06	0.10	0.11	0.10	0.03	0.05	0.04	0.35	0.12	0.02	0.03	0.09	0.08	0.03	0.10	0.06
	Total Dis. Nitrate + Nitrite N [mg/L]	0.04	0.02	0.02	0.02	0.02	0.02	0.17	0.02	0.02	1.3	0.02	0.02	1.8	1.4	0.02	0.02	0.8
	Total Organic + Ammonia N [mg/L]	0.2	0.31	0.2	0.2	0.46	0.2	0.2	0.22	0.44	0.2	0.2	0.2	0.2	0.2	0.2	0.26	0.2
	Measured D.O. [mg/L]		0.0	0.0	0.0	0.1	0.0	0.0	0.0	l	0.1	l	0.1	0.7	0.2	0.0	I	0.2
	Sampling Site ID	L-13	L-19	L-21	L-22	L-20	L-42	L-35	L-41	L-49 L-49 Dup	L-1	L-48	L-8	L-7	L-5	L-6	L-16 L-16 Dup	L-11 L-11 Dup

APPENDIX B—TRITIUM, HELIUM-3, HELIUM-4, AND NEON MEASUREMENTS AND TRITIUM/HELIUM-3 AGE DETERMINATIONS FOR SAMPLES COLLECTED IN THIS STUDY

USGS-FL-Knowles

	USGS		Tritium	⁴He		Ne
ltem	Lab ID #	Field ID #	(TU)	cm ³ STPa ⁻¹	δ ³ He	cm ³ STPa ⁻¹
1	992780001	Apopka Spring/992780001	2.94 3.03	5.3746E-08	29.04	2.1419E-07
2	992780009	Country garden/992780009	2.79 3.02	5.3195E-08	26.1	2.1463E-07
з	992780004	Eustis/992780004	2.32	5.3367E-08	23.17	2.1308E-07
4	992780003	GeminiSpring/992780003	2.53 2.21	6.0696E-08	3.26	2.1839E-07
5	992780007	Groveland/992780007	1.95 2.01	5.1108E-08	32.19	2.0161E-07
6	992780006	Howey/992780006	2.23 1.92	5.2442E-08	21.23	2.0304E-07
7	992780008	Lake Louisa/992780008	3.93 4.12	5.5318E-08	55.7	2.2465E-07
8	992780005	Lake Mary/992780005	2.95 2.71	5.1249E-08	41.77	2.1482E-07
9	992780010	Mascotte/992780010	4.01 3.64	5.2863E-08	53.83	2.1237E-07
10	992780011	Sunset lakes/992780011	4.65 4.13	5.2897E-08	66.24	2.0953E-07
1'1	992780002	Turnpike/992780002	3.06 2.75	5.3634E-08	35.6	2.1121E-07

published comments								
5 (yrs) sted) ±1.1	± 1.2	+ 1.2	± 0.8	± 1.8	± 1.2	±	± 1.0	± 0.8
SampleID Sampling Tritium ±10.TU δ'He ±10 (%) ^{Hatto} ±10 (%) ^{Hatto} ±10 (%) ^{Hatto} ±10 (%) ^{Agte} Age ±10 (Yrs) Age ±1 Apopka Spring/992780001 <u>8/11/99</u> 2.94 0.12 29.04 0.24 1.786 0.47 5.37 21.42 (-1.71 25.3 ± 0.6 24.5 · Attemate Inturu used for age cato:	Apopka Spring/992780001 8/11/199 3.03 0.08 0.03 0.09 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.014 28.10 0.24 1.745 0.47 5.32 21.46 2.79 2.7 23.4 23.4 23.4 23.4 1.745 0.47 5.32 21.46 2.29 24.5 4 0.7 23.4 Allemate Intium used for age calc. 0.14 26.10 0.24 1.745 0.47 5.32 21.46 2.29 24.5 4 0.7 23.4	Country garden/992780009 9/8/99 3.02 0.08 Image: Country garden/992780009 Memory and the finance of the context of the cont	GeminiSpring/992780003 8/17/99 2.53 0.11 3.26 0.24 1.429 0.47 6.07 21.84 9.27 8.5 ± 0.5 18.6 Zitemale Inform used for age calc. GeminiSpring/992780003 8/17/99 2.21 0.08 6	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Groveland/992780007 9/1/99 2.01 0.06 1 1 1 1 Alternate intum used for age calc. Alternate intum used for age calc. A'te A'te Tritium data from bottle sample Howey/992780005 8/30/99 2.23 0.11 21.23 0.24 1.678 0.47 5.24 20.30 2.61 2.7.7 ± 0.7 26.2 Alternate Intum used for age calc. 3/te 1.678 0.47 5.24 20.30 2.61 2.7.7 ± 0.7 26.2	Howey/992780005 B/:30/:99 1.92 0.05 1 <th1< th=""> 1 1 <th1< th=""> <th< td=""><td>Lake Louisa/992780008 9/7/1/99 4.12 0.08 4.12 0.08 4.12 0.08 4.12 0.08 100</td><td>Lake Mary/992780005 B/18/199 Z.71 0.06 1 <th1< th=""> <th1< th=""> <th1< th=""> 1 <t< td=""></t<></th1<></th1<></th1<></td></th<></th1<></th1<>	Lake Louisa/992780008 9/7/1/99 4.12 0.08 4.12 0.08 4.12 0.08 4.12 0.08 100	Lake Mary/992780005 B/18/199 Z.71 0.06 1 <th1< th=""> <th1< th=""> <th1< th=""> 1 <t< td=""></t<></th1<></th1<></th1<>

constants: δ^{3} He_{solution}: -1.8 %; λ_{ulr} .05577yr.^{-1, 3}He/⁴He_{annes} = 1.384 x10⁶; crustal terrigenic ³He/⁴He ratio: 2 x10⁶

St. Johns River Water Management District 54

NGL DEO

Noble Gas Laboratory	
Lamont-Doherty Earth Observatory	,
Columbia University, New York	

report Sender Know	wles Organization USGS	Program FL-Know	es
Sample ID Apo	pka Spring/992780001		
Channel No. 1			
Sample 8/11/00		Dat	e received 10/7/99
Date 0/11/99	Time 1000 Altitude 55	m Temp. 25.7	°C Salinity 0
T Degas No. 14919	T Degas Date	T Measurer	ment Date 03/06/2000
Tritium: 2.940 ±	0.116 TU (1 σ) 0.116	⁴He bulb blank Ingrown ³He _{trit} %³He _{trit}	0.887 x10 ⁻⁹ cm ³ STP 5.82968 x10 ⁻¹⁵ cm ³ STF 78.8
Alternative tritium value:	± TU (1σ) ^{comm}	ent:	
He Extraction No. 14919	He Extraction Date 11/11/199	9 He Measure	ment Date 12/13/99
5^{3} He: 29.04 ± 0.	240 % (1 σ) δ^{3} He _{cor} from other 29.0)4 % δ ³ He _{uncor} : 29.179	$\theta \pm 0.238$ % (1 σ)
${}^{3}\text{He}_{\text{trit}}$: 9.107 ± 0.	080 TU (1σ)	³ He: 9.599	x10 ⁻¹⁴ cm ³ STP/g
		Sample weight: 40.0	g
⁴ He: 5.375 ± 0.	014 x10 ⁻⁸ cm ³ STP/g (1σ)	∆⁴He: 22.84 %	Uncorrected Age $\pm 1\sigma(y)$
Ne: 21.419 ± 0.	294 x10 ^{-θ} cm ³ STP/g (1σ)	∆Ne: 21.47 %	25.3 ± 0.6
Average crustal terrigeni	c ³ He/ ⁴ He ratio: 2 x10 ⁻⁸ :		Corrected for
0°He _{cor} : 20.894 %	311-	0.000	terrigenic He
He _{cor} : 8.603 TU	He _{cor}	9.600 x10 ¹⁺ cm ³ STP/g	
⁴ He _{cor} : 5.467 ×10 ⁴	³ cm³STP/g % Terrigenic ⁴He	-1.7	Age $\pm 1\sigma(y)$
⁴ He _{terrigenic} : -0.092 x10 ⁻⁸	cm ³ STP/g		24.5 ± 1.1
Site specific terrigenic 3	te/ ⁴ He ratio:	1	Corrected for
			terrigenic He
δ ³ He _{cor} 26.894 %	³ He _{cor} 9.	.600 x10 ⁻¹⁴ cm ³ STP/g	Age $\pm 1\sigma(y)$
³ He _{cor} 8.603 TU			±
constants: δ ³ He _{equilibrium} : -1.8 %	λ_{311} = .05577yr. ⁻¹ ; ³ He/ ⁴ He _{atmos} = 1.384 :	×10 ⁻⁶	
published comments			
Comments:			

report Sender	Knowles	Organization USGS	Program FL-Knowl	es
r Sample ID	Apopka Spri	ng/992780001		
Chappel Ne				
Sample		Tritium Bottle No. 1	Dat	e received 10/7/99
Date 8/11/99	Sampling	Altitude 55	m Temp. 25.7	°C Salinity 0
T Degas No. 10062	288	T Degas Date 11/12/1999	T Measurer	ment Date 02/21/2000
Tritium 2.020	. 0.070		⁴ He bulb blank	1.920 x10 ⁻⁹ cm ³ STP
1111um: 3.030	± 0.076	ΤU (1 σ) 0.076	Ingrown ³ He	13.2280 ×10 ^{.15} cm ³ STP
		0000		79.9
Alternative tritium value:	: ±	TU (1σ)		
He Extraction No.	H	le Extraction Date	He Measure	ment Date
δ³He:	± %(1σ) $\delta^{3}He_{cor}$ from other	% δ ³ He _{uncor} :	± % (1σ)
³ He _{trit} :	± TU	(1σ) (see above):	³ He:	$x10^{-14}$ cm ³ STP/n
			Sample weight:	g
⁴He:	± x10 ⁻	⁸ cm ³ STP/g (1σ)	∆⁴ He: %	
Ne:	± ×10 ⁻¹	8 cm ³ STP/q (1g)	ANe: %	Age 10(y)
Average crustal terr	igenic ³ He/ ⁴ He	e ratio: 2 x10 ⁻⁸ :	70	
δ ³ He _{cor} :	%			Corrected for
³ He _{cor} :	TU	³ He _{cor} :	x10 ⁻¹⁴ cm ³ STP/g	terrigenic rie
⁴ He:	x10 ⁻⁸ cm ³ STP/c	% Terrigenic ⁴ He		$\Lambda = \pm 1 \sigma(v)$
⁴ He _{terrigenic} :	x10 ⁻⁸ cm ³ STP/0			Age = ()/
,				
Site specific terrigen	nic ³ He/⁴He ra	tio:		Corrected for
δ ³ He _{an} o	2/2	³ Ho	4 or 14 3 or TP /	Acc $\pm 1\sigma(v)$
3 H o	78	11ecar	x10 cm ⁻ STP/g	Age = ()
constants: δ^3 Ho	1 8 9(+) 055	77	100	
Tritium data	from bottle sample	7/yr.; He/ He _{atmos.} = 1.384	x10°	
comments				
Comments:				

LDEO

àr

No	ble Gas	s Labo	ratory		
Lar	nont-D	oherty	Earth	Observa	tory
Col	umbia	Univer	sity, N	ew York	

report Sender Knowles Organization USGS Program FL-Knowles	
r Sample ID Country garden/992780009	
Channel No. Tritium Bottle No. Date received 10 Sample 9/8/99 Sampling 1330 Altitude 40 m Temp. 24.2 °C Salinity 0	/7/99
T Degas No. 14909 T Degas Date T Measurement Date 03/0	7/2000
Tritium: 2.792 \pm 0.137 TU (1 σ) 0.137 4 He bulb blank 1.103 x10 ⁻⁹ Ingrown 3 He _{int} 5.97019 x10 ⁻¹⁵ 6 He _{int} 74.3	cm ³ STP cm ³ STI
Alternative tritium value: \pm TU (1 σ)	
He Extraction No. 14909 He Extraction Date 11/9/1999 He Measurement Date 12/1/	4/99
$δ^{3}$ He: 26.10 ± 0.240 % (1σ) δ^{3} He _{cor} from other 26.1 % δ^{3} He _{uncor} : 26.188 ± 0.240 %	6 (1σ)
³ He _{trit} : 8.150 \pm 0.070 TU (1 σ) ^{T (see above):} ³ He: 9.284 x10 ⁻¹⁴ cm ³ STI Sample weight: 39.4 g	Þ/g
⁴ He: 5.320 \pm 0.014 x10 ⁸ cm ³ STP/g (1 σ) Δ^{4} He: 20.87 % Uncorrect	ed
Ne: $21.463 \pm 0.276 \times 10^{10} \text{ cm}^3 \text{STP/g} (1 \text{ g})$ ANe: $20.21 \% 24.5 \pm 0^{10}$	(y) 7
Average crustal terrigenic ³ He/ ⁴ He ratio: 2 x10 ⁻⁸ :	
$δ^{3}$ He _{cor} : 23.310 % 3 He _{cor} : 7.483 TU 3 He _{cor} : 9.286 x10 ⁻¹⁴ cm ³ STP/g	He
⁴ He _{cor} : 5.441 ×10 ⁻⁸ cm ³ STP/g % Terrigenic ⁴ He -2.3 Age ±1σ ⁴ He _{terrigenic} : -0.122 x10 ⁻⁸ cm ³ STP/g 23.4 ± 1.3	(y) 2
Site specific terrigenic ³ He/ ⁴ He ratio: Corrected	for
δ^{3} He _{cor} 23.310 % 3 He _{cor} 9.286 x10 ⁻¹⁴ cm ³ STP/g Age $\pm 1\sigma$ (He y)
³ He _{cor} 7.483 TU ±	
constants: δ^{3} He _{equilibrium} : -1.8 %; λ_{3H} = .05577yr. ⁻¹ ; ³ He/ ⁴ He _{atmos} = 1.384 x10 ⁻⁶	
published Comments	
Comments:	

report	Sender	Knowles	Organiza	ation USGS	Progra	m FL-Knowle	es	
r	Sample ID	Country ga	arden/99278	0009				
	; Channel No.		Tritium Bottle	No. 1		Date	receive	1 10/7/99
Sample 9	8/99	Samplin	9 1330	1 Altitude [40		Form 24.2	°C	. 0
Date	1000	Time		Altitude	m	emp. Z	C Sali	nity C
T Degas No	1006	282	T Degas Date	e 10/29/1999		T Measuren	nent Date	02/22/2000
Tritium:	3.024	± 0.07	9 TU (10	5) 0.079		Ingrown ³ He _{unt} % ³ He _{unt}	14.639 83.8	x10° cm STP 3 x10° cm STP
Alternative	tritium value	:	±	comm TU (1σ)	ient:			
He Extractio	on No.		He Extraction	Date		He Measurer	ment Dat	e
δ ³ He:		±	% (1σ) δ ³ He _{co} T (see	, from other	% 8 ³ H	He _{uncor} :	±	% (10)
³ He _{trit} :		±	TU (1σ)			³ He:	x10 ⁻¹⁴	cm ³ STP/g
					Sample w	eight:	g	
⁴He:		± >	(10 ⁻⁸ cm ³ STP/g	g (1ơ)	∆*He:	%	Age	$\pm 1\sigma(y)$
Ne:		± >	10 ⁻⁸ cm ³ STP/g	g (1σ)	∆Ne:	%		
Average	crustal ter	rigenic ³ He	⁴ He ratio: 2	x10 ⁻⁸ :			Co	prrected for
δ ³ He _{cor} :		%		340		10:14 am ³ CTD/c	te	rrigenic He
"He _{cor} :		TU		He _{cor} .		xiu cmistry		
⁴ He _{cor} :		x10 ⁻⁸ cm ³ S	TP/g %1	Ferrigenic ^⁴ He			Age	±1 σ(y)
⁴ He _{terrigeni}		x10 ⁻⁸ cm ³ S1	P/g					
Site spec	ific terrige	nic ³ He/ ⁴ He	ratio:		7		Co	prrected for
-							te	rrigenic He
δ ³ He _{cor}		%		³ He _{cor}	×	10 ⁻¹⁴ cm ³ STP/g	Age	±10 (y)
³ He _{cor}		TU						_
constants:	$\delta^{3}He_{\text{equilibrium}}:$	-1.8 %; λ _{3H} =	.05577yr. ⁻¹ ; ³ He	e^{4} He _{atmos} = 1.384	x10 ⁻⁶			
published comments	Tritium dat	a from bottle sa	imple					
Comment	s:							

	NGL	жео Х		Noble C Lamont Columb	Gas La t-Dohe bia Uni	aborato erty Ear iversity	ry th C Nev)bser w Yoi	vatory rk
report	Sender	Knowles	0	rganization US	GS	Program FL	-Know	les	
r	Sample ID	Eustis/99	278000	4					
	Channel No.	1	Tritiun	n Bottle No.	7				10/7/00
Sample 8	/17/99	Samp	ling 1630		48			te received	10/7/99
Date	1101	Tim	e	Altitude	e 40	m Temp. [4	24.7	^{°C} Salin	ity 0
T Degas No	b. 1491	2	T Deg	as Date		Т	Measure	ment Date	03/06/2000
Tritium:	2.322	± 0.1	10 т	Ό (1 σ) 0.1	10	"He lingro	oulb blank wn ³ He _{int} % ³ He _{int}	<pre>x 1.295 5.51831 67.4</pre>	x10" cm ³ STF x10 ⁻¹⁵ cm ³ ST
Alternative	tritium value	:	±	TU (1σ)	comment:				
He Extractio	on No. 1491	5	He Ext	raction Date 11	/9/1999	He	Measure	ement Date	12/14/99
δ ³ He:	23.17	± 0.240	%(1o)	δ^{3} He _{cor} from other T (see above):	er 23.17	% δ ³ He _{uncor} :	23.26	7 ± 0.24	1 % (10)
³ He _{trit} :	7.305	± 0.070	TU (1σ)	· (See above).	Sa	³ He: ample weight:	9.097 39.3	x10 ⁻¹⁴ c	m³STP/g
⁴ He:	5.337	± 0.014	x10 ⁻⁸ cm ³	STP/g (1o)	۵	⁴ He: 21.54	%	Unc	orrected
Ne:	21.308	+ 0.268	x10 ⁻⁸ cm ³	STP/q (1g)	^	Ne. 10.89	0/	Age	±10 (y)
Average	crustal terr	igenic ³ He	e/ ⁴ He rati	io: 2 x10 ⁻⁸ :		19.00	70	25.5	± 0.7
δ ³ He _{cor} :	21.530	%						Cor	rected for
³ He _{cor} :	6.905	TU		ЗН	le _{cor} : 9.09	99 x10 ⁻¹⁴ c	m ³ STP/g		igenie ne
⁴ He _{cor} :	5.410	x10 ⁻⁸ cm ³ S	STP/g	% Terrigenic	"He -1.4	4		Age	$\pm 1\sigma(\mathbf{y})$
⁴ He _{terrigenic}	-0.073	x10 ⁻⁸ cm ³ S	TP/g					24.7	+ 1.2
Site spec	ific terriger	nic ³ He/ ⁴ H	e ratio:					Cor	rected for
δ^{3} He 2	1 530	2/		311-				terr	tigenic He
³ He	.1.550	70		Heco	9.099	х10''* сп	1 ³ STP/g	Age	T10 (Å)
constants:	s ³ ⊔o	1.9.9(+)	0.5577	1.3. 4.					± ,
Dublished	O Fileequilibrium.	-1.0 %; A _{3H} =	.05577yr.	; "He/"He _{atmos.} =	1.384 x10°				
comments									
Comments	5:								

report	Sender	Knowles	0	rganization	JSGS	Prog	ram FL	-Knowle	es		
r	Sample ID	GeminiSp	pring/99	2780003							
	Channel No		Tritium	Battle No.				-		10/7	
Sample 107	17/00	Sampl		Bottle No.			-	Date	e received	10/7	/99
Date 8/	17/99	Time	9 1130	Alti	tude 15	m	Temp.	22.6	°C Sali	nity 0	
T Degas No.	14918	В	T Deg	as Date			Т	Measuren	nent Date	03/06/3	2000
Tritium:	2.531	± 0.10	т 80	Ū(1σ) (0.108		⁴ He l Ingro	oulb blank wn ³ He _{trit} % ³ He _{trit}	0.507 4.69447 84.9	x10 ^{.9} cn 7 x10 ^{.15} ci	n ³ STP m ³ STP
Alternative	tritium value	:	±	TU (1	σ)	ent:					_
He Extraction	n No. 1491 8	3	He Ext	raction Date	11/11/199	9	He	Measurer	ment Date	12/9/99	Э
δ³He:	3.26	± 0.240	% (1	δ^{3} He _{cor} from	other 3.26	δ % δ	³ He _{uncor} :	3.362	± 0.2	41 % ((10)
³ He _{trit} :	1.532	± 0.080	TU (1σ)	I (See abov	e).		³ He:	8.674	x10 ⁻¹⁴	cm ³ STP/	g
						Sample	weight:	39.9	g		
⁴He:	6.070	± 0.026	x10 ⁻⁸ cm ³	STP/g (1o)		∆⁴He:	36.89	%	Un Age	±10 (y	5
Ne:	21.839	± 0.138	x10 ⁻⁸ cm ³	STP/g (1o)		∆Ne:	20.54	1 %	8.5	± 0.5	
Average c δ ³ He _{cor} :	rustal terr 13.667	'igenic ³He %	e/⁴He rat	io: 2 x10 ⁻⁸					Co te	rrected	for He
³ He _{cor} :	4.617	TU			³ He _{cor} :	8.663	x10 ⁻¹⁴ c	m ³ STP/g			
⁴ He _{cor} :	5.507	x10 ⁻⁸ cm ³ S	TP/g	% Terrige	nic ⁴ He	9.3			Age	±1 σ (y)
⁴ He _{terrigenic}	0.563	x10 ⁻⁸ cm ³ S	TP/g						18.	6 ± 0.8	
Site speci	fic terrige	nic ³ He/ ⁴ H	e ratio:	[7			Co	rrected	for
			e ratio.	L					te	rrigenic	He
δ^{3} He _{cor} 1:	3.667	%		³ H	e _{cor} 8	.663	x10 ⁻¹⁴ cr	n ³ STP/g	Age	±1σ (y)
³ He _{cor} 4	.617	TU								±	
constants: 8	S ³ He _{equilibrium} :	-1.8 %; λ _{3H} =	.05577yr.	1; ³ He/ ⁴ He _{atr}	nos = 1.384	x10 ⁻⁶					
published comments	Terrigenic H	le									
Comments	:										

LDEO
MGL MAN

report	Sender	Knowl	es	Organizatio	on USGS	F	Program F	L-Know	es	
r	Sample ID	Gemir	niSpring/9	9278000	03					
	Channel No.		Trit	tium Bottle No	. []]			Dat		ad 10/7/90
Sample 8/	17/99	7 Sa	ampling 11	30	Altitude 15	_	- Tamp	22.6		
T Degas No	10062	270					m remp.	22.0	^C Sa	linity [
- Dogue He	10002	.13	10	egas Date	10/29/1999		4Ho	T Measurer	ment Da	te 02/22/200
Tritium:	2.214	± (0.076	TU (1 σ)	0.076		Ing	own ³ He _{int} % ³ He _{int}	9.706 85.4	68 x10 ⁻¹⁵ cm ³ S
Alternative	tritium value:		±	ти	comm J (1σ)	nent:				
He Extractio	n No.		He	Extraction D	ate	3	н	e Measure	ment Da	ate
o"He:		±	% (1σ) δ ³ He _{cor} fro T (see a	om other	%	δ ³ He _{uncor} :		±	% (10)
°He _{trit} :		±	TU (10	σ)			³ He:		x10 ⁻¹⁴	¹ cm ³ STP/g
4				-		Sam	ple weight:		g	
"He:		±	x10 ⁻⁸ c	m³STP/g (1	1σ)	∆*⊢	le:	%	Age	±10(y)
Ne:		±	x10 ⁻⁸ c	m ³ STP/g (1	1σ)	ΔN	e:	%		-0
Average c	rustal terri	genic	³ He/ ⁴ He r	atio: 2 x1	0 ⁻⁸ :					orrected for
³ He		%			340			lore	1	errigenic He
ne _{cor} .		TU	- 2		Hecor.		x10	cm°STP/g		
⁴ He _{cor} :		x10 ⁻⁸ c	m³STP/g	% Ter	rigenic ⁴ He				Age	±1 σ(y)
"He _{terrigenic}		x10 ⁻⁸ cr	n³STP/g							
Site speci	fic terrigen	ic ³ He	/ ⁴ He ratio	:		7			С	orrected for
δ³He	0	,			340			2	t	errigenic He
3He	/	0			ne _{cor}		x10 ¹¹ c	m°STP/g	Age	10(9)
Constante: S	T T	U		1 1	m					
publiched	Tritium data	1.8 %; /	1 _{3н} = .05577у	vr."; "He/"H	$e_{atmos} = 1.384$	x10 ^{.6}				
comments		in on in bott	ie sumple							
Comments	:									

			D	EO.
	1		-	
20	'M	ч.	1.1	_

report	Sender	Knowles	Organization U	SGS	Program F	L-Knowl	es
r	Sample ID	Groveland/9	92780007				
	Channel No.	1	Tritium Bottle No.	7		Date	e received 10/7/99
Sample 9/	1/99	Sampling Time	1200 Altitu	_{de} 48	m Temp.	23.5	°C Salinity
T Degas No.	14912	2	T Degas Date			T Measurer	ment Date 03/06/2000
Tritium:	1.953	± 0.202	TU (1σ) 0.	202	⁴He Ing	bulb blank rown ³ He _{trit} % ³ He _{trit}	10.372 x10° cm ³ STP 17.5619- x10° ⁵ cm ³ STP 18.2
Alternative t	tritium value	: 4	= ΄ TU (1 σ	comment:)			
He Extraction	n No. 14912	2	He Extraction Date 1	1/9/1999	Н	e Measure	ment Date 12/15/99
δ ³ He:	32.19	± 0.240 %	(1 σ) δ^{3} He _{cor} from oth T (see above):	^{her} 32.19	% δ ³ He _{uncor}	32.257	7 ± 0.240 % (1o)
³ He _{trit} :	9.579	± 0.070 T	J (1σ)	S	³ He: ample weight:	9.350 40.1	x10 ⁻¹⁴ cm ³ STP/g g
⁴He:	5.111	± 0.013 x10) ⁻⁸ cm ³ STP/g (1σ)	2	∆ ⁴ He: 16.0	1 %	Uncorrected $\Delta q e \pm 1 \sigma (V)$
Ne:	20.161	± 0.241 ×10) ^e cm³STP/g (1ơ)	4	ANe: 12.4	6 %	31.8 ± 1.5
Average c δ ³ He _{cor} :	rustal terr 33.789	igenic ³ He/ ⁴ H %	le ratio: 2 x10 ⁻⁸ :				Corrected for terrigenic He
³ He _{cor} :	9.917	TU	3	He _{cor} : 9.3	49 x10 ⁻¹⁴	cm ³ STP/g	
⁴ He _{cor} :	5.049	x10 ⁻⁸ cm ³ STP	/g % Terrigeni	c⁴He 1. 2	2		Age ±1σ(y)
⁴ He _{terrigenic} :	0.062	x10 ⁻⁸ cm ³ STP	g				32.4 ± 1.8
Site specif	fic terriger	nic ³ He/ ⁴ He r	atio:				Corrected for
$\delta^3 He_{cor}$ 3:	3.789	%	³ He	9.34	q v10 ⁻¹⁴	m ³ STP/a	Age $\pm 1\sigma(y)$
³ He _{cor} 9.	917	TU		or 5.04	J XIU U	in stry	+
constants: 8	³ He _{equilibrium} :	-1.8 %; λ _{3H} = .05	577yr. ⁻¹ ; ³ He/ ⁴ He _{atmos}	= 1.384 ×10	6		
published comments							
Comments	:						

report Send	ler Knowles	Organization USGS	Program FL-Know	vles
r Samp	le ID Groveland/	992780007		
Chan	nel No.	Tritium Bottle No. 1		10/7/00
Sample 9/1/99		1200 49		ate received 10/7/99
Date 071700	Time	Altitude 40	m Temp. 23.5	°C Salinity 0
T Degas No.	1006281	T Degas Date 10/29/1999	T Measure	ement Date 02/21/2000
Tritium: 2	.006 ± 0.057	TU (1 σ) 0.057	He bulb blar* Ingrown ³He %³He	nk 0.793 x10° cm³STF a 8.37876 x10°15 cm³ST m 86.8
Alternative tritiun	n value:	± TU (1σ) ^{comr}	nent:	
He Extraction No.		He Extraction Date	He Measur	ement Date
δ³He:	± %	$\delta(1\sigma) = \delta^3 He_{cor}$ from other	% δ^{3} He _{uncor} :	± % (1o)
³ He _{trit} :	± T	U (1o)	³ He:	x10 ⁻¹⁴ cm ³ STP/g
411		- A 3	Sample weight:	g
He:	± x1	0° cm²STP/g (1σ)	∆ He: %	Age $\pm 1\sigma(y)$
Ne:	± ×1	0 ⁻⁸ cm ³ STP/g (1σ)	∆ Ne: %	
Average crust	al terrigenic ³ He/ ⁴	He ratio: 2 x10 ⁻⁸ :		Corrected for
³ Ho	%	34.0		terrigenic He
ne _{cor} .	TU	ne _{cor} .	x10 cm ⁻ STP/	g
⁴ He _{cor} :	x10 ⁻⁸ cm ³ STF	9/g % Terrigenic ⁴He		Age $\pm 1\sigma(y)$
⁴ He _{terrigenic} :	x10 ⁻⁸ cm ³ STP	/g		
Site specific to	errigenic ³ He/ ⁴ He	ratio:	7	Corrected for
S ³ He		2		terrigenic He
311-	%	³ He _{cor}	x10 ⁻¹⁴ cm ³ STP/g	Age $\pm 1\sigma(y)$
Hecor	TU			
constants: δ ³ He _{eq}	ulibrium: -1.8 %; λ_{3H} =.05	5577yr.1; ³ He/ ⁴ He _{atmos} = 1.384	x10 ⁻⁶	
comments	im data from bottle sam	ple		
Comments:				
LDEO				
------	--			
MGL				

report	Sender	Knowles	Organization US	SGS Pro	FL-Know		
r	Sample ID	Howey/9927	80006	FIO		les	
	sanpio is		00000				
	Channel No.	1	Tritium Bottle No.	7	Da	te received	10/7/99
Sample 8/	30/99	Sampling	1130	40	- 124.2		0
Date		Time L	Aititud	m m	Temp. 24.2	° ^C Salini	ty
T Degas No.	14914	4	T Degas Date		T Measure	ement Date	03/06/2000
Tritium:	2.233	± 0.108	TU (1 σ) 0	103	⁴ He bulb blan Ingrown ³ He _{trit} % ³ He _{tri}	k 1.276 5.44762 67.4	x10 ^{.9} cm ³ STP x10 ^{.15} cm ³ STP
Alternative	tritium value	: ±	TU (1σ	comment:)			
He Extraction	n No. 14914	∔ ⊦	le Extraction Date 1	1/9/1999	He Measure	ement Date	12/15/99
δ ³ He:	21.23	± 0.240 %(1σ) $\delta^{3}He_{cor}$ from othe	er 21.23 %	5 ³ Heuran: 21.31	7 + 0.24	2 % (10)
³ He _{trit} :	6.621	± 0.070 TU	T (see above): (1σ)	/0	3Ho: 8 700	vi 0:14	- ³ 0TD(
		100.000	(,	Sample	weight: 39.8	a xiu cr	n°STP/g
⁴He:	5.244	± 0.016 ×10	^a cm ³ STP/g (1σ)	∆ ⁴ He:	19.16 %	Unco	orrected
Ne:	20.304	± 0.241 ×10 ⁴	3 cm ³ STP/a (1 σ)	ΔNe:	13 72 %	Age	± 0.7
Average c	rustal terr	igenic ³ He/ ⁴ He	ratio: 2 x10-8:		10.72 70	24.1	± 0.7
$\delta^{3}He_{cor}$:	24.444	%				Corr	ected for
"He _{cor} :	7.372	TU	3	le _{cor} : 8.796	x10 ⁻¹⁴ cm ³ STP/g	3	3
⁴ He _{cor} :	5.107	x10 ⁻⁸ cm ³ STP/g	% Terrigenic	⁴ He 2.6		Age	±1σ(v)
⁴ He _{terrigenic} :	0.137	x10 ⁻⁸ cm ³ STP/g				26.2	± 1.2
Site specif	fic terrigen		No.				
of the objection	ne terrigen	ne ne/ ne ra				terri	ected for genic He
δ ³ He _{cor} 24	4.444 %	%	³ He _{co}	r 8.796	x10 ⁻¹⁴ cm ³ STP/g	Age :	±1σ (y)
³ He _{cor} 7.	372 T	ΓU			J		+
constants: δ	³ He _{equilibrium} : -	-1.8 %; λ ₃₁₁ = .0557	7yr1; ³ He/ ⁴ He _{aumos} =	1.384 x10 ⁻⁶			-
published comments			a,mus,				
Comments:							

report	Sender	Knowles	0	rganization	USGS	Pro	gram	FL-Knowl	es	
r	Sample ID	Howey/99	27800	06			-			
	Channel No.									
Sample 10		Sameli	Tritiun	n Bottle No.	1			Dat	e receive	ed 10/7/99
Date 8/	30/99	Time	^{ng} 1130) ,	Altitude 40	n	n Temp	. 24.2	°C Sa	linity 0
T Degas No	10062	285	T Deg	as Date	10/29/1999			T Measurer	ment Dat	e 02/21/2000
Tritium:	1.919	± 0.05	50 т	ΰ (1σ)	0.050		4 Ir	He bulb blank ngrown ³ He _{tm} % ³ He _{tm}	0.958 10.987 87.9	x10 ^{.9} cm ³ STP 72 x10 ^{.15} cm ³ STF
Alternative	tritium value		±	τυ	(1 σ)	ent:				
He Extractio	n No.		He Ext	raction Da	te			He Measure	ment Da	te
δ ³ He:		±	%(1σ)	δ ³ He _{cor} fro	m other	%	$\delta^3 He_{un}$	cor.	±	% (10)
³ He _{trit} :		±	TU (1σ)	i (see ab	iove).		зН	le:	x10 ⁻¹⁴	cm ³ STP/g
						Sample	e weigł	nt:	g	
⁴He:		±	x10 ⁻⁸ cm ³	STP/g (1	σ)	∆⁴He	:	%	Age	$\pm 1\sigma(\mathbf{y})$
Ne:		±	x10 ⁻⁸ cm ³	STP/g (1	σ)	∆Ne:		%	nge	
Average	crustal terr	igenic ³ He	/ ⁴ He rat	io: 2 x10	0 ⁻⁸ :					
$\delta^{3}He_{cor}$:		%							C t	orrected for errigenic He
³ He _{cor} :		TU			³ He _{cor} :		x10	¹⁴ cm ³ STP/g		-
⁴ He _{cor} :		x10 ⁻⁸ cm ³ S	TP/g	% Terri	igenic ⁴He				Age	±1σ (y)
⁴ He _{terrigenic}		x10 ⁻⁸ cm ³ S ⁻	ΓP/g							
Site spec	ific terrines	340/ ⁴ 44	ratio			1				orrected for
one spec	inc terriger	пс пел пе	ratio:]			t	errigenic He
δ ³ He _{cor}	1	%		3	He _{cor}		x10 ⁻¹	⁴ cm ³ STP/g	Age	±1σ (y)
³ He _{cor}		TU								
constants:	δ ³ He _{equilibnum} :	-1.8 %; λ _{3H} =	.05577yr.	'; ³ He/ ⁴ He	atmos. = 1.384	x10 ⁻⁶				
published comments	Tritium data	from bottle sa	ample							
Comments	3:									

report	Sender	Knowles	1		GS	Dee	ICT			
r	Sample ID	Laka Lat	Orga	inization 00		Prog	ram [FL	-Knowl	es	
	Sample ID	Lake Louis	sa/99278	8000						
	Channel No.	1	Tritium Be	ottle No.	7					10/7/00
Sample 9/	7/99	Samplin	9 1730		35		- 10	Date	e received	10///99
Date		Time	1/30	Altitud	e 00	m	Temp.	3.7	°C Salir	nity 0
T Degas No.	14913	3	T Degas	Date			Т	Measurer	nent Date	03/06/2000
Tritium:	3.929	+ 0.24	2 11	(1-) 0.2	12		⁴ He t	bulb blank	1.512	x10" cm3STP
		- 0.24	2 10	(10) 0.2	. 4 2		ingro	% ³ He	8.24727	x10 ⁻¹⁵ cm ³ STF
Allemetics	141				comme	nt:		- Int	74.5	
Alternative	ritium value:		±	TU (1σ))					
He Extraction	No. 14913	1	He Extrac	tion Date 11	/9/1999		He	Measure	ment Date	12/14/99
δ ³ He:	55.70	± 0.230	% (1 o) 83	le or from othe	^{er} 55.7	% 8	³ He _{uncor} :	55.82	+ 0.2	32 % (10)
³ He _{trit} :	17.567	± 0.080	TU (1σ)	(see above):			3He.	11 920) v10 ⁻¹⁴	3 STD/a
			1.27			Sample	weight:	39.4	a	SIT STP/g
⁴He:	5.532	± 0.014 x	10 ⁻⁸ cm ³ ST	Ρ/α (1σ)		∆ ⁴ He:	25.44	%	Un	corrected
Ne-	22 465	+ 0.201	10-8 30-7	5					Age	±1σ(y)
Average c	rustal torri	$\pm 0.291 \text{ x}$		P/g (10)		∆Ne:	25.3	%	30.5	± 0.9
δ ³ He _{or} :	50.702	%	He ratio:	2 x10 *:					Co	rrected for
³ He _{cor} :	16.551	TU		³ H	le: 1	1,924	x10 ⁻¹⁴ cr	m ³ STP/o	ter	rigenic He
411-		10			- cor ·		A10 01	il offing		
4Ue	5.717	x10°cm°ST	P/g	% Terrigenic	*He -	3.3			Age	±1σ (y)
neterrigenic.	-0.185	x10 ⁻⁸ cm ³ STI	P/g						29.6	5 ± 1.1
Site specif	ic terrigen	ic ³ He/ ⁴ He	ratio:						Co	rrected for
-	3								ter	rigenic He
δ [°] He _{cor} 50	.702 %	6		³ He _{co}	, 11.	924	x10 ⁻¹⁴ cm	³ STP/g	Age	±1 σ (y)
³ He _{cor} 16	.551 T	U								+
constants: 8	He _{aquilibrium} : -	1.8 %; λ _{3H} =.0)5577yr.1; 3	He/4Heatmos =	1.384 x1	0-6	-		_	-
published										
comments										
					-					
comments:										
4										
i i										

report Sender	Knowles	Organization	JSGS	Program	FL-Knowle	es	
Sample I	D Lake Louisa	/992780008					
Channel	No.	Tritium Bottle No.	1		Data		10/7/00
Sample 9/7/99	Sampling	[1730]	35			received	10///99
Date 011100	Time	Alti	tude 00	m Ten	np. 23.7	°C Salini	ty 0
T Degas No. 10	06284	T Degas Date 1	0/29/1999		T Measurem	nent Date	02/21/2000
Tritium: 4.12	22 ± 0.082	TU (1σ) (0.079		*He bulb blank Ingrown ³ He _{trit} % ³ He _{trit}	0.724 19.7434 94.9	x10 ⁻⁹ cm ³ STF x10 ⁻¹⁵ cm ³ ST
Alternative tritium va	alue: =	± TU (1	comment σ)	:			
He Extraction No.		He Extraction Date		1	He Measurer	ment Date	
δ'He:	± %	(1σ) δ ³ He _{or} from T (see abov	other	% δ ³ He,	incor:	±	% (1σ)
³ He _{trit} :	± T	υ (1σ)	0).	3	He:	x10 ⁻¹⁴ c	m ³ STP/g
			5	Sample weig	ght:	g	
⁴He:	± x1	0 ⁻⁸ cm ³ STP/g (1σ)		∆*He:	%	Age	errected ±1σ(y)
Ne:	± x1	0 ⁻⁶ cm ³ STP/g (1σ)		∆Ne:	%		
Average crustal $\delta^{3}He_{cor}$:	terrigenic ³ He/ ⁴ %	le ratio: 2 x10 ⁻⁸	311-			Cor	rected for rigenic He
"He _{cor} :	TU		He _{cor} :	X1	0 rd cm ² STP/g		
⁴ He _{cor} :	x10 ⁻⁸ cm ³ STF	9/g % Terrige	enic ⁴He			Age	±1σ (y)
⁴ He _{terrigenic} :	x10 ⁻⁸ cm ³ STP	/g					
Site specific terr	igenic ³ He/ ⁴ He	ratio:				Cor	rected for
$\delta^{3}He_{cor}$	%	3H	e _{cor}	x10	⁻¹⁴ cm ³ STP/g	ter Age	rigenic He ±1σ(y)
³ He _{cor}	TU						
constants: $\delta^3 He_{equilib}$	r_{ium} : -1.8 %; λ_{3H} = .03	5577yr. ⁻¹ ; ³ He/ ⁴ He _{atr}	nos = 1.384 x10) ⁻⁶			
published comments	data from bottle sam	pie					
Comments:							

report Send	er Knowles	Organization USGS	Program FL-Knowle	es
r Samp	Lake Mary/9	92780005		
Char	_ /			
Sample		Tritium Bottle No.	Date	e received 10/7/99
Date 8/18/9	9 Sampling Time	0900 Altitude 20	m Temp. 24	°C Salinity 0
T Degas No.	14916	T Degas Date	T Measuren	nent Date 03/06/2000
Triti			*He bulb blank	1.211 x10 ⁻⁹ cm ³ STP
Tritium: 2.	.946 ± 0.117	TU (1 σ) 0.117	Ingrown ³ He _{int.}	6.47657 x10 ⁻¹⁵ cm ³ STF
			>o rie _{ini}	74.0
Alternative tritium	1 value: ±	τυ (1σ)	u .	
He Extraction No.	14916	He Extraction Date 11/9/1999	He Measurer	ment Date 12/14/99
δ ³ He: 41.	77 ± 0.240 %	(1 σ) $\delta^{3}He_{cor}$ from other 41.77	% δ ³ He _{uncor} : 41.898	3 ± 0.237 % (1 σ)
³ He _{trit} : 12.	336 ± 0.070 TL	J (1o)	³ He: 10.056	x10 ⁻¹⁴ cm ³ STP/g
			Sample weight: 39.9	g
⁴ He: 5.1	25 ± 0.013 ×10	^{νª} cm³STP/g (1σ)	∆⁴He: 16.1 %	Uncorrected Age ±1 (y)
Ne: 21.	482 ± 0.274 ×10	^{-θ} cm ³ STP/g (1σ)	∆Ne: 19.86 %	29.5 ± 0.6
Average crusta	al terrigenic ³ He/ ⁴ H	e ratio: 2 x10 ⁻⁸ :		Corrected for
δ [°] He _{cor} : 33.	642 %	31.		terrigenic He
"He _{cor} : 10.	609 TU	"He _{cor} : 10	1.062 x10 ⁻¹⁴ cm ³ STP/g	
⁴ He _{cor} : 5.4	40 x10 ⁻⁸ cm ³ STP	/g % Terrigenic ⁴He -(5.1	Age ±1σ(y)
⁴ He _{terrigenic} : -0.3	315 x10 ⁻⁸ cm ³ STP/	g		27.4 ± 1.0
Site specific te	errigenic ³ He/ ⁴ He r	atio:		Corrected for
224	-			terrigenic He
δ ³ He _{cor} 33.64	2 %	³ He _{cor} 10.	062 x10 ⁻¹⁴ cm ³ STP/g	Age $\pm 1\sigma(y)$
³ He _{cor} 10.60	9 TU			±
constants: δ ³ He _{aq}	uilibrium: -1.8 %; λ_{3H} = .05	577 yr.^{-1} ; ³ He/ ⁴ He _{atmos} = 1.384 x1	D-e	
published				
Comments:				

LDEO	•
NGL	

report	Sender	Knowle	S	Organizati	on USGS	Progra	m FL-Know	es	
r	Sample ID	Lake N	lary/9927	80005					
	Channel No.		Triti	um Bottle No	. 1		Dat	e receive	d 10/7/99
Sample 8, Date 8,	18/99	Sar	mpling 090	00	Altitude 20	m	Temp. 24	°C Sali	nity 0
T Degas No	1006:	283	TDe	egas Date	10/29/1999		T Measure	ment Date	02/21/2000
Tritium:	2.715	± 0	.057	TU (1 σ)	0.057		⁴ He bulb blanł Ingrown ³ He _{int} %³He _{int}	0.593 14.334 94.2	x10 ⁻⁹ cm ³ STP 3 x10 ⁻¹⁵ cm ³ STP
Alternative	tritium value	:	±	тι	J (1σ)	ent:			
He Extractio	on No.		He E	Extraction D	ate		He Measure	ement Dat	e
δ ³ He:		±	% (10) δ ³ He _{cor} fi	rom other	% 8 ³	He _{uncor} :	±	% (1o)
³ He _{trit} :		±	TU (10	5)	above).		³ He:	x10 ⁻¹⁴	cm ³ STP/g
						Sample w	veight:	g	
⁴He:	30	±	x10 ⁻⁸ c	m ³ STP/g ((10)	∆⁴He:	%	Age	$\pm 1\sigma(y)$
Ne:		±	x10 ⁻⁸ c	m³STP/g ((1σ)	∆Ne:	%		
Average	crustal ter	rigenic	³He/⁴He r	atio: 2 x	10 ⁻⁸ :			с	orrected for
δ^{3} He _{cor} :		%			31.1.0			te	errigenic He
³ He _{cor} :		TU			He _{cor} .		x10 cm STP/	9	
⁴ He _{cor} :		x10 ⁻⁸ c	m³STP/g	% Te	rrigenic ⁴ He			Age	±1 σ (y)
⁴ He _{terrigeni}	c:	x10 ⁻⁸ cr	n³STP/g						
Site spec	ific terrige	nic ³ He	/ ⁴ He ratio): [7		C	orrected for
S ³ Ho					340	-	4 a:14 30 TD/	Age	±1σ(V)
311a		%			Hecor)	c10 cm STP/g	Age	
Hecor	a).	TU		1 3 4		i etî			
constants:	δ'He _{equilibrium} :	-1.8 %; /	$\lambda_{3H} = .05577$	yr.''; "He/"	He _{atmos.} = 1.384	x10 ⁻⁵			
published comments	a hittin dat	a from bot	tie sample						
Comment	s:								

report Sender Knowles Organization USGS Program FL-Knowle	S
Sample ID Mascotte/992780010	
Channel No. 1 Tritium Bottle No. Date	received 10/7/99
Sample 9/22/99 Sampling 1030 Altitude 40 Tame 23.4	
Date Time Attitude M Henty Lot A	Salinity
T Degas No. 14910 T Degas Date T Measuremu	ent Date 03/06/2000
Tritium: 4.014 \pm 0.138 TU (1 σ) 0.138 Ingrown ³ He _{in} % ³ He _{in}	8.96508 x10 ⁻¹⁵ cm ³ STP 71.5
Alternative tritium value: ± TU (1) comment:	
He Extraction No. 14910 He Extraction Date 11/9/1999 He Measurem	nent Date 12/14/99
$δ^{3}$ He: 53.83 ± 0.230 % (1σ) δ^{1} He _{or} from other 53.83 % δ^{3} He _{uncor} : 53.930 T (see above):	± 0.233 % (1o)
³ He _{trit} : 16.256 \pm 0.080 TU (1 σ) ³ He: 11.255	x10 ⁻¹⁴ cm ³ STP/g
Sample weight: 40.1	g Uncorrected
"He: $5.286 \pm 0.016 \times 10^{\circ} \text{ cm}^{\circ} \text{STP/g}(1\sigma)$ Afree 19.85 %	Age $\pm 1\sigma(y)$
Ne: $21.237 \pm 0.277 \times 10^8 \text{ cm}^3 \text{STP/g}(1\sigma)$ $\Delta \text{Ne:} 18.26 \%$	29.0 ± 0.5
Average crustal terrigenic ³ He/ ⁴ He ratio: 2 x10 ⁻⁸ :	Corrected for
${}^{3}\text{He}_{cor}$: 15.874 TU ${}^{3}\text{He}_{cor}$: 11.256 x10 ⁻¹⁴ cm ³ STP/g	terrigenic He
⁴ He _{cor} : 5.356 x10 ⁻⁸ cm ³ STP/g % Terrigenic ⁴ He -1.3	Age ±1σ(y)
⁴ He _{terrigenic} : -0.070 x10 ⁻⁸ cm ³ STP/g	28.7 ± 0.8
Site specific terrigenic ³ He/ ⁴ He ratio:	Corrected for
δ ³ He _{cor} 51.847 % ³ He _{cor} 11.256 x10 ⁻¹⁴ cm ³ STP/g	Age $\pm 1\sigma(y)$
³ He _{cor} 15.874 TU	±
constants: δ ³ He _{equilibrum} : -1.8 %; λ _{MI} =.05577yr. ⁻¹ ; ³ He/ ⁴ He _{almos} = 1.384 x10 ⁻⁶	
published comments	
Comments:	

	NG	eo T		Noble Ga Lamont-I Columbia	as I Doh a U	_aboratory nerty Earth niversity, I	n O New	bser / Yoi	vatory k
report	Sender	Knowles	Or	ganization USG	S	Program FL-K	nowle	es	
r	Sample ID	Mascotte	992780	010					
	Channel No.		Tritium	Bottle No. 1			Date	received	10/7/99
Sample 9/	22/99	Sampl	ng 1030	Altitude	40	m Temp. 23	.4	°C Salia	ity 0
T Degas No.	10063	280	T Dega	as Date 10/29/1	000	T M	asuren	ent Date	02/21/2000
Tritium:	3.638	± 0.0	78 T	J (1 σ) 0.07	8	*He bul Ingrown	b blank 1 ³ He _{trit} % ³ He _{trit}	0.657 13.9591 93.4	x10 ⁻⁹ cm ³ STF x10 ⁻¹⁵ cm ³ ST
Alternative	tritium value	:	±	TU (1 σ) ^{C(}	omme	nt:			
He Extractio	n No.		He Extr	action Date		He N	easurer	ment Date	
δ ³ He:		±	% (1)	δ^{3} He _{cor} from other		$\% \delta^{3}He_{uncor}$:		±	% (1σ)
³ He _{trit} :		±	TU (1σ)	T (See above).		³ He: Sample weight:		x10 ⁻¹⁴ c g	cm ³ STP/g
⁴He:		±	x10 ⁻⁸ cm ³	STP/g (1o)		∆⁴He:	%	Une	±1σ(y)
Ne:		±	x10 ⁻⁸ cm ³	STP/g (1o)		∆Ne:	%		
Average α δ ³ He _{cor} :	crustal terr	rigenic ³ He %	e/ ⁴ He rati	o: 2 x10 ⁻⁸ :				Co	rrected for rigenic He
³ He _{cor} :		TU		³ He	cor	x10 ⁻¹⁴ cm	STP/g		
⁴ He _{cor} :		x10 ⁻⁸ cm ³ 5	STP/g	% Terrigenic ⁴ H	He			Age	±1 σ(y)
⁴ He _{terrigenic}	:	x10 ⁻⁸ cm ³ S	TP/g						
Site spec	ific terrige	nic ³ He/ ⁴ H	e ratio:					Co	rrected for rrigenic He
$\delta^3 He_{cor}$		%		³ He _{cor}		x10 ⁻¹⁴ cm ³	STP/g	Age	±1σ(y)
³ He _{cor}		TU							
constants:	$\delta^{3}He_{equilibrium}$:	-1.8 %; λ ₃₁₁ =	= .05577yr.	¹ ; ³ He/ ⁴ He _{atmos} = 1	.384 x	10 ⁻⁶			
published comments	Tritium data	a from bottle s	ample						
Comments	5:								

EDEO	
MGL	

report Sender	Knowles Organization USGS Program FL-Knowle	S
r Sample ID	Sunset lakes/992780011	
Channel No.		10/7/99
Sample 10/00/00		received 10/7/33
Date 9/22/99	Time 1230 Altitude 37 m Temp. 23.1	°C Salinity
T Degas No. 1491	1 T Degas Date T Measurem	ent Date 03/06/2000
Tritium: 4.654	\pm 0.142 TU (1σ) 0.142 ⁴ He bulb blank Ingrown ³ He _{va} % ³ He _{va}	1.189 x10 ⁻⁹ cm ³ STP 8.97246 x10 ⁻¹⁵ cm ³ STP 81.6
Alternative tritium value	e: ± TU (1σ) ^{comment:}	
He Extraction No. 1491	1 He Extraction Date 11/9/1999 He Measuren	nent Date 12/15/99
δ ³ He: 66.24	\pm 0.230 %(1 σ) δ^{3} He _{cor} from other 66.24 % δ^{3} He _{uncor} : 66.360	± 0.232 % (1o)
³ He _{trit} : 19.918	± 0.090 TU (1σ) ³ He: 12.170	x10 ⁻¹⁴ cm ³ STP/g
	Sample weight: 39.4	g
⁴ He: 5.290	\pm 0.014 x10 ⁻⁸ cm ³ STP/g (1 σ) Δ^{3} He: 19.78 %	Age ±1 σ (y)
Ne: 20.953	\pm 0.251 x10 ⁻⁸ cm ³ STP/g (1 σ) Δ Ne: 16.38 %	29.8 ± 0.5
Average crustal ter	rigenic ³ He/ ⁴ He ratio: 2 x10 ⁻⁸ :	Corrected for
δ ³ He _{cor} : 66.978	³ He : 12 170 ×10 ⁻¹⁴ cm ³ STP/a	terrigenic He
He _{cor} . 20.047	TU Hecor. 12.176 x16 dillotry	1 . ()
⁴ He _{cor} : 5.266	x10 ⁻⁹ cm ³ STP/g % Terrigenic ⁴ He 0.4	Age ±10(y)
"He _{terrigenic} : 0.024	x10 ⁻⁸ cm ³ STP/g	29.9 ± 0.7
Site specific terrige	enic ³ He/ ⁴ He ratio:	Corrected for
5311- 00.070	311- 40 470	terrigenic He Δαο ±1σ(V)
0°He _{cor} 66.978	% "He _{cor} 12.170 x10" cm ³ STP/g	Age
³ He _{cor} 20.047	TU	±
constants: 8"He _{equilibrium}	: -1.8 %; λ _{3H} =.05577yr.''; "He/"He _{atmos} = 1.384 x10"	
published comments		
Comments:		
2		

report Sender	Knowles	Orga	anization USGS	Program	FL-Knowles	S	
r Sample	ID Sunset lak	es/99278	30011				
Channe Sample 9/22/99	I No.	Tritium B	Altitude 37	m Tem	Date	received	10/7/99 ity 0
Date 0/22/00	Time					Data	02/21/2000
T Degas No. 1	006286	T Degas	Date 11/12/1999		He bulb blank	1.061	x10 ⁻⁹ cm ³ STP
Tritium: 4.1	130 ± 0.08	9 TU	(1 σ) 0.089	1	ngrown ³ He _{trit} % ³ He _{trit}	15.5774 90.5	x10 ⁻¹⁵ cm ³ STF
Alternative tritium	value:	±	TU (1σ)	ent:			
He Extraction No.		He Extra	action Date		He Measuren	nent Date	1
δ³He:	±	%(1σ)δ	³ He _{cor} from other	% δ ³ He _u	ncor	±	% (10)
³ He _{trit} :	±	TU (1σ)	I (see above).	3	He:	x10 ⁻¹⁴	cm ³ STP/g
				Sample weig	jht:	g	
⁴He:	±	x10 ⁻⁸ cm ³ S	STP/g (1σ)	∆⁴He:	%	Age	$\pm 1\sigma(y)$
Ne:	±	x10 ⁻⁸ cm ³ 5	STP/g (1σ)	∆Ne:	%		
Average crusta	l terrigenic ³ He	/ ⁴ He ratio	o: 2 x10 ⁻⁸ :			Co	prrected for
$\delta^{3}He_{cor}$:	%		311-		0.14 am ³ STP/a	te	rrigenic He
³ He _{cor} :	TU		He _{cor} .	XI	U CHISTRY		
⁴ He _{cor} :	x10 ⁻⁸ cm ³ S	TP/g	% Terrigenic ⁴ He			Age	±1σ(y)
⁴ He _{terrigenic} :	x10 ⁻⁸ cm ³ S	TP/g					
Site specific to	errigenic ³ He/ ⁴ H	e ratio:		7		Co	orrected for
δ ³ He _{cor}	%		³ He _{cor}) ⁻¹⁴ cm ³ STP/g	Age	±1σ (y)
ЗНе	TU						
constants: δ ³ He _a	-1.8 %; λ ₁₁₁ =	= .05577yr.	¹ ; ³ He/ ⁴ He _{atmos} = 1.384	4 x10 ⁻⁶			
published comments	um data from bottle s	sample					
Comments:							
3.							

St. Johns River Water Management District 74

report g	Sender	Knowles	Orga	anization US	SGS	Progra	am FL	-Knowle	S	
r s	Sample ID	Turnpike/9	9278000	2						
C	Channel No.	2	Tritium B	ottle No.	7			Date	received	10/7/99
Sample 8/1	1/99	Sampli	ng [1000		 		Tama 2	4.6	°C out	0
Date 0/1	1735	Time	1000	Altitud		m	Temp.	4.0	9 Salini	ty L°
T Degas No.	1493	1	T Degas	Date			4Uo h	Measurem	1 012	03/06/2000
Tritium:	3.056	± 0.12	21 ти	(1 σ) 0.	121		Ingro	wn ³ He _{ut} % ³ He _{trit}	6.07394 76.8	x10 ⁻¹⁵ cm ³ STF
Alternative tr	ritium value	:	±	TU (1σ	comme)	nt:				
He Extraction	No. 1493	1	He Extra	ction Date 1	1/15/1999		He	Measurer	ment Date	12/15/99
δ ³ He:	35.60	± 0.240	%(1σ)δ	He _{cor} from oth	^{her} 35.6	% δ	³ He _{uncor} :	35.749) ± 0.23	7 % (1σ)
³ He _{trit} :	11.047	± 0.080	TU (1σ)	(000 00000)		0	³ He:	10.065	5 x10 ⁻¹⁴ c	m³ STP/g
41101	5 262	. 0.015	v10 ⁻⁸ am ³ C	TP/2/12)		Δ ⁴ He:	22.22	39.8	y Unc	orrected
ne:	5.303	± 0.015	xio chi 3	1F/g (10)		Ables	40.00		Age	±10 (y)
Ne:	21.121	± 0.246	x10 ⁻⁶ cm ³ S	TP/g (1σ)		ANe:	18.85	o %	27.4	± 0.6
Average c δ ³ He _{cor} :	35.836	%	e/ He ratio	o: 2 x10 °:					Corter	rected for rigenic He
³ He _{cor} :	11.098	TU		-	'He _{cor} : 1	0.065	x10 ⁻¹⁴ c	m°STP/g		
⁴ He _{cor} :	5.354	x10 ⁻⁸ cm ³ 5	STP/g	% Terrigen	ic ⁴He	0.2			Age	±1σ(y)
⁴ He _{terrigenic} :	0.009	x10 ⁻⁸ cm ³ S	TP/g						27.5	± 0.9
Site speci	fic terrige	nic ³ He/ ⁴ H	e ratio:			1			Co	rected for
one speen	ino terrige					1			ter	rigenic He
$\delta^3 He_{cor}$ 3	5.836	%		³ Не	cor 10	0.065	x10 ⁻¹⁴ c	m ³ STP/g	Age	±10(y)
³ He _{cor} 1	1.098	TU								±
constants: 8	5 ³ He _{equilibrium} :	-1.8 %; λ _{3H} =	= .05577yr. ⁻¹	; ³ He/ ⁴ He _{atmo}	s = 1.384 >	x10 ⁻⁶				
published comments										
Comments										

A		Noble Gas Lamont-Do Columbia U	Laboratory herty Earth O Jniversity, New	bservatory v York		
report Sender	Knowles	Organization USGS	Program FL-Knowle	es		
r Sample	D Turnpike/992780002					
Channe	No.	Tritium Bottle No. 1	Date	e received 10/7/99		
Sample 8/11/99	Sampling	1000 [55	Toma 24.6			
	Time		m remp. 2 110	Salinity		
Tritium: 2.7	52 ± 0.081	TDegas Date 10/29/1999 TU (1σ) 0.081	T Measuren *He bulb blank Ingrown ³ He _{tre} % ³ He _{tre}	nent Date 02/22/2000 0.817 x10" cm ³ STP 11.2069 x10" cm ³ STF 89.8		
Alternative tritium	value:	± TU (1 σ)	ent:			
He Extraction No.		He Extraction Date	He Measure	ment Date		
δ³He:	± %	$\delta(1\sigma) = \delta^3 He_{corr}$ from other	% δ ³ He _{uncor} :	± % (1σ)		
³ He _{trit} :	± T	U (10)	³ He:	x10 ⁻¹⁴ cm ³ STP/g		
			Sample weight:	g		
⁴He:	± x1	0 ⁻⁸ cm ³ STP/g (1σ)	∆ * He: %	Age $\pm 1\sigma(y)$		
Ne:	± x1	0 ⁻⁸ cm ³ STP/g (1σ)	∆Ne: %			
Average crustal $\delta^{3}He_{cor}$:	terrigenic ³ He/ ⁴ %	He ratio: 2 x10 ⁻⁸ :		Corrected for terrigenic He		
^a He _{cor} :	TU	"He _{cor} :	x10 ¹¹ cm ³ STP/g			
⁴ He _{cor} :	x10 ⁻⁸ cm ³ STF	P/g % Terrigenic ⁴He		Age ±1σ(y)		
⁴ He _{terrigenic} :	x10 ⁻⁸ cm ³ STF	7/g				
Site specific ter	rigenic ³ He/ ⁴ He	ratio:]	Corrected for terrigenic He		
$\delta^{3}He_{cor}$	%	³ He _{cor}	x10 ⁻¹⁴ cm ³ STP/g	Age ±1σ(y)		
³ He _{cor}	TU		Englis press Contractional Annual			
constants: δ ³ He _{equil}	brium: -1.8 %; λ _{3H} = .0	5577yr. ⁻¹ ; ³ He/ ⁴ He _{almos} = 1.384	x10 ⁻⁶			
published comments	n data from bottle sam	ple				
Comments:						