TECHNICAL PUBLICATION SJ2006-6

2004 STATUS AND TRENDS IN WATER QUALITY AT SELECTED SITES IN THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

Technical Publication SJ2006-6

2004 STATUS AND TRENDS IN WATER QUALITY AT SELECTED SITES IN THE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

by

Steve Winkler and Aisa Ceric

St. Johns River Water Management District Palatka, Florida 2006

The St. Johns River Water Management District (SJRWMD) was created by the Florida Legislature in 1972 to be one of five water management districts in Florida. It includes all or part of 18 counties in northeast Florida. The mission of SJRWMD is to ensure the sustainable use and protection of water resources for the benefit of the people of the District and the state of Florida. SJRWMD accomplishes its mission through regulation; applied research; assistance to federal, state, and local governments; operation and maintenance of water control works; and land acquisition and management.

This document is published to disseminate information collected by SJRWMD in pursuit of its mission. Copies of this document can be obtained from:

Library St. Johns River Water Management District 4049 Reid Street • P.O. Box 1429 Palatka, FL 32178-1429

Phone: (386) 329-4132

EXECUTIVE SUMMARY

Ambient water quality data for a variety of water body sampling sites within St. Johns River Water Management District (SJRWMD) were compiled and analyzed to evaluate status and trends. Status results indicate whether water quality at a particular site is good, fair, or poor, while trend results indicate whether water quality has improved, stabilized, or degraded. Most of the ambient sites were last reported-on in 2004. Thirty-four more sites were added for this report. Spring and stream sites were evaluated using a water quality index, while lake and estuarine sites were evaluated using a trophic state index. The water quality index incorporates nutrients, physical constituents, and bacteria, while the trophic state index incorporates nutrients and chlorophyll. Many water bodies lacked sufficient data for either a status or trend assessment. Those sites that had sufficient data had historically been sampled on a regular basis. Most of the sites in the SJRWMD exhibited good or fair water quality, although some sites were degrading. Forty-eight percent of the sites assessed districtwide had good water quality, 31% had fair quality, and 21% had poor quality. Fifty-two percent had a statistically insignificant trend, while 19% were improving, 8% were degrading, and 20% had insufficient data for trend analysis. This study did not consider what factors were responsible for the trends found.

CONTENTS

Executive Summary	v
Figures	ix
Tables	xi
Maps	xiii
INTRODUCTION	1
Water Quality	6
Water Quality Status and Trends	8
METHODS	11
Sample Collection	11
Data Compilation	11
Sample Depth	11
Comment Codes	11
Data Combination	12
Period of Record	13
Additional Data Checks	13
Outlier Analysis	14
Water Body Categorization	14
Total Nitrogen	15
Indices	16
Trophic State Index	16
Water Quality Index	19
For dissolved oxygen,	20
For total suspended solids,	21
For total nitrogen,	21
For nitrite and nitrate,	21
For total phosphorus,	21
For total organic carbon,	22
For total coliform,	22
For fecal coliform,	22
For turbidity,	22
Seasonal Medians Calculation	24
Determining Status	24
Determining Trend	24
Mann-Kendall Trend Test	25
Seasonal Kendall Trend Test	25
Sen's Slope Estimate	26

RESULTS AND DISCUSSION	27
St. Marys River Basin	27
Nassau River Basin	29
St. Johns River Basin	32
Upper St. Johns River Basin	32
Middle St. Johns River Basin	33
Lake George Basin	40
Lower St. Johns River Basin	40
Ocklawaha Basin	46
Indian River Lagoon Basin	50
Northern Coastal Basin	54
Districtwide Results for All Water Body Types	57
Springs	57
Blackwater streams	57
Lakes	59
Streams	59
Estuaries	60
Summary	61
Literature Cited	63
Appendix A—Station Locations and Results Tables	67

FIGURES

1.	St. Marys River Basin land cover (2000)27
2.	Nassau River Basin land cover (2000)29
3.	Upper St. Johns River Basin land cover (2000)32
4.	Middle St. Johns River Basin land cover (2000)
5.	Stream status for selected basins
6.	Stream trends for selected basins
7.	Lake George land cover (2000)
8.	Lower St. Johns River Basin land cover (2000)
9.	Lakes status for selected basins
10.	Lakes trends for selected basins
11.	Estuarine status for selected basins45
12.	Estuarine trends for selected basins46
13.	Ocklawaha Basin land cover (2000)47
14.	Indian River Lagoon Basin land cover (2000)52
15.	Northern Coastal Basin land cover (2000)55
16.	Status results by water body type over all basins57
17.	Trend results by water body type over all basins58
18.	Status results over all basins58
19.	Trend results over all basins

TABLES

1.	Water quality constituents used in the assessment	.12
2.	Acceptable data sample codes	.12
3.	Acceptable data qualifier codes	13
4.	Available site names for selected ambient sites	.14
5.	Concentration limits for key nutrients and chlorophyll <i>a</i> in lakes	17
6.	Florida water quality index classes	.20
7.	Percentile distribution of 1996 FDEP ambient water quality data	.21
8.	Water quality index constituents used by water body type	.23
9.	Index cutoff values by water body type	.24
A1.	Station locations sorted by major basin	.69
A2.	Status results for each site sorted by basin	.76
A3.	Trend results for each site sorted by basin	.84

MAPS

1.	St. Johns River Water Management District2
2.	District land use and land cover3
3.	District census 2000 population density4
4.	District surface water basins5
5.	Ambient sites by water body type7
6.	Water quality status and trends28
7.	St. Marys River Basin—water quality status and trends
8.	Nassau River Basin—water quality status and trends
9.	Upper St. Johns River Basin—water quality status and trends
10.	Middle St. Johns River Basin—water quality status and trends35
11.	Lake George Basin—water quality status and trends41
12.	Lower St. Johns River Basin—water quality status and trends42
13.	Ocklawaha River Basin—water quality status and trends48
14.	Indian River Lagoon Basin—water quality status and trends51
15.	Northern Coastal Basin—water quality status and trends56

INTRODUCTION

The St. Johns River Water Management District (SJRWMD) is one of five legislatively established water management districts in Florida and comprises approximately 12,600 square miles (mi²) in northeastern and east-central Florida (Map 1). Forest and wetlands comprise over 50% of the land cover, with urban and suburban development, agriculture, and rangeland covering most of the rest. Surface waters comprise slightly more than 9% of the SJRWMD area (Map 2). Although most of the area soils are highly permeable sands, organic soils or clays can be found in lowlands or wetlands. Florida's landscape is under continuing pressure from urban and suburban development. The current population of 3.5 million (Map 3) is expected to exceed 5 million by 2020 (Vergara 2000). Most of the population is concentrated in the major urban areas, such as Jacksonville, Orlando, Gainesville, Ocala, and a string of cities along the coast from St. Augustine to Vero Beach. Tourism, agriculture, silviculture, and paper manufacturing are just a few of the many economic activities to impact water resources within SJRWMD.

SJRWMD is divided into 10 hydrologic units or major surface water basins to facilitate the planning and management of surface waters (Map 4, Adamus et al. 1997). The surface water basins are subdivisions of hydrologic units established by the U.S. Geological Survey.

The St. Johns River and its main tributary, the Ocklawaha River, drain approximately 75% of the central SJRWMD area. The St. Johns River flows through four of the 10 major basins: the upper St. Johns River, middle St. Johns River, Lake George, and lower St. Johns River. The St. Johns River headwaters are located in the marshes west of Vero Beach. The river flows northward approximately 310 mi to its mouth east of Jacksonville and drops about 25 feet (ft) over that distance, for an average slope of 0.08 ft/mi. (Morris 1995). Because of the very low gradient, tidal effects occasionally extend about 100 mi upstream. The Florida Department of Environmental Protection (FDEP) has designated the entire St. Johns River, with the exception of Lake Washington and lakes upstream of it (Class 1 water bodies), as a Class 3 water for the recreation, propagation, and maintenance of fish and wildlife. Several large lakes are found along the St. Johns River, including Lake George, Florida's second-largest lake after Lake Okeechobee.

St. Johns River Water Management District 4

The Indian River Lagoon Basin (IRLB) lies east of the upper St. Johns River. Indian River, Banana River, and the Mosquito Lagoon are all within the IRLB. The Northern Coastal basin (NCB) lies farther north, and contains the Intracoastal Waterway (ICW) and its tributaries from Ponce de Leon Inlet to northern St. Johns County.

The Ocklawaha and Florida Ridge basins lie west of the St. Johns River. The primary surface water features located in the Ocklawaha basin are Lakes Apopka, Harris, Dora, Eustis, Yale, and Griffin.

The Nassau River Basin and St. Marys River Basin lie north of the St. Johns River and drain most of the SJRWMD's northern area. The Nassau River flows eastward to form part of the boundary between Nassau and Duval counties. The St. Marys River, with more than one-third of its contributing drainage area in Georgia, defines the boundary between Florida and Georgia, for almost the entire length of the river. The land adjoining these two rivers is predominantly forested and is among the most pristine areas of SJRWMD.

Water quality districtwide was last assessed in 2004 (Winkler and Ceric 2004). This assessment is a continuation of that effort and has been undertaken to characterize the status of and trends in water quality for water bodies of the District. In total, 192 water quality monitoring sites, located in lakes, estuaries, streams, and springs, were selected to represent ambient water quality conditions for this assessment (Map 5). Sampling sites were selected to provide a representative cross section of the region, with respect to surrounding land use patterns and the types of water bodies monitored. Many of the monitoring sites were part of the districtwide ambient-monitoring network and were sampled bimonthly. Other sites were part of basin-specific study areas, and the sampling frequency was often higher or lower than the ambient network frequency. Relevant water quality constituent values were obtained and compiled for the assessment. Characterization of these water bodies will allow the District to identify problem areas and to evaluate the success of remedial or mitigation efforts.

WATER QUALITY

The phrase "water quality" is often used to describe how "good" the water in question is. Surface waters are not naturally pure. They act as a solvent for salts and other compounds, which may originate from sediments, shorelines, or precipitation. For example, rainfall runoff can transport sediments, suspended solids, and contaminants from parking lots, lawns, and other

Introduction

surfaces to surface waters, resulting in nonpoint source pollution. The fact that surface waters contain a multitude of substances means that defining "good" water quality can be problematic.

Nevertheless, in this assessment, water quality generally refers to the amount of impurities in the water. Generally, the fewer impurities in the water, the better the water quality. Most biologists believe that high concentrations of certain substances can have harmful or undesirable effects on plants and animals. For example, high-nutrient concentrations in the water can lead to undesirable levels of algal growth, which ultimately contributes to lower dissolved oxygen in the water column and can result in fish kills. In general, biologists have agreed on the nutrient concentrations that may be considered excessive and such concentrations are reflected in the trophic state index, a measure of water quality. Similar limits have been established by statute for a variety of other water quality constituents, resulting in water quality standards. In this report, poor water quality, when used in reference to a lake or estuary, means water that is considered to have an unhealthy concentration of nutrients, chlorophyll a or both. When used in reference to streams, blackwater streams, and springs, poor water quality refers to water considered to have unhealthy concentrations or levels of dissolved oxygen, turbidity, total suspended solids, total organic carbon, total coliform bacteria, fecal coliform bacteria, nutrients, or a combination of these.

Since only the aforementioned constituents were used in this assessment, there are at least two important caveats for interpreting the results. Primarily, good or fair status does not eliminate the possibility that there are other pollutants of concern. For example, none of the samples evaluated for this analysis were tested for pesticides. Secondly, none of these results should be used to determine whether a water body meets its designated use, as defined by the Florida Department of Environmental Protection (FDEP). Under the impaired waters rule, the FDEP has developed an official methodology for analyzing water quality data to determine whether a water body meets its designated use. This report is not intended as a substitute for that methodology or process, but rather as a general overview of water quality throughout SJRWMD.

WATER QUALITY STATUS AND TRENDS

This report uses both a trophic state index (TSI) and a water quality index (WQI) as the means to assess status and trends in surface water quality. Indices are useful because they allow several different water quality metrics

to be combined into a single number. A TSI was used for lakes and estuaries (Huber et al. 1982) and was based on concentrations of chlorophyll *a*, total phosphorus, and total nitrogen. The TSI was developed primarily as a way of classifying lakes according to their eutrophication potential. Lakes with high TSI values are generally considered eutrophic.

A WQI was used for streams, blackwater streams, and springs. The WQI provides a way of standardizing water quality values taken across a broad spectrum of water quality parameters, all of which may use different measurement scales. The WQI is based on concentrations of total suspended solids, dissolved oxygen, total organic carbon, total and fecal coliform bacteria, total phosphorus, total nitrogen, total nitrate/nitrite, and levels of turbidity. Water bodies with high WQIs are considered to have poor water quality.

Water body status was rated as good, fair or poor based on the median of annual seasonal median TSI or WQI, which was calculated by using data reported for the 5-year period from 2000 to 2004. Trends were based on seasonal median values of the TSI or WQI calculated from data reported for the 15-year period from 1990 to 2004. At least 10 years of data from the 15-year period were required in order to calculate a trend. Water body sites were rated as improving or degrading if the trend was statistically significant ($p \le 0.10$). Many water bodies had insignificant trends. In addition, the Sen's slope method was added to the data analysis routine. Thus, sites were evaluated for the magnitude of the trend as well as for the direction of the trend.

METHODS

Sample Collection

Water quality samples were collected using standard techniques (SJRWMD 1999). Most of the samples were "grab" samples, which were obtained when the sampler physically placed a sample bottle in the water at 0.5 meter (m) depth in an inverted position and then righted the bottle to fill it. Samples were also collected using a Van Dorn sampler or a pump, when appropriate. Samples were preserved, placed on ice, and shipped to the analytical laboratory for analysis.

DATA COMPILATION

Water quality data from 192 ambient stations were compiled into a SAS data set. All of the data came from a central, in-house, SJRWMD Environmental Database, which served as the local repository for data collected by the various sampling programs throughout SJRWMD. This is a major change from the 2004 report, when all the data were compiled from separate, projectspecific databases. The central database allows easier access to data that was stored in a standardized format. Although a large number of constituents were available, the indices only required those listed in Table 1. The SJRWMD laboratory analyzed many of the samples; others were analyzed by contracted laboratories.

Sample Depth

Since most sampling stations did not have profile data, values from depths greater than 1 m were excluded.

Comment Codes

Field samplers often associate letter codes with data to indicate the type (i.e. ambient, experimental, etc.) of sample obtained and its depth. This information was used to help determine if the data could be used (Table 2).

Samples that had no sample code, or the "unknown" code associated with them, were assumed ambient. In addition, analytical labs used letter codes to qualify the data. Table 3 lists those qualifier codes considered acceptable for the analysis.

Constituents	Units	STORET code*
Chlorophyll a	μg/L	32210
Dissolved Oxygen	mg/L	299
Fecal Coliforms	#CFU/100 mL	31616
Nitrate/Nitrite	mg/L as N	630
Total Coliforms	#CFU/100 mL	31505
Total Nitrogen	mg/L as N	600
Total Organic Carbon	mg/L as C	680
Total Phosphorus	mg/L as P	665
Total Suspended Solids	mg/L	530
Turbidity	NTU	82079

Table 1. Water quality constituents used in the assessment

*STORET code is an EPA STORET database analyte identification number

Note:

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter CFU = colony forming units

NTU = nephelometric turbidity units

Table 2. Acceptable data sample codes

Sample Code	Description
COM	composite samples
GRAB	grab samples
P series	vertical profile samples
SPT series	split samples
TO series	horizontal transect samples
TIME series	time series samples
VERT-INT	vertically integrated samples

A sample with no associated remark code was assumed a valid, useful data point.

Data Combination

Certain sampling stations and station names were evaluated in addition to comment codes. Over the years, some stations had been discontinued, but were then resampled under a different station name. In addition, currently sampled station names located at the same site were identified and the data were combined (Table 4). The associated sample collection dates for some stations were also known to be incorrect, and these were not used in the analysis.

Table 3. Acceptable data qualifier codes

Data Code	Description	
A	average of 2 or more samples	
В	results based on colony counts outside the acceptable range	
I	reported value is between the lab MDL and the lab PQL	
K	actual value is known to be less than value given	
L	actual value is known to be higher than value given	
М	presence of material verified but not quantified	
Q	sample held beyond accepted holding time	
Q1–5	sample held 1–5 days beyond accepted holding time	
R	significant rain in the past 48 hours	
Т	value reported is less than lab detection limit	
U	material analyzed for but not detected	
V	analyte detected in blank and sample at >2x MDL (replaced by < code)	
W	value is less than lowest reportable under the T-code	
>	field blank analyte value is more than 2x MDL (SJRWMD internal code)	

Note:

MDL = method detection limit PQL = practical quantitation limit

Period of Record

For this assessment, trends required at least 10 years of data reported during the last 15 years. Thus any sample data obtained before Jan. 1, 1990, were excluded from the analysis. Status results were based on the most recent 5 years of data, which means data reported since Jan. 1, 2000.

Additional Data Checks

Values that were missing or greater than 88000 were excluded, because some labs indicate a null value with the number string 88888.888. Any data values deemed erroneous after an in-house data review by database managers were excluded. The daily mean for any duplicate constituent values was calculated, so that no more than one constituent value would appear for any given day.

Site Location	Available Site Names
Hatchet Creek at State Road (SR) 26	02240800, HAT26
St. Johns River at SR 16	PI54, SJSR16
Ocklawaha River at Hwy 21	20020404, OR006
Lake Eustis	EUS, 20020368
Wolf Creek at SR 419 bridge	NWOLF, USJ918
Orange Lake	OLK, OLC
Lake Griffin	LGC, 20020381
St. Johns River at Palatka	PA32, SJP
St. Johns River at Buffalo Bluff	BB22, SRB
St. Johns River at Racy Point	FP44, SRP
Bivens Arm Lake	OR908, BIVARM
Hogtown Creek at SW 2 nd Avenue	HOG30, HOGSW2ND
Little Lake Harris	LLHARRIS, LHAR
Holiday Springs	HOLSPA, HOLIDSPG
Lake Harris	20020377, HAR
Lake Yale	20020371, LYC
St. Johns River near Picolata	SJWSIL, PI52, SJCM25

Table 4. Available site names for selected ambient sites

Outlier Analysis

Outliers are data values that greatly exceed the normal range of values for a particular constituent and station. Outliers were screened using a simple range-checking procedure modified from a "hinge method" (Hoaglin et al. 1983). To derive the acceptable range, a data set for each site and constituent was compiled. For data sets with at least six values, the twenty-fifth percentile (p25), seventy-fifth percentile (p75) and interquartile range (IQR) were calculated. A low- and a high-range limit were calculated as

high-range limit = p75 + (IQR*10)low-range limit = p25 - (IQR*10)

Outliers were rejected if they exceeded either range limit. Any pH values less than 0 or greater than 14 were also excluded.

WATER BODY CATEGORIZATION

Water bodies were grouped into one of five different categories for this assessment (Map 5). Categorization was important, as it would determine which index would be used. The TSI was applied only to lakes and estuaries, while the WQI was applied to streams, blackwater streams, and springs. A blackwater stream differs from a stream in that it has acidic, highly colored, slow-moving waters and typically drains flatwoods or swamps and is not biologically very productive (Hand et al. 2000). It was not always obvious which category applied to a given site.

Some of the sites had a database-specific number code indicating whether they were a lake or stream. However, many sites were not labeled in any way and these were assigned a lake or stream designation based on their location. Further evaluation of the sample site data provided guidance as to whether a lake or stream site should actually be considered estuarine, or whether a stream site should be considered as a blackwater stream site.

Further data evaluation meant that the median of annual median values for color, pH, conductivity, and chlorides were calculated, and a new water body category appropriately assigned. For example, stream and lake sites were evaluated to determine whether they should actually be considered as estuarine sites. If the median of annual median conductivity was greater than 5,000 micromhos per centimeter (μ mhos/cm), or if the median of annual median chloride was greater than 1,500 milligrams per liter (mg/L), then the lake or stream was evaluated as an estuary. These cutoff values are used to differentiate freshwaters from marine waters in the Florida Water Quality Standards (Chapter 62-302, F.A.C.; see also FDEP 1996). Additionally, the median of annual median color and pH were calculated for streams and, if color was greater than 275 PCU and the pH was less than 6, the stream was recategorized as a blackwater stream (FDEP 1996). The results were reviewed by various basin experts. If they determined—based on vegetation, benthic organism assemblage, and professional opinion—that a water body category should be recategorized, it was. For example, many St. Johns River sites north of Green Cove Springs were originally analyzed as lakes, but after a review by basin experts, the sites were recategorized and analyzed as estuarine sites.

TOTAL NITROGEN

Both the TSI and WQI incorporate total nitrogen. However, total nitrogen (TN) was rarely measured at most of the sites. Ammonia, total Kjehldahl nitrogen (TKN), and total nitrate/nitrite (NO_x) were usually available. TKN and total NO_x were summed for an estimate of total nitrogen. If total NO_x was missing, then dissolved NO_x was used in its place, if it was available. If TKN was missing, total nitrogen was not calculated, since TKN comprises most of the TN for these water bodies.

INDICES

Water quality was assessed using indices. Indices provide a convenient way of evaluating a number of different water quality measurements. Although individual constituents could be evaluated, it can be difficult to interpret results. For example, an examination of nutrients at a site may reveal an increasing trend in total phosphorus (TP) and a decreasing trend in total nitrogen (TN) concentrations. Such results make it difficult to summarize water quality conditions. An index can be helpful in overcoming this type of problem. The two indices used in this assessment were a trophic state index for lakes and estuaries and a water quality index for streams, blackwater streams, and springs. These indices are primarily based on indices used in the FDEP 305b reporting process (FDEP 1996). However, others have used indices as well (Cude 2001, Stambuk-Giljanovic 1999). In Oregon, temperature, dissolved oxygen, biological oxygen demand, pH, ammonia, nitrate, total phosphorus, total solids and fecal coliforms were all combined into the Oregon Water Quality Index (OWQI). The purpose of the index was to provide a simple and concise method for expressing the ambient water quality of Oregon's streams. According to Cude (2001) the OWQI improves comprehension of general water quality issues, communicates water quality status, and illustrates the need for and effectiveness of protective practices. However, the OWQI cannot be used to determine the quality of water for specific uses, nor should it be used to provide information about water quality without considering all appropriate chemical, biological, and physical data, as well as all health hazards.

The indices used in this report are admittedly dated and could stand revision. However, there is no current and widely accepted classification scheme for Florida's waters (of which the author is aware) that could serve as the basis for a revised index. In addition, there have not been revisions to the indices themselves to reflect newer analytical techniques, sampling methods, or the wide availability of information on geomorphology and land use. These appear to be water resources subject areas suitable for further scientific research.

Trophic State Index

The trophic state index (TSI) was originally developed by Carlson (1977). FDEP was interested in using TSI methodology to characterize lake quality throughout Florida. In a study commissioned by FDEP, Brezonik (1976) pointed out that a TSI would be helpful in conveying lake quality information to the public and that it would be useful in comparing overall trophic conditions between lakes. Additionally, TSI could help scientists to evaluate the direction and rate of trophic change and it could be used to develop empirical models of trophic conditions as functions of watershed "enrichment" factors. In other words, an index would be useful in evaluating cultural eutrophication. Indicators that change with eutrophication include total nitrogen, total phosphorus, chlorophyll a, conductivity, total dissolved solids, dissolved oxygen, Secchi depth, and some or all of these should be included in a TSI. Since primary productivity results in eutrophication and primary productivity correlates well with chlorophyll *a* and nutrients, an index can be based on nutrients and chlorophyll a. Such an index was developed (Huber et al. 1982) and is the index used in this assessment, with some modifications. Under the original index, a lake is considered to be impaired if the Secchi depth is less than 1 m, chlorophyll is greater than 20 micrograms per liter (μ g/L), total phosphorus is greater than 50 μ g/L, or total nitrogen is greater than 1 milligram per liter (mg/L) (Table 5). A TSI of 60 or higher would generally indicate poor water quality. Estuaries were also evaluated using the TSI, but the comparison scale is 10 points lower than that for lakes (FDEP 1996).

Table 5.	Concentration limits for key nutrients and chlorophyll <i>a</i> in lakes
	(from Huber et al. 1982)

Constituent	Problem level	Corresponding TSI
Secchi Depth	<1 m	60
Chlorophyll a	>20µg/L	60
Total Phosphorus	>50µg/L	69
Total Nitrogen	>1mg/L	60

Note: TSI = trophic state index

M = meter

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

Although the TSI was originally calculated using chlorophyll *a*, TN, TP, and Secchi depth, the Secchi depth was not used in this assessment because many Florida waters are naturally dark from blackwater stream inputs (FDEP 1996). As a result, low Secchi measurements may not necessarily indicate eutrophic conditions. The equations used in this assessment are, therefore, based only on total phosphorus, total nitrogen, and chlorophyll *a*. Overall TSI for a given water body site was determined by averaging results from these constituent-based TSI equations (see Huber et al. 1982).

The chlorophyll trophic state index (TSIchl) was used for all lakes and estuaries where chlorophyll data were available, shown as

TSIchl = 16.8 + 14.4 * log(chl_a) (uncorrected chlorophyll a)

Nutrient TSI equations were also used. No overall TSI was calculated unless TN and TP were available. A TN/TP ratio was calculated to determine whether the lake was phosphorus-limited, nitrogen-limited, or neither. The TN/TP ratio was calculated using the median of annual median TN and TP for each lake or estuary. If the ratio was less than 10, then the lake was considered nitrogen-limited. In that case, the overall TSI was based on the average of TSIchl and the total nitrogen-limited TSI (TSItnn), expressed as

$$TSItnn = 10^{*}(5.96 + 2.15^{*}logTN)$$
 (TN as mg/L nitrogen)

If the ratio was greater than 30, the lake was phosphorus-limited, and the overall TSI was based on the average of TSIchl and the total phosphorus-limted TSI (TSItpp), expressed as

 $TSItpp = 10^{*}[2.36^{*}log(TP^{*}1000)-2.38]$ (TP as $\mu g/L$ phosphorus)

The TP was multiplied by 1000 to convert the mg/L reported by the lab to μ g/L, as required for the equation. Finally, if the ratio was between 10 and 30, then an average of the nutrient-balanced total phosphorus TSI (TSItp) and the nutrient-balanced total nitrogen TSI (TSItn) was calculated, and the overall TSI was the average of that result and TSIchl, expressed as

TSItp = 10[1.86*log(TP*1000)-1.84]TSItn = 10[5.6 + 1.98log(TN)]

Lakes with ratios between 10 and 30 were thought to respond to concentration changes in either total nitrogen or phosphorus (Huber et al. 1982; Smith 1982). An overall TSI was calculated at each site on each day where sufficient data existed for the calculation. In other words, daily raw nutrient and chlorophyll *a* data were converted to a daily TSI and all further calculations incorporated the daily TSI.

One problem encountered when using raw daily data in the TSI equations was that negative results were occasionally reported by the analytical laboratory. Negative numbers occur when the laboratory gets results that are less than zero on the analytical machine's calibration curve. Since negative numbers are not defined in the logarithmic terms of the equations, SAS produces a missing result when attempting such a calculation. The missing result was set to 0 in these cases to avoid losing data points that reflect low concentrations of total phosphorus, total nitrogen, or chlorophyll *a*.

Water Quality Index

The WQI used in this assessment was originally based on a U.S. Environmental Protection Agency (EPA) STORET product, produced by Ray Peterson (EPA Region 10), in 1980. FDEP modified the index and then correlated the "new" Florida WQI with Peterson's EPA National Profiles Index (NPI). The EPA's NPI combined dissolved oxygen, pH, bacteria, nutrients, turbidity, and inorganic and organic toxics into a single index, ranging from 0 to 100. Index values less than 30 indicated good water quality; those between 30 and 60, fair quality; and over 60, poor quality. The index values were based on graphs of water quality criteria, which were a synthesis of national criteria, state standards, literature values, and professional judgment (Wenzel and McVety 1986). When FDEP correlated the Florida WQI with the EPA index, the cutoff ranges moved slightly. Thus for the Florida WQI, index values less than 45 were considered good; those between 45 and 60, fair; and those over 60, poor quality.

The underlying concept behind the WQI is that different constituents contribute to water quality and that these constituents can be grouped into appropriate classes. The following equally weighted constituent classes comprise the WQI: water clarity, dissolved oxygen, oxygen demanding substances, nutrients, bacteria, and macroinvertebrate diversity (Table 6). To derive the overall WQI for a site, an index value for each class must first be calculated by converting the constituent raw data to a percentile value. The mean of all such percentile values within each class became the index value for that class. For example, to determine an index value for the water clarity class, raw data values for both turbidity and total suspended solids were converted to a percentile. The mean of the two percentiles became the index value for the water clarity component of the WQI for a given day.

Class	Constituents	
Water clarity	turbidity, total suspended solids	
Dissolved oxygen	dissolved oxygen	
Oxygen-demanding	total organic carbon, biochemical oxygen demand,	
substances	chemical oxygen demand	
Nutrients	total nitrogen, total phosphorus, nitrate and nitrite	
Bacteria	total coliforms and fecal coliforms	
Macroinvertebrate diversity	natural substrate, artificial substrate, Beck's biotic index	

Table 6. Florida water quality index classes

An overall daily WQI was calculated as an average of all classes for which data were available. Although the overall WQI could be based on a single class, the index becomes more representative as more classes are present. For this assessment, at least two classes were required in order to calculate an overall WQI.

To use the cutoff values associated with the Florida WQI, the SJRWMD data needed conversion to the same percentile distribution used by the FDEP. In other words, without converting to the same percentile scale, the qualitative cutoff values would be inappropriate for SJRWMD data. To determine the appropriate percentiles, Minitab was used for a best-fit regression for each constituent, using data points found in Table 2-5 of the 1996 FDEP 305b report (see Table 7).

SJRWMD data were adjusted to fit the FDEP distribution as shown in Table 7 so that the qualitative cutoff points for poor, fair, and good water quality could be applied. This regression provides a rough estimate of the cumulative distribution function for each constituent. In some cases, log-transformed data from Table 7 provided the best-fit equation. All equations had minima and maxima, so limits were put on the upper and lower ranges of input values (not unprecedented; see Cude 2001).

For dissolved oxygen,

 $DO_{index} = 0.657360^{*}(value^{3}) - 11.8029^{*}(value^{2}) + 50.0321^{*}value + 28.2168$ for values < 2.8, the index = 90, and for values > 9.2, the index = 1; $r^{2} = 99.9$; r^{2} adj. = 99.8
Constituent*	Units	P10	P20	P30	P40	P50	P60	P70	P80	P90
Turbidity	JTU	1.5	3	4	4.5	5.2	8.8	12.2	16.5	21
TSS	mg/L	2	3	4	5.5	6.5	9.5	12.5	18	26.5
DO	mg/L	8	7.3	6.7	6.3	5.8	5.3	4.8	4.	3.1
BOD	mg/L	0.8	1	1.1	1.3	1.5	1.9	2.3	3.3	5.1
COD	mg/L	16	24	32	38	46	58	72	102	146
TOC	mg/L	5	7	9.5	12	14	17.5	21	27.5	37
TN	mg/L	0.55	0.75	0.9	1	1.2	1.4	1.6	2	2.7
NO _x	mg/L	0.01	0.03	0.05	0.07	0.10	0.14	.20	0.32	0.64
TP	mg/L	0.02	0.03	0.05	0.07	0.09	0.16	0.24	0.46	0.89
Total	#/100ml	100	150	250	425	600	1100	1600	3700	7600
coliform										
Fecal coliform	#/100ml	10	20	35	55	75	135	190	470	960

Table 7. Percentile distribution of 1996 FDEP ambient water quality data

*Note: BOD = biochemical oxygen demand; COD = chemical oxygen demand; DO = dissolved oxygen; NO_x = nitrate and nitrite; TN = total nitrogen; TOC = total organic carbon; TP = total phosphorus; TSS = total suspended solids

For total suspended solids,

 $TSS_{index} = 0.0105882^{*}(value^{3}) - 0.612914^{*}(value^{2}) + 12.6748^{*}value - 12.3346$ for values < 1.0229, the index = 0, and for values > 29.5, the index = 100; r² = 99.7; r² adj. = 99.6

For total nitrogen,

 $TN_{index} = -1.26550^{*}(value^{3}) - 11.5127^{*}(value^{2}) + 86.7858^{*}value - 35.7678$ for values < 0.43895, the index = 0, and for values > 2.7, the index = 90; r2 = 99.6; r2 adj. = 99.4

For nitrite and nitrate,

 $NO_{x \text{ index}} = 1200.32^{*}(value^{3}) - 1464.71^{*}(value^{2}) + 579.148^{*}value + 4.66934$ for values < 0.00058 the index = 5, and for values > 0.68535 the index = 100; r2 = 99.9; r2 adj. = 99.8

For total phosphorus,

 $TP_{index} = -8.01647^{*}(log10(value))^{3} - 31.0489^{*}(log10(value))^{2} + 17.9150^{*}log10(value) + 90.4962$ for values < 0.012975 the index = 0, and for values > 1.85 the index = 93; r2 = 99.7; r2 adj. = 99.5

For total organic carbon,

$$TOC_{index} = 0.0007096^*value^3 - 0.119937^*value^2 + 6.42497^*value - 19.6830$$

for values < 3.2579 the index = 0,
and for values > 44 the index = 91; r2 = 99.9; r2 adj. = 99.8

For total coliform,

 $TC_{index} = -4.17749^{*}(log10(value))^{3} + 29.5153^{*}(log10(value))^{2}$ -19.4043*log10(value) - 35.4442; for values < 60, the index = 0, and for values > 23000, the index = 95; r² = 99.8; r² adj. = 99.7

For fecal coliform,

$$FC_{index} = -10.8087^{*}(log10(value))^{3} + 59.9267^{*}(log10(value))^{2} - 59.4367^{*}log10(value) + 19.8947; for values < 3.9, the index = 3, and for values > 1250, the index = 90; r^{2} = 99.6; r^{2} adj. = 99.4$$

For turbidity,

$$\label{eq:transformation} \begin{split} Turbidity_{index} &= 0.0202426^* value^3 - 0.894427 value^2 + 14.7368^* value - 12.0948; \\ & \text{for values} < 0.86528, \ the \ index = 0, \\ & \text{and for values} > 23.003, \ the \ index = 100; \ r^2 = 98.4; \ r^2 \ adj. = 97.4 \end{split}$$

These equations were used to calculate a percentile (index value) that relates the constituent concentration to the FDEP distribution for which the cutoff values were relevant.

The constituents were then assigned to their proper class (Table 6). However, depending on the type of water body, the class did not always contain the same group of constituents (Table 8). For example, the water clarity class contains both total suspended solids and turbidity and was used for all waters. However, the dissolved oxygen class was used only for streams, since springs and blackwater streams are naturally low in dissolved oxygen (FDEP 1996). Including the dissolved oxygen class in blackwater streams and springs would inappropriately increase the overall index for those types of water

Constituent	Stream	Blackwater Stream	Spring
Turbidity	Y	Y	Y
Total suspended solids (TSS)	Y	Y	Y
Dissolved oxygen (DO)	Y	N	Ν
Total organic carbon (TOC)	Y	N	Y
Total phosphorus (TP)	Y	Y	Y
Total nitrogen (TN)	Y	N	Ν
Nitrate and nitrite (NO _x)	Ν	Y	Y
Total and Fecal coliforms	Y	Y	Y

Table 8. Water quality index constituents used by water body type

Note: DO = dissolved oxygen; NO_x = nitrate and nitrite; TN = total nitrogen; TOC = total organic carbon; TP = total phosphorus; TSS = total suspended solids

bodies, making them appear worse than they actually are. Similarly, total organic carbon was not used for blackwater streams, since they have naturally high concentrations of total organic carbon (FDEP 1996). However, since there are few anthropogenic sources of total organic carbon, inclusion of this analyte in the WQI was questionable. Nevertheless, the total organic carbon component of the oxygen-demanding-substances class was retained for the sake of consistency.

Although total phosphorus was used for all water body types, total nitrogen was used only for streams, while nitrate/nitrite was used only for blackwater streams and springs. Total nitrogen is comprised of both organic nitrogen (TKN) and inorganic nitrogen (NO_x). Blackwater streams have naturally high concentrations of organic nitrogen, and using TKN as an estimate of TN would make these appear to be worse than they really are. Thus, NO_x was used instead to estimate TN. Streams have naturally low concentrations of TKN and NO_x, but both can be increased by pollution. Therefore, TN was used in the index. Unpolluted springs also have naturally low concentrations of both organic and inorganic nitrogen, but pollution can increase NO_x, and it is important to adequately characterize these (FDEP 1996). Spring-fed streams may also benefit from the use of NO_x in the WQI calculation to ascertain contamination, but for the sake of consistency that was not done.

All of these WQI and TSI daily calculations resulted in a data set that was further analyzed for status and then for trend.

SEASONAL MEDIANS CALCULATION

SJRWMD has a warm-temperate climate. Summers tend to be hot and wet, while winters are mild and dry. Rao et al. (1989) found that most rainfall in the District occurred during the months of June through October, which is the wet season. Conversely, they found the dry season to run from November through May. An examination of the data set for this assessment showed uneven sampling frequencies across years and seasons. In order to reduce the effects of these uneven frequencies, seasonal median values were used for status and trend analysis. Daily index values were assigned to either the wet or dry season and then a median of those values was calculated. Dry season daily index values that occurred in November or December were assigned to the dry season (January–May) of the subsequent year. The Wilcoxon rank-sum test function in PROC NPAR1WAY (SAS) was used to determine whether seasonality existed at a given station ($p \le 0.1$). Sites exhibiting seasonality were analyzed for trend by using the seasonal Mann-Kendall test.

DETERMINING STATUS

Status calculations were based on the 5 years of data reported from January 1, 2000, to December 31, 2004. The median of all seasonal median trophic state or water quality index values over the 5-year period became the overall index used to rate a given water body. A qualitative rating was then assigned based on the median value (Table 9).

Water Body	Good	Fair	Poor
Lake	index <60	60 index <70	index 70
Estuary	index <50	50 index <60	Index 60
Stream, blackwater stream, spring	index <45	45 index <60	Index 60

Table 9. Index cutoff values by water body type

DETERMINING TREND

Trend determination indicates whether water quality is changing over time at a particular site. The Mann-Kendall test, a nonparametric test, was used for this assessment. The seasonal Kendall test, a modification of the Mann-Kendall test, was used for data sets that had seasonality. The period of record for trend determination was the 15-year period from January 1, 1990, to December 31, 2004. Ideally, all sites would have data for each year of the period, but this often was not the case. Thus, at least 10 years of data from this period were selected in order to attenuate the effects of drought cycles and to ensure that sufficient data were available to analyze trends (see also Cude 2001).

Mann-Kendall Trend Test

The Mann-Kendall test did not require normally distributed data and was well-suited for analyzing data sets that had missing, tied, or left-censored data (Gilbert 1987, Cude 2001). The test first ranked all seasonal median observations by date order. Then, the difference between each successive value was calculated, and the sum of the signs of those differences was evaluated as the Kendall sum statistic, or K. This process was repeated in an iterative fashion until all possible differences were evaluated. The number of observations was important in determining the critical value for comparison with the Kendall K. For a data set with less than 4 observations, no critical values were available. For data sets with 40 or fewer observations, the probability associated with the Kendall K was found in "Upper-Tail Probabilities for the Null Distribution of the Kendall K Statistic" (Table A.30, Hollander and Wolfe 1999). If the data set had more than 40 observations, a z-score was calculated based on the K statistic and the variance. The z-score was calculated according to one of the following (Gilbert 1987):

$Z = K - 1/\sqrt{(variance K)}$	for $K > 0$
Z = 0	for $K = 0$
$Z = K + 1/\sqrt{\text{(variance K)}}$	<i>for K</i> < 0

The z-score was then compared to critical values from a normal distribution table ($p \le 0.1$). If the Kendall K was positive, that meant that the seasonal median index values were, in general, increasing over time, which meant a degrading trend. If the Kendall K was negative, then the trend was improving, since in that case, index values were decreasing over time.

Seasonal Kendall Trend Test

The Seasonal Kendall test was based on the same principle as the Mann-Kendall test, but the variance calculation was more complicated. The variance equation accounts for the number of tied values and the number of groups of tied values across all years in each season. Additionally, the variance equation accounts for the number of years in each season that had multiple data and the number of multiple data in each year. After ranking the seasonal median values as before, the number of values per season was calculated. The variance was calculated for each site and a z-score calculated as before. For the seasonal test, all z-scores were evaluated using the normal probability table ($p \le 0.1$).

Sen's Slope Estimate

The Sen's slope is an estimate of the magnitude of the trends. It was calculated as the median value of all individual slope estimates within the station's data series. Upper and lower 95% confidence intervals were also calculated for each slope estimate (Gilbert 1987).

RESULTS AND DISCUSSION

Status and trends were assessed for 192 sites located in nine major drainage basins within the SJRWMD (Map 6). Details on these sites can be found in Appendix A, Table A1. Status results for each station can be found in Appendix A, Table A2 and trend results for each station are in Appendix A, Table A3.

ST. MARYS RIVER BASIN

The St. Marys River drains southeastern Georgia and northeastern Florida and serves as a state boundary. The river drains an extensive tidal marsh system in its lower reaches. The headwaters drain much of the Okefenokee swamp (Hand et al. 2000) and terminate at the Intracoastal Waterway (ICW), where tidal influences cause reverse flows on a regular basis. The size of St. Marys Basin is about 1,580 mi², with about 952 mi² within SJRWMD. Land cover is predominantly upland forests used for silviculture (Figure 1).

	General Land Use Classes	Area, mi²	% of area
1212	Forest	525.600	55.20%
A State of the second s	Wetland	303.913	31.92%
	Urban	41.578	4.37% 📕
- V. W.	Agriculture	35.626	3.74%
	Water	22.264	2.34%
ALL ALL	Upland nonforested	15.730	1.65% 📙
A REAL PROPERTY AND	Transportation, Communication, Utilities	6.240	0.66%
	Barren land	0.955	0.10%
	<pre>Null></pre>	0.248	0.03%
		952.174	

Figure 1. St. Marys River Basin land cover (2000)

Although the basin is not highly developed, urban development continues in the Amelia Island and Macclenny/Glen St. Mary areas. Wastewater from the Fernandina Beach treatment plant, urban runoff, and local pulp mills probably have some effect on the water quality in this area.

Four stations were located on the river and its tributaries: State Road (SR) 2, the Middle Prong at Highway 127, Scotts Landing, and U.S. 17, which is at the Georgia state line (Map 7). The site at SR 2 (19010006), the Middle Prong (MPS), and Scotts Landing (SJA-HS-1018) all had good water quality, while the site at U.S. 17 (19010001), which is many miles downstream from the headwaters, had fair water quality. The three upstream sites were evaluated as blackwater streams, which means that they had higher color and lower pH than the downstream site, which was evaluated as a stream. There were insufficient data for trend analysis at Scotts Landing and an insignificant trend at all the other sites. Overall, the St. Marys River appears to have good water quality.

NASSAU RIVER BASIN

The Nassau River is a tidally influenced river that drains much of the salt marsh west of Amelia Island and empties to the ICW. It also serves as a border between Nassau County and Duval County. This basin of about 424 mi² has a predominant land cover of upland forests used for silviculture (Figure 2).

Figure 2. Nassau River Basin land cover (2000)

There were two stations on the Nassau River (Map 8): the Nassau river near Italia (**NRI**) and at U.S. 17 (**19020002**). The site near Italia was evaluated as a stream, using the WQI, and it had poor water quality with an insignificant trend. The site at U.S. 17 was evaluated as an estuarine site, using the TSI, and it had poor and degrading water quality.

St. Johns River Basin

The St. Johns River drains most of SJRWMD, and its headwaters are west of Vero Beach. The river flows north and empties to the Atlantic Ocean 20 mi east of Jacksonville. The river has many tributaries, and it regularly reverses flow north of Lake George due to tides and a low gradient. The river has traditionally been subdivided into four main sections: the lower basin, Lake George Basin, middle basin, and upper basin. The Lower St. Johns River Basin comprises the area from Welaka north to the river mouth. The Lake George Basin includes the St. Johns River south of Welaka to the mouth of the Wekiva River. The Middle St. Johns River Basin extends from the mouth of the Wekiva south along the St. Johns River to the mouth of the Econlockhatchee River, while the Upper St. Johns River Basin comprises the area south to the headwaters.

Upper St. Johns River Basin

The headwaters of the St. Johns River are located in the western part of Indian River and Brevard counties and are comprised of a series of floodplain marshes, river segments, and lakes. The Upper St. Johns River Basin (USRJB) comprises approximately 1,726 mi², and the predominant land cover is wetlands (Figure 3). USRJB contains two surface waters used for potable supplies: Lake Washington and Taylor Creek.

Wetland 625.540 36.24% Agriculture 618.787 35.85% Upland nonforested 156.380 9.06% Forest 146.386 8.48% Water 79.339 4.60% Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40%	5	General Land Use Classes	Area, mi²	% of area
Agriculture 618.787 35.85% Upland nonforested 156.380 9.06% Forest 146.386 8.48% Water 79.339 4.60% Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40%	A.	Wetland	625.540	36.24%
Upland nonforested 156.380 9.06% Forest 146.386 8.48% Water 79.339 4.60% Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40%	A A A A A A A A A A A A A A A A A A A	Agriculture	618.787	35.85%
Forest 146.386 8.48% Water 79.339 4.60% Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40%		Upland nonforested	156.380	9.06%
Water 79.339 4.60% Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40% 1726.284 1726.284		Forest	146.386	8.48%
Urban 71.104 4.12% Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40% 1726.284 1726.284		Water	79.339	4.60%
Transportation, Communication, Utilities 16.487 0.96% Barren land 6.932 0.40% 1726.284		Urban	71.104	4.12%
Barren land 6.932 0.40% 1726.284	KEN M	Transportation, Communication, Utilities	16.487	0.96% 📘
1726.284	and the second se	Barren land	6.932	0.40%
			1726.284	
	1			
	Sector Sector			

Figure 3. Upper St. Johns River Basin land cover (2000)

St. Johns River Water Management District 32

Three lakes, two streams, and a blackwater stream were sampled for this assessment (Map 9). Blue Cypress Lake (BCL) had good water quality and an insignificant trend. Lakes Washington (LWC) and Poinsett (LPO) both had good but degrading water quality due to increasing concentrations of nutrients and chlorophyll *a*. Farther north, the St. Johns River at SR 50 (SRS) had fair water quality and an insignificant trend. The two tributaries assessed in this area were Jane Green Creek (JGS), and Crabgrass Creek (USJ055). Jane Green Creek had good water quality while Crabgrass Creek had fair water quality. Both tributaries had insignificant trends.

Middle St. Johns River Basin

More stations were assessed in the Middle St. Johns River Basin (MSJRB) than in the Upper St. Johns River Basin. With an area of about 1,178 mi², the predominant land cover is urban and wetlands (Figure 4). The MSJRB contains both the Econlockhatchee and the Wekiva tributaries.

4	General Land Use Classes	Area, mi²	% of area
10 . S.A.	Urban	324.361	27.54%
	Wetland	285.041	24.20%
The States	Forest	221.922	18.84%
	A griculture	148.063	12.57%
	Water	86.398	7.33%
SER- CARA	Upland nonforested	84.617	7.18%
Sec. 20 Topol	Transportation, Communication, Utilities	22.709	1.93%
E The shares	Barren land	4.821	0.41%
and the second		1177.943	

Figure 4. Middle St. Johns River Basin land cover (2000)

Three blackwater, seven lake, and six stream sites were sampled in the MSJRB (Map 10). The mainstem site at SR 46 (SRN) had fair but degrading water quality due to increasing concentrations of turbidity, phosphorus, and total suspended solids. The Econlockhatchee tributary (ECH) had good water quality with no significant trend. Deep Creek (DMR) drains Lake Ashby (ASH) and both had good water quality and an insignificant trend.

Lake Harney (**CLH**) had good water quality but insufficient data for trends. The St. Johns River near the mouth of Lake Jesup (OW-SJR-1) had fair but degrading water quality due to increasing concentrations of turbidity, total organic carbon, and phosphorus. All three stations on Lake Jesup (OW-2, OW-4, OW-6) had poor quality with insignificant trends. Lake Monroe (LMAC) had fair quality with no discernable trends. The Wekiva River joins the St. Johns River farther north, and Blackwater Creek is a tributary to it. The Wekiva River (02235000) had good but degrading water quality due to increasing concentrations of total organic carbon and nitrogen, while the Little Wekiva (20010137) had good water quality but an insignificant trend. Historically, there were seven wastewater treatment plants and a citrus processing plant discharging to the Little Wekiva (FDEP 1997). These stopped discharging in the mid-1970s, and now there is only an intermittent discharge from the Altamonte Springs Wastewater Treatment Plant. The main concerns in the Little Wekiva are urban stormwater runoff, erosion, and streambed alterations (FDEP 1997). Blackwater Creek (BWC44, BWCCPB) had good water quality also, but no significant trends were detected. Lake Winimisset (WIN) had good water quality but no significant trend. The Little Econlockhatchee River near Union Park (02233200) had fair water quality but insufficient data for trend analysis.

Overall, an equal percentage of streams in the MSJRB had good and fair water quality, while none had poor water quality (Figure 5). Half of the streams (50%) had degrading trends while about a third (33%) had insignificant trends (Figure 6). Seventeen percent had insufficient data for trend determination and none of the streams evaluated had an improving trend. All the blackwater stream sites in the MSJRB had good water quality and no significant trends. The three sites on Lake Jesup accounted for the poorly rated lake sites in the basin (Figure 9). None of the lake sites in the MSJRB had improving water quality and most (86%) had insignificant trends (Figure 10).

According to FDEP (Central District Report 2002), Lake Jesup's pea-green color is due to unicellular algae that feed on nutrients. Since May 1983, sewage outfalls have been diverted from lake tributaries to the Iron Bridge Wastewater Treatment Plant. A long history of intense agriculture in the watershed, recent population growth in the surrounding cities, and a severe restriction of the lake's outlet to the St. Johns River have contributed to the hypereutrophication of the lake. Both lakes Monroe and Ashby had better water quality than Jesup.

Figure 5. Stream status for selected basins

Figure 6. Stream trends for selected basins

General Land Use Classes	Area, mi²	% of area
Forest	390.745	47.88%
Wetland	187.782	23.01%
Water	110.506	13.54%
Urban	68.168	8.35%
Agriculture	39.518	4.84% 📕
Upland nonforested	16.032	1.96% 📒
Transportation, Communication, Utilities	2.354	0.29%
Barren land	0.897	0.11%
	816.022	

Figure 7. Lake George Basin land cover (2000)

~

General Land Use Classess	Area, mi ²	% of area
Forest	1033.555	37.51%
Wetland	669.425	24.30%
Urban	472.782	17.16%
Water	241.933	8.78%
Agriculture	191.071	6.93% 📕
Upland nonforested	81.499	2.96% 📒
Transportation, Communication, Utilities	54.442	1.98% 📕
Barren land	10.435	0.38%
	2755.171	

Figure 8. Lower St. Johns River Basin land cover (2000)

Figure 9. Lake status for selected basins

Figure 10. Lake trends for selected basins

Lake George Basin

The Lake George Basin (LGB) lies farther north along the St. Johns River. Lake George covers an area of 46,000 acres and provides habitat for the second largest population of bald eagles in the continental United States (excluding Alaska). The basin is 816 mi² and the predominant land cover is upland forests (Figure 7).

Three lake, one spring, and four stream sites were sampled in the LGB (Map 11). Blue Springs (**BLSPR**) had good water quality and an insignificant trend, and it was the only spring evaluated for this entire assessment. It supplies the St. Johns River below DeLand (**02236000**), where the water quality was fair, with insufficient data for trend determination. Lake Woodruff (**LKWOOD**) is farther north, and it had good water quality and an insignificant trend. The St. Johns River at SR 40 (**20010002**) and Lake George (**LAG**) both had fair water quality and an insignificant trend. Lake Kerr (**KER**) drains to the north end of Lake George and had good water quality and an insignificant trend. The St. Johns River at channel marker 72 (**20030373**) had good quality and an insignificant trend, while the St. Johns River near the Ft. Gates Ferry (**MSJFGF**) had fair quality, with insufficient data for trend analysis.

Lower St. Johns River Basin

The Lower St. Johns River Basin (LSJRB) is the stretch of river below the Ocklawaha River mouth and terminates in the Atlantic Ocean east of Jacksonville. The river is a major route for transportation to Jacksonville, which is one of the largest ports on the East Coast. Commercial and sport fishing are also large industries on the river. LSJRB is 2,755 mi² with a predominant land cover of upland forests (Figure 8). The LSJRB is tidally influenced by the Atlantic Ocean, and a brackish salt wedge, usually located near Green Cove Springs, characterizes the estuarine interface. According to Hendrickson and Konwinski (1999), the LSJRB is a sixth-order, dark-water river estuary, and it has riverine, lacustrine, and estuarine characteristics.

Many sampling sites were located in the LSJRB. Four blackwater stream, 15 estuarine, 16 lake, and 18 stream sites were evaluated in the LSJRB (Map 12). Moving north from Lake George, the river at Buffalo Bluff (SRB) had good water quality but no significant trend. The Oklawaha River joins the St. Johns River south of this area. Dunns Creek (DUNNSCRK) joins the St. Johns River north of Buffalo Bluff, and it had fair water quality but insufficient data for

trend determination. The St. Johns River from Palatka north to Picolata had variable water quality. In Palatka (SJP) and at Rice Creek (SJRCC), the river had good water quality but no significant trends. At Rice Creek (SAVRICNO), the river had good quality, but had insufficient data for trend analysis. The St. Johns River at channel marker 37 (SJM37) and off Racy Point (SRP) had fair water quality and insignificant trends. North of this area (SAVSCRAO), the river had good quality but insufficient data for trends.

There are several tributaries to the St. Johns River near Palatka. Rice Creek at SR 100 (LSJ918) had good water quality and no significant trend, although at its mouth (RCB), the creek had poor but improving water quality, resulting from lower concentrations of turbidity and nitrogen. Simms Creek (SIM), which drains to Rice Creek, had good water quality but no significant trend. Dog Branch (DBR) had poor water quality and an insignificant trend. The Hasting Drainage District (OHD) had fair and improving water quality, due to decreasing concentrations of chlorophyll *a*, total suspended solids, nitrogen, and turbidity. Deep Creek (DPB) had fair but degrading water quality. Sixteen Mile Creek (16MCRK) had good water quality, but it had insufficient data for trend determination. Moccasin Branch on SR 13 (MOB) had fair water quality but no significant trend. Sixmile Creek (SMC) joins the St. Johns River north of Picolata, and it had fair water quality and an insignificant trend. The St. Johns River at marker 25 (SJCM25) had good water quality with no significant trend.

Estuarine conditions predominate in the St. Johns River north of Green Cove Springs, so sites located in that stretch of the river were analyzed as estuarine sites, using the TSI. The sites in the St. Johns River from Green Cove to Piney Point had fair water quality. The St. Johns River at Green Cove (SJSR16) had no significant trend, while Hallowes Cove (HCC) and Hibernia Point (SJRHBP) both had improving trends due to decreasing nitrogen and chlorophyll a concentrations. Julington Creek, at its mouth (20030153), had an insignificant trend, while the St. Johns River at Mandarin Point (MP72) had improving water quality. Neither Beauclairc Bluff (JAX SJR30) nor the Bolles School (SAVBOLSO) had sufficient data for trend assessment. Piney Point (JAX SJR40) had an improving trend. Farther north, the river near the Jefferson Smurfit plant (JAX SJR17) had good water quality and an insignificant trend. Moncrief Creek (20030115) had fair but declining water quality due to increasing concentrations of chlorophyll a and phosphorus. The St. Johns River, at marker 34 (JAX SJR04) and at marker 1 (JAX SJR01), had good water quality, but had insignificant and insufficient data for trends, at each respective site.

Many St. Johns River tributaries were sampled for this assessment. Peters Creek (PTC) is one such tributary, and it had fair water quality and an insignificant trend. Governors Creek (GC16) had poor water quality with insufficient data for trend analysis. Black Creek is a major tributary, and both the south (BSF) fork and the creek at Highway 209 (BLC) had good but declining water quality, due to increasing concentrations of total suspended solids and chlorophyll a. The North Fork (NBC) also had good quality but an insignificant trend. Swimming Pen Creek (SPCR) drains to Doctors Lake, and it had fair water quality with an insignificant trend. Doctors Lake (DTL) had poor but improving water quality, due to decreasing concentrations of total nitrogen. The other site on Doctors Lake (SAVDRLKO) had poor water quality and insufficient data for trends. Big Davis Creek and Durbin Creek are tributaries to Julington Creek. Durbin Creek (LSJ087) had fair water quality with no significant trend, while Big Davis Creek (LSJ099) had good water quality but insufficient data to determine a trend. Both the Ortega River at Collins Road (20030349) and Cedar Creek at Blanding Boulevard (20030083) had fair water quality, but insignificant trends. Little Haw Creek (LSJ070), located south of Crescent Lake, had good quality with an insignificant trend. The Haw Creek outlet at Dead Lake (HAW) had poor water quality and no significant trends.

Some of the lakes in the LSJRB were sampled as well. There were three sites on Crescent Lake: middle of the lake (GF33), mid-lake (SAVCRL20), and at the outlet (CRESLM). All had fair water quality but insufficient data for trends. Georges Lake (20030400) had good water quality but an insignificant trend. Lake Sheelar (SHEEL) had good but degrading water quality, due to increasing nitrogen concentrations. Lakes Geneva (GEN) and Winona (WIO) had good water quality and insignificant trends. Lake Disston (CLD) had good and improving water quality, due to decreasing chlorophyll *a* concentrations. Kingsley Lake (20030412) had good water quality and an insignificant trend.

Overall, 28% of stream sites sampled in the LSJRB basin had good water quality, 17% had poor water quality and 56% had fair water quality (Figure 5). Six percent of the stream sites had a degrading trend, while 11% were improving (Figure 6). The majority of streams (72%) had an insignificant trend, while 11% lacked sufficient data for a trend analysis. All of the blackwater stream sites in LSJRB had good quality, but two had degrading trends and two others had insignificant trends. Sixty-nine percent of the lake sites sampled in LSJRB had good water quality; 31% had fair water quality, and none of the sites had poor water quality (Figure 9). Nevertheless, 6% of the lake sites had a degrading trend, while 6% had an improving trend (Figure 10). The majority of sites had an insignificant trend (56%) or insufficient data to determine a trend (31%). It is important to point out that most of the mainstem river sites from Palatka to Green Cove Springs were evaluated using the TSI and not the WQI (Map 5).

Finally, several estuarine sites were sampled in the LSJRB. All mainstem river sites from Green Cove Springs northward were analyzed as estuarine sites using the TSI, due to the tidal influence on the river. The majority of estuarine sites in the basin had fair water quality (60%), while 20% had good quality and 20% had poor water quality (Figure 11). Seven percent had degrading trends, while 33% had improving trends (Figure 12). The majority of sites had either an insignificant trend (27%) or did not have sufficient data (33%) for trend analysis.

Figure 11. Estuarine status for selected basins

Figure 12. Estuarine trends for selected basins

According to Deuerling and Cooner (1995), the major problem in the LSJRB appears to be stormwater runoff. They claim that storm water can deposit 80 to 95% of the heavy metals that reach the river, as well as a majority of the coliforms, disease organisms, and viruses that reach the river. In addition, excessive freshwater and oxygen-demanding substances are brought into the river by storm water.

OCKLAWAHA BASIN

The Ocklawaha Basin (OB) comprises approximately 2,115 mi² in the southwestern portion of SJRWMD, and the predominant land cover is upland forests (Figure 13). The headwaters of the Ocklawaha River are the Ocklawaha chain of lakes and the Palatlakaha River in northern Polk County. The Orange Creek Basin is also part of the OB. The Orange Creek Basin is 600 mi², and its main feature is Paynes Prairie.

Two blackwater, 19 lake, and 21 stream sites were sampled in this basin (Map 13). Three stations were in Lake Apopka: the southernmost lake station **(SLA)**, the center lake station **(CLA)**, and the northern station **(NLA)**. Although all three had poor water quality, decreasing nutrient concentrations

Figure 13. Ocklawaha River Basin land cover (2000)

(especially for phosphorus) and increasing Secchi depth are most likely driving the improving trends. The Apopka Beauclair Canal (ABC) and Lake Beauclair East (BCE) both had poor but improving water quality. Nearby, Cherry Lake (20020321) had good water quality, but it had insufficient data for trends. Lake Dora (DOR) had poor water quality with no significant trend. The east pool of Lake Dora (DORE), the canal between Dora and Eustis (DCNL), and Lake Carlton (CARL) all had poor water quality and insufficient data for trend analysis. These lakes are considered eutrophic (Fulton 1995). The Dead River between Eustis and Harris (DRVR) and Little Lake Harris (LLHARRIS) both had fair water quality, but had insufficient data for trend analysis. Lake Harris (HAR) had fair water quality with an insignificant trend. Lake Denham East (DNEY) had poor water quality with no significant trend. The Palatlakaha River (**PRVR**) had good quality with insufficient data for trend analysis. Lake Eustis (20020368) had fair water quality with no significant trend, as did one of the sites, on Haynes Creek, that connects Lake Eustis to Lake Griffin (02238000). Another site (DEPHCA) on Haynes Creek had poor quality with an improving trend, due to decreasing concentrations of turbidity, chlorophyll a, nutrients, and total suspended solids. Another site on Haynes Creek, upstream of discharge (DEPHCB), had poor water quality with an insignificant trend. Hicks Ditch (HICKDN), which drains to Lake Eustis, had poor water quality with an insignificant trend. Pine Meadows (PINEMS), which is nearby, also had poor water quality, but it had an improving trend. Lake Griffin (LGNA, 20020381) had poor water quality but improving trends, due to lower concentrations of

nutrients and chlorophyll *a*. A third site on Lake Griffin (**LGS**) had poor water quality with insufficient data for trend analysis. Lake Yale (**LYC**) had fair but degrading water quality, due to increasing concentrations of nutrients and chlorophyll *a*. One of the sites on the canal that connects Lake Yale to Lake Griffin (**YGCCA**) had poor, but improving water quality, due to decreasing nutrient and chlorophyll *a* concentrations, while the other site (**YGCAA**) had poor water quality and insufficient data for trend analysis. Lake Weir (**CLW**) had good water quality with no significant trend.

Farther downstream on the Ocklawaha River, the site at C-231 canal **(SHORIA)** had poor water quality and an insignificant trend. Even farther downstream, at Moss Bluff, the upstream side of the lock **(MBU)** had poor water quality and an insignificant trend. The Ocklawaha below Moss Bluff **(OFB)** had poor water quality with insufficient data for trend determination. The Ocklawaha River at SR 40 **(ORD)** had good water quality but an insignificant trend. The nearby Silver River **(SSR)** had good water quality but had insufficient data for trend analysis. The Ocklawaha River at County Road (CR) 316 **(20020012)** and a tributary to it, Orange Creek at Highway 21 **(OR006)**, both had good water quality but an insignificant trend. The Near trend trend insufficient trend. The Near trend is the Near trend trend. The Near trend is the Near trend trend is the Near trend trend analysis.

Several sites were sampled in and around the Gainesville area. Lake Lochloosa (LOL) and Newnans Lake (NEW) both had poor water quality with no significant trends. The two sites on Little Hatchet Creek (LHAT26, LHT26E) had poor water quality and an insignificant and degrading trend, due to increasing concentrations of total organic carbon, nitrate, and nitrogen, respectively. The Hatchet Creek site (HAT26) had good water quality but an insignificant trend, while Lake Forest Creek (LFC329B) had good water quality but insufficient data for trend analysis.

Overall, 33% of stream sites in the OB had good water quality, 10% had fair water quality, and 57% had poor water quality (Figure 5). The majority of stream sites had an insignificant trend (43%) or did not have enough data (38%) to determine a trend (Figure 6). Fourteen percent were improving, while 5% were degrading. FDEP (2001) found that 66% of stream miles were impaired for nutrients and that the most common stressors in this basin, for streams, were dissolved oxygen, nutrients, fecal and total coliforms, and lead.

A majority (68%) of the lake sites had poor water quality (Figure 9). This corroborates FDEP's (2001) finding that 70% of lakes were impaired for

nutrients. FDEP also indicated that the most significant water quality problems were low and supersaturated concentrations of dissolved oxygen and nutrient enrichment. Only 11% of the sites had good water quality, while 21% had fair water quality. Thirty-two percent of the lake sites were improving and 5% were degrading (Figure 10). Thirty-seven percent had an insignificant trend, while 26% of the sites had insufficient data for trend determination.

Surface waters in the Ocklawaha Basin have been affected by farming, flood control, and the construction of navigational canals. In the Orange Creek Basin, converted wetlands for agricultural use have diminished water quality and habitat. According to Fulton (1995), eutrophication of the surface waters was the result of domestic, industrial, and agricultural wastes discharged directly to receiving waters; destruction of aquatic habitats; and channelization. In past decades, waters in the Ocklawaha Basin have had poor quality, due to the hypereutrophic conditions found in the Ocklawaha chain of lakes. Historically, Lake Apopka was clear, densely vegetated, and well known for its sports fishery. SJRWMD is currently restoring thousands of acres of muck farms, adjacent to Lake Apopka and the Ocklawaha chain of lakes, to aquatic and wetland habitat. These activities include removing internal and external nutrient loads, restoring wetland and river habitats, and managing water levels to mimic the natural hydrologic cycle (FDEP 2001). After years of decline, SJRWMD restoration efforts appear to be improving water quality in the lake. Basinwide, these efforts appear to be paying off, as the Ocklawaha Basin has the highest percentage of improving stream and lake sites when compared to the other basins.

INDIAN RIVER LAGOON BASIN

The Indian River Lagoon Basin (IRLB) is comprised of three major water bodies: Mosquito Lagoon, Banana River, and the Indian River (Map 14). It is one of the more diverse estuaries in North America, providing 50% of the east Florida fish catch and 90% of Florida's clam harvest. Healthy seagrass beds are vital to maintaining this level of productivity. Farms in the area produce world-famous Indian River Citrus. The economic impact of lagoon activities is estimated to be \$730 million annually. The IRLB receives salt water through inlets to the ocean, freshwater from rain, groundwater seepage, and surface water runoff; and discharges from tributaries and drainage canals. Since 1916, the lagoon's watershed drainage area has increased from 572,000 acres to more than 1.4 million acres. The concomitant increase in freshwater inputs has had a major effect on the lagoon. Sedimentation is a concern in the basin,

and it negatively impacts seagrass beds and benthos. Although wastewater treatment plants have discharged to the lagoon in the past, the 1990 IRL No Discharge Act has reduced these inputs. In the 1950s and 1960s, over 75% of the salt marsh in the lagoon was diked for mosquito control, eliminating a vital nursery function. One of the goals of the IRL Surface Water Improvement and Management (SWIM) plan is the reconnection and restoration of these wetlands. The lagoon comprises almost 1,162 mi² in SJRWMD, and the predominant land cover is water (Figure 14).

Five stream sites and 36 estuarine sites were sampled in the IRLB (Map 14). In the Indian River, the Vero South Canal (IRLVSC) had fair water quality with no significant trend. The lagoon offshore of the Vero Canal (IRLIRJ12 IRLIRJ07) had good and improving water quality. Another lagoon site in the area (IRLIRJ08) had good water quality but an insignificant trend. The Vero Main Canal (IRLVMC) had good water quality and an insignificant trend, while the lagoon offshore of it (IRLIRJ05) had good water quality with an insignificant trend, and the lagoon off that area (IRLIRJ04, IRLIRJ10) had good water quality with an insignificant trend, and the lagoon off that area (IRLIRJ04, IRLIRJ10) had good water quality with an improving trend and an insignificant trend, respectively, just off the canal. Farther north, the lagoon off Spratt Point (IRLIRJ01) had good and improving water quality. Decreasing concentrations of chlorophyll *a* and total phosphorus appeared to be responsible for the IRLIRJ series of sites that had improving water quality.

The lagoon off the Sebastian River (IRLSUS) had good and improving water quality, due to decreasing concentrations of nutrients and chlorophyll a. The lagoon near channel marker 55 (IRLI28) and near Grant Farm Island (IRLI27) both had good water quality and an insignificant trend. The lagoon off Goat Creek (IRLGUS) had good and improving water quality, due to decreases in concentrations of chlorophyll *a* and nitrogen. The lagoon at Turkey Creek (**IRLTUS**) had good and improving water quality, due to decreasing chlorophyll a concentrations. The lagoon offshore of this area (IRLI24) had good water quality but insufficient data for trend analysis. Crane Creek upstream (CC03) had good water quality with an insignificant trend, while the mouth of the creek (**IRLCCU**) had fair and improving water quality, due to decreasing concentrations of total nitrogen. The lagoon offshore of Crane Creek (IRLI23) had good and improving water quality, due to phosphorus decreases. The Eau Gallie River mouth (IRLEGU) had poor but improving water quality, due to decreases in chlorophyll *a* and nitrogen concentrations, whereas the lagoon offshore of the Eau Gallie (IRLI21) had fair water quality with an insignificant trend. Horse Creek (IRLHUS) had good water quality with an insignificant trend.

The lagoon just south of Pineda Causeway (IRLI18) had good water quality with no significant trend. This area is where the Banana River branches off. The Indian River, off Rockledge treatment plant discharge (IRLI15), had fair and improving water quality due to decreases in chlorophyll a. The lagoon at the SR 528 bridge (IRLI13) had good and improving water quality, due to decreases in the concentrations of phosphorus and chlorophyll a. The NASA causeway area (IRLI10) had fair water quality with an insignificant trend. Farther north at Addison Creek (IRLAUS) the quality was poor with insufficient data for trend analysis. The area around Highway 42 (IRLI07) had fair water quality with no significant trends. The lagoon near the Haulover Canal (27010875) had fair but degrading water quality, due to increasing concentrations of total phosphorus. Big Flounder Creek (IRLBFC) had poor water quality with no significant trend. The Indian River offshore of IRLBFC (IRLI02) had good but degrading water quality. The northernmost site on the lagoon (IRLTBC) had fair water quality with an insignificant trend.

In the Banana River, the southernmost site **(IRLB09)** at the confluence with the Indian River and the Banana River **(IRLB06)** both had fair water quality with no significant trend. The Sykes Creek area **(IRLSCO3)** had fair and improving water quality, due to decreasing concentrations of chlorophyll *a*.

The Banana River near the SR 520 causeway (IRLB04) and at (IRLB02) had good water quality with no significant trends.

The southernmost site (IRLML02) on the Mosquito Lagoon had good water quality and an improving trend, mainly due to decreasing phosphorus concentrations. The Mosquito Lagoon at Oak Hill Dock (IRLV17), farther north (IRLV11), and at channel marker 47 (IRLV05) all had good and improving water quality, due to decreasing concentrations of phosphorus and chlorophyll *a*. These results seem to corroborate those of Sigua et al. (1999) and indicate that the Mosquito Lagoon exhibits good water quality, mainly due to the pristine habitat in the area, reduced urbanization, and a negligible amount of agricultural discharges.

Overall, estuarine water quality in IRLB was mostly good (67%), and only 28% of the stations sampled had fair water quality, while 6% had poor quality (Figure 11). Fifty percent of the sampled estuarine sites were improving, while 6% were degrading, so more sites were improving than were degrading (Figure 12). Forty-two percent of estuarine sites had an insignificant trend while 3% had insufficient data to determine a trend.

NORTHERN COASTAL BASIN

The Northern Coastal Basin (NCB) is the coastal area that includes the Intracoastal Waterway (ICW) from Ponte Vedra south to the Spruce Creek in Volusia County. The basin is about 733 mi², and the predominant land cover is upland forests (Figure 15). The Tomoka River, Spruce Creek, and Pellicer Creek, with parts of the Guana-Tolomato-Matanzas system, are classified as Outstanding Florida Waters.

Sixteen estuarine sites and four stream sites were assessed (Map 15). The southernmost sites all had fair water quality and an insignificant trend. These sites were: Spruce Creek (02248000), the Halifax River (27010037), the Tomoka River (27010579), the Tomoka River at the Old Dixie Highway Bridge (27010024), and Bulow Creek (BUL). The ICW at Fox Cut (JXTR26) had good water quality but insufficient data for trend analysis, while the ICW at the Matanzas Inlet area (MAT) had good water quality and an insignificant trend. The ICW at the confluence with Pellicer Creek (MRT) had good water quality with insufficient data for trends. Pellicer Creek (PEL) had fair water

quality but an insignificant trend. Farther north, the ICW, both at Crescent Beach (JXTR21) and at Moultrie Creek (MCICW), had good water quality but did not have enough data for trend analysis. Farther upstream, Moultrie creek (MTC) had fair and improving water quality, due to decreasing phosphorus concentrations. The ICW at the CR 312 bridge (MR312) had good water quality but no significant trend, while the San Sebastian River (SSB) had good water quality but insufficient data for trend detection. Moving farther north, the site at the confluence of the ICW and the Guana River (JXTR17) had good water quality but insufficient data for trends. However, the Guana River proper (GAR) had fair but degrading water quality, due to increasing concentrations of nutrients and chlorophyll a. Farther north, tributaries to the ICW, including Casa Cola Creek (CCC), had good water quality but an insignificant trend, while Stokes (STOKESCR) and Smiths creeks (SMITHSCR) both had good water quality, but insufficient data for trends. The ICW in this area (TOL) had good water quality, although no significant trends were apparent.

Overall, NCB sites appear to have the best water quality of all the basins. Seventy-five percent of the estuarine sites sampled had good water quality, 25% had fair quality, and there were not any poorly rated sites (Figure 11). The basin has only recently been sampled, as 50% of those estuarine sites did not have at least 10 years of data for a trend analysis, while 44% had an insignificant trend (Figure 12). None were improving and 6% were degrading.

DISTRICTWIDE RESULTS FOR ALL WATER BODY TYPES

Results were combined for water body types over all basins (Figure 16 and 17, see also Appendix B, Map 6).

Results were also combined over all basins and water body types (Figure 18 and 19). These figures include the 2004 results for reference.

Springs

Only one spring site, Blue Springs in Volusia County, was evaluated, and it had good, but degrading water quality.

Blackwater streams

Thirteen blackwater stream sites were evaluated, and with one exception, all had good water quality. One was improving, nine had an insignificant trend, two were degrading, and one had insufficient data. Blackwater stream sites were located in the lower and middle St. Johns and St. Marys river basins.

Figure 16. Status results by water body type over all basins

Figure 17. Trend results by water body type over all basins

Figure 18. Status results over all basins

Figure 19. Trend results over all basins

Lakes

Forty-eight lake sites were evaluated; 21 had good, 11 had fair, and 16 had poor water quality. Eleven lake sites had insufficient data to determine a trend, while 26 had insignificant trends, seven were improving, and four were degrading. Most of the lake sites were located in the lower St. Johns and Ocklawaha river basins.

Streams

Sixty-two stream sites were evaluated, and 26 had fair, 19 had good, and 17 had poor water quality. Thirteen had insufficient data for trends; 38 had insignificant trends; five were degrading; and six were improving. Most of the stream sites were located in the Ocklawaha and lower St. Johns river basins.

Estuaries

Sixty-eight estuarine sites were evaluated; 39 had good, 23 had fair, and six had poor water quality. Fourteen had insufficient data for trend evaluation, while 26 were insignificant, 23 were improving, and five were degrading. The majority of estuarine sites were in the Indian River and Northern Coastal basins.

SUMMARY

Springs and blackwater streams had the highest percentage of sites with good water quality (Figure 16). However, relatively few of these water types were sampled. Of the other water body types, estuaries had the highest percentage of sites with good water quality (57%), while streams had the lowest (27%). Streams had the most sites with fair quality (42%), while lakes had the fewest (21%). Lakes had the highest percentage of poor sites (33%), while estuaries had the lowest (10%).

Districtwide, 48% of the sites assessed had good water quality, 31% had fair quality and 21% had poor quality (Figure 18). However, the majority of the poor sites were located in lakes, many of which were in the Ocklawaha basin.

Estuarine sites had the highest percentage of improving sites (34%) followed by lake sites (15%), stream sites (10%), and blackwater stream sites (8%, Figure 17). Not counting the single spring site, streams and estuaries had the highest percentage of sites that were degrading (5%), followed by lakes (4%). A large number of sites had no significant trend or insufficient data to determine a trend.

Of all basins and water body types, approximately 19% of sampled sites showed an improving trend, while almost 8% showed a degrading trend (Figure 19). The majority either had no significant trend (52%) or did not have enough data to calculate a trend (20%).

Interpreting results from this assessment is complicated by the fact that the sites were not randomly chosen and, therefore, may not adequately represent the basins they are in. Although a station can be considered to represent and adequately characterize the water body that it is located in, it is statistically unsupportable to state that the results from a series of stations within a particular basin actually represent all the water quality in that basin. Fortunately, most of the stations are located in major water bodies, which comprise the majority of the surface water within the areas of interest.

In summary, the St. Johns River appeared to have good water quality upstream, but as it flowed north, the quality degraded somewhat. For the most part, the river had fair water quality from Lake Jesup to the mouth. Rice Creek and Dog Branch were the only improving tributaries, while other tributaries were degrading or had no trend. Lake Jesup had poor water quality, as did Rice Creek at its mouth. The upper reaches of the Ocklawaha River had poor quality, but there were significant improving trends in lakes and streams affected by SJRWMD restoration programs. As the Ocklawaha flowed north, it had improved water quality. The Indian River lagoon had mostly good or fair water quality, with a few poor tributaries. While the Banana River had similar water quality, all of the Mosquito Lagoon sites had good water quality. The IRLB had many significant trends, most of which appeared to be improving. The NCB sites appeared to have mostly good water quality, as did sites in the Nassau River and St. Marys River basins. Many sites had insufficient data to determine trends, and for many other sites, there were no significant trends.

This assessment was designed to provide a general overview of water quality throughout SJRWMD. Water quality was determined through a constituent concentration analysis. The most recent 5 years of data were used to determine status, and the most recent 15 years of data were used to determine trends. The assessment was not designed to determine the causes of poor water quality, nor was it to determine the causes of degrading or improving trends. Nevertheless, there are some general factors that may have affected water quality during the study period. SJRWMD received substantial rainfall during the 2004 hurricane season, which may have affected water quality as the result of increased stormwater runoff from the surrounding lands. Continued land development can reduce water retention times in wetland areas, and thus lead to a decrease in the water quality from nonpoint sources. A variety of factors, such as these, would merit a separate assessment to determine impacts on water quality throughout SJRWMD.

LITERATURE CITED

- Adamus C., D. Clapp, and S. Brown. 1997. Surface water drainage basin boundaries, St. Johns River Water Management District: A reference guide. Technical Publication <u>SJ97-1</u>. Palatka, Fla.: St. Johns River Water Management District.
- Brezonik, Patrick L. July 1976. *Trophic classifications and trophic state indices: Rationale, progress, prospects.* Vol. 2, No. 4, Florida Department of Environmental Protection Technical Series, Tallahassee.
- Carlson R.R. 1977. A trophic state index for lakes. *Limnol. and Oceanogr*. 22:361-369.
- Cude, C. G. February 2001. Oregon water quality index: A tool for evaluating water quality management effectiveness. *J. Amer. Water Res. Assoc.* 37(1).
- Deuerling B. and A. Cooner. July 1995. Water quality report 1990–1991, tributaries to the St. Johns River Duval County, Florida. City of Jacksonville (Fla.), Regulatory and Environmental Services Department, Water Quality Division.
- [FDEP] Florida Department of Environmental Protection. 2002. Biological and chemical assessment of water quality in tributaries of Lake Jesup, Seminole County, Florida. Results of sampling, July 1996–September 1997, Central District, Orlando.
- ———. 1996. 1996 water-quality assessment for the state of Florida, section 305(b) main report. Bureau of Water Resources Protection, Division of Water Facilities, Tallahassee.
- ———. 1997. Biological assessment of Little Wekiva River Basin, including the Altamonte Springs wastewater treatment plant, Orange and Seminole counties, sampled January 1997. Division of Administrative and Technical Services, Biology Section, Tallahassee.
- ———. 2001. Basin status report, Ocklawaha. Division of Water Resource Management, Tallahassee, Fla.

- Fulton, R.S. 1995. External nutrient budget and trophic state modeling for lakes in the upper Ocklawaha River Basin. Technical Publication <u>SJ95-6</u>. Palatka, Fla.: St. Johns River Water Management District.
- Gilbert, R.O. 1987. *Statistical methods for environmental pollution monitoring*. New York: Van Nostrand Reinhold.
- Hand, J., J. Col, D. Tterlikkis, J. Jackson, R. Odom, L. Lord, L. Clemens. 2000. Florida water quality assessment 305(b) report. Florida Department of Environmental Protection, Tallahassee.
- Hendrickson, J., and J. Konwinski. 1998. *Seasonal nutrient import-export budgets for the lower St. Johns River, Florida*. Report prepared for the Florida Department of Environmental Protection. Palatka, Fla.: St. Johns River Water Management District.
- Hoaglin, D.C., F. Mosteller, and J.W. Tukey, eds. 1983. *Understanding robust and exploratory data analysis*. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
- Hollander, M., and D. Wolfe. 1999. *Nonparametric statistical methods.* 2nd ed. Wiley Series in Probability and Mathematical Statistics. New York: Wiley.
- Huber, W.C., P.L. Brezonik, J.P. Heaney, R.E. Dickinson, S.D. Preston, D.S. Dwornik, and M.A. DeMaio. 1982. A *classification of Florida lakes*.
 Publication 72. Water Resources Research Center, University of Florida, Gainesville.
- Morris, F.W. 1995. Lower St. Johns River Basin reconnaissance. Vol. 3: *Hydrodynamics and salinity of surface water*. Technical Publication <u>SJ95-9</u>. Palatka, Fla.: St. Johns River Water Management District.
- Rao, D.V., S.A. Jenab, and D.A. Clapp. 1989. Rainfall analysis for northeast Florida, Part 3: Seasonal rainfall data. Technical Publication <u>SJ89-1</u>. Palatka, Fla.: St. Johns River Water Management District.
- [SJRWMD] St. Johns Water Management District. 1999 (unpublished data). Standard operating procedures for the collection of surface water quality samples and field data, Palatka, Fla.

St. Johns River Water Management District 64

- Sigua, G.C., J.S. Steward, and W.A. Tweedale. 1999. *Status of water quality in the Indian River Lagoon system: Spatial and temporal trends summary report (1988-1994).* Technical Memorandum 33, Palatka, Fla.: St. Johns River Water Management District.
- Smith, V.H., Jr. 1982. The nutrient and light dependence of phytoplankton productivity. Doctoral dissertation, University of Minnesota, Minneapolis.
- Stambuk-Giljanovic, Nives. 1999. Water quality evaluation by index in Dalmatia. *Water Res.* 33(16): 3423–3440.
- Vergara, B.A., editor. 2000. *District water supply plan*. Special Publication <u>SJ2000-SP1</u>. Palatka, Fla.: St. Johns River Water Management District.
- Wenzel, K.L., and P.P. McVety. 1986. Water quality review, lower St. Johns River, Duval County. Florida Department of Environmental Regulation, Tallahassee.

APPENDIX A—STATION LOCATIONS AND RESULTS TABLES

Table A1. Station locations sorted by major basin

			-	a River Lagoon	BRL = Banan
estuary	INDIAN RIVER LAGOON	IRL AT CM158 WEST OF ICW	802120.00	273523.00	IRLIRJ08
estuary	INDIAN RIVER LAGOON	IRL AT CM150 WEST OF ICW	802204.00	273711.00	IRLIRJ07
estuary	INDIAN RIVER LAGOON	IRL AT CM135 EAST OF ICW	802232.00	273928.00	IRLIRJ05
estuary	INDIAN RIVER LAGOON	IRL AT CM123 EAST OF ICW	802314.00	274133.00	IRLIRJ04
estuary	INDIAN RIVER LAGOON	IRL AT CM70 OFF SPRATT PT SOUTH OF SEBASTIAN INLET WEST OF ICW	802656.00	274748.00	IRLIRJ01
estuary	INDIAN RIVER LAGOON	IRL CENTER NEAR CHANNEL MARKER (CM) 55 NORTH OF SEBASTIAN INLET	802919.00	275301.00	IRLI28
estuary	INDIAN RIVER LAGOON	IRL AT CENTER OF ICW NEAR GRANT FARM ISLAND	803146.00	275644.00	IRLI27
estuary	INDIAN RIVER LAGOON	IRL CENTER JUST SOUTH OF POWERLINES 30 M EAST OF U.S. 1	803431.00	280237.00	IRLI24
estuary	INDIAN RIVER LAGOON	IRL CENTER JUST SOUTH OF MELBOURNE CAUSEWAY	803540.00	280412.00	IRLI23
estuary	INDIAN RIVER LAGOON	IRL EAST OF MOUTH OF EAU GALLIE RIVER	803700.00	280730.00	IRLI21
estuary	INDIAN RIVER LAGOON	IRL NEAR WEST SHORE 1.2 KM SOUTH OF PINEDA CAUSEWAY	803856.00	281140.00	IRLI18
estuary	INDIAN RIVER LAGOON	IRL CENTER 2.3 KM SOUTH OF SR 520 WITHIN 0.5 KM OF ROCKLEDGE	804248.00	282006.00	IRLI15
estuary	INDIAN RIVER LAGOON	IRL WEST SIDE 1.0 KM SOUTH OF SR 528 BRIDGE	804410.00	282334.00	IRLI13
estuary	INDIAN RIVER LAGOON	IRL 2.8 KM SOUTH OF NASA CSWY WEST SIDE	804608.00	283004.00	IRLI10
estuary	INDIAN RIVER LAGOON	IRL 1.8 KM SOUTH OF SR 406 NEAR WEST SHORE	804754.00	283612.00	IRLI07
estuary	INDIAN RIVER LAGOON	IRL NORTHWEST OF HAULOVER CANAL APPROXIMATELY 3.5 KM	804802.00	284420.00	IRLI02
estuary	INDIAN RIVER LAGOON	IRL AT HORSE CREEK AT U.S. 1	803839.80	280959.72	IRLHUS
estuary	INDIAN RIVER LAGOON	IRL AT GOAT CREEK AT U.S. 1	803241.00	275805.00	IRLGUS
estuary	INDIAN RIVER LAGOON	IRL AT EAU GALLIE RIVER AT U.S. 1	803750.00	280725.00	IRLEGU
estuary	INDIAN RIVER LAGOON	IRL AT CRANE CREEK AT U.S. 1	803608.00	280439.00	IRLCCU
estuary	INDIAN RIVER LAGOON	IRL AT BIG FLOUNDER CREEK AT END OF FLOUNDER CREEK ROAD	805042.00	284518.00	IRLBFC
estuary	INDIAN RIVER LAGOON	IRL IN BRL 2KM SOUTH OF PINEDA CSWY WEST OF TORTOISE ISLAND	803732.00	281156.00	IRLB09
estuary	INDIAN RIVER LAGOON	IRL IN BRL CM4 8 KM NORTH OF PINEDA CAUSEWAY	803800.00	281700.00	IRLB06
estuary	INDIAN RIVER LAGOON	IRL IN BRL EAST SIDE 1.0 KM NORTH OF SR 520 CAUSEWAY	803800.00	282200.00	IRLB04
estuary	INDIAN RIVER LAGOON	IRL IN BRL CM23 MIDWAY BETWEEN NASA AND 528 CAUSEWAYS	803822.00	282601.00	IRLB02
stream	INDIAN RIVER LAGOON	IRL AT ADDISON CREEK AT U.S. 1	804733.50	283221.70	IRLAUS
stream	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON (IRL) CRANE CREEK	803716.31	280407.72	CC03
estuary	INDIAN RIVER LAGOON	INDIAN RIVER AT INTRACOASTAL WATERWAY (ICW) CM 12 NEAR HALOV	804844.73	284113.05	27010875
Water body Type	Basin	Station Location	Longitude	Latitude	Station

Water body Type	estuary	estuary	estuary	estuary	estuary	estuary	estuary	estuary	estuary	estuary	stream	stream	stream	stream	stream	stream	spring	lake	lake	lake	stream	stream	stream	estuary	estuary	stream	lake	lake
Basin	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	INDIAN RIVER LAGOON	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LAKE GEORGE	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER
Station Location	IRL AT CONFLUENCE OF VERO NORTH CANAL WEST OF CM120	IRL AT CONFLUENCE OF VERO SOUTH CANAL	IRL IN MOSQUITO LAGOON (ML) SOUTH OF HAULOVER CANAL	IRL IN SYKES CREEK AT WILDLIFE OBSERVATION TOWER 0.5 KM	IRL AT SEBASTIAN RIVER AT U.S. 1	IRL AT TURNBULL CREEK AT U.S. 1	IRL AT TURKEY CREEK AT U.S. 1	IRL IN ML SOUTH OF CM47 AT SOUTH CANAL DISCHARGE	IRL IN ML EAST OF CEDAR ISLAND AND WEST OF BETHUNE BEACH	IRL IN ML SOUTH OF CM7 NEAR BARLOW'S CRAB BLDG AND OAK HILL DOCK	IRL AT VERO MAIN CANAL AT U.S. 1	IRL AT VERO NORTH CANAL AT U.S. 1	IRL AT VERO SOUTH CANAL AT U.S. 1	ST. JOHNS RIVER NEAR DELAND	ST. JOHNS RIVER AT HWY 40 NEAR ASTOR	ST JOHNS RIVER AT CM 72	BLUE SPRING NEAR ORANGE CITY	LAKE KERR B/T KAUFFMANS ISL AND PT PLEASANT	LAKE GEORGE AT MARKER 9	LAKE WOODRUFF AT CENTER	MIDDLE ST. JOHNS R NEAR FT GATES FERRY	16 MILE CREEK AT DEEP CRK RD W	CEDAR RIVER AT BLANDING BLVD BRIDGE RT 21	MONCRIEF CREEK NEAR MOUTH	JULINGTON CREEK AT HWY 13 BRIDGE	ORTEGA RIVER AT COLLINS ROAD	GEORGES LAKE 200 YDS FROM WEST BANK	KINGSLEY LAKE AT CENTER
Longitude	802339.00	802201.00	804305.00	804113.00	802929.00	805141.00	803448.00	805434.00	805041.00	805022.00	802408.00	802449.00	802258.00	812252.12	813120.56	813739.65	812021.12	814646.04	813528.20	812456.13	814004.37	812741.76	814359.79	813946.89	813744.73	814350.85	815110.93	815954.10
Latitude	274157.00	273634.00	284335.00	282218.00	275115.00	284914.00	280158.00	290029.00	285709.00	285241.00	273857.00	274134.00	273617.00	290028.29	291000.16	292239.53	285641.91	292105.90	291517.82	290609.01	292547.69	293932.30	301623.20	302325.36	300754.14	301205.24	294729.67	295754.99
Station	IRLIRJ10	IRLIRJ12	IRLML02	IRLSC03	IRLSUS	IRLTBC	IRLTUS	IRLV05	IRLV11	IRLV17	IRLVMC	IRLVNC	IRLVSC	02236000	20010002	20030373	BLSPR	KER	LAG	LKWOOD	MSJFGF	16MCRK	20030083	20030115	20030153	20030349	20030400	20030412

ימווטו
AT HWY 218
DUNNS CREEK
VSTR C R 207 A
JGE
CENT LAKE AND S
GREEN COVE
HTS
W SALT BRANCH
D LAKE
ER 1
ER 34
SON SMURFITT
C BI UFF
MACINI DOL INIO
ROAD

Water body Type	estuary	bwstream	stream	stream	stream	estuary	lake	estuary	lake	lake	lake	stream	lake	lake	lake	lake	4	estuary	estuary	stream	stream	stream	lake	lake	stream	stream	stream	lake	bwstream	bwstream
Basin	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER		LOWER SI. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER	MIDDLE ST. JOHNS RIVER
Station Location	ST. JOHNS RIVER AT MANDARIN PT BTW CM 10 AND 11 CENTER	NORTH FORK OF BLACK CREEK AT SR 21	OUTLET OF HASTINGS DRAINAGE DISTRICT	PETERS CREEK AT HWY 209	RICE CREEK AT U.S. 17 BRIDGE	BOLLS SCHOOLS OUTSIDE GRASSBED	CRESCENT LAKE SITE 2 OUTSIDE GRASSBED	DOCTORS LAKE OUTSIDE GRASSBED	RICE CREEK OUTSIDE GRASSBED	SCRATCH ANKLE OUTSIDE GRASSBED	LAKE SHEELAR CENTER (GOLD HEAD BRDG - CLAY CO)	SIMMS CREEK 2 MILES NNE OF BARDIN	ST. JOHNS RIVER AT CM 25 NEAR PICOLATA	ST. JOHNS RIVER AT CM 37 FEDERAL POINT	ST. JOHNS RIVER AT PALATKA (U.S. 17)	ST. JOHNS RIVER BELOW RICE CREEK CENTER CHANNEL			ST. JOHNS RIVER AT SR 16 SOUTH OF SHANDS BRIDGE	SIXMILE CREEK AT SR 13	SWIMMING PEN CREEK AT HWY 220	ST. JOHNS RIVER AT BUFFALO BLUFF RR BRIDGE	ST JOHNS RIVER AT RACY POINT	LAKE WINONA	LITTLE ECONLOCKHATCHEE R NR UNION PARK	WEKIVA RIVER NEAR SANFORD	LITTLE WEKIVA RIVER AT HWY 434	CENTER OF LAKE ASHBY	BLACKWATER CREEK AT HWY 44	BLACKWATER CREEK AT CARTER PROP BRIDGE
Longitude	814102.00	815147.00	813243.00	814324.00	813934.00	813816.00	813034.00	814509.00	813813.00	813552.00	815728.20	814249.00	813606.00	813300.00	813730.00	813812.00	00 0111 00	014113.00	813636.00	813237.00	814448.00	814056.00	813352.00	812002.13	811438.05	812510.86	812348.74	810543.39	812921.93	812612.81
Latitude	300924.00	300432.00	294249.00	300204.00	294205.00	301417.00	292957.00	300636.00	294217.00	295023.00	295021.47	294427.09	295516.00	294501.00	293837.00	294156.00	00 001000	500400.00	295838.00	295732.00	300559.00	293542.00	294756.00	291048.76	283128.78	284854.36	284112.13	285605.04	285228.72	285126.95
Station	MP72	NBC	ОНD	PTC	RCB	SAVBOLSO	SAVCRL20	SAVDRLKO	SAVRICNO	SAVSCRAO	SHEEL	SIM	SJCM25	SJM37	SJP	ST. JOHNS RIVERCC	ST. JOHNS		SJSR16	SMC	SPCR	SRB	SRP	WIO	02233200	02235000	20010137	ASH	BWC44	BWCCPB

-

Station	Latitude	Longitude	Station Location	Basin	Water body Type
ССН	284521.40	810336.02	CENTER OF LAKE HARNEY	MIDDLE ST. JOHNS RIVER	lake
DMR	285046.30	810606.36	DEEP CREEK AT MAYTOWN ROAD	MIDDLE ST. JOHNS RIVER	bwstream
ECH	284039.78	810650.28	ECON RIVER AT SNOWHILL ROAD (SR 426)	MIDDLE ST. JOHNS RIVER	stream
LMAC	285005.84	811615.28	LAKE MONROE AT CENTER	MIDDLE ST. JOHNS RIVER	lake
OW-2	284553.16	811034.68	LK JESUP OFF GRASSY POINT	MIDDLE ST. JOHNS RIVER	lake
OW-4	284219.02	811514.46	LK JESUP W OF BRIDGE BTWN WHITES LNDG AND BIRD ISLAND	MIDDLE ST. JOHNS RIVER	lake
0///-6	284253.62	811638.82	LK JESUP OFF CENTER OF FAR W ARM	MIDDLE ST. JOHNS RIVER	lake
OW-ST. JOHNS					
RIVER-1	284714.10	811002.28	MID-ST. JOHNS RIVER EAST OF BARGE CANAL & ANDEAST OF JJ FISH CAMP	MIDDLE ST. JOHNS RIVER	stream
SRN	284253.00	810208.00	LAKE HARNEY INFLOW – ST. JOHNS RIVER AT SR 46 BRIDGE	MIDDLE ST. JOHNS RIVER	stream
WIN	290137.05	811507.18	LAKE WINNEMISSETT	MIDDLE ST. JOHNS RIVER	lake
19020002	303429.72	813631.09	NASSAU RIVER AT U.S. 17	NASSAU RIVER	estuary
NRI	303453.26	814108.79	NASSAU RIVER NEAR ITALIA	NASSAU RIVER	stream
02238000	285218.97	814702.26	HAYNES CREEK AT LISBON	OCKLAWAHA RIVER	stream
20020012	292218.56	815406.06	OKLAWAHA RIVER AT SR 316	OCKLAWAHA RIVER	stream
20020321	283555.43	814850.55	CHERRY LAKE AT CENTER	OCKLAWAHA RIVER	lake
20020368	285035.04	814359.34	LAKE EUSTIS AT CENTER	OCKLAWAHA RIVER	lake
20020381	285148.09	815059.21	LAKE GRIFFIN MIDDLE OFFSHORE OF TREASURE IS	OCKLAWAHA RIVER	lake
ABC	284320.04	814104.08	APOPKA BEAUCLAIR CANAL AT APOPKA LOCK AND DAM	OCKLAWAHA RIVER	stream
BCE	284614.50	814018.60	CANAL ENTRANCE TO LAKE BEAUCLAIR	OCKLAWAHA RIVER	lake
CARL	284536.28	813928.01	CENTER OF LAKE CARLTON	OCKLAWAHA RIVER	lake
CLA	283729.90	813729.70	LAKE APOPKA CENTER STATION	OCKLAWAHA RIVER	lake
CLW	290055.76	815631.63	CENTER OF LAKE WIER	OCKLAWAHA RIVER	lake
DCNL	284807.48	814425.76	DORA CANAL: 100M N OF HWY 19 BRIDGE	OCKLAWAHA RIVER	stream
DEPHCA	285331.20	814945.42	"HAYNES CREEK DOWNSTREAM OF DISCHARGE ""T"""	OCKLAWAHA RIVER	stream
DEPHCB	285251.96	814756.99	"HAYNES CREEK UPSTREAM OF DISCHARGE ""V"""	OCKLAWAHA RIVER	stream
DNEY	284557.32	815422.90	LAKE DENHAM EAST	OCKLAWAHA RIVER	lake
DOR	284721.73	814151.64	CENTER OF LAKE DORA	OCKLAWAHA RIVER	lake
DORE	284734.27	813924.67	LAKE DORA; CENTER OF EAST POOL	OCKLAWAHA RIVER	lake
DRVR	284847.04	814558.84	DEAD RIVER; UNDER THE POWER WIRES	OCKLAWAHA RIVER	stream

7					
Station	Latitude	Longitude	Station Location	Basin	Water body Type
HAR	284612.47	814821.41	CENTER OF LAKE HARRIS	OCKLAWAHA RIVER	lake
HAT26	294114.00	821224.00	HATCHET CREEK AT SR 26 NR NEWNANS LAKE	OCKLAWAHA RIVER	bwstream
HICKDN	285316.45	813954.39	HICKS DITCH DOWNSTRM – EAST RD CULVERT PINE MEADOW	OCKLAWAHA RIVER	stream
LFC329B	293906.00	821504.00	LAKE FOREST CREEK AT SR 329B	OCKLAWAHA RIVER	stream
LGNA	285517.63	815036.12	LAKE GRIFFIN; NORTH	OCKLAWAHA RIVER	lake
LGS	284956.29	815137.67	LAKE GRIFFIN; SOUTH	OCKLAWAHA RIVER	lake
LHAT26	294057.00	821359.00	LITTLE HATCHET CREEK ON SR 26; W INTRSCTN. CR 222	OCKLAWAHA RIVER	stream
LHT26E	294117.00	821315.00	LITTLE HATCHET CREEK AT CR 26; EAST OF CR 222	OCKLAWAHA RIVER	stream
LLHARRIS	284401.45	814536.94	CENTER LITTLE LAKE HARRIS AT HOWEY IN THE HILLS	OCKLAWAHA RIVER	lake
LOL	293100.30	820714.19	CENTER LAKE LOCHLOOSA	OCKLAWAHA RIVER	lake
LYC	285444.85	814413.65	CENTER OF LAKE YALE	OCKLAWAHA RIVER	lake
MBU	290443.91	815253.14	AT MOSS BLUFF; UPSTREAM OF THE LOCK	OCKLAWAHA RIVER	stream
NEW	293843.00	821312.00	NEWNANS LAKE; CENTER	OCKLAWAHA RIVER	lake
NLA	283942.20	813616.90	LAKE APOPKA NORTH	OCKLAWAHA RIVER	lake
OCKLRM	292829.00	814152.00	OCKLAWAHA R 1 MILE UPSTR OF MOUTH	OCKLAWAHA RIVER	stream
OFB	290557.00	815442.00	OKLAWAHA RIVER CANAL AT THE OKLAWAHA FARMS BRIDGE	OCKLAWAHA RIVER	stream
OR006	293034.44	815646.21	ORANGE CREEK AT SR 21	OCKLAWAHA RIVER	stream
ORD	291255.66	815909.78	OCKLAWAHA RIVER DOWNSTREAM SR 40	OCKLAWAHA RIVER	stream
PINEMS	285311.94	813950.32	PINE MEADOWS SOUTH BYPASS CANAL UPSTREAM OF DISCHARGE SITE	OCKLAWAHA RIVER	bwstream
PRVR	284452.92	815229.47	PALATLAKAHA RIVER AT SR 48	OCKLAWAHA RIVER	stream
SHORIA	285938.00	815019.00	C231 CANAL NEAR INTAKE TO SUNNYHILL MARSH	OCKLAWAHA RIVER	stream
SLA	283402.80	813902.20	LK APOPKA EAST OF APOPKA SPG MOUTH OF GOURD	OCKLAWAHA RIVER	lake
SSR	291240.86	815922.07	SILVER RIVER; 200M UPSTREAM OF OCKLAWAHA R.	OCKLAWAHA RIVER	stream
YGCAA	285435.36	814926.64	YALE-GRIFFIN CANAL EAST OF CONFLUENCE WITH LAKE GRIFFIN	OCKLAWAHA RIVER	stream
YGCCA	285437.14	814914.87	YALE-GRIFFIN CANAL WEST OF EMERALDA ISLAND RD	OCKLAWAHA RIVER	stream
19010001	304429.09	814116.65	ST. MARYS RIVER AT U.S. 17 GEORGIA LINE	ST. MARYS RIVER	stream
19010006	303102.83	821348.75	ST. MARYS RIVER AT SR 2	ST. MARYS RIVER	bwstream
MPS	302556.00	821352.00	MIDDLE PRONG ST MARYS AT HWY 127	ST. MARYS RIVER	bwstream
SJA-HS- 1018	304645.28	820118.70	ST. MARYS RIVER W OF TRADER'S HILL	ST. MARYS RIVER	bwstream

7

itude	Longitude	Station Location	Basin	vvater body Type
301.89	810247.84	SPRUCE CREEK NEAR SAMSULA	UPPER COASTAL	stream
031.70	810510.85	TOMOKA RIVER AT OLD DIXIE HWY BRIDGE	UPPER COASTAL	estuary
239.37	810040.64	HALIFAX RIVER 100 FT N SI BEACH MEMORIAL BRIDGE	UPPER COASTAL	estuary
301.49	810634.70	TOMOKA RIVER AT 11TH STREET BRIDGE	UPPER COASTAL	stream
2427.32	810718.57	BULOW CREEK AT LOW BRIDGE	UPPER COASTAL	estuary
5841.00	812013.00	CASA COLA CREEK	UPPER COASTAL	estuary
0115.17	811938.19	GUANA RIVER 100 METERS SOUTH OF THE DAM	UPPER COASTAL	estuary
5905.00	811942.00	CONFLUENCE OF TOLOMATO AND GUANA RIVERS – ICWW	UPPER COASTAL	estuary
4606.00	811532.00	MATANZAS RIVER NORTH OF CRESCENT BEACH AT SR 206 BRIDGE	UPPER COASTAL	estuary
3340.00	811050.00	ICWW MARKER AT FOX CUT	UPPER COASTAL	estuary
3712.04	811227.70	MATANZAS R S OF WASHINGTON OAKS MKR 109	UPPER COASTAL	estuary
94940.00	811846.00	MOULTRIE CREEK OFF ICW	UPPER COASTAL	estuary
5158.28	811821.27	MATANZAS RIVER AT CR 312	UPPER COASTAL	estuary
33953.00	811305.00	CONFLUENCE OF PELLICER CREEK AND ICW	UPPER COASTAL	estuary
95049.94	812138.91	MOULTRIE CREEK AT SR 207	UPPER COASTAL	stream
33904.66	811712.81	PELLICER CREEK AT U.S. 1	UPPER COASTAL	stream
00525.00	812215.00	SMITH'S CREEK	UPPER COASTAL	estuary
95255.00	811926.00	SAN SEBASTIAN RIVER AT U.S. 1	UPPER COASTAL	estuary
00.57.00	812124.00	STOKES CREEK	UPPER COASTAL	estuary
00343.86	812209.03	TOLOMATO R 1 MI N DEEP CR AT SPANISH LNDG	UPPER COASTAL	estuary
74335.66	804512.80	BLUE CYPRESS LAKE AT CENTER	UPPER ST. JOHNS RIVER	lake
80429.63	805316.37	JANE GREEN CREEK AT USGS GAGE (TEN MILE ROAD)	UPPER ST. JOHNS RIVER	bwstream
32126.16	805219.22	ST. JOHNS RIVER AT LAKE POINSETT OUTLET SOUTH OF SR 520	UPPER ST. JOHNS RIVER	lake
0832.79	804440.59	LAKE WASHINGTON CENTER	UPPER ST. JOHNS RIVER	lake
83234.07	805635.09	SEMINOLE RANCH SOUTH BOUNDARY AT SR 50 IN ST. JOHNS RIVER	UPPER ST. JOHNS RIVER	stream
30749.14	810006.17	CRABGRASS CREEK AT SR 192	UPPER ST. JOHNS RIVER	stream

Table A2. Sta	tus results for each site sorted by basin						
Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
27010875	INDIAN RIVER AT ICW CM 12 NEAR HALOV	INDIAN RIVER LAGOON	estuary	tsi	11	54.8	fair
CC03	INDIAN RIVER LAGOON CRANE CREEK	INDIAN RIVER LAGOON	stream	wqi	11	44.5	good
IRLAUS	IRL AT ADDISON CREEK AT U.S.1	INDIAN RIVER LAGOON	stream	wqi	ø	76.5	poor
IRLB02	IRL IN BRL CM23 MIDWAY BETWEEN NASA AND 528 CAUSEWAYS	INDIAN RIVER LAGOON	estuary	tsi	11	45.9	poog
IRLB04	IRL IN BRL EAST SIDE 1.0 KM NORTH OF SR 520 CSWY	INDIAN RIVER LAGOON	estuary	tsi	11	49.8	good
IRLB06	IRL IN BRL CM4 8 KM NORTH OF PINEDA CAUSEWAY	INDIAN RIVER LAGOON	estuary	tsi	11	51.6	fair
IRLB09	IRL IN BRL 2KM SOUTH OF PINEDA CSWY WEST OF TORTOISE	INDIAN RIVER LAGOON	estuary	tsi	11	53.2	fair
IRLBFC	IRL AT BIG FLOUNDER CREEK AT END OF FLOUNDER CREEK	INDIAN RIVER LAGOON	estuary	tsi	1	62.5	poor
IRLCCU	IRL AT CRANE CREEK AT U.S.1	INDIAN RIVER LAGOON	estuary	tsi	11	56.3	fair
IRLEGU	IRL AT EAU GALLIE RIVER AT U.S.1	INDIAN RIVER LAGOON	estuary	tsi	11	61.5	poor
IRLGUS	IRL AT GOAT CREEK AT U.S.1	INDIAN RIVER LAGOON	estuary	tsi	11	46.4	good
IRLHUS	IRL AT HORSE CREEK AT U.S.1	INDIAN RIVER LAGOON	estuary	tsi	11	46.1	good
IRLI02	IRL NORTHWEST OF HAULOVER CANAL APPROXIMATELY 3.5 KM	INDIAN RIVER LAGOON	estuary	tsi	11	49.5	good
IRLI07	IRL 1.8 KM SOUTH OF SR 406 NEAR WEST SHORE	INDIAN RIVER LAGOON	estuary	tsi	11	54.7	fair
IRLI10	IRL 2.8 KM SOUTH OF NASA CSWY WEST SIDE	INDIAN RIVER LAGOON	estuary	tsi	11	54.4	fair
IRLI13	IRL WEST SIDE 1.0 KM SOUTH OF SR 528 BRIDGE	INDIAN RIVER LAGOON	estuary	tsi	1	48.3	good
IRLI15	IRL CENTER 2.3 KM SOUTH OF SR 520 WITHIN 0.5 KM OF	INDIAN RIVER LAGOON	estuary	tsi	11	50.5	fair
IRLI18	IRL NEAR WEST SHORE 1.2 KM SOUTH OF PINEDA CSWY	INDIAN RIVER LAGOON	estuary	tsi	11	49.1	good
IRLI21	IRL EAST OF MOUTH OF EAU GALLIE RIVER	INDIAN RIVER LAGOON	estuary	tsi	11	52.9	fair
IRLI23	IRL CENTER JUST SOUTH OF MELBOURNE CSWY	INDIAN RIVER LAGOON	estuary	tsi	11	49.2	good
IRLI24	IRL CENTER JUST SOUTH OF POWERLINES 30 M EAST OF	INDIAN RIVER LAGOON	estuary	tsi	7	49.1	good
IRLI27	IRL AT CENTER OF ICW NEAR GRANT FARM ISLAND	INDIAN RIVER LAGOON	estuary	tsi	1	48.5	good
IRLI28	IRL CENTER NEAR CM55 NORTH OF SEBASTIAN INLET	INDIAN RIVER LAGOON	estuary	tsi	8	43	good
IRLIRJ01	IRL AT CM70 OFF SPRATT PT SOUTH OF SEBASTIAN INLET WEST	INDIAN RIVER LAGOON	estuary	tsi	5	46.8	good

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
IRLIRJ04	IRL AT CM123 EAST OF ICW	NDIAN RIVER LAGOON	estuary	tsi	11	47.6	poob
IRLIRJ05	IRL AT CM135 EAST OF ICW	NDIAN RIVER LAGOON	estuary	tsi	1	48	good
IRLIRJ07	IRL AT CM150 WEST OF ICW	NDIAN RIVER LAGOON	estuary	tsi	11	47.6	poog
IRLIRJ08	IRL AT CM158 WEST OF ICW	NDIAN RIVER LAGOON	estuary	tsi	8	48.4	good
IRLIRJ10	IRL AT CONFLUENCE OF VERO NORTH CANAL WEST OF CM120	NDIAN RIVER LAGOON	estuary	tsi	11	45.1	poog
IRLIRJ12	IRL AT CONFLUENCE OF VERO SOUTH CANAL	NDIAN RIVER LAGOON	estuary	tsi	11	49.4	good
IRLML02	IRL IN ML SOUTH OF HAULOVER CANAL	NDIAN RIVER LAGOON	estuary	tsi	11	42.4	good
IRLSC03	IRL IN SYKES CREEK AT WILDLIFE OBSERVATION TOWER 0.5 KM	NDIAN RIVER LAGOON	estuary	tsi	11	54.6	fair
IRLSUS	IRL AT SEBASTIAN RIVER AT U.S. 1	NDIAN RIVER LAGOON	estuary	tsi	11	48.2	good
IRLTBC	IRL AT TURNBULL CREEK AT U.S. 1	NDIAN RIVER LAGOON	estuary	tsi	11	52.9	fair
IRLTUS	IRL AT TURKEY CREEK AT U.S. 1	NDIAN RIVER LAGOON	estuary	tsi	11	45.9	good
IRLV05	IRL IN ML SOUTH OF CM47 AT SOUTH CANAL DISCHARGE	VDIAN RIVER LAGOON	estuary	tsi	1	45.1	good
IRLV11	IRL IN ML EAST OF CEDAR ISLAND AND WEST OF BETHUNE	NDIAN RIVER LAGOON	estuary	tsi	1	44	poog
IRLV17	IRL IN ML SOUTH OF CM7 NEAR BARLOW'S CRAB BLDG AND OAK	NDIAN RIVER LAGOON	estuary	tsi	11	44.3	good
IRLVMC	IRL AT VERO MAIN CANAL AT U.S. 1	NDIAN RIVER LAGOON	stream	wqi	11	39.3	good
IRLVNC	IRL AT VERO NORTH CANAL AT U.S. 1	NDIAN RIVER LAGOON	stream	wqi	1	43.6	good
IRLVSC	IRL AT VERO SOUTH CANAL AT U.S. 1	NDIAN RIVER LAGOON	stream	wqi	11	48.3	fair
02236000	ST. JOHNS RIVER NEAR DELAND	AKE GEORGE	stream	wqi	11	47.1	fair
20010002	ST. JOHNS RIVER AT HWY 40 NEAR ASTOR	AKE GEORGE	stream	wqi	11	45.2	fair
20030373	ST JOHNS RIVER AT CM 72	AKE GEORGE	stream	wqi	11	42.3	good
BLSPR	BLUE SPRING NEAR ORANGE CITY	AKE GEORGE	spring	wqi	11	26.1	good
KER	LAKE KERR B/T KAUFFMANS ISL AND PT PLEASANT	AKE GEORGE	lake	tsi	11	23.3	boog
LAG	LAKE GEORGE AT M 9	AKE GEORGE	lake	tsi	11	61.4	fair
LKWOOD	LAKE WOODRUFF AT CENTER	AKE GEORGE	lake	tsi	11	55.6	good

c	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
	MIDDLE ST. JOHNS R NEAR FT GATES FERRY	LAKE GEORGE	stream	wqi	თ	47.6	fair
15	16 MILE CREEK AT DEEP CRK RD W	LOWER ST. JOHNS RIVER	stream	wqi	11	43	good
	CEDAR RIVER AT BLANDING BLVD BRIDGE RT 21	LOWER ST. JOHNS RIVER	stream	wqi	11	47	fair
5	MONCRIEF CREEK NEAR MOUTH	LOWER ST. JOHNS RIVER	estuary	tsi	11	57.4	fair
n	JULINGTON CREEK AT HWY 13 BRIDGE	LOWER ST. JOHNS RIVER	estuary	tsi	11	50.4	fair
61	ORTEGA RIVER AT COLLINS ROAD	LOWER ST. JOHNS RIVER	stream	wqi	11	51.8	fair
00	GEORGES LAKE 200 YDS FROM WEST BANK	LOWER ST. JOHNS RIVER	lake	tsi	11	29.6	good
12	KINGSLEY LAKE AT CENTER	LOWER ST. JOHNS RIVER	lake	tsi	11	22.1	good
	BLACK CREEK AT HWY 209	LOWER ST. JOHNS RIVER	bwstream	wqi	11	39.9	good
	SOUTH FORK OF BLACK CREEK AT HWY 218	LOWER ST. JOHNS RIVER	bwstream	wqi	11	40.6	good
	CENTER OF LAKE DISSTON	LOWER ST. JOHNS RIVER	lake	tsi	11	44.2	good
Σ	CRESCENT LAKE AT OUTLET TO DUNNS CREEK	LOWER ST. JOHNS RIVER	lake	tsi	ი	65.4	fair
	DOG BRANCH 50 METERS DOWNSTR CR 207 A	LOWER ST. JOHNS RIVER	stream	wqi	11	62.1	poor
	DEEP CREEK AT RAILROAD BRIDGE	LOWER ST. JOHNS RIVER	stream	wqi	11	54.2	fair
	DOCTORS LAKE AT CENTER	LOWER ST. JOHNS RIVER	estuary	tsi	£	64.5	poor
CRK	DUNNS CR MIDWAY BETW CRESCENT L AT ST. JOHNS RIVER	LOWER ST. JOHNS RIVER	stream	wdi	10	51.5	fair
	GOVERNORS CK AT HWY 16 NR GREEN COVE	LOWER ST. JOHNS RIVER	estuary	tsi	11	75.5	poor
	LAKE GENEVA NEAR KEYSTONE HTS	LOWER ST. JOHNS RIVER	lake	tsi	11	25.3	good
	LAKE CRESCENT BTW SALT BRANCH CANAL AND UNION		2		8		10 - C154
	AVE	LOWER ST. JOHNS RIVER	lake	tsi	11	62.9	fair
	OUTLET OF HAW CREEK AT DEAD LAKE	LOWER ST. JOHNS RIVER	stream	wqi	11	62.8	poor
	HALLOWES COVE AT CENTER	LOWER ST. JOHNS RIVER	estuary	tsi	10	55.7	fair
÷	ST. JOHNS RIVER AT RED MARKER 1	LOWER ST. JOHNS RIVER	estuary	tsi	10	43.6	роор
			[>.	>->-	22

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
JAXST. JOHNS RIVER04	ST. JOHNS RIVER AT RED MARKER 34	OWER ST. JOHNS RIVER	estuary	tsi	10	46	pooɓ
JAXST. JOHNS RIVER17	ST. JOHNS RIVER NEAR JEFFERSON SMURFITT	OWER ST. JOHNS RIVER	estuary	tsi	10	48.4	poob
JAXST. JOHNS RIVER30	ST. JOHNS RIVER AT BEAUCLERC BLUFF	OWER ST. JOHNS RIVER	estuary	tsi	8	56.3	fair
JAXST. JOHNS RIVER40	ST. JOHNS RIVER NEAR PINEY POINT 100 M SW OF GREEN CHANNEL MARKER (CM)5	OWER ST. JOHNS RIVER	estuary	tsi	11	54.7	fair
LSJ070	LITTLE HAW CREEK AT US 305	OWER ST. JOHNS RIVER	bwstream	wqi	11	22.6	good
LSJ087	DURBIN CREEK AT RACETRACK ROAD	OWER ST. JOHNS RIVER	stream	wqi	11	55.1	fair
LSJ099	BIG DAVIS CREEK AT US1	OWER ST. JOHNS RIVER	stream	wqi	11	41.3	good
LSJ918	RICE CREEK AT SR 100	OWER ST. JOHNS RIVER	stream	wqi	11	34.7	good
MOB	MOCCASIN BRANCH ON SR 13	OWER ST. JOHNS RIVER	stream	wqi	11	58.3	fair
MP72	ST. JOHNS RIVER AT MANDARIN PT BTW CM 10 & 11 CENTER	OWER ST. JOHNS RIVER	estuary	tsi	6	53.6	fair
NBC	NORTH FORK OF BLACK CREEK AT SR 21	OWER ST. JOHNS RIVER	bwstream	wqi	11	31.5	good
ОНD	OUTLET OF HASTINGS DRAINAGE DISTRICT	OWER ST. JOHNS RIVER	stream	wqi	11	52.8	fair
PTC	PETERS CREEK AT HWY 209	OWER ST. JOHNS RIVER	stream	wqi	11	48.2	fair
RCB	RICE CREEK AT U.S. 17 BRIDGE	OWER ST. JOHNS RIVER	stream	wqi	11	65.6	poor
SAVBOLSO	BOLLS SCHOOLS OUTSIDE GRASSBED	OWER ST. JOHNS RIVER	estuary	tsi	6	53.7	fair
SAVCRL20	CRESCENT LAKE SITE 2 OUTSIDE GRASSBED	OWER ST. JOHNS RIVER	lake	tsi	11	60.4	fair
SAVDRLKO	DOCTORS LAKE OUTSIDE GRASSBED	OWER ST. JOHNS RIVER	estuary	tsi	10	65.3	poor
SAVRICNO	RICE CREEK OUTSIDE GRASSBED	OWER ST. JOHNS RIVER	lake	tsi	10	59.9	poob
SAVSCRAO	SCRATCH ANKLE OUTSIDE GRASSBED	OWER ST. JOHNS RIVER	lake	tsi	6	60.0	good
	LAKE SHEELAR AT CENTER (GOLD HEAD BRDG – CLAY			3	Ţ	0 7	1
SIM	SIMMS CREEK 2 MILES NNE OF BARDIN	OWER ST. JOHNS RIVER	stream	usi wroi	- :	21.0	noofi
0INI			211 C0111	Ihw		0.22	nnnĥ

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
SJCM25	ST. JOHNS RIVER AT CM 25 NEAR PICOLATA	LOWER ST. JOHNS RIVER	lake	tsi	11	58.1	poob
SJM37	ST. JOHNS RIVER AT CM 37 FEDERAL POINT	LOWER ST. JOHNS RIVER	lake	tsi	11	61.2	fair
SJP	ST. JOHNS RIVER AT PALATKA (U.S. 17)	LOWER ST. JOHNS RIVER	lake	tsi	11	58.5	good
ST. JOHNS RIVERCC	ST. JOHNS RIVER BELOW RICE CREEK CENTER CHANNEL	LOWER ST. JOHNS RIVER	lake	tsi	11	59.3	good
ST. JOHNS RIVERHBP	ST. JOHNS RIVER AT HIBERNIA POINT	LOWER ST. JOHNS RIVER	estuary	tsi	11	54.3	fair
SJSR16	ST. JOHNS RIVER AT SR 16 SOUTH OF SHANDS BRIDGE	LOWER ST. JOHNS RIVER	estuary	tsi	10	58	fair
SMC	SIXMILE CREEK AT SR 13	LOWER ST. JOHNS RIVER	stream	wqi	11	55.4	fair
SPCR	SWIMMING PEN CREEK AT HWY 220	LOWER ST. JOHNS RIVER	stream	wqi	11	49.4	fair
SRB	ST. JOHNS RIVER AT BUFFALO BLUFF RR BRIDGE	LOWER ST. JOHNS RIVER	stream	wqi	8	43.6	good
SRP	ST JOHNS RIVER AT RACY POINT	LOWER ST. JOHNS RIVER	lake	tsi	11	61.1	fair
WIO	LAKE WINONA	LOWER ST. JOHNS RIVER	lake	tsi	11	24.4	good
02233200	LITTLE ECONLOCKHATCHEE R NR UNION PARK	MIDDLE ST. JOHNS RIVER	stream	wqi	11	48.8	fair
02235000	WEKIVA RIVER NEAR SANFORD	MIDDLE ST. JOHNS RIVER	stream	wqi	11	30.3	good
20010137	LITTLE WEKIVA RIVER AT HWY 434	MIDDLE ST. JOHNS RIVER	stream	wqi	11	41.6	good
ASH	CENTER OF LAKE ASHBY	MIDDLE ST. JOHNS RIVER	lake	tsi	11	58.7	good
BWC44	BLACKWATER CREEK AT HWY 44	MIDDLE ST. JOHNS RIVER	bwstream	wqi	11	32.7	good
BWCCPB	BLACKWATER CREEK AT CARTER PROP BRIDGE	MIDDLE ST. JOHNS RIVER	bwstream	wqi	11	41.5	good
CLH	CENTER OF LAKE HARNEY	MIDDLE ST. JOHNS RIVER	lake	tsi	8	55.8	good
DMR	DEEP CREEK AT MAYTOWN ROAD	MIDDLE ST. JOHNS RIVER	bwstream	wqi	11	36.5	good
ECH	ECON RIVER AT SNOWHILL ROAD (SR 426)	MIDDLE ST. JOHNS RIVER	stream	wqi	11	40.5	good
LMAC	LAKE MONROE AT CENTER	MIDDLE ST. JOHNS RIVER	lake	tsi	11	61.8	fair
OW-2	LK JESUP OFF GRASSY POINT	MIDDLE ST. JOHNS RIVER	lake	tsi	5	74.6	poor
OW-4	LK JESUP W OF BRIDGE BTWN WHITES LNDG AND BIRD ISLAND	MIDDLE ST. JOHNS RIVER	lake	tsi	11	74.5	poor
OW-6	LK JESUP OFF CENTER OF FAR W ARM	MIDDLE ST. JOHNS RIVER	lake	tsi	11	73.8	poor

ontinued
A2-c
Table

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
OW-ST. JOHNS RIVER-1	MID ST. JOHNS RIVER EAST OF BARGE CANAL AND EAST OF JJ FISH CAMP	MIDDLE ST. JOHNS RIVER	stream	wqi	11	52.5	fair
SRN	LAKE HARNEY INFLOW – ST. JOHNS RIVER AT SR 46 BRIDGE	MIDDLE ST. JOHNS RIVER	stream	wqi	11	57.6	fair
WIN	LAKE WINNEMISSETT	MIDDLE ST. JOHNS RIVER	lake	tsi	11	21.5	good
19020002	NASSAU RIVER AT U.S. 17	VASSAU RIVER	estuary	tsi	11	62.9	poor
NRI	NASSAU RIVER NEAR ITALIA	VASSAU RIVER	stream	wqi	11	65	poor
02238000	HAYNES CREEK AT LISBON	DCKLAWAHA RIVER	stream	wqi	11	56.5	fair
20020012	OKLAWAHA RIVER AT SR 316	DCKLAWAHA RIVER	stream	wqi	11	28.8	good
20020321	CHERRY LAKE AT CENTER	DCKLAWAHA RIVER	lake	tsi	11	45.7	good
20020368	LAKE EUSTIS AT CENTER	DCKLAWAHA RIVER	lake	tsi	11	66.8	fair
20020381	LAKE GRIFFIN MIDDLE OFFSHORE OF TREASURE IS	DCKLAWAHA RIVER	lake	tsi	11	73.5	poor
ABC	APOPKA BEAUCLAIR CANAL AT APOPKA LOCK AND DAM	DCKLAWAHA RIVER	stream	wqi	11	71.4	poor
BCE	CANAL ENTRANCE TO LAKE BEAUCLAIR	OCKLAWAHA RIVER	lake	tsi	11	80	poor
CARL	CENTER OF LAKE CARLTON	DCKLAWAHA RIVER	lake	tsi	11	79.1	poor
CLA	LAKE APOPKA CENTER STATION	OCKLAWAHA RIVER	lake	tsi	11	78	poor
CLW	CENTER OF LAKE WIER	DCKLAWAHA RIVER	lake	tsi	11	36.7	good
DCNL	DORA CANAL; 100M N OF HWY 19 BRIDGE	DCKLAWAHA RIVER	stream	wqi	11	64.5	poor
DEPHCA	"HAYNES CREEK DOWNSTREAM OF DISCHARGE ""T""	DCKLAWAHA RIVER	stream	wqi	1	64.7	poor
DEPHCB	"HAYNES CREEK UPSTREAM OF DISCHARGE ""V""	DCKLAWAHA RIVER	stream	wqi	11	62.2	poor
DNEY	LAKE DENHAM EAST	OCKLAWAHA RIVER	lake	tsi	11	73.7	poor
DOR	CENTER OF LAKE DORA	OCKLAWAHA RIVER	lake	tsi	11	78.4	poor
DORE	LAKE DORA; CENTER OF EAST POOL	DCKLAWAHA RIVER	lake	tsi	11	80.2	poor
DRVR	DEAD RIVER; UNDER THE POWER WIRES	DCKLAWAHA RIVER	stream	wqi	11	48.8	fair
HAR	CENTER OF LAKE HARRIS	DCKLAWAHA RIVER	lake	tsi	11	69.4	fair
HAT26	HATCHET CREEK AT SR 26 NR NEWNANS LAKE	DCKLAWAHA RIVER	bwstream	wqi	11	30.1	boog
HICKDN	HICKS DITCH DOWNSTREAM EAST RD CULVERT PINE MEADOW	OCKLAWAHA RIVER	stream	wqi	11	66.4	poor

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
LFC329B	LAKE FOREST CREEK AT SR 329B	OCKLAWAHA RIVER	stream	wqi	11	41.1	poog
LGNA	LAKE GRIFFIN; NORTH	OCKLAWAHA RIVER	lake	tsi	11	76.6	poor
rgs	LAKE GRIFFIN; SOUTH	OCKLAWAHA RIVER	lake	tsi	11	79.8	poor
LHAT26	LITTLE HATCHET CREEK ON SR 26; W INTRSCTN. CR 222	OCKLAWAHA RIVER	stream	wqi	8	71.7	poor
LHT26E	LITTLE HATCHET CREEK AT CR 26; EAST OF CR 222	OCKLAWAHA RIVER	stream	wqi	11	68.1	poor
LLHARRIS	CENTER LITTLE LAKE HARRIS AT HOWEY IN THE HILLS	OCKLAWAHA RIVER	lake	tsi	11	69.1	fair
LOL	CENTER LAKE LOCHLOOSA	OCKLAWAHA RIVER	lake	tsi	10	75.9	poor
гүс	CENTER OF LAKE YALE	OCKLAWAHA RIVER	lake	tsi	11	63.5	fair
MBU	AT MOSS BLUFF; UPSTREAM OF THE LOCK	OCKLAWAHA RIVER	stream	wqi	11	63.2	poor
NEW	NEWNANS LAKE; CENTER	OCKLAWAHA RIVER	lake	tsi	10	86.8	poor
NLA	LAKE APOPKA NORTH	OCKLAWAHA RIVER	lake	tsi	11	78.4	poor
OCKLRM	OCKLAWAHA R 1 MILE UPSTR OF MOUTH	OCKLAWAHA RIVER	stream	wqi	1	41.4	poog
OFB	OKLAWAHA RIVER CANAL AT THE OKLAWAHA FARMS BRIDGE	OCKLAWAHA RIVER	stream	wqi	6	64.3	poor
OR006	ORANGE CREEK AT SR 21	OCKLAWAHA RIVER	stream	wqi	11	37.7	good
ORD	OCKLAWAHA RIVER DOWNSTREAM SR 40	OCKLAWAHA RIVER	stream	wqi	11	35.6	good
PINEMS	PINE MEADOWS S BYPASS CNL UPSTREAM OF DISCHARGE SITE	OCKLAWAHA RIVER	bwstream	wqi	7	64.6	poor
PRVR	PALATLAKAHA RIVER AT SR 48	OCKLAWAHA RIVER	stream	wqi	8	41.5	good
SHORIA	C231 CANAL NEAR INTAKE TO SUNNYHILL MARSH	OCKLAWAHA RIVER	stream	wqi	11	6.99	poor
SLA	LK APOPKA EAST OF APOPKA SPG MOUTH OF GOURD	OCKLAWAHA RIVER	lake	tsi	11	86.9	poor
SSR	SILVER RIVER; 200M UPSTREAM OF OCKLAWAHA R.	OCKLAWAHA RIVER	stream	wqi	10	29	good
YGCAA	YALE-GRIFFIN CANAL EAST OF CONFLUENCE WITH LAKE	OCKLAWAHA RIVER	stream	wai	7	64	DOOL
YGCCA	YALE-GRIFFIN CANAL WEST OF EMERALDA ISLAND RD	OCKLAWAHA RIVER	stream	wqi	1	65	poor
19010001	ST. MARYS RIVER AT U.S. 17 GEORGIA LINE	ST. MARYS RIVER	stream	wqi	11	53.6	fair
19010006	ST. MARYS RIVER AT SR 2	ST. MARYS RIVER	bwstream	wqi	11	14.5	good
MPS	MIDDLE PRONG ST MARYS AT HWY 127	ST. MARYS RIVER	bwstream	wqi	7	22	poog
SJA-HS-1018	ST. MARYS RIVER W OF TRADER'S HILL	ST. MARYS RIVER	bwstream	wqi	6	30.9	good

Status and Trends in Water Quality at Selected Sites

Station	Station Location	Basin	Water Body Type	Method Used	Seasonal Median N	Median Index	Quality
02248000	SPRUCE CREEK NEAR SAMSULA	UPPER COASTAL	stream	wqi	11	56.7	fair
27010024	TOMOKA RIVER AT OLD DIXIE HWY BRIDGE	UPPER COASTAL	estuary	tsi	11	56.9	fair
27010037	HALIFAX RIVER 100 FT N SI BEACH MEMORIAL BRIDGE	UPPER COASTAL	estuary	tsi	11	51.6	fair
27010579	TOMOKA RIVER AT 11TH STREET BRIDGE	UPPER COASTAL	stream	wqi	11	50	fair
BUL	BULOW CREEK AT LOW BRIDGE	UPPER COASTAL	estuary	tsi	11	58.7	fair
ccc	CASA COLA CREEK	UPPER COASTAL	estuary	tsi	11	45.5	good
GAR	GUANA RIVER 100 METERS SOUTH OF THE DAM	UPPER COASTAL	estuary	tsi	11	53.4	fair
147017	CONFLUENCE OF TOLOMATO AND GUANA RIVERS -		octuary	ia	,	5 11	puon
	MATANZAS RIVER NORTH OF CRESCENT REACH AT SR		colual y	5	-	5	noon
JXTR21	206 BRIDGE	UPPER COASTAL	estuary	tsi	1	37.5	good
JXTR26	ICWW MARKER AT FOX CUT	UPPER COASTAL	estuary	tsi	5	44.3	good
MAT	MATANZAS R S OF WASHINGTON OAKS MKR 109	UPPER COASTAL	estuary	tsi	1	42.7	good
MCICW	MOULTRIE CREEK OFF ICW	UPPER COASTAL	estuary	tsi	1	43.1	good
MR312	MATANZAS RIVER AT CR 312	UPPER COASTAL	estuary	tsi	11	39.9	good
MRT	CONFLUENCE OF PELLICER CREEK AND ICW	UPPER COASTAL	estuary	tsi	11	38.7	good
MTC	MOULTRIE CREEK AT SR 207	UPPER COASTAL	stream	wqi	11	51.3	fair
PEL	PELLICER CREEK AT U.S. 1	UPPER COASTAL	stream	wqi	11	47.8	fair
SMITHSCR	SMITH'S CREEK	UPPER COASTAL	estuary	tsi	11	46.7	good
SSB	SAN SEBASTIAN RIVER AT U.S. 1	UPPER COASTAL	estuary	tsi	11	41.5	good
STOKESCR	STOKES CREEK	UPPER COASTAL	estuary	tsi	11	45.7	good
TOL	TOLOMATO R 1 MI N DEEP CR AT SPANISH LNDG	UPPER COASTAL	estuary	tsi	11	45.6	good
BCL	BLUE CYPRESS LAKE AT CENTER	UPPER ST. JOHNS RIVER	lake	tsi	1	49.3	good
JGS	JANE GREEN CREEK AT USGS GAUGE (TEN MILE ROAD)	UPPER ST. JOHNS RIVER	bwstream	wqi	11	24.1	poob
ГРО	ST. JOHNS RIVER AT LAKE POINSETT OUTLET SOUTH OF SR 520	UPPER ST. JOHNS RIVER	lake	ţzi	11	59.5	poob
LWC	LAKE WASHINGTON CENTER	UPPER ST. JOHNS RIVER	lake	tsi	11	55	boog
SRS	SEMINOLE RANCH SOUTH BOUNDARY AT SR 50 IN ST. JOHNS RIVER	UPPER ST. JOHNS RIVER	stream	ipw	7	56.6	fair

Table A2-continued

CRABGRASS CREEK AT SR 192

USJ055

fair

54

÷

wqi

stream

UPPER ST. JOHNS RIVER

	longood (
Sea: Med Avai	ians lable	Period of Record (yrs)	Kendall K	Variance K	Z-score	Z-prob	Trend	Seasonality Condition	Sen Slope	Lower 95% CI for Sen Slope	Upper 95% CI for Sen Slope
0.00	21	1995–2004 (11)	84				degrading	nonseasonal	1.296		
	21	1995-2004 (11)	-18	290.00	-0.998	0.318	insignificant	seasonal	-0.709	-1.517	0.432
	15	1990–2004 (9)	21	109.67	1.91	0.056	insufficient	seasonal	0.750	0.200	1.735
	28	1990–2004 (16)	22				insignificant	nonseasonal	0.138		
	30	1990-2004 (16)	-33				insignificant	nonseasonal	-0.150		
	19	1990-2004 (10)	-33				insignificant	nonseasonal	-0.804		
	29	1990–2004 (16)	-24				insignificant	nonseasonal	-0.098		
	29	1990–2004 (15)	-26				insignificant	nonseasonal	-0.202		
	26	1990–2004 (14)	-133				improving	nonseasonal	-0.581		
	26	1990–2004 (14)	-135				improving	nonseasonal	-0.730		
	29	1990-2004 (15)	-120				improving	nonseasonal	-0.629		
	29	1990-2004 (15)	8				insignificant	nonseasonal	0.029		
	28	1990–2004 (16)	92				degrading	nonseasonal	0.682		
	23	1990–2004 (14)	15				insignificant	nonseasonal	0.251		
	20	1990-2004 (11)	15	257.00	0.873	0.383	insignificant	seasonal	0.516	-0.654	1.570
_	21	1991–2004 (12)	-60				improving	nonseasonal	-0.994		
_	19	1990-2004 (10)	-53				improving	nonseasonal	-1.054		
	25	1990-2004 (15)	-34	533.33	-1.429	0.153	insignificant	seasonal	-0.443	-0.968	0.072
	20	1990–2004 (11)	3	257.00	0.125	0.901	insignificant	seasonal	0.059	-0.747	0.649
0	20	1990-2004 (11)	-62				improving	nonseasonal	-0.522		
	7	1990–2004 (5)	ç				insufficient	nonseasonal	-1.953		
	31	1990-2004 (16)	e	901.67	0.067	0.947	insignificant	seasonal	0.006	-0.415	0.418
_	17	1990-2004 (10)	-34				insignificant	nonseasonal	-0.634		
	29	199-02004 (16)	-76	742.00	-2.753	0.006	improving	seasonal	-0.650	-1.005	-0.291
	29	1990-2004 (16)	-58	742.00	-2.093	0.036	improving	seasonal	-0.409	-0.789	-0.085
	28	1990-2004 (16)	-67	677.00	-2.537	0.011	improving	seasonal	-0.566	-0.887	-0.229
	29	1990-2004 (16)	-56	742.00	-2.019	0.043	improving	seasonal	-0.396	-0.765	-0.100
	18	1990-2004 (11)	-29				insignificant	nonseasonal	-0.359		
_	27	1991-2004 (15)	-29	602.33	-1.141	0.254	insignificant	seasonal	-0.308	-0.833	0.078
	27	1991-2004 (15)	-49	602.33	-1.956	0.05	improving	seasonal	-0.367	-0.771	-0.080

Table A3. Trend results for each site sorted by basin

Upper 95% C for Sen Slope			-0.777			-0.427	-0.205	-0.313	0.404	0.132	0.413	1.415	0.785	0.944			0.150	0.239		5.303	1.090		0.187	0.691					-0.051	
Lower 95% CI for Sen Slope			-1.533			-1.449	-0.967	-0.922	-0.593	-0.563	-0.191	-0.066	-0.844	-0.411			-0.530	-1.073		0.089	-0.434		-1.246	-1.329					-0.946	
Sen Slope	-0.757	-0.664	-1.148	-0.468	-0.835	-0.961	-0.654	-0.669	-0.127	-0.210	0.120	0.514	-0.177	0.696	-0.002	-0.315	-0.168	-0.345	1.648	1.591	0.312	1.253	-0.574	-0.269	-0.681	-1.060	0.931	0.600	-0.429	-2.037
Seasonality Condition	nonseasonal	nonseasonal	seasonal	nonseasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal	nonseasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal	seasonal	nonseasonal
Trend	improving	improving	improving	insignificant	improving	improving	improving	improving	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	insufficient	insufficient	insignificant	degrading	insignificant	insignificant	insignificant	insignificant	degrading	degrading	improving	insufficient
Z-prob			0			0.002	0.015	0	0.633	0.287	0.398	0.146	0.786	0.184			0.351	0.265		0.084	0.658	1. VIII/I	0.282	0.569					0.083	
Z-score			-4.065			-3.075	-2.434	-3.616	-0.477	-1.065	0.844	1.455	-0.272	1.328			-0.932	-1.116		1.727	0.443		-1.075	-0.569					-1.732	
Variance K			667.33			677.00	827.00	827.00	742.00	742.00	742.00	250.00	217.00	250.00			901.67	290.00		56.67	250.00		250.00	250.00					901.67	
Kendall K	-85	-79	-106	-50	-107	-81	-71	-105	-14	-30	24	24	-5	22	ې ب	-82	-29	-20	15	14	8	66	-18	-10	-40	-46	166	111	-53	-25
Period of Record (yrs)	990-2004 (16)	1990-2004 (12)	990-2004 (15)	1990-2004 (15)	1990-2004 (13)	990-2004 (15)	990-2004 (16)	990-2004 (16)	1990-2004 (15)	1990–2004 (15)	1990-2004 (15)	1995-2004 (11)	1996-2004 (10)	995-2004 (11)	994-2004 (12)	1990–2004 (15)	1990-2004 (16)	991-2004 (12)	998-2004 (7)	1999–2004 (7)	995-2004 (11)	995-2004 (11)	1995-2004 (11)	1995-2004 (11)	1995-2004 (11)	995-2004 (11)	1990-2004 (15)	1990-2004 (16)	1990-2004 (16)	19982-004 (6)
Seasonal Medians Available	27 1	23	28 1	29 1	23	28 1	30	30	29 1	29	29 1	20	19	20	23 1	29 1	31	21	11	12	20 1	20 1	20	20	20	20 1	29	31	31	11
Method	tsi	tsi	tsi	tsi	tsi	tsi	tsi	tsi	wqi	wqi	wqi	wqi	wqi	wqi	wqi	tsi	tsi	tsi	wqi	wqi	wqi	tsi	tsi	wqi	tsi	tsi	wqi	wqi	tsi	tsi
Station	IRLML02	IRLSC03	IRLSUS	IRLTBC	IRLTUS	IRLV05	IRLV11	IRLV17	IRLVMC	IRLVNC	IRLVSC	02236000	20010002	20030373	BLSPR	KER	LAG	LKWOOD	MSJFGF	16MCRK	20030083	20030115	20030153	20030349	20030400	20030412	BLC	BSF	CLD	CRESLM

Table A3-continued

Upper 95% CI for Sen Slope	0.123	0.854	-0.115					0.669	-0.094															0.450	0.091	0.165	0.956	0.758	-0.027	0.693	-0.548	0.094
Lower 95% CI for Sen Slope	-0.677	0.169	-0.418					-0.137	-0.714															-1.268	-1.614	-1.256	-0.985	-0.761	-0.817	-0.066	-1.436	-0.804
Sen Slope	-0.279	0.538	-0.265	0.673	-1.872	0.555	0.410	0.310	-0.397		100 0	-0.937		0.002			-0.123			-1.938			-0.444	-0.349	-0.811	-0.793	0.000	0.048	-0.314	0.354	-1.050	-0.452
Seasonality Condition	seasonal	seasonal	seasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal	seasonal	seasonal			nonseasonal		nonseasonal			nonseasonal			nonseasonal			nonseasonal	seasonal								
Trend	insignificant	degrading	improving	insufficient	insufficient	insignificant	insufficient	insignificant	improving			insufficient		insignificant			insignificant			insufficient			improving	insignificant	insignificant	insignificant	insignificant	insignificant	improving	insignificant	improving	insignificant
Z-prob	0.287	0.033	0.019					0.183	0.027															0.528	0.171	0.186	-	0.972	0.046	0.152	0.002	0.294
Z-score	-1.065	2.131	-2.345					1.332	-2.205															-0.63	-1.369	-1.322	0	0.035	-1.993	1.432	-3.047	-1.048
Variance K	742.00	901.67	816.67					901.67	816.67															425.33	546.33	481.33	546.33	816.67	157.33	742.00	742.00	481.33
Kendall K	-30	65	-68	8	-90	35	10	41	-64		25	7		٦			γ			-26			-54	-14	-33	-30	Ţ	2	-26	40	-84	-24
Period of Record (yrs)	1991–2004 (15)	1990-2004 (16)	1990–2004 (16)	1998–2004 (7)	1993–2004 (9)	1994–2004 (12)	1999–2004 (7)	1990-2004 (16)	1990-2004 (15)			1999–2004 (5)		1994-2004 (11)			1994-2004 (11)			1999–2003 (6)			1994-2004 (11)	1992-2004 (13)	1992-2004 (14)	1992-2004 (13)	1992-2004 (14)	1991-2004 (16)	1993-2004 (11)	1991-2004 (15)	1991-2004 (15)	1992-2004 (14)
Seasonal Medians Available	29	31	30	13	16	23	12	31	30			10		19			19			6			20	24	26	25	26	30	17	29	29	25
Method	wqi	wqi	tsi	wqi	tsi	tsi	tsi	wqi	tsi			tsi		tsi			tsi			tsi			tsi	wqi	wqi	wqi	wqi	wqi	tsi	wqi	wqi	wqi
Station	DBR	DPB	DTL	DUNNSCRK	GC16	GEN	GF33	HAW	НСС	JAXST.	SNHO	RIVER01	JAXST. JOHNS	RIVER04	JAXST.	SNHOP	RIVER17	JAXST.	SNHOP	RIVER30	JAXST.	SNHOR	RIVER40	LSJ070	LSJ087	LSJ099	LSJ918	MOB	MP72	NBC	ОНD	PTC

Upper 95% CI for Sen Slope			0.728	0.247	-0.150	-0.386	1.248	0.798	0.228	0.533	0.183	0.363	Foo o	-0.031	0.140	0.454	0.616	0.798	0.228	0.533	0.183	0.363	-0.031	0.140	0.454	0.616	0.747	0.265	
Lower 95% CI for Sen Slope			-1.625	-0.475	-0.897	-1.473	0.177	-1.220	-0.543	-0.298	-0.350	-0.364		210.0-	-0.531	-0.146	-0.018	-1.220	-0.543	-0.298	-0.350	-0.364	-0.512	-0.531	-0.146	-0.018	-0.043	-0.322	
Sen Slope	-0.474	-0.962	-0.616	-0.179	-0.566	-0.940	0.641	-0.139	-0.260	0.135	-0.108	-0.063		-0.149	-0.245	0.179	0.253	-0.139	-0.260	0.135	-0.108	-0.063	-0.149	-0.245	0.179	0.253	0.330	0.005	0.930
Seasonality Condition	nonseasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	-	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal								
Trend	improving	insufficient	insufficient	insufficient	insufficient	insufficient	degrading	insignificant	insignificant	insignificant	insignificant	insignificant		improving	insignificant	improving	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant							
Z-prob			0.54	0.567	0.022	0.015	0.051	0.918	0.416	0.82	0.741	0.82	0000	0.082	0.254	0.387	0.111	0.918	0.416	0.82	0.741	0.82	0.082	0.254	0.387	0.111	0.166	Ţ	
Z-score			-0.612	-0.573	-2.292	-2.443	1.955	-0.103	-0.813	0.228	-0.33	-0.228		-1./42	-1.141	0.866	1.595	-0.103	-0.813	0.228	-0.33	-0.228	-1.742	-1.141	0.866	1.595	1.384	0	
Variance K			130.67	109.67	109.67	88.67	377.67	377.67	667.33	481.33	742.00	481.33		667.33	602.33	901.67	481.33	377.67	667.33	481.33	742.00	481.33	667.33	602.33	901.67	481.33	677.00	901.67	
Kendall_K	-121	-45	-8	-7	-25	-24	39	-3	-22	9	-10	9-	ç	-46	-29	27	36	-3	-22	9	-10	9-	-46	-29	27	36	37	Ŧ	59
Period of Record (yrs)	1990–2004 (16)	1997–2004 (8)	1997–2004 (9)	1997–2004 (8)	1997–2004 (8)	1997–2004 (8)	1991–2004 (13)	1994–2004 (12)	1991–2004 (15)	1993–2004 (13)	1990–2004 (15)	1993–2004 (13)		1991-2004 (15)	1991–2004 (14)	1990–2004 (16)	1993–2004 (13)	1994–2004 (12)	1991-2004 (15)	1993–2004 (13)	1990-2004 (15)	1993–2004 (13)	1991–2004 (15)	1991-2004 (14)	1990–2004 (16)	1993–2004 (13)	1990–2004 (15)	1990-2004 (16)	1993-2004 (12)
Seasonal Medians Available	31	14	16	15	15	14	23	23	28	25	29	25	c	87	27	31	25	23	28	25	29	25	28	27	31	25	28	31	23
Method	wqi	tsi	tsi	tsi	tsi	tsi	tsi	wqi	tsi	tsi	tsi	tsi			tsi	wqi	wqi	wqi	tsi	tsi	tsi	tsi	tsi	tsi	wqi	wqi	wqi	tsi	tsi
Station	RCB	SAVBOLSO	SAVCRL20	SAVDRLKO	SAVRICNO	SAVSCRAO	SHEEL	SIM	SJCM25	SJM37	SJP	ST. JOHNS RIVERCC	ST. JOHNS	KIVEKHBP	SJSR16	SMC	SPCR	SIM	SJCM25	SJM37	SJP	ST. JOHNS RIVERCC	ST. JOHNS RIVERHBP	SJSR16	SMC	SPCR	SRB	SRP	WIO

Upper 95% CI for Sen Slope	2.129	3.632	1.553		0.353			1.082	0.561		0.534				2.365	1.252			0.372						-0.029					
Lower 95% CI for Sen Slope	0.530	0.275	-0.480		-0.475			-1.040	-0.405		-0.687				0.367	0.337			-1.271						-0.744					
Sen Slope	1.120	1.692	0.598	0.784	-0.118	-0.190	-0.610	0.083	0.140	-0.052	0.008	-0.403	-0.420		1.212	267.0	0.443	2.135	-0.272	-0.227	0.153	2.622	-0.313	-2.056	-0.416	-0.680	-2.468	-0.554	-0.004	1.350
Seasonality Condition	seasonal	seasonal	seasonal	nonseasonal	seasonal	nonseasonal	nonseasonal	seasonal	seasonal	nonseasonal	seasonal	nonseasonal	nonseasonal		seasonal	seasonal	nonseasonal	nonseasonal	seasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal	seasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal	nonseasonal
Trend	insufficient	degrading	insignificant	insignificant	insignificant	insignificant	insufficient	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	9	degrading	degrading	insignificant	degrading	insignificant	insignificant	insignificant	insufficient	insignificant	improving	improving	improving	insufficient	improving	insignificant	insufficient
Z-prob	0.008	0.022	0.318		0.67			÷	0.741		÷				0.021	0.003			0.658						0.096					
Z-score	2.655	2.29	0.998		-0.426			0	0.33		0				2.308	2.974			-0.443						-1.665					
Variance K	88.67	290.00	290.00		667.33			377.67	742.00		290.00				217.00	742.00			250.00						901.67					
Kendall K	26	40	18	40	-12	-23	-6	1	10	6-	0	-28	-32		35	82	20	116	8-	-16	4	53	-12	-60	-51	-153	-32	-173	-13	22
Period of Record (yrs)	1998–2004 (8)	1995-2004 (11)	1995-2004 (11)	1995-2004 (11)	1991-2004 (15)	1991-2004 (14)	2001-2004 (5)	994-2004 (12)	1991–2004 (15)	1991-2004 (14)	1995-2004 (11)	1995-2004 (11)	1995-2004 (11)		1996-2004 (10)	1991–2004 (15)	1990–2004 (13)	1995–2004 (11)	1995–2004 (11)	1995-2004 (11)	1996–2004 (11)	1998–2004 (8)	1995-2004 (11)	1995-2004 (11)	1990-2004 (16)	1990-2004 (16)	1999–2004 (7)	1990-2004 (16)	1990-2004 (16)	1999-2004 (7)
Seasonal Medians Available	14	21	21	21 1	28	27 1	8	23 1	29 1	27 1	21	21 1	21		19	29 1	24 1	20	20 1	20	20 1	14	21	20	31 1	30	12 1	31	31 1	12
Method	wqi	wqi	wqi	tsi	wqi	wqi	tsi	wqi	wqi	tsi	tsi	tsi	tsi		wqi	wqi	tsi	tsi	wqi	wqi	wqi	tsi	tsi	tsi	wqi	tsi	tsi	tsi	tsi	wai
Station	02233200	02235000	20010137	ASH	BWC44	BWCCPB	CLH	DMR	ECH	LMAC	OW-2	OW-4	OW-6	OW-ST.	RIVER-1	SRN	MIN	19020002	NRI	02238000	20020012	20020321	20020368	20020381	ABC	BCE	CARL	CLA	CLW	DCNL

Table A3-continued

Station	Method	Seasonal Medians Available	Period of Record (yrs)	Kendall K	Variance K	Z-score	Z-prob	Trend	Seasonality Condition	Sen Slope	Lower 95% CI for Sen Slope	Upper 95% CI for Sen Slope
DEPHCA	wqi	21	1994–2004 (11)	-42	290.00	-2.408	0.016	improving	seasonal	-1.244	-1.873	-0.511
DEPHCB	wqi	21	1994-2004 (11)	16	290.00	0.881	0.378	insignificant	seasonal	0.403	-0.544	0.808
DNEY	tsi	31	1990-2004 (16)	-61				insignificant	nonseasonal	-0.282		
DOR	tsi	30	1990-2004 (16)	-44	816.67	-1.505	0.132	insignificant	seasonal	-0.382	-0.664	0.049
DORE	tsi	12	1999–2004 (7)	-42				insufficient	nonseasonal	-2.831		
DRVR	wqi	12	1999–2004 (7)	10				insufficient	nonseasonal	0.530		
HAR	tsi	30	1990-2004 (16)	11				insignificant	nonseasonal	0.036		
HAT26	wqi	25	1993-2004 (13)	-52				insignificant	nonseasonal	-0.539		
HICKDN	wqi	19	1996-2004 (10)	-37				insignificant	nonseasonal	-1.699		
LFC329B	wqi	15	1998–2004 (8)	15	109.67	1.337	0.181	insufficient	seasonal	1.178	-0.101	2.899
LGNA	tsi	20	1995–2004 (11)	-86				improving	nonseasonal	-2.480		
rgs	tsi	12	1999–2004 (7)	-28				insufficient	nonseasonal	-3.130		
LHAT26	wqi	19	1994-2004 (12)	19	217.00	1.222	0.222	insignificant	seasonal	0.742	-0.315	1.323
LHT26E	wqi	23	1994–2004 (12)	35	377.67	1.75	0.08	degrading	seasonal	1.756	0.337	3.125
LLHARRIS	tsi	11	1999–2004 (6)	-15				insufficient	nonseasonal	-1.198		
LOL	tsi	29	1990–2004 (15)	68				insignificant	nonseasonal	0.669		
ГҮС	tsi	31	1990-2004 (16)	273				degrading	nonseasonal	2.247		
MBU	wqi	31	1990-2004 (16)	-1	901.67	0	Ļ	insignificant	seasonal	-0.010	-0.384	0.467
NEW	tsi	22	1994-2004 (11)	З				insignificant	nonseasonal	0.086		
NLA	tsi	31	1990-2004 (16)	-115				improving	nonseasonal	-0.415		
OCKLRM	wqi	15	1998-2004 (8)	37				insufficient	nonseasonal	3.098		
OFB	wqi	თ	2000-2004 (5)	-14				insufficient	nonseasonal	-2.468		
OR006	wqi	27	1992-2004 (14)	67				insignificant	nonseasonal	0.660		
ORD	wqi	23	1994–2004 (12)	-11	377.67	-0.515	0.607	insignificant	seasonal	-0.262	-0.807	0.536
PINEMS	wqi	19	1996-2004 (10)	-49				improving	nonseasonal	-2.533		
PRVR	wqi	8	2000-2004 (5)	12				insufficient	nonseasonal	4.416		
SHORIA	wqi	31	1990-2004 (16)	-27	901.67	-0.866	0.387	insignificant	seasonal	-0.221	-0.762	0.228
SLA	tsi	29	1991-2004 (15)	-106				improving	nonseasonal	-0.678		
SSR	wqi	11	1994–2004 (7)	ဗု				insufficient	nonseasonal	-0.177		
YGCAA	wqi	16	1994–2004 (9)	-11	136.33	-0.856	0.392	insufficient	seasonal	-0.588	-1.624	0.861
YGCCA	wqi	21	1994-2004 (11)	-100				improving	nonseasonal	-1.274		

Upper 95% CI for Sen Slope	0.713	0.197	0.411	4.782	1.219		0.545	1.187	0.732	0.392		0.378	1.205	1.533	0.664	1.572		0.644	-0.270	0.880	1.927		1.965	0.615		0.504	1.672	1.015	0.661	0.587
Lower 95% CI for Sen Slope	-0.840	-1.233	-0.674	-0.723	-0.362		-1.037	-0.791	-0.107	-0.404		-0.801	-1.074	-0.350	-0.024	-0.474		-0.567	-0.918	-0.364	0.456		0.105	-0.241		-0.394	0.154	0.299	-0.084	-0.693
Sen Slope	-0.235	-0.335	-0.196	1.043	0.284	0.485	-0.462	0.029	0.312	0.021	1.059	-0.257	-0.211	0.520	0.284	0.205	-0.106	0.214	-0.572	0.310	0.885	0.194	0.839	0.223	0.124	0.077	0.848	0.665	0.235	-0.042
Seasonality Condition	seasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	nonseasonal	seasonal	seasonal	seasonal	seasonal	seasonal
Trend	insignificant	insignificant	insignificant	insufficient	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	degrading	insufficient	insufficient	insufficient	insignificant	insufficient	insignificant	insufficient	improving	insignificant	insufficient	insufficient	insufficient	insignificant	insignificant	insignificant	degrading	degrading	insignificant	insignificant
Z-prob	0.569	0.229	0.568	0.164	0.487		0.282	÷	0.206	÷		0.3	0.811	0.577	0.162	0.577		0.69	0.002	0.594	0.001		0.067	0.258		0.686	0.03	0.003	0.287	÷
Z-score	-0.569	-1.202	-0.57	1.391	0.696		-1.075	0	1.265	0		-1.036	-0.239	0.558	1.399	0.558		0.399	-3.044	0.533	3.269		1.834	1.132		0.404	2.166	2.974	1.065	0
Variance K	250.00	250.00	602.33	25.33	250.00		250.00	250.00	901.67	217.00		157.33	157.33	157.33	901.67	157.33		157.33	816.67	901.67	157.33		157.33	901.67		742.00	742.00	742.00	742.00	481.33
Kendall K	-10	-20	-15	8	12	32	-18	0	39	۲	55	-14	-4	8	43	8	-14	9	-88	17	42	8	24	35	15	12	60	82	30	0
Period of Record (yrs)	995-2004 (11)	995-2004 (11)	990-2004 (14)	2001-2004 (5)	995-2004 (11)	995-2004 (11)	995-2004 (11)	995-2004 (11)	990-2004 (16)	990-2004 (11)	990-2004 (11)	997-2004 (9)	997-2004 (9)	997-2004 (9)	990-2004 (16)	997-2004 (9)	991-2004 (15)	997-2004 (9)	990-2004 (16)	990-2004 (16)	997-2004 (9)	997-2004 (9)	997-2004 (9)	990-2004 (16)	991-2004 (14)	991-2004 (15)	991-2004 (15)	991-2004 (15)	991-2004 (15)	992-2004 (14)
Seasonal Medians Available	20 1	20	27 1	6	20 1	20	20 1	20 1	31 1	19	19 1	17 1	17 1	17 1	31	17 1	29 1	17 1	30 1	31 1	17 1	17 1	17 1	31	27 1	29 1	29 1	29 1	29 1	25 1
Method	wqi	wqi	wqi	wqi	wqi	tsi	tsi	wqi	tsi	tsi	tsi	tsi	tsi	tsi	tsi	tsi	tsi	tsi	wqi	wqi	tsi	tsi	tsi	tsi	tsi	wqi	tsi	tsi	wqi	wqi
Station	19010001	19010006	MPS	SJA-HS-1018	02248000	27010024	27010037	27010579	BUL	000	GAR	JXTR17	JXTR21	JXTR26	MAT	MCICW	MR312	MRT	MTC	PEL	SMITHSCR	SSB	STOKESCR	TOL	BCL	JGS	ГРО	LWC	SRS	USJ055

Table A3-continued