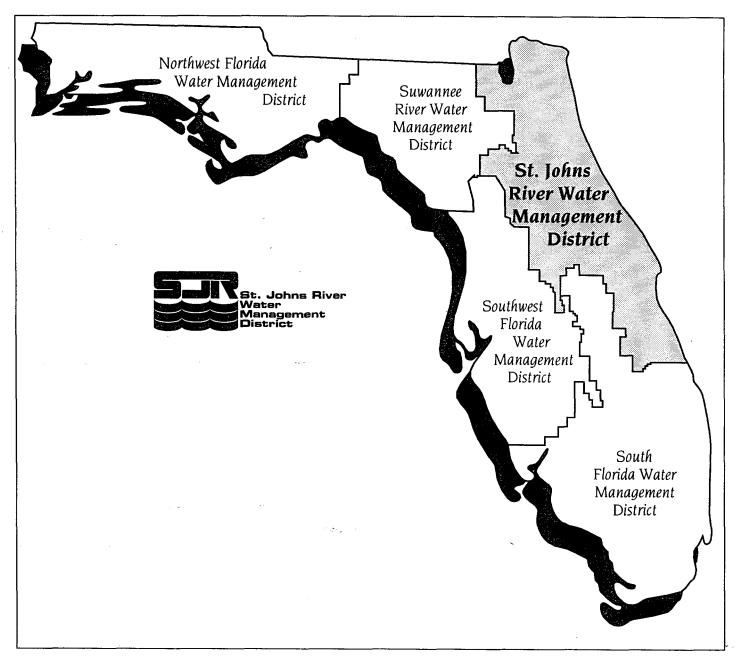
Technical Publication SJ95-9

1

VOLUME 3 OF THE LOWER ST. JOHNS RIVER BASIN RECONNAISSANCE

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

by


Frederick W. Morris IV, Ph.D.

St. Johns River Water Management District Palatka, Florida

1995

-

¥

The St. Johns River Water Management District (SJRWMD) was created by the Florida Legislature in 1972 to be one of five water management districts in Florida. It includes all or part of 19 counties in northeast Florida. The mission of SJRWMD is to manage water resources to ensure their continued availability while maximizing environmental and economic benefits. It accomplishes its mission through regulation; applied research; assistance to federal, state, and local governments; operation and maintenance of water control works; and land acquisition and management.

Technical Publications are published to disseminate information collected by SJRWMD in pursuit of its mission. Copies of this report can be obtained from:

Library St. Johns River Water Management District P.O. Box 1429 Palatka, FL 32178-1429

Phone: (904) 329-4132

CONTENTS

List of Figures xiii
List of Tables xix
List of Abbreviations and Acronyms xxv
Conversion Table
ABSTRACT 1
INTRODUCTION5Terminology11Reports Reviewed11General Description of the River12Reconnaissance of the River12Relative Size of the River13Physical Dimensions of the River13Salinity Classification15Stratification Classification16Flow Ratios18Estuarine Zones18Estimates of Drainage Area18Long-Term Mean Non-Tidal Flow19River Miles20Detailed Description of the River21Maintained Navigation Channel29Segmentation of the River30Bottom Topography31Other Hydrographic Surveys and Maps33Climatology and Hydrology33Tributary Discharge and Sediment Loadings36Summary of River Location, Description, and Drainage
Area
WATER SURFACE ELEVATION 39 Water Surface Datums 39

St. Johns River Water Management District v

.

Water Level Geodetic Network	39
Datums and Benchmarks	39
Water Levels	40
Water Level Data	41
Mean Sea Level	41
Long-Term Changes in Mean Sea Level	42
Historical Water Level Measurements	43
Present Water Level Measurements	44
Monthly Mean Sea Level	51
Atmospheric Pressure Effect on Water Level	51
Wind Considerations	51
Wind Effect on Water Level	51
Wind Measurements	52
Historical Analyses of Wind Effects	55
Other Periodic Wind Analyses	57
Flooding	57
Summary of Water Levels	62
TIDES	65
Basic Characteristics of the Tide	66
Tributary Tidal Extent	68
Tidal Currents	69
Measurements of Tide	69
Historical Tidal Measurements	69
Reference and Subordinate NOS Stations	69
Tide and Depth Datums	70
NOS Tidal Stations	70
Tidal Data Collection	71
Tidal Statistics	77
Mean Sea Level	77
Mean Tide Level	77
Statistics for Mayport Tides	78
Monthly Variation in Tide	78
Relationships between MSL, MTL, MLW, and MLLW at	
Mayport	79
Tidal Analysis	80
Tidal Harmonics	80
Period of Data Collection for Analysis	82
Tidal Constituents	83

Contents

NOS Analysis of Tidal Characteristics Prior to 1992	84
Diurnal Inequality	86
Flood and Ebb Dominance and the Shallow Water	
Constituents	89
Tidal Predictions	89
Tidal Elevation Frequency Distributions and Probability	90
Predictions from the Tide Tables	92
Spatial Variation in the LSJR Tide	93
Tide near the River Entrance	93
Tide at Main Street Bridge	94
Tide Upstream in the River	96
NOS 1992 Tidal Analyses and Statistics	98
Statistical Update on Mayport Tides	
Harmonic Analyses	
Comparisons of Predicted and Observed Tidal	
Elevations	105
Tidal Datum Relationships	105
Long-Term Sea Level Variation	
Variation in Tidal Characteristics	107
Comparisons of Tidal Ranges and Times of	
Occurrence	108
Summary of Tides in the LSJR	
WATER STORAGE	113
Water Balance in the River	113
Storage Volumes	
Tidal Prism	
Ground Water Exchange	
Summary of Storage	117
RIVER FLOW	119
Introduction	
Historical Observations	
Flow Measurements	123
Velocity Data	
Data for Flow Calculations	
Historical Calculations of Flow	
Historical Discharge Estimates	
Recent USGS Total Flow Data	

· ·

Drainage Areas	. 142
Discharge/Drainage Area Relationship	. 142
Historical Relationship of Drainage Area to Freshwater	
Inflow	
Revised Relationship of Discharge-to-Drainage Area	
Flow at the Upstream Boundary of the Basin	
Flow at Jacksonville versus Flow at Palatka	
Tidal Flow	
Tidal Wave	
Flood- and Ebb-Dominance Effect on Flow	
Tidal Current	
Other Effects on Flow	
Wind Component of Flow	
Wind Effect on Flow in the St. Johns River	. 153
Coriolis Acceleration	. 154
Summary of River Flow	. 154
· ·	
FLOW STATISTICS	
Total Flow	
Change in Elevation and Velocity at De Land	. 157
Estimated Total Flow at the Upstream Boundary of the	
Basin	
Total Flow over the Period of Record	
Peak Flows	
Extremes of Flow in the Main Stem	. 158
Historical Annual Means of Total Flow	. 158
Total Flow/Tidal Range Relationship	. 159
Flow/Velocity Relationship	. 160
Derived Annual Total Flow	. 160
Derived Monthly Total Flow	. 165
Derived Daily Total Flow	. 169
Tidal Flow	. 169
Upstream and Downstream Flows	. 169
Historical Annual Tidal Flows	. 170
Annual Tidal Flow	. 170
Average Tidal Flow	. 171
Tidal Volume	
Long-Term Extremes in Tidal Flow	. 171
Non-Tidal Flow	

St. Johns River Water Management District viii

•

Contents

Seasonal Non-Tidal Flow	. 173
Monthly Non-Tidal Flow	. 173
Daily Non-Tidal Flow	
Wind-Induced Flow	
Flow Distribution and Frequency	. 175
Cumulative Flow Frequency	
Duration of Flow	
Design Flow for Water Quality Modeling	
Duration of Reversed Flow	
Recent Flow Frequency Analysis	
Summary of Flow Statistics	
5	
RIVER SALINITY	. 187
Classification Based on Salinity	. 187
Segmentation Based on Salinity	. 188
Chlorides, Salinity, and Other Salts	. 190
Salinity at the Ocean Entrance	. 191
Zone of Transition	. 192
Chlorinity and Flow	
Stratified Flow	
Mixing	. 195
Flushing Rate	
Overmixing and the Control Section	. 196
Influence of Salinity on Pollution	. 197
Recent Observations on Salinity	. 197
Summary of Salinity	
HYDRODYNAMIC AND WATER QUALITY MODELS	. 201
Spatial and Temporal Scales	
Statistical Models	. 203
Physical Models	
Numerical Models	. 206
Model Selection	. 207
Eulerian versus Lagrangian Flow	. 209
Numerical Modeling Projects	
Frederic R. Harris, Inc. Modeling	. 209
Edge (Clemson) Model	. 210
Connell (Hydroscience) Model	. 213
HydroQual Model	. 215

Atlantis Scientific Model	17
Water Resources Engineers (Stanley Consultants) Model	10
FDER Pollutant Impact Models	
Seminole Power Plant Site Model Study	
Bailard/Jenkins Model	
FEMA Hurricane Surge Model	
Divoky and Bhat Black Creek Storm Surge Study 2	
Camp Dresser and McKee Hydrologic and Water Quality	
Models	25
NOAA Screening Assessment Model	26
Summary of Modeling the LSJR	27
SUMMARY	
Scope of the Report	
Description of the River	:30
Reports Reviewed	:33
Data Collection on the River	
Modeling of the River 2	.33
RECOMMENDATIONS	25
Tides	
River Flows	130
Salinity	
Ground Water Interchanges	
Sediment Transport	
Long-Term Modeling	38
Applications of Models	39
GLOSSARY	41
REFERENCES	49
APPENDIX A: RIVER MILES	61
APPENDIX B: HYDROGRAPHIC SURVEYS 2	.75
APPENDIX C: WIND STATISTICS	:79

Contents

APPENDIX D: TIDE STATIONS AND TIDAL CHARACTERISTICS
APPENDIX E: MAINSTEM FLOW
APPENDIX F: WATER QUALITY SURVEYS
APPENDIX G: MODEL GEOMETRY 357

FIGURES

1	Major hydrologic units of the St. Johns River Water Management District
2	Lower St. Johns River surface water basin
3	Lower St. Johns River surface water tributary basins 9
3.1a	Location map, by river mile, for significant locations on the St. Johns River between the river mouth and Julington Creek
3.1b	Location map, by river mile, for significant locations on the St. Johns River between Julington Creek and Deep Creek
3.1c	Location map, by river mile, for significant locations on the St. Johns River between a location north of Rice Creek and Georgetown
3.1d	Location map, by river mile, for significant locations on the St. Johns River from Lake George to De Land
3.2	Mean widths (A), mean depths (B), and mean volumes (C) over the lower 120 miles of the St. Johns River $\ldots \ldots 26$
3.3	Areas in the St. Johns River covered by Coast and Geodetic Survey hydrographic survey data
3.4	Monthly means and high and low net flows at Main Street Bridge, 1972–92
3.5	Annual mean sea level at Mayport, 1929–92 42
3.6a	Locations of USGS water level stations between the mouth of the St. Johns River and Julington Creek

	3.6b	Locations of USGS water level stations between Julington Creek and Deep Creek	48
	3.6c	Locations of USGS water level stations between a location north of Rice Creek and Georgetown	49
	3.6d	Locations of USGS water level stations from Lake George to De Land	50
	3.7	Locations of long-term wind recording stations	54
	3.8	Wind rose, Naval Air Station, Jacksonville, Florida, 1973–77	58
	3.9	Seasonal wind frequency, Naval Air Station, Jacksonville, Florida, 1973–77	59
	3.10a	Locations of NOS tide stations between the mouth of the St. Johns River and Julington Creek	72
	3.10b	Locations of NOS tide stations between Julington Creek and Deep Creek	73
	3.10c	Locations of NOS tide stations between a location north of Rice Creek and Georgetown	74
÷	3.10d	Locations of NOS tide stations from Lake George to De Land	75
	3.11	Detailed map of locations of NOS tide stations in the vicinity of the St. Johns River inlet to Jacksonville	
	3.12	Monthly mean sea level at Mayport	79
	3.13	Comparison of monthly mean sea level and range for data at Mayport	
	3.14	Relationships among MSL, MTL, MLW, and MLLW at Mayport	81

3.15	Cumulative frequency density for tide parameters at Mayport
3.16	Variations in elapsed time following high or low water 93
3.17	Monthly mean range of predicted tide versus distance from the river entrance
3.18	Tides and extreme water surface elevations from river entranceto Lake George98
3.19	Updated variations in mean tide level (<i>A</i>) and mean and diurnal tide ranges (<i>B</i>) 100
3.20	Amplitudes of the six largest tidal constituents at locations from Mayport to Welaka
3.21	Ratios of the overtides M_4 and M_6 to the principal lunar constituent M_2
3.22	Comparison of variation in ordinary mean tidal range from four sources (<i>A</i>), high-water time interval from three sources (<i>B</i>), and low-water time interval from three sources (<i>C</i>) 109
3.23a	Average monthly volume storage rate of the main stem and rainfall minus evapotranspiration
3.23b	Corresponding average annual variation in mean sea level (MSL) from average MSL for the period 1930–48 115
3.24	Range of tide and vertical-mean speed of current 124
3.25a	Locations of stations used for flow calculations between the mouth of the St. Johns River and Julington Creek 126
3.25b	Locations of stations used for flow calculations between Julington Creek and Deep Creek

3.25c	Locations of stations used for flow calculations between a location north of Rice Creek and Georgetown
3.25d	Locations of stations used for flow calculations between Lake George and De Land
3.26	Locations of gages installed in the vicinity of Main Street Bridge for measurements related to the calculation of flow
3.27	Relative locations of major tributaries and flow gaging stations in the flow gaging network of the St. Johns River 138
3.28	Hydrographs of monthly mean flow volumes, average monthly mean flow volumes, and net volumes at Jacksonville and the predicted tidal range at Mayport
3.29	Discharge-to-drainage area relationship for flows in the Lower St. Johns River Basin (LSJRB) 144
3.30	Lag of strength of flood and ebb current (A), lag of high and low water levels (B), and lag of slack before ebb and flood (C)
3.31	Annual mean and range of monthly mean flows at De Land (A) , the upstream boundary of the LSJRB (B) , Palatka (C) , and Jacksonville (D)
3.32	Monthly mean and extreme daily total flows at De Land (<i>A</i>), calculated daily total flow for the upstream boundary of the LSJRB (<i>B</i>), monthly mean and extreme daily total flow at Palatka (<i>C</i>), and monthly mean and extreme daily total flow at Jacksonville (<i>D</i>)
3.33	Annual exceedence for flows at De Land (A), for partial flows at the upstream boundary of the LSJRB (B), flows at Palatka (C), and flows at Jacksonville (D)

3.34	Approximate longitudinal variation in daily maximum chloride concentration that will be exceeded 7% and 50% of the days in a year
3.35	Nodal network for the Edge (Clemson) and WRE (Stanley Consultants) link-node models
3.36	Network for the Connell one-dimensional segmented model
3.37	Comparison of mean widths (<i>A</i>), mean depths (<i>B</i>), and mean volumes (<i>C</i>) of the lower 100 miles of the St. Johns River as used in numerical models of the river
A1	Atlantic Intracoastal Waterway between Norfolk, Virginia, and the St. Johns River, Florida
A2	Jacksonville Harbor, Florida 265
A3	St. Johns River, Florida, Jacksonville to Lake Harney 267
A4	Diagram of USGS 7½-minute quandrangle map sheets lying between 30°30'00" North and 30°07'30" North
A5	Diagram of USGS 7 ¹ / ₂ -minute quandrangle map sheets lying between 30°07'30" North and 29°45'00" North
A6	Diagram of USGS 7½-minute quandrangle map sheets lying between 29°45′00″ North and 29°22′30″ North
A7	Diagram of USGS 7 ¹ /2-minute quandrangle map sheets lying between 29°22'30" North and 29°00'00" North

.

.

TABLES

.

3.1	Comparison of principal statistics of the St. Johns River with those of some major rivers
3.2	The NEI classifications of the St. Johns River
3.3	Summary of Coast and Geodetic Survey hydrographic surveys of the lower St. Johns River
3.4	Bathymetric surveys used in USGS/NOS 1:100,000-scale metric topographic-bathymetric map of the Jacksonville, Florida, area
3.5	Periods of record for reliable data and locations of water level stations on or near the main stem from De Land to the river mouth
3.6	Availability of daily wind data and monthly and annual summaries of wind data in the Lower St. Johns River Basin (LSJRB)
3.7	Wind characteristics and effects on the LSJRB 56
3.8	Flood stages recorded at tide gages, 1944-64 60
3.9	Peak water levels in the St. Johns River, Mayport to Palatka
3.10	Published extremes of measured water levels on or near the main stem of the St. Johns River
3.11	Mean sea level at Mayport for the three most recent complete tidal epochs
3.12	Ranges of water levels at Mayport

3.13	Periods and relative amplitudes of the largest harmonic tidal constituents in the ocean and at Mayport	5
3.14a	The six most significant harmonic tidal constituent amplitudes and phases for Mayport and Georgetown	
3.14b	Recalculation of the six most significant harmonic tidal constituent amplitudes and phases for Mayport and Georgetown	7
3.15	Expression for the degree of mixed tide and calculated ranges	8
3.16	Statistical parameters for water levels at Mayport 9	2
3.17a	Tides in the vicinity of the river mouth, 1989 9	5
3.17b	Tides in the vicinity of the river mouth, 1992 9	95
3.18	Reference elevations at Mayport, 1992 10	1
3.19	Long-period tidal constituents at Mayport and the USACE dredge depot	4
3.20	Uncertainties in tidal water surface elevation predictions 10	6
3.21	Periods of record for reliable data and locations of stations used in calculations of mainstem flows	1
3.22	Published extremes of USGS-calculated daily values in some tributaries and the main stem	1
3.23	Minimums, means, and maximums of mean monthly total flows in the main stem	9
3.24	Means of monthly mean total flows over associated periods of record to 1992	
3.25	Selected flow statistics at Jacksonville	2

St. Johns River Water Management District

3.26	Comparison of long-term monthly mean freshwater inflows to the St. Johns River (to Jacksonville) to total flows at the upstream boundary of the LSJRB
3.27	Types of analyses performed by USGS on March 1954– September 1966 data
3.28	Flow duration for three USGS stations on the main stem 181
3.29	High- and low-flow frequency data for De Land 182
3.30	Ranking of average annual flows at Jacksonville
3.31	Representative seasonal low flows at Palatka and Jacksonville
3.32	Flow statistics and ratios for the St. Johns River
3.33	Categories and representation of water body models 202
3.34	Spatial and temporal scales in models
3.35	Numerical model feature choices
A1	Locations of NOS tide stations
B1	Hydrographic surveys conducted by the Coast and Geodetic Survey in the lower St. Johns River
C1	Wind speed, direction, and percent of time wind speed is within given speed range, Naval Air Station, Jacksonville, 1973–77
C2	Seasonal wind frequency, Naval Air Station, Jacksonville, 1973–77
D1	Historical NOS tide recorder stations having data appropriate for analysis

D2	Stations in the 1990 NOS Index not included in Table D1
D3	Longitudinal distribution of water elevations from the river mouth to Lake George
D4	Mean and spring range of tide and mean tide level for NOS stations
D5	Summary of tidal characteristics
D6	Predicted average tidal currents, 1990 292
D7	Amplitudes and phases of harmonic constituents 293
D8	Tidal constituents for all locations having adequate water level data for analysis
D9	Ratios of harmonic constituents
D10	Relationships of tidal datums to National Geodetic Vertical Datum
E1	Drainage areas and long-term mean discharge to the main stem
E2	Station 02236000, De Land. Minimum daily flow and summaries of means and extremes
E3	Station 02243960, Rodman Dam. Minimum daily flow and summaries of means and extremes
E4	Station 02244032, Buckman Lock. Minimum daily flow and summaries of means and extremes
E5	Station 02244440, Dunns Creek. Minimum daily flow and summaries of means and extremes

E6	Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Minimum daily flow and summaries of means and extremes
E7	Station 02244450, Palatka. Minimum daily flow and summaries of means and extremes
E8	Station 02246500, Jacksonville. Minimum daily flow and summaries of means and extremes
E9	Station 02236000, De Land. Mean daily flow and summaries of means and extremes
E10	Station 02243960, Rodman Dam. Mean daily flow and summaries of means and extremes
E11	Station 02244032, Buckman Lock. Mean daily flow and summaries of means and extremes
E12	Station 02244440, Dunns Creek. Mean daily flow and summaries of means and extremes
E13	Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Mean daily flow and summaries of means and extremes
E14	Station 02244450, Palatka. Mean daily flow and summaries of means and extremes
E15	Station 02246500, Jacksonville. Mean daily flow and summaries of means and extremes
E16	Station 02236000, De Land. Maximum daily flow and summaries of means and extremes
E17	Station 02243960, Rodman Dam. Maximum daily flow and summaries of means and extremes

E18	Station 02244032, Buckman Lock. Maximum daily flow and summaries of means and extremes
E19	Station 02244440, Dunns Creek. Maximum daily flow and summaries of means and extremes
E20	Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Maximum daily flow and summaries of means and extremes
E21	Station 02244450, Palatka. Maximum daily flow and summaries of means and extremes
E22	Station 02246500, Jacksonville. Maximum daily flow and summaries of means and extremes
F1	Water quality intensive surveys analysis, FDER
F2	Reports on FDEP wasteload allocation studies and water quality based effluent limitations, lower St. Johns River 355
G1	Channel (link) geometry used in the Edge (Clemson) and/or WRE (Stanley Consultants) models
G2	Junction (nodal) geometry used in the Edge (Clemson) and/or WRE (Stanley Consultants) models

ABBREVIATIONS AND ACRONYMS

ac-ft	acre-foot
AVM	acoustic velocity meter
BESD	Bio-Environmental Services Division
BOD	biochemical oxygen demand
BuSM	Bureau of Survey and Mapping
BuWA	Bureau of Water Analysis
C&GS	Coast and Geodetic Survey
CEL	Coastal Engineering Laboratory
cfs	cubic feet per second
CMAN	Coastal Marine Automated Network
CSX RR	Seaboard Coast Line Railroad
CVWind	ceiling-visibility-wind
DEM	Dynamic Estuary Model
DO	dissolved oxygen
EDA	estuarine drainage area
EPA	U.S. Environmental Protection Agency
ESSM	Estuary Steady State Model
FDA	fluvial drainage area
FDEP	Florida Department of Environmental Protection
FDER	Florida Department of Environmental Regulation
FDPC	Florida Department of Pollution Control
FEC RR	Florida East Coast Railroad
FEMA	Federal Emergency Management Agency
FLCSA	Feasibility Level Cost Share Agreement
ft	foot
ft/mi	feet per mile
ft/yr	feet per year
GIS	geographic information system
GPS	global positioning system
HCU	hydrologic cataloguing unit
hr	hour
H/S	hydrodynamics and salinity
htc	half tidal cycle
ICW	Intracoastal Waterway
in.	inch
IRF	Intermediate Regional Flood

	Teller and the Annual Diama in a Decard
JAPB	Jacksonville Area Planning Board
LSJR	lower St. Johns River
LSJRB	Lower St. Johns River Basin
m	meter
mcf	million cubic feet
mg/L	milligrams per liter
MHW	mean high water
mi	mile, statute
mi ²	square mile
mi ³	cubic mile
MLW	mean low water
MLLW	mean lower low water
µmhos/cm	micromhos per centimeter
mph	miles per hour
MSL	mean sea level
MTL	mean tide level
MWL	mean water level
NAD	North American Datum
NAS	Naval Air Station
NAVD 88	North American Vertical Datum of 1988
NCDC	National Climatic Data Center
NEI	National Estuarine Inventory
NGDC	National Geophysical Data Center
NGS	National Geodetic Survey
NGVD	National Geodetic Vertical Datum
nm	nautical mile
NOAA	National Oceanic and Atmospheric Administration
NOS	National Ocean Service
NURP	Nationwide Urban Runoff Program
ppt	parts per thousand
RM	river mile
RSH	Reynolds, Smith and Hills
RUSSWO	revised uniform summary of surface weather
-	observations
SJRWMD	St. Johns River Water Management District
SMOS	summaries of meterological observations near the
	surface
SPAM	Sparse Matrix Analysis Model
SPF	Standard Project Flood
) **

St. Johns River Water Management District xxvi

Surface Water Improvement and Management Surface Water Management Model
0
tidal cycle
Tidal Temperature Model
U.S. Army Corps of Engineers
U.S. Army Engineers District
U.S. Geological Survey
Waterways Experiment Station
waste load allocation
water quality based effluent limitation
Water Quality Technical Series
Water Resources Council
Water Resources Engineers, Inc.
Water Resource Management Plan
Water Year

St. Johns River Water Management District xxviii

.

Multiply	Ву	To Obtain
acre-foot (ac-ft)	1,230	cubic meter (m ³)
centimeter (cm)	0.393701	inch (in.)
cubic feet per second (cfs)	0.02832	cubic meters per second (m ³ /s)
cubic mile (mi ³)	4.168182	cubic kilometer (km ³)
foot (ft)	0.3048	meter (m)
inch (in.)	2.54	centimeter (cm)
meter (m)	3.28084	foot (ft)
mile, statute (mi)	1.609344	kilometer (km)
mile, statute (mi)	0.868976	nautical mile (nm)
miles per hour (mph)	1.609344	kilometers per hour (km/hr)
milligram (mg)	0.0000352739	ounce (oz)
millimeter (mm)	0.03937	inch (in.)
million cubic feet (mcf)	0.028317	million cubic meters
million gallons per day (mgd)	1.5471	cubic feet per second (cfs)
million gallons per day (mgd)	0.0438	cubic meters per second (m ³ /s)
nautical mile (nm)	1.852	kilometer (km)
nautical mile (nm)	1.150779	mile, statute (mi)
square mile, statute (mi²)	2.590	square kilometer (km²)

.

CONVERSION TABLE

ABSTRACT

The lower St. Johns River (LSJR) Surface Water Improvement and Management plan requires the St. Johns River Water Management District to develop plans to manage water quality and to restore ecosystems. Surface water quality may be improved by development of nutrient and sediment loading goals. Such goals are best quantified and prioritized from the perspective of a comprehensive understanding of the dynamics of the river.

This volume of the Lower St. Johns River Basin reconnaissance report has two purposes: (1) to locate, to describe, to compare, and to evaluate published information and data on the hydrodynamics and salinity of the LSJR and (2) to recommend future work needed to develop a more complete understanding of the dynamics of the river. This report examines and evaluates the extent of present knowledge regarding the volume and movement of the waters, salinity, and past efforts to simulate the flow of the LSJR, and it shows where gaps in knowledge of river dynamics exist. This report describes water elevations, flows, the dominant forcing factors (such as tide and wind), salinity, and the physical and computer models that have been developed to describe these factors. A brief review of water quality models is included, because these models are closely tied to quantity (hydrodynamic) models. Basin hydrology and tributary inflows are not included in this report because these subjects were described in Volume 2 of this series.

Since the late 1890s, substantial effort has been directed toward describing the characteristics of the St. Johns River. Additional investigations occurred in the 1930s and continued sporadically in the 1970s and 1980s. However, the limited results from these studies only hint at the complexity of the river system. A small number of the studies attempted to develop a comprehensive description of the St. Johns River from its mouth to the region of the head of tide. Most of the other studies were limited to small areas of the river, consisted of reviews of previous reports, or covered only a few of the important variables.

Hydrodynamics, the study of the dynamics of water movement, is described in terms of water heights, currents, and volumes. Salinity is the concentration of salts in a water mass. The salinity of water is directly related to its density, and the density affects the hydrodynamics; therefore, hydrodynamic forces and salinity work together to control the movement of water in the river.

The concentration of salinity in the water at a particular location in the river is the result of the mixing of fresh water and salt water. Ocean salinity is about 36 parts per thousand; the salinity of rainwater and tributary discharges is usually close to zero. When water masses of different salinity come into contact, the amount that they will mix together will depend on the amount of local turbulence and water velocity. The water masses may travel in opposite directions. Lower density water, instead of mixing, may ride up over heavier, more dense water masses. Thus, many factors, including local hydrodynamics, affect the resulting density structure of river water. Salinity and changes in salinity are very important to the health and survival of marine vegetation and biota.

The movement and mixing of fresh water, nutrients, and sediments in the river depend to a great extent on the local movement and density of the water. Therefore, the hydrodynamics and salinity of the river must be well understood before an analysis of the dilution and transport of pollutants can be undertaken.

Depths in the river were first surveyed in 1853 and last surveyed (except in the vicinity of Jacksonville) by the federal government in 1959. The areas surveyed were usually relatively small in extent compared to the total area of the river; thus, the depths in most areas have been surveyed only once. The depths in the navigation channel, which extends from the mouth of the river to Lake Harney, have been periodically re-surveyed for channel maintenance.

River shorelines and tributary inflow locations have been well described.

The tide station at Mayport has been monitored continuously since 1928, but all other tide stations were monitored over much shorter

St. Johns River Water Management District

periods of time. This monitoring has been currently discontinued. The most notable feature of the tides is the occurrence of a minimum tidal range near Orange Park and a secondary maximum near Palatka. Annual predictions of tidal heights and times, based on the 1970s data, are published by the federal government for 15 stations located from the jetties at the mouth of the river to Welaka. Tidal currents are also predicted annually at 17 stations.

Mean flows have been determined for a few locations over some relatively short time periods. De Land has the longest flow record (58 years), followed by Jacksonville (22 years) and Palatka (13 years). The data from the Jacksonville and Palatka stations, however, are rated as poor due to the unavailability of adequate instrumentation for monitoring reversing (tidal) flows. In 1992, the U.S. Geological Survey installed ultrasonic velocity meters at Buffalo Bluff and Dunns Creek; these gages have provided more accurate and complete data. Flow measurements at Jacksonville also are expected to be improved in the future.

Flow statistics indicate that the mean net non-tidal flow at the mouth of the LSJR is on the order of 6,000 to 15,000 cubic feet per second, and total flow (including the tidal component) is an order-of-magnitude greater.

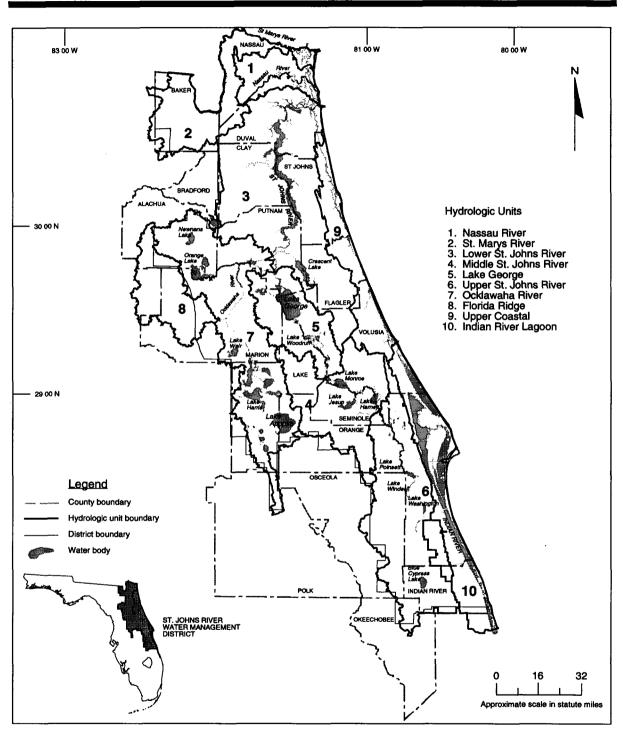
Salinity distributions have been reported a few times in the literature, but because salinity is highly variable and dependent on the hydrology and hydrodynamics of the system, it has not been well described. The salinity data have led researchers to a tentative conclusion that the river varies between slightly to highly stratified (i.e., it is generally not vertically homogeneous and not well mixed).

Several physical and numerical models of river hydrodynamics and water quality have been developed. Many of these have been numerical models, and all have been relatively simple. All were limited in calibration by a lack of data on mainstem flows, tributary inflows, and pollution loadings.

The overall water budget for the river has not been described. The water budget is a seasonal balance of the inflows, outflows, and

changes in volume over the full extent of the main stem of the river, which would account for long-term variations of ocean tide and the hydrologic cycle. The water budget would be expressed in terms of spatial changes in tidal volume, inflow from each tributary, runoff, evaporation, ground water seepage, and the salinity distribution for normal, wet, and dry seasons.

The influence of each tributary discharge and basin runoff on water levels, flows, and salinity in the tidal part of the tributary and the main stem of the river has not yet been quantified. The major difference between the less detailed description of the overall water budget and this detailed description of the dynamics of flow at the mouths of tributaries is the increase in spatial detail that will be needed. In these areas, the interflows are more complex. Managers are interested in the transient effects of stormwater inflows, the salinity ranges required by marine ecosystems in the vicinity of the tributary, the dilution and fate of pollutants, and the possible effects of reducing sediment inflows or removing existing sediments. The environment at the mouths of tributaries is complicated by complex flow patterns; incomplete mixing; salinity and temperature stratification; trapping of pollutants; different areas of deposition, erosion, and resuspension of sediments; and other local phenomena. These kinds of problems can be analyzed with the assistance of tributary-area model studies that incorporate the hydrology of the subbasin and the hydrodynamics and salinity of the contiguous tidal portion of the main stem, and that can simulate sequences of storms that can be developed according to historic hydrologic variability.


INTRODUCTION

This report is Volume 3 in a series of reconnaissance reports about the Lower St. Johns River Basin (LSJRB). This compilation of information and recommendations provides resource managers with a basis for identifying priority needs for future research and actions regarding the LSJRB. The reconnaissance reports are part of the research funded under the Surface Water Improvement and Management (SWIM) Act of 1987 (Sections 373.451–373.4595, *Florida Statutes*).

The SWIM Act declares that many natural surface water systems in Florida have been or are in danger of becoming degraded from point and nonpoint sources of pollution and from the destruction of natural systems. The state's five water management districts, in cooperation with state agencies and local governments, were directed to set priorities for water bodies of regional or statewide significance and to design plans for surface water improvement and management. Six water bodies were named for immediate action, including the LSJRB.

The LSJRB is one of ten surface water hydrologic planning units of the St. Johns River Water Management District (SJRWMD) (Figure 1). The LSJRB is located in northeast Florida and represents about 22% of the area within the boundaries of SJRWMD. The LSJRB extends from the City of De Land, in the south, to the inlet of the St. Johns River at the Atlantic Ocean. The LSJRB includes parts of nine counties: Clay, Duval, Flagler, Putnam, St. Johns, Volusia, Alachua, Baker, and Bradford (Figure 2).

The LSJRB is located in a transition area between the subtropical climate of southern Florida and the humid continental climate of the southeastern United States. The climate of the LSJRB is classified as humid subtropical, with an average summer maximum daily temperature of 32.2°C (90°F). In the winter, the LSJRB experiences below-freezing temperatures an average of 10–15 times per year. Average annual rainfall in the basin is approximately 132 centimeters (52 inches [in.]). A large portion of the annual precipitation

Figure 1. Major hydrologic units of the St. Johns River Water Management District

St. Johns River Water Management District

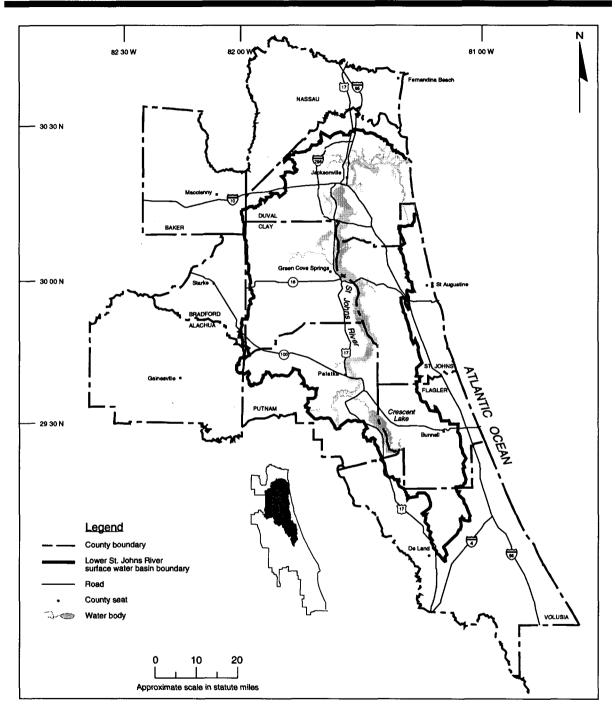
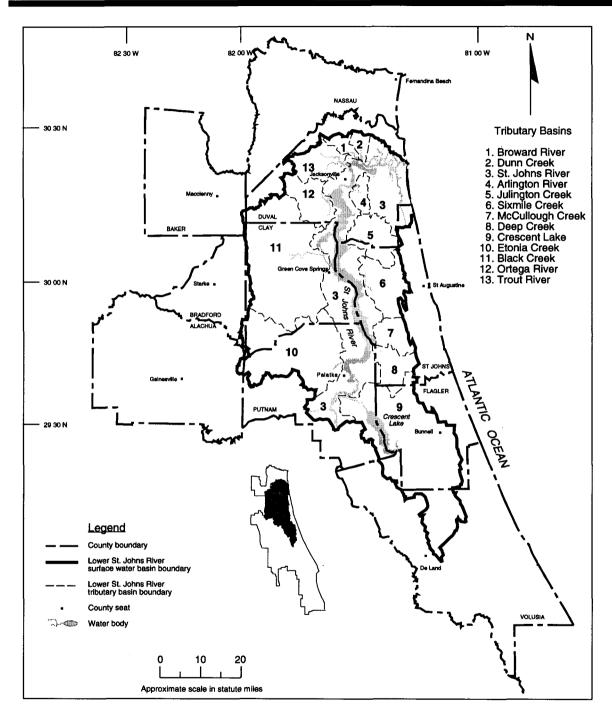


Figure 2. Lower St. Johns River surface water basin

falls between June and September, when convective activity generates showers and thunderstorms.

Landscape features within the LSJRB are relatively low and flat. Three ridge systems border the drainage area. Surface elevations range from sea level at the inlet to greater than 61 meters (m) (200 feet [ft]) in the western part of the basin.


The St. Johns River is an elongated, shallow river estuary with an extensive floodplain. The elevation of its headwaters near Blue Cypress Lake is less than 7.62 m (25 ft) above sea level, and the average gradient of the main river channel is only 0.022 meters per kilometer (0.08 feet per mile). Average annual tidal amplitude is 1.38 m (4.51 ft) at the ocean inlet and varies unequally upstream due to channel morphology and other factors. Due to the low gradient of the river, however, tides affect the entire LSJRB and the lower reaches of its tributaries. The mixing of salt water and fresh water has an influence on water quality as well as on the quantity and characteristics of sediments deposited in the LSJRB. Water quality conditions for the LSJRB range from good in the sparsely populated southern end of the basin to poor in the urban reaches of Jacksonville (Hand and Paulic 1992).

The basin is drained by 12 major tributaries. The drainage basins of the tributaries are called tributary basins (Figure 3), and each drainage basin bears the name of the major tributary flowing through it. A thirteenth tributary basin (the St. Johns River tributary basin) represents the minor tributaries draining directly into the St. Johns River.

The Lower St. Johns River Basin Reconnaissance Report provides a synthesis of what is known about the condition of the lower St. Johns River (LSJR) and its tributaries from three perspectives: hydrologic, environmental, and socioeconomic. Volume 1, *Hydrogeology*, presents information on the ground water system in the basin and its connection to surface water bodies. Volume 2, *Surface water hydrology*, discusses the surface water system, including hydrologic and hydraulic data collection networks. Volume 3, *Hydrodynamics and salinity of surface water*, describes relationships

St. Johns River Water Management District

Introduction

Figure 3. Lower St. Johns River surface water tributary basins

between water levels, velocity, flow, storage, and salinity in the main stem and reviews previous hydrodynamic modeling studies. Volume 4, *Surface water quality*, and Volume 5, *Sediment characteristics and quality*, present details on the levels and trends of chemical contaminants present in the water column and in the bottom sediments. Volume 6, *Biological resources*, describes plant communities and fish, shellfish, and marine animal communities. Volume 7, *Population, land use, and water use*, ties population estimates and projections to land use and residential, commercial, industrial, and agricultural water use. Volume 8, *Economic values*, discusses the commercial, recreational, and aesthetic values of the river. Finally, Volume 9, *Intergovernmental management*, discusses jurisdictional boundaries, regulatory authorities, and management efforts of governmental agencies, offices, and commissions involved in restoration or protection of water quality and habitat.

This volume, Hydrodynamics and salinity of surface water, begins with an introduction, which describes existing reports, relevant terminology, and the salient features of the river. A chapter on water surface elevation reviews elevation datums, causes of variations in water levels, water level measurements and flow, the effects of wind, and flooding. Tides are described next, specifically the tidal characteristics of the river, tidal measurements, tidal analyses, and the spatial variation of tide in the river. The following chapter describes water storage, a component of the water balance or the hydrologic cycle; this chapter is followed by a chapter on river flow. In the latter chapter, there are additional explanations of terminology, information on past and present flow measurements, and discussion on tidal and non-tidal flow. Next is a chapter on flow statistics, which includes statistical summaries on total, tidal, and non-tidal flow. In the chapter on river salinity, methods for classification and segmentation of the river are described, salinity is related to basic constituents and ocean values, the zone of transition is described, and stratification and mixing are explored in some detail. In the chapter on hydrodynamic and water quality models, estuarine models are described in general and particular models of the LSJR are summarized. A summary chapter reviews the scope of the report, the scope of other reports, and the status of present data collection and modeling efforts and is followed by recommendations

St. Johns River Water Management District

for future work needed to improve the description of the hydrodynamics of the river.

TERMINOLOGY

The term *hydrodynamics* is used to represent all of the different aspects of the movement of water in the river. Hydrodynamics vary continually, both spatially and temporally. *Velocity* is the instantaneous speed of the water at any point in the water body, *flow* is the volume of water moving through a section of the river at a given time. The term *discharge*, often used interchangeably with flow, employs the same units of measurement (volume/time) but more correctly represents the non-tidal inflows from uplands, tributaries, and ground water sources and the outflow of the main stem. The literature often, but not always, distinguishes between the discharge of the river and total flow; the latter may be defined as the sum of the non-tidal flow and the bi-directional tidal flow. Other terminology is defined as it appears in the text.

REPORTS REVIEWED

The literature pertaining to the physical characteristics of the St. Johns River is quite extensive. Most of the available information on the hydrodynamics of the LSJR is found in reports by federal agencies, such as the Coast and Geodetic Survey (C&GS), the U.S. Army Corps of Engineers (USACE), and the U.S. Geological Survey (USGS). The first published report concerns water level and current measurements taken by C&GS in 1933 and 1934, which references observations by the U.S. Army Engineers in 1909 (Haight 1938).

Only a few core studies from the 1950s to the 1970s provide original analyses and insight into the dynamics of the river. Relatively few studies have attempted a comprehensive review of the river. The great majority of reports are limited to small areas of the river, review previous studies, or only cover a few of the important physical variables.

Additional useful information is provided by reports on developments of numerical models, both by government agencies

and private contractors, but none of these reports adequately and comprehensively describe the overall hydrodynamics of the river.

GENERAL DESCRIPTION OF THE RIVER

The LSIR extends from the confluence of the Ocklawaha River northward to the mouth of the St. Johns River at the Atlantic Ocean, east of Jacksonville. The contiguous watershed of the main stem of the river has an area of about 2,623 square miles (mi²) (SIRWMD 1989, 4), while the total watershed, including all of its drainage basins, is about 9,430 mi².

The source of Florida's St. Johns River is in the floodplains north of Lake Okeechobee, near the Atlantic Coast. The river flows northward for over 300 statute miles (mi) to a point near Jacksonville, where it abruptly turns eastward and flows about 24 mi to the Atlantic Ocean. The river is normally tidal to the north end of Lake George, 110 mi from the mouth, although tides have, on occasion, been reported in Lake Monroe (south of De Land, 161 mi upstream). The LSJRB extends almost exactly 100 mi northward from its confluence with the Ocklawaha River to the Atlantic Ocean.

RECONNAISSANCE OF THE RIVER

SJRWMD is responsible for developing a plan, called the SWIM Plan for the LSJRB, to guide management and restoration of the water quality of the LSJR. This plan requires accurate and complete knowledge of the characteristics of the river. One purpose of the LSJRB reconnaissance report is to compare and to resolve conflicting information about the characteristics and movement of the river. A second purpose is to evaluate the extent and usefulness of current knowledge and understanding of the river's dynamics. Therefore, this report summarizes available information on the most significant hydro-physical variables of the LSJR. It reviews the literature describing water level, tide, flow, wind, and, because the dynamics of the flow are affected by variations in density of the water, the salinity as well. It summarizes reports on model studies and provides recommendations for future work to more completely describe the physics of the river. The focus of this report is on the

St. Johns River Water Management District

main stem of the river; another report in the series (Volume 2) describes the hydrology of the river's tributaries and tributary basins (Bergman 1992).

RELATIVE SIZE OF THE RIVER

The St. Johns River is the longest north-flowing river in the United States (over 300 mi) and the longest river in Florida with its tributary basins lying entirely within the state boundaries (Figure 1). Its drainage basin, with an estimated area of 9,430 mi², is almost one-sixth of the total area of Florida (Anderson and Goolsby 1973, 8). It is ranked third largest of the state's coastal river drainage basins, after the Apalachicola and the Suwannee (Heath and Conover 1981, 106, 109, 113). The St. Johns River is classified as a major river, which is one that has an average discharge at its mouth greater than or equal to 1,000 cubic feet per second (cfs) (attributed to Kenner et al. 1969, by Heath and Conover 1981, 111, Table 15). A discharge of 1,000 cfs is equivalent to 646 million gallons per day or 1,983 acrefeet per day.

Some principal dimensions of the St. Johns River may be compared to those for the largest river in the world (the Amazon), the largest river in the United States (the Mississippi), and the largest river in Florida (the Apalachicola) (Table 3.1). A comparison of statistics (as of 1978) at long-term gaging sites (near De Land, river mile [RM] 144) shows that the discharge of the St. Johns River ranks fifth largest in Florida, following the Apalachicola, Suwannee, Choctawhatchee, and Escambia (Heath and Conover 1981, 111). The statistics for flow at De Land, which is not included in the drainage basin of the LSJRB, provide an approximation for flow in the main stem of the river at the upstream boundary of the LSJRB.

PHYSICAL DIMENSIONS OF THE RIVER

Not many original estimates of the dimensions of the river are found in the literature. One of the earliest sets is for a numerical model developed by Connell Associates, which provided dimensions for 69 segments (see chapter on hydrodynamic and water quality models).

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

River	River Length Drainage (miles) Area (square miles)		Approximate Average	
		(cfs)	(mgd)	
Amazon	4,000	2,300,000	6,200,000	4,000,000
Mississippi	2,348	1,243,700	620,000	400,000
Apalachicola	524	19,600	27,000	17,000
St. Johns (Heath & Conover)	273	9,168	6,000	3,900
St. Johns (USGS)		8,200*	6,105	3,937

Table 3.1Comparison of principal statistics of the St. Johns
River with those of some major rivers

Note: cfs = cubic feet per second mgd = million gallons per day

*Value is USGS published total drainage area of 8,850 square miles (mi²) less 650 mi², which represents the area of Paynes Prairie, a non-contributing area included by USGS.

Source: Heath and Conover 1981, 121, Table 18 USGS 1993

When these dimensions are read from the published plots for segment length, width, depth, and volume (in cubic miles [mi³]), and the lower approximately 100 mi (63 segments) are tabulated and summed, the following values are obtained. Here, the means and extremes of width and depth are per model segment.

	<u>Value</u>	Mean	<u>Minimum</u>	Maximum
Length (mi)	101.1			
Width (mi)		0.83	0.19	2.84
Depth (ft)		23.7	9.5	40.5
Surface area (mi ²)	123.2			
Volume (mi ³)	0.343			

The National Estuarine Inventory (NEI) Data Atlas, Volume 1, (NOAA 1985), gives the following basic physical dimensions of the lower 123 mi of the river:

Length (mi)	<u>Value</u> 123.0	<u>Mean</u>	<u>Minimum</u>	<u>Maximum</u>
Width (mi)	125.0	2.3	0.7*	7.2*
Depth (ft)		14.0		
*Lake George				

The means and extremes of the width and depth of the lower 100 mi of the river can be most accurately calculated from a geographic information system (GIS) coverage based on the USGS 1:100,000-scale hydrography layer stored in the GIS data base of SJRWMD. For this calculation, the tributaries are not included. The dimensions obtained from GIS are as follows:

	<u>Value</u>	<u>Mean</u>	<u>Minimum</u>	<u>Maximum</u>
Length (mi)	103.1			
Width (mi)		1.28	0.12	3.17
Depth (ft)		11	1	80
Surface area (mi ²)	131.6			
Volume (mi ³)	0.27			

When tributaries are included and the calculations are based on GIS data, the length increases to 154.6 mi, surface area increases to 154.6 mi², and volume increases to 0.29 mi³.

SALINITY CLASSIFICATION

Estuaries are classified based upon the degree of salinity stratification, which is often used to infer circulation features. Salinity profiles, being governed by circulation, are affected by such factors as the amount of freshwater inflow, the size and shape of the basin, and the effects of tides and strong winds. Since estuaries are dynamic, circulation patterns may vary and salinity structures will change as a result. When using any classification scheme, it is important to recognize this dynamic quality and to realize that generalizations concerning salinity profiles do not reflect such variability (NOAA 1985, Introduction, 3).

As part of its effort to compare the features of 92 major estuaries around the United States coastline, the NEI developed criteria for defining "estuarine zones" and "salinity zones." The estuarine zones are the parts of the water body that have the typical characteristics of an estuary. These areas are characterized by mixing of river and ocean water and support marine organisms that are traditionally associated with estuaries for at least part of their life cycle. The salinity zones are the parts of an estuary that contain water in which measurable quantities of salt ions are present. If the measurements used to define the salinity zones are based on conductivity, as is usually the case, it is possible that other dissolved substances besides salts could affect this determination.

For the NEI, the National Ocean Service subdivided the river into three zones between the normal extent (or "head") of tide (as far south as Lake George) and the seaward boundary, according to average annual depth-averaged salinities. Salinity data were obtained from published and unpublished sources and through consultation with experts and used to determine boundaries. Measurements taken by SJRWMD since the 1980s indicate that the long-term (approximately 10 years) mean spatial salinity distribution in the LSJR compares reasonably well to the NEI segmentation. However, SJRWMD has observed that salinity varies considerably over the length of the river and in time. It is, therefore, somewhat misleading to consider the river in terms of fixed salinity zones. More detailed descriptions of river salinity are found in the chapter on river salinity and in Volume 4 on water quality.

STRATIFICATION CLASSIFICATION

The stratification classification assigned to an estuary is specific to the mixing zone of a system where fresh water interfaces with seawater. ... Because freshwater inflow and tidal prism volumes can vary during the year, the classification of an estuary can vary seasonally. To account for this, salinity classifications are reported for the three-month period of highest freshwater inflow and the three-month period of lowest freshwater inflow (NOAA 1985).

Stratification classification for both 3-month high flow and 3-month low flow in the LSJR was determined to be vertically homogeneous, that is, "tidal mixing and turbulence is sufficient to break down stratification" (NOAA 1985, Introduction, 3).

The delineations of estuarine and salinity zones and stratification are summarized in Table 3.2. The estuarine zones are described in terms of approximate salinity ranges called the "tidal fresh zone," which extends from South of Lake George to the Naval Air Station (NAS), the "mixing zone," which extends from NAS to Trout River, and the

St. Johns River Water Management District 16

		Estuarine Zone		
Salinity Regime	Approximate Salinity Range (parts per thousand)	Geographic Extent of Zone Area (squa		
Seawater	≥25.0	River entrance to Trout River	44	
Mixing	0.5–25.0	Trout River to Naval Air Station	95	
Tidal fresh	0.0–0.5	Naval Air Station to Lake George	119	
		Salinity Zone Boundary		
Degree	of Variability	Location		
High variability		Entrance to Pablo Creek North of Blount Island East of Trout River mouth		
Moderate variability		At Naval Air Station		
		Stratification Classification		
Flow Ch	aracterization	Degree of Stratification	ו	
3-month high flow		Vertically homogeneous		
3-month low flow		Vertically homogeneous		
		Flow Ratio		
Flow Characterization		Flow Ratio		
Average annual		0.185		
High-flow period		0.252		
Low-flow period		0.125		

Table 3.2 The NEI classifications of the St. Johns River

Source: NOAA 1985, 2.16

"seawater zone," which extends from Trout River to the mouth of the St. Johns River.

According to the NEI, a river may be divided into zones of low, moderate, and highly variable salinity. The St. Johns River does not have any areas with low salinity variability. Four locations at which moderate and highly variable levels of variability interface are listed in Table 3.2.

FLOW RATIOS

The NEI classification of estuaries in the United States included estimates of flow ratios. A flow ratio is the "proportion of the volume of fresh water entering a coastal system during a tidal cycle to the volume of the tidal prism." This ratio can be used to estimate the relative importance of freshwater inflow compared to tide as the dominant force in the estuary. In the St. Johns River, the NEI flow ratios indicate that freshwater volumes are, at most, a quarter of the tidal volume (Table 3.2) (NOAA 1985, Introduction, 4).

ESTUARINE ZONES

Each estuary was subdivided into three zones between the heads of tide and the seaward boundaries based on average annual depth-averaged salinity concentrations. Salinity data were obtained, and subsequent boundaries determined, from published and unpublished sources, and through consultation with experts.

Several guidelines were therefore developed to provide a uniform approach and to account for variability in data presentation.

First, episodic anomalies of salinity conditions that occur during low or high freshwater inflows were screened out to provide an average annual scenario of the system. Second, surface and bottom salinities were averaged to determine salinity gradients along the length of the estuary. Finally, delineation between zones was depicted by a band which indicated the spatial variability which could be experienced over an annual cycle. Low, moderate, and high variability classifications are a function of the relative proportion of the variability to the length of the estuary. For example, an estuary with a length of 5 mi and salinity zone boundary of 4 mi, would be classified as highly variable (NOAA 1985, Introduction, 3).

ESTIMATES OF DRAINAGE AREA

Total flow in a river may be estimated by relating mean total flows at gaging stations located on the river to the contributing drainage area upstream of those gaging stations. Assuming that the discharge-to-drainage area relationship is uniform over the entire reach of the river, the freshwater discharge at the mouth of the

St. Johns River is calculated, by extrapolation, to be 6,500 cfs (see Figure 3.29, river flow chapter).

The NEI (NOAA 1985) defines two different drainage areas:

<u>Estuarine Drainage Area (EDA)</u>: That land and water component of an entire watershed ... that most directly affects an estuary. ... EDAs were defined based on the limits of tidal influence within an estuarine system and the boundaries of the ... USGS hydrologic cataloguing units [HCUs]. EDAs were drawn to coincide with ... [HCUs] that contain the heads of tide and seaward estuarine boundaries. In many cases ... the EDA extends landward beyond the head of tide" (i.e., to the boundaries of subbasins).

<u>Fluvial Drainage Area (FDA)</u>: The land and water portion of the entire watershed upstream of the EDA.

The EDA of the St. Johns River is given as 6,500 mi² and the FDA as 2,860 mi². The total drainage area reported in the NEI, assuming that the EDA and FDA can simply be summed, is 9,360 mi² (NOAA 1985) (compare to the estimate of 9,430 mi² by Anderson and Goolsby 1973, p. 13 of this report).

LONG-TERM MEAN NON-TIDAL FLOW

The total flow in the river is the sum of the tidal flow and the nontidal (primarily freshwater and wind-induced) flow. Based on data from February 1954 to September 1966, the average net, or freshwater, flow was calculated to be about one-seventh of the average tidal flow, or 12,500 cfs (Anderson and Goolsby 1973, 1, 5). The long-term average daily discharge was 7,800 cfs, and therefore the resulting discharge-to-drainage area relationship computed from these values at (assumed) Jacksonville is 7,800 divided by 9,360, or 0.83 cfs per square mile (NOAA 1985, 2.16).

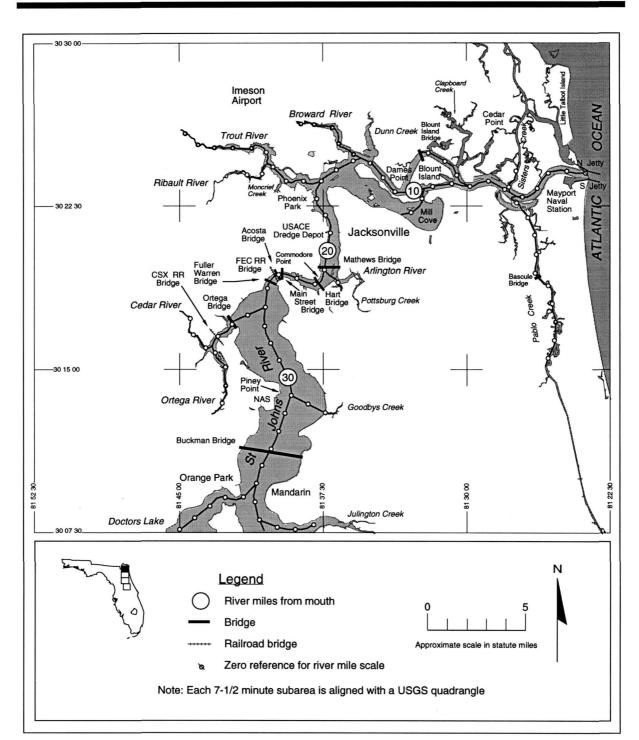
The most recent calculation of long-term net flow at Jacksonville is 6,105 cfs, corresponding to 4,423,000 acre-feet per year (USGS 1992, 134). Thus, more recent data tend to be somewhat lower than earlier estimates, although reliable measurements of flow have still not been produced.

RIVER MILES

A river mile is the distance of a location along the river from a designated point at the ocean inlet. Distances from the river mouth to tide observation stations were first listed by the Ocala Office, U.S. Army Engineers District (USED, the former common name for USACE), in a table dated December 2, 1935. Variations in tidal characteristics of the river, as a function of distance upstream, were published in 1938, using a scale of nautical miles (nm) referenced to the ocean entrance at the outer end of the jetties (Haight 1938, 22).

The Water Resources Division of USGS, Tallahassee, Florida, established a river mile scale in February 1964 using standards similar to those published later by the Hydrology Committee of the Water Resources Council (WRC), an advisory group for federal agencies. These standards describe a recommended procedure for measuring river miles to promote consistency in referencing locations on rivers. The standards specify that river miles should be measured along the *sailing line* (navigation channel), and these standards describe how to determine the precise location of the mouth of a tributary relative to the main stem (WRC 1968).

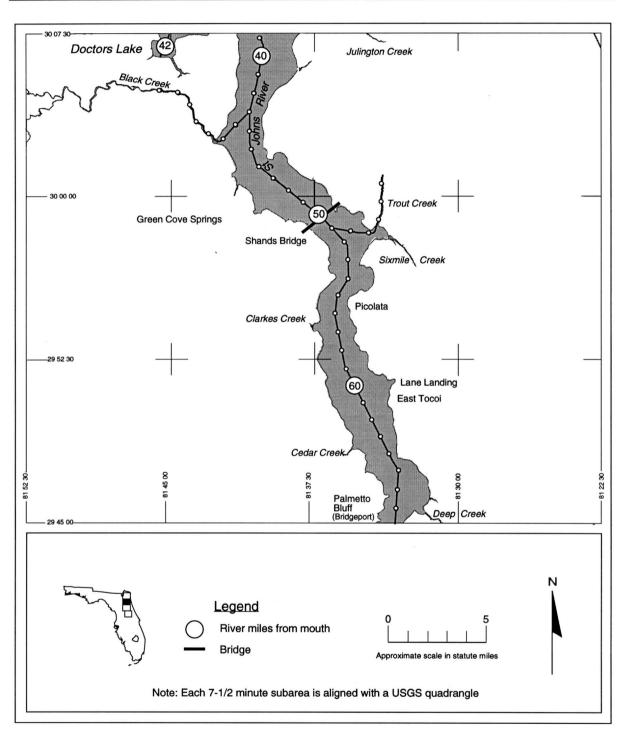
The Jacksonville District, USACE (USACE Jacksonville), developed a standard set of project maps to show river miles for projects authorized under the Rivers and Harbors Act (maps included in Appendix A). The procedure used by USACE to develop the mileages used in all USACE Jacksonville Navigability Studies is assumed to be the WRC method, although this assumption could not be confirmed by USACE Jacksonville personnel (Jim Sohm, pers. com., USGS 1993). River miles have been used by USACE in tables of mainstream and first-order tributary locations, lengths, slopes, and observed mean ranges of water levels (e.g., USACE Jacksonville 1975, Exhibit B). River miles are also used in the 1976 Atlantis Scientific report (p. II-1d, Figure II-2). The origin of the USACE river mile scale is set at the approximate intersection of the projected shoreline and the jetties, 1.2 mi west of the ocean end of the north jetty. Unfortunately, the river mile scales used by USED, Haight, and USACE are not exactly the same.


A clearer and more detailed river mile map was needed for this reconnaissance report. The 1:100,000-scale, digital-line graph water body coverage in the GIS (ARCInfo) data base maintained by SJRWMD served as the basis for the map. The origin was set approximately at the intersection of the upland shoreline behind the beach and the centerline of the navigation channel. River miles (statute) were measured along arcs that followed the navigation channel upstream. Locations along the river that are discussed in this report are shown in Figures 3.1a–d, generally within 1 mi of the values used by USACE (USACE Jacksonville 1986, 3–9, Table 1). Latitude and longitude lines in these figures coincide with the boundaries of the USGS 7½-minute quadrangle sheets.

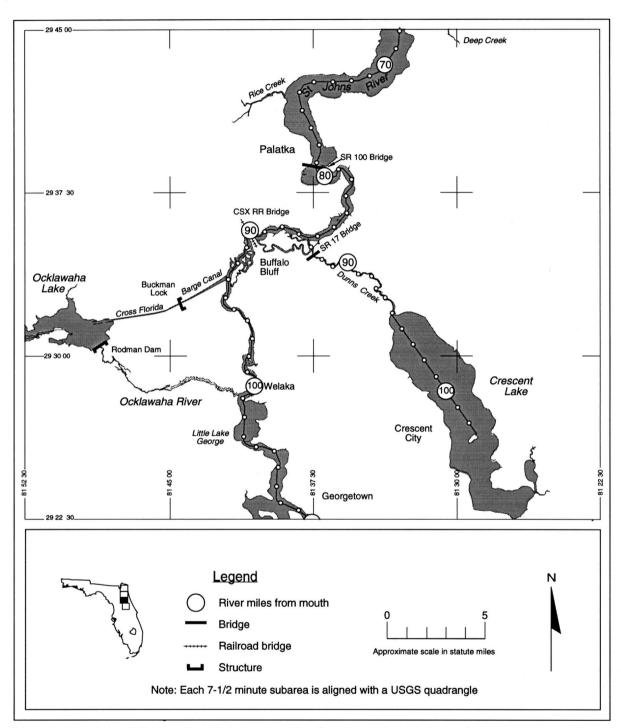
For this report, the river mile scale has been extended into major tributaries. This addition allows distances to the mouths of secondary tributaries and tide stations located in secondary tributaries to be shown directly. The locations of tide gages are given to the nearest tenth of a river mile; general areas are given in whole river miles.

DETAILED DESCRIPTION OF THE RIVER

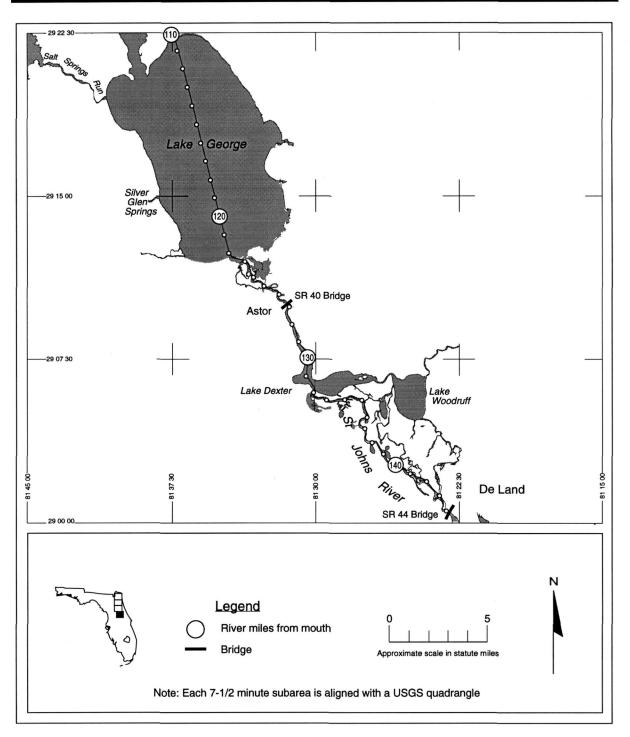
The mouth of the St. Johns River, bracketed by the north and south jetties, lies east of Jacksonville, Florida, at the Atlantic Ocean, at latitude 30°24' N, longitude 81°23' W. The river is ordinarily tidal to at least Crescent Lake (RM 96) and Lake George (RM 110) (USACE Jacksonville 1986, 71). Mean widths, depths, and volumes over the lower 120 mi of the river are summarized in Figure 3.2 (Connell Associates 1974, 4-52, Figure 4-21, values in Table B-5, A-39).


The headwaters of the St. Johns River originate inland of Fort Pierce, over 300 mi south from the river mouth at Jacksonville. The headwater drainage boundary to the west is a ridge that separates the St. Johns River from the headwaters of the Kissimmee River, which flows south to Lake Okeechobee. Elevations on the Atlantic Coastal Ridge reach as high as 90 ft above mean sea level. The portion of the ridge that acts as the eastern drainage boundary of the St. Johns River Basin reaches approximately 35 ft. According to

HYDRODYNAMICS AND SALINITY OF SURFACE WATER


Figure 3.1a Location map, by river mile, for significant locations on the St. Johns River between the river mouth and Julington Creek

Introduction


Figure 3.1b Location map, by river mile, for significant locations on the St. Johns River between Julington Creek and Deep Creek

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.1c Location map, by river mile, for significant locations on the St. Johns River between a location north of Rice Creek and Georgetown

Introduction

Figure 3.1d Location map, by river mile, for significant locations on the St. Johns River from Lake George to De Land

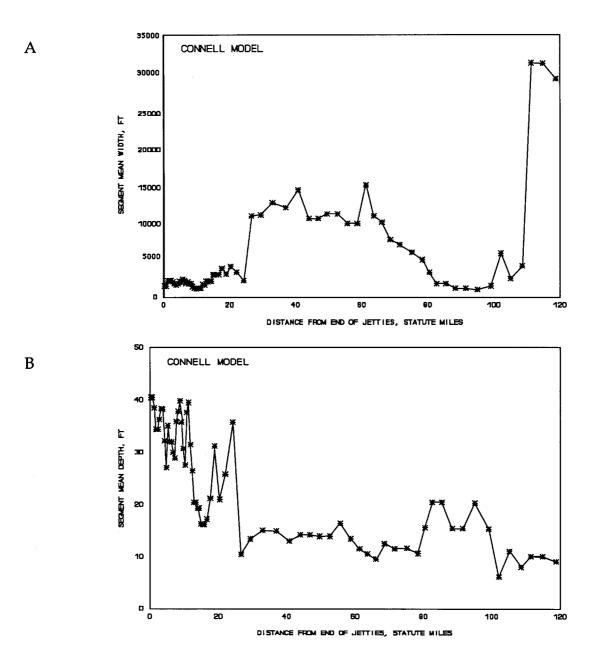


Figure 3.2 Mean widths (A), mean depths (B), and mean volumes (C) over the lower 120 miles of the St. Johns River (Connell Associates 1974)

St. Johns River Water Management District

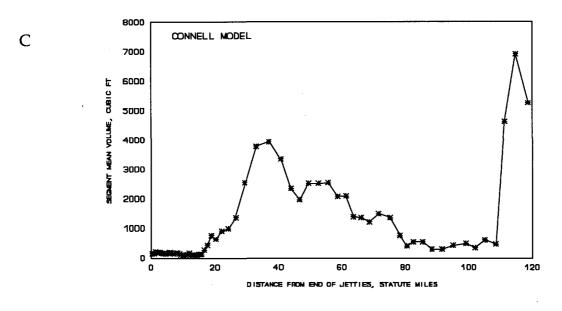


Figure 3.2—Continued

Connell Associates, in the (recent) past, three outlets in the upper reaches of the river permitted easterly flow to the Indian River Lagoon during high-water periods, but these drainage patterns have been considerably modified by the construction of large drainage projects (Connell Associates 1974, 2–3). There are no longer any flows out of the basin, under ordinary conditions, except via the river.

The City of De Land is located near RM 144. Although considerably upstream of the head of tide, the long-term flow record at a nearby location on the river serves as the only available measurement of the mainstem flow into the lower part of the river. Analyses of 61 years of stage records have provided a mean flow of 3,028 cfs, a maximum daily discharge of 17,100 cfs (October), and a maximum daily reverse flow of 3,030 cfs (August) (USGS 1994, 60) at De Land.

The height of tide and mean high water gradually increase from Lake George (RM 110) to Palatka (RM 79), then decrease to Orange Park (RM 36) and increase again to the ocean.

From the north end of Lake George to Palatka, the width of the river varies from less than 0.5 mi to about 600 ft. The Ocklawaha River flows through Rodman Dam into the St. Johns River from the west, at RM 101. Since the completion of the dam in September 1968, an average discharge of 1,353 cfs over a 25-year period of record (1969–93) has been calculated. A maximum daily mean discharge of 9,560 cfs occurred at Rodman Dam in February 1970 (USGS 1991, 118).

The Cross Florida Barge Canal channel flows north and east from Ocklawaha Lake through the Buckman Lock until it intersects the St. Johns River at RM 93. At RM 86.5, Dunns Creek enters from Crescent Lake, which lies to the east. At Palatka, the river widens to about 1 mi. A water level gage at Palatka with an intermittent period of record of 12 years (1969–82) provided data for calculations of an average discharge of 5,945 cfs for a drainage area of 7,094 mi², a maximum daily discharge of 31,300 cfs, and a maximum reverse flow of 20,400 cfs (USGS 1982, 124).

Downstream of Palatka, the river widens to about 1½ mi and continues to flow generally northward. Rice Creek joins from the west at RM 75. From RM 72 to RM 25, the width of the river fluctuates between 1½ and 3 mi. Near RM 67, Deep Creek enters from the east. Sixmile and Trout creeks join near RM 52. Black Creek enters from the west at RM 45. Julington Creek flows into the river from the east at RM 38, and Doctors Lake joins from the west at RM 37.5. NAS is located on the west bank at RM 31. The Cedar and Ortega rivers combine about 2 mi west of the St. Johns River and join it at RM 26, one of the widest parts of the St. Johns River.

At RM 25, near the Jacksonville city limits, the St. Johns River suddenly narrows, deepens, and turns eastward to flow to the ocean. Near the Florida East Coast Railroad (FEC RR) bridge, at RM 24, the river deepens to about 80 ft. The average discharge at this location over a 19-year period of record was 6,909 cfs; calculations using data from 1971 to 1974, 1981, and from 1987 through 1991 indicate that the maximum total daily downstream flow was 25,515 cfs (August) and the maximum daily upstream flow was 10,428 cfs (May) (USGS

1990, 140). These are daily average values and, therefore, do not include tidal extremes.

The river, through and downstream of Jacksonville, is about 0.25 mi wide, except at Mill Cove. Arlington River joins the St. Johns River from the south at RM 21.5. Near this location, the navigation channel is 575 ft wide and 34–38 ft deep. Downstream from this point to the ocean, the channel has an average depth of 38 ft and its width ranges from 400 to 1,000 ft. The dredge depot at the USACE dock is located at RM 19. Trout River joins the St. Johns River from the west at RM 16. Mill Cove, an embayment on the south side of the river extending from RM 16 to RM 9, with depths ranging from 1 to 4 ft and width of about 2 mi, lies alongside the south side of Blount Island, which is encircled by navigation channels. The Atlantic Intracoastal Waterway (ICW), with a mean depth of 12 ft, follows Sisters Creek from the north, joins the St. Johns River at RM 5, crosses, and extends southward into Pablo Creek. Mayport Naval Station is located about 1 mi from the ocean entrance. The jetties extend about 1.9 mi east of the river mile origin.

The St. Johns River has an estimated maximum freshwater discharge of 64,000 cfs and a maximum monthly mean total flow of about 25,515 cfs in Jacksonville (USGS, various years). Other analyses provide comparable values; for example, the Interim Water Quality Management Plan Findings gives a maximum (total) daily discharge of 61,100 cfs and a maximum reverse flow of 51,040 cfs at the mouth (USACE Jacksonville 1986, 72–73). Total discharges are usually derived from measurements and, therefore, include tidal flows.

Maintained Navigation Channel

A navigation channel 200 ft wide and 13 ft deep was dredged between Jacksonville and Palatka in 1899 (SJRWMD 1989, 15). This channel is shown on the USACE map set in Appendix A.

In 1964, the federally maintained navigation channel was 34 ft deep (referenced to mean low water [MLW]) and 200 ft wide from the Atlantic Ocean to Jacksonville, 13 ft deep and 200 ft wide from Jacksonville to Palatka, 12 ft deep and 100 ft wide from Palatka to

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Sanford (RM 166), and 5 ft deep and 100 ft wide from Sanford to Lake Harney (RM 186) (Pyatt 1964, F27–28). More recent increases in channel dimensions are 38 ft deep and 400–1,200 ft wide from the ocean to RM 20, 34 ft deep and 590 ft wide via Terminal Channel from RM 20 to Commodore Point (RM 22), and 30 ft deep and 300–600 ft wide from Commodore Point to the FEC RR bridge at RM 24 (USACE Jacksonville, unpublished information).

Segmentation of the River

To account for the variability in its water levels, flows, and salinity, the river can be divided, or segmented, into different, relatively homogeneous zones or sections. The size of a section usually depends on which variable in the section is to be described and on the degree of resolution that is required in the description of the variation between sections. For example, segmentation according to the geometry of the river is required for calculations of the dimensions of segments for a one-dimensional computer model of river flow (e.g., Figure 3.2, showing geometry used for the Connell model).

At an instant in time, the volume of a section of the river is characterized by the length and width of the channel, the height of the water surface, and the depth. The depth of water measured to a common datum defines the bottom topography. River volume and flow at any location and time are primarily dependent on the past history of tide, wind, inflows, and outflows. The volume of a section can be estimated from measured water surface elevations and known widths and depths. Furthermore, because the water surface is usually not level, the surface slope should be taken into consideration if an accurate quantification of volume and flow is to be achieved.

Bottom Topography

A survey of bottom topography requires a series of determinations of both the depth of the water and the instantaneous position of the vessel from which the depth is measured. Historically, the primary purpose for conducting depth surveys has been to collect data for

St. Johns River Water Management District 30

the production of navigation charts. Since water depth soundings are time consuming and expensive to acquire, the federal government assumed this responsibility for major water bodies of the United States with the formation of the Survey of the Coast in 1807. In 1836, the Survey of the Coast became the Coast Survey, and in 1878 the name was changed again, to the Coast and Geodetic Survey (C&GS). C&GS was responsible for conducting hydrographic surveys and producing charts for rivers, estuaries, and coastal areas. In 1970, C&GS was incorporated into the National Ocean Survey (NOS), which was renamed the National Ocean Service (NOS) in 1985. C&GS, renamed the National Geodetic Survey (NGS), and the Office of Charting and Geodetic Services—both part of NOS—are responsible for the national networks for geodetic control, field surveys, and map production (Hicks 1984, 25–26).

Bathymetric soundings in the LSJR were collected by C&GS by hand, using lead lines, beginning in 1852. In the early 1920s, C&GS and NOS began using echo-sounding depth indicators (fathometers); in the late 1930s, chart records were added to the fathometers. Originally, vessels were positioned by means of sextant angles and distances were measured along wire cables stretched between boats or between a boat and the shore. Since the 1940s, radio and other electronic systems have replaced sextants for positioning (Wraight and Roberts 1957, 58). Several decades later, fathometers were integrated with electronic navigation systems to record positions and depths automatically. Now (in the 1990s), the locations of measured depths can be determined automatically with the assistance of global positioning systems (GPS) using satellite transmissions, corrected for tide, referenced to the geodetic datum, and plotted in real time on shipboard.

The soundings are plotted on large-scale charts called "boat sheets" and made available on paper (bromide) or mylar. A small set (about 10%) of these soundings is selected for transfer to navigation charts, but the charted depths are not necessarily representative of the average depth in a particular area. Instead, the charted depths are selected to show the locations of hazards to navigation or the significant shallow depths or shoals. Thus, bottom topography digitized from navigation charts may provide a biased representation of the actual depth. Many of the boat sheets for United States waterways have been digitized and archived in computer format at the National Geophysical Data Center (NGDC) in Boulder, Colorado.

Detailed boat sheets for the LSJR are available from the series of hydrographic surveys conducted by C&GS and NOS between 1852 and 1959. The areas of coverage of these hydrographic surveys are shown on a series of small-scale maps which are available from NOS (Table 3.3). Some, but not all, of these boat sheets have been

Table 3.3 Summary of Coast and Geodetic Survey hydrographic surveys of the lower St. Johns River*

Hydrographic Index Number	Year Range	Overall Location Description
76A	1853–1872	From the inlet into the Intracoastal Waterway and west to vicinity of Arlington River
76B	1876-1889	From the inlet to Jacksonville and south to Tocoi
76C	1885–1939	From north of the inlet to south of Welaka and into Crescent Lake and a few surveys in Jacksonville
76D	1937–1959	From the river mouth off inlet and a few surveys around Jacksonville, and south to south end of Crescent Lake and into Lake George

*See Appendix B for complete list. Map scales range from 1:5,000 to 1:20,000.

Source: NOS 1992

digitized, and the digitized data are available from NGDC in 1-degree squares. NOS Nautical Charts 11490, 11491, 11492, and 11495, as well as other navigation chart series, such as locally produced fishing maps, also show some of the river depths. Other special project depth surveys, such as those conducted by USACE in Mill Cove, and surveys of the navigation channel for purposes of channel maintenance have been carried out at various times. The most recent of the latter is the navigation channel survey by USACE Jacksonville for Jacksonville Harbor, entitled "Examination Survey, 34- and 38-foot Project," March 1992.

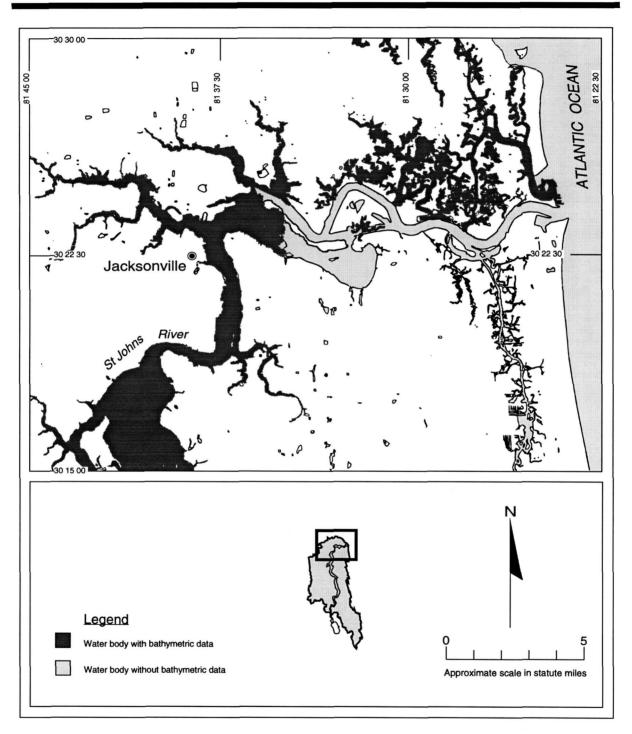
St. Johns River Water Management District 32

Introduction

A more detailed summary of the areas of coverage of these hydrographic surveys is given in Appendix B. Figure 3.3 is a plot of the locations of bathymetric data in the NGDC data base for the St. Johns River, showing the area in which bathymetric data has *not* been archived on the NGDC data base. The data are so dense in most parts of the lower river that, when plotted on an 8½- x 11-in. page, the areas with depth data appear almost black. All digitized bathymetric data from Jacksonville to the ocean are missing from federal government data bases.

Other Hydrographic Surveys and Maps

Numerous studies and surveys of the river have been authorized under the Rivers and Harbors Act and federally authorized flood damage prevention and navigation projects. The Rivers and Harbors Act and the surveys are listed in the *Interim Water Quality Management Plan Findings* (Findings Report) (USACE Jacksonville 1986, 32–34, Table 3, and 35–41, Table 4).


USGS and NOS jointly publish a series of small-scale (1:100,000, metric) topographic-bathymetric maps depicting contours and elevations (in meters). These maps indicate highways, water features, and bathymetric contours. The 1980 Jacksonville, Florida, map (30081-A1-TB-100) includes the area from the mouth of the river to Green Cove Springs. The sources of bathymetric survey data used in this map are summarized in Table 3.4. The maps for St. Augustine and Daytona Beach, to the south of Green Cove Springs, do not include bathymetric contours.

CLIMATOLOGY AND HYDROLOGY

The general hydrologic characteristics of each tributary drainage basin of the LSJRB are described in the Findings Report (USACE Jacksonville 1986, 66, 70–71) and in Volume 2 of the LSRB Reconnaissance Report (Bergman 1992).

Local weather patterns cause the river to have a pronounced seasonal flow. High flows predominate during the rainy season, which is late summer to early fall. Low flows, probably augmented

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.3 Areas in the St. Johns River covered by Coast and Geodetic Survey hydrographic survey data

St. Johns River Water Management District

Survey Number	Survey Date	Survey Scale	Survey Line Spacing (nautical miles)
C-11491*			
H-6127	1935	1:10,000	0.01-0.06
H-6296	1935	1:20,000	0.02-0.08
H-6297	1935	1:20,000	0.05–0.10
H-6530	1939	1: 5,000	0.01–0.03
H-8412	1959	1:20,000	0.05–0.20
H-8463	1959	1:10,000	0.03-0.11
H-8464	1960	1:10,000	0.02-0.05
H-8107	1954–55	1:10,000	0.01–0.15
H-8462	1959	1:20,000	0.02-0.12
H-9474	1974	1:40,000	0.03–0.06

Table 3.4Bathymetric surveys used in USGS/NOS1:100,000-scale metric topographic-bathymetric map
number 30081-A1-TB-100 (1980) of the Jacksonville,
Florida, area

*Special survey covering Chicopit Bay and Mill Cove

Coverage: Latitude 30°0' to 30°30' North, longitude 81°0' to 82°0' West

by contributions from ground water, are the norm during the dry season, in winter. In an effort to describe a "design flow" for the LSJR, monthly averages of daily net flows at Main Street Bridge (RM 23.8) were first calculated by USGS for data collected between 1955 and 1966 (Anderson and Goolsby 1973, 49, Figure 31). After some difficulties with instrumentation, USGS resumed the publication of daily flows in 1972 and intermittently continued with calculations until January 1991. Data for 1991 and 1992 were published in the Water Year (WY) 1992 report (USGS 1993). A daily net flow is the average of all measured upstream and downstream flows over one day.

The seasonal flow regime at Jacksonville consists of a rainy season from June through October (highest mean flows), a dry season from November through May (lowest mean flows), a period of increasing storage from April through September, and a period of decreasing storage from October through March (first described by Anderson and Goolsby 1973, 48; corroborated by USGS data to 1992) (Figure 3.4).

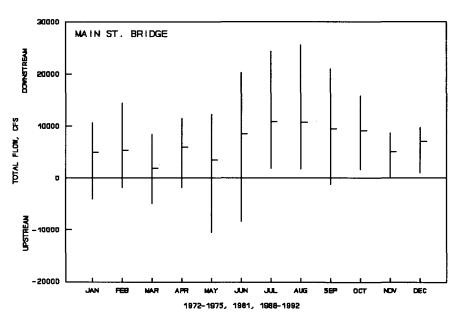


Figure 3.4 Monthly means and high and low daily net flows at Main Street Bridge, 1972–92

Seasonal flows are summarized in more detail in the following chapter on tides and river flow. A detailed description of weather and climate is given in the Findings Report (USACE Jacksonville 1986, 57).

TRIBUTARY DISCHARGE AND SEDIMENT LOADINGS

Tributary discharges are one of the principal sources of sediment loading to the river. Large tributary storm discharges may erode banks of streams, which changes the shape and flow characteristics

St. Johns River Water Management District 36

and introduces significant loads of sediment into the main stem of the river. Sediment accumulations (shoaling) in the river change the bottom topography, which also affects river hydrodynamics. Sediments may concentrate toxic substances in locations in which bottom currents are not strong enough to maintain the sediment in suspension, such as in the navigation channel. Sediments may contain organics that deplete benthic oxygen or dissolved oxygen in the water column. The physics of sediment movement and transport are usually described in terms of erosion, deposition, resuspension, and dispersion. These phenomena are principally influenced by hydrodynamics, salinity, and chemistry.

The literature on the hydrodynamics of the LSJR does not provide insight into the locations and magnitudes of sediment phenomena. However, reviews of sediment and sediment management in the LSJR are found in Keller and Schell (1993) and in USACE Jacksonville (1994e).

SUMMARY OF RIVER LOCATION, DESCRIPTION, AND DRAINAGE AREA

The LSJR is designated, for management purposes, as that part of the St. Johns River extending from the confluence with the Ocklawaha River, 101 mi upstream from its mouth, to the Atlantic Ocean. The lower part of the river flows northward through a relatively narrow channel to Palatka (79 mi upstream), widens for another 54 mi to Jacksonville, and then narrows again and flows eastward to its mouth. A navigation channel of varying dimensions is maintained by the federal government throughout its reach.

The LSJR is tidal throughout its length, and its average monthly freshwater discharge is on the order of 6,000 to 8,000 cfs. Average annual total flow (tidal plus non-tidal) over half tidal cycles is most likely to be in the range of 30,000 to 50,000 cfs. Peak total flows exceeding 100,000 cfs have been reported. Partially diluted seawater extends at least 17 mi upstream to Trout River, and a mixing zone extends 15 mi more to NAS. Salinity fluctuates between low and moderate values to the head of tide, depending on the volume of freshwater inflows.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Depths have been charted at least once in all areas of the river from 1852 to 1959. In addition, the navigation channel has been surveyed every few years to determine changes in bathymetry for maintenance dredging.

WATER SURFACE ELEVATION

The elevation of the water surface, or "water level," in a tidal river such as the LSJR is dependent on tide, wind, inflows and outflows, and, to a lesser degree, atmospheric pressure. Water level changes continually, both spatially and temporally.

WATER SURFACE DATUMS

Water Level Geodetic Network

"Geodesy" is the measurement of the shape of portions of the earth's surface. A network of vertical and horizontal geodetic reference stations is maintained by NOS through NGS and the Office of Charting and Geodetic Services. The vertical reference points on this network for water bodies were established originally by a series of measurements of water level over several decades at selected locations. Even though river and ocean water levels fluctuate continuously over a considerable range, these measurements were a practical approach to establishment of a level plane because hourly values were averaged over many years. NOS reference station elevations are determined by standard surveying techniques to firstor second-order accuracy referenced to the standard datum.

Datums and Benchmarks

A "datum" is the reference surface from which both vertical and horizontal distances are measured. The network of accurately surveyed stations used to establish the datum is called a "control network." The first comprehensive datum to be established for the North American continent was the National Geodetic Vertical Datum (NGVD) of 1929. This datum was based on mean sea level, as calculated in 1929, at 26 tidal stations in the United States and Canada (Harris 1981, 4). In June 1991, an adjustment to this datum, called the North American Vertical Datum of 1988 (NAVD 88), was completed. This datum has been established to correct irregularities in the level plane that have been detected since 1929 by using more accurate measurements.

The horizontal control network is now based on the North American Datum (NAD) of 1983, which was readjusted in 1990. This datum, called NAD 83/90, is the preferred reference for the horizontal control network in Florida. The Bureau of Survey and Mapping/ Florida Department of Environmental Protection (BuSM/FDEP) uses both NAVD 88 and NAD 83/90, while also maintaining references to NGVD.

A "benchmark" is a station, referenced to a control network, that has an accurately measured location and elevation. A "monument" marks the location of a benchmark. Descriptions of benchmark locations and monuments along the St. Johns River are available from NOS and various local agencies, such as the BuSM/FDEP and SJRWMD. The accuracy of benchmarks established by agencies other than NOS may have been determined to first-, second-, or third-order standards. A complete survey of existing tidal benchmarks on the LSJR has been prepared by BuSM/FDEP (USACE Jacksonville 1994c).

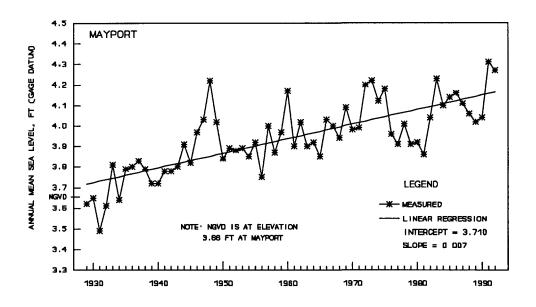
Since 1989, the vertical datum of all navigation charts in the vicinity of the LSJR has been mean lower low water (MLLW), which is defined as the mean value of the lowest of the two daily measured low water levels that occur at a given location in the river. If the MLLW datum changes, relative to NGVD, from one location to another in a river (as it does in the LSJR), then the datum for the depths on navigation charts in that river is not a horizontal plane. This change in datum must be considered in setting up a hydrodynamic model of the river because the depths in a model are referenced to a horizontal datum.

WATER LEVELS

The common term for "water surface elevation," the instantaneous height of the water above a datum, is "water level." Water levels in a tidal river such as the LSJR depend on other factors besides the tides, and all water level measurements include the effects of all of

St. Johns River Water Management District 40

the factors causing changes in water levels. Total water levels are described in this section, while the tidal effect is described separately in the following chapter.


Water Level Data

NOS is the primary source of long periods of record of water surface elevations, now typically recorded at 6-minute intervals, which are used to calculate mean water levels. Mean water level (MWL) at a site—which is published annually in the tide tables for each station—is simply the average of the available series of water level measurements. The calculated mean value of local water level measurements will not usually coincide with NGVD or NAVD because sea level is constantly changing.

Mean Sea Level

Mean sea level (MSL) is defined as the long-term mean elevation of the ocean surface in the vicinity of the monitoring station. It is the average of continuous measurements of water surface elevation over a period of time that is long enough to eliminate the short-term effects of tide, wind, and waves; the effects of atmospheric pressure changes; and other local storm effects. MWL is a more general term for the mean of a set of measured water levels.

Monthly means are calculated from 6-minute values of measured water surface elevations. NOS has calculated MSLs for each available 19-year record, which provides a period of record that is long enough to eliminate, through analysis, the periodicities of the principal tidal constituents and to average out most of the meteorological fluctuations that occur during the period. Also, analysis over a long period of record permits long-term trends in sea level to be evaluated. Longer period trends in water level are a major factor in requiring that datums be revised at approximately 25-year intervals (Harris 1981, 36). The trend in MSL at Mayport from 1929 to 1992 is an increase of 0.007 feet per year (ft/yr) (Figure 3.5).

Annual mean sea level at Mayport, 1929–92 Figure 3.5

Long-Term Changes in Mean Sea Level

Changes in the level of the ocean affect water levels in the river. In general, long-term changes in the level of a river also may be caused by subsidence (which may be the result of large withdrawals of water from below ground or increased loading by large structures such as dams), sediment deposition, or changes in the shape of the earth.

Glaciologists have estimated that, from preglacial periods to the present, MSL has fluctuated from 300 ft higher to at least 300 ft lower than at present (Fairbridge 1966, 478). Evidence further indicates that, between 6,000 years ago and the present, sea level on the Atlantic Coast exceeded present levels in at least four periods but has not been greater than 12 ft above the present level (Harris 1981, 57). Sea level was about 1.5 ft below current sea level during the period between 600 and 200 years ago (from Fairbridge 1966, as quoted by USACE Jacksonville, 1990c, G1-8).

According to some researchers, sea level has increased about 1 ft along the Atlantic Coast in the past 100 years (Hicks, Debaugh, and Hickman 1983, as quoted by Titus 1987, 3). Comparative studies of tides around the coast of North America, using 1930–48 data, indicated a steady rise in sea level on the United States east coast since 1930 of about 0.02 ft/yr (2 ft/100 yr) (Marmer 1951, 58). NOS measurements since 1948 have determined that the rate of change of sea level along the Florida east coast between 1940 and 1980 is on the order of 0.79 ft/100 yr, whereas for the United States as a whole, it is between 0.49 ft/100 yr (reference to Hicks 1978, in Harris 1981, 57) and 0.62 ft/100 yr (NOS 1988[a], as quoted by USACE Jacksonville 1990c, G1-9).

At Mayport, sea level rise was found to be 2.69 millimeters per year (0.61 ft/100 yr) from 1940 to 1972 (Harris 1981, 54). The rate of sea level rise at Mayport, calculated from 64 years of record (1929–92), is 0.007 ft/yr or about 0.7 ft/100 yr (Figure 3.5).

Assuming the rate of change of sea level rise remains constant over the next 100 years, USACE estimates that water levels at the mouths of tributaries in the LSJR will rise about 0.94 ft (USACE Jacksonville 1990c, G1-9). Another report, based on analyses of increases in the concentrations of atmospheric carbon dioxide and other greenhouse gasses, predicts that sea level will continue to rise at least until the year 2100 (Hoffman et al. 1983, vi). These authors conservatively estimate the future rate of rise to be twice the historical rate until the year 2000 and three times the historical rate to the year 2025. Along the Atlantic and Gulf coasts, the rise is predicted to be at least 2.5 ft by the year 2100 (2.1 ft/100 yr) (Hoffman et al. 1983, vi).

Historical Water Level Measurements

The measured water surface elevation at a particular location is a function of the superimposed effects of tide, wind, inflows and outflows, atmospheric pressure, and water movement in the vicinity of the measurement over the period of the measurement. Wind is often the predominant force involved in changes in water level. "Tide measurements" are water level measurements sampled at a frequency of at least 1 hour (hr) that have been analyzed to extract the tidal components. Water levels sampled or calculated at intervals greater than 1 hr do not resolve tidal fluctuations and therefore can only be used for reporting on long-term trends in water levels, effects of droughts or floods, or for estimating daily flows.

Measurement records of water surface elevations along the shorelines of the United States have been maintained since the 1800s by survey parties of USACE and C&GS. USACE conducted some relatively short series of observations in the St. Johns River, which are reported in U.S. Army 1890, U.S. Army 1891, and House of Representatives 1910.

The first substantive hydrographic observations in the river were taken during the winter of 1933–34 by C&GS. During this survey, water levels and currents were measured at the surface and at several depths at 35 stations. The number of water level stations at which data were taken during this survey is not stated (Haight 1938, 17).

Present Water Level Measurements

NOS is one of the few sources of long-term estuarine water level data in the United States. NOS maintains "reference" (primary) and "subordinate" (secondary) water level measurement stations throughout the world to obtain data for calculations of MSL and analysis and prediction of tidal characteristics. Reference stations are installations with long-term, reliable records; there are presently 26 such stations on the east coast of North America and a total of 50 on this continent. Subordinate stations have considerably shorter periods of record. The closest of the coastal reference stations to the St. Johns River are located at Fernandina Beach, Mayport, and Miami. NOS tabulates the hourly, quarter-hourly, or 6-minute data recorded at reference and subordinate stations and performs analyses to obtain daily, monthly, annual, and 19-year statistics for calculating harmonic constants, which are used in tidal predictions (see tides chapter). The period of record for water level measurements at Mayport, the only reference station on the LSJR, begins in April 1928.

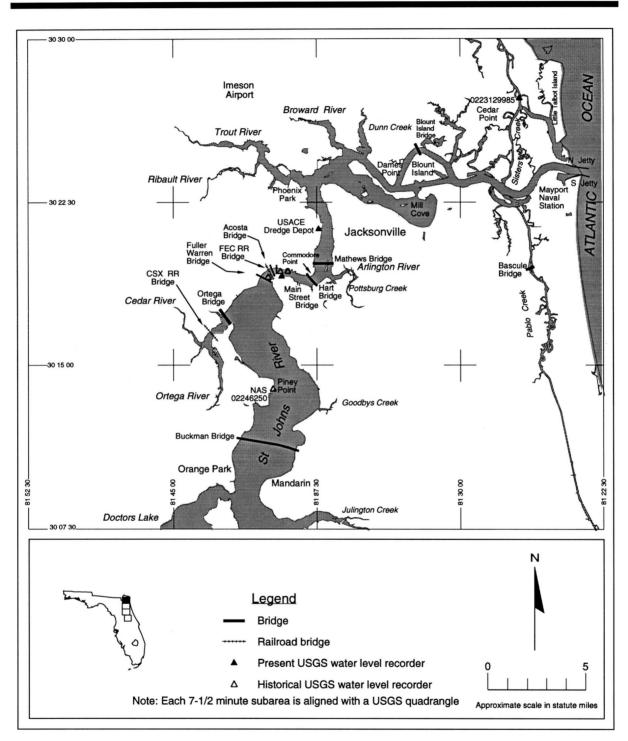
St. Johns River Water Management District

USGS and NOS have maintained stage monitoring stations on the St. Johns River since 1928 (Table 3.5). The term "stage" is synonymous with "water surface elevation." The data from these stations are used for obtaining mean and extreme values of water levels, for assessing the magnitudes and extents of floods and droughts, and for calculating flows. All measurements have been made with float recorders except the levels at De Land from 1933 to 1934, which were not automatically recorded. Each of the recorded water level values is archived in a "unit value file." Daily mean values are published annually by USGS, along with minimum and maximum elevations for the period of record. A few of these stations are located in tidally affected areas (Figures 3.6a–d).

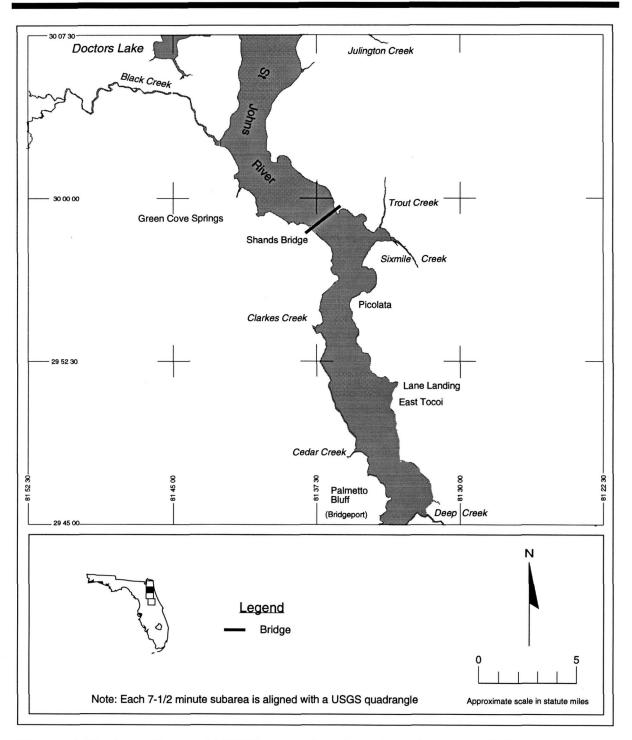
Table 3.5	Periods of record for reliable data and locations of water level stations on or
	near the main stem from De Land to the river mouth

Station and USGS ID Number	Published Period of Record	Reporting Interval	Gage Type	Location Description
De Land USGS 02236000	Oct 1933–Feb 1934	Day	Non-recording	Near site of former Crows Bluff Bridge, about 1,000 feet downstream
	Feb 1934–May 1936			(same as 1933–34)
	Jun 1936–Jul 1970		Stage recorder	0.4 miles downstream of above station
	Jul 1970–Sep 1994			Near west bank, downstream of Whitehead Bridge at State Road 44, 5 miles west of De Land
Buffalo Bluff USGS 02244040	Sep 1943–Jul 1948	Day	Stage recorder	Downstream of CSX RR bridge, north bank at boat dock
	Aug 1990–Sep 1994	15 minutes	Stage recorder with shaft encoder	Under CSX RR bridge, near south - bank
Dunns Creek USGS 02244440	Jan 1978–Apr 1989	Day	Stage recorder	Under U.S. 17 bridge, near center span
	Apr 1989–Sep 1994	15 minutes	Stage recorder	Under U.S. 17 bridge, near center span

Table 3.5—Continued

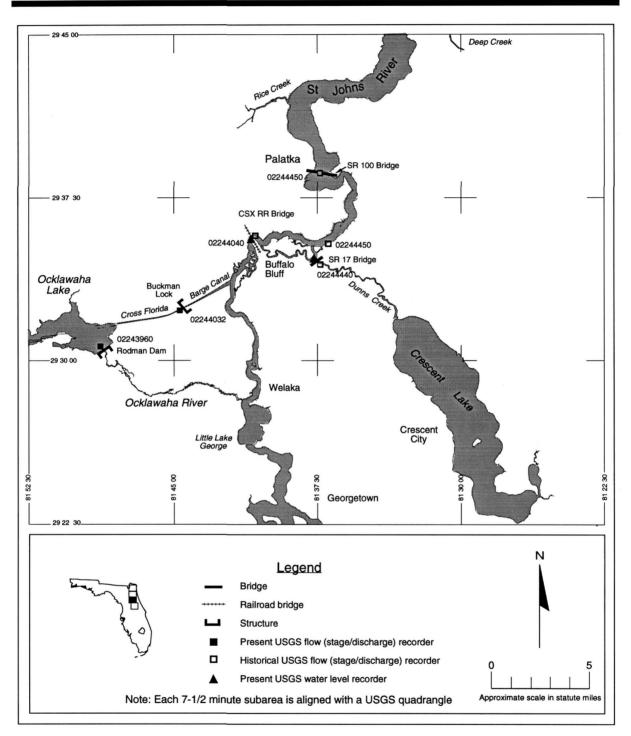

Station and USGS ID Number	Published Period of Record	Reporting Interval	Gage Type	Location Description
Palatka USGS 02244450	Jan 1968–Feb 1976	Day	Stage recorder	Under U.S. 100 bridge, near center span
	Jul 1976–Sep 1979	Day	Stage recorder	6 miles upstream of U.S. 17 bridge, near east bank at Edgewater Light 13, 1.4 miles downstream from Dunns Creek
	Oct 1980–Sep 1982	Day	Stage recorder	(same as 1976–79)
Jacksonville USGS 02246250	Sep 1945–Oct 1973	Day	Stage recorder	NAS crash boat dock, 7.9 miles upstream from Main Street Bridge
Jacksonville, vicinit USGS 02246500	y of Main Street Bridge			
(a) Florida East Coast RR Bridge	Oct 1971–Sep 1986	Day	Stage recorder	Near center of RR bridge, 0.3 miles upstream of Main Street Bridge
(b) Main Street Bridge pier	Feb 1954–Apr 1966	Day	Stage recorder	Downstream side on pier, near east bank
(c) Main Street Bridge, downstream side	Oct 1986–Sep 1994	Day	Stage recorder	Downstream side, on walkway, near east bank of river
(d) Fireboat dock	Apr 1966–Sep 1971	Day	Stage recorder	Southeast corner of dock, on west bank of river, 0.3 miles downstream of Main Street Bridge
(e) Jacksonville USGS 02246530	Oct 1972–Sep 1994	Day	Stage recorder	USACE dock (dredge depot), west bank, 1.2 miles downstream of Deer Creek, 5.1 miles downstream of Main Street Bridge
Mayport NOS 8720220	Apr 1928–Sep 1994	15 minutes	Float recorder	West of Mayport Naval Station, on dock on south bank

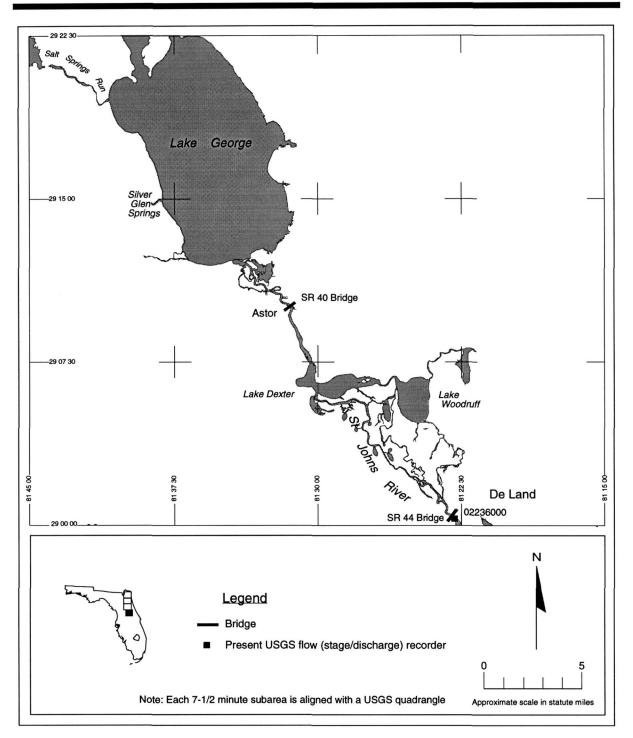
Note: CSX RR = Seaboard Coast Line Railroad


AVM = acoustic velocity meter

NAS = Naval Air Station

Source: Jim Sohm, USGS Jacksonville, pers. com. January and July 1993 USGS, pers. com. 1995


Figure 3.6a Locations of USGS water level stations between the mouth of the St. Johns River and Julington Creek


Figure 3.6b Locations of USGS water level stations between Julington Creek and Deep Creek

St. Johns River Water Management District

Water Surface Elevation

Figure 3.6c Locations of USGS water level stations between a location north of Rice Creek and Georgetown

Figure 3.6d Locations of USGS water level stations from Lake George to De Land

As of 1994, stage recorders were being maintained on the main stem of the LSJR at De Land, Buffalo Bluff, Dunns Creek, Main Street Bridge, and the USACE dock (dredge depot). Water level is also measured at the tide stations maintained by NOS (see tides chapter).

Monthly Mean Sea Level

The variability of sea level from month to month is influenced by seasonal changes in tidal forces and the hydrologic cycle. Therefore, monthly MSL is described in the tides chapter.

ATMOSPHERIC PRESSURE EFFECT ON WATER LEVEL

Except under storm conditions, atmospheric pressure changes have a direct, but relatively minor, effect on water level of 1 centimeter (0.39 in.) per 1 millibar of pressure. In tropical storms, the decreasing central pressure is accompanied by high winds and ocean surge. Fluctuations in barometric pressure can cause measured mean stage differences at NAS ranging from -0.43 to 0.5 ft (Pyatt 1959, 122).

WIND CONSIDERATIONS

Wind Effect on Water Level

Wind pushes the surface water and causes it to flow and build up its elevation in the prevailing direction of the wind. The surface flows cause the water below to be moved at speeds that decrease with depth. If the wind blows toward a shoreline, it causes water to pile up (or "setup") against that shoreline; this can result in flows in an opposing direction lower in the water column. The longer the wind blows in the same direction, the higher the water levels will build up, until a maximum is reached that is determined by the counteracting head of the setup and the balance of forces. Also, setup, in general, increases to a maximum value with the fetch, the unobstructed water distance over which the wind acts. Because the wind usually fluctuates considerably in both speed and direction, currents and setup caused by the wind also continually change. The response of water level and flow to wind change integrates much of the wind fluctuation and may be considerably lagged behind it. Additional observations, data, and summaries on the effects on the LSJRB of wind, precipitation, and atmospheric pressure can be found in Pyatt (1959, 108–132).

Wind is extremely variable spatially. No one set of measurements at one location in a water basin will necessarily resemble those from another location. Therefore, because wind is a significant influence on flow in the LSJR, several measurement sites located as close as possible to the study site are required to accurately quantify the wind effect on the river.

Wind data collected over long time periods are routinely averaged over 24 hr for storage in the National Climatic Data Center (NCDC) data base. Such averaging does not preserve the means and extremes of wind at the smaller time steps needed to describe the hydrodynamics of the LSJR. Therefore, for any study that requires a quantification of the effect of wind on water levels, wind data will have to be collected and analyzed as needed during the particular study. For example, wind effect is modeled as a stress on the surface of the water. Most hydrodynamic models use a spatially constant wind field over the domain of the model; some models use a wind field that is constant with time, and others can use a temporally and spatially varying wind field. Typical time steps in hydrodynamic models are 1 to 5 minutes. Adequate wind data for calibration and verification of a particular model must be made available, depending on the capability of the model.

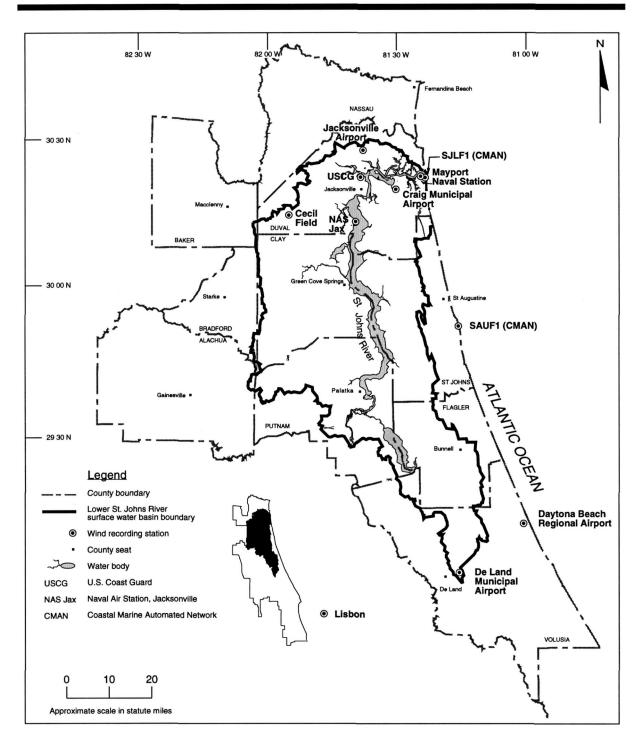
Wind Measurements

Hourly wind data are being collected at Jacksonville NAS, Mayport Naval Station, Jacksonville (Imeson International) Airport, and Daytona Beach Airport. Hourly wind data collections were discontinued at Craig Field in 1991 and at Cecil Field in 1993. These data are reported to the National Weather Service Office, NCDC, and some data are available in digital form for the period of record (Table 3.6 and Figure 3.7).

St. Johns River Water Management District 52

Station Name	Period Digitized				
Hourly Wind Data*					
Mayport Naval Station	Oct 1984–Sep 1994				
Jacksonville Airport	Jan 1970–Sep 1994				
Jacksonville Naval Air Station	Jan 1981–Sep 1994				
Jacksonville Cecil Field	Jan 1981–1993				
Jacksonville Craig Field	Aug 1974–Dec 1991				
Daytona Beach Airport	Aug 1981–Sep 1994				
Coastal Marine Automated Network (CMAN) St. Augustine (SAUF1) St. Johns Light (SJLF1)	Sep 1986–Sep 1994 May 1984–Sep 1986				
Data Summaries ^t	Data Summaries [†]				
Summaries of meteorological observations near the surface (SMOS) Mayport Jacksonville Airport Jacksonville Naval Air Station Jacksonville Cecil Field	1956–72; 1973–82 1973–82 1945–77 1947–77; 1973–82**				
Revised uniform summary of surface weather observations (RUSSWO) Jacksonville Airport	1948–81				
Ceiling-visibility-wind (CVWind) (annual wind roses) Jacksonville Airport Daytona Beach Airport	Jan 1972–Dec 1978 Jan 1948–Dec 1978				

Table 3.6 Availability of daily wind data and monthly and annualsummaries of wind data in the Lower St. Johns River Basin


*Digitized and available on diskette and tape

[†]Not digitized; available on paper only

**Separate summaries with different periods of record

Source: Elizabeth Love, National Climatic Data Center, pers. com. July 1992, August 1994

On the coast, hourly wind has been reported at an elevation of approximately 10 m at the St. Johns Light (1984–86) and off St. Augustine (1986 to September 1994) by the Coastal Marine Automated Network (CMAN) of ocean buoys. These data are also available in digital form.

Figure 3.7 Locations of long-term wind recording stations

St. Johns River Water Management District 54

Historical Analyses of Wind Effects

Haight (1938) was the first investigator to publish the results of analyses of the effects of wind on water levels in the St. Johns River. Winds from 0 to 180 degrees (north to south clockwise) cause an increase in stage at NAS; winds from 180 to 360 degrees cause a decrease, to a limit. There is also a limit to the amount of water that can be set up by northeast winds. Northeast winds greater than 10 miles per hour (mph) may cause a large increase in stage at NAS, but continued northeast winds at gradually diminishing intensities will allow the stage to fall. Stage fluctuation depends upon the initial stage and upon the intensity, duration, and direction of the wind. Superimposed stage fluctuations caused by runoff may obscure the effects of the wind (Haight 1938, 23, as reported in Pyatt 1964, F45).

Daily wind data were analyzed in a study by Pyatt (1959). His conclusions are summarized in Table 3.7.

Summaries of wind, which do not contain daily values, are available from NCDC. They may be ordered in three different forms: Summaries of Meteorological Observations near the Surface (SMOS), Revised Uniform Summary of Surface Weather Observations (RUSSWO), and Ceiling-Visibility-Wind (CVWind). The SMOS and RUSSWO summaries are produced continually and may be obtained as monthly or annual reports; the CVWind summaries were produced only once, in 1980, for data through 1978.

SMOS data are prepared from U.S. Navy meteorological records and updated every 5 years. These data are available in three forms: (1) monthly and annual with extremes, (2) 3-hourly groups, or (3) complete summary. The percentage frequency of wind speed (knots) is tabulated for each month over the entire period of record in 11 ranges from "1 to 3 knots" to "greater than 56 knots" and also is summarized annually for each of 16 directions. The percentage of time the wind blows from each direction and the mean wind speed in each direction also are tabulated. RUSSWO data, collected by the Air Weather Service, are similar to the Navy SMOS data.

Characteristic	Effect		
Wind speed	Measured wind at Imeson Airport averages 8.4 miles per hour (mph)		
Wind setup	Significant wind setups occur at sustained wind velocities above 7 mph		
	Wind setup ranges from -0.92 to 3.20 feet		
Wind direction	Winds blowing in any direction from south to west account for most of the precipitation in the Lower St. Johns River Basin		
	Exceptions may occur, especially during summer months when winds are from northeast to southeast		
	Winds blowing in any direction from north through east to south cause increasing stage at the Naval Air Station on the west side of the river		
	There is a limit to the setup that can be caused by northeast winds. Northeast winds greater than 10 mph may cause large increases in stage, but continued and gradually diminishing wind will permit stage to fall		
	Winds from south through west to north cause stage decreases		
Wind effect on stage	Stage fluctuations depend on the location, the initial water level, and the intensity, duration, and direction of the wind		

Table 3.7 Wind characteristics and effects on the Lower St. Johns River Basin

Source: Pyatt 1959, 122-123

The NCDC prepared CVWind tables in 1980 for selected cities (in the study area, Jacksonville [at the airport] and Daytona Beach). The tables summarize the available data over the period of record. Twelve tables for each station show wind direction versus wind speed distributions, which are also available in the form of wind roses (circular graphs). These data are divided into six CV classes for daytime winds and six CV classes for nighttime winds. The CV classes range from ceiling greater than or equal to 1,500 ft and visibility greater than or equal to 3 mi, to ceiling less than 100 ft and/or visibility less than 0.25 mi. A seventh class provides summaries of all other classes. All tables are divided into 16 wind

St. Johns River Water Management District 56

directions, calm conditions, and five speed groups (including calm [<1 knot]) and include the average wind speed in each direction.

A monthly wind rose from the National Oceanic and Atmospheric Administration (NOAA) data at an unspecified station in Jacksonville is given in a water quality analysis report (Atlantis Scientific 1976, II-5a, Figure II-9). A comparison of monthly surface wind mean directions and speeds, recorded at Cape Kennedy Air Force Base (1951–52, 1957–70), Jacksonville NAS (1945–70), and McCoy Air Force Base, Orlando (1944–45, 1952–67), are tabulated in the draft Water Resource Management Plan (WRMP) (SJRWMD 1977, as referenced in USACE Jacksonville 1986, 56, Table 10). A more recent wind rose, accompanied by graphs of seasonal wind frequencies, is based on data collected from 1973 to 1977 at NAS Jacksonville (Figures 3.8 and 3.9; data for Figures 3.8 and 3.9 are included in Tables C1 and C2, Appendix C).

Other Periodic Wind Analyses

NCDC analyzes hourly wind data and publishes 4-hr and daily averages as monthly local climatological data. These data are summarized in terms of resultant direction and speed (miles per hour), average speed, peak gust speed and direction, and fastest 1-minute speed and direction. These summaries are prepared on a daily, monthly, or annual basis.

NCDC has published a monthly summary entitled *Climatological Data, Florida* (month, year) since 1896. The closest station to the LSJR that is summarized in this publication, and the only one near the river, is located at Lisbon, southwest of Lake Yale, 9.4 mi south and 28.3 mi west of De Land. Wind run, the summation of wind speed over a period of time converted to nautical miles, is given for each day.

FLOODING

Data on floods that have occurred in the area before 1970 have been reported by USGS and the Bureau of Geology/FDEP. Frequencies for mean annual and specific return-period floods for the main stem

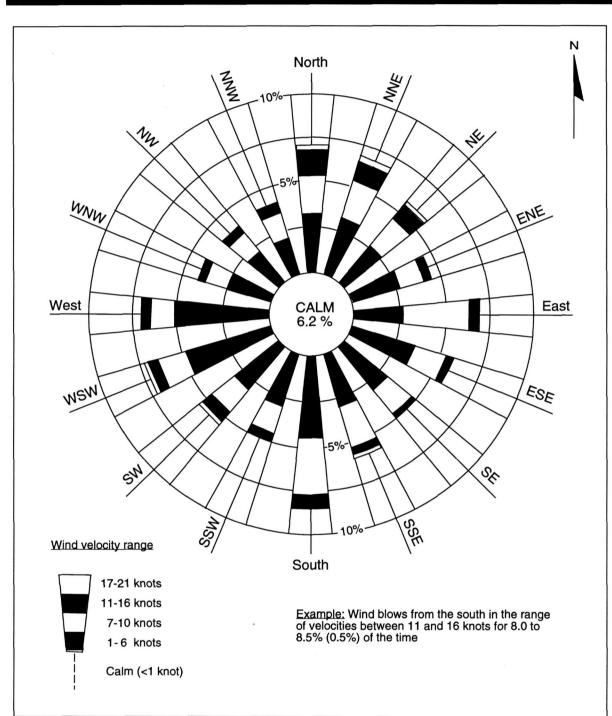


Figure 3.8 Wind rose, Naval Air Station, Jacksonville, Florida, 1973–77

St. Johns River Water Management District

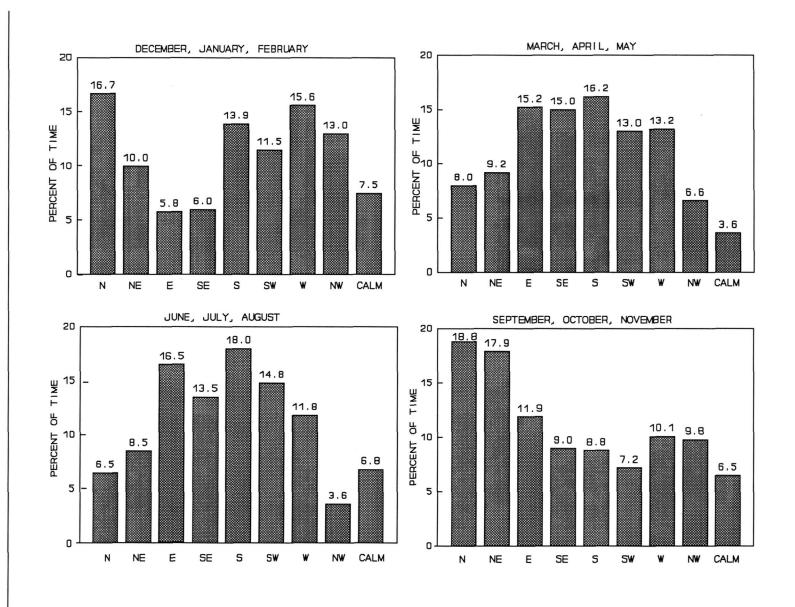


Figure 3.9 Seasonal wind frequency, Naval Air Station, Jacksonville, Florida, 1973-77

Water Surface Elevation

are reproduced from a USGS report (Snell and Anderson 1970, 15, Figure 4, attributed to Barnes and Golden 1966). Flood stages from De Land to the south are shown in Snell and Anderson's Figure 10. Near De Land, the annual flood was 3 ft, the 5-year flood was 4.5 ft, the 10-year flood was 5 ft, and the 30-year flood was 8.5 ft above MSL (Snell and Anderson 1970, 15–23).

Flooding has occurred in both urban and non-urban locations in the LSJRB, including Jacksonville (FDNR 1970, as quoted in SJRWMD 1977, D-40). Flooding may be caused by excessive water levels due to tide, wind, heavy rainfall and runoff, and/or insufficient channel capacity. The first of several "floodplain/hazard information" reports for the St. Johns River Basin was completed by USACE in March 1969 for Jacksonville (summary of publication dates: SJRWMD 1977, D-42, Table D-6). A summary of observed flood stage data for four storms from 1944 to 1964 showed that flood stage has been reached at Mayport at least three times, at the dredge depot twice, and at Main Street Bridge, NAS, and Palatka at least once during the 20-year period (Table 3.8) (SJRWMD 1977, D-46, Table D-10). These recorded flood stages were reported originally by USACE from data collected up to March 1969.

Location	Recorded Flood Stage (feet)				
	Oct 1944	Oct 1950	Mar 1962	Sep 1964	
Mayport	5.4		4.3	4.8	
Jacksonville Dredge depot Main Street Bridge		4.7		5.3 5.2	
Naval Air Station				5.8	
Palatka				5.7	

Table 3.8 Flood stages recorded at tide gages, 1944–64

Source: SJRWMD 1977, D-46, Table D-10

USACE conducted an analysis of measured water levels (which they labeled "tidal elevations") for the river and the ICW in order to

define flood elevations. Peak flood elevations were derived for the Intermediate Regional Flood (IRF) and the Standard Project Flood (SPF) for zones from Mayport to Palatka from data collected to 1969. The peak water levels expected to be produced in the main stem, calculated from the IRF and SPF analyses, are summarized in Table 3.9 (SJRWMD 1977, D-47). The IRF is defined as the 100-year

Table 3.9	Peak water levels in the St. Johns River, Mayport to
	Palatka (data to 1969)

Location	IRF (100-year) (feet)	SPF (feet)
Mayport to Eastport	6.5–7.0	8.5–9.0
N. Jacksonville (east part to I-95)	6.5	8.0-8.5
S. Jacksonville (I-95 to Doctors Lake)	6.0	7.5–8.0
Doctors Lake to Federal Point	6.0	7.0-8.0
Federal Point to Palatka	5.5–6.0	7.0

Note: IRF = Intermediate Regional Flood SPF = Standard Project Flood

Source: SJRWMD 1977, D-47, Table D-11

flood, caused by a 100-year rainfall (which has a probability of occurrence of 1% in any year). The 100-year storm has a magnitude in SJRWMD of about 12 in. The SPF is "the flood that may be expected from the most severe combination of meterological and hydrological conditions that is considered reasonably characteristic of the geographical area" (James and Lee 1971, 235). The SPF is ordinarily calculated using one-half of the Probable Maximum Precipitation, which is about 18 in. in SJRWMD.

Minimum and flood levels at sites on or near the main stem (at De Land, Dunns Creek, Palatka, and Jacksonville) are given in Table 3.10. These values can be compared to flood levels previously published (Tables 3.8 and 3.9). To complete the comparison, observed extremes of water level at Jacksonville before 1964 are included in the table. In general, it can be seen that maximum

Station	Maximum I	Daily Stage	Minimum Daily Stage		
	Date	ft NGVD	Date	ft NGVD	
De Land	10/11/53	5.97	04/02/45	-0.68	
Dunns Creek	10/30/85	2.94	01/22/91	-1.92	
Palatka	09/30/69	3.90	06/06/68	-1.46	
Jacksonville	10/00/53	6.00	02/29/84	-2.09	

Table 3.10Published extremes of measured water levels on or
near the main stem of the St. Johns River (data to
1991)

Note: ft NGVD = feet, National Geodetic Vertical Datum

Elevation reference is station (local arbitrary) datum. The National Ocean Service reports maximum stage at Mayport of 5.44 ft NGVD and minimum stage of -5.26 ft NGVD (see tides chapter).

```
Source: USGS 1991
Jacksonville (1953): Snell and Anderson 1970, 22, Figure 11
```

measured daily water levels observed to 1991 are significantly less , than those calculated using the IRF and the SPF (Tables 3.9 and 3.10).

SUMMARY OF WATER LEVELS

Water level in the St. Johns River is principally a function of the tidal stage at the mouth, the progression of the tides, the volumes of freshwater inflows and outflows, the magnitudes and directions of the wind, and atmospheric pressure. Pyatt's study of data collected from 1954 to 1957 noted the following:

- Changes in water levels depend upon the initial water level and the intensity, duration, and direction of the wind.
- Changes in water levels that are caused by runoff may affect the wind/stage relationship.

An Atlantis Scientific report on USGS data from 1954 through 1966 provides the same conclusions as Pyatt. Neither of these conclusions

nor the data have yet been supplemented or updated in the available literature.

Strong winds may cause a setup on the river banks toward which they blow. Significant wind setup may occur as a result of sustained velocities of 7 mph or more. Wind setup ranges from less than 1 to over 3 ft. However, there is a limit to the height that setup can reach, which depends on the site location, the fetch, and the intensity, duration, and direction of the wind. Wind setup can dominate over tidal heights. Changes in barometric pressure, except during extreme storms, produce MWL deviations of up to about 0.5 ft in the LSJR.

J

TIDES

As indicated in the introduction, the St. Johns River is usually influenced by the tide from the mouth to as far upstream as Crescent Lake (RM 96) and Lake George (RM 110). In an early study of the river, the extent of spring tide was reported to be as far upstream as 283 mi (De Land is located near RM 144) (Federal Security Agency 1951, quoted in Pyatt 1964, F27). These observations, however, were probably of wind-tide or wind-induced changes in water levels. In 1992, after completing a review of existing tidal data, NOS reported that tide is measurable at Dunns Creek (RM 86.5) and Welaka (RM 100) (USACE Jacksonville 1994b). At Crescent City (on the west bank of Crescent Lake [RM 102]) the tide can be detected but is masked by larger components in the measurements, and at Georgetown (RM 108) it is negligible.

Measured water surface elevations are clearly not the same as the water surface elevations that would be due to tidal forces alone. Water level measurements provide data on the combined or "total" water surface elevations. The tidal water surface elevation in these records can be extracted from the total water surface elevation by tidal analysis.

It is somewhat misleading, although a common practice, to refer to water surface elevations as the "tides" without distinguishing between the astronomic tide and the other, superimposed effects. References to "meteorological tides" or "wind tides" also can be found in the literature. Wind tides are quasi-periodic water level changes that are caused by the wind, but the periodicity of the wind is seasonal, and wind tides cannot be predicted.

The forces that generate the tides change water surface elevations, and the differences in tidal elevations cause tidal currents. Both tidal elevations and tidal currents are predictable. Because tidal currents are only part of the total flow, they are often obscured by random or non-tidal flow patterns. Tidal elevations are important because the depth of water affects aquatic ecosystems and navigation. Tidal currents are important because they can influence the types of vegetation and sessile and mobile aquatic communities that become established in the river and they can substantially reduce or increase the speed at which boats and ships can travel between different locations.

Water elevation is not a simple function of distance along the river because changes in river geometry, winds, and inflows and outflows affect the water surface elevation locally. A substantial constriction of depth or width causes the level of the flowing water in a confined channel to increase upstream of the constriction. Also, because the speed of the tidal wave is proportional to the local depth, natural decreases in depth, or shoaling, also will retard the tide.

The differences between the astronomic tidal heights, caused by gravitational forces in the sun/moon/earth system, and the measured water surface elevations that are caused by the added effects of wind, atmospheric pressure, lateral flows, and inflows and outflows are called the "residual elevations" or non-tidal water levels. The magnitude of the residual elevation is an indication of the effects of non-tidal forces and events on the river. None of the investigations in the reviewed literature, however, indicated that a residual analysis had been performed for the St. Johns River.

In this section of the report, the basic categories of tidal information are summarized, including characteristics of the tide, measurements of the tide, tidal statistics, tidal analysis, the variation of tide along the length of the LSJR, and a 1992 NOS update on tides in the river (USACE Jacksonville 1994b).

BASIC CHARACTERISTICS OF THE TIDE

The variations in water surface elevation and flow that are caused by the gravitational attraction between the earth and the sun and moon are called the tides. Although the height of tide and the time of occurrence of high and low water at a location are reasonably predictable, the flow characteristics of a river or estuary are very complex and not easily predicted.

St. Johns River Water Management District 66

Tides are classified as diurnal, semidiurnal, or mixed, depending on the fundamental periodicity. A diurnal tide has one high water level and one low water level each day, a semidiurnal tide has two highs and two lows each day, and a mixed tide is a combination of the two; the full range of combinations in between also can occur. Semidiurnal tides generally are found on open coastlines, while diurnal and mixed tides are caused by and occur within complex shorelines and embayments. The tide along the Atlantic coast and in the lower 100 mi of the St. Johns River is classified as mixed semidiurnal, where "mixed" means that the successive heights of highs and lows of water alternate in elevation.

The tide is often referred to as a wave because it is sinusoidal, it has harmonics in shallow areas, and it has repeatable and predictable amplitudes and phases, and because the associated water level elevation progresses in and out of the river or estuary at a predictable rate. The tide may not be recognized as a wave because it has a relatively long period (24.83 hrs).

Other noticeable periodicities in the tide include a semimonthly (14.76 day) cycle in which there is a set of highest peaks, called the spring tide, and a set of lowest peaks, called the neap tide. The spring tides occur in conjunction with the new or full moon, but during a month, the ranges of the spring tides alternate between a high spring and a smaller spring, as do those of the daily semidiurnal tides. The annual or seasonal variation in the tides is due to meteorological causes and seasonal variations in the orbits of the sun and the moon.

Any period of time used to describe tidal phenomena is called a tidal epoch. The principal tidal forces are periodic over an interval of time, called the Metonic cycle, that is exactly 19 years. During this period of time (epoch), all of the different phase relationships between the earth and the sun and the moon occur; the period of the regression of the lunar node, for example, is 18.61 years (Speer 1984, 55). Three 19-year epochs used for some historical analyses were the periods 1930–48, 1948–66, and 1966–84. For the LSJR, data for all three of these Metonic cycles are available only for Mayport. In November 1980, a National Tidal Datum Convention was convened to establish a continuous tidal datum system for all tidal waters of the United States. Among other actions, the convention lowered chart datum to MLLW on the Atlantic coast of the United States and updated the National Tidal Datum Epoch, previously 1941–59, to 1960–78. The National Tidal Datum Epoch is the official time period over which tide observations are taken and reduced to obtain mean values for tidal datums, such as MSL. Standardization is necessary because there are both periodic and aperiodic variations in the tidal elevations. NOS uses the National Tidal Datum Epoch for reporting MSL at Mayport (Hicks 1984, 14).

The amplitude and phase of the tide can be altered substantially by local changes in depth, positions of shorelines, and inflows and outflows as the tidal wave progresses up the river. These distortions are often evident in the amplitudes and phases of some of the harmonics of the tide, and they can be used to explain cause and effect relationships and to predict, to some extent, the effects of modifications in river geometry. The changes in water surface elevation that are caused by the tide are important as indicators of changes in water volume and flow.

Tributary Tidal Extent

Tidal influences in the LSJR extend into each tributary to the location at which the effects of channel geometry and freshwater inflows balance the energy in the tidal motion. As the freshwater inflow into a tributary changes, the extent (or head) of tide migrates upstream or downstream. This location, the "extent of tidal influence" or the location at which the tide becomes negligible under average conditions, has been estimated by USACE for many of the LSJR tributaries, although no explanation of the procedure that was used to determine these locations is given in the report (USACE Jacksonville 1986, 3–9, Table 1). BuSM/FDEP has recently implemented a comprehensive program to determine the locations of the head of tide in major tributaries of the LSJR. The BuSM definition of the head of tide is that it is the upstream location at which the mean range of tide becomes less than 0.2 ft. Interim results of this study show that some of the USACE locations of head

St. Johns River Water Management District 68

of tide may not be reliable, although the project is currently incomplete.

Tidal Currents

The same forces that generate tidal water elevations also generate tidal currents. Tidal currents can be analyzed using techniques that are comparable to those used for tidal heights. Because tidal currents are closely related to flow, they are described in the chapter on river flow. In general, the term "tides" refers to heights as well as to currents, so one must determine the meaning of the term in a particular context.

MEASUREMENTS OF TIDE

Historical Tidal Measurements

Tidal elevation measurements on the LSJR were first recorded at a C&GS station at Phoenix Park (RM 17) in 1923. Prior to the first major tidal current survey in 1933–34, the U.S. Army Engineers and C&GS conducted short surveys which were primarily related to projects for channel (navigation) improvements. The results of the first of these surveys were published in 1890 (Haight 1938, 17).

Reference and Subordinate NOS Stations

As mentioned in the previous chapter, NOS measures water levels at reference, or primary, stations and at subordinate, or secondary, stations. The elevations of reference and subordinate stations are determined by standard surveying techniques to first- or secondorder accuracy. Benchmarks have been established near the shores of the river to provide references to the established vertical network. Descriptions of benchmark locations along the St. Johns River are available from NOS and various local agencies, such as BuSM and SJRWMD, and are described in USACE Jacksonville 1994c.

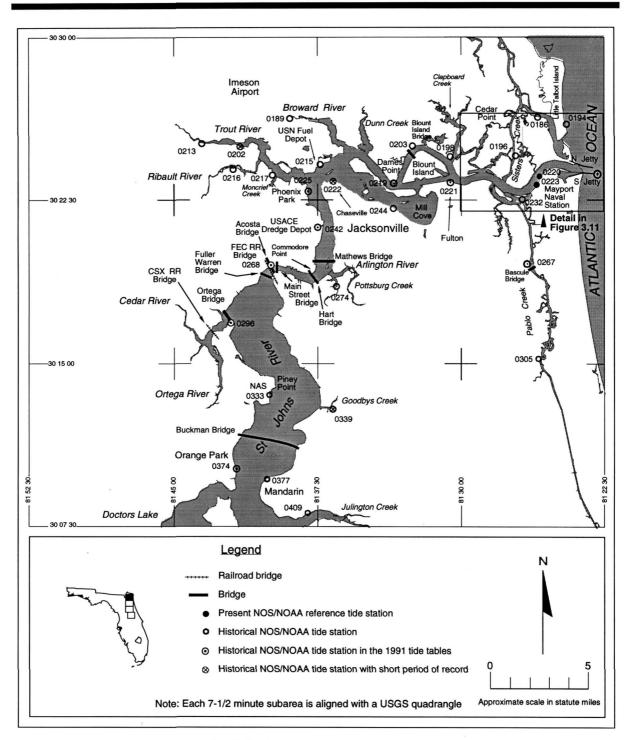
Data from the reference stations and the subordinate stations have been collected and analyzed to determine the tidal components, which are then used to predict and to publish the heights and times of the tide at those stations. These predictions, in general, estimate the total water surface elevations that may be expected when wind and freshwater inflows are negligible, which are equivalent to tidal elevations. The data used in the analyses are total water surface elevation measurements, but if the measurements are taken over a period of time that is long enough, wind and inflow effects should be filtered out of the data.

Every year, NOS publishes predictions of tidal water surface elevations at the reference stations in the United States. The tide tables also provide conversion factors from the reference station values for predictions of the height and time of tide at the subordinate stations.

Tide and Depth Datums

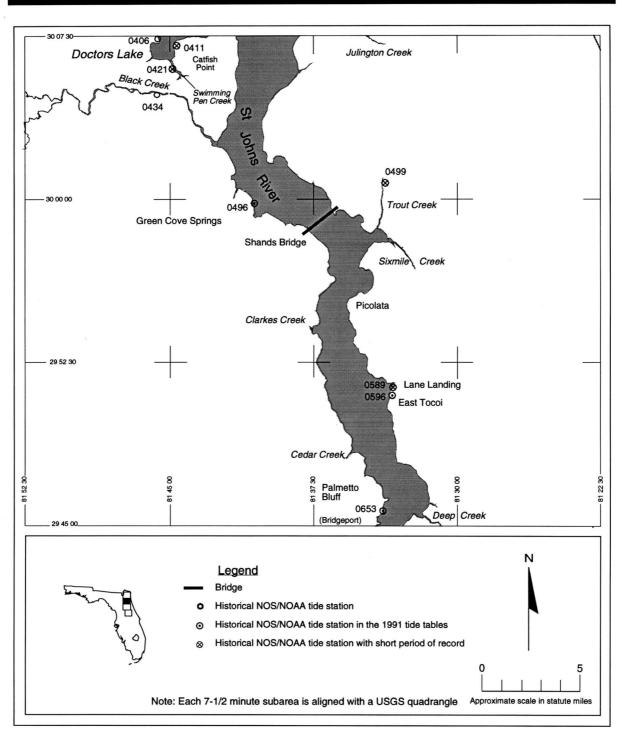
Water surface elevation measurements are referenced to NGVD. Until January 1, 1989, depth of water on nautical charts was referenced to MLW. In 1989, the chart datum and tide datum for the United States Atlantic coast were changed to MLLW. Thus, depths on nautical charts and heights in the Tide Tables published before 1989 are referenced to MLW; after 1989, they are referenced to MLLW.

NOS Tidal Stations


NOS maintains, or has maintained in the past, a total of 50 tidal stations from the mouth of the St. Johns River to De Land (see Tables D1 and D2, Appendix D). For this report, the locations of these stations were obtained initially from the NOS index of tide stations (NOS 1990a), were plotted, and were corrected to the closest shoreline. Before this volume of the reconnaissance report had been completed, NOS reviewed all of these stations and identified those for which data were acceptable. The resulting list of 37 stations (Table D1) covers the reach from Mayport to Sanford on Lake Monroe. Eight stations that are in the NOS index but are missing in Table D1 are summarized in Table D2. Although all of the stations numbered 8720877 (Georgetown) and higher are outside the LSJRB, some of these stations are included in Appendix D for completeness,

because the NOS report contains new information on almost every tidal station on the St. Johns River. The availability of data in digital form, existence of a connection to the geodetic network, availability of harmonic constants, and availability of published or issued tidal datums are indicated in the rightmost four columns in Table D1.

The locations of all historical tide stations are shown in Figures 3.10a–d and 3.11. Only two of these stations were in operation in 1994: Mayport and the Mayport backup. The historical stations were operated at various times during the period 1923–80 (Table D1). The Phoenix Park station was the first to be installed on the river, operating for over a year in 1923 and 1924. Annual predictions of tide heights and times at 15 of these stations are published by NOS using the tidal constituents collected while these stations were operating (Table D4). Stations indicated by a circle enclosing an "x" have a period of record that is too short for tidal analysis.


Tidal Data Collection

Over the years, tidal elevation data have been collected by NOS at hourly, 15-minute, or 6-minute intervals, depending on the particular station. The monitoring equipment used originally consisted of a float in a stilling well and a mechanical strip-chart recorder. This system, modified over the years with special stilling well designs, plastic floats, digitizers, solid-state memories, and electronic data loggers, provided a range of choices in water surface elevation measurement and data storage and transmission. The current system is called the "Next Generation Water Level Measurement System." It uses an acoustic ranging sensor and air column temperature sensors to correct for any non-uniformity in the sound path. The raw data on water surface elevations from this system are adjusted by NOS to the vertical datum (NGVD and NAVD 88).

Figure 3.10a Locations of NOS tide stations between the mouth of the St. Johns River and Julington Creek

Tides

Figure 3.10b Locations of NOS tide stations between Julington Creek and Deep Creek

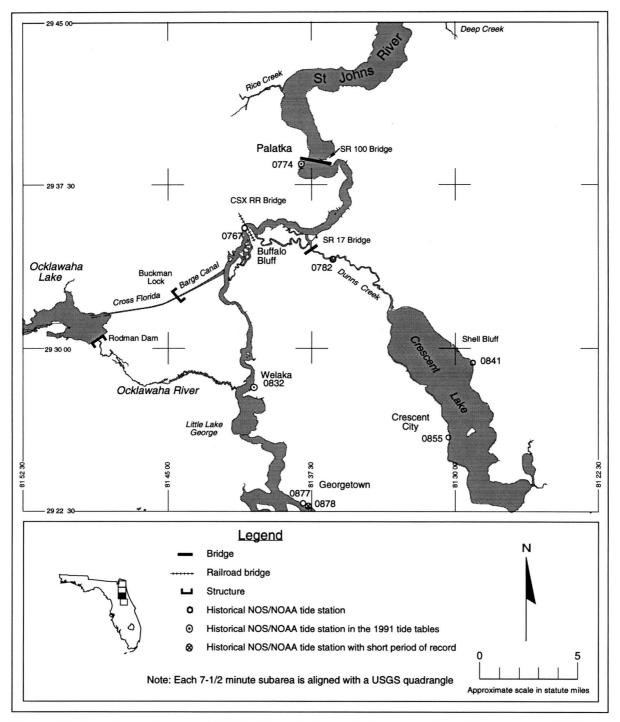


Figure 3.10c Locations of NOS tide stations between a location north of Rice Creek and Georgetown

St. Johns River Water Management District 74

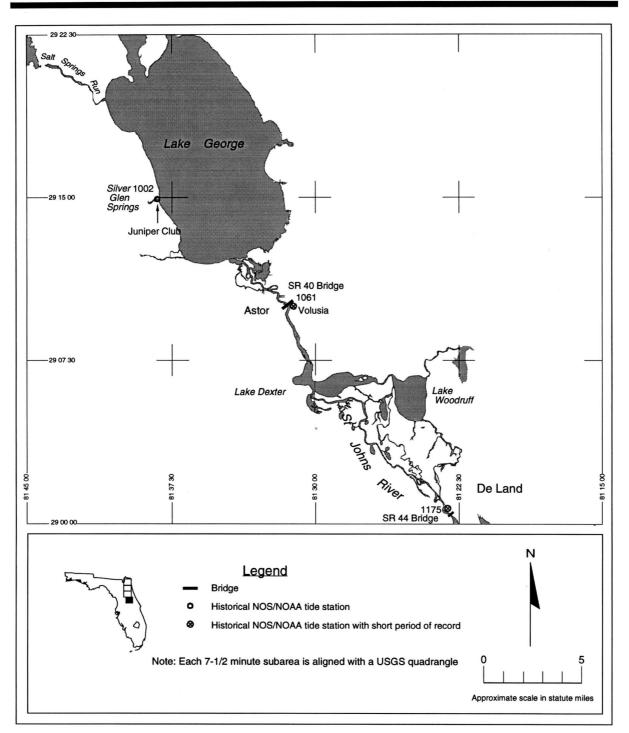
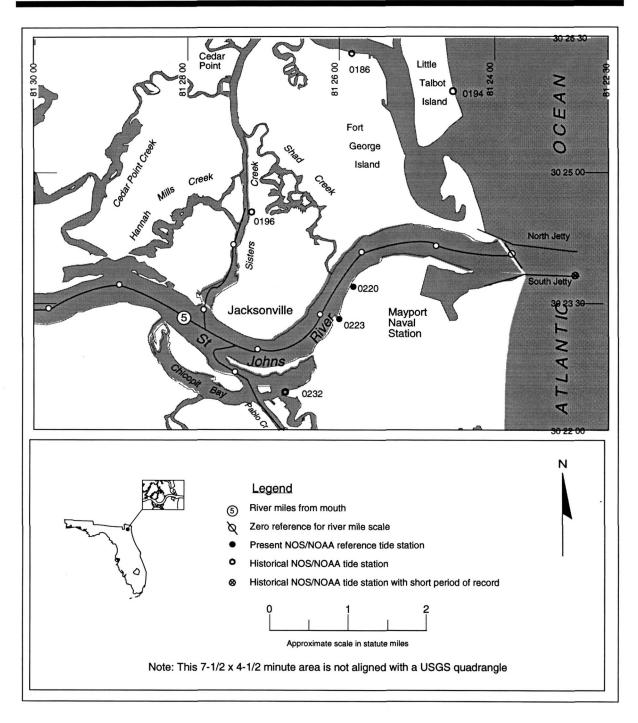



Figure 3.10d Locations of NOS tide stations from Lake George to De Land

Figure 3.11 Detailed map of locations of NOS tide stations in the vicinity of the St. Johns River inlet to Jacksonville

TIDAL STATISTICS

Mean Sea Level

MSL, as described in the previous chapter, is the long-term mean of periodically sampled water elevation measurements. The annual MSLs for Mayport, for the three most recent complete tidal epochs, are listed in Table 3.11.

Tidal Epoch	Mean Sea Level (feet) (station [instrument] datum)
1930–48	3.69
1948–66	3.82
1966–84	3.89

Table 3.11 Mean sea level at Mayport for the three most recent complete tidal epochs

Gage at USACE dock, river mile 19

Source: NOS 1993, Form 472a

Mean Tide Level

Mean tide level (MTL), sometimes called half-tide level, is the average of the heights of all measured high and low waters at a station. MLLW is the mean value of the lowest (every other) of two successive low tides. Because the curve representing the rise and fall of tide is not a simple sine wave, the average rise of high water above MSL is not exactly equal to the average fall of low water below MSL. Therefore, MTL does not exactly coincide with MSL. At Mayport, the MTL is 0.05 ft below MSL, and the distance varies progressively upstream (NOS 1991).

Statistics for Mayport Tides

The range of tidal values at Mayport were published by Harris for data collected from 1963 to 1981 (Table 3.12) (Harris 1981, 47). Since that time, NOS is the only source for published results of analyses on long-term water surface elevation data in the LSJR. Some of these statistics are available from the annual tide tables, including the relationships of MSL to MLLW for each reference station (e.g., NOS 1991) and MTL to MLLW for each subordinate station. Other statistics, such as the elevations of mean higher high, mean high, and the same for lows, also were analyzed and published by Harris (1981, 65). NOS also calculates these relationships annually.

Table 3.12 Ranges of water levels at Mayport (1963–81)

Range Type	High Water (feet)	Low Water (feet)	Range (feet)
Extreme	5.10	-5.50	10.60
Diurnal	2.49	-2.30	4.79
Mean	2.20	-2.30	4.50

Datums based on 1941-59 tidal epoch

Source: Harris 1981, 47, Table 4

Monthly Variation in Tide

During a year, water level fluctuates in response to changes in the ocean tide caused by changes in the relative positions of the sun and the moon and in response to meteorological conditions. Comparative studies of tides around the coast of North America have shown that the range of the annual variation (maximum variation from lowest low tide to highest high tide in a year) increases reasonably uniformly from Maine to Chesapeake Bay. South of Chesapeake Bay, the annual variation increases to 1.03 ft at Mayport (October), then decreases to 0.85 ft at Miami (March) (Marmer 1951, 54). Also, along this reach of the Atlantic coast, a

St. Johns River Water Management District

significant secondary maximum mean tidal height occurs in May or June, and a secondary minimum occurs in July. This secondary characteristic occurs all along the Atlantic coast.

The monthly MSL at Mayport varied from a low of -0.32 ft (NGVD) in March to a high of 0.71 ft (NGVD) in October during the 1930–48 epoch, as shown in Figure 3.12 (Marmer 1951, 53).

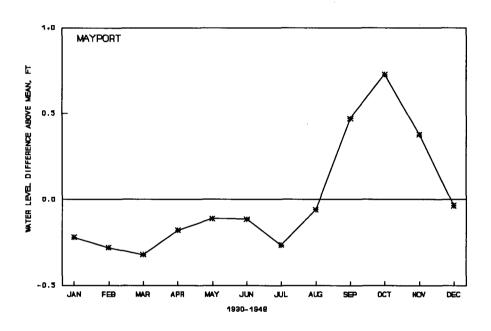


Figure 3.12 Monthly mean sea level at Mayport (1930–48) (Marmer 1951, 53, Figure 26)

A plot of corresponding NOS data for the period of record at Mayport (1930–86) shows that the secondary maximum normally occurs in June. The NOS monthly mean tides are compared to Marmer's values in Figure 3.13.

Relationships among MSL, MTL, MLW, and MLLW at Mayport

As of 1966, MSL at Mayport was 0.6 ft above MLW (Anderson and Goolsby 1973, 10). According to NOS, MSL is 2.46 ft above chart

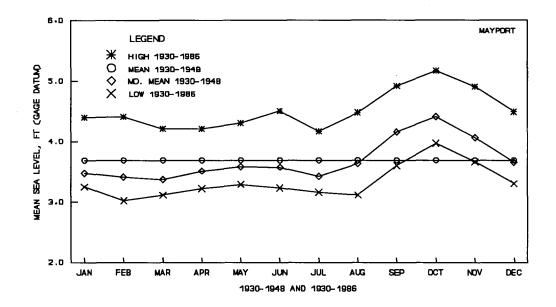


Figure 3.13 Comparison of monthly mean sea level and range for data at Mayport (1930–48: Marmer 1951, 53; 1930–86: NOS 1993, Form 472a)

datum (MLLW). A list obtained from NOS for 1989 data for Mayport provides -0.031 ft for MTL relative to MSL (NOS 1989). The 1991 tide tables (NOS 1990b, vi) give 2.5 ft for the elevation of MSL above MLLW, and the 1992 NOS analysis of tidal characteristics provides a value of 0.31 ft for MTL relative to NGVD (USACE Jacksonville 1994b). These values are summarized in Figure 3.14.

TIDAL ANALYSIS

Tidal Harmonics

The part of the water level caused by the gravitational attraction between the earth and the sun and between the earth and the moon is often called the astronomic tide. Because the relative positions of

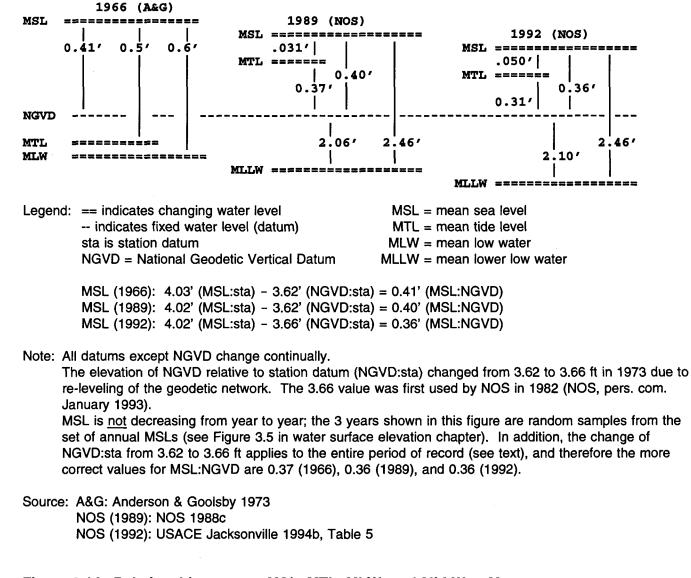


Figure 3.14 Relationships among MSL, MTL, MLW, and MLLW at Mayport

Tides

the earth, sun, and moon are well known, the astronomic tide is the most predictable of the several causes of changes in water surface elevation in the river.

The effects of the sun and the moon on water level can be expressed as a summation of a set of sinusoidal harmonic constituents, each of which has an amplitude and a phase that is associated with one of the periodicities of the sun and/or the moon. Each constituent may be written in the form

$$y = a \cos(\omega \tau + \phi) \tag{1}$$

where:

- y = height of constituent relative to a datum, usually MTL, a measure of its magnitude
- *a* = amplitude of constituent
- $(\omega \tau + \phi) =$ "phase" (the term used in the literature, different from mathematical usage) of the constituent, uniformly changing with time
 - ω = speed of the constituent, or its rate of change with time τ = time

A mathematical analysis of the sun/earth/moon system can produce the theoretical harmonic constituents for a frictionless ocean on a spherical earth with no land. The tide defined in this simplified case is called the "equilibrium tide." Constituents of the tide which are predicted from periods of record that are less than a year in length are "equilibrium constituents."

Period of Data Collection for Analysis

NOS performs tidal analyses on measurements taken (1) over as long a period of record as is available and (2) that are of sufficiently high quality to be analyzed for tidal constituents. Periods of at least 29 days, and preferably 369 days, are used for analyses of tides at subordinate stations. The 369-day period contains multiples of nearly all of the short-period constituents and is appropriate for

elimination of seasonal effects. Periods of 19 years and more are maintained for analyses of changes in MSL at reference stations.

The 29-day period—the minimum length record needed for a standard "short series"—provides enough data for an analysis of the more important constituents up to a total of 25 (Schureman 1958, 51–52). However, the 29-day analysis, based on Fourier techniques, usually produces amplitudes and phases for only 10 significant constituents, depending on the site and the resulting measurements. The remaining 15 constituents are "inferred" using the equilibrium-tide ratios of these 15 constituents to the 10 basic constituents. Alternatively, it is possible to use the ratios resulting from an analysis of a nearby station to infer the harmonics for a station. The constituents developed from the 29-day analysis are adequate for prediction of tidal elevations for most applications, including model boundary conditions.

A 369-day record is usually analyzed by a least-squares procedure, which produces values for up to 37 standard tidal constituents. NOS has found that this more accurate procedure is adequate for predicting tidal water surface elevations at most stations in the United States.

Tidal Constituents

Tidal constituents (which are also called "coefficients," "harmonic components," or just "the components") are characterized by an amplitude and a phase or time shift. Normally, tidal harmonic *analysis* is performed with a computer program that calculates the phase angles required for the particular starting date of the measurement series, using internally stored data, and then combines the sinusoidal components with the corresponding phase shifts. A reasonably accurate *prediction*, for most applications, will be obtained by using only the six largest constituents. However, in shallow waters, some of the other constituents and some of the harmonics of the fundamental constituents, called "overtides," also may be significant and should be included if available. Standard nomenclature for the tidal constituents includes the symbol "M" for constituents related to lunar motions, "S" for solar motions, and "K" for combined lunar and solar. Subscripts (or appended digits) indicate the number of cycles of that constituent that will occur in 1 day. The M_2 tidal constituent, the largest of all of the tidal components, represents the gravitational force between the moon and the earth. Because it occurs twice a day, it is a "semidiurnal" constituent. Likewise, S_2 is the major semidiurnal constituent that is caused by the gravitational force between the sun and the earth. M_{2} and S₂ interact over a period of a month to cause the variation of neap and spring tides. N₂ represents the effect of the moon's elliptic orbit, which results in the monthly perigee/apogee cycle in the tide. K₁, a "diurnal" constituent, has both a lunar and a solar component at the same frequency. K_1 and O_1 interact on a monthly basis to cause maximum diurnal (tropic) tides during the maximum declinations of the moon. K_1 also interacts with P_1 on a yearly basis to cause greater diurnal tides during times of maximum solar declination.

The M_4 constituent is the first harmonic, or overtide, of the M_2 constituent, occurring four times daily and having a period of 6.24 hr; M_6 is the second harmonic. Constituents M_4 and M_6 , also called the shallow water constituents, are produced by the friction, inertia, flow, and resonance in a given embayment or estuarine area. Table 3.13 lists the major semidiurnal and diurnal constituents, periods, and relative sizes in the open ocean and at Mayport. The change in the relative magnitudes of the constituents over the short distance from the ocean mouth to Mayport is evident, but has not yet been adequately quantified.

NOS Analysis of Tidal Characteristics Prior to 1992

NOS was funded by USACE and SJRWMD in 1990 to review the available tidal data on the St. Johns River, to summarize the tidal characteristics of the river, and to recommend any additional measurements needed. NOS produced a draft report in 1992 and delivered the final report in 1993 (USACE Jacksonville 1994b). The final report, subsequently published as one of seven volumes

Harmonic	Name of Constituent	Period	Constituent Amplitude		
Constituent		(hours)	Mayport (feet)	As Percent of M ₂ Amplitude in the Ocean	As Percent of M ₂ Amplitude at Mayport
	Se	midiurnal Constitu	ents		
M ₂	Principal lunar	12.4167	2.17	100	100
S ₂	Principal solar	12.00	0.36	47	17
N ₂	Larger lunar elliptic	12.7	0.49	19	23
K ₂	Luni-solar semidirunal	11.97	*0.11	13	5
		Diurnal Constituen	S		
K ₁	Luni-solar diurnal	23.9	0.27	58	12
0 ₁	Principal lunar diurnal	25.8	0.20	42	9
P ₁	Principal solar diurnal	24.1	0.09	19	4
Q ₁	Larger lunar elliptic	26.9	*0.04	8	2
	Lor	ng-Period Constitu	ents		104400488
M _f	Lunar fortnightly	328	*0.00	17	0
MS _f	Luni-solar fortnightly	354.37	*0.28	2	13
M _m	Lunar monthly	661	*0.09	9	4
S _{sa}	Solar simiannual	4,382.91	0.25	8	12
S _a	Solar annual	8,765.82	0.38	1	18
		Overtide			
M ₄	Second harmonic of M ₂	6.208	0.08	not applicable	4
M ₆	Third harmonic of M ₂	4.139	0.03	not applicable	2

Table 3.13 Periods and relative amplitudes of the largest harmonic tidal constituents in the ocean and at Mayport

Constituent subscripts:

 $_1$ = one cycle per day

2 = two cyles per day

 $\frac{1}{4}$ = four cyles per day

 $_{6}$ = six cyles per day

f =one cycle per fortnight (13.66 days)

 $_{m}$ = one cycle per month (27.55 days)

_{sa} = two cycles per solar year (182.62 days)

a = one cycle per solar year (365.24 days)

Source:Col. 2, 3:Pond and Pickard 1978, 201, Table 13.1; Schureman 1958, 164, Table 13.1Col. 4:NOS 1992, Table 3Col. 4*, 6:NOS 1978a, Form 444Col. 5:Foreman 1977, Tables 1–3. Values for S_{sa} and S_a are corroborated in the NOS 1992 analysis
(USACE Jacksonville 1994b, 10)M4Table 3.14a, Table D9 (Appendix D)

M₆ Figure 3.21, Table D9 (Appendix D)

DRAFT November 14, 1995

(USACE Jacksonville 1994a–g), is summarized in this chapter under NOS 1992 Tidal Analyses and Statistics (p. 98).

Before NOS undertook the 1992 analysis, the agency had performed two harmonic analyses on tidal station data of the St. Johns River: an analysis of the 365-day dataset beginning January 1, 1975, at Mayport and an analysis of the 29-day dataset beginning March 1, 1976, at Georgetown. The amplitudes and phases of the six major components for Mayport and Georgetown, as determined in those analyses, are summarized in Tables 3.14a and 3.14b (for data collected to 1989).

Diurnal Inequality

It has been stated that the tide at the entrance to the St. Johns River is "mixed semidiurnal." It is semidiurnal because it is characterized by two high waters and two low waters each day; because successive highs and lows do not have the same amplitude, it is a "mixed" semidiurnal tide.

The difference in the height of the two daily high waters or the two daily low waters in a semidiurnal tide is called the "diurnal inequality." This difference increases as the declination of the moon and, to a lesser extent, the declination of the sun increases in the direction away from the equator (Hunt and Groves 1965, 35). The diurnal inequality is caused by the interaction of the daily and semidaily constituents, which can be quantified in terms of the magnitudes of lunar and solar constituents. A formula that is frequently used for this purpose is based on the ratio (K_1+O_1) to (M_2+S_2), in which the first term represents the amplitudes of the principal daily constituents and the second term represents the amplitudes of the principal semidaily constituents. At least three slightly different classification systems for mixed tides have been proposed by Dietrich, Marmer, and C&GS; these classifications systems are summarized in Table 3.15.

The term "mixed" can be confusing, because it is used in general to describe a tide that has characteristics between semidiurnal and diurnal, which is true of nearly all tidal locations. Tide is mixed if it

Harmonic Constituent*	Mayport, Florida		Georgetown, Florida	
	Amplitude (feet)	Phase (degrees)	Amplitude (feet)	Phase (degrees)
M ₂	2.198	223.34	0.0236	172.69
N ₂	0.475	202.75	0.0031	147.39
S ₂	0.352	248.82	0.0038	277.22
K ₁	0.273	123.39	0.0163	20.27
O ₁	0.190	129.86	0.0167	50.58
M₄	0.084	196.22	0.0027	225.07

Table 3.14a The six most significant harmonic tidal constituent amplitudes and phases for Mayport and Georgetown (calculated from data collected to 1989)

*See Table 3.13 for name of constituent

Constituent subscripts: 1 = one cycle per day

2 = two cycles per day

4 = four cycles per day (first harmonic of semidiurnal constituent)

Source: Mayport: NOS 1978b (based on NOS 365-day least-squares analysis beginning January 1, 1989, with mean 2.46 feet above mean lower low water [MLLW]) Georgetown: NOS 1978 (NOS printout based on a 29-day harmonic analysis beginning March 1, 1976, with mean 1.908 feet above MLLW)

Table 3.14b Recalculation of the six most significant harmonic tidal constituent amplitudes and phases for Mayport and Georgetown (from data collected to 1989)

Harmonic Constituent*	Mayport, Florida		Georgetown, Florida	
	Amplitude (feet)	Phase (degrees)	Amplitude (feet)	Phase (degrees)
M ₂	2.17	225.3	0.02	562.0
N ₂	0.49	207.3		_
S ₂	0.36	248.6	_	_
K,	0.27	122.5	0.01	337.6
O ₁	0.20	130.8	_	_
M ₄	0.08	204.8	_	_

Source: USACE Jacksonville 1994b

Description of "Mix" of Tide	Dietrich— Expression for Calculation of Mix: (K ₁ +O ₁)/(M ₂ +S ₂)*	Marmer— Expression for Calculation of Mix: $(K_1+O_1)/(M_2+S_2)^*$	C&GS— Expression for Calculation of Mix: (K ₁ +O ₁)/M ₂ *
Semidiurnal	0.25–1.5	<0.25	<0.5
Predominantly semidiurnal	N/A	0.25–1.5	N/A
Mixed	1.5–3.0	N/A	0.5–2.0
Diurnal	>3	>1.5	>2

Table 3.15 Expression for the degree of mixed tide and calculate
--

*See Table 3.13 for name of constituents

Source: Dietrich 1963, 442; Marmer 1951, 22; C&GS in Dronkers 1964, 82

is not purely semidiurnal or diurnal. The degree of mixing has been quantified in different ways by at least three researchers using the expressions in Table 3.15. These expressions use the tidal harmonics K_1 , O_1 , M_2 , and S_2 . By substituting the values of the harmonics derived from the tidal record for a station, a value can be calculated that falls within one of the three ranges given under each expression. In Table 3.15, the tide has the degree of mixing given in the row of the first column corresponding to the appropriate range. Thus, the tide at a specific location is considered to be mixed if it falls into the "mixed" or "predominantly semidiurnal" ranges given in the table.

Using the most recently available tidal constituents, the $(K_1+O_1)/(M_2+S_2)$ ratio (Dietrich 1963; Marmer 1951) for Mayport is 0.186, and the ratio $(K_1+O_1)/M_2$ (Dronkers 1964) is 0.21. The ratios for Georgetown, from an earlier analysis, are 1.24 and 1.4. By the above classifications, the reach from Mayport to Welaka has a semidiurnal (not mixed) tide. The tide at Georgetown is either semidiurnal (Dietrich) or mixed (C&GS, Marmer). The $(K_1+O_1)/(M_2+S_2)$ ratios for many of the stations on the river are summarized in Table D9. The 1992 NOS analysis did not produce a significant value for this mixing ratio for Georgetown.

Flood and Ebb Dominance and the Shallow Water Constituents

Distortion or asymmetry of tidal characteristics in an estuary relative to tides in the open ocean results from irregular shorelines and bathymetry, especially shallow channels, and can cause significant resulting overtides. An estuary is said to be flood or ebb dominant, depending on the time duration of flow in one direction of tide relative to the other.

A flood-dominant estuary is one that has stronger flood currents and longer falling tides. Conversely, an ebb-dominant estuary has stronger ebb currents and a longer period of rising water. Such asymmetries in amplitudes and phases of the tides occur because the offshore tide tends to become distorted in the inlet by asymmetries in the geometry of the inlet, as well as by asymmetries in shorelines and bathymetry elsewhere in the estuary. Flood and ebb dominance are important because flood-dominant estuaries tend to import sediment (if the supply is sufficient), while ebb-dominant estuaries tend to flush out sediment. The degree of this non-linear tidal distortion in an estuary is indicated by the ratio of the amplitudes of components M_4/M_2 and the relative phases. An M_4/M_2 ratio of zero indicates an undistorted tide. If M_4 leads M_2 by 90 degrees, the estuary is flood dominant (Speer 1984, 58).

At both Mayport and Georgetown, the amplitude of the M_4 constituent is almost an order of magnitude less than M_2 , indicating relatively little distortion. The LSJR is an ebb-dominant river. Flood and ebb dominances are described in more detail in the chapter on river flow.

TIDAL PREDICTIONS

Predictions of each daily high and low tide for each reference station in the tide tables, in terms of feet above chart datum (MLLW) and time, are published by NOS each year. The 15 stations for which predictions are provided in the 1991 tide tables are listed in Table D4 with high- and low-water time differences, height ratios, mean and spring tide ranges, and mean tide elevations.

Tidal Elevation Frequency Distributions and Probability

Tidal probabilities can be calculated from either measured or predicted values of water surface elevations, as long as the datasets are long enough. The longer the dataset, the less the analysis will be influenced by winds and non-tidal flows. If the probabilities are calculated from measured values, they will include the effects of wind, rainfall, and the other climatic factors that have occurred during the period of measurement and that have not been filtered out of the dataset. If, on the other hand, the probabilities have been calculated from predicted values, which have in turn been calculated from tidal constituents that were derived from long datasets, then the random climatic factors should be relatively insignificant.

Probability tables and graphs can be used to answer such questions as (1) What is the probability that high tide will exceed a certain height? (2) What is the highest water surface elevation that has a probability of occurring in any year? and (3) What is the probability that the water surface elevation will fall between one value and another? Examples of such calculations are described by Harris (1981, 76–77).

Using 19 years of water surface elevation measurements (1963–81), Harris derived the following six predicted monthly and annual means and standard deviations of water surface elevations for each NOS reference station in the United States from hourly values: daily highs and lows, higher highs and lower lows, and extreme highs and lows. The values for Mayport, shown in Harris (1981), Figure B-22c, are accurate to the nearest 0.1 ft.

Harris also used these data to develop frequency distributions for each of the stations. His graph of cumulative frequency densities for Mayport is reproduced in Figure 3.15 (1981, 201). The statistical parameters derived for the Mayport water surface elevations are arranged by magnitude and adjusted to MSL in Table 3.16. Frequency analysis has not been updated in the literature on the LSJR tides since the Harris 1981 report.

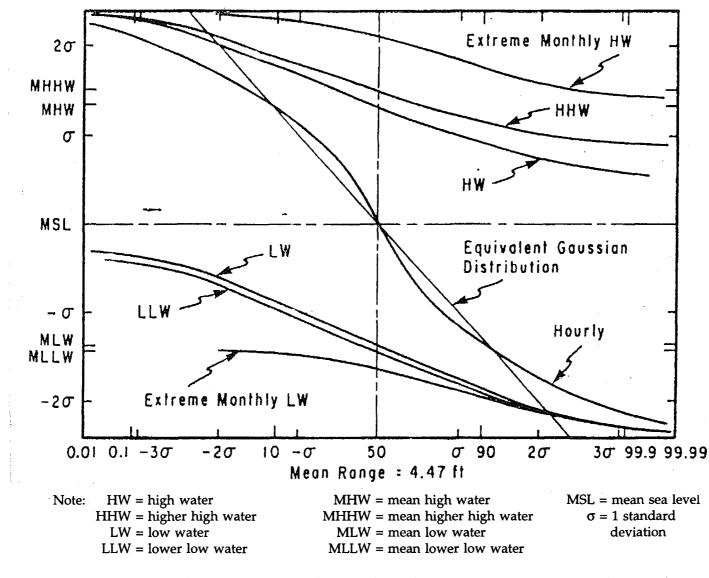


Figure 3.15 Cumulative frequency density for tide parameters at Mayport (1963–81) (Harris 1981, 201, Figure B-22b)

Tides

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Parameter	Abbreviation	Absolute Feet (MLW)	Relative Feet (MSL)
Extreme high water	EHW	7.40	5.10
2 standard deviations	2 σ	5.62	3.32
Mean higher high water	мннw	4.79	2.49
Mean high water	мнพ	4.50	2.20
1 standard deviation	1σ	3.96	1.66
Mean sea level	MSL	2.30	0.00
-1 standard deviation	-1 σ	0.64	-1.66
Mean low water	MLW	0.00	-2.30
Mean lower low water	MLLW	-0.08	-2.30
-2 standard deviations	-2 σ	-1.02	-3.32
Extreme low water	ELW	-3.20	-5.50

Table 3.16 Statistical parameters for water levels at Mayport (1963–81)

Datums based on 1941-59 tidal epoch

Source: Harris 1981, 47, Table 4

Predictions from the Tide Tables

The height ratios shown in Table D4 are multipliers that are to be applied to the daily values predicted in the tide tables for Mayport. The range of tide at each station can be calculated by multiplying both the high and low height ratios by one-half the mean range of tide at Mayport (2.25 ft) and then summing the results for each station. The variation of low- and high-water elevations in the LSJR, based on the older data in the 1991 tide tables, is shown in Table D4.

The time differences in Table D4 are the differences relative to high and low water at the south jetty, in units of hours and minutes. These differences describe the travel time of the tidal wave on flood

and ebb. These data have been updated by the 1992 NOS analysis (Figure 3.16).

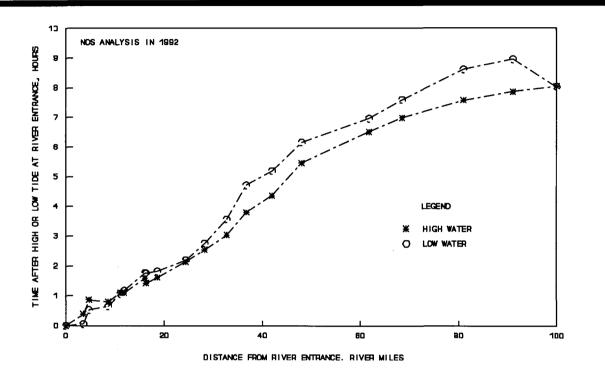


Figure 3.16 Variations in elapsed time following high or low water, from an analysis conducted in 1992 (USACE Jacksonville 1994b, 7, Figure 1)

SPATIAL VARIATION IN THE LSJR TIDE

It is important to recognize the difference between the height, amplitude, and range of tide. The *height* is the elevation of water surface relative to a datum; the *range* is the difference in height between low and high water; the *amplitude* is one-half the range.

Tide near the River Entrance

The reference station at Mayport was operated continually from 1928 to 1995. The elevation of local mean river surface relative to chart datum, MLLW, at Mayport is 2.46 ft (Figure 3.14).

The tide at the St. Johns River entrance is a mixed semidiurnal tide with alternating cycles of significantly higher and lower 12.42-hr variations. As the tide proceeds through an inlet, it is expected to undergo greater change with distance than in any other part of the river. This expectation was confirmed by NOS in its 1992 review of the tidal data for the LSJR.

The mean range of tide near the river entrance was first reported to be 4.9 ft (Haight 1938, 16; USACE 1986, 73) but has been updated to 5.49 ft (Table D5). The neap range for 1989 was 3.76 ft (NOS 1989.) The spring range was updated from 5.7 ft to 6.09 ft in the 1992 NOS tide tables (NOS 1991).

Available data for tides near the river entrance are summarized in Tables 3.17a and 3.17b. The values for the south jetty were derived from data taken over a 15-day period in 1909 and a 1-year period in 1923–24. No additional data have been taken at this site. In a recent investigation by BuSM/FDEP of the feasibility of an installation at this site, it was determined that it would not be practical either to install an instrument or to run a high-accuracy level line at this location.

The mean range of the tide for Mayport, as listed by NOS before 1992, was 0.4 ft below the ocean tide range, a value that was used in much of the reviewed literature for the river. The previously used ranges of tide at many intermediate locations in the LSJR are tabulated in the interim water quality management plan (USACE Jacksonville 1986, 3–9, Table 1).

Tide at Main Street Bridge

From March 1, 1954, to September 30, 1966, stage (water surface elevation) was measured by USGS at Main Street Bridge in Jacksonville, at NAS (8.2 mi upstream of the bridge) and at the USACE dredge depot (4.8 mi downstream). These data were used by USGS and others (Anderson and Goolsby 1973, 3–23) to determine some basic tidal means and ranges. MLW at Jacksonville was reported to be 0.6 ft below MSL (p. 10). The average tidal range at Mayport was reported to be 4.57 ft (p. 16). For this 13-year

St. Johns River Water Management District

Station Index	Station Reference Number	Station Name	Mean Range (feet)	Spring Range (feet)	Mean Tide Level (feet)
N/A	8720194	Little Talbot Island	5.4	—	_
3349		South jetty	4.9	5.7	2.6
3351	8720220	Mayport	4.5	5.3	2.4

Table 3.17a Tides in the vicinity of the river mouth, 1989

Note: Elevation datum is mean lower low water.

N/A = no index number assigned in Tide Tables — = no data available

Table 3.17b Tides in the vicinity of the river n	mouth, 1992
--	-------------

Station Index	Station Reference Number	Station Name	Mean Range (feet)	Spring Range (feet)	Mean Tide Level (feet)
N/A .	8720194	Little Talbot Island	5.49	6.09	0.53
3351	8720220	Mayport	4.51	4.92	0.31

Note: Elevation datum is mean lower low water.

A 1992 analysis of data justified values being given to two decimal places.

N/A = no index number assigned in Tide Tables

— = no data available

Source: USACE Jacksonville 1994b; Table D5, Appendix D

Source: Little Talbot Island: Brogdon & Parman 1979, 20 South jetty: NOS, n.d., Form 415 Mayport: NOS 1990b, 226

period, the monthly means of the predicted tide at Mayport over a year varied from -3.5 to 3.5 ft (p. 23, Figure 12C). Part of this latter variation is due to the fluctuation in monthly MSL.

USGS stores each water surface elevation measurement (called "unit values") but only publishes the daily highs and lows. NOS has not measured the tide at Main Street Bridge.

Tide Upstream in the River

From a relatively short set of measurements in 1963, predicted departure of daily mean tide from the annual mean at NAS (RM 31) was found to range from -0.07 to 0.10 ft (Pyatt 1964, F43). This observation includes the effects of wind setup and freshwater inflows. Another investigator reported values of -0.07 to 0.50 ft for the same elevation difference at this station (Atlantis Scientific 1976, II-10).

In a USGS report, the MLW reference is given as 0.6 ft below MSL for tides measured from 1954 to 1966 by USGS (Anderson and Goolsby 1973, 10). In the same report, the difference between the highest and the lowest monthly mean height range was 0.027 ft. The corresponding monthly mean range of predicted tide at Mayport for the same period is shown in Anderson and Goolsby (p. 23). The range of tide versus distance from the river entrance (in nautical miles), as measured in 1933 and 1934, is shown in Figure 3.17 (Haight 1938, 23, Figure 11).

Haight's data indicated that, as the tide progresses up the river from the mouth, its amplitude gradually decreases to 1.51 ft at Main Street Bridge (RM 23.8) in Jacksonville and to 0.74 ft in Orange Park (RM 36). From this point, the amplitude of tide increases to 1.09 ft at Palatka (RM 79.5). Above Palatka, the tide becomes less noticeable until at Georgetown, approximately 109 mi upstream, it becomes negligible under normal conditions (Anderson and Goolsby 1973, 9; USACE Jacksonville 1986, 73). Under conditions of very low freshwater inflow and a northeast wind, upstream flow was observed at Lake Monroe (RM 161) (Anderson and Goolsby 1973, 9).

St. Johns River Water Management District 96

Tidal fluctuations can be discerned, at least according to the individual authors, greater than 161 mi upstream in Lake Monroe

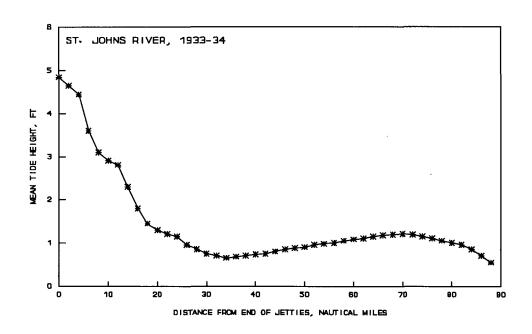


Figure 3.17 Monthly mean range of predicted tide versus distance from the river entrance (Haight 1938, 23)

near Sanford (USACE Jacksonville 1981, B-6). The USGS interim water quality report states that tidal influences are seen through most of the Middle St. Johns River Basin (Figure 1) to Lake Harney, RM 191 (USACE Jacksonville 1986, 2, 70). In an early study of the river, the extent of spring tide was reported to be as far as 283 mi upstream (Federal Security Agency 1951, quoted in Pyatt 1964, F27).

In 1968, USACE Jacksonville developed graphs showing the distribution of tides and extreme water surface elevations from the mouth of the St. Johns River to Lake George (Table D3). The estimated low tide (January 1942, 2 values), low tide of December

1956 (4 values), MLW (17 values), half-tide level (not shown; 6 values), mean high water (MHW) (16 values), minimum annual high water (9 values), and peak stage (Hurricane Dora, 5 values) in Figure 3.18.

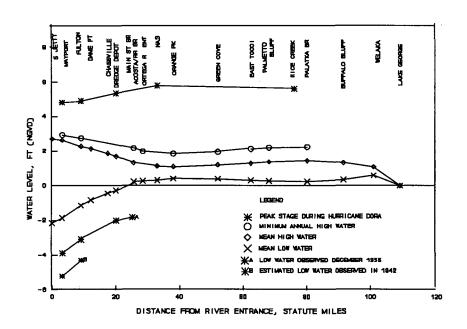


Figure 3.18 Tides and extreme water surface elevations from river entrance to Lake George (USACE Jacksonville 1968)

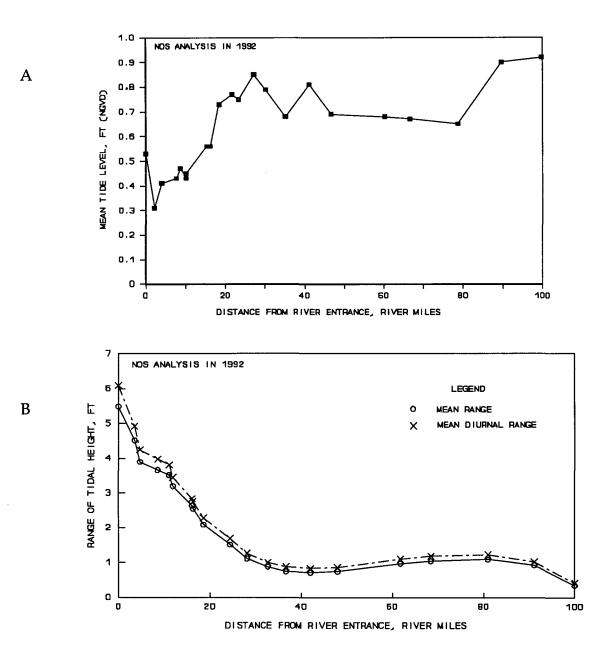
NOS 1992 TIDAL ANALYSES AND STATISTICS

In 1992, NOS analyzed all of the existing tidal data suitable for analysis and recovered as many tidal benchmarks as could be found. These tidal analyses and datum updates constitute a significant advance in understanding of the tidal characteristics of the river. NOS compared predicted and observed tidal heights and computed the associated variances at Mayport, the USACE dredge depot, Green Cove Springs, and Welaka. NOS calculated tidal datum relationships (MHW, MSL, and MLLW) at 22 stations and compared the long-term

St. Johns River Water Management District

sea level variation at Mayport and the dredge depot with flow at De Land. Significant changes in descriptions of the range of MTL (Figure 3.19, part A) and the range in height of mean and diurnal tide (Figure 3.19, part B) are documented. Finally, a summary of tidal datums and vertical control was prepared (USACE Jacksonville 1994c).

MTL changes progressively upstream from the entrance (Figure 3.19, part A). From the entrance to Mayport (RM 2.4), it decreases by 0.23 ft from 0.54 ft (NGVD). From Mayport to Dames Point (RM 10.8), it regains almost half of its height (increases 0.12 to 0.45 ft), and by the time it has reached the Ortega River entrance (RM 28), it has increased to 0.85 ft. MTL then decreases to 0.68 ft at Orange Park (RM 36), rises to 0.81 ft at Julington Creek (RM 40.5), gradually decreases to 0.65 ft at Palatka (RM 79.5), and rises again to a maximum of 0.92 ft at Welaka (RM 100.4).


Both the mean and diurnal ranges of tide from Mayport to Welaka closely follow the values previously described by other researchers. The decrease of the mean range is relatively rapid, from 5.49 ft at Little Talbot Island, to 4.51 ft at Mayport (RM 2.4), to 3.9 ft at the Pablo Creek entrance (RM 5), to 1.51 ft at the Acosta Bridge (RM 24.0), then decreases more slowly, to a minimum of 0.71 ft at Julington Creek (RM 40.5). Tidal range then gradually increases to 1.09 ft at Palatka (RM 79.5) and slowly decreases to 0.93 ft at Buffalo Bluff (RM 90) and 0.35 ft at Welaka (RM 100.4) (Figure 3.19, part B).

Statistical Update on Mayport Tides

In 1992, NOS reviewed the existing water surface elevation data in the LSJR and, for those stations with at least 29 days of reliable data, confirmed or repeated the harmonic analyses that had been performed previously. One set of results from this review is the set of mean and extreme water surface elevations for Mayport which are reproduced in Table 3.18.

In addition to re-evaluating basic tidal statistics for Mayport, the 1992 NOS analysis provides times of high and low waters, mean ranges, mean diurnal ranges, and MTLs for each of 33 stations from

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.19 Updated variations in mean tide level (A) and mean and diurnal tide ranges (B) (USACE Jacksonville 1994b; Table D5, Appendix D)

St. Johns River Water Management District 100

Elevation Designation	Abbreviation	Height Relative to Given Datum (feet)		
		Station Datum	NGVD Datum	
Extreme high water	EHW	9.1	0.44	
Mean higher high water (Sept 1964)	ннพ	6.48	2.82	
Mean high water	мнw	6.22	2.56	
Diurnal tide level	DTL	4.02	0.36	
Mean sea level (z _o)	MSL	4.02	0.36	
Mean tide level	MTL	3.97	0.31	
National Geodetic Vertical Datum	NGVD	3.66	0.00	
Mean low water	MLW	1.71	-1.95	
Mean lower low water	MLLW	1.56	-2.10	
Station datum	(none)	0.00	-3.66	
Extreme low water (June 1940)	ELW	-1.6	-5.26	

 Table 3.18
 Reference elevations at Mayport, 1992

The symbol z_o is used by NOS to designate mean sea level.

The elevation of NGVD was changed from 3.62 to 3.66 feet in 1973 due to re-leveling of the geodetic network. The 3.66 value was first used by NOS in 1982.

EHW and ELW are given to one decimal place because they are estimates. All other values are calculated from the period of record.

Source: Steve Gill, NOS, pers. com. 1995

the inlet to Crescent City and Georgetown (Table D5). Table D5 contains information comparable to the information on the subordinate stations that is listed in the tide tables (reproduced as Table D4). Differences between Table D5 and Table D4 are that in Table D5, values are listed for a greater number of stations, time intervals are relative to Little Talbot Island, spring range is labeled mean diurnal range, and MTL is relative to NGVD, not MLLW, and in Table D4, heights of highs and lows are tabulated in terms of height ratios to be multiplied by predicted heights at the reference station.

Harmonic Analyses

Harmonic analyses were performed on data from many of the 23 stations listed in Table D7. A 29-day harmonic (Fourier) analysis was performed for stations with less than 6 months of hourly height data. This analysis produced the amplitudes and phases of 10 constituents and derived the equilibrium amplitudes and phases of 15 other constituents. The amplitudes and phases of the dominant eight harmonic constituents for 22 stations are found in Table D7, Appendix D, and USACE Jacksonville 1994b, 12, Table 3, along with the amplitudes and phases of three constituents for Georgetown. The six largest tidal constituents at 21 stations from Mayport to Welaka are shown in the chart in Figure 3.20 (USACE Jacksonville 1994b).

A full set of 37 tidal constituents for 40 different locations was obtained—by 29th day, 365th day, and intermediate-length analyses—by NOS as part of the 1992 study. The amplitudes and phases of these constituents are listed in Table D8.

Astronomic Coefficients. A plot of the changes in amplitudes of the largest constituents, with distance upstream, shows the dominance of M_2 (Figure 3.20). The phases of the largest constituents are grouped separately, one semidiurnal and the other diurnal (USACE Jacksonville 1994b, 14, Figure 4). The trends in phases are noted to be relatively linear until, in the vicinity of RM 36 (Orange Park near Station 374), the rate of change of phase with distance increases (p. 10).

Constituent Ratios. Ratios of various tidal constituents and combinations of constituents also partially explain the tidal characteristics of the river. The ratios of the shallow water overtides, M_4/M_2 and M_6/M_2 , steadily increase and distort the sinusoidal shape of the total tidal curve with distance upstream (Figure 3.21). The $(K_1+O_1)/(M_2+S_2)$ ratio is less than 0.25 (semidiurnal) to RM 31 (Piney Point). Upstream of this point, the ratio increases slightly, indicating a greater diurnal effect, and returns to below 0.25 around RM 79.5 (Palatka) (Table D9; USACE Jacksonville 1994b, 6, Figure 6).

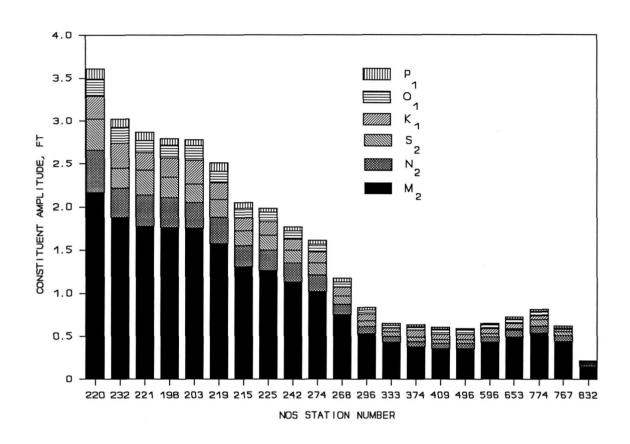


Figure 3.20 Amplitudes of the six largest tidal constituents at locations from Mayport to Welaka (see Figure 3.10 for location of stations and Table 3.14 for name of constituents) (Table D7, Appendix D)

Long-Term Constituents. Long-term data (time series longer than several years) are available only for Mayport and the USACE dredge depot. Therefore, only at these two stations could the long-period annual (S_a) and semiannual (S_{sa}) constituents be calculated. The amplitudes and phases are shown in Table 3.19.

These constituents are derived from the yearly and semi-yearly variations in the tide-producing forces but actually represent the annual and semiannual variation in MSL that is caused by seasonal variations in

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

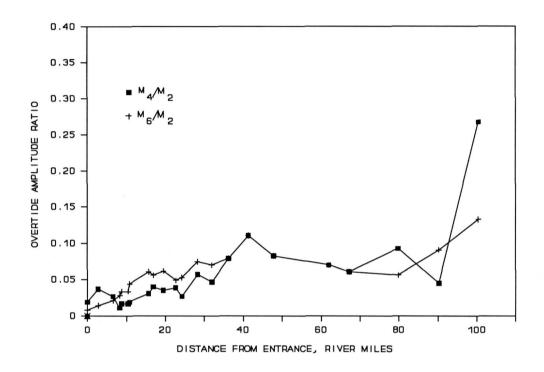


Figure 3.21 Ratios of the overtides M_4 and M_6 to the principal lunar constituent M_2 (Table D9, Appendix D)

Constituent*	Mayport		USACE Dredge Depot	
	Amplitude (feet)	Phase (degrees)	Amplitude (feet)	Phase (degrees)
S _a	0.38	190	0.38	192
S _{sa}	0.25	55	0.24	47

Table 3.19	Long-period tidal constituents at Mayport and the
	USACE dredge depot

*See Table 3.13 for name of constituent

Source: USACE Jacksonville 1994b, p. 10

rainfall, wind, barometric pressure, and river flow. Thus, each year the S_a and S_{sa} constituents provide a characterization of the wetness or dryness of the year (USACE Jacksonville 1994b, 10).

Comparisons of Predicted and Observed Tidal Elevations

Statistical uncertainty in predictions of tidal height is due to the natural variability of the river, which in turn is due to hydrologic and meteorologic changes, the limited amount of data available, and the lack of simultaneous observations. To attempt to quantify this uncertainty (i.e., the standard deviation) for the 1991 predicted tides, NOS compared the predictions with observations at Mayport and the dredge depot. It was found that predicted tides accounted for 93% of the total variability in Mayport tides and 81% of the variance in tides at the dredge depot (USACE Jacksonville 1994b, 17).

Farther upstream, the long-term constituents S_a and S_{sa} are not available. The analysis of variance at Green Cove Springs indicated that only 23% of the 13 weeks of observations of water elevation are due to tide. At Welaka, using an 8-month record of measurements, only 4% of water height observations were found to be tidal (USACE Jacksonville 1994b, 17–18).

The uncertainties of predicting hourly heights at these four stations are due to the shortness of the record of observations. NOS calculated the standard deviations shown in Table 3.20 for these stations (USACE Jacksonville 1994b, 18).

Nevertheless, NOS states that predictions of tides based on the harmonic constituents can be more precise than predictions based on the height and time corrections in the tide tables (USACE Jacksonville 1994b, 18).

Tidal Datum Relationships

The local values of MHW and MLLW are dependent on the tidal range and the elevation of MSL. In general, the differences between MHW and NGVD, between MSL and NGVD, and between MLLW and NGVD are greatest at Mayport and gradually decrease

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Station	Mean Tidal Range (feet)	Standard Deviation (feet)
Mayport	4.51	0.49
USACE dredge depot	2.08	0.44
Green Cove Springs	0.74	0.50
Welaka	0.35	0.57

Table 3.20Uncertainties in tidal water surface elevationpredictions, based on an NOS analysis of 1991 tides

Source: USACE Jacksonville 1994b, p. 18

upstream. The values reported by NOS for these differences are only preliminary, pending final processing by NGS, but follow the typical relationships for tidal rivers. It is observed that the elevation of MLLW becomes greater than the elevation of NGVD near RM 24 (Acosta Bridge) (Table D10, Appendix D; USACE Jacksonville 1994b, 20).

Long-Term Sea Level Variation

Monthly means of simultaneous observations over the 14-year period of observations from 1954 through 1967 at Mayport and the dredge depot, together with USGS flow data at De Land, were used by NOS to describe generalized seasonal patterns and variability in MSL, the mean tidal range at Mayport and the dredge depot, and mean flow at De Land (USACE Jacksonville 1994b, 26–31, Figures 8–13). The mean ranges of tide at Mayport and the dredge depot have similar seasonal patterns: for most months the ranges are relatively constant (at 4.51 ft for Mayport and 2.08 ft for the dredge depot) and both increase slightly in July and have a minor minimum in September and October. The monthly MSL patterns are also very similar, with the largest maximum occurring in October and the second largest in May and June. The lowest MSL occurs in February. The monthly mean river flow at De Land is also maximum in October, with a secondary maximum in March and April and a minimum in May

and June. There is significant variability from one year to the next in all of these statistical patterns.

The correlation between mean ranges and mean river flow and between MSL and mean river flow are poor as expected (USACE Jacksonville 1994b, 24). The MSL variations in tidal rivers are caused by a combination of effects in addition to those of the mean river flow. These effects are due to the response of the waters on the continental shelf to large-scale seasonal weather patterns, variations in wind and barometric pressure, and oceanic circulation patterns.

Long-term variations in MSL and mean range of tide were estimated from Mayport data (USACE Jacksonville 1994b, 24–25). The consistent upward trend in MSL is 0.007 ft/yr ± 0.0009 ft/yr, with a standard deviation of 0.115 ft. This trend is relative because longterm variations in vertical land movement, global sea level change, and climate cannot be distinguished in the data.

Variation in Tidal Characteristics

The river may be divided into four different sections, based on its tidal characteristics. The divisions between sections are located at Mayport, the Acosta Bridge, and Palatka.

Outside the river entrance, the range of tide decreases by 0.3 ft from a location to the north of the entrance at Little Talbot Island to a location south of the entrance near Jacksonville Beach (USACE Jacksonville 1994b, 5). Over the distance upstream from the jetties to Mayport, the tidal characteristics are quite complex. Within a 2-mi distance, the tidal range decreases from 5.49 ft at the ocean to 4.51 ft at Mayport. Over the same reach, high water is delayed by 0.4 hr, although there is almost no delay in the occurrence of low water.

In the first section of the river, from the jetties to Mayport, the range and time of tide and geodetic datum relationships all change rapidly. These changes are probably not linear, and additional tidal datum information is needed in this region to describe the change in tidal characteristics through the inlet. In the second section, from Mayport to the Acosta Bridge, changes in tidal characteristics are relatively uniform, and no additional data are needed.

From the second to the third sections, the Acosta Bridge to Palatka, changes occur in the rates of increase and relationships of the times of high and low water, the M_2 constituent amplitudes, and the harmonic constituent ratios. These changes are due in part to river shape and in part to the fact that the channel at Palatka acts as a partial reflector of tidal energy. The tides at Green Cove Springs and Palatka are fundamentally similar, and no additional stations are recommended for this section. However, additional longer datasets are needed at all of the historical stations to account for the annual variability.

In the fourth section, upstream of Palatka, the tide becomes weak as it progresses toward the location of the head of tide. The tide range at Welaka is reduced and is more complex than it is downstream; the low water curve is flatter and may contain additional tidal components. If a head of tide study is planned, NOS recommends that additional measurements be made in this area.

NOS also recommends (1) that some of the historical stations be reoccupied simultaneously for a time period of from 1 to 5 years in order to update the tidal datums and (2) that new stations be established near the entrance to define the transition of tidal characteristics from the ocean to Mayport (USACE Jacksonville 1994b, 35).

Comparisons of Tidal Ranges and Times of Occurrence

Four distributions of ordinary mean tidal ranges are compared in part A of Figure 3.22 (Haight 1938; USACE Jacksonville 1968; NOS 1991; USACE Jacksonville 1994b). The updated values are presumed to be more accurate because they incorporate a few longer periods of record as well as harmonic analyses for each station.

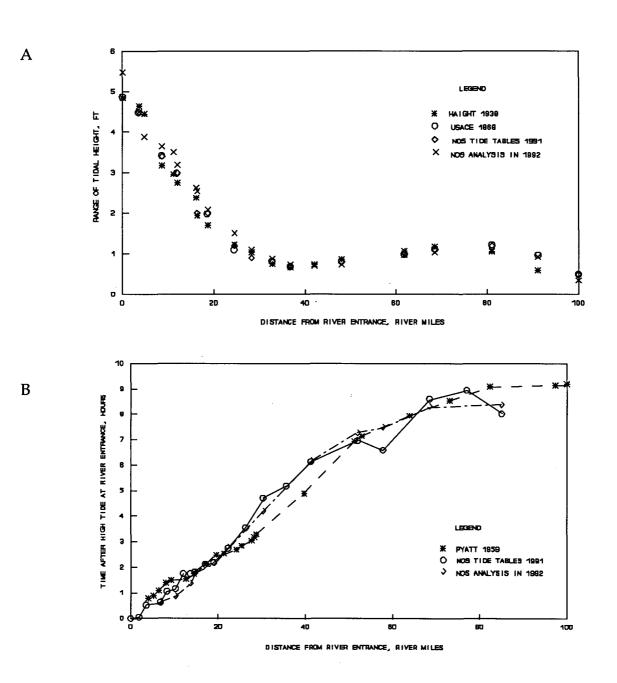


Figure 3.22 Comparison of variation in ordinary mean tidal range from four sources (A), high-water time interval from three sources (B), and low-water time interval from three sources (C)

,

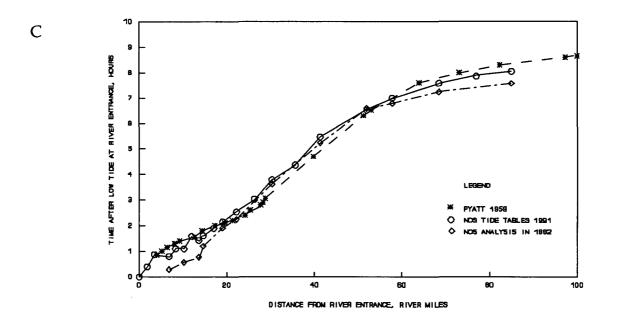


Figure 3.22—Continued

The progression of the tide as it moves upstream from the mouth of the river toward the head of tide is relatively smooth. This progression is measured by both the change in the range of the tide and the time interval of high or low water after the occurrence of the maximum or minimum water level at the mouth. The high water takes about 8 hr to progress 100 mi upstream after high tide at the mouth, and the low water takes about 9 hr to progress the same distance after low tide at the mouth. Welaka is the farthest upstream station with a persistent measured tide. The times of high tide relative to high water at the river entrance are 2.1 hr at Acosta Bridge (RM 24), 4.4 hr at Julington Creek (RM 38), 7.6 hr at Palatka (RM 76), and about 8 hr at Welaka (RM 100) (Figure 3.22 B and C). Near the river mouth, the high water time differences are greater than the low water time differences. However, near RM 10, this relationship reverses and the low water time differences become greater. This change is typical of many tidal rivers and is an indication that the tidal characteristics at some stations are not

St. Johns River Water Management District 110

symmetrical. However, the individual station tidal characteristics have not yet been studied (USACE 1994b, 5).

The duration of tide at the ocean is 6.24 hr (one-half of the M_2 tidal period). Therefore, when the flood tide reaches a location north of East Tocoi (6.5 hr, RM 61), it is changing to an ebb tide at the river entrance. This phenomenon may lead to some interesting and complex tidal characteristics that have not yet been quantified.

SUMMARY OF TIDES IN THE LSJR

Water surface elevations have been measured by USGS at several bridges and selected upstream locations at various times since 1938. The spatial variation of tidal range was first described by Haight (1938) and later by USACE Jacksonville.

The tide at Mayport has been measured since 1928. It is classified as slightly mixed semidiurnal and has a mean range of 4.51 ft, a diurnal range of 4.92 ft, and a spring range of 5.3 ft. The range of tide decreases to about 0.8 ft at a distance of 40 mi upstream from the ocean and increases to about 1.2 ft near Palatka. Tide has been measured by NOS at 37 stations (Table D1). The ranges and high-and low-water intervals have been published for 31 of these stations (Table D5). The tide at Mayport has a small, but measurable, M_4 overtide which fluctuates, with an overall increasing trend, upstream, to a maximum value at Welaka. The M_6 overtide is also significant, although much smaller. Overtides, or shallow water constituents, indicate that there is distortion in the amplitude and phase of the tide wave, caused by changes in geometry and friction over the length of the river.

Water surface elevation statistics (including MSL, MHW, higher high water, and extreme high water and the corresponding lows) have been evaluated using all data available to 1992. Predicted times and heights of tides at 15 of the stations, 14 of which are calculated from the tide at Mayport, are published annually (Table D4). Maximum flood and ebb tidal currents at 16 stations are also predicted and published annually (Table D6). Tide elevation frequency distributions for Mayport tide were published in 1981 for 19 years of data (1963-81).

WATER STORAGE

WATER BALANCE IN THE RIVER

The balance of water in the LSJR—the hydrologic water balance or water budget—is an accounting of all of the inflows, outflows, and internal changes in storage over a certain period of time. USGS (1973) described eight basic factors that affect these volume changes. The five inflow factors were described as downstream flows from De Land and inflows from tributaries (the Middle St. Johns River Basin), upstream flow (from the ocean), inflow from intervening tributaries, inflow from ground water, and direct rainfall. The three outflow factors were upstream flows (into the Middle St. Johns River Basin), downstream flow from Jacksonville to the ocean, and direct evapotranspiration. The USGS report stated that if the interaction of these factors is such as to increase storage, the volumes and durations of downstream flows will be decreased and the volumes and durations of upstream flows at Jacksonville will be increased. Likewise, if these factors interact to decrease storage, downstream flows will be increased and upstream flows will be decreased (Anderson and Goolsby 1973, 18).

STORAGE VOLUMES

A significant part of the volume change in the LSJR is due to the amount of water pushed in by ocean tides. USGS concluded that much of the stored volume consists of ocean water and the mixed salinity waters already in the river, and much of this water flows out to the ocean on the ebb tide (Anderson and Goolsby 1973, 1).

The channel above Jacksonville is capable of storing large amounts of water (Anderson and Goolsby 1973, 1). USGS quantified the storage of water in the reach between Jacksonville and De Land using data from March 1954 to September 1966. For 6 of these 12 years, storage in the estuary increased, and for the other 6 years it decreased, but not in alternate years. The monthly change in storage and the estimated monthly difference between direct rainfall and

evapotranspiration are shown in Figure 3.23a. The monthly change in MSL is shown in Figure 3.23b. Considered together, these figures show a relationship between MSL and storage.

From January through June, average storage increased as rainfall increased through the spring (Figure 3.23a). At the same time, average sea level at Mayport decreased to the lowest value in its annual cycle (Figure 3.23b). During this period, freshwater inflow and storage were so low that there was a tendency for ocean water to penetrate farther upstream. There was a minor peak in sea level in May or June, and after a low in July, there was a major peak in October. This annual cycle of rise in sea level tends to hold the river outflow back in proportion to the difference between freshwater head upstream and the ocean level. The average freshwater input was greater than the average freshwater output, due to the increased backwater effect of the ocean tide and the fact that average rainfall was greater than average evapotranspiration.

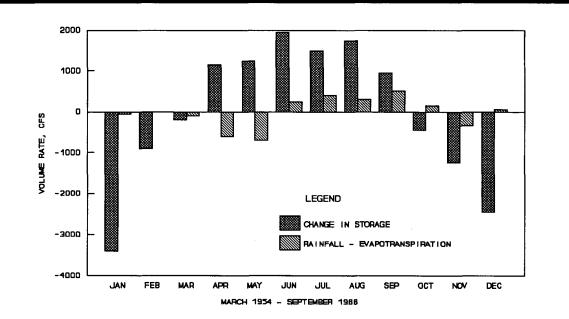


Figure 3.23a Average monthly volume storage rate of the main stem and rainfall minus evapotranspiration, March 1954–September 1966 (Anderson and Goolsby 1973, 19, Figure 10a)

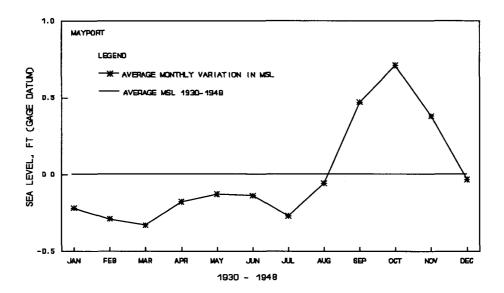


Figure 3.23b Corresponding average monthly variation in mean sea level (MSL) from average MSL for the period 1930–48 (Anderson and Goolsby 1973, 19, Figure 10b)

During July, freshwater inflow increased so rapidly that storage increased despite a small decrease in sea level. From October through March, freshwater input showed a general decline along with the annual decline in sea level, resulting in increased net discharge at Jacksonville. USGS found that in April and May the storage increased by about 1,250 cfs, even though evapotranspiration exceeded rainfall by about 700 cfs. On average, only three-fourths of the water coming into the river during April through September was discharged at Jacksonville. The remainder was stored and released from October through March (Anderson and Goolsby 1973, 20). USGS also stated that this backwater effect occurs in other months in very dry years, whenever the freshwater head is less than the ocean surface level, forcing seawater to flow upstream into storage (Anderson and Goolsby 1973, 18–21).

USGS (1973) concluded that most of the time during the study period (1954–66), storage in the estuary (and the net flow at Jacksonville) was affected more by freshwater inflow and outflow

than by rainfall and evapotranspiration. USGS also concluded that the long periods (greater than 6 months) of average net upstream flow at Jacksonville were more a result of the coincidence of low storage and the start of annual rise in sea level than a result of evapotranspiration over rainfall (Anderson and Goolsby 1973, 20).

TIDAL PRISM

Intertidal storage in a river is frequently described in terms of the *tidal prism*. This term describes the volume of water exchanged with the ocean over a half tidal cycle and is always less than the total storage in the river. In situations where the type of tide is mixed, as in the St. Johns River, the tidal prism is different in each succeeding tidal cycle. In the NEI, the tidal prism of the St. Johns River is given as 1,880,000,000 cubic feet or 0.0128 mi³. This value can be calculated from the NEI values by multiplying river length (123 mi) by mean width (2.3 mi) by a mean tidal range of 0.24 ft. However, a more accurate tidal prism can be calculated for 120 RM by dividing Connell's mean segment volume (Figure 3.2, part C) by mean segment depth (Figure 3.2, part B) and multiplying the result by tidal range (linearly interpolated for each channel from Table D5). This calculation results in a tidal prism of 0.036 mi³, which is almost three times the volume given in the NEI.

A paper by Brun (1960, referenced in Atlantis Scientific 1976, II-7), estimated that the freshwater discharge is only 6% of the maximum value of tidal flow (i.e., maximum tidal flow is about 17 times the freshwater discharge), and the total freshwater discharge during half tidal periods amounts to about 9.2% of the tidal prism. A report by USACE gives the average tidal prism, or volume flow on flood or ebb, at approximately 44,000 ac-ft at Jacksonville and 90,000 ac-ft at the river entrance (USACE Jacksonville 1981, B-7). These values are equivalent to 22,000 and 45,000 cfs, respectively, for a half tidal cycle.

GROUND WATER EXCHANGE

Evidence exists of ground water seepage into and out of the LSJR. Conductivity, for example, is at a minimum between Black Creek (RM 45) and Shands Bridge (RM 50) and increases moderately upstream, indicating the likely presence of mineralized inflows from springs upstream. This discharge quantities and conductivity of several springs upstream of the LSJRB, as monitored by USGS, are significant. In addition, a substantial volume of ground water is pumped from the Floridan aquifer system for agricultural irrigation. This water is high in dissolved chlorides. Occasionally, river water can be exchanged to the surficial aquifer system if upland ground water tables are sufficiently depressed below normal levels. The variability in the amount of ground water exchange, unknown at present, is probably an important component of the LSJR water budget.

An estimate of the net upward leakance from ground water into the river was made by USGS for Phase 1 of the Feasibility Level Cost Share Agreement (USACE Jacksonville 1994d). USGS found that, for WY 1990 (a relatively dry year), the net (upward) leakance was 82 cfs. The net annual leakance was estimated to be about 127 cfs under more normal conditions.

SUMMARY OF STORAGE

It is sometimes simpler to describe the dynamics of the river in terms of changes in storage because this variable deals with overall volume changes and not with local changes. Note that there are two general causes for a change in storage in the LSJR: (1) increase or decrease in direct inflow or outflow and (2) the "backwater effect" caused by the tide or seasonal change in sea level at the entrance.

It would be useful to divide the river into segments and calculate a water budget for each of those segments. This calculation can be accomplished in the future when descriptions of the hydrology of each subbasin have been completed. Without such an effort, changes in volume are not particularly useful for describing river dynamics.

RIVER FLOW

River flow is described in two chapters in this report. This chapter focuses on general concepts, historical observations, measurements and calculations of flow, discharge and drainage area relationships, new estimates of the partial inflow at the upstream boundary, comparison of flow at Jacksonville and Palatka, differences among tidal, non-tidal, and total flows, and effects of wind and coriolis acceleration on flow. The next chapter, flow statistics, summarizes statistics calculated from the flow-related measurements.

INTRODUCTION

The magnitude of flow in the river is a measure of the rate at which volumes of water move. To answer questions that deal with overall river management issues, it is necessary to know the spatial and temporal variation of flow under a variety of circumstances and for the natural range of hydrologic events. Flow distributions are needed for describing the rate of mixing of fresh and salt water and the spreading and fate of pollutants.

The total flow in the river is the volume of water moving at a cross section in the river over a period of time (units of volume divided by time). The flow generally increases proceeding downstream as tributaries join the main stem. Flow can be treated as an instantaneous quantity, but more often it is expressed as a timeaveraged quantity. The term "discharge" (units of velocity multiplied by cross-sectional area) has been used for quantifying the amount of water flowing into another flowing mass of water, but now it also is commonly used for volume flow in the downstream direction. "Current" is the horizontal movement of water at a point or in a confined area, with units of distance divided by time. "Speed of current" is the magnitude of the velocity of the flow; "strength of current" is the maximum velocity of a tidal flow.

In general, the movement of water in the river varies in all directions—longitudinally, laterally, and/or vertically—in response

to local forces and antecedent conditions. The predominant forces determining the total flow in the St. Johns River are the volume of water stored upstream as a result of previous activity, the flow caused by tidal forces, the amount of inflow from tributaries, the amount of direct rainfall, and the effect of wind.

The term "circulation" implies flows that are not uni-directional, sometimes referring to flows that are circular, or eddying, caused by tidal or other forces. Circulation is sometimes used as an allencompassing term for all of the flow over an entire water body. "Secondary" flows are any that are not the predominant flows, such as the lateral components of current in a bend or horizontal or vertical eddies.

There are several different ways to label the flow and the components of flow, in a tidal river: total discharge, net discharge, upstream and downstream flow, tidal flow, non-tidal flow, net flow, flow in different layers caused by local density gradients or wind, secondary flows, etc. Other types of flows, such as freshwater inflows from the basin and from the aquifer, also need to be quantified. Discharge, as well as flow, has units of volume divided by time; occasionally, constant flow is assumed and units of volume are used for discharge. The term "volume rate" is used sometimes to emphasize the time-dependent nature of flow. "Net" flow is the difference between flow in one direction and flow in the opposite direction.

The non-tidal flow in the river is that part of the flow not caused by tidal forces. The non-tidal flow is due principally to wind and freshwater inflows and outflows. Other non-tidal inflows of significance are large industrial and treatment plant discharges. The terms "net non-tidal flow" and "residual flow" are conventionally used to describe the difference between upstream flow and downstream flow averaged over a number of tidal cycles.

As stated in the chapter on tides, the St. Johns River is affected by tides and tidal currents at least to Crescent Lake (RM 95). Several reports have used 110 mi as the ordinary limit of tide (USACE Jacksonville 1975, 4) and the extent of the LSJRB (USACE

St. Johns River Water Management District 120

Jacksonville 1986, 2). A tidal influence has been reported as far upstream as Lake Monroe (RM 162), but this occurrence was more likely the result of wind.

The discharge of the river depends on the water balance. The monthly average net flow in a tidal river is upstream or downstream, depending on whether the sum of freshwater inflow and rainfall is less than or greater than evapotranspiration, respectively, plus or minus the change in storage.

The flow in the river depends on the amount of water in storage in the river and the relative magnitudes of inflows, outflows, and climatological forces (primarily wind and pressure). When the net freshwater inflow is positive, the duration and volume of downstream flows in the LSJR tend to increase, while the duration and volume of upstream flows tend to decrease (Anderson and Goolsby 1973, 15).

The reader should be careful to distinguish between net flow, tidal flow, total flow, and discharge in the literature on the St. Johns River. When the flow terminology is not explicitly stated, the source of data and the associated analysis usually provide the necessary information to indicate which term is being used.

HISTORICAL OBSERVATIONS

The first series of current measurements in the river was taken by the U.S. Army Engineers at various times "in connection with projects for improvement of the channel" and a few surveys by C&GS hydrographic parties reported in 1890, 1891, and 1910 (U.S. Army 1890 and 1891, as reported in Haight 1938, 17). During the winter of 1933–34, C&GS conducted an intense survey of currents consisting of (1) a set of 3-day observations at 35 locations and (2) a 15-day continuous set of measurements of currents between the jetties. Currents were measured using current poles (15-ft weighted sticks floating with 1 ft exposed above the surface) and Price current meters (Haight 1938, 17). Some of the results of these measurements were as follows (statements have been reorganized here for emphasis):

...the time relation of current to local tide varies...along the river.

In the lower portion...the strengths of flood and ebb occur near times of high and low water respectively.

Above Jacksonville the current becomes rapidly earlier with respect to the local tide...

...fifty miles from the sea the strengths of these measurements of flood and ebb precede the high and low waters by about 3 hours, the slack waters occurring near the times of the highs and lows.

Advancing up the river the current occurs later and later with respect to the tide, and at a distance of 85 miles from the sea the strengths again come at about the times of high and low tide, which is the same relation that exists at Jacksonville. (Haight 1938, 24)

In 1944, the City of Jacksonville and the Bureau of Sanitary Engineering, Florida State Board of Health, undertook a sampling program in the river which included water levels, currents, and water quality. The measurements were conducted in May and June 1945 in the main channel and from August 1945 to May 1946 in major tributaries. The results were reported in a dissertation by Pyatt (1959), which resulted in a USGS water supply paper which included data from a 1954–57 study by Wolman and Geyer (Pyatt 1964). The following results were reported:

- Current effects "were considerably more erratic than the variations in the tidal range" (p. F45).
- Looking "in the direction of prevailing flow, the higher velocities occur on the right and the current turns first on the left," an indication, to the author, of a significant Coriolis acceleration (p. F44).
- "From Mayport...to Jacksonville...the current ranged from 1 to 3 kn [knot] and was generally less than 1 kn and affected by wind above Jacksonville" (p. F45).

FLOW MEASUREMENTS

The total flow in a channel is difficult both to measure and to calculate. The traditional method for calculating uni-directional (non-tidal) flow in rivers is to measure the velocity components on a cross section, multiply these velocities over each area element, and sum the resulting unit flows. In a reversing tidal flow, this method is very difficult to use because of limitations on positioning the instruments on the cross section, the threshold of low-flow detection, and the difficulty in indicating the direction of flow. Attempts to simplify the process by continually measuring velocity at the location of the mean flow are even more difficult, because the location of the mean flow tends to migrate during the tidal period. The results of other methods, such as the USGS moving-boat method and experiments using acoustic or Doppler transducers that integrate the flow over the entire cross section, have not been reported in the literature for the St. Johns River. For these reasons, discharge volumes cannot be assessed as accurately as other variables that can be directly measured. Some investigators, such as Pyatt and Anderson and Goolsby, developed approaches for estimating bi-directional flow from changes in water level slopes between two neighboring cross sections. These measurements were limited by the accuracy of the water level instruments, because small changes in water surface elevation are associated with large changes in flow. Such measurements are marginal, at best.

Velocity Data

The first measurements of current velocity in the river were collected by USED in 1890–91 and C&GS survey teams. These efforts involved relatively short-term observations, and results were limited (Haight 1938, 17). In 1909, USED collected data on surface-current slack times and flood and ebb durations at ten stations on the St. Johns River. No velocities were reported. These data are summarized by Haight (1938, 25, Table 1).

During the winter of 1933–34, measurements of tide and velocity in the St. Johns River were conducted by C&GS at four depths at each of 35 stations (Haight 1938, 25–27, Table 1) (Figure 3.24). These

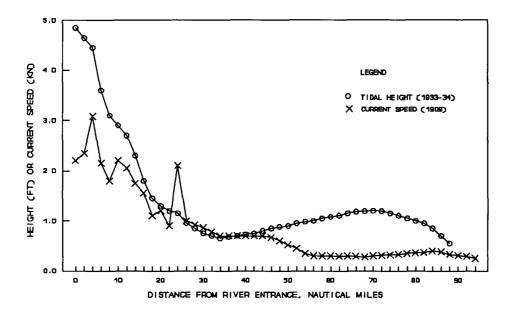


Figure 3.24 Range of tide and vertical-mean speed of current (Haight 1938)

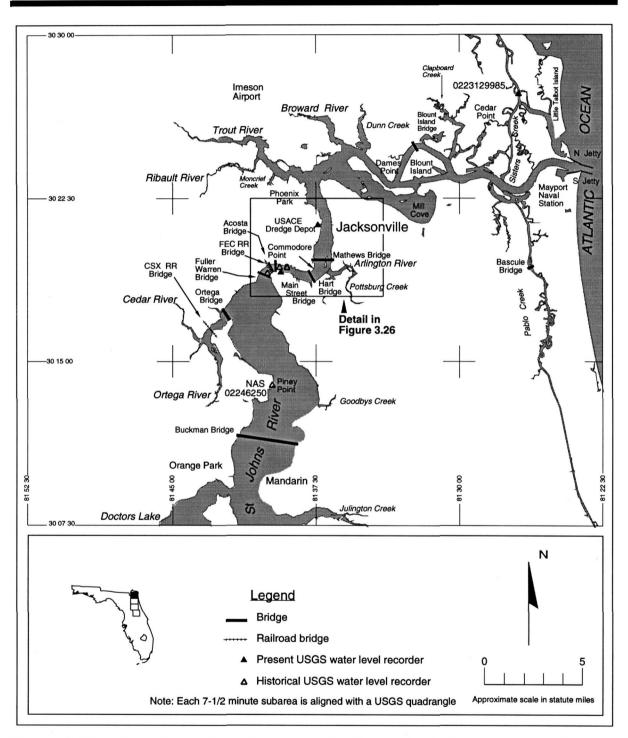
surveys resulted in the first published report on currents in the LSJR, which concluded that "Currents in the...river are...modified considerably by winds and freshet conditions" (a freshet is a rush of fresh water) (p. 17). Haight reported that north and northeast winds increase the velocity and duration of flood current and decrease the ebb; south and southeast winds have the opposite effect. Freshets, occurring usually in autumn, increase ebb and decrease flood current (p. 17). The current velocities decreased from a high of over 3 knots near the river entrance to a relatively constant low of 0.3 knots upstream of Tocoi (60 nm from river entrance) (p. 23). Haight notes the general decrease in tidal height range and current from the entrance to Mandarin (37 nm from river entrance), followed by a decrease with increasing tidal range farther upstream and a small increase in velocity with decreasing tidal range still farther upstream.

Pyatt described a comprehensive stage, velocity, and discharge measurement program conducted by USGS in 1945 involving "continuous velocity traverses" (Pyatt 1959, 14). These are most

St. Johns River Water Management District 124

likely the same measurements reported by the USACE Waterways Experiment Station (WES), Vicksburg, Mississippi. These neap, mean, and spring tide data were needed for calibration and verification of the WES physical model of the St. Johns River, which extended from the river mouth to Welaka. The strengths of flood and ebb currents at three depths at ten stations from south of Palatka to Mayport were measured (WES 1947, 7, Figure 2) and summarized at four stations by Pyatt (1959, 127). After extensive measurements of currents and salinity had been evaluated, variations of flow data were judged inadequate, and a mean freshwater discharge of 17,000 cfs was used for model verification (WES 1947, 18).

Pyatt described a subsequent project using correlation between three continuous stage recorders in the Jacksonville area and five intensive tidal cycle surveys in 1954–55. No velocities are given in the published reports on these projects (Pyatt 1959, 15–17).


The University of Florida Coastal Engineering Laboratory (CEL) measured currents in the vicinity of Baptist Memorial Hospital (near RM 25), using floats, during two ebb and two flood tidal cycles (CEL 1959). These currents, summarized in figures in the CEL report, were used to calibrate and verify a small physical model.

USGS reported that the observed time of maximum velocity at Main Street Bridge was equal to the predicted time plus or minus 2 hr, depending on non-tidal factors (Anderson and Goolsby 1973, 7, 14).

Data for Flow Calculations

Historical Flow Network. The measurement network that existed in 1977 to provide data for calculations of flow in the main stem downstream of Lake George consisted only of gages at Palatka and Jacksonville (SJRWMD 1977, D-25, Figure D-7). Tributary discharge stations, also included in Figure D-7, are described in Bergman (1992). All stations that have been used to collect data for flow calculations in the main stem, up to 1994, are shown in Figures 3.25a–d. In 1990, an AVM (acoustic velocity meter) was installed at Buffalo Bluff, near the mouth of Dunns Creek; other AVMs were installed between 1990 and 1994.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.25a Locations of stations used for flow calculations between the mouth of the St. Johns River and Julington Creek

St. Johns River Water Management District 126

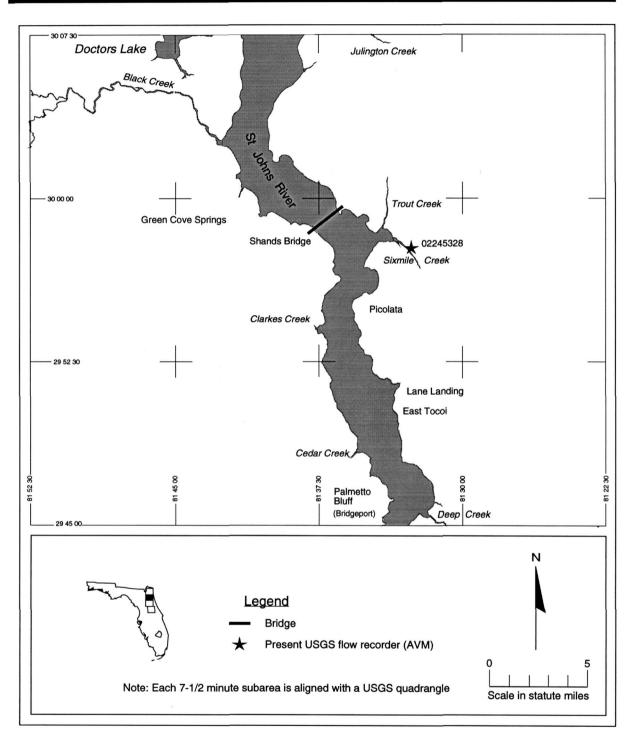
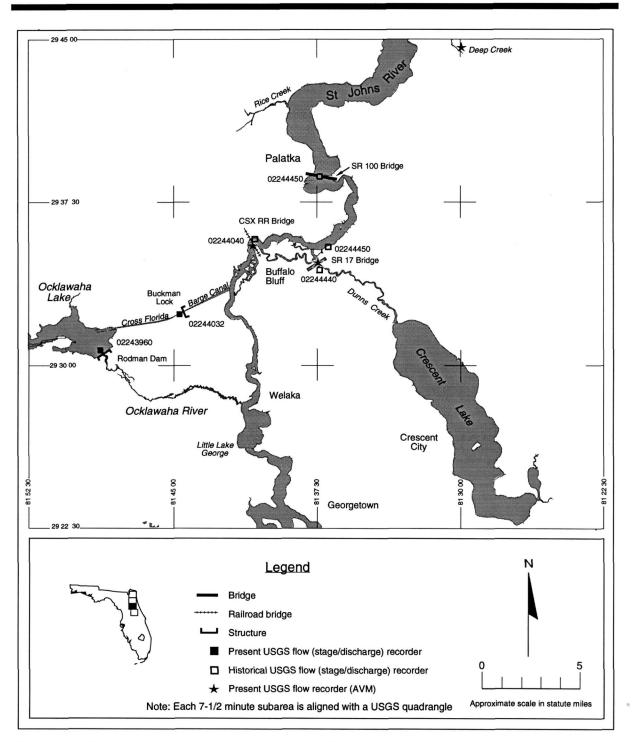



Figure 3.25b Locations of stations used for flow calculations between Julington Creek and Deep Creek

St. Johns River Water Management District 127

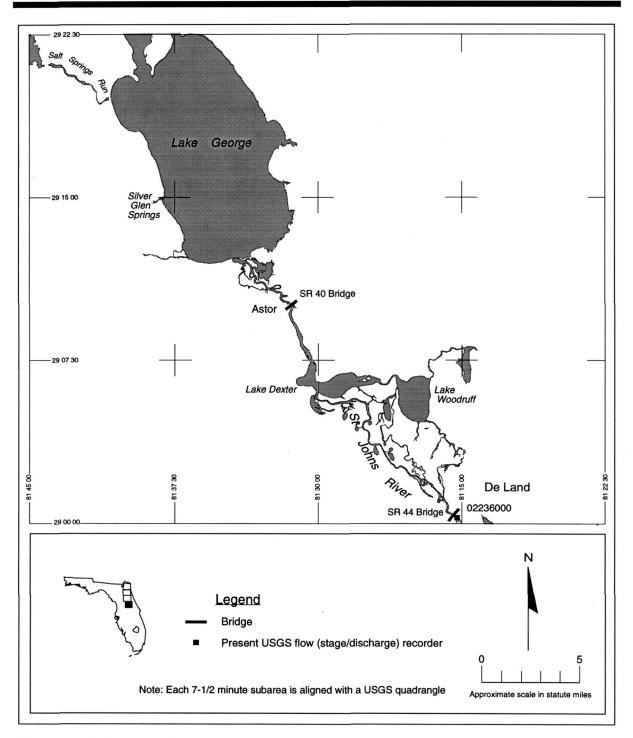

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.25c Locations of stations used for flow calculations between a location north of Rice Creek and Georgetown

St. Johns River Water Management District 128

River Flow

Figure 3.25d Locations of stations used for flow calculations from Lake George to De Land

The stations that have been established, either on the main stem or on tributaries close to the confluence with the Ocklawaha River, are described in Table 3.21. The three tributary stations are included because their data were used to calculate the summation of flow at the upstream end of the LSJRB (see "Flow at the Upstream Boundary of the Basin" in this chapter).

<u>Flow Measurements at De Land</u>. Until the USGS station at Buffalo Bluff was established, the farthest downstream, long-term station above Jacksonville was the USGS gaging station on the main stem near De Land. Published data are available for De Land from October 1933 to September 1994. As of September 1994, the mean annual flow at this site was 3,028 cfs over 61 years of record (USGS 1994). The extremes of stage were -0.59 ft (April) and 6.06 ft (October), and the extremes of flow were 3,030 cfs upstream (August) and 17,100 cfs downstream (October) (USGS 1994, 60).

<u>Flow Measurements at Rodman Dam and Buckman Lock</u> (<u>tributaries</u>). Flow gages began operation at Rodman Dam in January 1969 and at Buckman Lock in January 1970. Discharges from these structures are controlled and have been relatively small and intermittent. Means and extremes of these discharges are tabulated in Appendix E.

<u>Flow Measurements at Dunns Creek (tributary)</u>. Data for Dunns Creek are intermittently available from January 1978 to September 1986, when the stage/discharge gage and electromagnetic current meter were removed following significant data losses. In April 1989, an AVM was installed on the downstream side of the west pier of the U.S. 17 bridge; the meter was calibrated in 1992–93. Updates of some missing flow data for October 1990 through September 1993 were published in WY 1993 surface water report by USGS. During this period, the meter was modified to an AVM.

<u>Flow Measurements at Buffalo Bluff</u>. USGS installed a stage/discharge recorder on a dock on the north bank downstream of the Seaboard Coast Line Railroad (CSX RR) bridge at Buffalo Bluff and operated it from September 1943 to July 1948. In October 1989,

St. Johns River Water Management District 130

Table 3.21	Periods of record for reliable data and locations of stations used in
	calculations of mainstem flows

Station and USGS ID Number	Published Period of Record	Reporting Interval	Gage Type	Location Description	
De Land USGS 02236000	Oct 1933–Feb 1934	Month	Non-recording stage recorder	Near site of former Crows Bluff Bridge, about 1,000 feet downstream	
	Feb 1934–May 1936	Day	Stage/discharge	(same as 1933–34)	
	Jun 1936–Jul 1970	Day	Stage/discharge	0.4 miles downstream of above station	
	Jul 1970–Sep 1994	Day	Stage/discharge	Near west bank, downstream of Whitehead Bridge at State Road 44, 5 miles west of De Land	
Rodman Dam USGS 02243960	Jan 1969–Sep 1994 Day S		Stage/discharge	Upstream of structure	
Buckman Lock USGS 02244032	Jan 1970–Sep 1994	Day	Stage/discharge	Upstream and downstream of structure	
Buffalo Bluff USGS 02244040	Oct 1993–Sep 1994*	15 minutes	AVM	300 feet upstream of CSX RR bridge	
Dunns Creek USGS 02244440	Jan 1978–Sep 1986*	Day	Stage/discharge ECM	Under U.S. 17 bridge, downstream side, on west pier	
	Oct 1986–Apr 1989 [†]	Day	Stage/discharge		
	Oct 1990–Sep 1994*	15 minutes	AVM		
Palatka USGS 02244450	Jan 1968–Feb 1976	Day	Stage/discharge and deflection meter	Under U.S. 100 bridge, near center span	
	Jul 1976–Sep 1979	Day	Stage/discharge and deflection meter; velocity meter	6 miles upstream of U.S. 17 bridge, near east bank at Edgewater Light 13, 1.4 miles downstream from Dunns Creek	
	Oct 1980–Sep 1982	Day	Stage/discharge and velocity meter	(same as 1976–79)	

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Table 3.21—*Continued*

Station and USGS ID Number	Published Period of Record	Reporting Interval	Gage Type	Location Description
Jacksonville, vicinity	of Main Street Bridge-	USGS 0224650	00	
(a) Florida East Coast RR bridge	Dec 1970–Oct 1986 Jan 1979–Sep 1986	Day	StageNear center of RR bridge,Stage and0.3 miles upstream of Maideflection meterStreet Bridge	
(b) Main Street Bridge pier	Feb 1954–Apr 1966	Day	Stage recorder	Downstream side on pier, near east bank
(c) Main Street Bridge, downstream side	Oct 1986–Sep 1994	Day	Stage recorder	Downstream side, on walkway, near east bank of river, for use in the BRANCH model
(d) Fireboat dock	Apr 1966–Sep 1970	Day	Stage recorder	Southeast corner of dock, on west bank of river, 0.3 miles downstream of Main Street Bridge
(e) Jacksonville USGS 02246530 USACE dredge depot	Oct 1972–Jun 1973 Jul 1984–Sep 1994 Jul 1984–Sep 1986	Day	Stage recorder Stage recorder, then moved to Main Street Bridge	USACE dock (dredge depot), west bank, 1.2 miles downstream of Deer Creek, 5.1 miles downstream of Main Street Bridge, for use in the BRANCH model

Note: CSX RR = Seaboard Coast Line Railroad

AVM = acoustic velocity meter (with rating measurements)

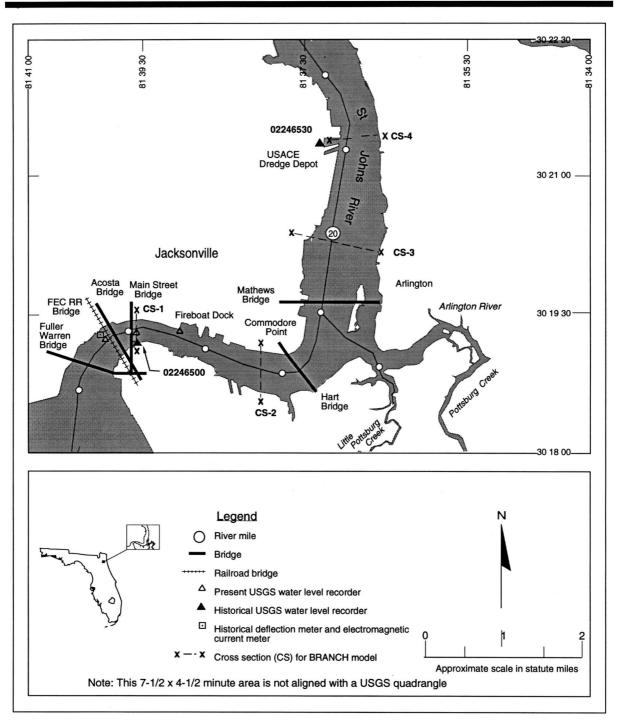
ECM = electromagnetic current meter

*Data are not available for all months in some of these intervals. See table in Appendix E for actual months in which data are available.

[†]Data collected during this period were determined to be poor and not adequate for publishing.

Source: USGS 1966, 1987, 1990

a stage recorder with shaft encoder was installed on a bridge pier on the south side of the "draw" section under the CSX RR bridge, but this station did not produce reliable data either. All of these attempts to measure flow at this site were not successful because a rating could not be developed. In the early 1990s, an AVM was


St. Johns River Water Management District 132

installed 300 ft upstream of the bridge at RM 91.5. USGS conducted tests and modifications on this gage for several years, but reliable data from this station were not published until WY 1994.

<u>Flow Measurements at Palatka</u>. Palatka area data are available from January 1968 to September 1982 except for WY 1980. A stage/ discharge gage and a deflection meter were installed near the center span under the U.S. 17 bridge at Palatka in 1967. In February 1976, the stage recorder was moved 6 mi upstream to a location near the south bank at Edgewater Light 13, 1.4 mi downstream of Dunns Creek, and data are available from this site beginning in July 1976. By October 1980, a velocity meter had been installed. However, the data collected at both of these locations were rated poor, and the upriver site was discontinued in September 1982.

Flow Measurements at Jacksonville. One location at which measurements for calculating discharges may be collected is Main Street Bridge in downtown Jacksonville (Figure 3.26). In this part of the river, some of the narrowest and deepest parts of the river are found. However, stage and velocity measurements have proven to be very difficult to translate into flows, particularly at this location. In the 1980s, one of the more promising approaches appeared to be the use of stage measurements in conjunction with the BRANCH computer model. The BRANCH, or inference, model is a branchednetwork, unsteady, numerical flow model that computes flow from differences in water level at locations separated by several miles of the river (Schaffranek et al. 1981). In 1993, the Doppler current system appeared to be the best method for future calculations of the distribution of flow over a cross section. When positioned by a boat at successive locations on a transect across the river, this system produces successive vertical profiles of velocity and vertically integrated flow at each measurement location, as well as an integrated value of flow across the entire cross section. With the Doppler system, an entire cross section can be completed in a relatively short period of time, overcoming some of the difficulties of boat measurements associated with tidal flows in the past.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.26 Detailed map of locations of gages installed in the vicinity of Main Street Bridge for measurements related to the calculation of flow

St. Johns River Water Management District 134

The first stage recorder established by USGS was on a downstream pier of Main Street Bridge, near the south bank of the river, in February 1954. In April 1966, the recorder was moved 0.3 mi downstream to the fireboat dock on the west bank. Until September 1970, total ebb and flood volumes were estimated from the data taken from these gages and auxiliary gages at Jacksonville NAS and the USACE dock (dredge depot). Initially, the lobe-area method of flow calculation was used, but this method was abandoned in 1970 because it could provide only net half-tidal flows, not hourly flows, and because it was relatively inaccurate (Hampson 1989, 31). The stage recorder was moved again in December 1970, this time to the FEC RR bridge.

A mechanical vane (deflection) meter was installed approximately at the center span on the west side of the FEC RR bridge, from which data were reported along with stage, beginning in October 1971. Vane response was rated to mean cross-sectional velocity measured at Main Street Bridge, but by 1974 it was apparent that the calculated discharges were underestimates of actual flow. An electromagnetic velocity probe was installed in January 1979, but flow was also underestimated by this device (Hampson 1989, 31). Data collection was discontinued at this location in September 1986.

In October 1972, a stage recorder was installed on the west side of the river at the USACE dredge depot to collect input data for the BRANCH model. The water level recorder located at the NAS crash boat dock, 7.9 mi upstream of Main Street Bridge, provided the other stage data for operation of the BRANCH model.

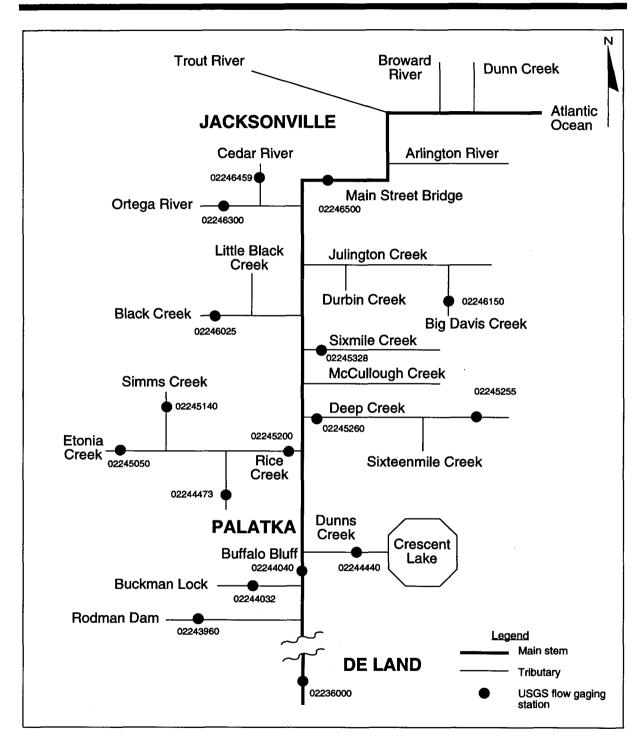
In January 1979, an electromagnetic two-axis velocity meter was installed near the deflection meter—and operated simultaneously with it—on the FEC RR bridge. Data were collected from this meter until September 1986, but no data were produced that could be used for computing discharges.

Partially as a consequence of the lack of success in calculating discharges from velocity data, an auxiliary stage recorder was installed at the USACE dredge depot in July 1984 for use with the inference model. In 1985, using the BRANCH model, USGS began to calculate discharges over the reach from Main Street Bridge to the dredge depot. The stage recorder was moved from the FEC RR bridge to a location slightly inland of the shoreline at the base of the southeast corner of Main Street Bridge in October 1986. Data have been collected from this location from October 15, 1986, to September 1994. The two cross sections in the center of the reach—about one-third mile west of Hart Bridge (CS-2) and one-half mile north of Mathews Bridge (CS-3)—were used only to represent cross sections in the BRANCH model and did not have stage recorders installed (Figure 3.26).

From October 1986 to September 1994, the only instrument installed at Main Street Bridge was a stage recorder. On November 3 and 4, 1986, the first actual discharge measurements in the LSJR were recorded, using the moving-boat method, about 100 ft downstream of Main Street Bridge (Hampson 1989, 33). In conjunction with these measurements, vertical current profiles were taken with a Neil Brown directional AVM at the mid-channel section of Main Street Bridge. Preliminary results showed that discharges computed from the electromagnetic velocity recordings were slightly shifted, temporally, relative to the results of the BRANCH model. Also, the flows from the electromagnetic probe underestimated ebb flow volume and overestimated flood flow volume relative to the BRANCH model results (Hampson 1989, 31, 33).

The published flow data for Main Street Bridge cover three separate periods: October 1971 through September 1974, October 1980 through September 1981, and July 1987 through September 1992. All of these data are considered of poor quality. Due to equipment failure, Jacksonville daily flows are not reportable from October 1974 through June 1987, except for the WY October 1980 through September 1981. Daily flows were again reported from July 1987 through October 29, 1988; December 7, 1988, through December 18, 1989; and January 25 through September 30, 1990. Inconsistencies between the various methods were apparently resolved with the publication of daily flows for WY 1991 in the USGS 1992 data report. However, as of 1994, these data were still rated "poor" by USGS.

St. Johns River Water Management District 136


1994 Flow Gaging Network. Supplementing the flow into the LSJR at De Land, major flows enter downstream of De Land from springs, the Ocklawaha River (downstream of Rodman Dam), the Cross Florida Barge Canal (downstream of Buckman Lock), Dunns Creek (Crescent Lake), and various smaller tributaries (Figure 3.27). As of 1994, only the stage/discharge recorder at De Land, the AVM at Buffalo Bluff, and stage recorders for inference modeling in the vicinity of Main Street Bridge were being maintained on the main stem.

HISTORICAL CALCULATIONS OF FLOW

Measurements of velocity at a station can be integrated to calculate total instantaneous discharge, which includes tidal flow, freshwater discharge, wind effects, and other non-tidal components. Instantaneous discharges can be summed separately over the periods of flood and ebb to obtain the total volumes of flow upstream and downstream over each half tidal cycle. If there were no net freshwater inflow or outflow, the volume of tidal flow would be the difference between the upstream and downstream volumes. If the freshwater inflow exceeds evapotranspiration, the downstream flow should increase and the upstream flow should decrease due to increasing net non-tidal downstream flow. Thus, some investigators have expected that a relationship exists in the LSJR between net flow and tidal flow.

USGS summarized the monthly mean total flows at Jacksonville, calculated from data collected between March 1954 and September 1966 (Anderson and Goolsby 1973). The graphs depicted in Figure 3.28 illustrate the analyses.

The upper plot (graph A) shows the monthly means of the total flow volume upstream (the composite of both tidal and non-tidal influences) and the same downstream, in million cubic feet. On graph A, consecutive months with net upstream flows are indicated by a filled-in area on the two lines, where the lower line crosses and lies above the upper line, while consecutive months with consecutive net downstream flow are not filled in. The second plot, graph B, shows the monthly averages of the monthly mean upstream and

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

St. Johns River Water Management District 138

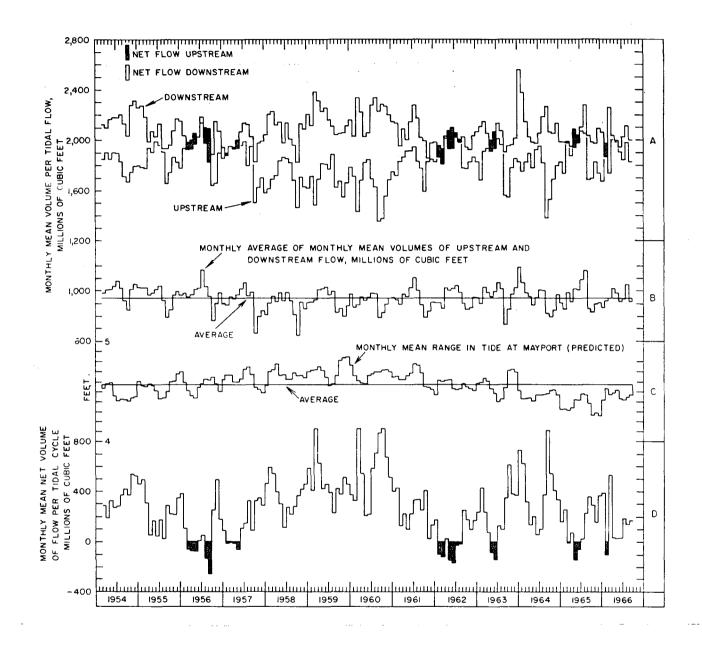


Figure 3.28Hydrographs of monthly mean flow volumes, average monthly
mean flow volumes, and net volumes at Jacksonville and the
predicted tidal range at Mayport (Anderson and Goolsby 1973, 23,
Figure 12)

downstream flow volumes in the first graph, which represents the tidal part of the flow because non-tidal effects tend to cancel over a full tidal cycle. The lower graph, D, summarizes the monthly mean net volume of flow (the averages of the differences in the monthly mean volume of upstream flow and the monthly mean volume of downstream flow) at Jacksonville, which represents the net non-tidal flow because the effects of the tide are approximately canceled. The months with net upstream flow on graph D (negative values of flow) are filled in with solid black (Anderson and Goolsby 1973, 23–24). Graph C shows the corresponding monthly mean predicted tidal range at Mayport. This analysis had not been updated in the literature as of 1994.

Historical Discharge Estimates

Freshwater inflow to the river is the sum of direct runoff from the land (both point and nonpoint), inflows from springs and other ground water sources, and direct rainfall. Freshwater outflows from the river are due principally to evapotranspiration (Anderson and Goolsby 1973, 15), but other outflows include some of the fresh water that is mixed with ebb tide and, although not mentioned in any of the reviewed reports, occasional seepage to the surficial aquifer when the level of the ground water table is lower than river level.

If the sum of freshwater inflow and rain is less than the evapotranspiration plus or minus the change in storage in a month, the average net flow per tidal cycle will be upstream (Anderson and Goolsby 1973, 24).

The average non-tidal flow at the river mouth for data from March 1954 to September 1966 was 5,883 cfs (Anderson and Goolsby 1973, 22, Table 1). The long-term range has been reported elsewhere as 6,000 to 8,300 cfs (attributed to USGS, quoted in RSH 1974, 5).

Recent USGS Total Flow Data

Each year, USGS publishes the daily values of flow at stations on the main stem and in major tributaries in the Water Resources Data

St. Johns River Water Management District 140

reports (USGS, various years). These values are calculated from hourly or more frequent samples. The first published analysis of flow data in the LSJR is the USGS summary of the monthly means and extremes of net discharge at Jacksonville from data collected between March 1954 and September 1966 at Main Street Bridge. A summary of the published extremes of USGS-calculated flow, for data to September 1994, is given in Table 3.22.

Table 3.22Published extremes of USGS-calculated daily values in some
tributaries and the main stem

Station Location	Maximum Da	ily Discharge	Minimum Daily Discharge		
and Period of Record	Date	cfs	Date	cfs*	
De Land, WYs 1934–94	10/15/53	17,100	08/23/57	-3,030	
Rodman Dam, WYs 1969–94	02/05/70	9,560	03/09/69	(unknown leakage)	
Buckman Lock, WYs 1970-94	05/09/92	202	(no flow for many days)		
Buffalo Bluff, WY 1993-94	03/13/93	14,200	03/19/93	-14,900	
Dunns Creek, WYs 1978-94**	02/19/83	6,650	03/19/93	-6,400	
Palatka, WYs 1968-82**	11/05/70	31,300	06/06/68	-20,400	
Jacksonville WYs 1954–70 [†] WYs 1972–94**	09/10/64 06/20/72	61,137 64,000	09/09/64 10/20/72	-51,064 -62,700	

*Negative values indicate upstream flows.

**Refers to periods in which there are missing data

[†]Older daily values are no longer available on the USGS data base; daily values for Jacksonville begin in 1972.

Data are made available from USGS in Water Year[®] groups. Data in Appendix E are arranged by calendar year for the convenience of the user. Periods of record in this table are in Water Years to delineate availability from USGS.

Note: cfs = cubic feet per second

WY = Water Year ([®]October through September)

Data from Appendix E for all stations except the Buffalo Bluff station. Data for this station came from USGS WY 1993–94.

The daily flows are the means of the hourly samples. Although the daily flow may be considered to be indicative of the net flow for the day, the daily flow calculations are not very accurate because they do not attempt to resolve ebb and flood volumes and are not synchronized with the beginnings and ends of tidal cycles. The hourly data from Palatka and Jacksonville are not available for analysis because USGS considers the data to be of poor quality.

DRAINAGE AREAS

In a 1976 report, the drainage area above De Land was given as 3,120 mi², the "topographic drainage area" (assumed to be above Jacksonville) was given as 9,430 mi², and the tabulated drainage area at Jacksonville was given as 9,040 mi² (Atlantis Scientific 1976, II-1–2). USGS estimated the drainage area of the St. Johns River at Jacksonville to be 8,104 mi² (excluding the drainage area of Paynes Prairie, 650 mi², because this area does not contribute to the basin discharge) (USGS 1990, 140). An estimate of the drainage area at the upstream boundary of the LSJRB has not been found in the literature. However, it is reasonable to substitute an estimate of 6,580 mi² for the drainage area above Buffalo Bluff, just a few miles downstream of the upstream boundary of the LSJRB (Scott Gain, pers. com., USGS 1993).

DISCHARGE/DRAINAGE AREA RELATIONSHIP

Historical Relationship of Drainage Area to Freshwater Inflow

A method that has often been used to estimate total flows in the St. Johns River uses a comparison of the mean total flow at each gaging station to its contributing drainage area, for each major tributary on the river. Such a comparison yields a discharge-todrainage area relationship (or runoff rate) that increases, irregularly, from upstream to downstream because rainfall and runoff are not uniform from one basin to the next. However, as would be expected, the runoff rate increases toward the mouth of the river. Total flow at the mouth of the river may be estimated from the slope of a straight regression line through the discharge-to-drainage area relationship.

St. Johns River Water Management District 142

The first published calculation of total discharge in the LSJR from a discharge-to-drainage basin area relationship was by USGS (Snell and Anderson 1970, 37 Figure 18). Runoff rates calculated for this relationship varied from 0.93 cfs/mi² between Melbourne and Sanford to 1.5 cfs/mi² near the headwaters south of Melbourne. Using an (assumed weighted) average of the runoff rates, Snell and Anderson extrapolated this discharge-to-drainage relationship and estimated the average discharge at Jacksonville to be about 8,300 cfs.

Connell Associates tabulated 20-day mean net flows (from data for July 1–20, 1970), using 2,681 cfs at De Land. They calculated runoff rates varying from 0.52 cfs/mi² at Rice Creek to 1.37 cfs/mi² at Jacksonville (1974, 4-54, Table 4-5). Recognizing that this runoff rate for Jacksonville was high, they used an estimated increase in flow from Palatka to Jacksonville of 0.98 cfs/mi² (the average of the values for Palatka and Black Creek), linearly extrapolated the relationship to Jacksonville, and calculated a net flow at Jacksonville of 7,200 cfs (pp. 4-51, 4-53).

The work of Snell and Anderson was modified by Reynolds, Smith and Hills (RSH) using a mean annual discharge of 3,200 cfs at De Land and an overestimate (according to RSH) of flow between Palatka and Jacksonville of 7,900 cfs attributed to Anderson. RSH determined the average stream yield, or runoff, for the St. Johns River basins to be in the range of 0.175 to 1.53 cfs/mi², based on updated data (RSH 1974, 17, Exhibit 6).

SJRWMD recalculated the total discharge of the river for the WRMP (1977). A mean annual discharge of about 3,000 cfs at De Land and the drainage areas given by RSH were used to develop a modified discharge per unit drainage area of 1.08 cfs/mi². This relationship was plotted for Melbourne, Cocoa, a location near Christmas, a location near De Land, Palatka, and Jacksonville. When extrapolated to the Atlantic Ocean, the average annual non-tidal discharge of the river exceeded 10,000 cfs (pp. D-24 and D-26, Figure D-8).

Revised Relationship of Discharge-to-Drainage Area

The relationship of drainage area to mean discharge approaches linearity if the drainage characteristics of the basins used for developing the relationship are similar. The regression line through the points spatially averages all of the discharge/drainage relationships in the basin, and the extrapolation of this line to the mouth of the river provides an estimate of the total freshwater flow in the river, as shown in the examples above. A new discharge/drainage area relationship is developed for this report using recent USGS flow data in the main stem and all gaged primary tributaries (Figure 3.29). The discharge areas for Rodman Dam,

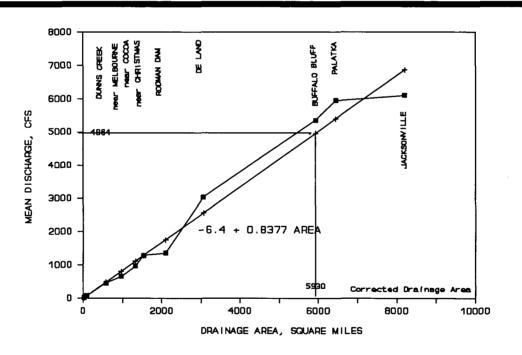


Figure 3.29 Discharge-to-drainage area relationship for flows in the Lower St. Johns River Basin

Palatka, and Jacksonville are decreased by the area of Paynes Prairie (650 mi²) (Table E1, Appendix E). The 1994 mean gaged flow at Buffalo Bluff was 5,360 cfs (S. Gain, USGS, pers. com. April 24, 1995).

Flows at Astor and Lake Monroe are not published. The expression for the regression line in Figure 3.29 is

Mean flow = $-6.4 + 0.8377 \times upstream$ drainage area (2)

The mean discharge of the river at its mouth, for an estimated upstream drainage area of 8,200 mi², obtained from the extrapolation of the regression, is 6,863 cfs. The mean discharge of the river at Buffalo Bluff, obtained from the intersection of a corrected drainage area of 5,930 mi², is 4,961 cfs.

FLOW AT THE UPSTREAM BOUNDARY OF THE BASIN

An approximation to the total flow into the main stem at the upstream limit of the LSJRB has been derived for this report by summing the monthly total flows at De Land, Rodman Dam, Buckman Lock, and Dunns Creek. The summation, which may be called the partial flow at the upstream boundary of the LSJRB, includes available data from WYs 1969 through 1992, including intervals of missing data at Dunns Creek and Buckman Lock. The missing values result in some inconsistencies from one year to another during this period of record. Monthly mean, minimum, and maximum values of this combined flow, representing the runoff from the ungaged drainage area downstream of De Land, are listed in Appendix E. The mean value of the ungaged flow is 1,163 cfs.

The mean of the calculated monthly mean flows at the upstream boundary is 4,165 cfs; the mean of the means of annual flows is 4,144 cfs (Table E13). Thus, a reasonable estimate of the mean flow at the upstream boundary is the average of these two values, or about 4,150 cfs.

These flow estimates should be used with caution. The measured mean total flow at Buffalo Bluff, downstream of the confluence, is 5,360 cfs. The discharge-to-drainage relationship provides a freshwater flow of 4,961 cfs at this location. However, these data represent only 1 year of data collection and thus may not be representative of the long-term mean flow at the upstream boundary of the LSJRB.

FLOW AT JACKSONVILLE VERSUS FLOW AT PALATKA

A comparative study of flow in the river for the Florida Department of Pollution Control noted "the approximate 6,000 cfs increase for flow from Palatka to Jacksonville" (Connell Associates 1974, 4–51). However, a subsequent study of the surface water resources of the river found that "there are sufficient data to indicate a net loss in stream flow from Palatka to Jacksonville" (RSH 1974, 20). This conclusion was based on the annual means and 3- and 4-year average flows for 1969–72, which indicated a difference between the annual flows at the two stations of 1,000 cfs or less.

The WRMP (SJRWMD 1977) summarized USGS flow data at Palatka and Jacksonville through 1975. This report stated that "net downstream flow was greater at Palatka than at Jacksonville," referring to the graph of discharge versus drainage area. This could be a suspect conclusion because it is based on annual means and poor data, or it could be indicative of large losses of water due to evaporation or leakage to the aquifer. The relation between drainage area and average discharge at principal gaging stations was used to extrapolate the average discharge at the mouth, which was estimated by this method to exceed 10,000 cfs (SJRWMD 1977, D-27 and D-24, Figure D-8).

The mean total flow at Palatka exceeds that of Jacksonville during the period from November through March. The uncertainty in flow calculations can only be resolved by more accurate flow measurements at both sites.

In summary, the non-tidal discharge of the river is estimated to increase from 6,000 cfs at De Land to about 8,000 cfs at Jacksonville to over 15,000 cfs at the mouth. The total discharge of the river is an order-of-magnitude greater.

TIDAL FLOW

Measurements of flow provide values of total (instantaneous) flow. The tidal component of the total river flow must be calculated because it is part of the total flow and cannot be measured

St. Johns River Water Management District 146

separately. The non-tidal component, caused by all forces except the tide, including tributary inflows and wind, is the difference between the total flow and the tidal flow.

The first estimate of the relationship of freshwater flow to tidal flow was published in 1976:

In regard to the influence of fresh-water flow...in the St. Johns River...it should be mentioned that...the fresh-water discharge per second is only 6% of the maximum value of the tidal flow and the total fresh-water discharge during one-half tidal period amounts to about 9.2 percent of the tidal prism (Brun 1960, as referenced in Atlantis Scientific 1976, II-7)

Tidal Wave

In general, the tide acts as a long period wave, which can have the characteristics of a *stationary* wave, a *progressive* wave, or a combination of the two, depending on river geometry and the balance of forces. A progressive wave is characterized by a crest that advances up and down the river; the times of high and low water progress from the mouth to an upstream location and back to the mouth. The maximum or strength of tidal current occurs at the same time as the maximum water level, and slack current occurs at the time of the turn of tide between high and low water in a progressive wave.

In contrast, a stationary, or standing wave, is one in which the water surface oscillates vertically between fixed locations (called nodes) without progression. At the nodes, there is no vertical water motion, but there is maximum horizontal movement. The locations of maximum vertical rise and fall of the water surface are called the antinodes; here, the water theoretically has no horizontal motion and has maximum vertical motion. In a uniform channel, the time of slack water occurs at the times of high and low water, that is, the current has zero velocity when water level reaches a maximum or minimum. Also, the current in a standing wave is maximum when water level reaches its mean value (Haight 1938, 5).

In most tidal rivers, including the St. Johns River, the theoretical progressive and standing wave relationships between tidal water level and current are modified considerably by the non-uniform geometry of the channel. Other forces affect the strength of tidal current about half as much as they affect the water level.

Current measurements taken in the LSJR in 1933 and 1934 were interpreted by Haight to show the existence of a combination of a stationary wave and a progressive wave (1938). Likewise, time relations in the Jacksonville area and between Palatka and Welaka seemed to approximate those of a progressive wave. According to Haight (1938), the time relation in the region about midway between Palatka and Welaka is that of a stationary wave:

...the time relation of current to local tide varies from place to place along the river. In the lower portion ... the strengths of flood and ebb occur near the times of low and high water respectively. Above Jacksonville the current becomes rapidly earlier with respect to the local tide and 50 mi from the sea the strengths of flood and ebb precede the high and low waters by about 3 hours, the slack waters occurring near the times of the highs and lows.

Advancing up the river, the current occurs later and later with respect to the tide and at a distance of 85 mi from the sea the strengths again come at about the times of high and low tide, which is the same relation as exists at Jacksonville (Haight 1938, 24).

This analysis suggested that the tidal wave has progressive characteristics below Jacksonville and above Palatka and stationary characteristics in the reaches between these locations. The variation of tidal range observed by Haight along the river is shown in Figure 3.24; the corresponding observed variations in the times of occurrence of maximum ebb and flood current, high and low water, and slack before ebb and flood are shown in Figure 3.30.

As local water elevation varies over a tidal cycle, the water depth at the crest of the tidal wave is significantly greater than at the trough. Because the velocity of the tidal wave at any location is proportional to the depth of water, the crest moves more quickly and may tend to overtake the trough, resulting in a shorter flood, a longer ebb, and highest velocity currents during the flood. In a long estuary, such as the St. Johns, this relationship may be complicated by mixing of successive tides.

Both the speed and direction of the tidal current in a channel also can vary laterally. In a uniform channel with a rectangular cross section, the velocity is greater near the center of the channel and

St. Johns River Water Management District 148

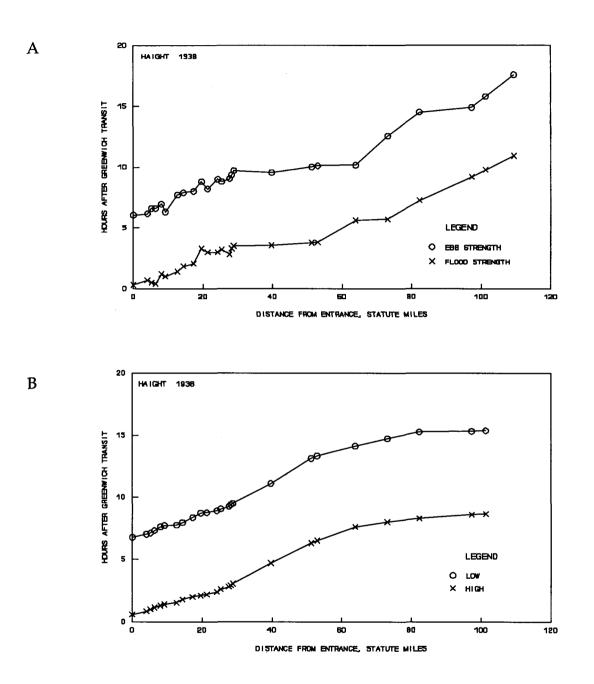


Figure 3.30 Lag of strength of flood and ebb current (A), lag of high and low water levels (B), and lag of slack before ebb and flood (C) (Haight 1938)

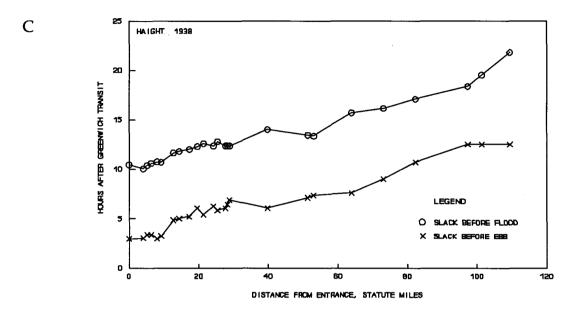


Figure 3.30—Continued

decreases towards the banks. In some tidal rivers, the ebb flow may be strongest closer to one bank and the flood strongest nearer the opposite bank.

Flood- and Ebb-Dominance Effect on Flow

Recall that flood dominance is characterized by stronger flood currents and longer falling tide; conversely, ebb-dominated systems have stronger ebb currents and a longer period of rising water. The direction of this asymmetry has significant implications for sediment transport, dispersion of pollutants in the water column, and stability of shorelines (Speer and Aubrey 1985, 208). Speer and Aubrey reference other studies indicating that a shallow estuary will be flood dominated unless it has extensive tidal flats (p. 223). The St. Johns River has deep and narrow channels, as well as some wide shallow areas, and tidal flats near the mouths of tributaries, so the dominance conditions are likely to be complex.

St. Johns River Water Management District 150

The type of tidal distortion may be quantified by the relative phase of either the astronomic elevation coefficients or the astronomic current coefficients (Speer and Aubrey 1985, 208). The astronomic coefficients are quantified by means of a harmonic analysis of either level or current data, which produces an amplitude and a phase for each component. Although the values of the coefficients are different for sea-surface elevation as compared to current, the designations of the components are the same. As described above, the largest fundamental coefficient is the lunar M_2 , and the largest significant overtide is its M_4 harmonic.

An undistorted tide has sea-surface and velocity amplitude ratios, M_4/M_2 (either elevation or velocity), of zero. The larger the amplitude ratio M_4/M_2 , the stronger will be the distortion. A flood-dominant tide is characterized by (1) an amplitude ratio M_4/M_2 greater than zero, (2) velocity phase of M_4 between -90 and +90 degrees relative to the velocity phase of M_2 , and (3), assuming a linear relationship, a sea-surface phase between 180 and 360 degrees. An ebb-dominant tide has (1) an M_4/M_2 ratio greater than zero, (2) velocity phase of M_4 between 90 and 270 degrees relative to the phase of M_2 , and (3), assuming a linear relationship, a sea-surface phase of 20 degrees relative to the phase of M_2 , and (3), assuming a linear relationship, a sea-surface phase of M_2 , and (3), assuming a linear relationship, a sea-surface phase of 180 to 360 degrees (Friedrichs and Aubrey 1988, 522–524).

The sea-surface height and velocity amplitude ratios, both designated M_4/M_2 , are defined by the expressions $[sa(M_4)/sa(M_2)]$ and $[va(M_4)/va(M_2)]$, respectively. The sea-surface phase of M_4 relative to M_2 is designated by the expression " $2M_2$ - M_4 ", which is [2 multiplied by (sea-surface phase of M_2) minus (sea-surface phase of M_4)]. The velocity phase of M_4 relative to M_2 also is designated by the expression " $2M_2$ - M_4 ", which is (sea-surface phase of M_4)]. The velocity phase of M_4 relative to M_2 also is designated by the expression " $2M_2$ - M_4 ", which is [2 multiplied by (velocity phase of M_2) minus (velocity phase of M_4)].

Results of studies on many estuaries indicate that there will be a net flood sediment transport for a relative elevation phase within 90 degrees of zero and net ebb transport for other values of relative elevation phases (Friedrichs and Aubrey 1988, 525). Water level, flow, intertidal storage, and other relationships can be derived from the harmonic constants at any station for which there are adequate data. With these ratios, the changes in tidal characteristics can be described not only in terms of both depth and flow but also in terms of sediment transport. Numerical models can be effectively used for such analyses (p. 539).

In a study of 26 estuaries on the east coast of the United States, Friedrichs and Aubrey (1988) found that at Fort George (located just north of the St. Johns Inlet), for tidal data up to 1984, the amplitude ratio was 0.032 and the relative phase was 147 degrees, which indicated flood dominance (p. 531). NOS tidal data for Georgetown, Florida, show that the amplitude ratio is 0.114 and the relative phase is 120 degrees, indicating that in this area the river is even more strongly flood dominated.

Tidal Current

Tidal currents are the horizontal movements of water caused by, or associated with, the tide. They are a periodic component of the net or resultant current that is caused by all the other major forces in the estuary, including freshwater inflow and outflow, wind, and differences in temperature and density. Currents in the St. Johns River are normally predominantly tidal. In general, in a restricted channel such as the LSJR, the tidal current reverses direction; it runs in the flood direction for about 6 hr and the ebb direction for about 6 hr, separated by relatively short slack periods.

Harmonic constants for currents between the jetties at the river entrance were calculated by Haight (1938, 30, Table 2). Annual tidal current tables giving predicted times of occurrence of slack water, flood and ebb strength, and the magnitudes of flood and ebb strengths at the St. Johns River entrance are published by NOS (first referenced by Anderson and Goolsby 1973, 10) in the annual tidal current tables (Table D6).

OTHER EFFECTS ON FLOW

Wind Component of Flow

As described in the section on water level, wind has the effect of moving water in the direction in which it is blowing. The depth to which this force has effect is dependent on the strength of the wind relative to the magnitude of the prevailing flow. The expected effect of wind is to move water faster if the water movement at various depths is in the same direction as the wind or to move a surface layer opposite to, or at an angle to, the prevailing direction of flow if the wind and water directions are opposed. Vertical variations of flow are complicated by the counterbalancing effects of conservation of mass and momentum throughout the water body.

Wind Effect on Flow in the St. Johns River

Winds have considerable effect on water levels and velocities in the St. Johns River. Occasionally the wind effect is greater than the tide effect. Wind from the north quadrants in the St. Johns River causes upstream flow, and wind from the opposite directions causes downstream flow, at least at the surface. The greatest effects on the river are from winds blowing from the northeast or southwest (Anderson and Goolsby 1973, 15). Strong north and northeast winds can raise the water level about 2 ft at Jacksonville. Wind from opposite directions can lower the water level about 1 ft, thereby increasing the velocity of ebb currents or retarding the flood flow (USACE Jacksonville 1981, B-7).

Tide normally dominates the flow but can be substantially affected by wind, especially sustained winds. Flow can be completely offset or accentuated by strong winds, especially by the powerful winds brought by a hurricane such as Dora, which occurred in September 1964, with "hurricane-force winds of 82 mph from the north" (Frederic R. Harris 1973, IV-5). Winds can indirectly cause salinity to range from relatively fresh (a few parts per thousand [ppt]) to 60% of ocean salinity (22 ppt) (Anderson and Goolsby 1973, 9).

Upstream wind setup in 1974 caused a 7-day low flow of -17,504 cfs at Jacksonville and 7,881 cfs flow at Palatka from March 3–9. This event coincided with the normal antecedent winds that occur in February, which blow from north to northeast at over 10 mph (Atlantis Scientific 1976, II-6).

Coriolis Acceleration

The Coriolis force or acceleration causes moving particles of water to deflect clockwise from the direction of motion in the Northern Hemisphere. The magnitude of the deflection is proportional to the speed of the particle and the latitude of the location. This effect is usually negligible except in wide bays and the open ocean.

In a wide section of a river or bay, the Coriolis acceleration may be large enough to cause lateral flow asymmetries. In the northern hemisphere, looking in the direction of prevailing flow, this effect causes higher velocities to occur on the right and the current to turn first on the left. Observations of this type by Haight (1938) suggested to him the presence of a significant Coriolis acceleration and indicated that a strong lateral salinity gradient might occur frequently (Pyatt 1959, 128; 1964, F44). There is no further discussion of this phenomenon in later literature on the St. Johns River, although Edge (1973) mentions in passing that no Coriolis effect is included in his model "due to the dimensions of the St. Johns River" (p. 4).

SUMMARY OF RIVER FLOW

Of interest to managers is the total flow and the net non-tidal flow, in terms of the effects on movement and mixing and pollutant transport. Locally, flow is caused by differences in water levels, which can be caused by the tide, winds, or inflows and outflows.

Measurements of stage and current velocity provide values for calculations of the total flow. The non-tidal component is difficult to separate from the total flow because the components cannot be directly measured. The non-tidal component has been estimated by assuming that the upstream and downstream tidal flow is the same, calculating the upstream and downstream flow volumes over a half tidal cycle, and subtracting upstream from downstream flow. The non-tidal flow is estimated to be about one-seventh of the total flow.

Wind has a significant effect on local flow in the river, although this effect has not yet been adequately quantified.

St. Johns River Water Management District 154

Flows have been measured at several locations in the river. The longest record is at De Land. Other locations are Rodman Dam, Buckman Lock, Dunns Creek, Palatka, and Jacksonville. Except for the De Land site, these locations have not produced reliable results.

Flow at the upstream boundary of the LSJRB has been calculated by summing the monthly mean flows at De Land, Rodman Dam, Buckman Lock, and Dunns Creek over the common period of record of the USGS data, WYs 1969–92. The long-term mean of these combined flows is 4,144 cfs. The linear regression of mean discharge/drainage area results in a discharge of 4,961 cfs for a corrected drainage area of 5,930 mi² (the drainage area attributed to Buffalo Bluff by USGS).

The average annual non-tidal discharge of the river ranges from about 6,000 cfs at De Land to 15,000 cfs at the river mouth.

,

FLOW STATISTICS

In this chapter, the statistics of three different components of St. Johns River flow are described: total flow, tidal flow, non-tidal flow, and flow distribution and frequency. Total flow is defined as the sum of tidal and non-tidal flow. Within each of these categories, the mean and range of flow are quantified, to the extent permitted by available data. Where possible, the long-term, annual, seasonal, monthly, and daily flows are summarized.

These statistics were compiled in 1993 for the period of record at each station through WY 1992. For Rodman Dam and Jacksonville, the 1992 data were not available. The period of record for Palatka and Dunns Creek ended in 1982 and 1986, respectively.

TOTAL FLOW

Change in Elevation and Velocity at De Land

The average change in elevation, or fall, from the St. Johns Marsh at the headwaters of the St. Johns River to the river mouth is 0.08 feet per mile (ft/mi) (about 25 ft over 300 mi). The average velocity of the river at State Road 44 (142 mi upstream of the mouth, near De Land) is reported to be 0.3 mph, the lowest at any of the flow measuring sites on the 13 major coastal rivers along the Florida coastline (Heath and Conover 1981, 109–110, Figure 44).

Estimated Total Flow at the Upstream Boundary of the Basin

An estimate of mean total flow at the upper boundary of the LSJRB, based on an assumption of a uniform ratio of long-term mean total flow to discharge area over the upstream basins, is about 5,300 cfs. The method for obtaining this result was described in the previous chapter.

Total Flow over the Period of Record

A recent summary of daily mean flows at Jacksonville, calculated from hourly stage-discharge measurements, provides a mean average discharge of 6,105 cfs over 23 years and a range of daily discharges from 64,000 cfs downstream to 62,700 cfs upstream, as of September 1993 (USGS 1994, 154).

Peak Flows

Peak total flows to 150,000 cfs are common, according to USGS. A maximum total flow of 170,000 cfs was measured at Main Street Bridge between 1954 and 1964 (Anderson and Goolsby 1973, 1 and 14, Figure 7B). Extremes of these magnitudes are not shown, however, in any of the USGS daily data. The maximum of the daily measured maximums at Jacksonville was 64,000 cfs in June 1972.

Extremes of Flow in the Main Stem

The published maximum and minimum flows calculated from stage/velocity measurements at USGS gages during the period of record are summarized in Table 3.23. Flow at De Land is included, even though it is not in the LSJRB, because it is useful for comparisons with flows at other locations. These flows are assumed to be total flows.

Historical Annual Means of Total Flow

Annual total flow for a particular year is the mean of the monthly mean flows for that year. Annual flow is, therefore, close to the mean of the daily flows, although the different lengths of the various months are not weighted in the averaging process. In its 1973 report, USGS designated the flows calculated from stage/discharge measurements as "tidal flows," but by the definition used in that report, it is apparent that these flows are total flows driven by the tides and other forces.

Flow readings have been taken since 1934 at De Land, at intervals during a period of about 13 years at Palatka, and intermittently for

St. Johns River Water Management District 158

Table 3.23	Minimums, means, and maximums of mean monthly total flows in the
	main stem from annual summaries over the periods of record, to 1992
	(where available)

Station	Number of Years	St. Johns River Monthly Total Flow (cfs)			Month of Occurrence	
		Minimum*	Mean	Maximum	Minimum	Maximum
De Land	67	62	3,016	15,800	Мау	October
Upstream boundary of the LSJRB	22	870	4,165	12,913	October	October
Palatka	15	-2,092	5,937	20,115	August	October
Jacksonville	9	-10,428	6,952	25,515	May	August

Note: cfs = cubic feet per second

LSJRB = Lower St. Johns River Basin

*Negative values indicate upstream flows. Flows are derived from USGS daily flows. Data compiled from Tables E9 and E13–15, Appendix E

> about 20 years at Jacksonville. The mean annual flow at De Land held reasonably constant until 1982, when it began to decline. The maximum values of annual flow at that location have decreased since 1960. The mean annual flow at Palatka decreased slightly over the period of measurement (to 1982). The record at Jacksonville is not complete enough for a comparative general analysis.

Tidal Flow/Tidal Range Relationship

A relatively linear relationship between the average volume of upstream and downstream tidal flows at Jacksonville and the range of tide at Mayport for measurements taken between 1955 and 1966 was given in a 1973 USGS report (Anderson and Goolsby 1973, 17, Figure 9). The predicted range of tide at Mayport varied from 2.45 to 6.83 ft, and the corresponding average volume of tidal flow ranged from 1,175 to 2,650 million cubic feet (mcf) (26,279 to 59,268 cfs per tidal cycle [/tc]) from a linear fit to these values and the ratio of average volume of tidal flow (1,941 mcf/tc) to the average range of the tide (4.57 ft), the following relationship may be written:

average volume of tidal flow (mcf/tc) =
$$\frac{1.941 \text{ (mcf/tc)}}{4.5 \text{ (ft)}} \times \text{ tide range (ft)}$$
 (3)

Converting units of mcf/tc to cfs/tc:

average volume of tidal flow (cfs/tc) =
$$425(\frac{mcf/tc}{ft}) \times 22.365(\frac{cfs/tc}{mcf/tc}) \times tide range (ft)$$
 (4)

Because these relationships were developed from annual averages, the relationships are only approximate for tidal cycle calculations.

Flow/Velocity Relationship

The 1973 USGS study developed the following relationships between maximum flow at Main Street Bridge and maximum velocity at the tidal entrance (Anderson and Goolsby 1973, 14, Figure 7B):

upstream flow =
$$67 \times velocity \pm 50 \times 1,000 cfs$$
 (5)

/=\

(6)

Derived Annual Total Flow

When enough data are available for an individual station, it is appropriate to compare annual means and the extreme values and to expect that the data are at least somewhat representative of current conditions at the site. All of the mean daily flows monitored in the reaches of the St. Johns River at or above Dunns Creek (De Land, Rodman Dam, and Buckman Lock stations) have at least 10 years of data which are available from USGS.

The annual mean, minimum, and maximum total (monthly) flows at De Land, the upstream boundary of the LSJR, Palatka, and Jacksonville are plotted in Figure 3.31.

St. Johns River Water Management District 160

Α

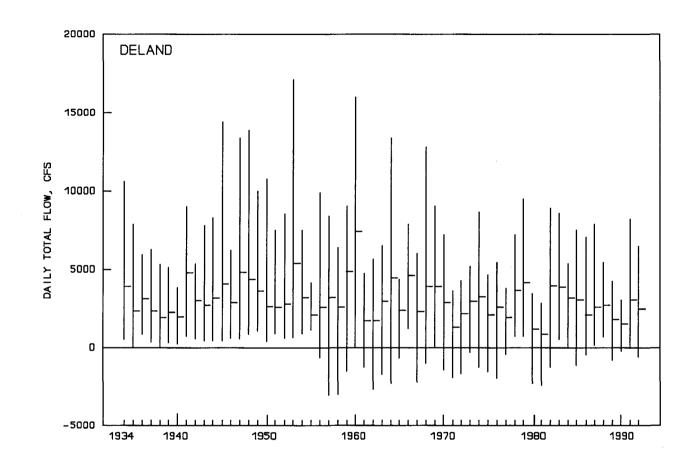
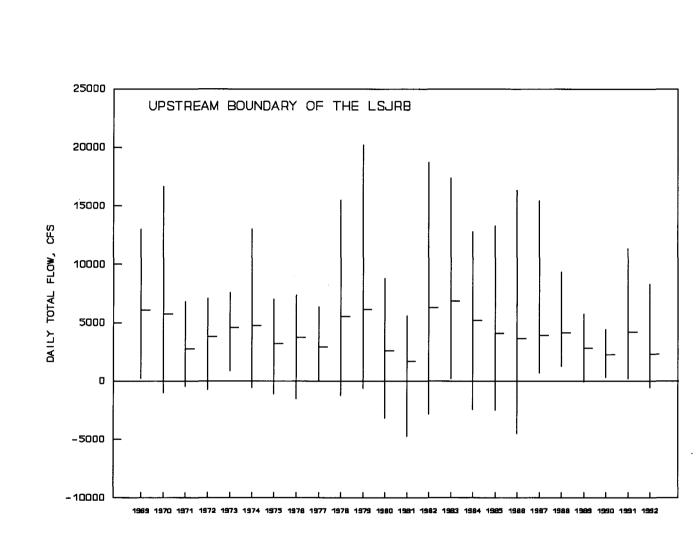
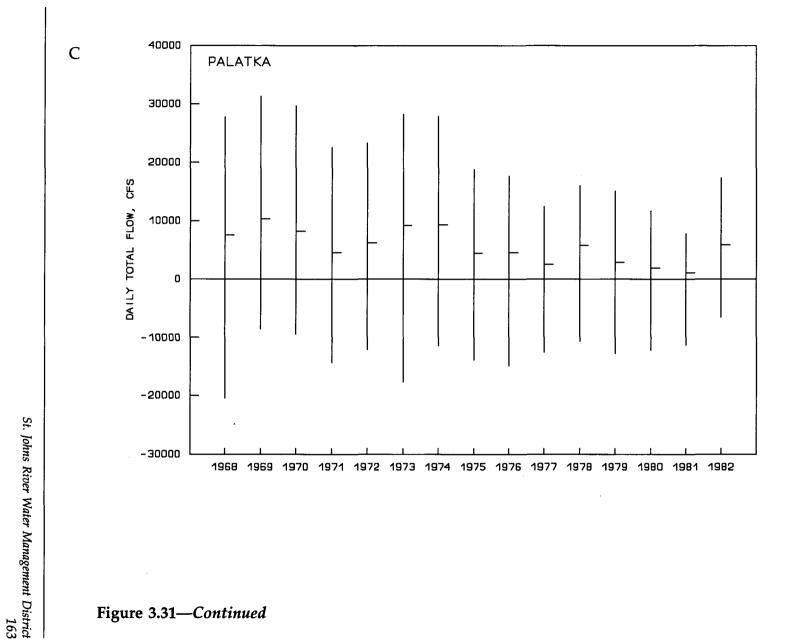



Figure 3.31 Annual mean and range of monthly flows at De Land (A), the upstream boundary of the Lower St. Johns River Basin (B), Palatka (C), and Jacksonville (D)


Flow Statistics

St. Johns River Water Management District 162

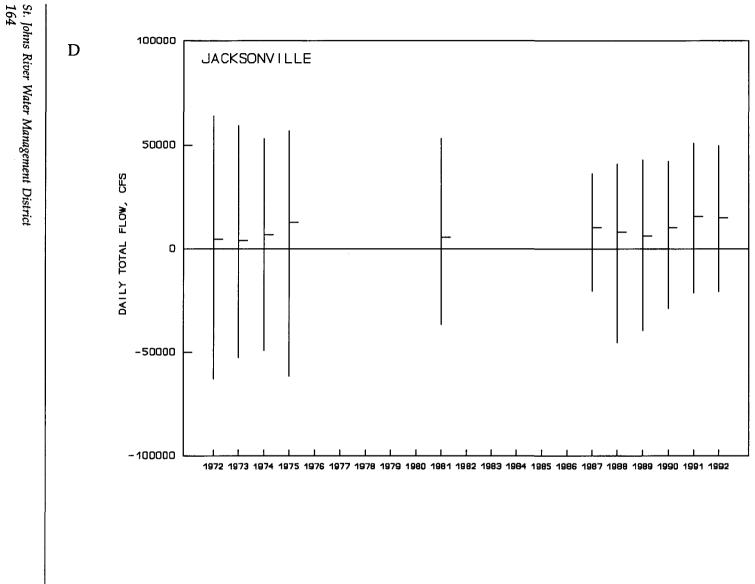


Figure 3.31—Continued

В

an 12 m

Figure 3.31—Continued

The mean, minimum, and maximum values of mean monthly total flows derived from the annual summaries over the period of record for each station (to 1992, where available) are shown in Table 3.23. Note that these values represent the variability of the monthly mean flow; these values do not reflect the daily or monthly ranges, but only the ranges of the monthly means over the period of record. Thus, these values do not include the effects of daily fluctuations.

Derived Monthly Total Flow

The monthly total flow in the river is the mean of the daily values of total flow for the month (Figure 3.32, based on the published USGS flow data). During the common period of record (1978–86) for the four locations that were summed to obtain partial flow at the upstream boundary of the LSJRB, the mean of the monthly mean flows was 4,144 cfs. At Palatka, over the shorter 15-year period of record (1968–82), the mean was 5,931 cfs, and at Jacksonville over the 9-year period (i.e., three intermittent periods totaling 9 years: 1972–75, 1980–81, 1987–92) it was 7,305 cfs.

A summary of the monthly means of total flow at the three monitoring stations, together with the monthly means of a summation of the total flow into the upstream boundary of the LSJRB, for the particular periods of record of each station, is provided in Table 3.24. It is noted, as first observed by RSH (1974, 20, and discussion in the chapter on river flow), that the total flow at Jacksonville is less than it is upstream at Palatka from November through March, which are the first 5 months of the dry season.

During the common 9-year period of record (1978–86) for the partial summation of flow at the upstream boundary of the LSJRB, the monthly mean flows ranged from 870 to 12,913 cfs (Table E13). This common period of record may be extended back to begin in 1969, provided that intervals with missing data at some stations are disregarded; the minimum and maximum monthly mean flows in the St. Johns River do not change. Both the lowest and the highest total monthly mean flows in this 18-year period of record occurred in October.

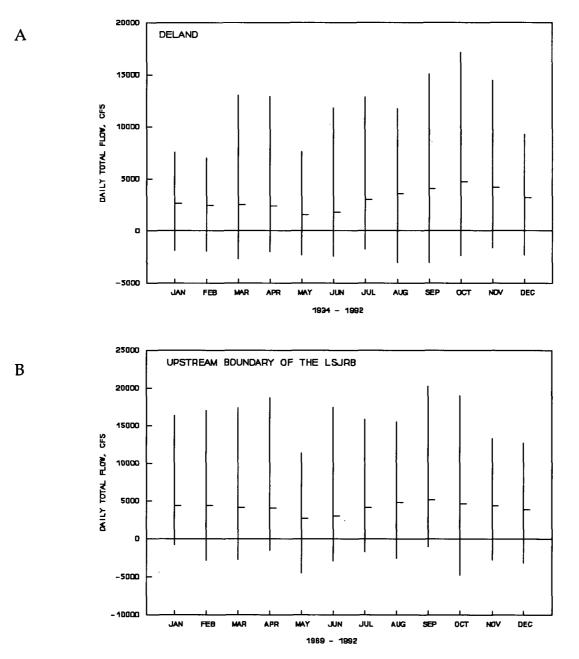
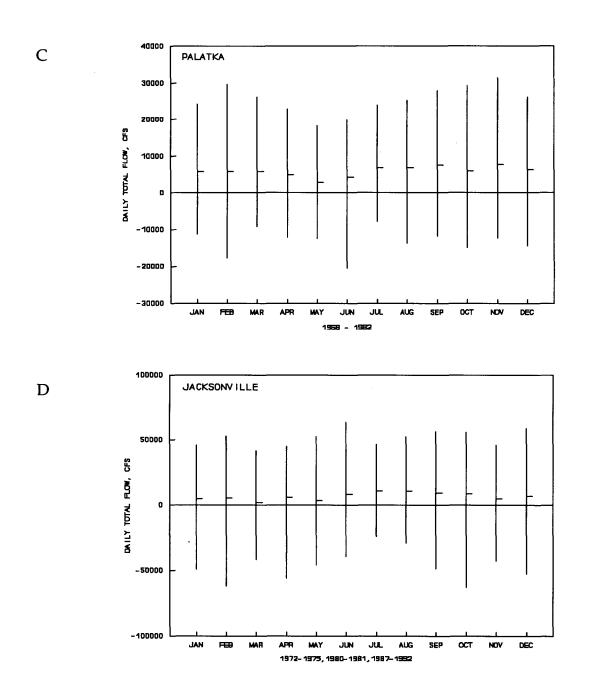



Figure 3.32 Monthly mean and extreme daily total flows at De Land (A), calculated daily total flow for the upstream boundary of the Lower St. Johns River Basin (B), monthly mean and extreme daily total flow at Palatka (C), monthly mean and extreme and daily total flow at Jacksonville (D)

St. Johns River Water Management District 166

Figure 3.32—Continued

Month	Mean Total Flow (thousands of cfs)						
	De Land Monitoring Station	Calculated Flow at the Upstream Boundary of the LSJRB	Palatka Monitoring Station	Jacksonville Monitoring Station			
January	2,664	4,383	5,792	4,829			
February	2,470	4,411	5,762	5,358			
March	2,530	4,154	5,880	1,923			
April	2,407	4,061	4,935	6,024			
Мау	1,556	2,699	2,879	3,438			
June	1,800	3,032	4,236	8,606			
July	3,003	4,173	6,763	10,917			
August	3,545	4,826	6,859	10,787			
September	4,052	5,217	7,499	9,368			
October	4,746	4,686	6,428	10,566			
November	4,207	4,386	7,770	5,354			
December	3,213	3,949	6,425	6,253			

Table 3.24 Means of monthly mean total flows over associated periods of record to 1992 (where available)

Note: cfs = cubic feet per second

LSJRB = Lower St. Johns River Basin

An estimated correction of 1,163 cfs (see p. 145) may be added to the values at the upstream boundary (column 3) to account for discharges from the ungaged area north of De Land.

Data compiled from Tables E9 and E13-15, Appendix E

Over the shorter 15-year period of record at Palatka, monthly mean flow varied from 2,092 cfs upstream in August to 20,115 cfs in October. Over the interrupted period of record (7 years) at Jacksonville, monthly mean flow varied from 10,428 cfs upstream (May) to 25,515 cfs (August). The individual monthly values and mean annual total flows for the periods of record for De Land, Rodman Dam, Buckman Lock, Dunns Creek, Palatka, and Jacksonville are in Appendix E.

Derived Daily Total Flow

Mean daily flow data are available from USGS for each of the stations listed in Table 3.24. When summarizing annual changes, monthly statistics are appropriate, but the daily variability is lost. For some more detailed analyses of flows, the daily fluctuations may be summarized, as has been done in Appendix E. Again, it is important to note that these datasets are incomplete except at De Land, and therefore the partial flow at the upper boundary of the tidal portion of the LSJR may not be consistent from one month to the next.

The summaries of daily flows were tabulated in a spreadsheet on a monthly basis by listing the minimum, mean, and maximum daily flows in each month over the period of record. Then the minimum, mean, and maximum values for each month and for each year were tabulated along with the daily values. Because the spreadsheets were too large to include in this report, the daily values were deleted and the statistics were reorganized so that the minimum, mean, and maximum values of the monthly minimums, means, and maximums could be tabulated. The mean and extreme daily values are shown in Figure 3.31 for De Land, for the upper boundary of the LSJRB, for Palatka, and for Jacksonville.

TIDAL FLOW

Tidal flow is the volume of water moving, either into or out of the river, due to tidal forces. Conceptually, non-tidal flow is the part of the total flow that is due to winds, freshwater discharges, and other causes. A particular analysis of the "volume of upstream and downstream flows" may be focused on total flows or only on the non-tidal component. Therefore, the context of any description of such flows should be examined closely.

Upstream and Downstream Flows

USGS analyzed the water elevation and point velocity data that were collected in the vicinity of Main Street Bridge in the early 1970s. Stage data were obtained at Main Street Bridge, 8.2 mi upstream at

NAS, and 4.8 mi downstream at the USACE dredge depot. Point velocity data were obtained at the downstream (east) side of Main Street Bridge. "Rapid discharge measurements" (a standard USGS technique) using four current meters supplemented these readings. Discharges and point velocities, plotted for each direction of flow, were found to be linear (with small scatter) and were used to obtain discharge during each tidal cycle. The volumes of flow for each tidal cycle were computed from the areas under the graph of discharge and plotted against the area between the superimposed stage graphs at NAS and the dredge depot. The volume of each upstream and downstream flow was then derived from the stage records using the linear fit relation of tidal flow to the product of the elevation difference multiplied by time. This process, while complex, provided a means for separating non-tidal from tidal flow (Anderson and Goolsby 1973, 3–7). An update of this type of study has not been published since 1973.

Historical Annual Tidal Flows

Annual average upstream and downstream tidal flow per tidal cycle, as a function of yearly average net flow per tidal cycle, was calculated by USGS using data from WYs 1955–66. The mean tidal flow (adjusted for annual average tidal range) was 1,940 mcf (43,165 cfs per half tidal cycle [/htc]) and ranged from 1,620 to 2,215 mcf (36,046 to 49,284 cfs/htc). The annual average upstream flow was 1,806 mcf during the 12-year period, while the annual average downstream flow was 2,076 mcf. The annual average net flow per tidal cycle ranged from 20 to 510 mcf (445 to 11,348 cfs/htc) (Anderson and Goolsby 1973, 16, Figure 8).

Annual Tidal Flow

From the data collected between March 1955 and September 1966, USGS reported that the average volume of downstream flows was 2,076 mcf (46,191 cfs/htc) and that the average volume of upstream flows was 1,806 mcf (40,184 cfs/htc); the difference, 270 mcf (6,007 cfs/htc), was considered to be the average net flow and, therefore, the average freshwater flow. If the net, or freshwater flow, had not been superimposed on the tidal flow, the average tidal volume would have been the average of the computed upstream and downstream flows, or 87 mcf/tc (1,941 cfs) (Anderson and Goolsby 1973, 15). The relationships of annual average tidal flows to annual average net flows, adjusted for variations in annual tidal range, are summarized in Figure 8 in Anderson and Goolsby (p. 16). The scatter about the linear relationship is attributed to errors in calculating the volumes of flow.

The relationships between the adjusted annual average downstream and upstream tidal flow per tidal cycle and yearly average net flow per tidal cycle also were calculated. Yearly average flow per half tidal cycle ranged from 1,780 mcf (39,605 cfs/htc) upstream to 2,220 mcf (49,395 cfs/htc) downstream; the yearly average net flow per tidal cycle ranged from 35 to 510 mcf (778 to 11,348 cfs/htc) (Anderson and Goolsby 1973, 16, Figure 8).

Average Tidal Flow

The average tidal flow, based on data from February 1954 to September 1966, was calculated to be 87,000 cfs. This is about seven times the average net or freshwater flow (Anderson and Goolsby 1973, 1, 5).

Tidal Volume

Based on data from 1954 to 1966, the difference between highest and lowest monthly mean tidal volume flow was 235 mcf, ranging from 7.4% less than to 4.7% greater than the mean tidal flow (Anderson and Goolsby 1973, 46–48).

Long-Term Extremes in Tidal Flow

The maximum upstream and downstream total flow at Main Street Bridge, obtained from the calculations described above on data collected from March 1954 through September 1966, is 170,000 cfs and 175,000 cfs, respectively. The monthly averages of the monthly mean tidal flow volumes and monthly mean net tidal flow volumes per tidal cycle are given by USGS (Anderson and Goolsby 1973, 14, Figure 7B). For the period 1954–66, the net flow at Main Street Bridge was downstream for about 70% of the days of record and upstream for about 29%. Zero net flow was observed on 13 of the 4,597 days (about 0.3%). The greatest number of consecutive days of upstream flow was 14 (Atlantis Scientific 1976, II-6–7).

Selected statistics for flow at Jacksonville, based on data from March 1954 to September 1966, are summarized for the downstream and upstream directions of flow in Table 3.25. This analysis was carried out by Anderson and Goolsby for 8,813 tidal cycles (91 months) of data.

Flow Statistic	Downst	ream Flow	Upstre	Upstream Flow	
	mcf/tc	cfs	mcf/tc	cfs	
Average discharge	2,075	*46,419	1,812	*40,536	
Average net discharge	263	*5,883	NA	NA	
Maximum daily net flow	3,890	*87,000	NA	NA	
Minimum daily net flow	NA	NA	2,303	*51,500	
Average volume/tc	*2,075.5	46,419	*1,812.4	40,535	
Average net volume/tc	*263.1	5,884	NA	NA	
Maximum volume/tc	*5,280	118,089	*4,410	98,631	
Minimum volume/tc	*0	0	*0	0	

Table 3.25Selected total flow statistics at Jacksonville (data
from March 1954 to September 1966)

Note: mcf/tc = million cubic feet per tidal cycle cfs = cubic feet per second

*Value is source table (tidal cycle is given as 12.42 hours)

Values of mcf/tc given in source are converted to cfs by first multiplying by 22.36536 (cfs/tc)/(mcf/tc) and rounding result to nearest whole number.

Values of cfs given in source are converted to mcf/tc by first multiplying by 0.044712 (mcg/tc)/(cfs/tc) and rounding result to nearest whole number.

Source: Anderson and Goolsby 1973, 22, Table 1

St. Johns River Water Management District 172

USGS performed extensive analyses, some using the BRANCH model, on the water elevation and point velocity data that were collected in the vicinity of Main Street Bridge in the 1970s and 1980s. Upstream and downstream flows were reported for several years (WYs 1972–74, 1981, and 1987–90) but the data were considered to be generally poor. The reported maximum monthly mean upstream flow was 10,428 cfs, and the maximum monthly mean downstream flow was 25,515 cfs (Table E15).

NON-TIDAL FLOW

Seasonal Non-Tidal Flow

The 1973 USGS study, as previously described and based on data collected during WYs 1955–66, proposed that, by subtracting the average volume of the upstream flows from the average volume of the downstream flows, the computed average flow would represent the net or freshwater flow for that period. The resulting flow was 270 mcf (6,007 cfs/htc) downstream (Anderson and Goolsby 1973, 15). The corresponding average and extreme monthly mean net discharges at Jacksonville are given in Figure 3.32, part D. This figure shows the seasonal net flow regime. The seasonal flow periods, which correspond to the hydrologic seasons, are low net discharge in May through June, increased net discharge from July through September, high net discharge from October through January, and decreasing net discharge from February through April (Anderson and Goolsby 1973, 48 and 49, Figure 31).

Monthly Non-Tidal Flow

Monthly Mean Flow Volumes. Monthly mean flow volumes derived by USGS for the 1973 report are summarized in that report and described in the previous chapter (Figure 3.28). The upper plot (Anderson and Goolsby 1973, 23, Figure 12, graph A) shows the monthly means of the total flow volume (the composite of both tidal and non-tidal influences) upstream and the same downstream, in millions of cubic feet.

Recent Calculations of Monthly Mean Freshwater Inflows. Monthly mean inflows, as given in the NEI, are summarized in the

last column in Table 3.26. These values are compared with total

Table 3.26Comparison of long-term monthly mean freshwater
inflows to the St. Johns River (to Jacksonville) to total
flows at the upstream boundary of the Lower
St. Johns River Basin

Month	Calculated Partial Flow at Upstream Boundary of the LSJRB (Total Flow, cfs)	Estimated with Addition of Ungaged Flow (cfs)	National Estuarine Inventory (Freshwater Inflow, cfs)
January	4,383	5,546	6,800
February	4,411	5,574	6,800
March	4,154	5,317	7,000
April	4,061	5,224	6,300
Мау	2,699	3,862	4,300
June	3,032	4,195	5,200
July	4,173	5,336	7,900
August	4,826	5,989	9,500
September	5,217	6,380	10,600
October	4,686	5,849	11,600
November	4,386	5,549	9,600
December	3,949	5,112	7,700

Note: cfs = cubic feet per second

LSJRB = Lower St. Johns River Boundary

Data for upstream flows (column 2) from Appendix E, Table E13. Estimated flows (column 3) are obtained by adding 1,163 cfs (see p. 145) to values at the upstream boundary (column 2).

Source (column 4): NOAA 1985, 2.16

flows at the upstream boundary of the LSJRB; the total flows are the calculated sums of the USGS flow data at four locations. The freshwater inflows listed in the NEI are substantially larger than the

St. Johns River Water Management District 174

calculated total flows at the upstream boundary. The difference between the two includes the unmonitored inflows above the upstream boundary as well as the inflows along the 100 mi of the St. Johns River below the upstream boundary of the LSJRB. Although the methodology for development of the tabulated flows is not specifically indicated in the NEI, the flows were probably calculated with the assistance of the screening model for estuarine assessment (chapter on hydrodynamic and water quality models; Klein and Galt 1986).

Daily Non-Tidal Flow

The long-term daily average freshwater inflow to the St. Johns River, as stated in the NEI, is 7,800 cfs for the 1950–82 period of record (NOAA 1985, 2.16). More recent analyses and summaries of freshwater inflow are not available.

Wind-Induced Flow

Statistics of wind-induced flow have not yet been developed for the St. Johns River.

FLOW DISTRIBUTION AND FREQUENCY

Flow distribution and frequency statistics are based on the duration of flow. Because tidal flow reverses, the duration of flow in one direction can only be described in terms of the total number of tidal flows during which flow was in that direction. The volume of a tidal flow is a function of both the duration of the flow and the average discharge during that time. Cumulative flow-distribution curves show the percentage of the total number of tidal flows during which specific volumes were equaled or exceeded.

USGS published the results of a flow distribution and frequency analysis based on data taken between March 1, 1954 and September 30, 1966 (Anderson and Goolsby 1973, 26–36) (Table 3.27).

Table 3.27 Types of analyses performed by USGS on March 1954–September 1966 data

Type of Analysis	Source Report Figure Number
Percentage of the total number of tidal flows during which specific volumes were equaled or exceeded during downstream flow at Main Street Bridge (cumulative flow distribution)	13
Percentage of the total number of days of record during which specific total daily volumes of downstream flow were equaled or exceeded at Main Street Bridge	13
Percentage of the total number of days of record during which daily net flow was equaled or exceeded at Main Street Bridge (cumulative flow distribution)	14
Percentage of the total number of tidal flows during which specific volumes were equaled or exceeded during upstream flow at Main Street Bridge (cumulative flow distribution)	15
Percentage of the total number of days of record during which specific total daily volumes of upstream flow were equaled or exceeded at Main Street Bridge	15
Average recurrence intervals of downstream tidal flow volumes that occur as monthly and yearly maximums. For example, a monthly maximum downstream tidal flow of 4,000 mcf or more occurs on the average of every 60 months. Also, a yearly maximum downstream tidal flow of 4,000 mcf or more occurs on the average of every 6.7 years	16
Average recurrence intervals of upstream tidal flow volumes that occur as monthly and yearly minimums	17
Average recurrence intervals of downstream tidal flow volumes that occur as monthly and yearly minimums	18
Average recurrence intervals of upstream tidal flow volumes that occur as monthly and yearly minimums	19
Average recurrence intervals of daily net flows that occur as monthly and yearly maximums. For example, the average recurrence interval of monthly maximum net flows of 5,000 mcf or more is 120 months	20
Average recurrence intervals of daily net flows that occur as monthly and yearly minimums	21
Maximum periods of flow deficiency or the maximum number of consecutive days that daily net flow was less than specified amounts	22

Note: mcf = million cubic feet

Source: Anderson and Goolsby 1973, 26-36

Because these distributions were calculated for a limited period several decades ago, only the types of analyses are listed; the reader is referred to the Anderson and Goolsby report for details.

Cumulative Flow Frequency

Cumulative flow frequency relationships are shown by flow-duration curves. The flow-duration curves may be used for direct determination of water supply potential, but because these curves do not show the chronologic sequence of flows, their use is limited in flood studies or for estimating the storage needed to assure any selected flow. Of course, such curves depend on basic flow data, which is very limited for the St. Johns River. Flow-duration characteristics for tributaries above and at the USGS station at De Land are given in the WRMP (SJRWMD 1977, D-33–34).

The river discharge equaled or exceeded for different percentages of time over a year at De Land is given in Table D-5 in the WRMP (SJRWMD 1977). Available low-flow characteristics are restricted to the Upper St. Johns River Basin (SJRWMD 1977, D-35–36).

Flow in the reach downstream of Lake George is described as reversing with each tidal change, except under conditions of high freshwater inflow or strong winds. About 75% of the time, the net flow is toward the ocean, but at other times it may be upstream for several consecutive days. The maximum number of days during which net flow is likely to be equal to or less than a specific amount at Palatka and at Jacksonville is shown in Figure D-14 in the WRMP (SJRWMD 1977, D-41, attributed to Snell and Anderson 1970). Periods of upstream or negative net flow usually occur during periods of low freshwater discharge, high evapotranspiration, and increased tidal range (SJRWMD 1977, D-36).

Annual exceedence plots of the annual data through 1991 of partial flows at the upstream boundary of the LSJRB and the flows at Palatka and Jacksonville show the probabilities that daily mean discharge will exceed specific values within certain periods of time. For example, in a 10-year period, the total flow at the upstream boundary may be expected to exceed 17,500 cfs; at Palatka, 31,000 cfs; and at Jacksonville, 60,000 cfs. These exceedence probabilities are summarized in Figure 3.33.

Duration of Flow

In a report written for the Florida Power and Light Company, RSH reviewed the hydrology of the entire St. Johns River in order to quantify water availability. The results were to be presented in terms of estimated quantities of excess water for diversion (RSH 1974, 1, 20).

Flow duration is the percentage of time during which specific quantities of discharge are likely to be equaled or exceeded. At De Land, zero flow occurs about 1% of the time, indicating that tides and/or wind can cause net upstream flows at times of low freshwater inflow over short periods of time. Flow durations are also listed for the upstream boundary of the LSJRB and for Palatka and Jacksonville (Table 3.28) (RSH 1974, 21–23; USGS Surface Water WY 1992).

In the same study, the number of consecutive days a flow could be expected to be equal to particular values during a specific recurrence interval was extracted from frequency curves at De Land (Table 3.29). This type of analysis would not be appropriate in parts of the river where there are tidal flow reversals (RSH 1974, 23–25).

A flow duration curve, showing the percentage of time that specific flows at the station near De Land were equaled or exceeded during a given period, was developed for the WRMP (SJRWMD 1977, D-32, Figure D-10). Similarly, the low-flow characteristics, considered representative of the amount of ground water flow into the LSJRB, are described by frequency curves of annual minimum flows at Palatka and Jacksonville (p. D-41, Figure D-14).

Design Flow for Water Quality Modeling

A water quality modeling study required an estimate of the 7-day, 10-year flow conditions in the main stem. The contractor, Atlantis Scientific, determined that flows developed by Connell Associates

St. Johns River Water Management District 178

Flow Statistics

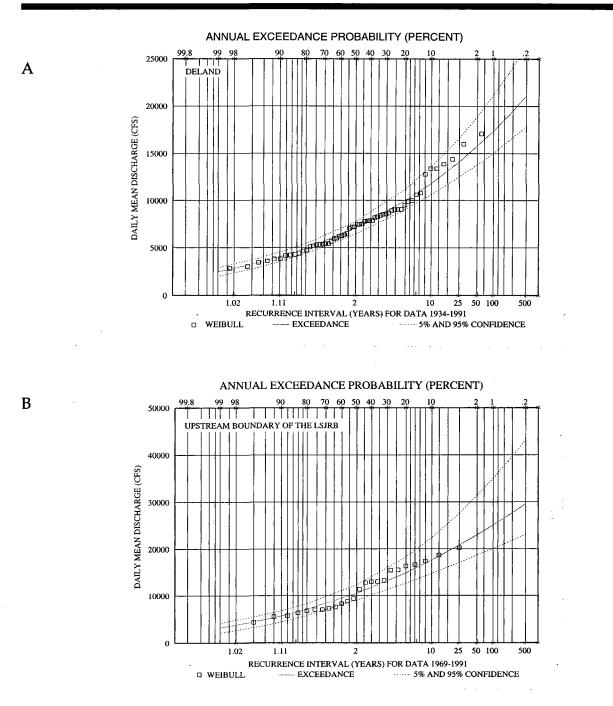


Figure 3.33 Annual exceedence for flows at De Land (A), for partial flows at the upstream boundary of the Lower St. Johns River Basin (B), flows at Palatka (C), and flows at Jacksonville (D)

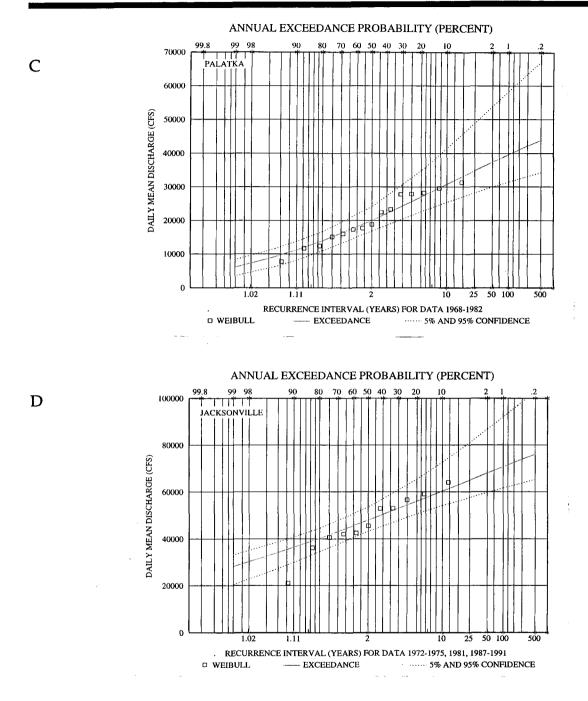


Figure 3.33—Continued

St. Johns River Water Management District 180

Station	Percentage of Time Discharge Amount (cfs) Was Equaled or Exceeded					
	1%	10%	50%	90%	95%	99%
De Land Oct 1935–Sep 1965 Jan 1934–Sep 1992	10,000 11,800	7,000 6,160	2,800 2,480	1,100 948	800 700	0 289
Upstream boundary of the LSJRB*	11,703	8,034	3,530	1,594	1,323	1,050
Palatka	24,200	15,500	6,440	1,530	834	228
Jacksonville	46,300	28,200	11,950	2,591	1,220	245

Table 3.28Flow duration for three USGS stations on the main
stem, plus calculations for flow at the upstream
boundary of the Lower St. Johns River Basin (LSJRB)

Note: cfs = cubic feet per second

*1,163 cfs (see p. 145) may be added for ungaged inflows.

Data for De Land, October 1935–September 1965 from RSH 1974, 22, Table 5 Data for De Land, January 1934–September 1992 from USGS 1991 Data for upstream boundary, Palatka, and Jacksonville from calculations on USGS data to 1992

(1974) were slightly higher than the average and that flows described by Edge (1973) were low and did not take into account the reverse flows that have been frequently observed. The design flows that were needed had to represent typical seasonal downstream flows and a conservative reverse flow (Atlantis Scientific 1976, V-1).

A 19-year dataset for Jacksonville was available for analysis. Atlantis Scientific determined that flows for the months of October, February, June, and August represented the seasonal extremes. The lowest quartile (fifth lowest) mean annual flow for Jacksonville occurred in 1971. This flow, and the two mean annual flows ranked closest, both lower and higher, are summarized in Table 3.30.

Atlantis Scientific determined that design flows should be selected from data for 1968 because supporting water quality data were more available for 1968 than for 1971. Representative seasonal low flows

Recurrence	Consecutive Days of Flow and Flow Amounts (cfs)				
Interval (years)	1 Day	29 Days	274 Days		
5-year high	12,000	10,000	4,700		
10-year high	15,000	13,000	5,500		
25-year high	19,000	17,000	6,500		
5-year low	275	550	1,800		
10-year low	60	500	1,500		
25-year low	10	480	1,000		

Table 3.29 High- and low-flow frequency data for De Land (1935–65)

Note: cfs = cubic feet per second

Source: RSH 1974, 23-25, Table 6

Table 3.30 Ranking of average annual flows at Jacksonville for the year with the lowest quartile flow (1971) and the 4 years with adjacent ranked flows (for 19 years of data, 1958–76)

Year	Rank (out of 19)	Flow (cfs)
1967	3	1,640
1968	4	2,849
1971	5	2,910
1957	6	3,150
1958	7	3,152

Note: cfs = cubic feet per second

A ranking of 1 indicates lowest flow; a ranking of 19 indicates highest flow.

Source: Atlantis Scientific 1976, V-2

for Jacksonville and Palatka, estimated to approximate the 7-day, 10-year low flows, are summarized in Table 3.31.

Table 3.31Representative seasonal low flows at Palatka and Jacksonville (data to 1976)

Year of	Month	Season	Description of Season	Total Low Flow (cfs)		
Occurrence				Palatka	Jacksonville	
1968	June	May-June	Low flow	8,035	1,610	
1968	February	February–April	Decreasing storage	2,322	2,730	
1968	August	July-September	Increasing storage	8,954	4,470	
1967	October	October-January	High flow/storage	3,213	5,768	

Note: cfs = cubic feet per second

Source: Atlantis Scientific 1976, V-3

Duration of Reversed Flow

Anderson estimated the number of consecutive days between 1954 and 1965 when stream flow was reversed at Jacksonville and Palatka (reported in RSH 1974, 6). During this period of time, the mean daily flow was upstream for 18 days at Palatka and 22 days at Jacksonville (p. 23).

Recent Flow Frequency Analysis

The NEI lists the 7-day, 10-year low flow; 50- and 100-year flood flows; and average, high-, and low-flow ratios for data from 1950 to 1982 (NOAA 1985). Flow ratios are the proportion of the volume of fresh water entering the river during one tidal cycle to the tidal prism volume. The flow ratios provide an indication as to whether freshwater inflow or tidal inflow is the dominant factor for average, high-, and low-flow periods. High-flow ratios indicate that freshwater inflows predominate. The flow ratios listed for the St. Johns River are all relatively small (Table 3.32).

Flow Statistic	s (cfs)
Period	Flow (cfs)
7-day, 10-year low flow	600
50-year flood	38,500
100-year flood	44,900
Flow Ra	tio
Period	Ratio
Average annual	0.185
High-flow period	0.252
Low-flow period	0.125

Table 3.32Flow statistics and ratios for the St. Johns
River (data from 1950 to 1982)

Note: cfs = cubic feet per second

*Flow ratio is the proportion of the volume of fresh water entering a coastal system during a tidal cycle to the volume of the tidal prism.

Source: NOAA 1985, 2.16

SUMMARY OF FLOW STATISTICS

The means and extremes of available USGS daily total flow data have been summarized by year and by month. The annual means and extremes of monthly mean flows at De Land, the upstream boundary of the LSJRB, Palatka, and Jacksonville are shown in Figure 3.31. The seasonal trends in the monthly means that were first observed in data collected by USGS (Anderson and Goolsby 1973, 49, Figure 31) have been confirmed in these data. Means of monthly mean total flow are summarized for De Land, the upstream boundary of the LSJRB, Palatka, and Jacksonville in Table 3.24. The monthly means and extremes of daily flows for the same locations are shown in Figure 3.32. The mean values in these figures are tabulated in Appendix E.

Flow exceedences, calculated from annual mean flows at the four locations on the main stem over the respective periods of record, are shown in Figure 3.33. Flow durations—the percentages of time that flows were equaled or exceeded at these sites—are summarized in Table 3.28.

The total discharge of the river is normally greater than 50,000 cfs and can exceed 150,000 cfs.

.

RIVER SALINITY

Salinity is considered to be part of the hydrodynamics of a river because it is indicative of the density of different water masses, and density differences can affect flows. Water masses may or may not mix, depending on their relative density, local dispersion, and the state of turbulence in the flow. In the extreme, a relatively fresh, less dense layer of water can flow over a more dense layer in the opposite direction with only a relatively small amount of mixing at the interface. Thus, salinity is considered to be a physical parameter of river and estuarine dynamics.

Traditionally, salinity has been measured indirectly through the specific conductivity of a water sample. The concentration of chlorides, or chlorinity, is related directly to the conductivity and temperature of the sample, and salinity can be calculated from the chlorinity. Now, field instruments with a built-in processor convert conductivity and temperature directly to salinity.

CLASSIFICATION BASED ON SALINITY

The classification of an estuary is important to managers. It provides a summary of the relative circulation and mixing processes, allows a better understanding of the effect of movement and dispersion of pollutants, and can lead to better estimates of the impacts caused by waste loads, channel dredging, fresh water inflow alterations, and other influences (NOAA 1985).

A variety of classification schemes have been devised for estuaries, which are useful for comparing individual features, combinations of features, and the overall functioning of the estuaries on a numerical scale. One of the first schemes was that of Stommel and Farmer, who divided estuaries into four different types (Stommel and Farmer 1952a, as referenced by Pyatt 1959, 25). The St. Johns River is classified by this system as varying between type 2 (slightly stratified) and type 3 (highly stratified).

Another classification scheme, devised by Pritchard (1952), describes types A (highly stratified), B (moderately stratified), C (vertically

homogeneous with lateral salinity gradients often due to Coriolis effects), and D (both vertically and laterally homogeneous). The classification of a particular estuary under this scheme depends primarily on the magnitudes of river flow, tidal flow, width, and depth. According to Pritchard's scheme for estuary typing, the St. Johns River fluctuates between types A and B (Pyatt 1959, 105; 1964, F42).

A later classification is based on the stratification-circulation diagram developed by Hansen and Rattray (1966). On this diagram, the tidal mean salinity difference (surface to bottom) divided by tidal mean salinity is plotted against the net circulation velocity at the surface divided by the tidal mean velocity. Because surface velocity and salinity data are not available for the St. Johns River, this classification cannot be accurately determined.

Classification of an estuary varies with the amounts of freshwater inflow and tidal prism volumes, which change monthly. To account for this variability, salinity classifications for "the three-month period of highest fresh water inflow and the three-month period of lowest fresh water inflow" are described in the NEI (NOAA 1985). The NEI provides the results of an analysis of long-term mean flows. Based on data from 1950 to 1982, the stratification classification of the St. Johns River is given as vertically homogeneous (i.e., no significant stratification) under conditions of both 3-month low flow and 3-month high flow. Vertical homogeneity implies that stratified conditions fluctuate over much shorter periods than 3 months and that there is no persistent stratification during either of these extremes; these conditions do not relate to the transient effects of freshwater inflows (NOAA 1985, 2.16), nor do these conditions describe the condition of the river between these extremes. Thus, the NEI classification may be considered to be an incomplete description of salinity stratification of the river.

SEGMENTATION BASED ON SALINITY

An estuary may be segmented for comparing spatial differences in any basic parameter. A water quality model study of the river, for example, divided the lower 120.5 mi distance from Lake George to

St. Johns River Water Management District 188

the mouth into 69 segments to represent changes in geometry, temperature, benthic oxygen demand rate, and atmospheric reaeration rate (Connell Associates 1974, 4-49, Figure 4-20, and A-39, Table B-5).

Both the NEI and the National Estuary Program develop "segmentation" schemes for estuaries. The U.S. Environmental Protection Agency (EPA) defines estuary segmentation as "partitioning an estuary into a series of spatial units or segments ... [to permit] consolidating an extensive amount of environmental information into representative data elements when certain conditions, such as water temperature and salinity, are relatively homogeneous within a segment" (EPA 1989, 29).

"Segmentation ... on the basis of salinity is highly variable due to the many interacting factors affecting salinity concentrations, such as variations in fresh water inflow, wind, and tide" (NOAA 1985). Three guidelines were adopted for the NEI to ensure a uniform analysis among all the estuaries in Florida that were analyzed for the NEI study:

- 1. "first, episodic anomalies of salinity conditions ... were screened out,"
- 2. "second, surface and bottom salinities were averaged to determine ... [longitudinal] salinity gradients," and
- 3. "finally, a band was used to delineate the spatial variability over an annual cycle."

Low, moderate, and high variability classifications were calculated as a function of the relative proportion of the variability (item 3) to the length of the estuary. For example, an estuary with a length of 5 mi and salinity zone boundary of 4 mi would be classified as highly variable. The St. Johns River is classified in the NEI as highly variable from the mouth to the Main Street Bridge, moderate from the bridge to NAS, and low from NAS upstream (NOAA 1985, 2.16). The relationship of chlorinity to salinity was established by an international commission in 1902 (cited by Sverdrup, Johnson, and Fleming 1942, 51, as referenced in Pyatt 1959, 38) as follows:

The relation of conductivity (C), in micromhos per centimeter (μ mhos/cm) at 25°C, to salinity (parts per thousand), assuming that the salts are in the same proportion as in ocean water, is

salinity = conductivity × 0.5625	for c < 16	(0)
$=$ (conductivity - 16.0) \times 0.6923 + 9.0	for 16(c(42	(8)
$=$ (conductivity - 42.0) \times 0.72222 + 27.0	for c 42	

Tables of salinity versus conductivity, with corrections for temperature, are available in standard tables and graphs.

The first published study of chlorides in the St. Johns River that was located for this reconnaissance was conducted in 1947 by the Bureau of Sanitary Engineering, Florida State Board of Health. The results were reported in the *Saint Johns River Pollution Survey* (referenced in Pyatt 1959, 6). The City of Jacksonville conducted measurements during 1954 and 1955 which were analyzed by Pyatt in 1959. The results of a comprehensive study on chlorides were published by USGS (Anderson and Goolsby 1973).

SALINITY AT THE OCEAN ENTRANCE

Many pollution computations employ distributions of salinity (or chlorinity) in an estuary as a measure of the rate of spread of a pollutant inflow (expressed as eddy diffusivity). This evaluation requires that the source of salinity or the salinity of the seawater entering into the exchange dynamics be known. The measured salinity at the river mouth is not sufficient to make this determination, as the freshwater discharges mixed into the river also affect salinities in the ocean. Seasonal measurements of salinity taken in 1953 by the U.S. Fish and Wildlife Service (Department of the Interior) showed that undisturbed oceanic water, with a salinity of about 36 ppt, is found about 10 mi offshore (Pyatt 1964, F31).

CHLORIDES, SALINITY, AND OTHER SALTS

The major physical constituent in ocean water is chloride, which constitutes about 55% of the dissolved, inactive solutes. Other salts that may be present in the LSJR, possibly in proportions other than those found in pure seawater, are sodium, sulfates, and magnesium, which are the most common solutes, beside chlorides, in ocean water. No data on individual concentrations of salts were found in the literature relating to LSJR hydrodynamics.

Measurements of dissolved solids in the river, taken from 1952 to 1965, range from 628 to 1,440 milligrams per liter (mg/L) at De Land and from 360 to 18,700 mg/L at Jacksonville. Measurements of chlorides during the same period range from 88 to 570 mg/L at De Land and 128 to 9,720 mg/L at Jacksonville (RSH 1974, 27). The maximum, minimum, and range of chlorides are less at De Land than at Jacksonville, because the principal source of chlorides is the ocean.

The mineral content of direct runoff to the river is relatively low. In some areas of the river, the water in the surficial aquifer is highly mineralized. Upward seepage from the aquifer may transport high levels of salts into the river during certain periods of the year and under certain conditions (e.g., as described in RSH 1974, 25–26).

Measurements of salinity and chlorides are normally made using specific conductance. However, this method cannot distinguish between the salinity in the sample and the salinity caused by minerals in the ground water, because conductance is simply a measure of the concentration of all of the various salts that are conducting electrons. Separate measures of the constituents can be performed with laboratory equipment. If it is assumed that the salinity in a location is due entirely to freshwater dilution of ocean water when there is a significant contribution from ground water as well, erroneous conclusions as to the rate of dispersion (spreading) of pollutants could result.

St. Johns River Water Management District 190

ZONE OF TRANSITION

The salinity of the river varies from about 30 ppt at its mouth to values approaching that of the freshwater inflows far upstream. USGS called the reach of the river between these two extremes the "zone of transition" (Anderson and Goolsby 1973, 12). On ebb flow, this mixed salinity water mass is carried toward the entrance, some is lost to the ocean, and the upstream part of the zone shortens. On flood flow, the upstream end of the zone lengthens again. USGS stated that "the rate of change in specific conductance is dependent on the gradient of the zone of transition" (p. 40).

The length of the zone of transition and the change in salinity within the zone vary with sea level and the volume of freshwater runoff. After a series of tidal cycles in which there are cumulative downstream net flow volumes, the length of the zone of transition decreases and the average conductivity gradient increases. In the extreme, the zone of transition can become so short that it lies entirely downstream of the Main Street Bridge, and the salinity there is nearly constant, with a value equal to the salinity of the freshwater runoff. When a series of tidal cycles occurs in which most of the cycles have predominant upstream flow, the upstream end of the zone of transition migrates a considerable distance upstream from the Main Street Bridge. In this case, the chloride concentration at Main Street Bridge approaches that of seawater diluted by local freshwater inflow (Anderson and Goolsby 1973, 13).

"Discharge accumulation," or "cumulative discharge," is the sum of consecutive downstream flows over a period of time; this sum increases with downstream flow and decreases with upstream flow (Anderson and Goolsby 1973, 40). As long as the zone of transition extends upstream from the Main Street Bridge, the specific conductance at the bridge decreases with increasing cumulative discharge, and vice versa. The rate of change in specific conductance depends on the **gradient** of the zone of transition. During a particular tidal cycle, the magnitude and range of chlorinity at Jacksonville depends on the length and gradient of the zone of transition. About 80% of the time, the chlorinity concentration at Main Street Bridge is greater than 250 mg/L (pp. 40–41).

St. Johns River Water Management District 192

CHLORINITY AND FLOW

A vertical gradient in water-column chlorides tends to exist in estuaries like the LSJR, but no well-defined interface between saltwater and freshwater masses has been found in this river. This lack of a well-defined interface between saltwater and freshwater masses has been attributed to the many bends and changes in cross section in the river, although salinity stratification is also a function of the balance of saltwater and freshwater flows. USGS found no fixed relation between chlorides at different sampling points (Anderson and Goolsby 1973, 44). For data taken from 1954 to 1966, USGS described two approximate longitudinal variations in the daily maximum chloride concentration in terms of the concentration that will be exceeded 7% and 50% of the days in a year, from the river mouth to Palatka (Figure 3.34).

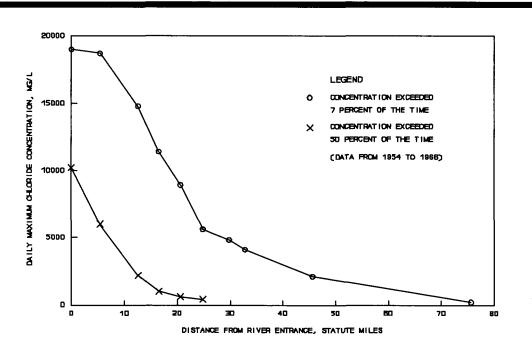


Figure 3.34 Approximate longitudinal variation in daily maximum chloride concentration that will be exceeded 7% and 50% of the days in a year (Anderson and Goolsby 1973)

In 1962, the excess of upstream flow was so great that enough seawater entered the river to cause the chlorinity concentration at Green Cove Springs, normally less than 400 mg/L, to exceed 2,000 mg/L (Anderson and Goolsby 1973, 24).

An inverse relationship exists between chlorides and net flow. The range between average maximum and average minimum chloride concentrations at Jacksonville is greatest when the net outflow is low, because the gradient of the zone of transition is steeper at Jacksonville under these conditions than when net outflow is high. That is, when net outflow is low, the Main Street Bridge is closer to the seawater end of the zone of transition, where the gradient is steep (Anderson and Goolsby 1973, 48).

From data collected between 1954 and 1966 at Main Street Bridge, the chlorinity, as would be expected, increased with an increase in upstream flow, was maximum at peak flow, and decreased as downstream flow increased. When the flow volume downstream and upstream was about equal, the chlorinity was about the same as at the start of the flood cycle. Salinity continued to decline when the volume downstream exceeded the volume upstream because the chlorinity for each ensuing cycle began at a lower concentration. These types of changes cause a wide variety of chloride distributions to occur in the river (Anderson and Goolsby 1973, 11).

STRATIFIED FLOW

The flow in a tidal river will develop a significant vertical salinity difference when freshwater inflows are relatively large and there is relatively little vertical mixing. This vertical difference can develop into a distinctly layered, or stratified, flow if there is enough freshwater inflow over a long enough period of time. Near the mouth of the river, and possibly for a long distance upstream, a salinity wedge can develop as the incoming, denser salt water pushes under a lighter, fresher outgoing surface flow. The salinity interface, or front, can often be detected at the surface by changes in color or surface flow or debris patterns.

St. Johns River Water Management District 194

One set of measurements taken through a half tidal cycle in May 1966 shows the vertical difference in specific conductance, decreasing from $3,000 \mu$ mhos/cm at Jacksonville upstream to 300μ mhos/cm at a point 26 mi upstream (Anderson and Goolsby 1973, 44).

On occasion, similar estuaries have a return flow in the lower layer about one-tenth the magnitude of the upstream wind-induced flow (Atlantis Scientific 1976, II-11).

A well-defined saltwater/freshwater interface is not normally found in the St. Johns River, especially in the Jacksonville area. However, in a USACE report on Mill Cove, evidence is presented for a salt wedge extending upstream to the open area beyond the Fuller Warren Bridge. This salt wedge is described as highly variable (USACE Jacksonville 1981, B-6).

MIXING

Chlorinity data were collected by USGS at three depths at each of eight stations from Mayport to Orange Park from February 1954 to October 1957. At a particular station, chlorinity was found to be homogeneous over the latter part of the flood tide, which implies extensive mixing. This reach of the river tends to stratify at high slack tide, particularly at the three lower stations downstream of Main Street Bridge. After the ebb flow, there is a tendency for stratification at low slack tide (Pyatt 1964, F36). However, there is neither a well-defined salinity front nor a salt wedge, but rather a definite longitudinal movement and vertical gradient of chlorinity in response to freshwater inflow. The data in Pyatt's report indicated that discharges below about 4,000 cfs at Main Street Bridge for 10 to 15 days results in good vertical mixing throughout the study area, but flows above 4,000 cfs for the same period of time will move the chlorinity distribution downstream and produce appreciable vertical stratification. The degree of vertical mixing was greatest at Mayport and decreased progressively the larger the cross-sectional area (Pyatt 1959, 39, 105; 1964, F32).

FLUSHING RATE

Flushing is the process of removing pollutants from a water body. Flushing rate is defined as the rate at which the total volume of a polluted water mass is exchanged with water from outside the polluted water body. It is usually quantified by an analysis of velocity and salinity data or by analyzing the results of dye diffusion tests.

Several investigators have developed methods for quantifying flushing in idealized estuaries. Assuming complete mixing of the tide with the resident water on the flood cycle, a flushing rate can be calculated by comparing the tidal prism (the volume of water introduced and removed over a tidal cycle) to the total volume of the estuary. A more advanced theory relates the longitudinal salinity distribution resulting from equating the advective flux of salt to the landward eddy-diffusion of salt, to a constant called the flushing number. A still more recent approach was based on equations that balanced the net seaward flux of a pollutant to the sum of the advective and turbulent fluxes. This method, which assumed steady-state conditions and a vertically mixed estuary, is a very simplified numerical model. Pyatt (1959) discussed the above approaches but did not publish a flushing rate for the LSJR (pp. 28–29). No other investigators mentioned this topic in connection with work in the LSJR.

OVERMIXING AND THE CONTROL SECTION

In some strongly stratified estuaries that have a net outflow in the upper layer and a net inflow in the lower layer, or for an estuary with a large runoff volume, hydraulically critical velocities may be approached or reached. When this happens, an abrupt change in channel dimensions (usually width) may act as a hydraulic control to limit both the net volume flow out and the net volume flow of seawater in. This, in effect, limits the amount of seawater available for mixing and, as a result, no matter how intense the mixing is within the estuary, no increase in the salinity of the outflowing mixture is possible. This phenomenon is called "overmixing." Stommel and Farmer (1952a) developed equations that showed that an estuary may be called overmixed if a plot of discharge versus the stratification (delta-s/s) is a straight line on log-log paper. In these equations, "delta-s" is the mean difference in top and bottom salinity, and "s" is the bottom salinity (Pyatt 1959, 106).

Stommel and Farmer (1952b) suggested that a control section that will cause an overmixed condition exists in the St. Johns River. Pyatt tested Stommel and Farmer's suggestion by calculating stratification and discharge at each of five sampling stations. He stated that the results indicated that Stommel and Farmer "were probably correct in contending that a control section exists in the St. Johns," and that the control section in the river is probably the narrow constriction at Main Street Bridge (Pyatt 1959, 106; 1964, F42).

INFLUENCE OF SALINITY ON POLLUTION

The water quality of the river is controlled by its flow. The flow is such that the lower river can become saline as a result of upstream flow or severely polluted with waste inputs as a result of low net outflow (Anderson and Goolsby 1973, 51–52).

The flow at Jacksonville over a 24-hr period is often upstream. Upstream flow occurs, in part, because of the flat riverbed gradient and broad, shallow characteristics of the river. Water is stored in the upstream reaches at times of high tidal stage (not necessarily high tide) when the hydraulic gradient is reversed.

During periods in which discharge is highly variable, and often sustained in the upstream direction, the distribution of pollution may have almost nothing to do with corresponding instantaneous flow. The sequence of antecedent discharge usually explains the fate of pollutant inflows (Atlantis Scientific 1976, II-8).

RECENT OBSERVATIONS ON SALINITY

Measurements of salinity taken by SJRWMD since the late 1980s indicate that salinity decreases fairly rapidly from the mouth of the river to NAS, about 30 mi upstream. Within this reach, the mean salinity changes from polyhaline (30 to about 18 ppt) to mesohaline (18 to 5 ppt). From NAS to a location just south of Black Creek, the mean salinity further decreases to about 0.2 ppt, and from this location upstream the mean salinity fluctuates between 0.15 and 0.20 ppt. In spite of the existence of these data, salinity data are still too sparse, both spatially and temporally, to permit a reliable description of salinity characteristics in the river. Instead, the following observations can be made:

- Fresh water does not stay resident in the LSJR for long. Freshwater inflows are generally carried out of the system within a relatively short time period.
- There is no oceanic salinity (i.e., salinity greater than about 30 ppt) upstream from the intersection of the river with the ICW.
- Salinity stratification, except for transient tributary inflow events, occurs only from Orange Park to the mouth of the river.
- A turbidity maximum occurs in the vicinity of Orange Park, which is the approximate limit of marine forms from downstream. In this area, the freshwater plankton from upstream also disappear.
- In the vicinity of Picolata (RM 55), a decline in the numbers of estuarine plankton, and therefore in estuarine conditions, is evident moving north toward Orange Park.
- Upstream of Palatka, freshwater inflows create a zone that is, at least physiologically, an estuarine zone, with high chlorinity (8–9 ppt) and conductivities that are driven by ground water. A resident population of estuarine organisms lives in this area.

SUMMARY OF SALINITY

Salinity in the LSJR is highly variable and dependent on flow. A comprehensive set of salinity data on the main stem as well as the tributaries will have to be collected before the salinity balance, fluctuations in the salinity distribution, and stratification can be described.

St. Johns River Water Management District 198

The river contains both chlorides and minerals that affect the conductivity of the water and are not discriminated in routine field sampling of conductivity, the most common method in use for salinity measurements. Therefore, specific measurements and analyses are needed to characterize the river's chemistry, density structure, and saltwater/freshwater balance.

In the past, the salinity distribution was described in terms of a "zone of transition," the region of the river in which water was not either oceanic or fresh. This is a useful general concept for describing qualitatively the seasonal fluctuations in the saltwater/ freshwater balance, but not the details of density-driven circulation.

The river can be classified and segmented to a certain extent based on salinity distributions. It fluctuates between a Pritchard type A and type B, which indicates that it is characterized by moderate to high stratification.

The river occasionally becomes vertically stratified in the Jacksonville area. One investigation stated that a well-defined saltwater/freshwater interface is not usually observed, while another investigation presented evidence of a salt wedge extending upstream beyond the Fuller Warren Bridge (west of Main Street Bridge at RM 25).

For one set of measurements in 1966, the vertical-mean salinity decreases rapidly from 3,000 μ mhos/cm at Jacksonville to 300 μ mhos/cm 26 mi upstream. However, the longitudinal distribution of salinity is very much dependent on the hydrologic cycle and the mean tidal range.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

HYDRODYNAMIC AND WATER QUALITY MODELS

Various types and categories of models have been developed for a wide range of tributary and estuarine phenomena. In general, the purpose of a water body model is to represent processes and relationships, such as the flow of water (hydrodynamics), chemical interactions, pollutant transport, and/or system ecology in a way that enables the user to study, to understand, and to predict the dynamics of the system. Hydrodynamic models can be used for investigating mass balances, cause and effect relationships, the response or sensitivity of the water body to changes in input conditions, the transport and fate of pollutants, residence and flushing times, and other characteristics. This chapter reviews the hydrodynamic model studies that have been published for the LSJR and, because in most cases these studies are linked to water quality, water quality models will be included in the review.

Models can be divided into three main categories, for which the common nomenclature is "statistical," "physical," and "numerical." A statistical model is one that is based on a relationship that has been developed by means of a statistical analysis. Statistical models are used when the structure of the system is unknown, its components and interactions are too complex to be mathematically described, or the budget or time for data collection and modeling is limited. A physical model is one that incorporates a confined flow of water, usually scaled smaller than the actual, or prototype, water body. Such a model is employed when the components and interactions of the phenomena to be represented are too complex to be mathematically described or the components and interactions operate over such a wide range of time and/or space scales that it is impractical to model them any other way. A numerical model is one that is based on mathematical equations, which are usually of the partial differential type. These models are used when the major phenomena can be adequately represented by equations that can be solved by computational (computer) techniques. Categorized in this manner, the methods of representation of the three types of models are summarized in Table 3.33.

Category	Representation of Prototype	Mathematical Implementation	Type of Mathematical Solution
Statistical	Mathematical	Statistical	Algebraic
Physical	Scaled-down basin partially filled with water	Scale model laws (ratios)	Algebraic
Numerical (computational)	Dynamic equations of continuity, momentum, and state	Partial differential equations and difference equations	Numerical (computational)

Table 3.33	Categories and re	presentation of	water body models
------------	-------------------	-----------------	-------------------

SPATIAL AND TEMPORAL SCALES

An important concept in modeling is the "scale," a term used loosely in this report to describe the scope, the ratio of model phenomena to prototype phenomena, and the resolution of the model. The "prototype" is the actual water body that is represented by the model. The three parameters describing the scale of the three categories of models are compared in Table 3.34.

The "spatial scope" of the model is the extent of the physical area to be represented in the model. The "spatial ratio" of model area to prototype area is a design feature of a physical model, but it does not apply to numerical models because they use prototype dimensions. The "spatial resolution" is the size of the smallest area that is quantified in the model, typically the size of a computational element. In a numerical model, spatial resolution is a design feature that is determined by the requirements of the problem, the user, and the limitations in the model.

The "temporal scope" of the model is the maximum practical length of time that a simulation can be run. Depending on the types of equation used, the duration of a numerical simulation can be limited by considerations of numerical stability. The "temporal ratio" is the ratio of model run time to real time, which depends on the model code and the computer characteristics, and may be one or more orders of magnitude less than one. The "temporal resolution" of a

St. Johns River Water Management District 202

Scale	Model Type		
Parameters	Statistical	Physical	Numerical
Spatial scope	Geographic area represented by data	Geographic area covered by model	Geographic area covered by model
Spatial ratio	Same as prototype	Ratio of model to prototype dimension	Same as prototype
Spatial resolution	Same as any data interpolation used in the data	Infinitely small	Size of computational element
Temporal scope	Period of time represented by the data	Longest period of time simulated	Longest period of time simulated
Temporal ratio	Dependent on method used for representing time	Ratio of model time to prototype time	Ratio of model run time to real time
Temporal resolution	Same as any data interpolation used in the data	Time step in the model	Time step in the model

Table 3.34 Spatial and temporal scales in models

numerical model is the smallest time step that is required, which also depends on the type of model, the processes represented, and the speed of the computer.

STATISTICAL MODELS

Statistical models are used when the problem does not justify the time and expense of developing a physical or numerical model and the relationships between causes and effects are relatively simple and linear but may not be describable on a deterministic or physical basis. A stochastic model is a statistical model that includes a random element. Statistics are used to determine overall characteristics of the estuary, such as mean values, ranges, and reproducible cause/effect relationships. A statistical model requires a full set of data on independent and dependent variables in order that analyses can be performed. Water levels, flows, and concentrations are calibrated by changing unknown variables in the equations.

An example of an application of the statistical approach is a calculation of the nutrient balance in an estuary using monthly or semiannual water quality and flow measurements. In this case, the cause and effect may not be able to be described physically, yet a description of the relationship between water quality and season may be derived if the data are of high quality, consistent, and cover a long enough time period. Another example of a statistical application is the determination of assimilative capacity in a tidal water body, as described in a report on the LSJR by Pyatt (1964).

PHYSICAL MODELS

Physical models are dynamic. They attempt to reproduce the flow, salinity, and/or sand or sediment transport in an estuary, or portion of an estuary, using a scaled-down body of water. The depth irregularities (vertical scale) are reproduced at a different spatial scale than the shoreline dimensions (horizontal scale), and the flow of water through the model is controlled by a tide-generating machine. Water levels and flows are calibrated by bending small vertical metal strips that are set into the concrete model bed. Wind is often blown over the water by a fan, and the flow patterns are often quite realistic. However, because the vertical and horizontal spatial scales are different and time is often compressed, a set of model laws or mathematical ratios must be used to transform the values measured in the model to the values to be expected in the prototype.

In 1945, a physical model of the St. Johns River and its major tributaries from the mouth of the river to Welaka was constructed by USACE at the WES in Vicksburg, Mississippi. This model was used to evaluate effects of dredging and navigation improvements in the vicinity of Jacksonville. After extensive measurements of currents and salinity had been evaluated, estimates of freshwater discharge from upstream were judged to be inadequate to reproduce measured salinities. Therefore, a mean freshwater discharge of 17,000 cfs was

St. Johns River Water Management District 204

used to obtain a "reasonably" good model verification (WES 1947, 18–19).

In 1946, the WES physical model was used to evaluate the advective strength of tidal currents along the west bank, between the mouth of the Ortega River and the CSX RR bridge. The study used a tidal range of 1.2 ft and a mean freshwater discharge of 12,000 cfs. The study was described in an appendix to the WES (1947) report and reviewed by Pyatt (1954, 14).

The University of Florida CEL constructed a similar model for an evaluation of the distribution of current in the vicinity of Baptist Memorial Hospital in Jacksonville (CEL 1959). Recommendations were made as to volume of fill and modifications to the local bulkhead.

A physical model of Mill Cove, a nearly isolated side channel east of Jacksonville, has been sponsored by the Department of the Navy and USACE Jacksonville. The model was built in the 1970s at WES. Its purpose was to test circulation, scour, and flushing in the small embayment in order to find a structural way to minimize shoaling.

A series of reports on Mill Cove was produced by WES. Report 1 described the hydraulic, salinity, and shoaling model verification (Brogdon 1979). Report 2 described the Mayport Naval Basin study phase (as reported in Brogdon and Parman 1979). Report 3 described model tests of plans to improve flushing and decrease shoaling in Mill Cove and the navigation channel (Brogdon and Parman 1979). The Brogdon and Parman report described tide stages measured at 10 stations and current velocity data at 14 locations along the navigation channel and at 14 locations in Mill Cove (p. 20).

The Mill Cove model was calibrated for conditions existing on November 7, 1974: tide at Little Talbot Island was set at 5.4 ft, river freshwater discharge was estimated to be 8,950 cfs, and ocean salinity was 33 ppt. For the shoaling tests, the same data were used except that the tide was set at 5.1 ft to achieve calibration. The navigation channel was 38 ft deep, except for a short reach through the outer bar and the entrance channel, which was set at 42 ft MSL.

Effects on baseline hydraulics, salinities, dye dispersion, and channel shoaling are described by Brogdon and Parman (1979, 5). Velocity data were analyzed to determine flow predominance. It was found that the magnitude, direction, and duration of flow could be reduced to a single expression defining the predominant direction and percentage of total flow at any given location in the cove (p. 23). Conclusions with regard to scour and flushing in Mill Cove are also given (pp. 106, 108).

NUMERICAL MODELS

The numerical models for the LSJR that have been developed and published are hydrodynamic models which, in most cases, include water quality components. In the discussion of LSJR models, it is necessary to distinguish between non-tidal tributary models, tidal tributary models, and river estuary models. The term "tributary model" does not clearly distinguish the type of flow involved, although it often implies a uni-directional flow model that does not include a tidal influence. In cases where winds may be strong enough to temporarily reverse the flow, a uni-directional model will not be adequate, even for a non-tidal tributary, unless wind effects are not included. The tidal portion of a tributary and/or a river estuary must be represented by a tidal model, which can accommodate reversing flow. The important difference between non-tidal and tidal models is that tidal models incorporate bi-directional flows.

Numerical models may be solved either by implicit, explicit, or a mixture of implicit and explicit procedures. An implicit solution solves all equations simultaneously at each time step by matrix inversion. An explicit model solves all equations sequentially at each time step. The implicit solution has the advantage of not being limited to a small time step, but it is iterative and may, therefore, require a longer time to converge to a solution. The explicit method is relatively fast but is limited to relatively small time steps because of the Courant, Friedrichs/Lewy stability criterion. This limit states

St. Johns River Water Management District 206

that the time step must be short enough to preclude the movement of a particle into and out of the same computational cell in one time step. It also implies that, in order to use a larger time step, cell sizes must be increased proportionally. The ideal case would be to use small cells and large time steps (e.g., 15 minutes to 1 hour or greater time steps).

The limiting water movement in a tidal model is the celerity (speed) of the tidal wave, which is proportional to the depth of the navigational channel. In a 15-ft-deep channel, the tide moves at a celerity of approximately 22 feet per second. A cell length of 1,320 ft is the minimum size that can be used with a 60-second time step to accommodate this tidal celerity. Conversely, for the same channel depth, a 5-minute time step would limit the minimum cell length to 6,600 ft.

The tidal portions of tributaries, and the confluences with the main stem, have complex flow patterns varying significantly in all directions and with time. Flow in the main stem of a river will have different characteristics than in its tidal tributaries; in the LSJR, these characteristics are determined by the effects of ocean tide at the inlet, its over-100-mi length, and the combination of many inflows. Tidal flows, which are incorporated in all estuary models, also are affected by wind and the density differences caused by variations in salinity. Many hydrodynamic models do not incorporate density and some that do have only one-way ("loose") coupling to the salinity. A fully coupled salinity model will correctly simulate flow caused by salinity gradients as well as the movement of salt by transport and dispersion.

Model Selection

Selection of the model to be used for a particular water body must be based on a clear understanding of the significant characteristics of the water body, the management questions to be answered, and the expected resolution and reliability of the results. The management questions must specify both the space and time scale to be used, as well as other characteristics of the problem such as What processes are significant? Which variables have to be quantified? Where in the water body are results needed? Are instantaneous or average results required? What physical resolution is required? Over what time period are results required? What accuracy of results is required?

Then, from a knowledge of the system or from some preliminary modeling effort to gain an initial understanding of the system and the problem(s) to be answered, the modeler can determine what processes need to be included in the model and the degree to which the general equations can be simplified.

A modeler selects a model, or assembles a model from various equations to represent the active processes, by considering the options available in a variety of categories. Some of the basic choices for a numerical model are summarized in Table 3.35.

Category	Choices
Physical process	Level, velocity, momentum, density, etc.
Variation in space	Uniform vs. non-uniform (box, grid, etc.)
Variation in time	Steady, averaged, unsteady (dynamic)
Type of equation	Finite-difference, finite-element, etc.
Water surface	Free or rigid-lid (fixed)
Solution technique	Implicit, explicit, mixed-mode, etc.
Spatial viewpoint	Eulerian, Lagrangian
Temporal viewpoint	Instantaneous or time averaged
Horizontal grid type	Rectangular, curvilinear, fitted, etc.
Vertical grid type	Variable, fixed, sigma-stretched, etc.
Number of dimensions in model	1, 2 (laterally averaged), 2 (vertically averaged), 3, or mixed
Spatial scale	Near-field, far-field
Temporal scale	Intra- and inter-tidal, seasonal, multi-year

 Table 3.35
 Numerical model feature choices

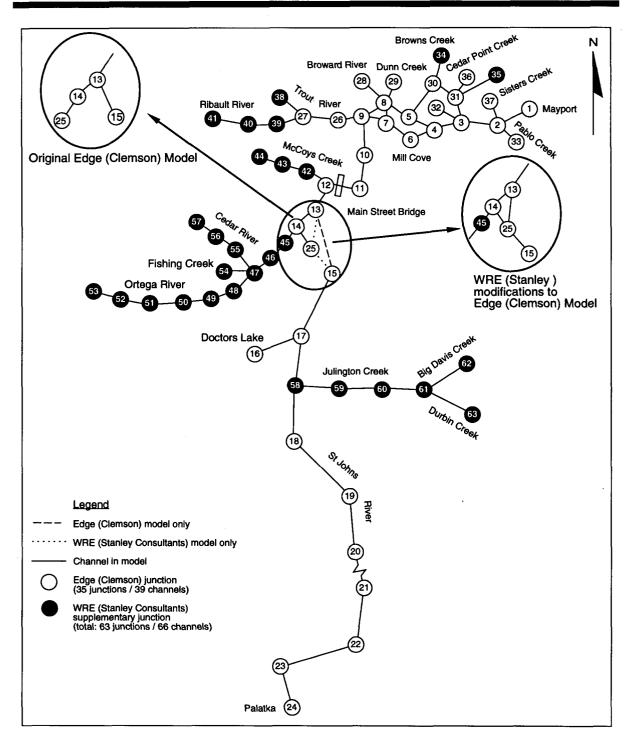
Eulerian versus Lagrangian Flow

Flow may be described as Eulerian or Lagrangian. All flows described in this report have been Eulerian; the descriptions are based on the viewpoint of the entire flow field or the patterns of all flows in a particular area. Conversely, for some phenomena, it is convenient to describe the movement of one or more particles or contiguous water masses relative to all other water in the same volume. This viewpoint, called Lagrangian flow, focuses on the tracks or time history of individual or groups of particles. The latter is of interest, for example, in determining residence times and flushing rates. No Lagrangian models of the LSJRB have been described in the literature.

NUMERICAL MODELING PROJECTS

Frederic R. Harris, Inc. Modeling

In 1972, the Jacksonville Area Planning Board (JAPB) received a grant from EPA to develop a water quality management plan for Duval County. JAPB contracted with USGS, the City of Jacksonville Department of Health, and the City of Jacksonville Bio-Environmental Services Division (BESD) to work as members of the study team to develop the plan and with Frederic R. Harris to provide overall technical direction. Frederic R. Harris subcontracted portions of the mathematical modeling to Clemson University, the University of Florida, and Florida Technological University. The purpose of the plan was to develop a cost-effective solution for managing wastewater treatment systems to achieve and to maintain water quality standards (Frederic R. Harris and the Jacksonville Area Planning Board 1973, I-5).


The assimilative capacity of key tributaries was determined using the Simplified Math Model developed for EPA by Hydroscience. Dissolved oxygen (DO) levels were calculated from known point source waste loads, and organic load allocations were determined for individual dischargers (Frederic R. Harris and the Jacksonville Area Planning Board 1973, II-6, XIII-3). The Edge model represented the river from the ocean to Palatka. This hydrodynamic model was calibrated for low-flow conditions with a mean inflow of 6,000 cfs at Palatka and comparisons of predicted tidal levels, times of occurrence of high tide, and chloride distribution. The water quality model was calibrated with biochemical oxygen demand (BOD), DO, and chloride data collected over a 3-day period in June 1973. The model was used to evaluate alternative wastewater plans, including regional plant, military base, industrial, and municipal outfalls (Frederic R. Harris and the Jacksonville Area Planning Board 1973, II-7, XII-11–12).

Edge (Clemson) Model

A dynamic, sectionally averaged (link-node) numerical hydrodynamic model of the LSJR, which also includes a water quality component, was developed by Dr. Billy Edge of the Department of Civil Engineering, Clemson University, in 1972-73 (Edge 1973). The Dynamic Estuary Model (DEM), a one-dimensional link-node model first developed by Water Resources Engineers (WRE) beginning in 1965, served as the starting point (WRE 1965). DEM incorporates one-dimensional equations for conservation of mass and conservation of momentum to represent advection, turbulent diffusion, and dispersion phenomena (Feigner and Harris 1970). The Pearl Harbor version of this model was obtained from EPA and modified for this application. The usual assumptions for a one-dimensional estuary were accepted: it is assumed that there are no gradients in the vertical or transverse direction and that water density, the longitudinal dispersion coefficient, and all quality constituents are constant. In addition, the turbulent energy loss (friction) coefficient was set to a constant value, and it was assumed that none of the material lost from the estuary was returned by the tide.

A link-node model is based on division of a river into sections. Each section is represented by a node (or junction) and the nodes are connected by links (or channels). The LSJR from Palatka to its mouth was first represented in the DEM model by a 35-junction, 39-channel network (Table G2). The dimensions of the model are not tabulated in the report, but the network is depicted in Figure 3.35

St. Johns River Water Management District 210

Hydrodynamic and Water Quality Models

Figure 3.35 Nodal networks for the Edge (Clemson) and WRE (Stanley Consultants) link-node models (Edge 1973, 9, Figure 2; Stanley Consultants and Water Resources Engineers 1978, 4-42, Figure 4-4)

St. Johns River Water Management District 211

(Edge 1973, 9, Figure 2). Another company, Stanley Consultants, extended the Edge (Clemson) model to 63 junctions and 66 channels by adding major tributaries. In the process, a few of the junction numbers in the vicinity of the confluence of the Cedar and Ortega tributaries were changed (Stanley Consultants and WRE 1978, 4–42, Figure 4-4; Figure 3.35). The channel lengths, widths, and depths and the channel-to-junction connectivity are listed for both models in Table G1 (Appendix G).

The hydrodynamic part of DEM, called DYNHYD, was used in Edge's model to calculate the water level at each node and the velocity in each of the connecting links. Boundary conditions consisted of constant inflows and a single repeating tidal cycle. Calibration of the hydrodynamic model was based on tidal data from NOS for Mayport and flow data from USGS for July 1972. The verification process was discussed, but no results were reported.

The hydrodynamic model output is saved and used as input for the water quality component, DYNQAL. The quality model simulated BOD, DO, and chlorides. The reaeration rate, saturation level of DO, benthic oxygen demand, and temperature were specified as constant. Supporting field surveys were conducted in July 1972 and June and July 1973, and the 1973 surveys were used for the water quality calibration. The deoxygenation rate coefficient or rate of BOD (K1) and the rate of reaeration (K2) were calculated as a function of local depth, velocity, and temperature at Palatka. At the tidal entrance of the model, an exchange coefficient of 10% for chlorides and a fitted BOD decay coefficient were used. Calibration results were considered adequate, except for DO at some stations.

The model was applied for two conditions: (1) the 1972 loadings with a low flow of 500 cfs at Palatka and (2) the loadings expected in the year 2020. Edge states that, when used to compare management choices, the model will provide quite useful results, whereas when used for other purposes, the results may be misleading (Edge 1973, 44).

Connell (Hydroscience) Model

Connell Associates, of Coral Gables, referenced a water quality modeling study that was being conducted for the "Jacksonville metropolitan area" at the time of their report (1974, 4-48). This report referred to the support of Frederic R. Harris (described below) in assisting in the calibration of the Edge (Clemson) model as part of Harris' support for the Metropolitan Regional Plan for JAPB (Edge 1973, i).

Connell Associates conducted a model study of several Florida drainage basins, including the LSJR, for the Florida Department of Pollution Control (FDPC) in 1971 and 1972 and published the results in 1974. Connell Associates subcontracted with Hydroscience to develop and to verify the water quality model with data provided by Frederic R. Harris, JAPB, Connell Associates, FDPC, and other state agencies. The model was to be used primarily as a management tool for formulating decisions on waste load allocations through predictions of DO and eutrophication. Water quality field studies were limited to the part of the river upstream of Palatka.

The model was based on steady flows; it was not a dynamic model. Its scope was initially limited to that part of the river lying between Lake Hellen Blazes in the Upper St. Johns River Basin (Figure 1) and the Duval County line near Jacksonville. This reach was represented with 25 segments ranging from 1.5 to 4.2 mi long. Later, the model had to be extended to the river mouth with 41 additional segments to resolve steep salinity gradients. Net flows (20-day averages of data taken in July 1972) to Palatka were estimated directly from USGS gaging station records at De Land, Palatka, intermediate tributaries, and Jacksonville. Only the main stem of the river was modeled; tributaries were treated as inputs.

The river geometry segmentation is summarized in a report on the water quality modeling study for four Florida basins. The segmentation is reproduced in Figure 3.36 (Connell Associates 1974, Figure 4-20, 4-49–51). The segment widths, depths, and volumes used in the Edge (Clemson) model are compared in parts A–C of

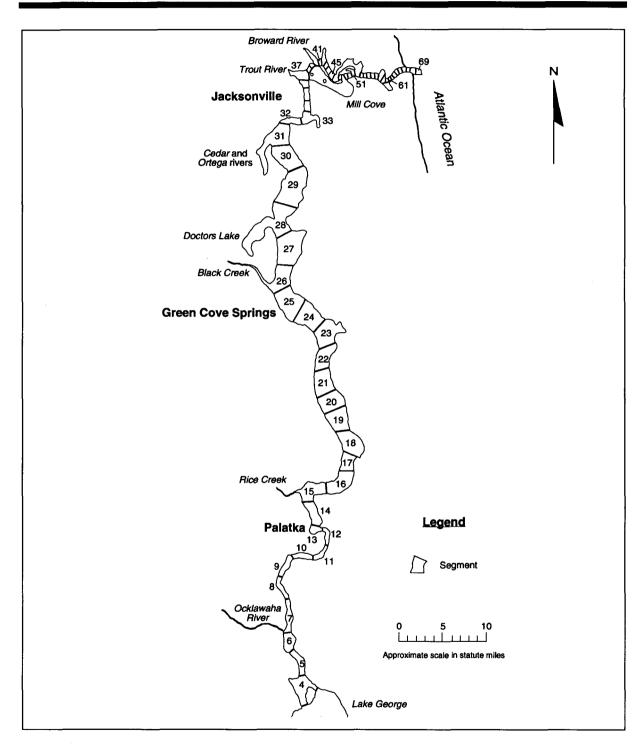


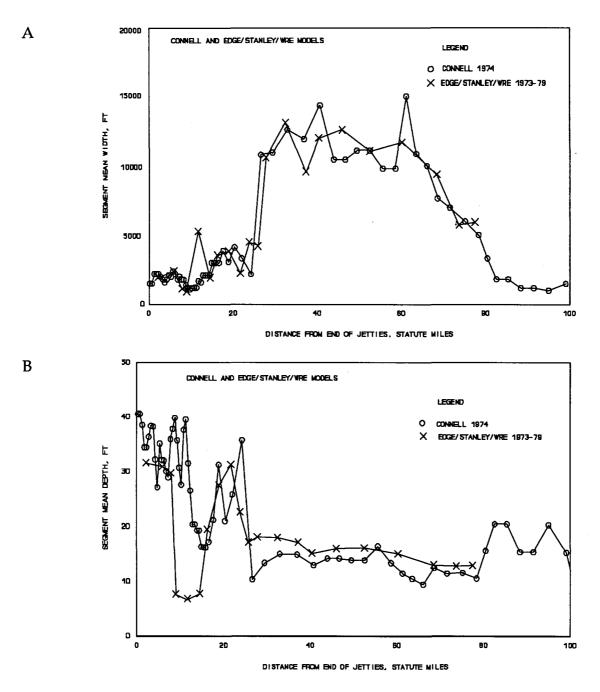
Figure 3.36 Network for the Connell one-dimensional segmented model (Connell Associates 1974, 4-49, Figure 4-20)

St. Johns River Water Management District 214

Figure 3.37, with the corresponding estimates of river geometry given by Connell Associates.

The reader should not expect the pairs of distributions in Figure 3.37 to match the dimensions represented in Figure 3.2. In addition to their role in representing the shape of the river, segment dimensions for a model also must represent the dimensions that will modify the simulated flow to account for energy (friction) losses. Model dimensions are often modified to assist in calibrating a one-dimensional model.

The conservation of constituent mass equations in this model use a two-dimensional (horizontal) set of constant net-non-tidal flow and tidal mixing coefficients to allow for lateral flow as well as longitudinal flow in the tidal hydrodynamics. These longitudinal and lateral flow advection constants were used to calibrate the model. The longitudinal dispersion coefficients, obtained during verification, varied from 23 mi² per day at the mouth to 0.5 mi² per day near the Ocklawaha River (Connell Associates 1974, 4-53).


Water quality data were collected at 24 sampling stations from Palatka to the mouth of the river during 1972. Parameters included chloride, temperature, suspended solids, total phosphate, total nitrogen, BOD, DO, and total coliform. Other data, including some from STORET (EPA's data base), were used. Hydrologic data were obtained from six USGS stations, the most southerly located at Palatka.

Basin water quality models developed by Hydroscience were used to allocate waste loadings through DO and eutrophication assessments.

HydroQual Model

In the early 1970s, HydroQual developed a steady-state finitedifference model called the Sparse Matrix Analysis Model (SPAM) for EPA. EPA changed the name of this model to HARO3 for its original general-use release. Later, a PC version of SPAM, called the Estuary Steady State Model (ESSM), was made available.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Figure 3.37 Comparison of mean widths (A), mean depths (B), and mean volumes (C) of the lower 100 miles of the St. Johns River as used in numerical models of the river

St. Johns River Water Management District 216

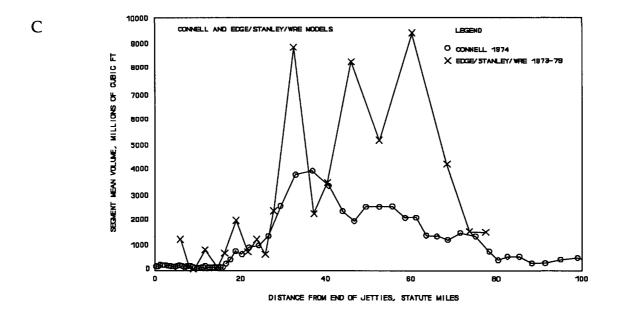


Figure 3.37—Continued

SPAM was used for water quality simulations in the St. Johns River by Hydroscience in 1973 (Connell Associates 1974; HydroQual 1994). SPAM simulates salinity, DO, BOD, carbonaceous oxygen demand, nitrogenous BOD, sediment oxygen demand, and net daily photosynthesis, respiration, and reaeration for algal growth and decay. In 1976, this model was used by HydroQual for the St. Johns River part of the Rice Creek water quality model. Since the 1980s, HydroQual has adapted SPAM to represent both Rice Creek and the contiguous St. Johns River.

Atlantis Scientific Model

Atlantis Scientific conducted a water quality analysis on the Duval County area of the river and published results in 1976. The stated objective was to separate point-source impacts from natural conditions. At that time, the best estimate of the average net discharge of the LSJR was between a low of about 3,000 cfs in May and a high of about 9,000 cfs in October (Atlantis Scientific 1976, V- 1a, Figure V-2). The calculated monthly mean was 5,833 cfs and the estimated monthly mean was 8,100 cfs (RSH 1975, as referenced in Atlantis Scientific 1976, II-8). It was considered necessary to modify the Edge and Connell models because the flows did not adequately represent the 7-day, 10-year conditions. Atlantis Scientific considered Connell's flow (7,200 cfs in Connell Associates 1974, 4-53) to be slightly greater than the average and stated that the Edge model did not show the reverse flows, which occur frequently and for long periods. Design flows covering a range of downstream flows typical of the seasons with substantial, but conservative reverse flows, were selected for model runs. Examination of oxygen deficits versus flow suggested that natural conditions other than flow (e.g., temperature, evaporation, and photosynthesis) dominate the system. Also, Atlantis Scientific recommended the use of data for October, February, June, and August for design at both Jacksonville and Palatka because those months include the seasonal extremes and mid-points (Atlantis Scientific 1976, V-1).

Water Resources Engineers (Stanley Consultants) Model

Water quality modeling studies of the St. Johns River were conducted in 1977 and 1978 by WRE as subcontractor to Stanley Consultants, in support of the Areawide Wastewater Management Study element of Stage II of the Metropolitan Jacksonville Water Resources Study conducted by USACE through the Urban Studies Program. The objective was to extrapolate allowable waste loads from nonpoint sources to ten additional watersheds, considering runoff and streamflow characteristics, drainage area size, and land use.

Water quality modeling was conducted in both riverine and estuarine regions of the St. Johns River.

The WRE Riverine Model. The riverine part of the WRE model, a one-dimensional link/node network, was applied to Sixmile Creek (in the non-tidal reaches of the Ribault River), the non-tidal reaches of Julington Creek, McGirts Creek (in the non-tideal reaches of the Ortega River), and the non-tidal reaches of the Cedar River. Boundary conditions included steady (non-time varying) freshwater

St. Johns River Water Management District 218

inflows, steady wastewater discharges, and one representative tidal cycle. Internal effects include surface reaeration, DO, BOD, benthic oxygen demand, photosynthesis, nitrification, and biodegradation (WRE 1979, 1, 5).

Development of riverine water quality models for the non-tidal reaches of the Cedar and Ortega rivers and Sixmile and Julington creeks was completed in two stages. First, a simplified BOD/DO model for each system used QUAL-1, a set of Eulerian numerical constituent routing models incorporating temperature, BOD, DO, and conservative constituents in a one-dimensional, vertically well-mixed, branching stream system. Second, a more advanced version (QUAL-2) with an extended list of water quality parameters and chemical-biological processes was used. The QUAL-2 model could simulate up to 13 water quality constituents, but it too was limited to steady stream flow and input waste loads. This model can be operated either in a steady or a dynamic mode to show diurnal variations in meteorological data, diurnal DO variations due to algae growth and respiration, the impact of a slug load, or the impact of seasonal or periodic discharges (WRE 1979, 9–13).

WRE acknowledged several limitations of its model. Most important, some data necessary for calibration were unavailable, especially background loadings. Also, hydraulic characteristics had to be expressed as arithmetic (power) functions. There were a limited number of streamflow gages, and only constant tributary flow rates could be used for each simulation period (WRE 1979, 14–21). Because not enough information was available to quantify point sources for each individual baseline water quality sampling period used in model calibration, the same point source loadings were used for all simulations (p. 24). Also, because no data were available for most water quality parameters, literature values and experience with similar systems were extended to this model (p. 27).

The WRE Estuarine Model. The initial estuarine modeling effort in the LSJR began with the Edge (Clemson) model. The network was extended to include the tidal reaches of the Cedar-Ortega River System, Julington Creek, and McCoy Creek, using 63 junctions and 66 channels (Figure 3.35). The model segmentation network is given in the report by Stanley Consultants and WRE (1978, 4-42, Figure 4-4) and in Supplement A, Annex 1, of the Metropolitan Jacksonville Water Resources Study (WRE 1979, 62, Figure 3.2, and 69, Table 3.1). As a result of preliminary model runs on this configuration, it was determined that an expanded version of the DEM was appropriate for this application. The Tidal Temperature Model (TTM) was selected, which is a version of the DEM first applied to an analysis of the hydrodynamics of Pearl Harbor. In this version, the hydrodynamics are run separately to provide inputs for the water quality model (Stanley Consultants and WRE 1978, 4-40; WRE 1979, 61).

The hydrologic input to the model was developed from USGS data. The DEM/TTM did not have the ability to handle time-varying stormwater loadings; it used steady-state runoff values based on drainage areas and unit area flow rates (WRE 1979, 67; Stanley Consultants and WRE 1978, 4-41). Also, background loadings for the model were unknown (Stanley Consultants and WRE 1978, 4-49), and only steady point and nonpoint sources were used (WRE 1979, 66).

Tidal data for calibration of the hydrodynamic model were obtained from NOS for the NOAA gage at Mayport. For each historical period, the model was operated with a repeating representative 12-hr record after reaching equilibrium. Records from 13 additional gages from Mill Cove to Cedar River were used in the calibration (WRE 1979, 73, Table 3.4). Also, stage records from the USGS gages at Palatka and Main Street Bridge were used (p. 72). The hydraulic calibration of the estuary model was conducted in the usual manner for the 1970s, by adjusting channel configurations, geometry, and bottom roughness until satisfactory results were achieved (Stanley Consultants and WRE 1978, 4-44).

Water quality data for estuary model calibration and analysis were collected by USACE and the City of Jacksonville BESD at about 20 locations through several tidal cycles. These data were supplemented with additional data from ongoing monitoring programs such as USGS water quality measurements at Palatka (WRE 1979, 72).

St. Johns River Water Management District 220

The estuarine model was used to evaluate the assimilative capacity of the river under both wet and dry conditions. For the dry season, water quality calibration data that were used for the Edge model were selected. For the wet season, flow corresponding to the historical average monthly flow for the period May through September (the high runoff season) was used. Results were tabulated by tidal organic loadings and assimilation capacity. Average travel time from Palatka to Jacksonville was found to be about 60 to 80 days for a river discharge of 1,000 to 2,000 cfs at Palatka (Stanley Consultants and WRE 1978, 4-47). Results for the lower and middle parts of the main stem, McCoys Creek, Julington Creek, Ortega River, Cedar River, and Ribault River are discussed in the WRE report (1979, 104).

Results of the calibration of the water quality model, shown in simulated profiles for selected water quality parameters for the main stem and the Cedar/Ortega River System, generally agreed favorably with the data collected under the direction of WRE, although some extremes were not reproduced (Stanley Consultants and WRE 1978, 4-44). Results of calibrations using September 1977 and July 1988 data are summarized (Stanley Consultants and WRE 1978, 4-44–45), and tables of organic loadings for each of seven estuary model segments for each data period are given in Tables 3.9 and 3.11 of the WRE report (1979, 96, 105).

FDER Pollutant Impact Models

Recognizing that disposal of multiple sources of pollution competes for the use of surface waters for dilution and/or flushing, the Florida Department of Environmental Regulation (FDER, now FDEP) used an EPA procedure called waste load allocation (WLA) for determining the allowable wastewater loads from treatment plants and tributaries to major rivers. The allowable loads are called water quality based effluent limitations (WQBELs).

Intensive surveys were conducted by the Bureau of Water Analysis (BuWA/FDER) in the LSJRB tributaries. The objective of the intensive surveys was to collect data for calibrating and verifying models to be used to evaluate WLAs. These surveys are

summarized in Table F1, Appendix F. The reports are identified by the Water Quality Technical Series (WQTS) volume number and sequence number in the form (Volume #:Sequence #).

Volume 2 of the WQTS series describes WLAs. The principal recommendations of WLAs are expressed in terms of WQBELs (Table F2).

A series of models developed in the early 1980s was used by FDER to support the analyses needed for the WLA evaluations. The WLAs were evaluated using the models, ranging from simplified analytic and statistical methods to non-tidal and tidal dynamic models. Three different models were used in connection with subareas of the LSJR: SIMRIV for non-tidal portions of tributaries, DYNRIV for tidal tributaries, and DYNEST (or ESTH) for the confluence of a tributary and the main stem.

SIMRIV is a one-dimensional, steady-state stream model incorporating stream geometry as a function of flow and modified Streeter-Phelps equations. This model was derived from RIVER (Connell Associates 1974) with subsequent additions and revisions of water quality parameters in the RIV1 and RIV2 versions (FDER, WQTS 3:14, 1). RIVMOD is another link-node variant that is often used because it is an implicit-solution model.

DYNRIV is a one-dimensional, time-varying, tidal tributary model that allows non-uniform longitudinal flows and incorporates pollutant advection and dispersion. Because the model is onedimensional, it can only be applied to tributary reaches that are primarily laterally and vertically homogeneous. The model includes an equation of continuity and an equation of momentum for flow, dispersion as a function of depth and velocity, and mass-balance equations for salinity, temperature, DO, BOD, and total Kjeldahl nitrogen. Inflows from tributaries and sewage treatment plants are included. The model is finite-difference, solved explicitly.

DYNEST (or ESTH) is a two-dimensional, vertically averaged, tidal hydrodynamic model incorporating salinity, temperature, DO deficit, 5-day BOD, and nutrients. The model uses an explicit finite-

St. Johns River Water Management District 222

difference solution and incorporates wind, partial blockages, and particle-tracking options (FDER, WQTS 3:11, 24). In the 1980s, constituents and kinetics from the RIV1 model were being incorporated into this model.

Seminole Power Plant Site Model Study

The model study for the Seminole Power Plant Units 1 and 2 is an example of a detailed study in a small area of the LSJR. Similar to WLA studies that are conducted to evaluate the impacts of pollutants from a point source, the objective of a power plant impact analysis is to evaluate the effect of a thermal discharge on the ambient temperature in the receiving part of a tributary or the main stem of the river. Often both a near-field and a far-field model are employed. The near-field model simulates the extent of the thermal plume in the immediate vicinity of the outfall; the far-field model simulates the extent of mixing and transport to the location where temperatures meet state requirements.

Dames and Moore conducted a thermal impact study at the Seminole Power Plant site north of Palatka from 1977 to 1979. USGS flow measurements at Palatka and Dames and Moore's tide and combined water quality measurements were used to calibrate the plume model NEWJET and the Dames and Moore hydrodynamic model TIDAL2 and water quality model WQUAL2. NEWJET is a quasi-threedimensional, buoyant, surface plume model employing an integral vertical-velocity profile. TIDAL2 and WQUAL2 are two-dimensional vertically integrated derivatives of the Leendertse (1970) dynamic three-dimensional models incorporating local and convective accelerations, pressure variations, wind, and atmospheric pressure (Dames and Moore 1977, C-1–17; 1979, Vol. 3, Appendix C).

Bailard/Jenkins Model

A one-dimensional box model was developed for use in evaluating two methods for reducing sedimentation in the Mayport Turning Basin (Bailard and Jenkins 1987).

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

The model was calibrated with two sets of data: (1) 1 day in April 1984 and (2) 1 month beginning in February 1985. These data were supplemented with water level data by Jenkins et al. (1983). Differences in water level, flow, and suspended sediment concentrations between the river and the turning basin were used to derive the final results.

FEMA Hurricane Surge Model

The Federal Emergency Management Agency (FEMA) conducts studies to establish flood insurance rates and guidelines for floodplain management in coastal areas. Their methodology is based on a set of numerical models that are used to predict the flooding that may occur as a result of severe storms, such as hurricanes, with specific recurrence intervals. Several such studies have been conducted for the northern part of the LSJR, including the City of Jacksonville. A typical study combines the predicted effects of coastal storm surge height, wave setup, and tide. The study is extended to a hydraulic analysis of the height of water in all affected tributaries, considering the mean discharge and tide expected to occur in each.

A two-dimensional, vertically averaged, finite-difference model, FEMA Coastal Flooding Storm Surge Model (SURGE), was used to predict storm surge heights in the LSJR. The river and surrounding terrain were represented on a grid of either 5×5 nm or 1×1 nm, depending on the required resolution. The effects of storms with 10-, 50-, 100-, or 500-year return periods were simulated with variations in central pressure depression, radius to maximum winds, forward speed of the storm, shoreline crossing point, and crossing angle. The model was calibrated with data from Hurricane Dora (September 1964), which was the most powerful storm, albeit a minimal strength storm, to be recorded in that area (FEMA 1989, 5–28).

Divoky and Bhat Black Creek Storm Surge Study

In 1988, the SURGE model was used by Divoky and Bhat (1988) of Engineering Methods and Applications to investigate the effects of a

St. Johns River Water Management District 224

hurricane on Black Creek for USACE Jacksonville. The objective was to determine the surge height and time of arrival of water levels resulting from maximum winds at the mouth of the creek.

A nested grid was used. The coarse grid, with a spacing of 5 nm, covered an ocean area extending 110 nm offshore and 200 nm alongshore. The inner fine grid, using a 1-nm spacing, extended 27 nm offshore and 39 nm alongshore. Fifteen tributaries were included in the model from the mouth of the St. Johns River to Black Creek. The two-dimensional, vertically averaged, long-wave equations for conservation of mass and momentum were solved explicitly. Energy losses were represented by Manning's coefficients. A tide of 0.5 ft amplitude at and a discharge of 2,000 cfs from Black Creek were assumed. The model was calibrated with data from Hurricane Dora.

The study was limited to five storms (one for each Saffir-Simpson storm category) on arrival tracks of east and southeast. Predicted marigrams (surge height, in feet versus time) are given for the mouth of Black Creek, Mill Log Creek, Bradley Creek, Little Black Creek, Lake Asbury, and the North and South Forks for each stormarrival direction. The results showed the expected increase in surge amplitude with storm category, that the northwest-bound storms produce slightly less surge amplitude than the westward-bound storms, that amplitude increases slightly with distance upstream, and that the peaks along Black Creek occur at approximately the same time.

Camp Dresser and McKee Hydrologic and Water Quality Models

One of the first projects initiated under the SWIM Plan for the LSJR was the development of a Master Stormwater Management Plan (MSMP) for the City of Jacksonville. Phase 2 of the MSMP project included development of hydrologic and water quality models for nine subbasins in Duval County by Camp Dresser and McKee (1992–93). The following tributary subbasins were modeled: the LSJR upstream of Trout River, the ICW, Trout River, Ortega River, Broward River, Dunn Creek, Arlington River, the LSJR downstream

of Trout River, and Julington Creek. None of the models extended downstream into tidally affected areas.

The water quality models for the nine Duval County subbasins simulated stages and discharges for 10-, 25-, and 100-year 24-hour storms, using the RUNOFF and EXTRAN components of the Surface Water Management Model (SWMM). Even though the SWMM model is capable of continuous simulation, it was used in this application only for single-event runs.

All of the Duval County subbasin models also included a spreadsheet water quality component based on annual loads for screening purposes. Five of the subbasins (the LSJR upstream of Trout River, the ICW, Trout River, Ortega River, and Broward River) were modeled with the water quality component of SWMM. Results were provided for an average year, which in Jacksonville consists of about 50 events. These models include steady loadings of BOD, total nitrogen, total phosphorus, zinc, and lead and use the RUNOFF and TRANSPORT components of SWMM. The quantities of pollutant loads were calculated from Nationwide Urban Runoff Program (NURP) data, which specifies concentrations of specific water quality parameters based on land use.

The results of the simulations are to be published in a set of reports that will be available from SJRWMD or the City of Jacksonville. The entire set will consist of nine volumes (one volume per subbasin) plus a general volume describing the methodology applied.

NOAA Screening Assessment Model

It is assumed that the NOAA Screening Assessment model was used to develop the description of the LSJR in the NEI (NOAA 1985).

The NOAA screening assessment model is a steady-state, twodimensional (vertically averaged), finite-element model used to provide a preliminary assessment of hydrodynamics or water quality in an estuary. Results from this model are based on an assumption that the hydrodynamic features are known or can be postulated and can be provided through boundary conditions. The model is used

St. Johns River Water Management District 226

primarily to provide a framework for the organization of existing data to assist in assessing the significance of circulation features on salinities and to assist in the development of field programs to support real-time modeling (Klein and Galt 1986, 483–501).

The flow field is developed on an assumption of incompressible, irrotational flow and on an assumption that the circulation is controlled completely by bathymetry. Thus, the only factor in this model that can influence flow is the shape of the basin. The model cannot be used to resolve processes requiring temporal resolution of less than about a month. In cases where the relative merits of alternative, relatively long-term management strategies are to be evaluated, the model, if accurate, may be applicable.

The literature emphasizes that this type of model is not appropriate when inadequate data exist to set the hydrodynamics or when details of flow are needed in space or time. The model is appropriate to use for assisting in management decision-making after more comprehensive models have been developed and river dynamics have been quantified with all of the significant variables in the prototype system. Then the model developer may consider simplifying the model to a screening level capability, provided the resulting simplification does not misrepresent the significant dynamics.

SUMMARY OF MODELING THE LSJR

The first physical model of the river was constructed by USACE in 1945. This model was used in a successive series of efforts to study tidal currents, salinity, and dredge spoil disposal, but the salinity studies suffered from a lack of adequate data. Later physical model studies of circulation, scour, flushing, and sedimentation were used to evaluate dredging plans for Jacksonville Harbor.

The first computer models of the river were produced by Connell Associates, Frederic R. Harris, and Clemson University in 1972 and 1973. The water quality model was intended for use in studying pollution loading in the Jacksonville area. The model used steady inflows, due to the lack of flow data, and was not reliable enough to be used to set water quality effluent limits.

Additional water quality models were developed through the 1970s by extension of the Connell model and by separate efforts of federal and state agencies and various consultants during the 1970s and 1980s. Models designed to answer specific questions, such as questions about sedimentation, power plant siting, tributary WLA, and storm surge elevations, were developed. In general, these models were all limited by a lack of basic data and knowledge on the functioning and variability of the river.

The models were unable to describe more than measured events and could not be used to reproduce realistic long-term sequences of events or to predict future conditions.

SUMMARY

This reconnaissance report has two major purposes. The first is to describe, compare, and evaluate the available literature and data on the hydrodynamics and salinity of the LSJR. The second is to recommend future work needed to develop a more complete understanding of the dynamics of the river. This volume brings together the facts and opinions that have been developed through many past investigations, it documents the sources, and it attempts to put the investigations into perspective.

The LSJRB is defined as that part of the St. Johns River located downstream of the confluence with the Ocklawaha River. It is the part that is directly connected to the ocean, that is tidally influenced, and that is impacted by industry and development.

SCOPE OF THE REPORT

Hydrodynamics is the dynamics of water movement. It is described in terms of water heights (elevations or "levels"), water flows (currents), and water volumes. To assure a proper perspective, both time scales and space scales must be specified for a particular description or investigation of the river.

Time scales are the periods of time over which characteristics of the river change. For example, water levels can change within a few minutes, while the period of a tidal cycle is over 12 hours. Likewise, space scales are the distances over which changes take place. For example, tides affect at least the lowest 100 mi of the river on a regular basis, whereas a tributary discharge may only impact a few miles of the main stem.

In order to completely describe river water levels, flows, and volumes, the magnitudes and variability of major forces that affect these features of the river must be quantified. This report describes the shape of the river (i.e., its geometry), the tides, winds, flows, and variation of salinity. It refers to the freshwater inflows that are described in more detail in Volume 2 of the Reconnaissance Report.

Computer models have proven to be convenient for describing and investigating the dynamics of a river. A properly calibrated and verified model can reproduce the fundamental dynamics and then can be used to explore features of the dynamics that cannot be easily measured. Because water quality models require complete hydrodynamic descriptions that provide the depths, flows, volumes, and salinities of water for the calculations, both existing quantity and quality models of the LSJR are reviewed in this report.

DESCRIPTION OF THE RIVER

The St. Johns River begins in marsh headwaters north of Lake Okeechobee, flows northward to Jacksonville, and then eastward to its ocean entrance. The river is over 300 mi long and has a total drainage area of over 9,000 mi², making it the third largest drainage basin in Florida. It has the fifth largest discharge of all the rivers in Florida, on the order of 6,000 to 15,000 cfs. Its average slope over its length is 0.08 ft/mi (about 25 ft over 300 mi).

The LSJR is ordinarily tidal upstream at least to Crescent Lake and Lake George. Tidal effects have been reported as far south as Lake Harney, upstream of De Land. The river's volume and flow are affected by numerous tributaries, both large and small. Its total flow—the combination of tide and tributary inflow—may reach 150,000 cfs (over 232,000 million gallons per day) at the mouth.

The dimensions of the river—the changes in width and depth along its length—divide it into different zones. The river is relatively deep, narrow, and sinuous from the ocean through Jacksonville, with many tributaries. Upstream of Jacksonville it widens and has fewer, but some larger, tributaries. Farther upstream still, past its confluence with the Ocklawaha River, it flows through a sequence of large lakes. Throughout its length, from the ocean to Lake Harney, it has a federally maintained navigation channel which acts to slightly increase the natural speed of propagation of the tide.

St. Johns River Water Management District 230

Water levels in the river are principally influenced by local river dimensions, tides, winds, and freshwater inflows. The tidal characteristics, in terms of heights and times of propagation, are fairly well quantified. The average range of tide (difference between mean high and mean low tide) varies from 5.49 ft at Little Talbot Island to 4.51 ft at Mayport, 1.51 ft at the Acosta Bridge in Jacksonville, and a minimum of 0.71 ft at Julington Creek. It increases to 1.09 ft at Palatka and decreases to 0.93 ft at Buffalo Bluff and 0.35 ft at Welaka near the confluence with the Ocklawaha River.

The times of high and low water upstream relative to the times of high and low water at the river entrance change relatively smoothly along the river. The time differences of high water near the entrance are greater than the time differences of low water. This characteristic reverses around RM 10, indicating that the characteristics of the tides at some stations may not be symmetric. When high tide is approaching East Tocoi (RM 61) on its progression upstream, the flood tide at the mouth is turning to ebb.

Flood levels have been recorded at a few locations in the river between 1944 and 1964. FEMA published flood contours for all of the counties surrounding the main stem of the river. Data from Hurricane Dora (1964) were used to develop design flood elevations for various zones along the river from the mouth to Palatka.

The total river flow may be divided into tidal and non-tidal components. Measured flow is equivalent to total river flow, because the measurement techniques that are available cannot detect the difference between these components. Some researchers have separated non-tidal flow from tidal flow by subtracting successive upstream and downstream measurements, but these calculations have only resulted in a few order-of-magnitude estimates of each component. Its average non-tidal flow ranged from about 6,000 to 15,000 cfs, and its average total flow is normally greater than 50,000 cfs.

Data on the flow in the main stem of the LSJR, as well as in the tributaries, have been scarce. Measurements at Jacksonville from 1971 to 1974, 1980 to 1981, and 1987 to 1990, and measurements at

Palatka are poor; measurements at De Land, 145 mi upstream outside the limits of the LSJRB, are relevant but quite far removed from the area of interest. The principal reason for the lack of reliable data has been that flow measurements have been technologically limited—until 1992—by inadequate instrumentation.

Tidal elevation and flow can be analyzed from continuous series of data as long as the dataset is long enough. The resulting astronomic coefficients can be used to hindcast or predict tidal elevations and currents over an almost 20-year time period. However, this capability is not of much use in describing total river flow except during prolonged, extremely dry seasons. Tidal analyses have produced astronomic coefficients for three stations on the river.

River salinity is considered to be part of the hydrodynamics because it is a conservative parameter, directly related to the density of water masses, volumes, and flows. The density of water masses also affects flow on a local scale. Salinity also is affected by tide and the time history of tributary flows over periods as long as weeks, or more. River salinity changes constantly and fluctuates with the tide.

The open ocean is a source of an almost constant 36-ppt salinity. Near the mouth of the river, salinity may be significantly lower, due to mixing with fresher river discharge. However, the variations of inflow into the river from upstream, temporary mixing of large freshwater outflows beyond the mouth and the details of local stratification, mixing of fresh water and salt water, and possible salt wedge movement are not at all understood in the LSJR. Salinity distribution in the river is highly variable and highly dependent on the local freshwater/saltwater balance.

The effects of wind and water level on the river flow have been described in only a few studies. According to Pyatt, winds of about 7 mph (which is below the average wind speed at the Imeson Airport in Jacksonville), can cause wind setup in the river ranging from -0.92 to +3.20 ft.

Summary

REPORTS REVIEWED

The majority of the available information on the hydrodynamics of the LSJR is found in reports by federal agencies. A substantial quantity of technical literature has been located, but there are only a few core studies—from the 1950s to the 1970s—that provide original analyses and insight. Additional useful information is provided by reports on developments of numerical models, but these reports fall short of correctly and comprehensively describing the overall hydrodynamics of the river.

DATA COLLECTION ON THE RIVER

Water level and flow data collection have continued intermittently since the first gages were set in the river. Collection of flow data has frustrated dedicated agencies due to the complexities of flow and inadequacies of instrumentation. Water levels were measured intensively in the 1970s, but the network had been mostly dismantled by 1980 and only the long-term measurements at Mayport and Jacksonville have been maintained. Until 1991, flows were found to be impractical and too expensive to measure due to the effects of tides and channel irregularities. By 1993, new systems for instantly measuring the total flow across a relatively narrow channel were proving to be effective. Tributary inflows, also difficult to measure because of large cross sections and the effects of tide, are being monitored (in 1995) more accurately at locations where the river is relatively narrow.

Salinity has been sampled, either intensively for a short time period to show an "instantaneous" profile over a long reach of the river or at relatively long-term stations at long sampling intervals. The relationship of salinity to hydrodynamics has not been adequately measured or described in this river.

MODELING OF THE RIVER

The first physical model of the river was constructed by USACE in 1945. This model was used to study tidal currents, salinity, and

dredge spoil disposal, but the salinity studies suffered from a lack of adequate data. Later physical model studies of circulation, scour, flushing, and sedimentation were used to establish dredging plans for Jacksonville Harbor.

The first computer models of the river were produced by Connell Associates, Frederic R. Harris, and Clemson University in 1972 and 1973. The water quality model was intended for use in studying pollution loading in the Jacksonville area. The model used steady inflows, due to the lack of flow data, and was not reliable enough to be used to set water quality effluent limits.

Additional water quality models were developed through the 1970s by extension of the Connell model and by separate efforts of federal and state agencies and various consultants during the 1970s and 1980s. Limited-area models designed to answer specific questions, such as sedimentation, power plant siting, tributary waste load allocation, and storm surge elevations, were developed. In general, these models were all constrained by a lack of basic data and knowledge on the functioning and variability of the river.

RECOMMENDATIONS

In 1989, SJRWMD determined that a reconnaissance report series on the LSJRB was needed. This series would document all significant sources of information then available on the river, describe the relative significance of the information, and summarize its meaning. In 1990, a plan and outline for the LSJRB reconnaissance report series was established. While Volume 3 of the reconnaissance report was being written, between 1991 and 1993, a major new investigation of some physical characteristics of the river was initiated and jointly funded by USACE Jacksonville and SJRWMD. This investigation was called Phase 1 of the Feasibility Level Cost Share Agreement (FLCSA), or the Water Quality Feasibility Study. As important results were received from this investigation, parts of this volume were substantially modified. This "recommendations" section is based on the status of investigations on the LSJR as of 1994.

TIDES

Previous investigations, most notably tidal studies by NOS and USGS, had established basic tidal characteristics of the river as of the 1970s. Since then, however, the navigation channel has been improved and the shorelines and depths of the inlet and some tributaries have changed as a result of storms and sea level rise. Phase 2 of the FLCSA was initiated in October 1994 to develop an updated description of the tidal characteristics of the river. As part of Phase 2, water level monitoring began in May 1995 at 13 stations located from the ocean to Welaka, from which new tidal and water level characteristics will be derived.

 Recommendation: that, after 2 years of comprehensive hydrodynamics and salinity (H/S) monitoring, SJRWMD modify the existing monitoring network into an optimal long-term monitoring network for water level, wind, and salinity measurements to enable the long-term tidal and wind-driven characteristics of the river to be determined.

TRIBUTARY INFLOWS

Discharges from tributary basins have the greatest influence on mainstem flows in the LSJR; these discharges are dependent on the hydrologic cycle, soil types, and land use. Hydrologic models have been developed for all of the nine hydrologic subbasins in Duval County, but these models were limited to describing flooding conditions and average discharges. Continuous-event runoff models have not yet been developed for any of the LSJR subbasins.

1.5215. 1.1.1

1.254

Reliable hydrologic models require an extensive data base, which is not currently available for the LSJR. The topography must be described, preferably in terms of 1-ft contours due to the relatively low relief in the LSJRB. Rainfall and corresponding runoff have been measured for many years, but the measurements need to be continued for a period long enough to permit the calculation of return-period rainfall and runoff statistics for historical and predictive simulations.

• Recommendation: that SJRWMD continue to support efforts to obtain the data necessary to develop appropriate hydrologic models for the tributary basins of the LSJRB. Initial efforts should focus on development of detailed topography, particularly in the vicinities of streams and tributaries.

RIVER FLOWS

Flows from the Middle St. Johns River Basin and the Ocklawaha River change substantially from year to year with changes in meteorology and climatology. These flows combine with tributary discharges into the main stem and with the tide, all of which become the total flow of the river. A new, approximate calculation of total river flow was attempted for this report (Appendix E) by combining USGS discharge measurements at upstream sites. Since 1991, USGS has added new flow measurement stations in all of the major tributaries and at Buffalo Bluff in the main stem near the upstream extent of the LSJRB. Phase 2 of the FLCSA will further quantify the details of flow over several tidal cycles at several cross sections in the main stem. Watershed models are planned that will provide estimates of point and nonpoint runoff to the tidal parts of tributaries and to the main stem.

• Recommendation: that, after 2 years of comprehensive surveys in the main stem, SJRWMD determine the critical locations for flow measurements and continue funding long-term monitoring of discharge and flow at these key locations.

SALINITY

From long-term monthly samples of salinity at stations in the SJRWMD water quality monitoring network, a mean and range of salinity have been determined for the main stem. However, the short-term tidal dynamics of salinity have not yet been adequately described. In Phase 2 of the FLCSA, stations have been established at four bridges to sample the vertical salinity distribution. A fifth salinity monitor has been installed at Buffalo Bluff. Salinity is also being monitored at 11 of the water level (tide) stations. From these data, future samples from the water quality network, and the application of numerical models it will be possible to describe how salinity changes with freshwater inflows from the tributaries and under what conditions salinity stratification occurs.

• Recommendation: that SJRWMD continue short-term, intensive salinity measurements to develop comprehensive descriptions of salinity characteristics.

GROUND WATER INTERCHANGES

The interchange of ground water and surface water in a river can have a significant effect on the volume of water stored in and transported by the river. Ground water seepage also can affect river conductivity near locations of seepage. Volume 1 of the reconnaissance report (Toth 1993) summarized the known ground water characteristics of the LSJRB. This review of the hydrodynamics and salinity of the river, Volume 3, supports a need for accurate determinations of ground water movement and conductivity, at least to the extent that these parameters directly contribute to the characteristics of the surface water.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

• Recommendation: that SJRWMD locate and quantify the significant sources of ground water seepage in the LSJRB and determine the conductivity of this ground water.

SEDIMENT TRANSPORT

The distribution of sediments in the LSJR is primarily due to the volumes of tributary discharges and the sediment loadings, the local current speed in the water column, and the effects of wind and waves on mixing in the water column and on producing bottom currents that cause erosion and resuspension of sediment from the bed. Volume 5 of the reconnaissance report (Keller and Schell 1993) described sediments in the river, but did not stress the dependence of sediment investigations on a quantitative understanding of hydrodynamics and salinity. This report, Volume 3, provides a review of basic hydrodynamics that will support investigations on sediment transport.

The movement of sediment in the river only can be described accurately after a predictive hydrodynamics/salinity/sediment model has been completed and existing locations and inflows of sediment are adequately described.

• Recommendation: that SJRWMD map the significant locations and characteristics of river sediments and related sediment quality parameters. With the assistance of a predictive model, correlate simulated hydrodynamics characteristics of the river with these significant locations and correlate corresponding sediment characteristics with a description of sediment dynamics.

LONG-TERM MONITORING

Monitoring is an extremely important activity of SJRWMD. Data collected at regular intervals over a long period of time are vital for describing and detecting trends in physical characteristics and water quality. SJRWMD has recently established effective monitoring networks in the LSJR, significant portions of which should be maintained for an indefinite period.

It is recognized that substantial funding is required to maintain these monitoring networks. SJRWMD continually evaluates the effectiveness of each station in the network, ascertaining whether a station is needed or if it is redundant and whether the data obtained from each station will continue to be useful.

• Recommendation: that SJRWMD continue to carefully scrutinize its monitoring networks, optimizing the number and locations of stations and maintaining a monitoring capability for as long as evaluation of river dynamics is an SJRWMD mission.

APPLICATIONS OF MODELS

Models are used to assist management to understand the effects of limits on the quantity, quality, and timing of releases of controllable inflows to the river. Models also serve the important functions of explaining how the river operates under various conditions and predicting how it would probably fluctuate under conditions not yet experienced. As part of Phase 2 of the FLCSA, both a managementlevel one-dimensional H/S water quality model and a threedimensional H/S model are being developed. SJRWMD will use these models to describe the physical operation of the river, to explore its characteristics under predicted conditions, and to assess the impacts of pollutants in tributary discharges. Additional higher resolution tributary models may be needed to investigate localized water quality problems.

• Recommendation: that SJRWMD continue to support hydrologic, basin, mainstem, and tributary water quantity and quality modeling programs in the LSJRB. These models serve several uses: to explain cause-and-effect observations and relations, to predict effects of man-made changes to surrounding basins or the river, and to describe the characteristics of the river to managers and the public.

1

GLOSSARY

- **Bathymetry**. Measurements of water depth that describe bottom topography.
- **Chart datum**. The datum used for local navigation charts (mean lower low water in the lower St. Johns River).
- Circulation. The pattern of flow of water inside a water body.
- **Conductivity**. The ability of a fluid containing minerals or other impurities to conduct an electric current.
- **Coupling**. The connection of equations for fluid motion with water quality equations. Full coupling is desired in a salinity model, because water density (as represented by salinity) and hydrodynamics affect each other and sometimes these equations must be solved simultaneously.
- Current. A moving water mass.
- **Current meter**. An instrument that measures the velocity of movement of water. Some current meters only measure the speed of current.
- **Datum (vertical)**. A reference elevation for measurements of heights or depths. Examples are NGVD and NAD.
- **Discharge**. The amount of water released from a structure, tributary, etc., with units of volume per time. It is more specific to released volumes than the general term "flow."
- **Discharge accumulation**. The sum of consecutive downstream flows over a period of time.
- **Diurnal**. An event that occurs twice each day, such as a diurnal tide.

- **Diurnal inequality**. The difference in height between the two high waters or the two low waters that occur each day. This term also can be used to describe the difference in speed between two tidal ebbs or floods.
- **Ebb current**. The movement of a tidal current down a tidal river or estuary to the mouth.

Epoch. See tidal epoch.

- **Equilibrium tide**. The hypothetical tide due only to the tideproducing forces under the equilibrium theory, which assumes that earth is uniformly covered by water and that there are no land masses to retard flow.
- **Estuary**. A semi-enclosed body of water affected by the tide, in which there is substantial freshwater inflow and measurable dilution of the salt water by fresh water.
- **Eulerian**. A coordinate system used to describe flow from the viewpoint of fixed locations in the flow field (see Lagrangian).
- Fetch. The distance over which wind blows to cause an effect on the river.
- **Flood current**. The movement of a tidal current into a tidal river or estuary from the mouth.
- Flow. The volume rate of movement of a water current (in units of volume/time).
- Flushing rate. The rate at which the total volume of a polluted water mass is exchanged with water from outside the polluted water body.
- **Freshet**. A relatively small, transient wind which may cause some effect on the surface of a water body.

- **Geodesy**. The mathematical study of the size and shape of the earth, and of surveys that must consider size and shape.
- Harmonic analysis. The mathematical process by which the observed tidal heights or tidal current at any location are separated into basic periodic constituents or components.
- Harmonic constant. An amplitude or phase (epoch) of a harmonic constituent of the tidal height or current at a location.
- **Harmonic constituent**. One of the harmonic (periodic) elements in the mathematical expression for the tide-producing force and in corresponding formulas for the tidal height or current, consisting of an amplitude and a phase.
- High water. The maximum height reached by a rising tide.
- **Hydrodynamics**. The science dealing with the dynamics of water movement.
- **Knot**. A unit of speed of one international nautical mile (1,852.0 meters) per hour.
- Lagrangian. A coordinate system used to describe flow from the viewpoint of a moving particle, that is, at a fixed location in the moving water mass (see Eulerian).
- Mean high water. The mean of observations of high water, preferably over a 19-year Metonic cycle (a National Tidal Datum Epoch).
- **Mean higher high water**. The mean of observations of higher high water, preferably over a 19-year Metonic cycle. The higher high water is the higher of the pair of highs occurring with a semidiurnal tide.
- **Mean low water**. The mean of observations of low water, preferably over a 19-year Metonic cycle.

- Mean lower low water. The mean of observations of lower low water, preferably over a 19-year Metonic cycle. The lower low water is the lower of the pair of lows occurring with a semidiurnal tide. This is the reference datum for navigation charts of the lower St. Johns River.
- Mean sea level. The mean of measured water levels at a location, preferably over a specific 19-year Metonic cycle (a National Tidal Datum Epoch). If calculated over a shorter time period, the mean sea level (MSL) is called the "yearly MSL" or the "monthly MSL," as appropriate.
- **Mean tide level**. A tidal datum midway between mean high water and mean low water, also called the half-tide level. Mean tide level is given in the Table of Tidal Differences (for the subordinate stations) referenced to chart datum in the tide tables.
- **Mean water level**. The mean of measured water levels at a location over the period of record.
- Mean range of tide. The difference in height between mean high water and mean low water at a location.
- Metonic cycle. A period of 19 years or 235 cycles of the moon, during which the new moon and the full moon will recur on the same day of the year (the actual period of the moon's orbit with respect to the earth's orbit is 18.6 years). Nineteen years is the period used for the National Tidal Datum Epochs: the most recent complete tidal epoch is 1979 through 1987.
- North American Datum. The North American Datum of 1983, which was readjusted in 1990 (NAD 83/90), is the preferred reference for horizontal survey control in Florida.
- North American Vertical Datum (NAVD). NAVD, which was completed in 1988, is an adjustment to NGVD for the irregular shape of the geoid. NAVD 88 is the preferred reference for vertical survey control in Florida.

- Neap tide (or current). The lowest range of tide occurring semimonthly as a result of the moon being in quadrature, that is, lined up perpendicular to the sun relative to the earth (and in its first or third quarter).
- **Net non-tidal flow**. The component of river or estuarine flow that is not tidal, that is, the unidirectional component of flow that includes direct rainfall, freshwater runoff, and seepage.
- **National Geodetic Vertical Datum (NGVD)**. The vertical datum used for all surveys. NGVD is equivalent to mean sea level of 1929.
- **Overmixing.** A condition in stratified flow in which the amount of seawater available for mixing is limited and no increase in salinity of the outflowing water mass is possible.
- **Progressive wave**. A type of wave in which the surface moves in a horizontal direction.
- **Reference station**. An NOS/NOAA tide or current station operated for a relatively long time (over a year) for analyses of long-term tidal characteristics. Daily high and low peak elevations and times are published in the tide tables for each reference station and are used, with published elevation difference or ratios to predict water levels at subordinate stations.
- **River mile**. The distance along the thalweg, or main course of a river, measured from a specified origin (usually the mouth of the river).
- **Runoff.** The volume of water that drains from an upland into a water body.
- **Salinity**. The concentration of oceanic salts (ocean salinity is 36 parts per thousand).

- **Secondary flow**. Components of flow that are not directed in the primary direction, for example, horizontal or vertical circulatory flows.
- **Semidiurnal**. Having a period of approximately one-half of a (tidal) day.
- **Setup**. The difference in water surface elevation caused by a force on the water (e.g., wind blowing on the surface).
- **Slack**. Slack water or slack tide is the current speed or tidal water level at the time when current reverses direction or tidal water level changes from rise to fall. Generally, slack water (current) occurs near maximum tidal peak.
- **Speed of current**. The magnitude of the velocity in the direction of flow.
- **Stage**. The elevation of the water surface, usually in conjunction with a structure or a measurement instrument. "Stage" is equivalent to "water level."
- **Standing wave (stationary wave)**. A type of wave in which the surface moves vertically without progressing in a horizontal direction.
- **State plane coordinates**. A coordinate system for location on the earth's surface (units of feet), with a different reference location in each state.
- Strength of current. The maximum speed of tidal current.
- **Subordinate station**. An NOS/NOAA tide or current station with a relatively short series of observations. When the station is listed in the tide tables, the elevation and time of occurrence of highs and lows are calculated by the user from published water level differences and ratios applied to the data for a particular reference station.

- **Tidal epoch**. The lag (or angular retardation) of the maximum of a tidal constituent of the observed tide behind the corresponding maximum of the same constituent of the equilibrium tide.
- **Tidal flow**. Tidal flow is the component of total flow that is caused by tidal forces.
- **Tidal prism**. The volume of water introduced and removed over a tidal cycle.
- **Tide**. Vertical movement of water level due to the attraction of sun and moon. Tide travels as a long wave in a water body at a speed dependent on the depth of the water.
- **Total flow**. Total flow is the flow caused by all forces on the water body.
- Waste load allocation. A procedure for determining the allowable wastewater loads to major rivers from treatment plants and tributaries.
- Water quality based effluent limitations. Allowable wastewater loads based on specific water quality criteria.
- Source: NOS Tide Tables; U.S. Naval Oceanographic Office 1966; Hunt and Groves 1965

REFERENCES

- Anderson, W. 1967. Flow characteristics of the St. Johns River at Palatka, Florida. Open-File Report 67-001. Reston, Va.: U.S. Geological Survey.
- Anderson, W., and D.A. Goolsby. 1973. Flow and chemical characteristics of the St. Johns River at Jacksonville, Florida. Information Circular 82. Tallahassee, Fla.: U.S. Geological Survey.
- Atlantis Scientific. 1976. Environmental impact assessment: Water quality analysis: St. Johns River Estuary (Florida). National Commission on Water Quality. Springfield, Va.: National Technical Information Service.
- Bailard, J.A., and S.A. Jenkins. 1987. An evaluation of two concepts for reducing sedimentation at Mayport Turning Basin, Florida. Proceedings of Coastal Sediments '87. New York: American Society of Civil Engineers.
- Bergman, M.J. 1992. Volume 2 of the Lower St. Johns River Basin reconnaissance: Surface water hydrology. Technical Publication
 SJ92-1. Palatka, Fla.: St. Johns River Water Management District.
- Brogdon, N.J., Jr. 1979. Mayport-Mill Cove model study: Report 1: Mill Cove study: Hydraulic, salinity, and shoaling model verification. U.S. Army Engineer Waterways Experiment Station, Technical Report No. HL-79-12. Vicksburg, Miss.
- Brogdon, N.J., Jr, and J.W. Parman. 1979. Mayport-Mill Cove model study: Report 3: Mill Cove study: Hydraulic model investigation.
 U.S. Army Engineer Waterways Experiment Station, Technical Report No. HL-79-12. Vicksburg, Miss.
- Camp Dresser McKee. 1992–93. Phase II report: Master stormwater management plan, City of Jacksonville, St. Johns River Water Management District. 10 volumes. Jacksonville, Fla.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Western Buch

- City of Jacksonville and U.S. Army Corps of Engineers. 1980. Flood plain management. Appendix 3 in Plan Formulation Appendix, Metropolitan Jacksonville, Florida, Water Resources Study. Jacksonville, Fla.
- [CEL] Coastal Engineering Laboratory. 1959. Coastal engineering study of current distribution in the St. Johns River at Baptist Memorial Hospital, Jacksonville, April–May 1959. Prepared for Baptist Memorial Hospital, Jacksonville, Fla. Gainesville, Fla.: University of Florida.
- Connell Associates, Inc. 1974. Final report for water quality modeling study of the St. Johns River Basin, the Kissimmee River Basin, the Lower Florida Basin, the Florida East Coast Basin. Vols. 1 and 2. Study for State of Florida Department of Pollution Control. Coral Gables, Fla.
- Dames and Moore. 1977. Site certification application and environmental analysis, Seminole Plant, Putnam County, plan of study. Atlanta, Ga.
- Dietrich, G. 1963. *General oceanography: An introduction*. 2d ed. Trans. S. Roll and H.U. Roll. New York: Wiley.
- Divoky, D., and R. Bhat. 1988. *Black Creek storm surge study*. Prepared for U.S. Army Corps of Engineers. Jacksonville, Fla.: Engineering Methods and Applications, Inc.
- Dronkers, J.J. 1964. *Tidal computations in rivers and coastal waters*. Amsterdam: North Holland Publishing.
- Edge, B.L. 1973. A water quality model for the St. Johns River. Department of Civil Engineering, Clemson, S.C.: Clemson University.
- [EPA] U.S. Environmental Protection Agency. 1989. Saving bays and estuaries: A primer for establishing and managing estuary projects. Office of Marine and Estuarine Protection, WH-556, EPA/503/8-89-001. Washington, D.C.

- Fairbridge, R.W., ed. 1966. *The encyclopedia of oceanography*. New York: Reinhold Publishing.
- [FEMA] Federal Emergency Management Agency. 1989. Flood insurance study: City of Jacksonville, Florida, Duval County. Vol. 1. Washington, D.C.
- Feigner, K.D., and H.S. Harris. 1970. Documentation report, FWQA Dynamic Estuary Model. NTIS Report No. PB197103.
 Washington, D.C.: Federal Water Quality Administration.
- [FDER] Florida Department of Environmental Regulation. Various dates. *Water quality technical series (WQTS)*. Tallahassee, Fla.
- Foreman, M.G.G. 1977. Manual for tidal heights analysis and prediction. Pacific Marine Science Report 77-10. Victoria, B.C.: Institute of Ocean Sciences, Patricia Bay.
- Frederic R. Harris, Inc., and the Jacksonville Area Planning Board.
 1973. Technical supplement to the water quality management plan for Duval County, Florida. JAPB Publ. No. WQM1 274, Series 1 and
 2. Jacksonville, Fla.: Jacksonville Area Planning Board.
- Friedrichs, C.T., and D.G. Aubrey. 1988. Non-linear tidal distortion in shallow well-mixed estuaries: A synthesis. *Estuarine, Coastal and Shelf Science* 27:521–45.
- Haight, F.J. 1938. Currents in St. Johns River, Savannah River, and intervening Waterways. Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Special Pub. 211. Washington, D.C.: Government Printing Office.
- Hampson, P.S. 1989. One-dimensional flow modeling of the St. Johns River at Jacksonville, Florida. Proceedings of the advanced seminar on One-dimensional, open channel flow and transport modeling, June 15–18, 1987, Bay St. Louis, Miss. Water Resources Investigations Report 89-4061, 31–34. Reston, Va.: U.S. Geological Survey.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

- Hand, J., and M. Paulic. 1992. Florida water quality assessment 305(b) technical appendix. Bureau of Surface Water Management. Tallahassee, Fla.: Florida Department of Environmental Regulation.
- Hansen, D.V., and M. Rattray. 1966. New dimensions in estuary classification. *Limnology and oceanography* 2:319–26.
- Harris, D.L. 1981. *Tides and tidal datums in the United States*. Coastal Engineering Research Center, Special Report No. 7. Fort Belvoir, Va.: U.S. Army Corps of Engineers.
- Heath, R.C., and C.S. Conover. 1981. *Hydrologic almanac of Florida*. Open-File Report 81-1107. Tallahassee, Fla.: U.S. Geological Survey.
- Heath, R.C., and E.T. Wimberly. 1971. Selected stream characteristics of Florida streams and canals: Summaries of flow duration and of low and high flows at gaging stations. Information Circ. No. 69. Tallahassee, Fla.: Florida Bureau of Geology.
- Hicks, S.D. 1984. *Tide and current glossary*. National Ocean Service. Washington, D.C.: National Oceanic and Atmospheric Administration.
- Hoffman, J.S., D. Keyes, and J.G. Titus. 1983. *Projecting future sea level rise*. EPA-230-09-007. Washington, D.C.: U.S. Environmental Protection Agency.
- House of Representatives. 1910. Examination and survey of the St. Johns River, Fla. House Doc. No. 611, 61st Congress, Second Session, Washington, D.C.
- Hunt, L.M., and D.G. Groves. 1965. A glossary of ocean science and undersea technology terms. Arlington, Va.: Compass Publications.
- HydroQual, Inc. 1994. Plan of study to evaluate waste quality impacts in the Rice Creek and St. Johns River study area. Prepared for Georgia-Pacific. Mahwah, N.J.

References

- James, L.D., and R.R. Lee. 1971. *Economics of water resources planning*. New York: McGraw-Hill.
- Jenkins, S.A., D.L. Inman, and D.W. Skelly. 1983. The action of sea level inequalities upon sediment influx events at Mayport Naval Station. Reference Series No. 83-19. La Jolla, Calif.: Scripps Institution of Oceanography, University of California.
- Keller, A.E., and J.D. Schell. 1993. Volume 5 of the Lower St. Johns River Basin reconnaissance: Sediment characteristics and quality. Technical Publication SJ93-6. Palatka, Fla.: St. Johns River Water Management District.
- Klein, C.J., III, and J.A. Galt. 1986. A screening model for estuarine assessment. In *Estuarine variability*, D. A. Wolfe, ed., 483–501.
 Eighth Biennial International Estuarine Research Conference, July 28–August 2, 1965, University of New Hampshire, Durham. New York: Academic Press.
- Leendertse, J.J. 1970. A water quality simulation model for well-mixed estuaries and coastal seas. Volume 1, Principles of computation. Report RM-6230-RC. Santa Monica, Calif.: Rand Corporation.
- Marmer, H.A. 1951. *Tidal datum planes*. Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Special Pub. 135. Washington, D.C.: Government Printing Office.
- [NOS] National Ocean Survey. 1978a. Mayport, Florida, tides: Standard harmonic constants for prediction. Coast and Geodetic Survey Form 444. Rockville, Md.: National Oceanic and Atmospheric Administration.

— 1978b. Georgetown, Florida, tides: Standard harmonic constants for prediction. Coast and Geodetic Survey Form 444. Rockville, Md.: National Oceanic and Atmospheric Administration.

——. n.d. Coast and Geodetic Survey Form 415. Rockville, Md.: National Oceanic and Atmospheric Administration.

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

[NOS] National Ocean Service. 1988a. Sea level variations for the United States 1855–1980. Sea and Lake Levels Branch. Rockville, Md.: National Oceanic and Atmospheric Administration.

——. 1988b. St. Johns River entrance, Florida. In *Tidal current tables, Atlantic Coast of North America*. National Oceanic and Atmospheric Administration. Rockville, Md.

—. 1989. Recapitulation of harmonic constant reduction for Mayport. Computer printout of unpublished material. National Oceanic and Atmospheric Administration. Rockville, Md.

-----. 1990a. Index of tide stations, United States of America and miscellaneous other locations. Sea and Lake Levels Branch. Rockville, Md.: National Oceanic and Atmospheric Administration.

-----. 1990b. Tide tables 1991: High and low water predictions: East Coast of North and South America, including Greenland. Rockville, Md.: National Oceanic and Atmospheric Administration.

——. 1991. Tide tables 1992: High and low water predictions: East Coast of North and South America, including Greenland. Rockville, Md.: National Oceanic and Atmospheric Administration.

—. 1992. Availability of original hydrographic and topographic surveys and wreck information, with accompanying U.S. Coast and Geodetic Survey Hydrographic Indexes No. 76A–D. Rockville, Md.: National Oceanic and Atmospheric Administration.

——. 1993. Tides: Monthly means of sea level, Mayport, 1929–1992. Coast and Geodetic Survey Form 472a. Rockville, Md.: National Oceanic and Atmospheric Administration.

[NOAA] National Oceanic and Atmospheric Administration. 1985. National estuarine inventory, data atlas. Vol. 1, Physical and hydrologic characteristics. National Ocean Service. Rockville, Md.

- Pond, S., and G.L. Pickard. 1978. *Introductory dynamic oceanography*. Oxford: Pergamon Press.
- Pritchard, D.W. 1952. Estuarine circulation patterns. ASCE Proceedings, 81(717).
- Pyatt, E.E. 1959. A study of the behavior of the St. Johns River, parts 1 and 2. Ph.D. diss., Johns Hopkins University, Baltimore, Md.

——. 1964. On determining pollutant distribution in tidal estuaries. USGS Water Supply Paper 1586-F. Washington, D.C.: Government Printing Office.

- [RSH] Reynolds, Smith and Hills. 1974. Surface water resources of St. Johns River Florida. Report for Florida Power & Light Company, Project No. 73227. Jacksonville, Fla.
- Schaffranek, R.W., R.A. Baltzer, and D.E. Goldberg. 1981. A model for simulation of flow in singular and interconnected channels. In *Techniques of water-resources investigations of the USGS*. Book 7, Chapter C3. Washington, D.C.: Government Printing Office.
- Schureman, P. 1958. Manual of harmonic analysis and prediction of tides. Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Special Pub. 98. Washington, D.C.: Government Printing Office.
- [SJRWMD] St. Johns River Water Management District. 1977. Water resource management plan, phase 1. Appendix D, Surface water. Palatka, Fla.
 - ———. 1989. The Lower St. Johns River Basin. Division of Policy and Planning. Palatka, Fla.
- Snell, L.J., and W. Anderson. 1970. Water resources of northeast Florida (St. Johns River Basin and adjacent coastal areas). Report of Investigation No. 54. Tallahassee, Fla.: Bureau of Geology, Florida Geological Survey.

- Speer, P.E. 1984. *Tidal distortion in shallow estuaries*. Ph.D. diss., Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.
- Speer, P.E., and D.G. Aubrey. 1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part 2: Theory. Woods Hole Oceanographic Institution Contribution No. 5691.
 J. Estuarine, Coastal Shelf Science (1985) 21:2–224.
- Stanley Consultants, Inc., and Water Resources Engineers, Inc. 1978. Areawide wastewater management study. Annex I in Plan Formulation Appendix, Metropolitan Jacksonville, Florida, Water Resources Study. Austin, Tex.
- Stommel, H.J., and H.G. Farmer. 1952a. On the nature of estuarine circulation. Technical Report 52-51. Woods Hole, Mass.: Woods Hole Oceanographic Institution.

——. 1952b. Abrupt change in width in two-layer open channel flow. Woods Hole Oceanographic Institution Contribution No. 616. *Journal of Marine Research* 11(2).

- Titus, J.G., ed. 1987. Greenhouse effect, sea level rise and coastal wetlands. EPA-203/05-86-013. Washington, D.C.: U.S. Environmental Protection Agency, Office of Wetlands Protection.
- Toth, D.J. 1993. Volume 1 of the Lower St. Johns River Basin reconnaissance: Hydrogeology. Technical Publication SJ93-7. Palatka, Fla.: St. Johns River Water Management District.
- [USACE Jacksonville] U.S. Army Corps of Engineers, Jacksonville District. 1968. Drawing: Tidal profiles, St. Johns River from mouth to Lake Harney. D.O. File No. 2-31407, Sheets 1 and 2.

------. 1975. Navigability study of the St. Johns River and its tributaries. Report No. 1.

-----. 1981. Feasibility report, improvement for circulation, flow and navigation, Jacksonville Harbor (Mill Cove). Vol. 1.

——. 1986. St. Johns River Basin, Florida. Interim water quality management plan findings.

———. 1988. Reconnaissance report: Navigation study for Jacksonville Harbor, St. Johns River, and IWW, Florida-10208.

——. 1990a. Draft special report, St. Johns County, Florida, beach erosion control project.

——. 1990b. Project management plan, St. Johns River Basin water quality management study.

 ——. 1990c. Draft water resource management materials for St. Johns County, Florida.

—. 1994a. Water quality feasibility study, phase I interim report.
 Vol. 1, Executive summary. Special Publication SJ94-SP12.
 Palatka, Fla.: St. Johns River Water Management District.

—. 1994b. Water quality feasibility study, phase I interim report.
 Vol. 2, Tide control and tidal characteristics. Special Publication
 SJ94-SP13. Palatka, Fla.: St. Johns River Water Management
 District.

—. 1994c. Water quality feasibility study, phase I interim report. Vol. 3, Vertical/horizontal control surveys and water measurement station. Special Publication SJ94-SP14. Palatka, Fla.: St. Johns River Water Management District.

—. 1994d. Water quality feasibility study, phase I interim report. Vol. 4, Estimated natural discharge and chemical-constituent loading from the Upper Floridan aquifer to the lower St. Johns River, northeastern Florida. Special Publication SJ94-SP15. Palatka, Fla.: St. Johns River Water Management District.

—. 1994e. Water quality feasibility study, phase I interim report. Vol. 5, A review of sediment analysis, management techniques, and sediment quality data for the Lower St. Johns River Basin. Special

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Publication SJ94-SP16. Palatka, Fla.: St. Johns River Water Management District.

—. 1994f. Water quality feasibility study, phase I interim report. Vol. 6, Review and evaluation of hydrodynamic modeling for the lower St. Johns River estuary: Review of water quality monitoring and recommendations for water quality modeling for the lower St. Johns River. Special Publication SJ94-SP17. Palatka, Fla.: St. Johns River Water Management District.

——. 1994g. Water quality feasibility study, phase I interim report.
 Vol. 7, Summary of workshop. Special Publication SJ94-SP18.
 Palatka, Fla.: St. Johns River Water Management District.

- [USGS] U.S. Geological Survey. Various years. Water resources data. Florida. Vol. 1A, Northeast Florida Surface Water. Water Data Report FL-(yr)-1A.
- U.S. Naval Oceanographic Office. 1966. *Glossary of Oceanographic Terms*. Special Publication SP-35. Washington, D.C.
- [WRC] Water Resources Council. 1968. *River mileage measurement*. Hydrology Committee, Com. Bul. No. 14. Washington, D.C.
- [WRE] Water Resources Engineers, Inc. 1965. A water quality model of the Sacramento-San Joaquin delta. Report to the U.S. Public Health Service, Region IX. Austin, Tex.

——. 1979. Water quality modeling and assessment methods. Supplement A in Annex I, Areawide wastewater management study, Plan formulation appendix, Metropolitan Jacksonville, Florida, Water Resources Study. Austin, Tex.

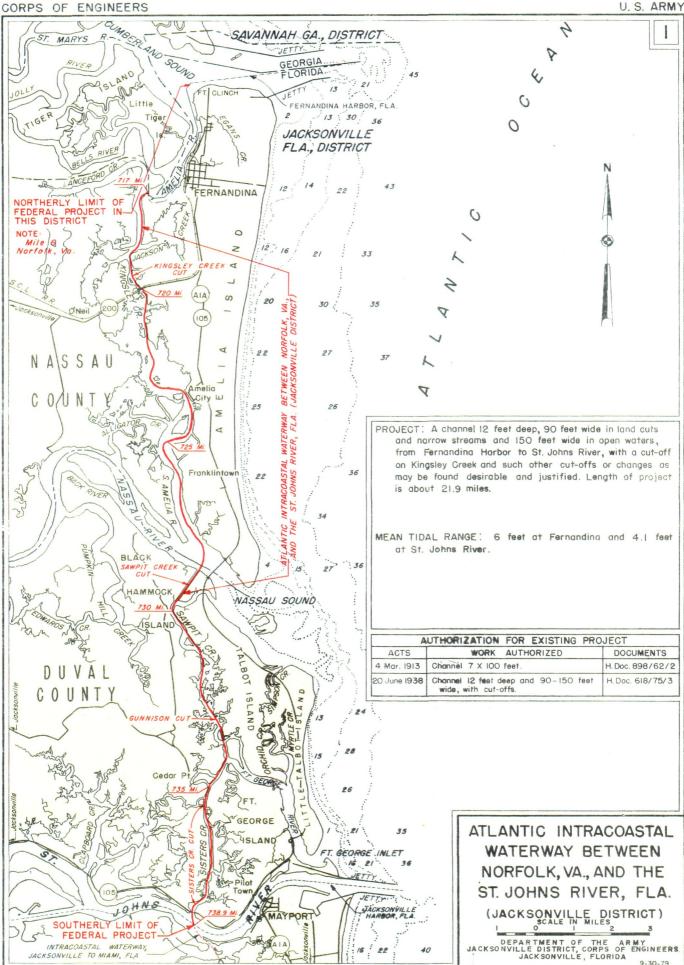
[WES] Waterways Experiment Station. 1947. Model study of plans for prevention of pollution in the St. Johns River at Jacksonville, Florida. Appendix to Plans for the improvement of the St. Johns River Jacksonville to the Atlantic Ocean. Model Investigation. Tech. Memo. No. 2-244. Vicksburg, Miss.: U. S. Department of the Army.

References

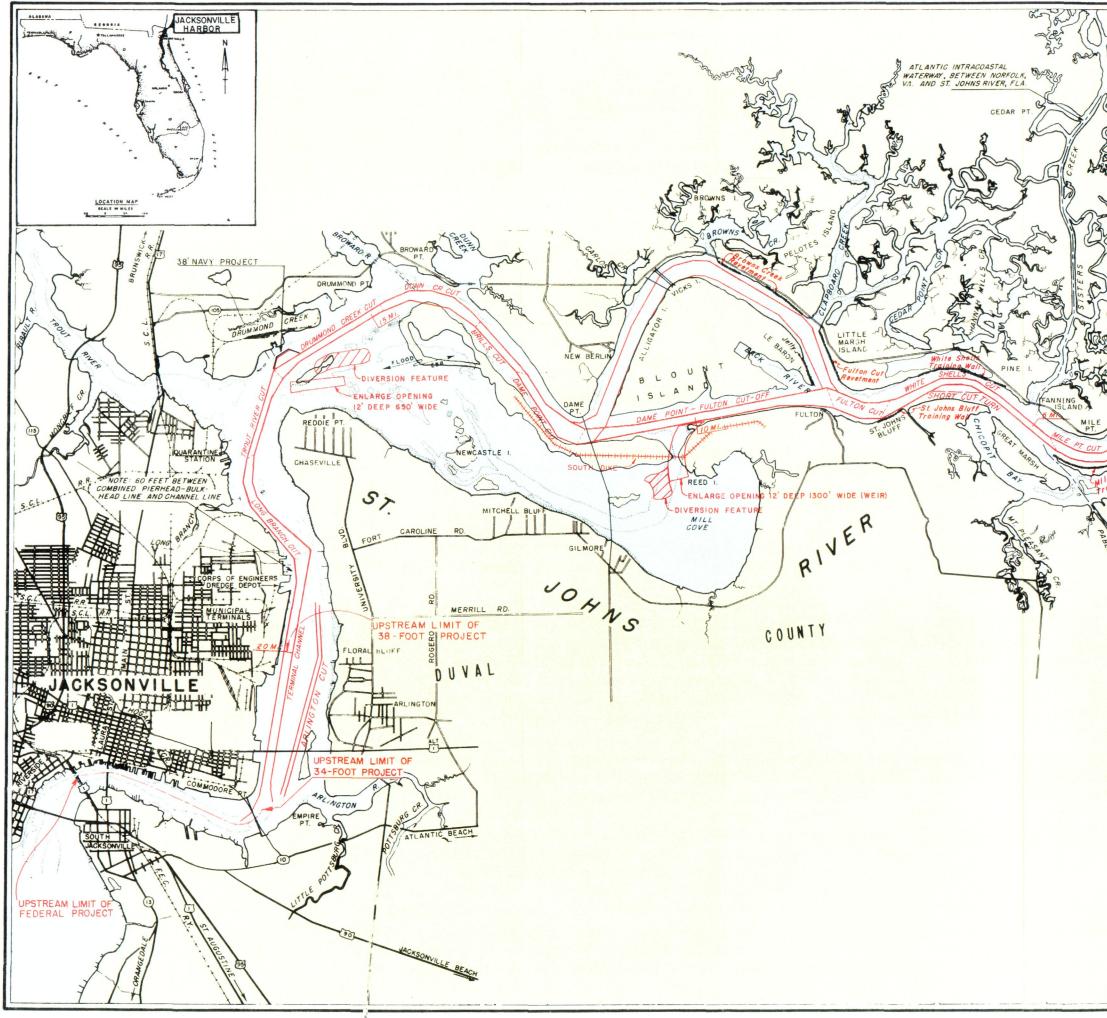
Wraight, A.J., and E.B. Roberts. 1957. *The Coast and Geodetic Survey* 1807–1957: 150 years of history. Washington, D.C.: Government Printing Office.

•

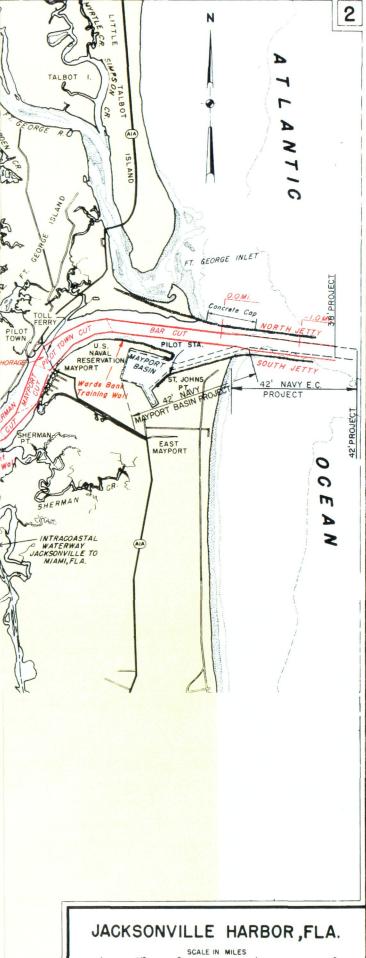
APPENDIX A: RIVER MILES

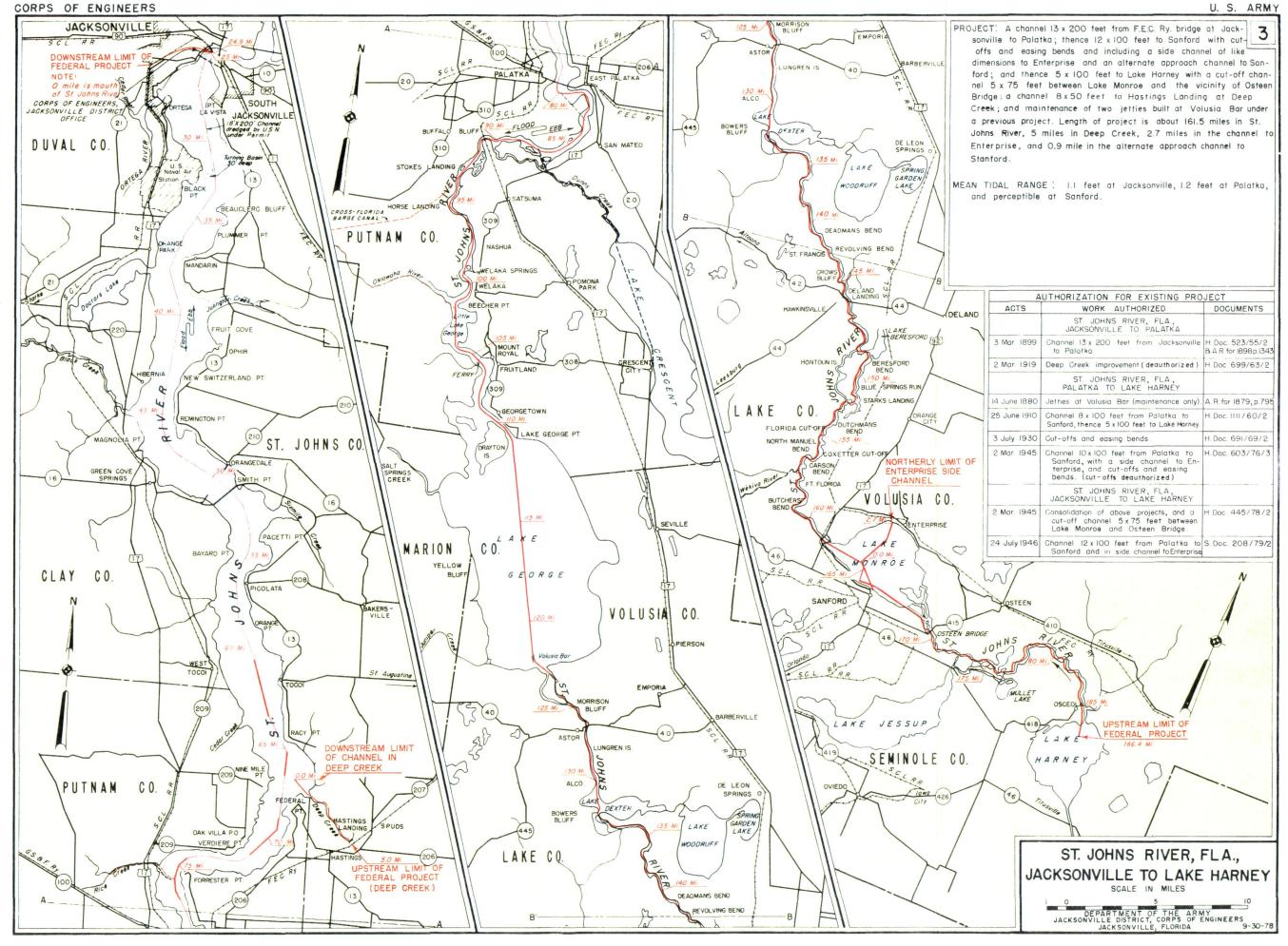


ILLEGIBILITY OF SOME OF THESE DOCUMENTS IS DUE TO THE POOR QUALITY OF THE ORIGINAL. THE FAULT DOES NOT LIE WITH THE CAMERA OR ITS OPERATOR.



The Information and Image Managers





1

U. U. MINIMI

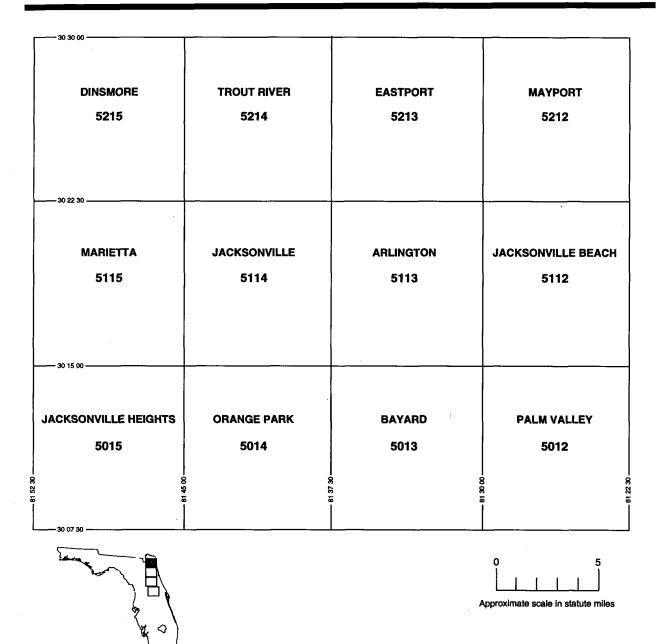


Figure A4. Diagram of USGS 7¹/₂-minute quadrangle map sheets lying between 30°30'00" North and 30°07'30" North, with map name and SJRWMD identification number. Each 7¹/₂-minute subarea is aligned with a USGS quadrangle.

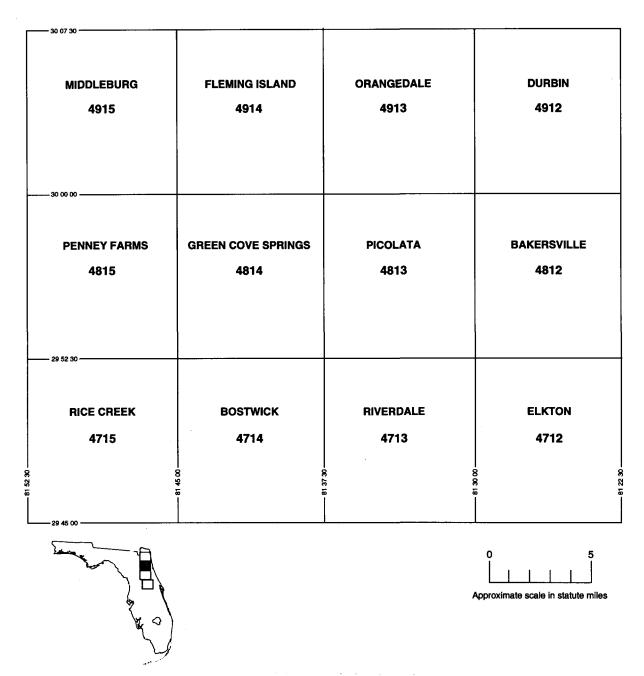


Figure A5. Diagram of USGS 7¹/₂-minute quadrangle map sheets lying between 30°07'30" North and 29°45'00" North, with map name and SJRWMD identification number. Each 7¹/₂-minute subarea is aligned with a USGS quadrangle.

St. Johns River Water Management District 270

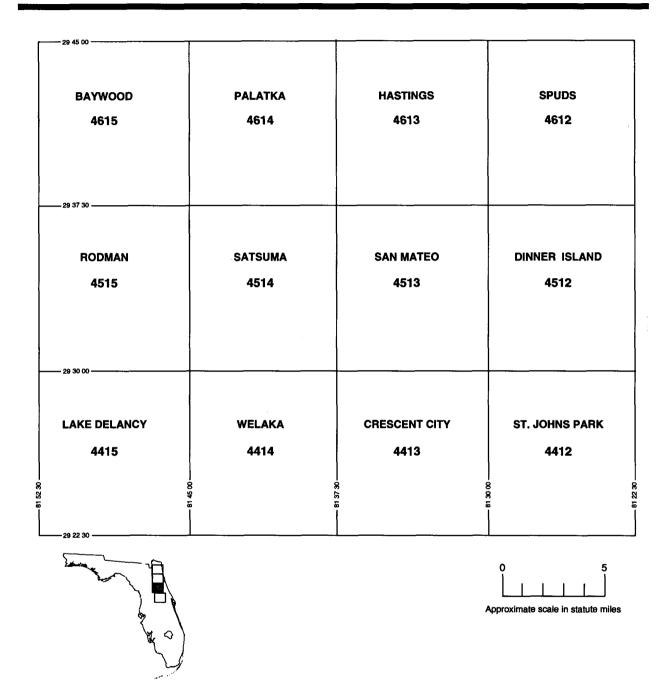


Figure A6. Diagram of USGS 7¹/₂-minute quadrangle map sheets lying between 29°45′00″ North and 29°22′30″ North, with map name and SJRWMD identification number. Each 7¹/₂-minute subarea is aligned with a USGS quadrangle.

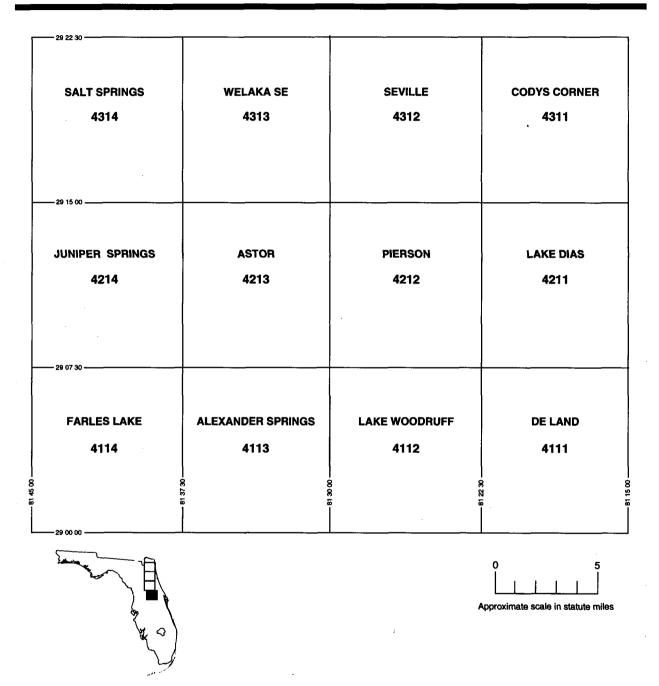


Figure A7. Diagram of USGS 7¹/₂-minute quadrangle map sheets lying between 29°22'30" North and 29°00'00" North, with map name and SJRWMD identification number. Each 7¹/₂-minute subarea is aligned with a USGS quadrangle.

NOS	Distance from	State Plane	Coordinates	Lat	itude (1	N)	Long	gitude	(W)
ID Number	River Mouth – (miles)	E/W (x) (feet)	N/S (y) (feet)	deg	min	Sec	deg	min	Sec
872186	†	363438	2219551	30	26	18	81	26	0
872189	18.4	295153	2219303	30	26	13	81	38	6
872194	†	371330	2217658	30	25	60	81	24	3
872196	6.5	357297	2208992	30	24	34	81	27	1
872198	8.7	339388	2208632	30	24	29	81	30	3
872202	21.4	281378	2211476	30	24	54	81	41	3
872203	10.4	328900	2211629	30	24	58	81	32	3
872213	23.4	270845	2212323	30	25	02	81	43	3
872215	15.6	303464	2206376	30	24	05	81	37	2
872216	21.7	279431	2205152	30	23	52	81	41	5
872217	18.5	290265	2203490	30	23	36	81	39	5
872219	10.8	323751	2201215	30	23	15	81	33	3
872220	2.7	363842	2203093	30	23	35	81	25	5
872221	8.3	339372	2201446	30	23	18	81	30	3
872222	15.6	307052	2201780	30	23	20	81	36	4
872223	3.2	363044	2200805	30	23	13	81	26	0
872225	16.9	300046	2199119	30	22	53	81	38	0
872232	6.5	359014	2196793	30	22	33	81	26	5
872242	19.4	302770	2188978	30	21	13	81	37	3
872244	11.5	323694	2194299	30	22	07	81	33	3
872267	8.9	360431	2178783	30	19	35	81	26	3
872268	24.2	289796	2178566	30	19	29	81	39	5
872274	22.6	308016	2172609	30	18	31	81	36	3
872296	28.2	278738	2162621	30	16	51	81	42	0
872305	14.5	363593	2152459	30	15	14	81	25	5
872333	31.9	289367	2142332	30	13	30	81	40	0
872339	33.7	306922	2138333	30	12	52	81	36	4
872374	36.2	280326	2121759	30	10	06	81	41	4
872377	36.2	288719	2118710	30	09	37	81	40	0
872406	41.8	259499	2104612	30	07	15	81	45	3
872409	41.3	299985	2109389	30	08	05	81	37	5
872411	41.7	264702	2102657	30	06	56	81	44	3
872421	43.2	263521	2096199	30	05	52	81	44	5
872434	50.2	259227	2089091	30	04	42	81	45	4
872496	47.8	285934	2059212	29	59	47	81	40	3
872499	56.3	322126	2064809	30	00	45	81	33	4
872589	60.5	324261	2008252	29	51	25	81	33	1
872596	61.0	324042	2006127	29	51	04	81	33	1

Table A1. Locations of NOS tide stations

St. Johns River Water Management District 273

Table A1—Continued

NOS	Distance from	State Plane	Coordinates	Lat	titude (I	N)	Long	gitude	(W)
ID Number	River Mouth - (miles)	E/W (x) (feet)	N/S (y) (feet)	deg	min	Sec	deg	min	Sec
872653	67.2	321432	1974359	29	45	49	81	33	46
872767	90.2	282470	1912498	29	35	35	81	41	04
872774	79.8	298125	1930133	29	38	30	81	38	08
872782	89.1	306859	1903959	29	34	12	81	36	27
872832	100.4	285020	1868516	29	28	20	81	40	32
872841	100.6	345417	1875345	29	29	30	81	29	09
872855	102.9	338652	1854736	29	26	06	81	30	25
872877	109.4	298566	1836451	29	23	03	81	37	57
872878	109.6	299998	1835688	29	22	56	81	37	41
8721002	118.7	298035	1787663	29	14	60	81	37	60
8721061	127.3	334486	1757206	29	10	00	81	31	07
8721175	143.7	376978	1701290	29	00	48	81	23	06

٠

†Station not located directly on the St. Johns River

Appendix B: Hydrographic Surveys

APPENDIX B: HYDROGRAPHIC SURVEYS

	(NOS 1992	-	onducted by the obast and debuetic Survey in the LSC
Hydrographic Index Number	Survey Number	Year(s)	Location
76A	H-351	1853	North side of Inlet
	H-481	1855	West of Mayport to Fulton
	H-482	1855	Fulton to west of Chaseville (Sixmile Creek)
	H-484	1855	Arlington River vicinity
	H-586	1857	Inlet to west of Mayport
	H-1147	1872	Intracoastal waterway north of the lower St. Johns River
76B	H-1384a	1876-77	Jacksonville to Mandarin Point (Orange Park)
	H-1384b	1877	Mandarin to San Patricio Point (Green Cove Springs)
	H-1389	1878	Green Cove Springs to Tocoi
	H-1541	188389	Inlet to west of Mayport
	H-1542a	1883	West of Mayport to east of Chaseville
	H-1542b	1883	Northwest of Jacksonville
76C	H-1636	1885	Racy Point to Palatka
	H-2337	1898	South of Jacksonville
	H-4376	1924	North of Inlet
	H-5910	1934–35	North of Inlet
	H-6126	1935	Fulton area and Mill Cove
	H-6127	1935	Trout River and northwest of Jacksonville
	H-6130	1935–37	Horseshoe Point to Trout Creek (Dunns Creek to Satsuma)
	H-6131	1935–37	Satsuma to Welaka
	H-6132	1935–37	Crescent Lake
	H-6194	1935–37	San Mateo to Edgewater
	H-6239	1935	Edgewater to Dunns Creek
	H-6296	1934-39	South of Jacksonville to Cunningham Creek
	H-6297	1935	Cunningham Creek to Watson Island (Picolata)
	H-6298	1935	Watson Island (Picolata) to Racy Point
	H-6299	1935	Racy Point to Whetstone Point (Bridgeport)
	H-6300	1935	Palatka to San Mateo
	H-6327	1935	Whetstone Point to Palatka (with Rice Creek inset)
76D	H-6263	1937	Lower Crescent Lake
	H-6266	1937	Lake George
	H-6290	1937–39	Welaka to Mount Royal
	H-6295	1937	Mount Royal to Lake George
	H-6530	1939	Cedar and Ortega rivers
	H-6535	1939	Southwest of Ortega River
	H-6536	1939	Trout River
	H-6537	1939	Ribault River
	H-6538	1939	Arlington River
	H-6544	1939	Mouth of Black Creek
	H-6545	1939	Upstream Black Creek
	H-8412	1959	Cedar and Ortega rivers to Mandarin
	H-8463	1958-59	West of Fulton to southeast Jacksonville
	H-8464	1959	Arlington River to Cedar and Ortega rivers

Table B1.Hydrographic surveys conducted by the Coast and Geodetic Survey in the LSJR
(NOS 1992)

,

 $(\mathbf{x}_{i}, \mathbf{y}_{i}) \in \{\mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{y}_{i}, \mathbf{y}_{i}\} \in \{\mathbf{x}_{i}, \mathbf{y}_{i}\}$

APPENDIX C: WIND STATISTICS

Direction	Degrees	<1 kn	16 kn	1-10 kn	1–16 kn	121 kn
N	0.0		3.2	5.3	6.9	7.1
NNE	22.5		3.3	5.5	6.8	7.0
NE	45.0		2.6	4.4	5.5	5.6
ENE	67.5		2.8	4.0	4.5	4.5
E	90.0		2.7	6.5	7.1	7.1
ESE	112.5		3.7	5.4	5.8	5.8
SE	135.0		3.0	4.7	5.0	5.0
SSE	157.5		3.0	5.2	5.6	5.8
S	180.0		4.5	7.6	8.9	8.9
SSW	202.5		3.1	4.4	5.0	5.0
SW	225.0		3.1	4.5	5.4	5.5
WSW	247.5		4.8	6.4	7.0	7.2
W	270.0		5.1	6.5	7.3	7.3
WNW	292.5		2.5	3.4	4.0	4.0
NW	315.0		2.0	3.2	3.8	3.8
NNW	337.5		2.1	3.4	4.2	4.2
Calm*		6.2				
Total		6.2	51.5	80.4	92.8	93.8

Table C1.	Wind speed, direction, and percent of time wind speed is within given speed
	range, Naval Air Station, Jacksonville, 1973–77

*Calm = no direction

Wind speed ranges given in original wind rose were <1*, 1-6, 7-10, 11-16, 17-21, and >21 knots (kn)

To find percent of time wind was within a certain range, subtract given percentages: for example, percent of time wind blew from the north at between 6 and 10 kn was 5.3 - 3.2 = 2.1%.

Use totals as follows: Wind blew at less than 7 kn 57.7% of the time (6.2% + 51.5%).

Source: USACE Jacksonville 1990a, 5, Figure 2

Direction	Dec-Feb	Mar-May	Jun-Aug	Sep-Nov
N	16.7	8.0	6.5	18.8
NE	10.0	9.2	8.5	17.9
E	5.8	15.2	16.5	11.9
SE	6.0	15.0	13.5	9.0
S	13.9	16.2	18.0	8.8
SW	11.5	13.0	14.8	7.2
W	15.6	13.2	11.8	10.1
NW	13.0	6.6	3.6	9.8
Calm*	7.5	3.6	6.8	6.5
Total	100.0	100.0	100.0	100.0

Table C2.Seasonal wind frequency (percent of time), Naval Air
Station, Jacksonville, 1973–77

*Calm = no direction

Source: USACE Jacksonville 1990a, 6, Figure 3

St. Johns River Water Management District 282

Appendix D: Tide Stations and Tidal Characteristics

APPENDIX D: TIDE STATIONS AND TIDAL CHARACTERISTICS

St. Johns River Water Management District 284

Station	Station Name	River	Station	Location	Date	Date	Number	Α	В	С	D
Number@		Mile**	Latitude (N)	Longitude (W)	Installed	Removed	of Days		(see	note)	
8720186	Fort George Island	†	30 26.4	81 26.3	2/12/54 4/1/78	4/7/54 9/30/78	54 182	N Y	N N	NN	N Y
8720189	Cedar Heights (Broward River)	18.4	30 26.2	81 38.5	8/9/77	1/31/78	175	Υ	Υ	Ν	Y
8720194	Little Talbot Island	†	30 25.8	81 24.3	4/28/74 1/16/75	11/27/74 2/8/75	213 23	Y Y	Y -	N -	Y -
8720196	Sisters Creek	6.5	30 25.0	81 41.8	9/1/77	3/23/78	203	Υ	Ν	Ν	Y
8720198	Clapboard Creek	8.7	30 24.4	81 30.6	8/12/77	1/31/78	172	Y	Y	N -	Y
8720203	Blount Island Bridge	10.8	30 24.8	81 32.7	8/15/77	1/23/78	161	Υ	Y	Ν	Y
8720213	Trout River, Sherwood Forest	23.1	30 25.2	81 43.7	3/23/78	12/31/78	283	Υ	Ν	Ν	Y
8720215	Jacksonville, Navy Fuel Depot	15.6	30 24.0	81 37.6	1/1/59 8/26/77	3/31/59 3/28/78	89 214	N Y	N Y	N N	N Y
8720216	Ribault River, Lake Forest	21.7	30 23.9	81 41.9	3/22/78	8/25/78	156	Υ	N	Ν	Y
8720217	Moncrief Creek entrance	18.3	30 23.5	81 39.7	8/26/77	1/31/78	158	Υ	N	Ν	Y
8720219	Dame Point	10.8	30 23.5	81 33.9	8/12/77	2/23/78	195	Υ	Υ	Ν	Y
8720220	Mayport	2.4	30 23.5	81 25.9	4/26/28 1/1/61	12/31/60 N/A	11937 N/A	N Y	Ŷ	Ŷ	Ŷ
8720221	Fulton	7.8	30 23.4	81 30.4	9/1/77	3/6/78	186	Υ	Ν	Ν	Y
8720225	Phoenix Park	16.9	30 23.0	81 38.2	6/1/23 8/17/77	7/31/24 2/23/78	426 190	N Y	N N	N N	N Y
8720232	Pablo Creek entrance	5.0	30 22.6	81 26.9	8/30/77	1/31/78	154	Υ	.Y	Ν	Y
8720242	Longbranch (USACE dredge depot)	19.0	30 21.6	81 37.2	7/21/28 1/1/35 1/12/39 5/1/53 8/22/77	6/30/33 7/31/35 2/1/39 4/30/68 1/31/78	1805 211 20 5478 162	N - N Y	N - - Y N	Y - - N N	- - Y N
8720244	Mill Cove	11.5	30 22.2	81 33.5	8/22/77	3/31/78	221	Υ	Y	Ν	Y
8720268	Jacksonville, Acosta Bridge	24.0	30 19.5	81 39.9	12/1/58 7/5/78	3/31/59 3/14/79	120 252	N Y	N N	N N	N Y
8720274	Little Pottsburg Creek	22.6	30 18.6	81 36.6	6/14/78	1/17/79	217	Υ	Ν	Ν	٠Y
8720296	Ortega River entrance	28.0	30 16.7	81 42.3	8/2/78	2/13/79	195	Υ	Ν	Y	Y
8720333	Piney Point	31.0	30 13.7	81 39.8	2/1/59 3/10/78	3/31/59 2/21/79	58 348	N Y	N N	N N	N Y
8720374	Orange Park	36.0	30 10.1	81 41.7	6/9/78	11/20/78	164	Y	Ν	Ν	Y
8720406	Doctors Lake, Peoria Point	41.8	30 07.2	81 45.5	5/18/78	11/29/78	195	Υ	Ν	Ν	Y
8720409	Julington Creek	40.5	30 08.1	81 37.8	4/12/78	11/28/78	230	Υ	Ν	Ν	Y
8720434	Black Creek	45.5	30 04.8	81 45.7	7/27/78	11/6/78	102	Υ	Ν	Ν	Y
8720496	Green Cove Springs	47.0	29 59.4	81 39.8	3/11/35 3/9/78	5/14/35 4/19/79	64 406	N Y	N Y	N N	N Y
8720596	East Tocoi	60.5	29 51.5	81 33.2	5/15/35	6/11/35	27	N	Ν	N	N

Table D1. Historical NOS tide recorder stations* having data appropriate for analysis

Appendix D: Tide Stations and Tidal Characteristics

Table D1—Continued

Station	Station Name	River	Station	Location	Date	Date	Number	Α	в	С	D
Number@		Mile**	Latitude (N)	Longitude (W)	Installed	Removed	of Days		(see	note)
8720653	Palmetto Bluff (Bridgeport)	66.5	29 45.8	81 33.7	8/10/78	4/30/79	263	Υ	N	Ν	Y
8720767	Buffalo Bluff	90.0	29 35.7	81 40.9	10/5/78	4/24/79	201	Υ	Ν	Ν	Y
8720774	Palatka	79.5	29 38.6	81 37.9	6/1/35 12/16/73 8/2/74 8/2/78	7/31/35 12/31/73 3/31/76 4/30/79	60 15 607 271	N Y Y Y	N - - Y	N - - N	N - - Y
8720782	Sutherlands Still, Dunns Creek	89.1	29 34.4	81 36.2	11/1/78	4/18/79	168	Y	Ν	Ν	Y
8720832	Welaka	100.4	29 28.6	81 40.5	1/25/37 8/14/78 12/5/79	2/28/37 5/8/79 2/1/80	34 267 58	N Y Y	N - N	N - N	N - Y
8720855	Crescent City, Crescent Lake	102.9	29 25.8	81 30.4	11/2/79	11/30/79	28	Υ	N	Ν	N
8720877	Georgetown	109.4	29 23.1	81 38.2	12/30/73 9/8/74 3/1/75 3/1/76	5/23/74 12/31/74 6/30/75 3/31/76	144 114 121 30	Y Y Y Y	- - N	- - N	- - - N
8721002	Juniper Club, Lake George	118.7	29 14.8	81 38.3	3/7/37 2/14/80	4/8/37 3/5/80	32 20	N Y	- N	- N	- NN
8721061	Astor and Volusia	127.3	29 10.0	81 31.4	1/5/38 3/5/80	3/1/38 3/10/80	55 5	N Y	N N	N N	N NM
8721175	De Land Landing	144.0	29 00.5	81 22.9	11/20/37 3/10/80	3/31/38 3/28/80	131 18	N Y	N N	N N	N YN

Note:

A = digital data available from NOS B = level to geodetic network exists C = harmonic constants available from NOS D = published or issued tidal datums available from NOS - = yes or no not indicated in source table N/A = not applicable

*Stations are listed in the 1990 NOS Index @See Figures 3.10a-d for location of stations **River miles taken from Figures 3.1a-d †Station not located directly on the St. Johns River

Source: USACE Jacksonville 1994b, 3, Table 1

Station	Station Name	River	Station	Location	Date	Date	Number
Number*		Mile**	Latitude (N)	Longitude (W)	Installed	Removed	of Days
(none)	South jetty	-0.7					
8720202	Trout River	21.4	30 25.0	81 41.8	1/12/39	1/23/39	11
8720222	Chaseville	15.6	30 23.4	81 36.8	11/13/58	12/8/58	25
8720223	Mayport (backup)	3.0	30 23.5	81 25.9	7/12/77	N/A	N/A
8720267	Pablo Creek	9.0	30 19.4	81 26.3	8/19/77	1/23/78	157
8720339	Goodbys Creek	33.7	30 13.0	81 37.1	1/25/77	1/25/77	0
8720377	Mandarin	35.9	30 09.8	81 40.0	1/19/34	2/26/35	403
8720411	Catfish Point, Doctors Lake	41.7	30 06.9	81 44.9	1/27/77	1/27/77	0
8720421	Swimming Pen Creek	43.2	30 06.0	81 44.8	2/10/77	2/11/77	1
8720499	Trout Creek	56.3	29 59.1	81 33.9	2/16/77	2/18/77	2
8720589	Lane Landing	60.2	29 51.3	81 33.5	2/24/77	3/4/77	8
8720841	Shell Bluff, Crescent Lake	99.5	29 29.5	81 29.3	7/13/35	1/22/37	558
8720878	Georgetown (backup)	109.6	29 23.1	81 38.2	5/5/77	7/15/77	70

Table D2. Stations listed in the 1990 NOS Index not included in Table D1

*See Figures 3.10a-d for location of stations **River miles taken from Figures 3.1a-d

Note: N/A = not applicable

Source: NOS 1990a

Appendix D: Tide Stations and Tidal Characteristics

Station Number*	Station Name	River Mile**	Estimated Low Tide Jan 40	Low Tide Dec 56	Mean Low Water	Half Tide	Mean High Water	Minimum Annual High Water	Peak Stage, Hurricane Dora	Maximum Recorded Stage
none)	South jetty	-0.7	-2.17	2.70						
720220	Mayport	2.4	-5.22	-3.90	-1.86	0.38	2.62	2.93	4.82	5.39
720221	Fulton	7.8	-4.30	-3.10	-1.15		2.27	2.75	4.90	
720219	Dame Point	10.8		-0.85		2.13				
3720222	Chaseville	15.6			-0.45		1.86			
720242	USACE dredge depot	19.0		-2.00	-0.28	0.73	1.70		5.35	
I/A	Main Street Bridge	23.8		-1.85						
3720268	Jacksonville, Acosta Bridge	24.0			0.22		1.32	2.17		
3720296	Ortega River entrance	28.0			0.27	1.15		1.98		
3720333	Naval Air Station	31.0			0.31	0.73	1.13		5.80	
720374	Orange Park	36.0			0.40		1.09	1.85		
720496	Green Cove Springs	47.0			0.39		1.20	1.95		
	East Tocoi	60.5			0.30		1.29	2.12		
720653	Palmetto Bluff (Bridgeport)	66.5			0.26		1.37	2.19		
l/A	Rice Creek	75.8							5.62	
720774	Palatka	79.5			0.22		1.44	2.24		
720767	Buffalo Bluff	90.0			0.35		1.32			
720832	Welaka	100.4			0.58		1.08			
720877	Georgetown	109.4			0.00	0.00	0.00			
3721175	De Land Landing	144.0	-0.35			0.95				

*See Figures 3.10a–d for location of stations **River miles taken from Figures 3.1a–d

Note: N/A = not applicable R/R = railroad

All elevations are in feet referenced to National Geodetic Vertical Datum. This table of water levels shows the values plotted on the source water level plot. These values are plotted in Figure 3.18.

Source: USACE Jacksonville 1968

St. Johns River Water Management District 288 HYDRODYNAMICS AND SALINITY OF SURFACE WATER

.

Station	Station	Station Name	River	Time D	ifference	Height	Ratios	Mean	Spring	Mean Tide
Index Number	Number*		Mile**	Highs (hour	Lows mean)	Highs (feet)	Lows (feet)	⁻ Range (feet)	Range (feet)	Level (feet)
3349	(none)	South jetty	-0.7	-0 35	-0 19	1.09	1.07	4.9	5.7	2.6
3351	8720220	Mayport	2.4	(daily pr	edictions)			4.5	5.3	2.4
3353	8720267	Pablo Creek	9.0	+1 27	+1 13 ΄	0.64	0.67	2.9	3.4	1.5
3355	8720221	Fulton	7.8	+0 17	+0 40	0.74	0.73	3.4	4.0	1.8
3357	8720219	Dame Point	10.8	+0 34	+0 53	0.67	0.67	3.0	3.5	1.6
3359	8720225	Phoenix Park (Cummers Mill)	16.9	+0 46	+1 23	0.45	0.47	2.0	2.3	1.1
3361	8720242	Jacksonville (dredge depot)	19.0	+1 12	+1 48	0.45	0.47	2.0	2.3	1.1
3363	8720268	Jacksonville, Acosta Bridge	24.0	+1 54	+2 11	0.26	0.27	1.2	1.4	0.6
3365	8720296	Ortega River entrance	28.0	+2 15	+2 48	0.19	0.20		0.9	1.1
3367	8720374	Orange Park	36.0	+3 37	+4 12	0.14	0.13	0.7	0.8	0.3
3369	8720496	Green Cove Springs	47.0	+5 14	+6 11	0.17	0.20	0.8	0.9	0.4
3371	8720596	East Tocoi	60.5	+6 35	+7 16	0.21	0.20	1.0	1.2	0.5
3373	8720653	Palmetto Bluff (Bridgeport)	66.5	+6 46	+7 30	0.23	0.27	1.1	1.3	0.5
3375	8720774	Palatka	79.5	+7 14	+8 19	0.26	0.27	1.2	1.4	0.6
3377	8720832	Welaka	100.4	+7 34	+8 23	0.11	0.11	0.5	0.6	0.2

Table D4. Mean and spring range of tide and mean tide level for NOS stations

*See Figures 3.10a-d for location of stations **River miles taken from Figures 3.1a-d

Elevations relative to chart datum, mean lower low water

Source: NOS 1990b, 226-27

St. Johns River Water Management District 289

Appendix D: Tide Stations and Tidal Characteristics

Table D5. Summary of tidal characteristics*

Station Number**	Station Name	River Miles	High Water (hours)	Low Water (hours)	Mean Range (feet)	Mean Diurnal Range (feet)	MTL NGVD (feet)	Data Series Length
8720194	Little Talbot Island	t	0.00	0.00	5.49	6.09	0.53	4 months
8720220	Mayport	2.4	0.39	0.06	4.51	4.92	0.31	19 years
8720186	Fort George Island	t	0.78	0.80	4.84	5.29	<u>N/A</u>	5 months
8720196	Sisters Creek	6.5	0.92	0.81	4.34	4.70	N/A	3 months
8720232	Pablo Creek entrance	5.0	0.87	0.53	3.89	4.24	0.41	1 months
8720221	Fulton	7.8	0.80	0.64	3.66	3.97	0.43	4 months
8720198	Clapboard Creek	8.7	0.93	0.90	3.64	3.94	0.47	5 months
8720203	Blount Island Bridge	10.8	1.10	1.06	3.51	3.80	0.43	3 months
8720219	Dame Point	10.8	1.10	1.17	3.19	3.44	0.45	5 months
8720215	Jacksonville, Navy Fuel Depot	15.6	1.59	1.76	2.63	2.83	0.56	5 months
8720189	Cedar Heights, Broward River	18.4	1.54	1.73	3.03	3.24	0.46	3 months
8720217	Moncrief Creek, Trout River	18.3	1.60	1.98	2.56	2.76	<u>N/A</u>	3 months
8720213	Trout River, Sherwood Forest	23.1	2.09	2.19	2.65	2.88	N/A	4 months
8720216	Ribault River, Lake Forest	21.7	1.61	2.14	2.64	··· 2.82	N/A	2 months
8720225	Phoenix Park	16.9	1.42	1.75	2.54	2.75	0.56	5 months
8720242	Longbranch (USACE dredge depot)	19.0	1.61	1.82	2.08	2.27	0.73	14 years
8720274	Little Pottsburg Creek	22.6	1.90	2.12	2.05	2.23	0.77	6 months
8720268	Jacksonville, Acosta Bridge	24.0	2.14	2.19	1.51	1.68	0.75	6 months
8720296	Ortega River entrance	28.0	2.54	2.75	1.11	1.26	0.85	6 months
8720333	Piney Point	31.0	3.03	3.56	0.88	1.00	0.79	2 months
8720374	Orange Park	36.0	3.79	4.71	0.74	0.87	0.68	4 months
8720406	Doctors Lake	41.8	3.98	4.94	0.78	0.91	N/A	5 months
8720409	Julington Creek	40.5	4.36	5.19	0.71	0.83	0.81	6 months
8720434	Black Creek	45.5	5.16	5.85	0.82	0.92	N/A	3 months
8720496	Green Cove Springs	47.0	5.45	6.15	0.74	0.86	0.69	12 months
8720596	East Tocoi	60.5	6.51	6.96	0.97	1.10	0.68	4 months
8720653	Palmetto Bluff (Bridgeport)	66.5	6.98	6.59	1.04	1.18	0.67	5 months
8720774	Palatka	79.5	7.57	8.61	1.09	1.22	0.65	4 months

St. Johns River Water Management District 290

Table D5—Continued

Station Number**	Station Name	River Miles	High Water (hours)	Low Water (hours)	Mean Range (feet)	Mean Diumal Range (feet)	MTL NGVD (feet)	Data Series Length
8720782	Sutherlands Still, Dunns Creek	89.1	8.23	9.32	0.79	0.91	N/A	4 months
8720855	Crescent City, Crescent Lake	102.9		tidal influence	negligible			27 days
8720767	Buffalo Bluff	90.0	7.85	8.95	0.93	1.03	0.90	5 months
8720832	Welaka	100.4	8.04	8.02	0.35	0.42	0.92	5 months
8720877	Georgetown	109.4		tidal influence	negligible			4 months

*All elevations computed relative to the 1960–78 National Tidal Datum Epoch **See Figure 3.10a–d for location of stations †Station not located directly on the St. Johns River

Explanation of table headings:

River Mile	From file used to create Figures 3.10a-d
High Water	Difference in time of high water from ocean entrance (hours)
Low Water	Difference in time of low water from ocean entrance (hours)
Mean Range	Mean high water - mean low water (MHW - MLW) (feet)
Mean Diurnal Range	Mean higher high water - mean lower low water (MHHW - MLLW) (feet)
MTL NGVD	Mean tide level (MTL) above National Geodetic Vertical Datum (NGVD) (from USACE Jacksonville 1994b, Table 5)
Data Series Length	Length of data series from which tidal datums are determined

Note: N/A = not available

Tributaries separated by dotted lines

Source: USACE Jacksonville 1994b, 6, Table 2

Table D6. Predicted average tidal currents, 1990

Tidal	Station Location	Approx. River Mile	Average Speeds and Directions								
Current Station				Maximum F	lood	Maximum Ebb					
Number			kn	fps	deg	kn	fps	deg			
7781	St. Johns River entrance (between jetties)	0	1.9	3.2	277	2.3	3.9	099			
7786	Mayport	2	2.2	3.7	211	3.1	5.2	026			
7791	Mile Point, southeast of	4	2.7	4.6	241	2.9	4.9	073			
7796	Pablo Creek	9	3.4	5.8	180	5.2	8.8	000			
7801	Sisters Creek entrance (bridge)	5	1.4	2.4	000	1.4	2.4	180			
7806	St. Johns Bluff	7	1.6	2.7	244	2.2	3.7	059			
7811	Drummond Point, channel south of	14	1.3	2.2	232	1.6	2.7	060			
7816	Phoenix Park	17	1.1	1.9	192	1.0	1.7	352			
7821	Chaseville, channel near	17	1.1	1.9	151	1.6	2.7	337			
7826	Quarantine Station	17	1.1	1.9	183	1.2	2.0	001			
7831	Commodore Point, terminal channel	22	1.0	1.7	209	1.0	1.7	062			
7836	Jacksonville, off Washington Street	23	1.8	3.0	281	1.9	3.2	118			
7841	Jacksonville, Acosta Bridge	24	1.6	2.7	240	1.7	2.9	060			
7846	Winter Point	25	1.1	1.9	200	1.1	1.9	015			
7851	Mandarin Point	37	0.6	1.0	179	0.7	1.2	013			
7856	Red Bay Point, drawbridge	50	0.9	1.5	115	0.6	1.0	300			
7861	Tocoi to Lake George	N/A	current weak and variable								

Note: kn = knot fps = feet per second deg = degree N/A = not applicable

Source: NOS 1988b

Station Name	Component															
	M ₂		N ₂		S ₂		<u>К</u> ,		O ₁		Ρ,		M ₄		M ₆	
	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)	Amp (ft)	Phase (deg)
Little Talbot Island	2.62	215.2	0.61	195.1	0.42	239.7	0.37	110.5	0.26	119.4	0.12	111.2	0.05	063.3	0.02	356.0
Mayport	2.17	225.3	0.49	207.3	0.36	248.6	0.27	122.5	0.20	130.8	0.09	115.0	0.08	204.8	0.03	083.7
Pablo Creek entrance	1.88	236.2	0.34	223.9	0.23	258.8	0.29	145.6	0.19	130.6	0.10	144.5	0.05	257.9	0.04	091.9
Fulton	1.78	245.9	0.36	224.0	0.29	264.7	0.20	141.4	0.14	143.2	0.07	141.5	0.02	264.7	0.05	129.9
Clapboard Creek	1. 76	243.4	0.35	230.0	0.24	268.9	0.22	145.1	0.15	136.3	0.07	144.4	0.03	954.8	0/06	142.7
Blount Island Bridge	1.75	243.4	0.30	231.7	0.22	266,6	0.27	150.2	0.17	130.8	0.09	148.7	0.03	025.8	0.06	145.5
Dame Point	1.58	247.2	0.30	235.0	0.21	272.9	0.19	151.8	0.14	146.2	0.07	151.5	0.03	350.1	0.07	166.4
Jacksonville, Navy Fuel Depot	1.31	260.6	0.24	249.1	0.17	284.8	0.15	160.7	0.11	149.2	0.04	159.9	0.04	097.2	0.08	211.4
Phoenix Park	1.26	264.7	0.24	257.4	0.17	286.4	0.16	163.5	0.11	155.2	0.05	162.8	0.05	108.3	0.07	220.7
USACE dredge depot	1.13	264.4	0.22	256.1	0.15	289.1	0.13	166.6	0.09	154.9	0.04	165.8	0.04	082.5	0.07	222.5
Little Pottsburg	1.02	268.4	0.19	258.6	0.14	292.6	0.13	170.0	0.09	151.0	0.04	168.5	0.04	119.4	0.05	222.8
Jacksonville, Acosta Bridge	0.75	274.9	0.12	258.5	0.10	305.2	0.10	183.2	0.06	161.2	0.03	181.6	0.02	078.9	0.04	253.9
Ortega River entrance	0.53	286.1	0.08	270.1	0.07	317.9	0.08	201.8	0.04	169.7	0.02	199.4	0.03	190.8	0.04	298.9
Piney Point	0.43	301.7	0.07	285.4	0.05	334.2	0.05	220.5	0.03	186.3	0.02	217.0	0.02	186.4	0.03	337. 1
Orange Park	0.38	322.5	0.06	316.2	0.05	341.8	0.08	208.1	0.04	202.3	0.02	207.7	0.03	244.0	0.03	032.5
Julington Creek	0.36	332.9	0.06	317.2	0.04	363.5	0.06	203.2	0.06	209.1	0.02	203.6	0.04	265.5	0.04	052.6
Green Cove Springs	0.36	363.9	0.06	348.5	0.04	347.3	0.06	216.8	0.05	220.8	0.01	213.4	0.03	283.5	0.03	108.5
East Tocoi	0.43	401.5	0.06	387.2	0.04	434.0	0.06	247.6	0.05	226.0	0.02	245.9	0.03	351.9	0.03	200.5
Palmetto Bluff (Bridgeport)	0.49	413.4	0.08	394.7	0.02	449.7	0.06	238.4	0.05	237.8	0.02	238.4	0.03	028.3	0.03	253.7
Palatka	0.54	429.4	0.08	414.7	0.07	467.7	0.05	248.7	0.05	228.6	0.02	247.2	0.05	080.9	0.03	343.4
Buffalo Bluff	0.44	449.3	0.07	442.8	0.04	465.8	0.03	263.7	0.02	256.8	0.01	263.2	0.02	123.2	0.04	061.4
Welaka	0.15	455.1	0.02	432.5	0.02	487.7	0.01	267.6	0.01	284.2	0.00		0.04	179.4	0.02	145.9
Georgetown	0.02	562.0					0.01	337.6	<u> </u>						0.01	215.6

Table D7. Amplitudes and phases of harmonic constituents (1992 analysis)

------ = negligible values amp = amplitude it = feet deg = degrees Note:

See Table 3.13 for name of constituent

Source: USACE Jacksonville 1994b, 12, Table 3

St. Johns River Water Management District 293

Appendix D: Tide Stations and Tidal Characteristics

Table D8. Tidal constituents for all locations having adequate water level data for analysis (1992)

the second s

NOS/NOAA Station Number: 8720006 Little St. Marys River Series Start Date: 2/1/1985 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.29100 M₂ $\begin{array}{cccc} N_2 & K_1 & M_4 \\ 0.376 & 310.7 & 0.199 & 187.8 & 0.255 \end{array}$ S_2 3.8 74.1 0.244 196.3 0.088 242.9 1.881 312.7 0.243 мк₃ MN₄ Nu₂ 0.073 310.9 Mu₂ S, $2N_{2}$ 0.0 0.013 331.1 0.000 0.0 0.048 207.2 0.000 0.045 237.9 0.050 308.7 Sı M₁ 0.017 192.0 00. Lambda 0.0 0.010 179.3 0.013 336.4 0.000 0.019 183.5 0.000 0.0 0.000 0.0 S. 0.0 MS_{f} M_f 0.0 Rho₁ \mathbf{T}_{2} R. 0.000 0.000 0.0 0.000 0.009 199.9 0.047 200.5 0.014 1.8 0.002 5.9 2SM₂ 0.0 0.000 201 2MK₃ P, L_2 0.0 0.053 314.6 0.066 188.4 0.000 0.000 0.0 0.066 $0.006 \ \overline{204.7}$ 8.0 . M₈ २ 29.0 MS₄ 0.023 0.000 0.0 NOS/NOAA Station Number: 8720007 Roses Bluff Series Start Date: 2/1/1985 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.10800 S_2 M_2 0.520 282.5 0.268 146.6 2.919 258.0 0.081 89.4 . MN₄ MK3 S4 0.038 77.9 Nu₂ 0.129 249.2 . 2N₂ Mu_2 0.0 0.010 208.0 0.000 0.0 0.000 0.070 210.2 0.088 237.8 M₁ 0.019 146.3 S_1 001 Lambda 0.011 145.6 0.020 269.3 0.000 0.0 0.021 145.8 0.000 0.0 0.000 0.0 S. 0.0 MSf Mf Rho₁ T_2 0.000 0.000 0.0 0.000 0.0 0.010 146.8 0.052 146.8 0.031 281.5 0.004 283.4 2SM₂ 0 0.0 0.000 2MK3 M_3 P, 0.082 268.10.007 147.0 0.076 146.1 0.000 0.0 0.000 0.0 0.141 284.5 MS4 M₈ 0.030 134.3 0.000 0.0 Fernandina Beach NOS/NOAA Station Number: 8720030 Series Start Date: N/A Series Length (in days): N/A Series Mean Sea Level (in feet): 4.78000 S₂ 0.470 273.6 M. N_2 K_1 M_4 0.633 235.6 0.339 133.7 0.103 263.3 2.911 248.5 0.252 146.00.021 42.1 S₄ MN₄ 0.020 35.5 0.052 267.8 MN4 MK3 Nu₂ 0.147 233.0 s، 0.000 Mu₂ 0.087 283.6 2N₂ 0.075 219.3 0.042 169.2 0.0 0.011 121.4 Lambda M₁ 0.018 139.8 S, 0.049 0.062 241.2 89.4 0.020 127.5 0.000 0.0 0.310 186.9 s. 57.5 MSt Rho₁ Q₁ 0.010 151.2 0.056 143.6 Mf T_2 0.0 0.004 273.4 0.000 0.0 0.046 267.0 0.241 0.000 2Q1 2MK₃ K₂ 0.031 183.8 0.119 269.1 0.116 132.5 0.007 158.2 M_8 75.6 0.062 291.0 0.016 Fernandina Beach NOS/NOAA Station Number: 8720030 Series Start Date: 1/1/1987 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.93500 S₂ 0.453 272.3 M₂ N_2 K_1 M_4 0.631 238.3 0.342 132.7 0.105 266.0 0.249 145.6 2.910 248.3 0.019 36.9 S₄ MN₄ Nu₂ S₆ 0.021 28.2 0.057 280.2 0.134 226.6 0.002 354.0 Mu₂ MK₃ $2N_{2}$ 0.087 276.7 0.041 168.5 0.105 225.0 Mm $\begin{smallmatrix} S_1 & M_1 & J_1 \\ 0.050 & 87.1 & 0.014 & 182.9 & 0.020 & 129.5 \end{smallmatrix}$ 00 Lambda 0.013 159.7 0.060 235.7 0.081 60.1 0.243 21.9 MSf S. 0.137 243.0 MS_f M_f Rho₁ Q₁ 0.045 130.9 0.056 331.6 0.012 133.0 0.050 141.4 T₂ 0.053 256.0 0.025 172.1 0.112 270.4 M₈ MS₄ 0.015 76.7 0.059 294.5

St. Johns River Water Management District 294

Table D8—Continued

Fernandina Beach

NOS/NOAA Station Number: 8720030 Series Start Date: 5/1/1988 Series Length (in days): 276 Series Mean Sea Level (in feet): 4.95700 S2 0.476 275.5 M_2 2.931 249.9 S. 0.019 39.6 MN₄ 0.050 267.3 Nu₂ 0.142 231.7 MK3 S, 0.005 356.9 Mu₂ 2N0.086 299.3 0.067 240.0 0.040 169.9 001 Lambda S_1 M_1 0.014 176.0 0.012 140.0 85.4 0.021 149.7 0.075 0.042 11.4 0.303 37.6 0.044 247.7 MS_f 5 35.1 S. 0.088 221.1 M_f 0.073 302.2 Rho₁ T₂ 0.058 281.4 R, 0.065 0.010 121.4 0.055 137.3 0.042 199.1 2Q1 \mathbf{P}_1 $2SM_2$ M3 $^{
m L_2}_{
m 0.141}$ 243.8 2MK₃ 0.124 131.5 0.005 265.1 0.049 313.5 0.035 181.8 0.009 156.5 0.140 272.8 M₈ MS4 82.7 0.054 290.6 0.018 NOS/NOAA Station Number: 8720030 Fernandina Beach Series Start Date: 1/1/1990 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.93100 M₂ 2.911 248.2 S₂ 0.470 272.9 N_2 K_1 0.645 232.8 0.336 132.3 0.101 262.0 0.250 147.0 0.021 39.7 мк, S. 0.018 37.6 MN₄ 0.051 264.6 Nu₂ 0.183 238.7 Mu₂ 2N. $0.002^{\circ} 347.0$ 0.108 273.3 0.073 192.8 0.049 166.4 S1 96.8 00. Lambda M₁ 0.028 188.5 0.091 238.3 0.054 0.018 175.1 0.074 67.1 0.011 165.2 0.266 45 6 MS. M_{f} 0.023 326.2 Rho S. 0.351 167.3 0.049 257.10.036 221.5 0.015 139.7 0.056 149.6 0.036 177.0 2MK₃ 0.028 192.6 2SM₂ M₃ 0.006 311.1 0.027 314.5 0.120 243.7 0.008 204.1 0.112 129.4 0.120 274.4 . ▲ 72.0 MS. 0.059 287.2 0.014 NOS/NOAA Station Number: 8720030 Fernandina Beach Series Start Date: 1/1/1991 Series Length (in days): 365 Series Mean Sea Level (in feet): 5.18000 S_2 M₂ 0.257 145.8 0.017 2.886 248.9 0.464 272.5 55.5 S₄ 0.021 45.6 MN₄ Nu₂ 0.060 278.3 0.151 230.1 MN4 Mu₂ MK_3 2N-0.050 170.5 0.002 357.3 0.089 283.8 0.103 217.5 S_1 98.6 0.010 174.5 00, Lambda 0.011 150.5 0.053 223.2 0.045 0.018 158.6 0.084 57.5 0.228 47.5 MS. M_f 0.036 304.5 Rho₁ S. 0.337 166.2 T₂ 0 0.052 151.9 0.038 309.9 0.013 149.8 0.054 245.1 0.029 163.5 P. 2 SM, 2Q1 2SM₂ M₃ 0.005 44.0 0.025 338.6 2MK₃ 0.027 207.1 0.109 132.6 0.146^{-2} 253.1 0.013 136.5 0.101 270.0 M_{0} M_{0 MS. 0.015 Fernandina Beach NOS/NOAA Station Number: 8720030 Series Start Date: 1/1/1992 Series Length (in days): 366 Series Mean Sea Level (in feet): 5.12100 S2 0.454 275.0 M2 2.871 248.4 0.250 145.9 0.021 50.4 S₄ MN₄ Nu₂ S₆ 0.019 34.3 0.057 270.1 0.122 217.7 0.003 323.2 MK3 Mu₂ $2N_2$ 0.049 176.8 0.090 286.0 0.113 233.7 001 Lambda $S_1 \qquad M_1 \qquad J$ 93.0 0.016 159.1 0.023 0.015 151.6 0.043 231.8 0.047 168.9 0.090 265.1 0.294 87.0 S. MS 0.316 193.9 0.051 MS_{f}
 M_f
 Rho₁
 Q₁

 56.8
 0.121
 32.5
 0.012
 108.0
 0.062
 141.8
 T₂ 0.038 253.5 0.034 139.8 0.097 271.1 M₈ MS₄ 0.015 63.9 0.060 296.9

Table D8—Continued

Fernandina Beach NOS/NOAA Station Number: 8720030 Series Start Date: 1/1/1980 Series Length (in days): 366 Series Mean Sea Level (in feet): 4.77900 M_2 S₂ 2.905 248.0 0.461 273.3 0.240 144.5 0.027 16.9 S 41.3 MN₄ Nu₂ S₆ 0.051 273.7 0.111 236.1 0.002 344.8 Mu₂ MK3 2N2 0.091 293.8 0.061 232.4 0.045 166.8 0.023 001 Lambda S₁ M₁ 89.7 0.017 169.5 0.034 17.0 0.023 141.5 0.063 215.9 0.056 0.020 144.6 0.105 89.0 MS, M_f 0.050 290.9 Rho₁ Q1 $\begin{array}{cccc} T_2 & R_2 \\ 0.042 & 260.1 & 0.025 & 162.1 \end{array}$ S, 0.128 249.5 0.072 352.3 0.013 147.1 0.056 140.02Q₁ 43.6
 P1
 2SM2
 M3
 L2
 2MK3
 K2

 0.118
 134.4
 0.012
 314.0
 0.043
 305.0
 0.149
 235.4
 0.021
 164.3
 0.130
 273.6
 0.006 м₈ ^{мз}4 4 74.3 0.061 298.0 MS. 0.014 Kingsley Creek NOS/NOAA Station Number: 8720058 Series Start Date: 5/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.48600 M_2 S_2 2.842 255.0 0.440 284.8 м 0.297 154.5 0.066 55.5 MN4 MK₃ S₄ 0 0.0 0.019 48.9 Mu₂ 2N₂ 0.068 202.2 0.087 235.8 0.000 0.000 S_1 001 Lambda 0.013 112.2 0.020 268.8 0.000 0.000 0.0 0.000 0.0 MSt S_a) 0.0 0.000 P Mf Rho₁ Q₁ T_2 0.0 0.000 0.0 0.011 163.6 0.058 165.0 0.000 0.026 283.6 0.004 285.9 2MK₃ M_3 20, \mathbf{P}_1 0.008 175.5 0.122 134.9 0.000 0.0 0.080 264.6 0.000 0.0 0.120 287.2 MS. 0.0 м_в 5 93.5 0.000 0.025 Kingsley Creek NOS/NOAA Station Number: 8720058 Series Start Date: 6/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.55100 M₂ S₂ 2.813 256.3 0.450 282.7 N₂ K₁ M₄ 0.573 246.1 0.382 133.5 0.092 288.5 0.281 152.1 0.073 75.3 MK₃ S₄ MM 0 0.0 0.007 15.2 0.000 MN₄ $2N_2$ Nu₂ S₆ 0.0 0.111 247.5 0.005 226.6 Mu₂ 0.068 206.7 0.000 0.076 236.0 00 S_1 Lambda M_1 J₁ J₁ 0.0 0.020 142.7 0.022 124.3 0.020 268.5 0.000 0.000 0.000 0.012 114.9 0.0 0 0 MSt S. 0.0 Mf Rho_1 T_{2} 0.027 281.7 $\begin{array}{ccc} Rho_1 & Q_1 \\ 0.0 & 0.011 & 160.0 & 0.055 & 161.3 \end{array}$ 0.000 0.000 0.0 0.000 0.004 283.8 2SM₂ 0 0.0 0.000 2MK₃ P_1 1_2 2MP 0.0 0.079 266.4 0.000 0.127 134.9 0.000 0.0 0.007 170.5 0.122 284.9 MS. 0.0 M₈ 6 89.2 0.000 0.016 Amelia City NOS/NOAA Station Number: 8720086 Series Start Date: 1/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.62400 M₂ S₂ N₂ K₁ M₄ O₁ M₆ 2.485 258.7 0.379 286.6 0.458 249.4 0.278 150.7 0.050 82.4 0.185 160.2 0.062 87.6 MN4 S_6 Mu₂ $2N_2$ Nu₂ S₆ 0.0 0.089 250.7 0.020 18.0 0.060 207.7 0.000 0.061 240.2 $\begin{matrix} M_1 & J_1 \\ 0.0 & 0.013 & 155.4 & 0.015 & 145.9 \end{matrix}$ 00 Lambda \mathbf{S}_1 0.008 141.1 0.017 271.6 0.000 0.000 0.0 0.000 0.0 MS_r 0 0.0 0.000 S. 0.0 0.000 P. Rho₁ 0.000 2SM₂ 0.0 0.000 \mathbf{P}_1 $2MK_3$ 20 L_2 2MK 0.0 0.070 268.0 0.000 0.005 169.6 0.092 151.4 0.000 0.0 0.103 288.8 MS4 0.0 M₈ M 0.001 231.9 0.000

St. Johns River Water Management District 296

NOS/NOAA Station Number: 8720086 Amelia City Series Start Date: 4/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.96400 $O_1 M_6$ 0.252 178.7 0.087 76.9 мК₃ 0 0.0 0.012 Ца S. 2 43.0 2N₂ Mu₂ 0.061 198.9 0.000 0.000 0.065 265.8 , 00₁ 1 37.1 $S_1 \qquad M_1 \qquad C_2 \qquad C_3 \qquad C_4 \qquad C_5 \qquad C_5 \qquad C_6 \qquad C_6 \qquad C_7 \qquad C_7$ Lambda M_m 0.000 72.8 0.018 274.5 0.000 0.0 0.000 0.0 0.011 MSf M_r Rho₁ Q₁ 00 0.0 0.010 209.1 0.049 213.8 T_2 0.022 292.4 $S_a = \frac{m S_f}{0.000} 0.0$ R. 0.000 0.000 0.003 295.2 2SM₂ ... 0.000 2MK₃ 201 P₁ 0.139 113.2 L_2 2MK 0.0 0.071 254.0 0.000 0.000 0.0 0.099 296.7 0.006 249.0 MS₄ ^ 0.0 M₈ M 0.012 90.0 0.000 NOS/NOAA Station Number: 8720186 Fort George Island Series Start Date: 4/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.43200 M_2 S_2 N_2 K_1 M_4 2.363 255.6 0.356 282.7 0.474 252.9 0.350 121.0 0.078 9.2 0.210 149.0 0.031 73.4 MK_3 S_4 MI0 0.0 0.012 21.3 0.000 MN₄ Nu₂ S₆ 0 0.0 0.092 253.2 0.005 263.0 Mu₂ 0.057 205.4 $2N_2$ 0.063 250.2 0.000 00, Lambda S_1 M_1 J_1 0 0.0 0.015 134.8 0.017 107.1 0.009 93.0 0.017 268.2 0.000 0.000 0.0 0.000 0.0 MSf S. 0.0 M_r Rno₁ 00 0.0 0.008 161.0 т, R-0.000 0.000 0.0 0.000 0.041 162.8 0.021 281.60.003 283.8 2SM₂ 0 0.0 0.000 2MK3 20 Ρ. M3 $0.0 \quad 0.066 \quad 258.3$ 0.005 176.7 0.116 123.1 0.000 0.000 0.0 0.097 284.9 M₈ M 0.003 125.8 0.000 Fort George Island NOS/NOAA Station Number: 8720186 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.13500 S₆ $2N_2$ MN₄ Nu₂ S₆ Mu₂ 0 0.0 0.093 251.3 0.001 235.0 0.053 216.4 0.064 239.0 0.000 00, Lambda 0.009 178.0 0.016 270.6 0.000 0.0 0.000 0.0 ່ ນີ້ 0.0 $\begin{smallmatrix} T_2 & R_2 \\ 0.022 & 281.1 & 0.003 & 282.8 \end{smallmatrix}$ 0.000 0.000 2SM₂ 0.0 0.000 2MK₃ 2Q1 P_1 M₃ L_2 2MK 0.0 0.062 271.5 0.000 0.115 157.9 0.000 0.0 0.101 283.7 0.005 122.1 MS₄ 0.0 M₈ M3 0.005 83.5 0.000 Cedar Heights, St. Johns River NOS/NOAA Station Number: 8720189 Series Start Date: 10/1/1977 Series Mean Sea Level (in feet): 4.64800 Series Length (in days): 29 M₂ S₂ N₂ K₁ M₄ O₁ M₆ 1.453 283.5 0.189 313.9 0.318 282.9 0.168 175.6 0.069 104.6 0.120 166.5 0.058 279.5 MN₄ Nu₂ S₆ 00 0.0 0.062 283.0 0.001 20.8 Mu₂ 0.035 229.8 $2N_2$ 0.042 282.2 0.000 001 Lambda 0.005 184.7 0.010 297.6 0.000 0.000 0.0 0.000 0.0
 MS_t
 M_t
 Rho₁
 Q₁
 T₂

 0
 0.0
 0.000
 0.005
 162.6
 0.023
 161.9
 0.011
 312.6
 0.000 0.002 315.1 2SM₂ M₃ 0 0.0 0.000 MS₄ ^ 0.0 M₈ M 0.007 163.9 0.000

Table D8—Continued

Cedar Heights, St. Johns River NOS/NOAA Station Number: 8720189 Series Start Date: 1/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.03100 M₂ S₂ 1.476 283.2 0.157 317.5 мк₃ 0.0 MN_4 S₄ 0.016 32.8 Nu₂ 0.0 0.056 271.1 Mu₂ 0.035 225.5 S₆ 0.011 102.3 2N-0.039 255.3 0.000 0.000 Lambda 00 M₁ 0.008 180.8 S_1 0.005 148.7 0.010 299.1 0.000 0.0 0.008 159.5 0.000 0.0 0.000 0.0 MS: 0.0 s. 0.0 Rho₁ Mf Q_1 0.021 202.2 T₂ R. 0.000 0.000 0.0 0.004 200.8 0.009 316.1 0.001 318.9 0.000 2SM₂ 0 0.0 0.000 2MK3 2Q1 P₁ 0.046 171.7 L_2 2MF 0.0 0.041 297.2 0.000 0.000 0.0 0.043 320.3 0.003 212.8 MS_4 M_e M 0.012 123.1 0.000 0.0 NOS/NOAA Station Number: 8720194 Little Talbot Island Series Start Date: 5/1/1974 Series Length (in days): 29 Series Mean Sea Level (in feet): 30.5960 M₂ S_2 2.637 231.3 0.415 250.4 94.2 0.272 128.3 0.012 68.9 MN₄ Nu₂ 00 0.0 0.121 217.5 мк₃ 0.000 0.0 S₄ 0.009 153.0 Mu₂ $2N_{1}$ S، 0.000 0.003 250.9 0.063 189.1 0.083 199.5 001 Lambda S_1 M₁ 0.019 121.5 J 0.000 0.000 0.000 0.0 0.022 108.1 0.0 0.012 101.3 0.019 240.2 0.0 MS, 0.0 s. 0.0 Rho, Mf 0 T_2 R. 0.025 249.7 0.000 0.0 0.010 134.1 0.053 135.0 0.000 0.000 0.003 251.2 2SM₂ 0 0.0 0.000 2MK₃ 2Q₁ P₁ 0.007 141.7 0.128 115.8 0.000 0.0 0.074 247.1 0.000 0.0 0.113 252.0 ______0.0 M₈ M 0.003 155.6 0.000 Little Talbot Island NOS/NOAA Station Number: 8720194 Series Start Date: 6/1/1974 Series Length (in days): 29 Series Mean Sea Level (in feet): 30.7840 O₁ M₆ 0.258 134.5 0.022 37.7 M₂ 2.611 233.7 MN₄ Nu₂ S₆ 0 0.0 0.119 217.3 0.000 331.0 S_6 Mu₂ 0.063 185.7 $2N_{1}$ 0.082 195.9 0.000 S₁ M₁ J₁ 0.0 0.018 125.3 0.020 107.1 001 Lambda 0.000 0.0 97.9 0.000 0.000 0.011 0.018 245.4 0.0 MS_f , S. 0.0 M_f 0.0 0.010 142.4T₂ 0.024 257.9 O1 0.000 0.000 0.000 0.050 143.6 0.003 259.9 2SM₂ 0 0.0 0.000 2MK3 P₁ 0.117 117.6 M_3 L₂ 2MH 0.0 0.073 252.7 0.000 0.000 0.007 152.7 0.0 0.111 260.9 M₈ M 0.010 209.0 0.000 NOS/NOAA Station Number: 8720194 Little Talbot Island Series Start Date: 7/1/1974 Series Length (in days): 29 Series Mean Sea Level (in feet): 30.4480 0.018 37.9 МК₃ 0.0 S4 0.017 298.9 Mu₂ MN₄ Nu₂ S₆ 0 0.0 0.118 219.2 0.008 184.2 2N; 0.000 0.000 0.063 197.0 0.081 199.7 Lambda M1 M 001 S_1 0.000 0.0 0.018 124.7 0.020 113.5 0.000 0.011 107.7 0.018 240.7 0.0 0.000 0.0 S. 0.0 MS₁ 0 0.0 0.000 M_r Rho₁ Q₁ T₂ 00 0.0 0.009 135.3 0.048 136.1 0.026 247.8 0.000 0.000 0.004 248.9 2MK₃ 2SM₂ ... 20, P, \mathbf{L} $0.0 \quad 0.073 \quad 251.3 \quad 0.000$ 0.121 249.5 0.006 141.7 0.124 119.9 0.000 M₈ MS 0.001 359.6 0.000

NOS/NOAA Station Number: 8720194 Little Talbot Island Series Start Date: 8/1/1974 Series Length (in days): 29 Series Mean Sea Level (in feet): 30.5810 S2 0.446 247.5 $\begin{array}{cccccccc} N_2 & K_1 & M_4 \\ 0.641 \ 217.7 & 0.365 \ 127.1 & 0.046 \end{array}$ M₂ 2.609 233.8 0.243 130.9 95.8 0.020 25.7 мк₃ 0.0 . MN4 Nu₂ 0.124 219.9 S₆ 0.010 166.0 Mu₂ $2N_2$ S4 0.019 328.0 0.000 0.0 0.063 197.3 0.085 201.6 0.000 001 Lambda S_1 м₁ 0.017 129.0 0.010 123.4 0.018 240.2 0.000 0.0 0.019 125.3 0.000 0.0 0.000 0.0 S_{a} MSf Rho, Q₁ 0.047 132.8 T. Mf R₂ 0.0 0.000 0.0 0.009 132.5 0.026 246.9 0.000 0.0 0.000 0.004 248.0 2*S*M₂ 0 0.0 0.000 . P1 2MK3 20 0.073 250.0 0.000 0.006 134.6 0.121 127.40.000 0.0 0.0 0.121 248.6 MS4 M₈ 0.005 120.6 0.000 0.0 NOS/NOAA Station Number: 8720196 Sister Creek Series Start Date: 9/1/1977 Series Length (in days): 203 Series Mean Sea Level (in feet): 5.32300 M_2 S2 0.350 281.8 0.197 152.4 2.116 260.2 351.7 0.035 193.7 ້ ຈີ 53.6 MN₄ Nu₂ 0.039 338.7 0.105 233.4 MN4 Mu₂ MK, $2N_{2}$ 0.034 201.0 0.019 0.003 12.6 0.065 333.4 0.059 237.7 Lambda 00, M₁ 0.024 173.6 0.011 219.0 0.044 226.7 0.046 107.0 0.023 138.4 0.097 86.1 0.371 27.8 MS. Mf 0.096 203.5 Rho₁ T_{2} 0.017 236.8 0 0.395 242.2 0.082 342.6 0.013 220.3 0.053 156.9 0.063 195.0 P. 2SM₂ M₃ 0.005 236.4 0.023 350.4 2SM 2MK 0.101 141.6 0.123 248.1 0.043 196.8 0.089 310.8 0.012 211.5 MS. M_B 0.010 152.0 0.026 329.6 Clapboard Creek, Pelotes Island NOS/NOAA Station Number: 8720198 Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.61600 M_2 S_2 1.790 261.1 0.224 276.7 N_2 K_1 M_4 O_1 0.316 252.8 0.263 155.8 0.032 100.6 0.175 143.9 0.066 199.5 MK₃ 0.0 S. 0.016 66.9 Nu₂ 0.0 0.061 253.9 S₆ MN_4 Mu₂ $2N_2$ 0.000 0.000 0.006 214.4 0.043 222.3 0.042 244.6 00. Lambda S_1 0.012 149.9 0.007 167.7 0.0 0.012 268.3 0.000 0.014 161.7 0.000 0.0 0.000 0.0 MS, 0.0 S. 0.0 Rho₁ 0.007 138.9 Μ_f T_2 0.013 276.1 0.000 0.0 0.034 138.1 0.000 0.000 0.002 277.3 2SM₂ 00 0.0 0.000 $2Q_1$ P₁ 0.087 154.9 2MK3 0.005 132.2 0.000 0.0 0.050 269.3 0.000 0.0 0.061 277.9 MS. 0.0 0.017 Clapboard Creek, Pelotes Island NOS/NOAA Station Number: 8720198 Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.56200 M₂ 1.758 260.4 72.5 0.150 151.4 0.065 195.5 мк₃ 0.0 S, MIN 0.009 32.6 0.000 MN_4 Nu₂ 0.0 0.070 254.9 S₆ 0.002 340.9 2N Mu_2 0.042 210.9 0.000 0.048 247.6 M₁ 0.0 0.011 152.7 00. Lambda S_1 0.012 272.7 0.000 0.012 155.2 0.006 156.4 0.000 0.0 0.000 0.0 MS_f 0.0 0.000 , S. 0.0 Mf 0.000 0.000 0.002 287.8 25M2 0.0 0.000 20 P₁ 0.068 153.7 2MK3 T. $0.0 \ 0.049 \ 266.8 \ 0.000$ 0.004 148.9 0.000 0.0 0.063 288.9 мs. 0.0 M₈ M3 0.009 79.1 0.000

Table D8—Continued

Clapboard Creek, Pelotes Island NOS/NOAA Station Number: 8720198 Series Start Date: 11/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.81900 S_2 N_2 K_1 0.367 245.8 0.195 144.6 M_2 0.132 148.8 0.050 196.1 0.255 282.2 0.023 99.7 1.742 262.9 MN₄ MK3 S₄ 0.011 43.3 Nu₂ 0.071 248.1 Mu₂ S₆ $2N_2$ 0.0 0.004 354.2 220.4 0.000 0.0 0.000 0.042 0.049 228.6 S_1 00, Lambda M₁ 0.009 146.7 0.0 0.006 140.3 0.012 271.9 0.000 0.010 142.4 0.000 0.0 0.000 0.0 S. 0.0 MSt Mf Rho₁ T₂ 0.015 281.5 Q1 0.000 0.000 0.0 0.000 0.0 0.005 150.7 0.026 151.0 0.002 283.0 2MK₃ $2SM_2$ 20. P. M. 0.0 0.000 0.065 144.9 0.000 0.0 0.049 280.0 0.000 0.0 0.069 283.8 0.003 153.1 MS₄ 0.0 71.5 0.007 0.000 Clapboard Creek, Pelotes Island NOS/NOAA Station Number: 8720198 Series Start Date: 12/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.33400 S₂ 0.280 279.6 N_2 K_1 0.375 247.2 0.213 145.5 M₂ 1.795 260.8 0.025 95.5 0.153 158.6 0.047 195.0 MN4 S₄ 0.019 48.4 MK3 Nu₂ 0.073 249.0 Mu₂ S_6 2N0.000 0.0 0.000 0.0 0.008 352.9 0.043 218 7 0.050 233 7 001 Lambda M₁ 0.011 152.0 S_1 0.0 0.007 132.5 0.013 269.5 0.000 0.012 139.1 0.000 0.0 0.000 0.0 MSf Sa Mť Rho_1 T_2 0.017 278.9 Q1 0.0 0.000 0.0 0.000 0.000 0.0 0.006 164.2 0.030 165.0 0.002 280.4 2SM2 2MK3 20 M_3 0.0 0.000 0.050 274.3 0.004 171.5 0.070 146.5 0.000 0.0 0.000 0.0 0.076 281.1 MS₄ 0.0 M₈ 0.010 118.2 0.000 Blount Island Bridge, St. Johns NOS/NOAA Station Number: 8720203 Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.90900 S₂ 0.217 279.6 К₁ 0.270 156.5 M2 N₂ 0.305 252.6 1.749 261.6 0.028 0.172 142.762.2 0.063 200.0 MK3 0.0 54.2 MN₄ Nu₂ 0.059 253.8 S. Mu_2 2N0.006 191.5 0.000 0.014 0.000 0.0 0.042 220.3 0.041 243.6 00. Lambda M₁ 0.012 149.6 S_1 0.012 270.0 0.007 170.3 0.000 0.0 0.014 163.4 0.000 0 0 0.000 0.0 S, MSf Mf Rho₁ 0.006 136.7 Q T₂ 0.013 278.9 0.000 0.0 0.000 0.0 0.033 135.8 0.000 0.0 0.002 280.4 P_1 2Q1 2мк, 0.049 270.6 0.000 0.004 128.9 0.089 155.5 0.000 0.0 0.0 0.059 281.1 MS. 0.0 ้M₀ ∽ 71.1 0.006 0.000 Trout River, Sherwood Forest NOS/NOAA Station Number: 8720213 Series Start Date: 8/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.34300 S₂ 0,183 319.0 M₂ 1.444 291.9 N₂ 0.292 283.9 K, 0.199 149.7 0.070 165.6 0.146 170.0 0.063 325.4 MK₃ 0.0 S₄ 0.013 210.6 MN4 Nu₂ 0.057 285.0 S. Mu₂ 2N 0.000 0.0 0.035 241.2 0.000 0.005 13.5 0.039 275.9 001 Lambda S_1 Μ, 0.012 139.6 0.0 0.010 159.8 0.000 0.006 129.4 0.010 304.5 0.000 0.000 0.0 0.0 MSf Sa Rho₁ 0.0 0.006 178.7 Q₁ 0.028 180.1 T_2 0.011 317.9 Mť R. 0.0 0.002 320.1 0.000 0.0 0.000 0.000 2Q1 P₁ 0.066 151.2 Ŀ 2MK3 K, 0.004 190.2 0.000 $0.0 \quad 0.040 \quad 299.9$ 0.000 0.0 0.050 321.2 MS. 0.0 M₈ 0.010 192.8 0.000

Trout River, Sherwood Forest Series Start Date: 9/1/1978 NOS/NOAA Station Number: 8720213 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.79000 M_2 S_2 1.334 291.7 0.210 323.3 MK₃ 0.0 MN4 $\begin{array}{c} Nu_2 & S_6 \\ 0.0 & 0.050 & 282.9 & 0.006 \end{array}$ Mu₂ 0.032 236.4 S₄ 0.017 159.5 $2N_{2}$ 0.000 91.9 0.034 271.50.000 001 Lambda S_1 $\begin{matrix} M_1 & J_1 \\ 0.0 & 0.007 & 170.2 & 0.008 & 189.1 \end{matrix}$ 0.004 198.7 0.009 306.4 0.000 0.000 0.0 0.000 0.0 S. 0.0 Rho₁ T₂ 0.012 322.1 MSf Μ_f Q R₂ 0.000 0.0 0.000 0.0 0.004 152.4 0.019 151.1 0.000 0.002 324.6 2SM₂ ____ 2MK₃ P_1 201 L-0.037 301.8 0.000 $0.003^{-141.7}$ 0.067 178.20.000 0.0 0.0 0.057 325.9 MS_4 M₈ M 0.014 103.4 0.000 0.0 NOS/NOAA Station Number: 8720213 Trout River, Sherwood Forest Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.94300 0.072 335.3 MK₃ 0.0 MN₄ S₄ MI 0.028 86.9 0.000 Nu₂ 0.0 0.043 293.9 Mu_2 0.000 0.005 13.0 0.031 240.5 0.030 290.9 Lambda S_1 001 M₁ 0.0 0.006 178.6 0.004 209.2 0.009 311.2 0.000 0.007 198.9 0.000 0.0 0.000 0.0 MS_f 0.0 Sa Mf T_2 Rho₁ 0, R₂ 0.000 0.0 0.000 0.000 0.0 0.003 159.5 0.018 158.2 0.010 327.1 0.001 329.7 2SM₂ 0 0.0 0.000 $2MK_3$ M3 20 $\begin{array}{r}
 P_{1} \\
 0.049 \\
 187.2
 \end{array}$ 0.002 148.0 0.000 0.0 0.036 299.0 0.000 0.0 0.046 331.0 MS₄ M8 0.023 90.7 0.000 0 0 Trout River, Sherwood Forest NOS/NOAA Station Number: 8720213 Series Start Date: 11/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.92800 M₂ S₂ 1.283 297.5 0.158 331.9 MK₃ 0.0 S₄ MT 0.012 102.2 0.000 MN4 Mu₂ S_6 Nu₂ S₆ 0.0 0.050 295.0 0.008 133.8 $2N_2$ 0.031 239.5 0.035 291.6 0.000 00 Lambda S_1 M_ 0.000 $0.0 \ 0.007 \ 173.7 \ 0.008 \ 172.7$ 0.009 313.5 0.000 0.0 0.000 0.0 0.004 172.2 MS_f 0.0 S. 0.0 Mf Rho₁ 0.0 0.004 174.6 T₂ 0.009 330.5 0, 0.000 0.020 174.6 0.000 0.000 0.001 333.3 2SM₂ 0 0.0 0.000 P_1 25 0.042 173.3 0.000 2Q1 2MK3 0.0 0.036 300.5 0.000 0.003 175.1 0.0 0.043 334.7 MS. 0.0 0.016 Jacksonville, Navy Fuel Depot, St. Johns River NOS/NOAA Station Number: 8720215 Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.58800 MK₃ S, MN 0 0.0 0.014 112.9 0.000 Nu₂ 0.0 0.046 269.8 Mu₂ MN₄ S $2N_2$ 0.006 288.6 0.032 245.5 0.000 0.032 258.4 00. Lambda S_1 0.006 185.8 0.009 282.9 0.000 0.000 0.0 0.000 0.0 S. 0.0 0.000 P.
 MS_t
 M_t
 Rho₁
 Q₁
 T₂
 R₂

 0
 0.00
 0.000
 0.005
 150.5
 0.026
 149.5
 0.010
 287.6
 0.001
 288.4
 0.000 2SM₂ 0 0.0 0.000 L₂ 2MK 0.0 0.037 288.4 0.000 M₈ MS 0.007 161.5 0.000

Table D8—Continued

Jacksonville, Navy Fuel Depot, St. Johns River Series Start Date: 10/1/1977 NOS/NOAA Station Number: 8720215 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.49100 N_2 K_1 0.224 275.6 0.136 169.9 M_2 S_2 0.037 117.6 0.107 161.2 0.084 260.91.308 277.4 0.157 299.8 мк₃ 0.0 S. 0.003 31.6 MN4 $\frac{Nu_2}{0.0 \ 0.043 \ 275.8}$ Mu₂ 2N. 0.002 328.9 0.000 0.000 0.031 231.5 0.030 273.8 S_1 M₁ 0.0 0.008 165.6 00. Lambda 0.005 178.6 0.009 287.8 0.000 0.008 174.2 0.000 0.0 0.000 0.0 MSf Sa Mr Rho₁ Т, Q1 R₂ 0.000 0.0 0.000 0.0 0.000 0.0 0.004 157.5 0.021 156.9 0.009 298.9 0.001 300.7 2SM₂ 0.0 0.000 2MK₃ P1 0.045 169.3 20. M_a 0.037 279.2 0.003 152.5 0.000 0.0 0.000 0.0 0.043 301.7 MS4 M₈ 0.004 182.4 0.000 0.0 NOS/NOAA Station Number: 8720215 Jacksonville, Navy Fuel Depot, St. Johns River Series Start Date: 11/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.75300 S_2 M_2 1.295 281.0 0.188 306.3 . мк₃ MN₄ Nu₂ 0.0 0.053 268.5 S. 0.007 Mu₂ S_4 $2N_2$ 0.000 0.0 0.008 102.2 0.000 30.8 0.031 232.3 0.036 252.1 001 Lambda S_1 M_1 0.004 155.3 0.009 292.7 0.000 0.0 0.006 162.7 0.006 157.8 0.000 0.0 0.000 0.0 MS S. 0.0 Mf T₂ 0.011 305.3 Rho₁ Qı 0.000 0.000 0.0 0.000 0.0 0.003 167.4 0.016 167.7 0.002 307.3 $2SM_2$ 2MK3 M₂ 0.0 0.000 0.0 0.036 295.4 0.002 170.2 0.043 160.6 0.000 0.000 0.0 0.051 308.3 MS. 0.0 M₈ 0.008 193.8 0.000 Jacksonville, Navy Fuel Depot, St. Johns River NOS/NOAA Station Number: 8720215 Series Start Date: 12/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.29500 S₂ 0.188 295.3 $\begin{matrix} N_2 & K_1 \\ 0.271 & 264.2 & 0.144 & 160.8 \end{matrix}$ M₂ 1.333 278.7 0.039 139.8 0.114 170.6 0.062 258.4 мк₃ 0.0 S₄ MN 0.013 88.1 0.000 Mu₂ Nu₂ 0.0 0.053 266.2 $2N_{2}$ MN₄ 5ء 0.007 60.4 0.032 238.6 0.000 0.036 249.8 00. Lambda M₁ 0.008 165.7 S_1 0.009 286.4 0.005 151.0 0.000 0.0 0.009 155.9 0.000 0.0 0.0 0.000 S. 0.0 Rho₁ 0.0 0.004 174.8 MS_{f} T₂ 0.011 294.7 Μf Q1 0.0 0.000 0.000 0.000 0.022 175.5 0.002 296.0 2SM₂ 0 0.0 0.000 $\begin{array}{r}
P_1 \\
0.048 \\
161.5
\end{array}$ 2MK₃ 201 L₂ 2MF 0.037 293.1 0.000 0.000 0.0 0.0 0.003 180.3 0.051 296.7 MS. 0.0 M₈ M 0.008 210.1 0.000 Jacksonville, Navy Fuel Depot, St. Johns River Series Start Date: 2/1/1978 NOS/NOAA Station Number: 8720215 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.33800 M₂ 1.261 272.4 S₂ 0.202 329.0 N_2 K_1 0.280 232.4 0.106 172.9 0.131 151.0 0.050 246.4 0.034 130.5 мк₃ 0.0 S. 0.027 126.8 MN₄ Nu₂ 0.0 0.054 237.8 Mu₂ S. 2N0.000 0.000 0.004 323.3 0.030 192.4 0.037 192.4 S_1 00 Lambda м₁ 0.009 162.0 М, .Τ 0.010 183.7 0.000 0.006 194.8 0.009 298.7 0.0 0.000 0.0 0.000 0.0 MS, 0.0 Rho₁ 0.0 0.005 141.6 Q₁ 0.025 140.1 S, Mf T₂ 0.012 326.8 0.000 0.000 0.0 0.000 0.002 331.3 2SM₂ ¹⁴³ 20. P_1 0.035 171.2 1220.0 0.035 312.4 2MK3 0.000 0.000 0.055 333.6 0.003 129.3 0.0 MS. 0.0 M₈ M3 0.012 184.5 0.000

.

Ribault River, Lake Forest Series Start Date: 6/1/1978 NOS/NOAA Station Number: 8720216 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.04800 M₂ S₂ N₂ K₁ M₄ O₁ 1.335 257.3 0.198 294.5 0.258 253.2 0.172 134.3 0.054 114.5 0.133 156.8 0.064 225.7 мк₃ 0.0 S4 0.004 121.2 MN_4 Mu_2 Nu₂ 0.0 0.050 253.8 S₅ 0.005 330.0 2N, 0.000 0.000 0.032 196.5 0.034 249.1 001 M₁ 0.0 0.009 145.4 Lambda S_1 0.009 274.6 0.000 0.010 123.1 0.000 0.0 0.000 0.0 0.006 111.8 s. 0.0 T₂ R₂ 0.012 293.0 0.002 296.0 MSf Mf Rho₁ Q₁ 0.026 167.9 0.000 0.0 0.000 0.0 0.005 166.4 0.000 2MK₃ 2Q1 M_3 L₂ 2MF 0.0 0.037 261.4 0.000 0.000 0.0 0.054 297.5 0.004 179.1 0.057 136.0 MS₄ M₈ M 0.005 199.8 0.000 0.0 Moncrief Creek Entrance NOS/NOAA Station Number: 8720217 Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.28600 S₄ MI 0.003 237.5 0.000 Mu₂ мк_з 0.000 0.0 2N. 0.030 231.2 0.030 262.0 001 Lambda M1 0.008 169.6 S_1 0.005 186.1 0.009 295.0 0.000 0.0 0.008 180.6 0.000 0.0 0.000 0.0 MSt S. 0.0 Rho. T_{2} Mf 0, R. 0.000 0.000 0.0 0.000 0.0 0.004 159.4 0.021 158.60.009 308.7 0.001 310.9 2MK₃ 2SM₂ 00 0.0 0.000 20 Μ, P. L_2 0.0 0.035 292.4 К. 0.003 153.2 0.046 174.3 0.000 0.000 0.044 312.0 MS. 0.0 M₈ 0.001 344.4 0.000 Moncrief Creek Entrance NOS/NOAA Station Number: 8720217 Series Start Date: 11/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.57700 M₂ S₂ 1.270 283.5 0.186 302.5 MK_3 S_4 ML0 0.0 0.005 92.3 0.000 MN4
 Nu2
 S6
 Mu2
 2N2

 0.0
 0.047
 275.7
 0.004
 37.8
 0.031
 241.0
 0.032
 265.5
 S₆ Mu₂ 0.000 001 M₁ 0.0 0.006 165.9 Lambda S_1 0.007165.70.0000.009 292.3 0.000 0.0 0.000 0.004 165.5 0.0 MS. 0.0 S. 0.0 M_f 0.000 0.0 Rho_1 Q₁ 0.000 0.000 0.003 166.2 0.016 166.2 2SM₂ 00 0.0 0.000 $2MK_3$ K_2 000 0.0 0.051 304.0 $2Q_1$ M_3 P_1 0.044 165.8 0.000 0.0 0.036 292.4 0.000 0.002 166.4 MS₄ 0.0 M₈ M3 0.004 186.8 0.000 Moncrief Creek Entrance NOS/NOAA Station Number: 8720217 Series Start Date: 12/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.08600 Μ, 1.305 287.8 S_4 MN 0.014 93.7 0.000 MN_4 MK₃ 0.000 0.0 Nu₂ 0.0 0.044 284.7 S₄. 0.006 75.5 Mu₂ 2N₂ 0.031 245.8 0.030 280.7 001 S_1 Lambda M_1 J₁ J₁ 0.008 172.6 0.009 161.7 0.0 0.005 156.2 0.009 296.3 0.000 0.000 0.0 0.000 0.0 S. 0.0
 MS_t
 M_t
 Rho₁
 Q₁
 T₂
 R₂

 0
 0.0
 0.000
 0.004
 182.8
 0.021
 183.5
 0.013
 305.5
 0.002
 306.9
 0.000 0.000 2MK₃ 0.0 $2SM_2$ M_3 L_2 2MK0 0.0 0.000 0.0 0.037 291.3 0.000 2Q1 P₁ 0.046 168.0 0.003 189.0 0.000 0.059 307.7 MS₄ 0.0 M₈ Ms 0.005 233.1 0.000

Table D8—Continued

Dames Point NOS/NOAA Station Number: 8720219 Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.63900 M₂ M₄ 0.033 $O_1 M_6 O.152 150.0 0.074 222.0$ 31.9 1.593 264.7 мк, s. 5 76.7 0.000 MN4 Nu₂ 0.0 0.053 256.3 S₄ 0.008 231.3 0.0 0.015 0.000 S_1 00. Lambda M_1 0.006 172.9 0.011 272.9 0.000 0.0 0.011 155.8 0.012 167.1 0.000 0.0 0.000 0.0 MS_t S. 0.0 M_f 0.0 0.006 145.1 0, T_2 R_2 0.011 281.8 0.002 283.2 0.000 0.0 0.000 0.029 144.3 0.000 25M2 ... 0.0 0.000 2MK₃ K₂ 2000 0.0 0.050 283.9 20. P₁ 0.079 160.6 0.045^{-2} 274.4 0.000 0.0 0.000 0.004 138.7 MS. 0.0 M₈ M 0.006 166.4 0.000 NOS/NOAA Station Number: 8720219 Dames Point Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.56900 M₂ 1.554 265.9 M₄ 0.037 20.0 0.128 157.2 0.068 221.6 мк, 0.0 MN₄ S₄ Mr 0.007 22.3 0.000 Nu₂ 0.064 259.9 Mu₂ S₆ 2N, 0.0 73.6 0.000 0.001 0.037 216.0 0.044 252.0 001 Lambda S_1 **M**₁ 0.011 278.2 0.000 0.0 0.009 159.1 0.010 162.7 0.005 164.6 0.000 0.0 0.000 0.0 S. 0.0 MS, 0.0 0.000 M_f 0.0 Rho_1 $\begin{smallmatrix} T_2 \\ 0.012 & 291.4 \end{smallmatrix}$ Q_1 R, 0.025 155.4 0.000 0.000 0.005 155.6 0.002 293.5 2MK₃ $2SM_2$ L_2 M3 0.058 160.6 0.000 0.0 0.000 0.000 0.003 153.6 0.0 0.044 272.8 0.0 0.056 294.6 MS₄ 0.0 M₈ M 0.003 212.6 0.000 Dames Point NOS/NOAA Station Number: 8720219 Series Start Date: 12/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.35900 S_2 N_2 0.240 283.1 0.317 253.7 K1 M₂ 0.019 0.132 167.0 0.055 219.4 1.599 265.6 0.180 152.4 27.8 мк₃ О.О S₄ MN 0.014 58.2 0.000 MN_4 Nu₂ 0.062 255.3 S₆ 0.006 26.4 Mu₂ 2N₂ 0.038 224.8 0.042 241.8 0.000 0.0 001 Lambda S_1 M_1 0.009 159.6 0.0 0.000 0.00.011 273.8 0.000 0.0 0.006 137.8 0.010 145.2 0.000 S. 0.0 MS_f 0 0.0 0.000 28 M_f Rho₁ 00 0.0 0.005 173.2 Q₁ 0.026 174.2 T₂ R₂ 0.014 282.5 0.002 283.9 0.000 0.000 2SM2 0.0 0.000 2мк₃ к₂ 000 0.0 0.065 284.6 M3 20. P_1 25 0.060 153.5 0.000 L₂ 2MF 0.0 0.045 277.6 0.000 0.003 181.4 MS₄ 0.0 M₈ MS 0.009 216.3 0.000 Dames Point NOS/NOAA Station Number: 8720219 Series Start Date: 1/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.90300 M_2 м. 1.617 264.2 0.112 178.1 0.064 212.7 мк₃ 0.0 S₄ MN 0.024 36.0 0.000 MN₄ $\frac{Nu_2}{0.0 0.060 256.2}$ Mu₂ 2N₂ 0.039 216.8 0.041 245.8 S. 0.000 0.008 13.0 \mathbf{S}_1 Lambda 0.0 0.008 167.0 J, M, 0.0 0.000 0.0 0.005 134.1 0.011 275.4 0.000 0.009 145.2 0.000 S. 0.0 MSf Mf Rho₁ Q₁ 0.0 0.004 187.6 0.022 189.0 T. R-່ວ.ວ ວ.ວວວ່ 0.016 287.3 0.002 289.3 0.000 0.000 2MK3 201 P_1 $2SM_2$ $M_3 = \frac{M_3}{0.0 0.000} = 0.0 0.000 0.0 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000$ 0.054 157.8 0.000 0.003 199.9 0.0 0.071 290.2 м₈ м 0.005 220.5 0.000

5. S. .

NOS/NOAA Station Number: 8720220 Mayport Series Start Date: N/A Series Length (in days): N/A Series Mean Sea Level (in feet): 2.46000 M_2 S₂ 0.363 261.5 N_2 K_1 0.268 128.7 M₄ 0.078 240.7 0.034 137.5 0.490 228.0 0.198 142.5 2.173 243.2 S_4 MN Nu₂ 0.109 224.1 Mu₂ MK₃ 0.029 178.2 S, $2N_2$ 0.000 0.0 0.031 244.3 0.000 0.0 0.055 248.8 0.059 226.2 S1 89.2 00 Lambda M1 0.036 246.9 0.029 0.014 135.6 0.016 121.9 0.082 227.7 0.251 55.0 0.009 114.9 MSf Q₁ 0.040 134.1 Mŕ Rho₁ T₂ 0.021 261.7 0.000 0.0 0.008 148.5 0.378 190.0 0.127 197.7 0.003 261.2 2SM2 \mathbf{P}_1 2MK3 Μ. L₂ 0.125 241.3 K 0.0 0.000 0.005 156.3 0.091 121.6 0.000 0.0 0.000 0.0 0.104 259.6 $\mathbf{M}_{\mathbf{8}}$ MS4 0.000 0.0 0.038 246.0 Mayport NOS/NOAA Station Number: 8720220 Series Start Date: 1/1/1987 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.11300 S_2 N_2 Μ, N_2 K_1 0.478 228.2 0.275 127.0 2.206 241.0 0.346 260.2 0.085 232.9 0.189 141.0 0.037 132.7 S4 0.015 344.1 MN₄ Nu₂ 0.110 220.9 Mu₂ MK, 2N S. 0.027 165.8 0.048 0.030 244.4 0.003 255.5 251.7 0.074 218.6 Lambda 001 S_1 М, 0.039 245.9 0.038 85.1 0.011 169.2 0.016 0.051 116.3 0.010 147.4 120.0 0.206 27 4 MS. Rho. Mr 0 T. R-0.133 252.4 0.042 325.0 0.009 116.3 0.038 132.6 0.033 250.5 0.058 177.9 0.011 146.8 2MK₃ 0.026 183.6 2Q1 99.3 2SM M. 0.003 0.095 125.8 0.015 283.4 0.029 297.2 0.070 242.6 0.088 258.0 MS₄ M₈ 0.012 125.8 0.039 244.3 NOS/NOAA Station Number: 8720220 Mayport Series Start Date: 1/1/1989 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.02600 M₂ N₂ 0.475 223.4 K_1 M_4 0.273 129.6 0.084 232.1 S_2 0.351 261.7 0.190 141.6 0.036 122.6 2.198 241.3 S₄ 0.018 358.1 Nu₂ 0.111 227.8 Mu₂ $2N_2$ MK₃ MN_4 S, 0.033 229.0 0.042 249.2 0.003 276.4 0.031 164.2 0.043 198.1 S₁ 88.6 Lambda 0.027 250.6 001 0.034 0.012 154.0 0.013 132.2 0.014 135.8 0.103 186.1 0.251 5.9 M_f 52 11.1 S. 0.273 202.3 MS, Rho₁ T_2 0.032 276.1 Q1 R. 0.082 303.9 0.052 0.006 142.5 0.039 139.6 0.015 130.0 2Q1 P₁ 0.094 127.1 2MK₃ K₂ 0.016 201.8 0.084 262.4 2 SM-Μ, 0.008 174.8 MS. M₈ MS₄ 0.010 118.5 0.037 243.9 NOS/NOAA Station Number: 8720220 Mayport Series Start Date: 1/1/1990 Series Length (in days): 274 Series Mean Sea Level (in feet): 3.96100 M_2 S_2 2.225 240.5 0.360 262.0 0.192 143.8 0.035 122.1 Mu₂ $2N_2$ S. 0.013 359.7 MK. MN₄ 0.027 236.1 Nu₂ 0.112 225.6 0.002 287.4 0.055 249.9 0.032 161.7 0.065 185.7 S₁ 94.2 Lambda м₁ 0.012 178.9 00 0.007 151.6 0.014 0.038 244.0 0.038 154.9 0.069 103.5 0.261 6.5 MS_f 0.088 213.6 M_f Rho₁ 0.047 324.8 0.010 112.2 Q_1 0.038 142.7 T₂ 0.038 249.8 0.258 139.4 0.028 140.6 2SM₂ M₃ L₂ 0.011 267.1 0.021 301.0 0.077 255.3 2MK₃ . K₂ 0.024 206.6 0.086 261.0 $2Q_1$ P_1 0.004 227.5 0.091 126.0 M₈ MS₄ 0.011 127.4 0.040 248.0

Table D8—Continued

NOS/NOAA Station Number: 8720220 Mayport Series Start Date: 1/1/1991 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.31400 K₁ 0.268 128.9 M. Μ. 0.092 235.8 0.192 141.5 0.035 128.5 2.156 241.8 MK₃ S. 0.016 359.9 MN4 0.030 237.3 Nu₂ 0.119 219.4 2N-Mu₂ 0.050 249.7 0.032 166.3 0.004 258.0 0.078 204.1 Lambda 00. M₁ 0.009 120.0 S 0.010 141.9 0.030 100.3 0.224 0.033 250.0 0.013 143.5 0.073 56.4 67.4 MS_f M_f 0.036 224.8 0.042 296.4 s, Rho₁ 0.007 137.6 Q₁ 0.036 147.1 T_2 0.042 239.3 R 0.381 172.1 0.024 150.7 2Q1 P₁ 0.092 126.6 2SM₂ M₃ 0.003 247.1 0.018 317.2 L₂ 0.099 264.8 2MK₃ 0.024 207.1 к 0.078 257.9 0.011 149.0 M_s MS₄ 0.010 117.6 0.036 247.5 Mayport NOS/NOAA Station Number: 8720220 Series Start Date: 1/1/1992 Series Length (in days): 219 Series Mean Sea Level (in feet): 4.09500 M_2 S₂ 0.320 265.6 $\begin{smallmatrix}&N_2\\0.492&223.0\end{smallmatrix}$ K1 2.187 240.9 0.290 129.9 0.087 233.0 0.197 141.7 0.037 118.1 MK₃ 0.031 176.1 S₄ 0.011 356.2 Nu₂ 0.103 219.6 MN₄ Mu₂ 0.035 224.3 0.001 297.6 0.045 254.3 0.072 214.0 Lambda 001 S_1 **M**₁ 0.014 122.7 0.030 236.4 0.046 60.8 0.015 136.2 0.015 167.9 0.112 236.2 0.461 159.2 MS_f 73.4 S. 7.2 M_f 70.0 Rho₁ 0 T₂ R-0.053 0.009 160.9 0.048 134.3 0.015 200.7 0.305 0.023 0.055 155.5 $2SM_2$ 20, P_1 M, 2MK Ŀ K-0.085 131.7 0.024 268.8 0.016 324.7 0.109 262.7 0.025 210.0 0.075 242.6 0.011 180.2 M₈ MS₄ 0.009 125.0 0.038 250.3 Mayport NOS/NOAA Station Number: 8720220 Series Start Date: 1/1/1982 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.03700 Μ, S_2 N_2 0.350 259.8 0.481 222.7 K_1 M_4 0.276 127.4 0.088 232.2 2.171 241.0 0.199 139.6 0.035 133.3 Nu₂ ∩9 220.3 Mu₂ $2N_2$ MK. S₄ 0.016 359.4 MN, S₆ 0.002 228.3 0.029 164.8 0.026 223.7 0.109 0.045 259.8 0.070 202.3 S1 94.6 00. Lambda M₁ 0.007 191.2 0.033 0.023 158.8 0.018 125.6 0.031 277.8 0.055 250.7 0.382 78.9 Rho₁ MSf Mf Q₁ 0.033 142.4 0.049 268.9 0.039 145.2 0.009 117.4 0.380 190.7 0.030 247.3 0.016 124.1 2SM₂ 0.008 273.9 2Q1 P_1 0.096 125.7 M₃ 0.020 299.7 2MK3 L₂ 0.091 259.3 0.009 130.7 0.019 194.5 0.095 259.9 M₈ MS₄ 0.009 116.2 0.038 243.5 Fulton, St. Johns River NOS/NOAA Station Number: 8720221 Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.39300 M₂ S₂ N₂ K₁ M₄ 1.754 257.5 0.276 282.9 0.359 241.5 0.210 151.6 0.026 328.8 $0.15\overline{3}$ 150.9 0.052 189.5 MK3 S₄ M 0.011 354.3 0.000 MN₄ Mu₂ Nu₂ 0.070 243.7 2N. 0.0 0.0 0.002 183.9 0.000 0.042 208.9 0.048 225.5 001 Lambda M₁ 0.011 151.3 S_1 0.0 0.007 152.3 0.012 269.3 0.000 0.012 151.9 0.000 0.0 0.000 0 0 S_ MSf Mf Rho₁ Q₁ 0.030 150.6 T₂ 0.016 281.9 0.0 0.000 0.006 150.6 0.000 0.0 0.000 0.0 0.002 283.9 $2SM_2$ M_3 0 0.0 0.000 201 2MK3 P₁ 0.070 151.6 K₂ 0.075 285.0 $0.0 \quad 0.049 \quad 273.5$ 0.000 0.004 150.3 0.000 0.0 MS₄ ^ 0.0 м, 5 57.9 0.000 0.005

```
Table D8—Continued
```

```
Fulton, St. Johns River
                                                           NOS/NOAA Station Number: 8720221
Series Start Date: 11/1/1977
                                                           Series Length (in days): 29
Series Mean Sea Level (in feet): 6.65400
M_2 S<sub>2</sub> N<sub>2</sub> K<sub>1</sub> M<sub>4</sub>
1.741 260.2 0.270 273.2 0.375 248.6 0.197 144.1 0.025 312.5
                                                                                0.129 149.6 0.048 192.1
     MK<sub>3</sub>
0.0
                                     MN₄
                                         Nu<sub>2</sub>
0.0 0.073 250.2
                                                                                   Mu<sub>2</sub>
               S<sub>4</sub> MI
0.008 19.4 0.000
                                                                    S_6
                                                                                                   2N_2
                                                                                0.042 224.0
                                                                0.004 312.8
0.000
                                                                                                0.050 237.0
                                      S_1
      001
                     Lambda
                                                      M_1
0.005 138.7
                0.012 266.3 0.000
                                         0.0 0.009 146.8
                                                                0.010 141.4
                                                                                0.000
                                                                                         0.0
                                                                                                0.000
                                                                                                         0.0
     s.
0.0
                     MSr
                                     Mf
                                                    Rho_1
                                                               Q1
0.025 152.3
                                                                                    T_2
                                                                                                   R_2
                          0.0 0.000
                                        0.0 0.005 151.9
0.000
                0.000
                                                                                0.016 272.7 0.002 273.7
               P<sub>1</sub>
0.065 144.5
                                     2SM_2
                                                                                    2MK<sub>3</sub>
      20
                                                          L_2
0.0 0.049 271.8
                                                                                                   Κ.
                                         0.0 0.000
                              0.000
0.003 155.0
                                                                                0.000
                                                                                         0.0
                                                                                               0.073 274.3
                     MS,
0.0
M<sub>8</sub> M
0.002 337.6 0.000
Fulton, St. Johns River
                                                           NOS/NOAA Station Number: 8720221
Series Start Date: 1/1/1978
                                                           Series Length (in days): 29
Series Mean Sea Level (in feet): 5.69200
               \begin{smallmatrix} & S_2 & & N_2 \\ 0.311 & 276.0 & 0.340 & 244.3 \end{smallmatrix}
                                                     К,
     M<sub>2</sub>
1.855 253.5
                                                0.198 147.3
                                                                0.021 261.3
                                                                                0.133 164.6 0.043 170.7
     MK3 0.0
                S4 MT
0.034 31.0 0.000
                                     MN₄
                                              Nu₂
0.066 245.5
                                                                                Mu<sub>2</sub>
0.045 207.8
                                                                                                   2N
                                                                                                0.045 235.0
                                         0.0
                                                                0.011 317.7
0.000
                                      S_1
      00
                     Lambda
                                                M<sub>1</sub>
0.009 155.9
                                                                                                0.000
                                0.000
                                         0.0
                                                                0.010 138.7
0.006 130.0
                0.013 263.9
                                                                                0.000
                                                                                          0.0
                                                                                                         0.0
                     MSf
                                     Mf
                                         Rho<sub>1</sub>
0.0 0.005 172.1
                                                                Q<sub>1</sub>
0.026 173.2
      \mathbf{S}_{\mathbf{a}}
                                                                                    T.
                                                                                                   R
0.000
         0.0
                0.000
                          0.0
                              0.000
                                                                                0.018 275.1
                                                                                                0.003 276.9
                                     2SM_2
                                                                                    2MK3
      20.
               P<sub>1</sub>
0.065 148.6
                                                          \begin{array}{c} & L_2 \\ 0.0 & 0.052 & 262.7 \end{array}
                                                    M3
                                                                                               K₂
0.085 277.8
                                         0.0 0.000
0.004 181.8
                               0.000
                                                                                0.000
                                                                                         0.0
                     _
MS₄
M<sub>8</sub> M
0.002 100.1 0.000
                         ്ററ
Fulton, St. Johns River
                                                           NOS/NOAA Station Number: 8720221
Series Start Date: 2/1/1978
                                                           Series Length (in days): 29
Series Mean Sea Level (in feet): 6.25400
               M_2
1.774 263.1
                                                                0.021 301.6
                                                                                0.182 149.1 0.045 202.5
               S₄
0.024 95.7
     MK3
                                     MN_4
                                                    Nu_2
                                                                    S_6
                                                                                    Mu_2
                                                                                                   2N_2
                                                0.070 252.4
         0.0
                                0.000
                                          0.0
                                                                0.005 158.3
                                                                                0.043 214.4
0.000
                                                                                                0.048 238.3
      001
                     Lambda
                                      S_1
                                                      Μ,
0.008 169.1
                0.012 274.9
                                0.000
                                          0.0
                                                0.013 154.1
                                                                0.014 164.0
                                                                                0.000
                                                                                          0.0
                                                                                                0.000
                                                                                                         0.0
     S_a
                     MSf
                                     Mf
                                                    Rho<sub>1</sub>
                                                                Q<sub>1</sub>
0.035 144.1
                                                                                    T_2
                                                                                                   R.
0.000
         0.0
                0.000
                          0.0
                               0.000
                                         0.0
                                               0.007 144.8
                                                                                0.020 287.6
                                                                                                0.003 289.6
      2Q1
               P<sub>1</sub>
0.050 158.3
                                     2 SM_2
                                                    M3
                                                                                    2MK_3
                                                               L_2
0.050 275.4
                                                                                                   к,
                                          0.0 0.000
                                                          0.0
0.005 139.2
                              0.000
                                                                                0.000
                                                                                         0.0
                                                                                               0.092 290.7
M<sub>8</sub> M
0.007 216.3 0.000
                     MS_4
                         0.0
                                                           NOS/NOAA Station Number: 8720225
Phoenix Park
Series Start Date: 9/1/1977
                                                           Series Length (in days): 29
Series Mean Sea Level (in feet): 6.01800
               M<sub>2</sub>
1.271 277.6
                                     MN4
     MK_3
               S<sub>4</sub> MI
0.014 115.1 0.000
                                                Nu<sub>2</sub>
0.044 280.3
                                                                                    Mu<sub>2</sub>
                                                                                                   2N
         0.0
                                         0.0
                                                                0.009 265.6
0.000
                                                                                0.031
                                                                                       241.1 0.030 283.9
                     Lambda
      00
                                                M<sub>1</sub>
0.009 162.7
                                       S_1
                                                                0.010^{1} 178.9
0.005 187.2
                0.009 283.7
                               0.000
                                          0.0
                                                                                0.000
                                                                                         0.0 0.000
                                                                                                         0.0
                     MS, 0.0
                                         Rho<sub>1</sub> Q<sub>1</sub> T<sub>2</sub> R<sub>2</sub>
0.0 0.005 147.4 0.025 146.3 0.008 290.2 0.001 291.2
                                     Mt
      Sa
                               0.000
0.000
         0.0
                0.000
                                     2SM<sub>2</sub> M<sub>3</sub>
0 0.0 0.000
      2Q
                                                         L<sub>2</sub> 2MK
0.0 0.036 274.4 0.000
                                                                                    2MK3
                                                                                         K<sub>2</sub>
0.0 0.039 291.7
               0.064^{r_1} 169.6
                               0.000
0.003 138.2
                     MS.
0.0
M<sub>8</sub> M
0.012 169.7 0.000
```

Table D8—Continued

NOS/NOAA Station Number: 8720225 Phoenix Park Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.97200 0.051 129.7 0.103 162.3 0.074 258.5 мк₃ 0.0 S₄ Mr 0.001 15.9 0.000 MN_4 Nu₂ 0.0 0.049 271.5 Mu₂ 0.030 226.7 2N S, 0.003 258.9 0.033 264.9 0.000 \mathbf{S}_1 00 Lambda M. 0.008 176.0 0.000 0.009 288.8 0.000 0.0 0.007 166.9 0.000 0.0 0.004 180.6 0.0 S. 0.0 MSf Mf Rho₁ 0.0 0.004 158.4 Q_1 0.020 157.8 T-0.0 0.000 0.010 301.9 0.000 0.001 304.0 0.000 20 $\begin{smallmatrix} 2Q_1 & P_1 \\ 0.003 & 153.3 & 0.044 & 170.8 \end{smallmatrix}$ L₂ 0.035 282.4 2MK3 0.000 0.0 0.000 0.0 0.046 305.1MS4 M₈ M: 0.005 159.8 0.000 0.0 NOS/NOAA Station Number: 8720225 Phoenix Park Series Start Date: 12/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.68600 MK₃ 0.0 MN4 S₄ MI 0.010 82.2 0.000 Nu₂ S_6 Mu_2 2N-0.0 0.048 264.8 0.005 40.2 0.031 237.6 0.033 249.4 0.000 00 Lambda S_1 M_1 0.007 166.8 0.009 283.8 0.000 0.0 0.008 155.2 0.000 0.000 0.005 149.4 0.0 0 0 S_a Rho_1 MSf Mf Q1 T_2 0.012 291.6 0.0 0.000 0.000 0.004 177.6 0.021 178.4 0.000 0.0 0.0 0.002 292.8 P_1 $2SM_2$ 201 L₂ 2MH 0.0 0.036 290.2 0.000 $2MK_3$ Мз K2 0.000 0.0 0.000 0.003 184.2 0.047 161.9 0.0 0.057 293.4 MS₄ M₈ M 0.008 194.7 0.000 0.0 Phoenix Park NOS/NOAA Station Number: 8720225 Series Start Date: 1/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.21300 мк, 0.0 s. 7 67.9 0.000 MN₄ Nu₂ 0.0 0.047 264.3 Mu₂ S. 2N. 0.000 0.017 0.008 67.3 0.031 0.032 249.5 227.0 00. Lambda S_1 M₁ 0.006 177.5 0.000 0.000 0.009 287.2 0.000 0.0 0.007 154.3 0.004 142.5 0.0 0.0 MSt S_{a} Rho₁ T₂ 0.012 299.7 Mf 0 0.000 0.000 0.0 0.000 0.0 0.004 199.4 0.018 201.0 0.0 0.002 301.7 20 P₁ 2 0.042 167.7 0.000 $2MK_3$ L₂ 0.037 288.6 M, K₂ 0.058 302.8 0.002 212.6 0.0 0.000 0.0 M₈ M 0.008 147.9 0.000 NOS/NOAA Station Number: 8720232 Pablo Creek Entrance Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.49500 MK₃ 0.0 S₄ Mī 0.015 33.4 0.000 S₆ Nu₂ 0.0 0.065 245.9 $2N_2$ MN_4 0.000 Lambda S_1 0.008 161.3 0.013 262.3 0.000 0.0 0.000 0.0 MS_{f} 0.0 0.000 M_f ັS ດີ 0.0 0.000 P₁
 Rho1
 Q1
 T2
 R2

 0.0
 0.007
 138.3
 0.037
 137.7
 0.014
 271.0
 0.002
 272.4
 Rho_1 0.000 2SM2 0.0 0.000 2Q1 2MK3 M_3 L₂ 2MK 0.0 0.053 263.8 0.000 0.0 0.064 273.1 MS. 0.0 M₈ M 0.013 101.7 0.000

Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 1/1/1961 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.22200 S₂ 0.143 303.7 M_2 N_2 K_1 0.186 267.0 0.107 155.9 0.043 132.3 1.047 279.6 0.090 166.7 0.060 275.0 S_4 MN₄ Nu₂ 0.046 252.7 Mu₂ MK₂ $2N_{2}$ S. 0.004 119.0 0.001 232.4 0.017 253.6 0.017 114.6 0.030 21.9 0.025 268.8 Lambda M₁ 0.005 181.4 00, S, 0.007 127.4 0.030 264.7 0.025 121.9 0.005 240.7 0.036 324.1 0.243 41.7 мs. - 65.8 Rho. T_2 0.012 282.6 S. 0.413 208.8 Μ_f Q: 78.1 0.056 0.043 0.004 135.9 0.016 167.3 0.017 194.2 2SM₂ 2MK₃ 0.023 238.5 2Q, P_1 M3 0.065 286.2 0.038 156.7 0.005 72.1 0.012 1.8 0.040 293.4 0.005 57.3 M₈ 0.008 195.4 MS. 0.003 146.9 Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 9/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.14000 M₂ S₂ 1.145 280.3 0.138 293.4 0.110 162.1 0.050 119.1 0.070 271.4 . МК₃ MN₄ S₄ 0.013 114.2 Nu₂ 0.0 0.039 277.8 Mu_2 2N, 0.000 0.0 0.000 0.005 284.2 0.028 243.8 0.027 274.5 001 Lambda S_1 0.005 187.7 0.008 286.4 0.000 0.0 0.008 168.5 0.009 181.2 0.000 0.0 0.000 0.0 MSf Mf Sa Rho₁ т, 0.000 0.0 0.000 0.0 0.000 0.0 0.004 156.6 0.021 155.7 0.008 292.9 0.001 293.9 2SM₂ 0 0.0 0.000 2MK3 0.032 283.2 0.057 173.9 0.000 0.0 0.000 0.0 0.003 149.4 0.038 294.5 MS₄ M₈ 0.005 165.1 0.000 0.0 Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 10/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.03800 N_2 K_1 0.229 283.3 0.117 178.9 M₂ 1.118 283.9 S_2 0.042 118.3 0.146 310.4 0.088 168.6 0.064 279.9 MK₃ 0.0 S₄ MI 0.002 88.7 0.000 Nu₂ 0.0 0.044 283.4 Mu₂ MN_4 S, $2N_{2}$ 0.004 297.5 0.027 234.1 0.000 0.030 282.6 001 Lambda S_1 M₁ 0.006 173.7 0.0 0.000 0.004 189.2 0.008 296.2 0.007 184.0 0.000 0.0 0.000 0.0 S. 0.0 MSf M_f 0.000 Rho₁ Q_1 T_2 R₂ 0.0 0.0 0.009 309.4 0.000 0.000 0.003 164.1 0.017 163.4 0.001 311.5 2Q1 $2SM_2$ 2MK3 \mathbf{P}_1 M3 0.0 0.000 0.000 0.031 284.6 0.002 158.3 0.039 178.1 0.0 0.000 0.0 0.040 312.6 MS. 0.0 M₈ 0.002 190.4 0.000 Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 11/1/1977 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.31100 M₂ 1.129 284.0 S₂ 0.168 303.1 N_2 0.227 270.6 0.111165.40.040120.10.069 169.8 0.067 281.1 мк₃ 0.0 S₄ Mr 0.007 108.6 0.000 MN_4 Mu₂ Nu₂ 0.0 0.044 272.4 S_6 2N0.000 0.004 0.030 257.2 43.1 0.027 241.5 00. $\begin{smallmatrix} M_1 & & J_1 \\ 0.0 & 0.005 & 167.6 & 0.005 & 163.2 \end{smallmatrix}$ Lambda S_1 0.008 292.9 0.000 0.0 0.000 0.000 0.003 161.0 0.0 MS_f 0 0.0 0.000 2 S. 0.0 Mf Rho₁ Q₁ 0.0 0.003 171.7 0.013 172.0 T_2 0.010 302.3 0.000 0.000 0.001 303.9 2SM₂ 0 0.0 0.000 20 2MK3 L₂ 2MK 0.0 0.032 297.4 0.000 0.037 165.7 0.0 0.002 174.1 0.000 0.046 304.7 MS. 0.0 M₈ M3 0.006 189.6 0.000

Table D8—Continued

Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 1/1/1967 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.32400 M_2 S₂ 0.139 306.8 0.085 169.1 0.061 272.7 1.076 278.9 S4 MN_4 Nu₂ 96.6 0.040 272.3 Mu₂ MK3 $2N_2$ 0.018 0.022 248.3 0.000 0.0 0.000 0.0 0.028 9.3 0.017 305.0 001 0.0 Lambda S. J_1 M_m M_1 0.000 0.022 266.8 0.027 122.0 0.000 0.0 0.000 0.0 0.086 72.6 0.240 46.9 Rho_1 MS_f T_2 S. 0.378 191.8 Μ_ť Q, R. 0.022 266.20.051 345.6 0.000 0.0 0.000 0.0 0.019 184.9 0.016 170.8 2*S*M₂ ... 2Q1 P₁ 0.032 159.2 2MK 0.005 162.5 0.000 0.0 0.134 270.6 0.028 254.1 0.035 314.4 MS4 Ma 0.000 0.0 0.000 0 0 Long Branch, USACE Dredge Depot NOS/NOAA Station Number: 8720242 Series Start Date: 1/1/1966 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.47300 M₂ 1.077 279.9 S_2 0.147 305.3 0.083 162.9 0.058 275.4 S₄ MK_3 Mu₂ 2N₂ MN₄ Nu₂ 0.019 103.0 0.057 260.2 0.006 125.8 0.001 202.9 0.035 286.9 0.019 251.2 0.026 4.4 M_1 001 Lambda S, M 0.024 125.2 0.005 162.9 0.004 189.1 0.003 184.4 0.024 269.9 0.070 114.2 0.095 104.6 MSf S<u>.</u> 0.180 169.3 M_f 0.089 353.1 Rho_1 T₂ 0.015 343.0 R, 0.019 170.2 0.011 88.8 0.009 122.1 0.012 149.6 P₁ 2SM₂ M₃ L₂ 0.033 155.7 0.005 320.0 0.006 127.7 0.106 310.4 2MK3 2Q1 0.023 257.2 0.007 235.9 0.036 313.1 M₈ MS₄ 0.008 189.7 0.006 177.2 Jacksonville, Acosta Bridge NOS/NOAA Station Number: 8720268 Series Start Date: 8/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.92400 M₂ 0.815 292.4 S₂ 0.102 319.4 N_2 K_1 M_4 0.133 274.5 0.113 161.2 0.023 128.8 0.085 174.4 0.043 307.1 MK₃ 0.0 S4 0.004 205.4 Nu₂ 0.0 0.026 276.9 Mu_2 MN₄ 2N0.000 0.003 218.0 0.018 256.6 0.000 0.020 241.9 Lambda S_1 M₁ 0.006 167.7 0.006 304.9 0.000 0.0 0.0 0.004 147.9 0.007 154.6 0.000 0.000 0.0 Sa MSf M_{f} Rho₁ Q₁ 0.0 0.003 180.1 0.017 181.0 T₂ 0.006 318.3 0.0 0.000 0.000 0.000 0.0 0.001 320.4 25M₂ 0.0 0.000 20 M3 $2MK_3$ P_1 0.023 310.3 0.037 162.2 0.002 187.5 0.000 0.0 0.000 0.0 0.028 321.5 MS. 0.0 M₈ M 0.004 168.5 0.000 Jacksonville, Acosta Bridge NOS/NOAA Station Number: 8720268 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.42500 M_2 S_2 0.735 293.1 0.116 319.8 0.048 164.1 0.041 309.1 мк, 0.0 MN_4 S4 Nu₂ 0.0 0.025 282.5 Mu₂ S, 2N0.008 146.0 0.000 0.000 0.002 136.3 0.018 243.0 0.017 268.6 S_1 001 Lambda м, M, 0.002 232.8 0.005 305.5 0.000 0.0 0.003 181.4 0.004 215.5 0.000 0.0 0.000 0.0 MSf S_a Rho1Q1T20.00.002149.40.009147.10.007318.7 Mf 0.000 0.0 0.000 0.0 0.000 0.001 320.9 2Q, P₁ 0.039 195.9 2SM2 2MK3 М. L 0.001 130.1 0.000 ໍວ.ວ ວ.ວວວັ 0.0 0.021 305.4 0.000 0.0 0.032 322.0 MS. 0.0 M₈ 0.005 169.9

St. Johns River Water Management District 310

0.000

Jacksonville, Acosta Bridge Series Start Date: 10/1/1978 NOS/NOAA Station Number: 8720268 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.60000 M₂ MK3 0.0 S₄ 0.014 76.4 MN_4 Nu₂ S₆ 0.0 0.023 285.1 0.003 42.6 Mu_2 2N 0.000 0.000 0.017 249.3 0.016 272.6 S_1 001 Lambda 0.005 304.6 0.000 0.000 0.0 0.000 0.0 0.002 237.7 ້**S** 0.0 MSf Rho_1 T₂ 0.005 315.4 Mf Q₁ 0.000 0.0 0.002 168.9 0.010 167.0 0.000 0.0 0.001 317.2 0.000 2Q1 $2SM_2$ Μ3 L₂ 2MF 0.0 0.020 305.5 0.000 2MK3 0.0 0.000 0.000 0.024 207.3 0.0 0.023 318.1 0.001 153.0 0.006 173.7 0.000 Jacksonville, Acosta Bridge NOS/NOAA Station Number: 8720268 Series Start Date: 11/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.58200 M₂ S₂ N₂ K₁ M₄ 0.688 295.3 0.083 321.2 0.130 286.1 0.058 180.9 0.014 105.5 0.055 178.9 0.040 320.3 м́к₃ ∩ 0.0 MN4 S₄ MI 0.007 93.1 0.000 Mu_2 Nu₂ 0.0 0.025 287.3 S. 2N 0.000 0.006 104.2 0.017 246.0 0.017 276.8 00. Lambda S_1 M₁ 0.0 0.004 179.9 0.005 307.3 0.000 0.004 181.9 0.002 182.9 0.000 0.0 0.000 0.0 MS_f 0 0.0 0.000 Rho₁ 0.0 0.002 178.1 Μf Qı T₂ 0.005 320.2 0.000 0.0 0.000 0.011 178.0 0.001 322.2 2SM₂ 0.0 0.000 L₂ 2MK₃ 0.0 0.019 304.6 0.000 M_3 K₂ 0.023 323.3 0.019 180.8 0.000 0.0 0.001 177.0 MS_4 M₈ M 0.003 211.0 0.000 0.0 Little Pottsburg Creek NOS/NOAA Station Number: 8720274 Series Start Date: 7/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.96100 MK₃ S₄ MI 0 0.0 0.012 19.2 0.000 MN₄ Nu₂ S₆ 0 0.0 0.041 279.6 0.005 94.3 Mu₂ 2N. 0.000 0.025 249.1 0.028 273.2 OO_1 Lambda S_1 M_1 J_1 0.004128.80.007290.10.0000.00.007165.20.008141.0 0.000 0.0 0.000 0.0 MS, 0.0 S. 0.0 0.000 P.
 M_f
 Rho₁
 Q₁

 00
 0.0
 0.004
 187.9
 0.019
 189.5
 Rho₁ T₂ 0.007 296.1 0.000 0.000 0.001 297.1 $2SM_2$ M_3 0 0.0 0.000 20 P₁ 0.046 154.9 2MK₃ L₂ 2MK 0.0 0.029 290.2 0.000 0.033 297.6 0.003 201.6 0.000 0.0 MS₄ ^ 0.0 M₈ M3 0.012 219.6 0.000 Little Pottsburg Creek NOS/NOAA Station Number: 8720274 Series Start Date: 8/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.08300 M₂ S₂ N₂ K₁ M₄ O₁ M₆ 1.094 285.6 0.143 299.5 0.213 276.5 0.150 154.0 0.060 155.7 0.114 162.3 0.051 273.2 MK₃ S₄ MM 0.000 0.0 0.008 192.0 0.000 $2N_{2}$ 0.028 267.5 Lambda 001 S_1 M₁ J₁ M, 0.0 0.008 158.1 0.009 149.9 0.000 0.005 145.8 0.008 292.0 0.000 0.0 0.000 0.0 Sa ... 0.0 0.000 P. 0.000 0.001 300.0 2SM₂ ^{P3} 2MK₃ K₂ 000 0.0 0.039 300.6 M₂ L₂ 2MK 0.0 0.031 294.6 0.000 MS. 0.0 0.010 171.6 0.000

Table D8—Continued

NOS/NOAA Station Number: 8720274 Little Pottsburg Creek Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.58300 M₂ S₂ N₂ K₁ M₄ O₁ M₆ 0.995 285.7 0.162 309.1 0.181 276.0 0.140 186.0 0.035 154.3 0.075 156.1 0.060 278.8 MK3 S₄ 0.0 0.011 147.9 MN_4 $2N_2$ Nu₂ S₆ Mu₂ 0.0 0.035 277.3 0.000 321.3 0.024 239.1 0.000 0.000 0.024 266.3 Lambda S_1 001 M₁ 0.0 0.005 171.2 0.006 200.8 0.000 0.003 215.9 0.007 296.6 0.000 0.0 0.000 0 0 MSt S. 0.0 M_{f} Rho_1
 Rho1
 Q1
 T2
 R2

 0.0
 0.003
 143.3
 0.015
 141.3
 0.009
 308.1
 0.001
 310.0
 0.0 0.000 0.000 0.000 2SM2 0.0 0.000 2MK₃ P₁ 0.047 183.8 $2Q_1$ M3 L_2 2MF 0.0 0.028 295.5 0.000 0.002 126.5 0.000 0.0 0.044 311.0 M₈ Ms 0.005 216.7 0.000 MS, 0 0 Little Pottsburg Creek NOS/NOAA Station Number: 8720274 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.78800 M₂ S₂ N₂ K₁ M₄ O₁ M₆ 0.967 288.8 0.127 309.0 0.166 286.4 0.090 188.9 0.037 157.9 0.076 170.3 0.058 281.2 Mu₂ MN_4 Nu₂ S₆ 0.0 0.032 286.8 0.004 356.0 2N0.023 245.2 0.022 284.1 0.000 S_1 00. Lambda 0.003 207.6 0.007 298.2 0.000 0.0 0.0 0.000 Mf MS_t 0 0.0 0.000 S. 0.0 0.000 P. $\begin{array}{cccc} Rho_1 & Q_1 & T_2 \\ 0.0 & 0.003 & 162.3 & 0.015 & 161.0 & 0.007 & 308.2 \end{array}$ Rho_1 0.001 309.8 0.000 2SM₂ 0.0 0.000 2MK3 2Q1 M_3 L_2 2MH 0.0 0.027 291.2 0.000 0.002 151.7 0.030 187.5 0.000 0.0 0.035 310.7 MS. 0.0 M₈ 0.005 206.3 0.000 Little Pottsburg Creek NOS/NOAA Station Number: 8720274 Series Start Date: 11/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.77200 M₂ 0.955 287.9 Mu_2 MN₄ Nu₂ 0.0 0.035 279.8 S₅ 0.008 68.1 $2N_{-}$ 0.023 237.1 0.000 0.024 269.3 00. Lambda M_1 J_1 M_m 0.0 0.006 164.5 0.006 160.2 0.000 S_1 0.004 158.0 0.007 300.7 0.000 0 0 0.000 0 0 S. 0.0 MS_f 0 0.0 0.000 25 0.001 316.5 0.000 0.000 L₂ 2MK₃ 0.0 0.027 297.3 0.000 2Q1 $2SM_2$ M_3 0 0.0 0.000 0.0 0.031 317.6 MS 0.0 M₈ M3 0.005 210.0 0.000 Ortega River Entrance NOS/NOAA Station Number: 8720296 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.39300 M2 S₂ N₂ K₁ M₄ 0.079 330.2 0.088 297.1 0.110 203.5 0.028 222.4 о. 0.558 302.0 0.038 170.6 0.045 345.5 MK₃ 0.0 S4 MN 0.004 178.9 0.000 MN4 Mu_2 Nu₂ 0.0 0.017 297.8 S, 2N 0.003 132.7 0.000 0.013 250.3 0.012 292.2 S_1 Lambda M_1 J_1 M_1 J_1 M_2 J_1 M_2 J_1 J_2 J_1 J_2 J_2 0.002 236.3 0.004 315.1 0.000 0.0 0.000 0.0 S. 0.0 0.000 P. 0.000 25M₂ ¹⁴³ 00 0.0 0.000 2MK₃ 2Q1 τ. K₂ 0.0 0.022 332.5 1_2 2^{MK} 0.0 0.016 306.9 0.000 MS. ^ 0.0 M₈ MS 0.006 267.1 0.000

NOS/NOAA Station Number: 8720296 Ortega River Entrance Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.62600 M₂ 0.534 304.7 мк₃ 0.0 MN₄ Mu₂ S4 0.012 105.1 Nu₂ 0.0 0.015 283.6 S, 0.002 59.5 $2N_{2}$ 0.000 0.013 260.5 0.000 0.010 256.0 00. Lambda S_1 M₁ 0.0 0.003 205.7 0.003 233.0 0.002 246.9 0.004 314.2 0.000 0.000 0.0 0.000 0.0 MS_f 0.0 S. 0.0 Rho₁ Mf Q₁ 0.008 178.2 T_2 R_2 0.004 324.5 0.001 326.1 0.000 0.000 0.0 0.002 180.1 0.000 $2MK_3$ 20, P_1 0.024 217.3 L₂ 2MK 0.0 0.015 329.0 0.000 K₂ 0.0 0.018 327.0 0.000 0.001 164.6 MS₄ M₈ M 0.005 243.5 0.000 0.0 NOS/NOAA Station Number: 8720296 Ortega River Entrance Series Start Date: 11/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.57600 0.047 185.5 0.043 4.2 S₄ MI 0.008 96.0 0.000 $\begin{array}{ccc} MN_4 & Nu_2 \\ 0 & 0.0 & 0.017 & 298.0 \end{array}$ Mu₂ MK₃ 0.000 0.0 $2N_2$ 0.006 123.1 0.012 251.8 0.011 286.1 Lambda 001 S_1 0.0 0.003 193.8 210.2 0.002 218.5 0.004 321.7 0.000 0.004 0.000 0.0 0.000 0.0 MS, 0 0.0 0.000 S. 0.0 M_{f} 0.0 0.002 178.4 0 Т₂ 0.003 337.4 0.000 0.000 0.009 177.3 0.001 340.0 $2SM_2$ M_3 0 0.0 0.000 $2MK_3$ 20. P₁ 0.015 200.8 ь 0.0 0.014 317.5 0.000 0.000 0.0 0.001 169.2 0.016 341.2 MS. 0.0 M₈ M 0.007 288.1 0.000 Ortega River Entrance NOS/NOAA Station Number: 8720296 Series Start Date: 1/1/1979 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.36200 MN₄ Nu₂ 0.0 0.022 291.3 Mu₂ 0.014 257.7 S_6 $2N_2$ 0.002 151.8 0.000 0.015 273.6 S_1 00, Lambda M_1 0.0 0.004 187.7 0.004 177.8 0.004 315.6 0.000 0.000 0.0 0.002 172.8 0.000 0.0 .s. 0.0 MSf M_r Rho₁ 0.000 0.0 0.002 197.0 T₂ 0.005 327.3 0, R₂ 0.0 0.000 0.000 0.011 197.6 0.001 329.2 2MK3 20, Μ3 P_1 L. $0.001 \ \tilde{20}2.6$ 0.026 183.5 0.000 0.0 0.016 320.3 0.000 0.0 0.023 330.1 MS. 0.0 M₈ MS 0.005 284.0 0.000 Piney Point, St. Johns River NOS/NOAA Station Number: 8720333 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.10100 M₂ 0.437 319.5 ́мк₃ 0.0 S₄ MN 0.009 125.7 0.000 Mu₂ $\begin{array}{ccc} Nu_2 & S_6 \\ 0.0 & 0.014 & 306.1 & 0.003 & 110.3 \end{array}$ $2N_{2}$ MN_4 0.009 288.7 0.000 0.010 272.3 00. Lambda S_1 M_1 J₁ 0.0 0.003 220.4 0.003 256.0 0.002 274.0 0.003 330.4 0.000 0.0 0.000 0.000 0.0 S. 0.0 0.000 P. 0.000 0.000 344.0 2MK₃ 20 0.0 201 L_2 2MK 0.0 0.012 334.8 0.000 0.015 345.0 MS. 0.0 M₈ M3 0.005 246.0 0.000

Table D8—Continued

Piney Point, St. Johns River Series Start Date: 11/1/1978 NOS/NOAA Station Number: 8720333 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.05200 M₂ 0.422 320.3 мк₃ 0.0 MN₄ Mu₂ S₄ 0.006 108.0 Nu₂ 0.0 0.013 310.5 2N. 0.002 132.2 0.000 0.010 265.2 0.009 297.8 0.000 Lambda S_1 M₁ 0.0 0.003 205.1 0.002 237.5 0.003 334.9 0.000 0.003 226.6 0.000 0.0 0.000 0 0 MS. 0.0 S. 0.0 Rho, Μť T₂ 0.003 350.6 0 R. 0.000 0.0 0.002 184.8 0.008 183.4 0.000 0.000 0.000 353.1 2SM₂ M₃ 0 0.0 0.000 2MK₃ 20 P_1 0.013 214.2 0.0 0.012 331.5 0.000 0.000 $0.001^{-172.6}$ 0.0 0.014 354.4 MS 0.0 M₈ M 0.006 285.8 0.000 NOS/NOAA Station Number: 8720374 Orange Park Series Start Date: 7/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.84700 0.053 219.4 0.026 84.2 S₄ M 0.006 144.2 0.000 MN₄ Nu₂ 0.0 0.014 341.0 Mu₂ мк_з 0.000 0.0 S, $2N_2$ 0.001 266.8 0.009 307.1 0.009 341.6 Lambda S_1 M₁ 0.0 0.004 209.4 001 0.004 189.7 0.002 179.6 0.003 345.1 0.000 0.000 0.0 0.000 0.0 MS, 0 0.0 0.000 Mr 0.0 0.002 228.0 0, Т., R-0.003 350.10.000 0.000 0.010 229.3 0.000 350.9 2MK₃ 20. P_1 0.021 201.0 L 0.001 239.2 0.000 0.0 0.010 340.0 0.000 0.0 0.013 351.3 MS. 0.0 _M₀ ∽ 16.4 0.005 0.000 Orange Park NOS/NOAA Station Number: 8720374 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.19200 91.7 MK₃ S₄ MI 0.0 0.005 270.0 0.000 Nu₂ 0.0 0.009 334.7 Mu₂ 0.009 299.1 MN₄ S, 0.003 195.3 $2N_{1}$ 0.000 0.006 326.0 $\begin{smallmatrix} S_1 & & M_1 & & J_1 \\ 0.0 & 0.003 & 219.6 & 0.003 & 240.0 \end{smallmatrix}$ 00 Lambda 0.003 350.0 0.000 0.002 250.3 0.000 0.0 0.000 0.0 MS, 0.0 0.000 S. 0.0 M_f Rho₁ 00 0.0 0.001 200.4 $\begin{smallmatrix} Q_1 \\ 0.007 & 199.0 \end{smallmatrix}$ T₂ 0.003 359.3 0.000 0.000 0.000 0.7 25M₂ 0.0 0.000 2Q1 P_1 22 0.029 228.2 0.000 M3 2MK3 L_2 2MF 0.0 0.011 349.0 0.000 0.001 188.8 0.0 0.013 1.5 MS4 0.0 M₈ M3 0.005 11.5 0.000 NOS/NOAA Station Number: 8720406 Doctors Lake, Peoria Point Series Start Date: 6/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.69900 S_2 N_2 K_1 M_4 O_1 0.035 334.9 0.079 332.3 0.061 191.5 0.029 278.3 0.060 212.4 M₂ 0.396 334.0 0.045 76.9 MK₃ 0.000 0.0 S₄ MN 0.003 352.1 0.000 MN_4 2N 0.010 330.6 S_1 $\begin{smallmatrix} M_1 & J_1 \\ 0.0 & 0.004 & 201.9 & 0.005 & 181.2 \end{smallmatrix}$ Mm 001 Lambda 0.003 170.7 0.003 334.4 0.000 0.000 0.0 0.000 0.0 S. 0.0 MS, 0.0 0.000 0.000 0.000 0.000 334.9 2MK₃ 20.0 P1 2Q1 M_3 L₂ 2MK 0.0 0.011 335.6 0.000 K- $0.002 \ \tilde{23}3.1 \ 0.020 \ 193.1 \ 0.000$ 0.009 335.0 MS. 0.0 M₈ M3 0.004 28.1 0.000

NOS/NOAA Station Number: 8720406 Doctors Lake, Peoria Point Series Start Date: 7/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.73600 M₆ 0.051 111.1 MN, $\begin{array}{ccc} MK_3 & S_4 \\ 0 & 0.0 & 0.004 & 153.8 \end{array}$ Nu₂ 0.0 0.013 346.6 Mu₂ 0.009 284.4 2N. 0.001 180.0 0.000 0.000 0.009 347.1 Mm 001 M₁ 0.0 0.004 217.6 Lambda S_1 0.005 180.6 0.003 0.000 0.000 0.0 0.000 0.003 161.9 4.0 0 0 5. 0.0 Mf Rho₁ 0.002 252.4 MS_{f} T₂ 0.003 22.9 0.0 0.000 0.000 0.0 0.012 254.9 0.000 26.0 0.000 2SM₂ 0 0.0 0.000 2Q1 P_1 L₂ 2MF 0.0 0.011 345.9 0.000 2MK3 0.000 0.022 201.9 0.0 0.014 0.002 273.3 27.6 MS4 0.014 0 0 Doctors Lake, Peoria Point NOS/NOAA Station Number: 8720406 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 6.60300 мк₃ 0.0 S₄ Mr 0.011 180.0 0.000 MN₄ Nu₂ S₆ 00 0.0 0.010 325.5 0.001 270.1 Mu₂ $2N_{2}$ 0.000 0.009 289.5 0.007 302.5 Lambda $\begin{smallmatrix} M_1 & & J_1 \\ 0.0 & 0.003 & 220.8 & 0.003 & 240.2 \end{smallmatrix}$ 00. S_1 0.002 250.0 0.003 357.0 0.000 0.000 0.0 0.000 0.0 MS, 0.0 S. 0.0 Mr 800 0.0 0.002 202.6 Q1 0.008 201.3 T₂ 0.003 11.9 0.000 0.000 0.000 0.000 14.3 $2SM_2$ M_3 0 0.0 0.000 2MK₃ 20 P₁ 0.024 229.0 L₂ 0.0 0.011 0.000 0.001 191.6 3.4 0.000 0.0 0.014 15.5 м₈ 9 45.9 MS_4 0.009 0.000 0 0 NOS/NOAA Station Number: 8720409 Julington Creek Series Start Date: 5/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.05100 S_2 N_2 K_1 M_4 O_1 M_6 0 3.1 0.065 339.0 0.058 211.4 0.035 289.8 0.069 222.7 0.036 88.7 M_2 0.357 344.8 0.040 MK₃ S₄ Mr 0 0.0 0.003 225.9 0.000
 MN4
 Nu2
 S6
 Mu2

 00
 0.0
 0.013
 339.8
 0.002
 142.6
 0.009
 303.1
 $2N_{2}$ 0.000 0.009 333.1 S_1 Lambda 00, $\begin{matrix} M_1 & J_1 \\ 0.0 & 0.005 & 217.0 & 0.005 & 205.7 \end{matrix}$ 0.003 200.0 0.003 353.3 0.000 0.000 0.0 0.000 0.0 MS_f 0.000 0.0 S. 0.0 M_f 0.0 0.003 227.6 T₂ 0.002 Q₁ 0.013 228.4 R, 0.000 0.000 2.4 0.000 3.8 2SM₂ 0.0 0.000 2Q, 2MK3 P₁ 25 0.019 212.2 0.000 0.002 234.0 0.0 0.010 350.6 0.000 0.0 0.011 4.6 MS. 0.0 M₈ 6 36.5 0.000 0.006 Julington Creek NOS/NOAA Station Number: 8720409 Series Start Date: 6/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.16100 MK₃ S₄ MN 0.000 0.0 0.003 346.5 0.000 Mu₂ $2N_2$ 0.008 339.7 001 S_1 Lambda $\begin{smallmatrix} M_1 & J_1 & M_1 \\ 0.0 & 0.004 & 219.4 & 0.004 & 201.2 & 0.000 \\ \end{smallmatrix}$ 0.003 3.7 0.000 0.003 192.0 0.0 0.000 0.0 Sa ... 0.0 0.000 P. 0.000 0.000 16.0 L₂ 0.0 0.010 $2MK_3$ 0.8 0.000 0.0 0.013 16.8 [™]S₄ ^ 0.0 M₈ M 0.005 71.2 0.000

Table D8—Continued

Julington Creek NOS/NOAA Station Number: 8720409 Series Start Date: 8/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.36800 M_2 S_2 N_2 K_1 M_4 O_1 M_6 33.2 0.043 329.0 0.066 207.0 0.054 310.3 0.059 211.6 0.038 118.8 0.359 354.9 0.029 , _____ МК₃ 0.0 S4 S₆ 0.001 151.6 Nu₂ 0.0 0.008 332.4 MN_4 Mu2 2N-0.004 0 000 39.0 0.000 0.009 293.3 0.006 303.0 S_1 M₁ 0.0 0.004 209.3 00. Lambda Μ_ 0.005 204.8 0.003 202.5 0.003 0.000 0.000 0.0 0.000 0 0 12.7 MS, 0.0 Sa Rho₁ T₂ 0.002 31.6 Μf Q1 R_2 0.000 0.000 0.0 0.002 213.5 0.011 213.8 0.000 0.0 0.000 34.7 2SM₂ 00 0.0 0.000 2Q1 P₁ 0.022 207.4 M_3 L₂ 0.010 2MK3 0.000 0.0 20.9 0.000 0.008 36.3 0.002 216.1 0.0 ́м. 85.9 MS₄ 0.010 0.000 0.0 Julington Creek NOS/NOAA Station Number: 8720409 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 7.81600 S₂ 0.043 358.3 N_2 K_1 M_4 0.056 333.5 0.090 233.6 0.035 285.1 M_2 0.360 351.2 0.035 217.1 0.036 107.9 мк, 0.0 S. 0.004 253.5 MN4 Nu₂ 0.0 0.011 335.8 S، Mu₂ 2N-0.000 0.000 0.003 241.6 0.009 320.6 0.007 315.8 001 Lambda M₁ 0.003 225.4 S_1 0.003 354.5 0.000 0.0 0.003 241.7 0.002 250.0 0.000 0.0 0.000 0.0 S. 0.0 MS_{f} Rho. T₂ 0.003 358.0 Mf Q₁ R. 0.000 0.000 0.0 0.000 0.0 0.001 210.0 0.007 208.9 0.000 358.6 2SM₂ M₃ 0 0.0 0.000 2MK3 $2Q_1$ P₁ 0.030 232.3 T₁ K₂ 0.012 358.9 0.001 200.8 0.000 0.0 0.010 8.8 0.000 0.0 MS₄ M₈ 7 43.0 0.000 0.007 0.0 Black Creek, SCL RR Bridge NOS/NOAA Station Number: 8720434 Series Start Date: 8/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.21900 S₂ 13.0 0.034 52.2 M_2 0.390 MN₄ МК3 S₄ 0.0 0.001 98.6
 Nu2
 S6
 Mu2

 0.0
 0.014
 359.0
 0.003
 145.1
 0.009
 310.1
 2N-0.000 0.000 0.010 340.6 Lambda $\begin{smallmatrix} M_1 & J_1 \\ 0.0 & 0.004 & 212.5 & 0.005 & 201.6 \end{smallmatrix}$ 00, S_1 0.003 196.1 0.003 31.2 0.000 0.000 0.0 0.000 0.0 MS_f 0.0 S. 0.0 Mr 0.0 0.002 222.7 Rho₁ Q1 0.012 223.4 T₂ 0.002 50.6 R. 0.000 0.000 0.000 0.000 53.8 P₁ 0.020 207.8 2MK₃ L₂ 0.0 0.011 0.002 228.9 0.000 29.2 0.000 0.0 0.009 55.4 M₈ M 0.007 143.6 0.000 Black Creek, SCL RR Bridge Series Start Date: 9/1/1978 NOS/NOAA Station Number: 8720434 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.63800 M₂ S₂ N 5 17.3 0.053 36.9 0.073 N₂ 0.405 Nu₂ S_6 Mu_2 $2N_2$ MK3 S_4 MN_4 6.7 0.0 0.010 305.2 0.000 0.0 0.014 0.002 288.9 0.000 0.010 334.1 0.010 352.8 00, Lambda S_1 M_1 J₁ 0.0 0.003 224.3 0.003 214.1 0.003 26.4 0.000 0.002 208.9 0.000 0.0 0.000 0.0 MSf . S. 0.0 0.000 P. M_f 0.0 0.000 Rho₁ Q, T2 0.003 36.1 R. 0.0 0.002 233.9 0.008 234.6 0.000 0.000 37.6 2SM₂ ... L_2 2MK3 0.000 0.0 0.011 29.6 0.000 0.001 239.7 0.029 219.9 0.0 0.014 38.4 MS4 0.0 M₈ M3 0.004 87.2 0.000

Black Creek, SCL RR Bridge Series Start Date: 10/1/1978 NOS/NOAA Station Number: 8720434 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.88100 S_2 N_2 M2 K1 21.0 0.042 54.1 12.2 0.070 244.9 0.011 352.6 0.049 222.5 0.023 181.9 0.400 0.057 мк₃ 0.0 MN_4 S₄ 0.009 238.5 Mu₂ Nu_2 2N 0.000 0.0 0.011 13.4 0.001 356.0 0.008 0.010 324.3 0.000 3.4 001 Lambda S_1 M₁ 0.004 233.7 0.000 0.0 0.000 0.002 267.3 0.003 36.3 0.004 256.0 0.0 0.000 0.0 Sa MSf Rho_1 Mť Q1 T₂ 0.003 52.7 0.000 0.0 0.000 0.0 0.002 212.8 0.009 211.3 0.000 0.0 0.000 55.4 2Q1 \mathbf{P}_1 $2SM_2$ M3 2MK₃ 0.000 0.001 200.2 0.023 243.2 0.000 0.0 0.0 0.011 29.8 0.000 0.0 0.011 56.7 MS. Μ₈ 0.004 106.7 0.000 0.0 Green Cove Springs, St. Johns River Series Start Date: 4/1/1978 NOS/NOAA Station Number: 8720496 Series Length (in days): 244 Series Mean Sea Level (in feet): 4.23200 _M₂ 5 22.0 S_2 N₂ 0.064 K_1 M_4 9.7 0.059 223.2 0.028 320.3 0.365 0.045 47.6 0.052 232.7 0.029 163.7 S4 0.0 Nu₂ MN₄ Mu_2 MK3 $2N_{2}$ S. 0.010 293.8 0.018 0.0 7.3 0.000 0.000 0.000 0.0 0.011 170.7 0.000 0.0 Lambda 001 S. M_1 0.0 0.000 0.0 0.010 0.011 205.8 0.000 0.000 0.0 0.000 0.0 0.000 0.0 27.3 MS_f 0.0 S, Q_1 T₂ 0.000 Μ_f Rho₁ 0.000 0.0 0.000 0.000 0.0 0.000 0.0 0.010 217.8 0.0 0.000 0 0 2SM₂ 0 0.0 0.000 2Q1 P_1 2MK₃ T. K. 0.000 0.0 0.012 220.2 0.000 0.0 0.029 35.4 0.011 9.5 0.013 36.2 MS_4 Ma 0.000 0.000 0.0 0 0 Green Cove Springs, St. Johns River Series Start Date: 8/1/1978 NOS/NOAA Station Number: 8720496 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.12400 M₂ 3 21.2 $S_2 = N_2 = 0.042 = 50.7 = 0.060$ 0.363 мк, S₄ MI 0.003 10.9 0.000 Nu₂ Mu₂ MN₄ S, 2N-0.000 0.0 0.0 0.012 6.9 0.001 159.3 0.009 328.3 0.008 348.2 S_1 Lambda 00 M_1 J₁ J₁ 0.0 0.004 220.1 0.005 209.1 0.003 203.4 0.003 34.9 0.000 0.000 0.0 0.000 0.0 MSf S. 0.0 Mf Rho₁ T₂ 0.003 49.5 Q₁ 0.012 231.3 R. 0.000 0.000 0.0 0.000 0.0 0.002 230.6 0.000 51.9 P₁ 0.022 215.4 $2SM_2$ 2MK₃ 20, М. 0.0 0.000 0.000 0.0 0.010 37.7 0.000 0.002 236.8 0.0 0.011 53.1 M₈ MS 0.009 121.1 0.000 Green Cove Springs, St. Johns River Series Start Date: 9/1/1978 NOS/NOAA Station Number: 8720496 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.60500 M_2 S_2 6 20.2 0.039 48.8 N₂ 0.060 0.366 Nu₂ 17 11.0 мк, MN₄ S₄ MI 0.006 274.4 0.000 S. 0.002 289.0 Mu₂ 2N. 0.0 0.0 0.012 0.000 0.009 328.2 0.008 359.0 S_1 00 Lambda $0.0 \ 0.003 \ 227.4 \ 0.003 \ 221.8$ 0.003 33.5 0.000 0.000 0.002 219.0 0.0 0.000 0.0 . MS_f M_f Sa Rho_1 T₂ 0.002 47.6 Q 0.000 0.0 0.0 0.002 232.6 0.008 233.0 0.000 0.000 49.9 2SM₂ M₃ 0 0.0 0.000 2MK3 P₁ 0.027 225.0 $\begin{array}{c} & L_2 \\ 0.0 & 0.010 & 30.9 \end{array}$ 0.000 0.000 0.0 0.011 $0.001 \ 235.8$ 51.1 мs. 0.0 M₈ M 0.007 89.2 0.000

Table D8—Continued

Green Cove Springs, St. Johns River NOS/NOAA Station Number: 8720496 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.83600 S₂ 5 41.4 N₂ 0.047 K₁ 4.0 0.058 249.1 M_4 O_1 M_6 0.020 308.7 0.051 222.1 0.031 165.6 0.356 MK3 MN4 Mu₂ Nu₂ S6 S₄ $2N_{2}$ 0.007 216.5 0.002 324.5 0.000 0.0 0.000 0.0 0.009 6.3 0.009 338.4 0.006 346.3 S_1 00 Lambda Μ, 0.004 235.7 0.002 276.0 0.003 30.8 0.000 0.0 0.004 262.4 0.000 0.0 0.000 0.0 MS_t Mf S_{a} Rho₁ T_2 0 R. 0.0 0.000 0.0 0.002 210.6 0.010 208.8 0.003 40.6 0.000 0.0 0.000 0.000 42.2 2MK3 20 P₁ 0.019 247.0 0.000 0.0 0.010 0.000 0.0 0.001 195.4 39.3 0.012 43.0 MS4 M_8 0.005 91.1 0.000 0.0 St. Johns County Pier, St. Augustine NOS/NOAA Station Number: 8720587 Series Length (in days): N/A Series Start Date: N/A Series Mean Sea Level (in feet): 2.44000 M₂ 2.172 229.4 К, M, S_2 0.369 245.7 0.241 132.7 0.020 6.7 Mu₂ MK3 S₄ 0.018 324.2 MN₄ Nu₂ 0.018 114.6 0.098 214.5 S6 $2N_2$ 0.012 252.4 0.000 0.0 0.069 216 8 0.070 200.5 M₁ 001 Lambda S_1 0.011 142.2 0.021 247.5 0.033 116.5 0.015 132.9 0.026 123.8 0.000 0.0 0.217 60.5 MSf Mf Rho, S. 0.361 199.5 0, 0.0 0.000 0.000 0.0 0.019 121.8 0.044 123.4 0.040 247.2 0.024 104.7 2SM₂ 2Q1 2MK3 P Μ. 98.8 0.015 242.9 0.010 252.0 0.093 224.1 0.016 264.3 0.012 0.119 114.4 0.088 245.5 MS₄ M₈ 0.000 0.0 0.036 168.3 East Tocoi, St. Johns River NOS/NOAA Station Number: 8720596 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.15900 M₂ ⁴ 58.4 S_2 N_2 K_1 M_4 0.045 99.4 0.069 41.0 0.074 245.6 0.026 0.044 253.4 0.444 22.8 0.029 252.4 мк₃ 0.0 . Mu2 S₄ MI 0.004 307.1 0.000 S₆ $2N_2$ MN_4 Nu_2 0.0 0.013 43.3 0.001 97.6 0 000 0.011 354.2 0.009 23.6 Lambda 00 M₁ 0.0 0.003 249.5 S_1 0.002 237.9 0.000 0.003 0.004 241.8 0.000 0.0 0.000 0.0 77.4 S. 0.0 . MSr Rho₁ 0.0 0.002 256.7 Μf 0.0 0.000 0.000 0.009 257.3 0.003 97.8 0.000 0.000 101.0 2SM₂ 0.0 0.000 2MK3 20 P_1 0.012 0.001 261.1 0.024 246.2 0.000 0.0 75.8 0.000 0.0 0.012 102.7 M₈ M: 0.005 222.4 0.000 MS4 0.0 East Tocoi, St. Johns River NOS/NOAA Station Number: 8720596 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.42500 M₂ 7 58.8 $\begin{array}{ccc} S_2 & N_2 \\ 1 & 77.9 & 0.044 \end{array}$ K, м. 0.051 42.6 0.049 271.8 0.026 27.8 0.056 230.5 0.427 0.026 250.2 / _мк₃ ____0.0 S₄ Mr 0.004 303.1 0.000 MIN₄ Nu₂ Mu₂ S. 2N-0.0 0.008 44.8 0.002 50.0 0.000 0.010 16.6 0.006 26.3 S_1 M₁ 0.0 0.004 251.3 00, Lambda Л 0.004 292.2 0.000 0.0 0.002 313.0 0.003 67.7 0.000 0.000 0.0 MS_f 0.0 0.000 S. 0.0 $\begin{array}{cccc} Rho_1 & Q_1 & T_2 \\ 0.0 & 0.002 & 212.8 & 0.011 & 210.1 & 0.003 \end{array}$ Mf R, 0.000 0.000 77.1 0.000 78.6 2SM₂ 0 0.0 0.000 20, 2Q₁ P₁ 0.002 189.6 0.016 268.7 L₂ 2MH 0.0 0.012 75.1 0.000 2MK3 \mathbf{K}_{2} 0.000 0.0 0.014 79.4 MS₄ ^ 0.0 M₈ MS 0.006 208.8 0.000

East Tocoi, St. Johns River NOS/NOAA Station Number: 8720596 Series Start Date: 11/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.36700 M_2 S_2 N_2 61.8 0.046⁻84.1 0.067 0.433 MK₃ S4 0.002 23.8 MN₄ Nu₂ S6 Mu₂ 0.000 0.0 0.013 60.8 0.002 49.2 16.2 59.6 0.010 0.009 0.000 S_1 0.0 0.003 237.1 001 Lambda J_1 0.003 251.6 0.000 72.1 0.000 0.0 0.000 0.0 0.002 258.9 0.003 MSt Mf Rho₁ Q₁ 0.007 222.6 T₂ 0.003 83.2 0.000 0.000 0.0 0.0 0.001 223.5 85.0 0.000 0.000 $2Q_1$ P_1 $2SM_2$ M3 $2MK_3$ 0.0 0.000 0.001 215.3 0.014 243.3 0.000 0.0 0.012 62.9 0.000 0.0 0.012 85.9 MS₄ 0.0 M_8 0.006 241.1 0.000 Palmetto Bluff, St. Johns River NOS/NOAA Station Number: 8720653 Series Start Date: 9/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.30700 M_2 S_2 N_2 6 70.7 0.060 112.8 0.071 N_2 $\begin{array}{cccc} K_1 & M_4 \\ 54.5 & 0.066 & 243.0 & 0.030 \end{array}$ 58.6 0.047 261.9 0.031 310.4 0.496 мк₃ О 0.0 Nu₂ 14 56.7 S₄ 0.002 234.0 MN_4 Mu, $2N_{2}$ 0.0 0.014 0.000 0.003 156.7 0.000 0.012 54 0.009 38.3 Lambda 00. S_1 M $0.0 \ 0.003 \ 252.4$ 0.000 0.004 233.7 0.002 224.2 0.004 90.2 0.000 0.0 0.000 0.0 MS_f 0.0 Sa T_2 0.004 111.1 Mf Rho, Q_1 R₂ 0.0 0.002 270.0 0.000 0.0 0.000 0.000 0.009 271.2 0.001 114.4 2SM₂ 0.0 0.0 0.000 2MK3 20, L₂ 0.0 0.014 0.001 280.6 0.022 244.4 0.000 86.9 0.000 0.0 0.016 116.2 MS_4 M₈ M 0.006 299.3 0.000 0 0 Palmetto Bluff, St. Johns River NOS/NOAA Station Number: 8720653 Series Start Date: 11/2/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.53800 M₂ S₂ 7 70.6 0.051 91.3 53.5 0.034 245.2 0.029 312.2 0.497 мк₃ S. 6.4 0.000 MN₄ Nu₂ Mu₂ 12 26.7 S, $2N_{2}$ 61.6 0.003 0.000 0.0 0.003 0.0 0.015 92.6 0.012 0.010 49.8 S_1 Lambda 00. 0.001 251.8 0.004 80.2 0.000 0.000 0.0 0.000 0.0 MS, S. 0.0 Mr RHO1 00 0.0 0.001 243.7 T_2 0, R. 0.000 0.000 0.0 0.000 0.006 243.5 0.003 90.5 0.000 92.1 P_1 25 0.014 248.2 0.000 2SM₂ 2MK, Μ, 0.0 0.000 0.014 0.0 81.1 0.000 0.0 0.014 $0.001 \ 2\overline{4}1.9$ 93.0 MS₄ 0.0 M₈ MS 0.007 274.0 0.000 Palmetto Bluff, St. Johns River NOS/NOAA Station Number: 8720653 Series Start Date: 1/1/1979 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.37900 0.487 81.9 0.071 242.0 0.022 302.2 MK₃ S₄ MI 0 0.0 0.003 319.8 0.000 Nu_2 5.1 0.002 244.2 Mu_2 MN₄ $2N_2$ 0.0 0.017 0.000 0.012 23.7 0.011 31.1 00, Lambda S_1 0.0 0.005 242.4 0.006 243.2 0.003 243.6 0.003 85.6 0.000 0.000 0.0 0.000 0.0 S. 0.0 $\begin{array}{cccc} T_2 & R_2 \\ 0.004 & 98.7 & 0.001 & 100.9 \end{array}$ 0.000 0.000 2*S*M₂ 00 0.0 0.000 M3 L₂ 2MK 0.0 0.014 94.5 0.000 2MK3 0.0 0.020 101.9 MS₄ 0.0 M₈ MS 0.006 296.6 0.000

and the second second

Table D8—Continued

Palmetto Bluff, St. Johns River NOS/NOAA Station Number: 8720653 Series Start Date: 2/1/1979 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.57600 $71.7 \quad 0.055 \quad 239.7$ 0.023 293.4 0.486 мк₃ 0.0 Nu₂ S₄ MM 0.006 52.6 0.000 Mu₂ $2N_2$ S_6 53.9 0.0010.000 64.0 0.012 14.4 0.012 33.6 $\begin{array}{c} M_1 & J_1 \\ 0.0 & 0.004 & 243.7 & 0.004 & 251.7 \end{array}$ 001 Lambda S_1 M 0.002 255.7 0.003 84.1 0.000 0.000 0.0 0.000 0.0 MS_f 0.0 s. 0.0 Rho₁ M_f Rho₁ Q₁ 00 0.0 0.002 236.2 0.011 235.7 г R. 0.000 0.004 99.8 0.000 0.000 0.001 102.4 2SM₂ 00 0.0 0.000 2MK3 201 P_1 0.019 247.1 0.001 231.7 0.000 0.0 0.014 87.3 0.000 0 0 0.017 103.7 _____0.0 M₆ M 0.005 266.1 0.000 Palmetto Bluff, St. Johns River NOS/NOAA Station Number: 8720653 Series Start Date: 3/1/1979 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.46100 0.517 MN₄ 0 0.0 0.018 Nu₂ S₆ 18 60.1 0.002 359.1 0.012 M S. MN 0.004 16.6 0.000 Mu_2 $2N_2$ MK3 0.000 0.0 19.8 0.012 46.8 $\begin{array}{c} M_1 & J_1 \\ 0.0 & 0.003 & 220.8 & 0.004 & 190.7 \end{array}$ 00, Lambda S_1 0.002 175.4 0.004 82.9 0.000 0.000 0.0 0.000 0.0 MS, 0.0 0.000 2 S. 0.0 Mr Rho₁ 01 \mathbf{T}_{2} R_2 0.0 0.002 249.1 0.009 251.2 0.000 0.000 0.004 96.3 0.001 98.5 2SM2 0.0 0.000 2MK3 20, M₃ P. 0.033 208.1 0.000 0.0 0.014 82.0 0.000 0.0 0.017 0.001 266.2 99.6 ______0.0 M₈ 0.007 295.6 0.000 Buffalo Bluff, St. Johns River NOS/NOAA Station Number: 8720767 Series Start Date: 11/2/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.20600 MN4 мк₃ S4 MIN 0.0 0.006 50.6 0.000 Nu₂ S₆ 0.0 0.014 104.5 0.003 Mu_2 $2N_{2}$ 9.5 0.010 72.8 0.000 0.010 100.3 S_1 $\begin{matrix} M_1 & J_1 \\ 0.0 & 0.001 & 269.5 & 0.001 & 270.9 \end{matrix}$ 001 Lambda 0.001 271.6 0.003 113.0 0.000 0.000 0.0 0.000 0.0 MS_f 0.0 S. 0.0 M_f 0.000 Rho₁ T₂ 0.002 118.7 Q1 R₂ $0.0 \quad 0.001 \quad 268.2 \quad 0.004 \quad 268.1$ 0.000 0.000 0.000 119.6 2SM₂ 0 0.0 0.000 P_1 25 0.011 270.1 0.000 2MK3 M_3 L_2 2MF 0.0 0.012 111.4 0.000 0.001 267.4 0.0 0.011 120.1 _MS₄ 0.0 M₈ M 0.007 154.6 0.000 NOS/NOAA Station Number: 8720774 Palatka Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 5.65700 0.515 33.2 MN. 0.0 0.011 Nu_2 S_6 11 91.7 0.004 190.8 0.012 M Mu₂ 2N₂ 0.007 41.7 0.000 95.0 $\begin{smallmatrix} M_1 & J_1 & M \\ 0.0 & 0.004 & 248.2 & 0.004 & 265.3 & 0.000 \end{smallmatrix}$ 001 Lambda S_1 0.002 273.9 0.004 100.4 0.000 0.0 0.000 0.0 . S. 0.0 0.000 P. Rho_1 R, 0.000 0.000 114.3 2MK₃ K₂ 000 0.0 0.014 115.3 201 M_3 P_1 L_2 2MF 0.0 0.014 86.4 0.000

St. Johns River Water Management District 320

MS. 0.0

0.000

0.001 222.4 0.015 255.4

 $M_{\rm g}$ Ms 0.012 28.4 0.000

```
Table D8—Continued
```

```
NOS/NOAA Station Number: 8720774
Palatka
Series Start Date: 1/1/1979
                                                   Series Length (in days): 29
Series Mean Sea Level (in feet): 4.38000
                                   S_2
                                N_2
     M2
       88.6 0.073 129.1 0.086
0.549
    _́мк₃
∙∩ 0.0
                  s.
9 7.5 0.000
                                                                         Mu<sub>2</sub>
                                                                                      2N_2
                                MN_4
                                              Nu2
                                                           S_6
             0.009
                                    0.0 0.017
                                                 67.5
                                                       0.003 21.5
                                                                      0.013
                                                                             24.8
                                                                                    0.011
                                                                                           39.8
0.000
                                 S_1
     001
                  Lambda
                                    M<sub>1</sub>
0.0 0.004 247.5
                                                       0.005 263.7
                                                                     0.000
             0.004 107.4 0.000
                                                                              0.0
                                                                                    0.000
0.003 271.9
                                                                                           0.0
                  MS,
0.0
    S.
0.0
                                Mt
                                             Rho<sub>1</sub>
                                                                     T_{2}
0.004 127.4
                                                           Q_1
                           0.000
              0.000
                                    0.0 0.002 232.3
                                                       0.012 231.2
                                                                                    0.001 130.7
0.000
                                2SM<sub>2</sub> M<sub>3</sub>
0 0.0 0.000
     201
             P<sub>1</sub>
0.015 254.4
                                                  L<sub>2</sub> 2MF
0.0 0.015 113.0 0.000
                                                                         2MK3
                           0.000
0.002 223.1
                                                                              0.0 0.020 132.3
                  MS,
0.0
    ัพ<sub>ต</sub>์
9 67.8 0.000
0.009
                                                   NOS/NOAA Station Number: 8720774
Palatka
Series Start Date: 2/1/1979
                                                   Series Length (in days): 29
Series Mean Sea Level (in feet): 4.61300
    0.556
                                                                                           39.4
                                MN, 0.0 0.019
                                             Nu<sub>2</sub>
19 72.9
    мк.
00.0
                                                                         Mu<sub>2</sub>
             S, MI
0.010 131.3 0.000
                                                                                      2N.
                                                        0.003 152.5
0.000
                                                                      0.013
                                                                             26.6
                                                                                    0.013
                                                                                           56.6
     00.
                                    M<sub>1</sub>
0.0 0.003 248.0
                  Lambda
                                  S_1
                                                       0.004 258.2
0.002 263.4
             0.004 101.7
                           0.000
                                                                     0.000
                                                                              0.0
                                                                                    0.000
                                                                                           0.0
                  MS, 0.0 0.000
     Sa
                                Mf
                                             Rho<sub>1</sub>
                                                       Q_1
0.009 237.7
                                                                     T_2
0.005 119.2
                                    0.0 0.002 238.4
0.000
       0.0
              0.000
                                                                                    0.001 122.0
                                2SM<sub>2</sub> 2.0 0.000
                                                  L<sub>2</sub>
0.0 0.016
                                                                         2MK3
     20.
             0.018 252.3
                                                                     0.000
0.001 232.7
                           0.000
                                                               99.7
                                                                              0.0
                                                                                   0.021 123.5
     M<sub>8</sub> MS<sub>4</sub>
9 49.1 0.000 0.0
0.009
Palatka
                                                   NOS/NOAA Station Number: 8720774
Series Start Date: 3/1/1979
                                                   Series Length (in days): 29
Series Mean Sea Level (in feet): 4.48300
    M<sub>2</sub>
       0.588
                                                                                           38.7
                                MN4 0.0 0.020
MN4 0.0 0.020
                                                                        Mu_2
14 24.6
     MK<sub>3</sub> S<sub>4</sub> MN
0 0.0 0.009 87.0 0.000
                                             Nu<sub>2</sub> S<sub>6</sub>
20 69.2 0.001 110.0
                                                                                      2N-
0.000
                                                                     0.014
                                                                                   0.013
                                                                                           49.3
                                 Lambda
     001
0.001 177.1
             0.004 101.1 0.000
                                                                     0.000
                                                                              0.0
                                                                                   0.000
                                                                                           0.0
                  MS,
0 0.0
     S. 0.0
                                             Rho,
                          \begin{array}{cccc} M_{f} & Rho_{1} & Q_{1} \\ 0.000 & 0.0 & 0.001 & 248.5 & 0.006 & 250.5 \end{array}
                                                                     T_2 R_2
0.004 119.1 0.001 122.0
0.000
             0.000
                                25M<sub>2</sub>
10 0.0 0.000
                                                                         2MK<sub>3</sub>
     20.
             P<sub>1</sub>
0.034 208.7
                                                  L<sub>2</sub> 2MK
0.0 0.017 101.8 0.000
                           0.000
0.001 \ \tilde{265.1}
                                                                             0.0 0.019 123.5
                  _MS₄
`^___0.0
M<sub>8</sub> M3
0.009 57.0 0.000
Sutherlands Still, Dunns Creek
                                                   NOS/NOAA Station Number: 8720782
Series Start Date: 1/1/1979
                                                   Series Length (in days): 29
Series Mean Sea Level (in feet): 3.78500
MN, 0.0 0.013
     MK<sub>3</sub> S<sub>4</sub> M1
0 0.0 0.006 16.1 0.000
                                             Nu<sub>2</sub> 56
13 85.7 0.008 44.0
                                                                         Mu_2
                                                                                      2N_{2}
                                                                     0.010
                                                                            46.1 0.009
0.000
                                                                                           65.4
                                 S_1
                  Lambda
                                    M_1 J<sub>1</sub> J<sub>1</sub> 0.0 0.003 256.3 0.003 270.9
                                                                          ML
0.002 278.3
             0.003 115.9 0.000
                                                                     0.000
                                                                              0.0 0.000
                                                                                           0.0
     Sa
0.0
                  0.000
            0.000
                                2SM<sub>2</sub> M<sub>3</sub>
0 0.0 0.000
                                                                         2MK<sub>3</sub> K<sub>2</sub>
000 0.0 0.014 135.3
                                                 L<sub>2</sub> 2MK
0.0 0.011 119.1 0.000
MS.
0.0
M<sub>6</sub> MS
0.013 171.3 0.000
```

Carl States and Market States of the

ىسىكەرىدەنى ئەرەپرىدىغىرىيەر يورىچى يورىي

Table D8—Continued

Sutherlands Still, Dunns Creek Series Start Date: 2/1/1979 Series Mean Sea Level (in feet): 3.96900 NOS/NOAA Station Number: 8720782 Series Length (in days): 29 0.408 MK₃ S₄ MN 0 0.0 0.012 156.9 0.000 MN₄ 10 0.0 0.014 M 0.000 S_1 $\begin{smallmatrix} M_1 & J_1 & M_m \\ 0.0 & 0.002 & 254.6 & 0.003 & 265.8 & 0.000 \end{smallmatrix}$ 00, Lambda 0.001 271.5 0.003 115.0 0.000 0.0 0.000 0.0 Sa 0.0 0.000 P. 0.000 M₃ 2MK₃ K₂ 000 0.0 0.014 136.9 L₂ 2MK 0.0 0.011 114.9 0.000 ______0.0 M₈ M3 0.013 149.7 0.000 Sutherlands Still, Dunns Creek Series Start Date: 3/1/1979 NOS/NOAA Station Number: 8720782 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.85100
 M2
 S2
 N2
 K1
 M4
 O1
 M6

 9
 97.5
 0.048
 129.6
 0.077
 80.2
 0.081
 216.2
 0.071
 155.8
 0.021
 253.0
 0.036
 88.5
 0.439 S₄ MI 0.0 0.012 99.7 0.000 Nu₂ S₆ 301.3 0.010 15 82.5 0.002 301.3 0.010 MK3 $2N_2$ MN₄ 0.0 0.015 0.000 0.010 41.9 62.9 Sı 001 Lambda M_1 J₁ 0.0 0.002 234.5 0.002 197.9 0.003 112.4 0.000 0.001 179.3 0.000 0.0 0.000 0.0 S_a MS_f M, 0.0 0.000 0.0 0.000 0.000 2Q₁ P₁ 2S 0.001 289.6 0.027 218.9 0.000 2Q1 $2SM_2$ 2MK3 L₂ 2MF 0.0 0.012 114.8 0.000 0.0 0.000 0.0 0.013 132.1 MS. 0.0 M₈ MS 0.017 153.1 0.000 Welaka NOS/NOAA Station Number: 8720832 Series Start Date: 10/1/1978 Series Length (in days): 29 Series Mean Sea Level (in feet): 4.47800 MN_4 Mu₂ $2N_2$ 0.000 70.2 0.003 161.7 Lambda 00 S_1 M_1 J_1 M_2 M_1 M_2 M_3 M_4 M_2 M_3 M_4 M_4 M_2 M_3 M_4 M_4 M, 0.001 275.0 0.001 137.8 0.000 0.0 0.000 0 0 S. 0.0 0.000 MS_{f} 0.0 0.000 0.000 2SM2 ... 2Q₁ P₁ 23 0.000 273.8 0.006 274.6 0.000 2MK3 М3 L_2 2MF 0.0 0.004 104.9 0.000 0.0 0.004 156.4 MS. 0.0 M₈ 2.9 0.000 0.002 Welaka NOS/NOAA Station Number: 8720832 Series Start Date: 1/1/1979 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.29600 MK₃ S₄ MN 0 0.0 0.003 98.6 0.000 0.000 Lambda 001 0.000 171.3 0.001 108.7 0.000 0.0 0.000 0.0 0.000 M₃ L₂ 2MK 000 0.0 0.004 143.3 0.000 мs. 0.0 0.005 330.5 0.000

```
Table D8—Continued
```

```
NOS/NOAA Station Number: 8720832
Welaka
Series Start Date: 3/1/1979
                                                       Series Length (in days): 29
Series Mean Sea Level (in feet): 3.33900
MK<sub>3</sub>
0.0
                                  Mu<sub>2</sub>
204 71.4
              S₄
0.002 143.8
                                                 Nu<sub>2</sub> S<sub>6</sub>
06 89.9 0.007 48.6
                                                                                             2N,
0.000
                              0.000
                                                                          0.004
                                                                                         0.004
                                                                                                 68.3
     001
                    Lambda
                                    S_1
                                      M<sub>1</sub>
0.0 0.001 294.8
                                                                                М,
                                                           0.002 239.7
0.001 211.7
               0.001 111.7 0.000
                                                                          0.000
                                                                                   0.0 0.000
                                                                                                  0.0
                   MS<sub>f</sub>
0.0
     S<sub>a</sub>
0.0
                                  Rho<sub>1</sub>
                                                                          T_2
0.002 117.4
                                                                                             R
              0.000
0.000
                              0.000
                                                                                         0.000 118.3
                                                                              2MK<sub>3</sub>
                                  2SM<sub>2</sub>
              P<sub>1</sub>
0.009 271.4
      2Q1
                                                 М,
                                                                L.
                                       ່ 0.0 0.000
                                                      0.0 0.004 125.4 0.000
                                                                                         0.007 118.8
0.001
        17 9
                              0.000
                   _____0.0
M<sub>8</sub>
0.009 309.3
              0.000
                                                       NOS/NOAA Station Number: 8720832
Welaka
Series Start Date: 4/1/1979
                                                       Series Length (in days): 29
Series Mean Sea Level (in feet): 3.03800
M<sub>2</sub> S<sub>2</sub> N<sub>2</sub> K<sub>1</sub> M<sub>4</sub> O<sub>1</sub> M<sub>6</sub>
0.191 109.3 0.023 143.9 0.042 87.3 0.022 289.3 0.041 210.0 0.011 298.8 0.036 196.9
                                  .
MN₄
                                                 S, M
0.005 185.6 0.000
                                                                              Mu<sub>2</sub>
     MK3
                                                                                             2N_2
                                      0.0 0.008
         0.0
                                                                                                  65.4
0.000
                                                                                  51.2 0.005
                                    S_1
                                       M<sub>1</sub>
0.0 0.001 294.0
     00,
                    Lambda
               0.001 125.4 0.000
                                                          0.001 284.6 0.000
                                                                                    0.0
0.001 279.8
                                                                                         0.000
                                                                                                   0.0
                   MS<sub>f</sub>
0 0.0 0.000
     S.
0.0
                                  M<sub>r</sub> Rho<sub>1</sub> V<sub>1</sub>
0 0.0 0.000 302.9 0.002 303.6
                                                                              Т,
                                                                                             R<sub>2</sub>
                                                                          0.001 142.5
0.000
               0.000
                                                                                         0.000 145.3
                                                                              2MK3
                                  2SM_2
              P<sub>1</sub> 25
0.007 290.0 0.000
                                                 M,
                                                      L_2 2MF
0.0 0.005 131.3 0.000
                                       0.0 0.000
0.000 308.3
                                                                                   0.0
                                                                                         0.006 146.7
                   мз.
0.0
M<sub>8</sub> M
0.007 313.5 0.000
Welaka
                                                       NOS/NOAA Station Number: 8720832
Series Start Date: 9/1/1978
                                                       Series Length (in days): 242
Series Mean Sea Level (in feet): 3.70000
MK3
0 0.0 0.000
Tut
                    S<sub>4</sub> MN<sub>4</sub> Nu<sub>2</sub>
0 0.0 0.011 180.6 0.008 103.5
                                                                              Mu<sub>2</sub>
                                                                s,
                                                                                             2N_{2}
                                                           0.000
                                                                     0.0
                                                                          0.006 251.1 0.000
0.000
                                                                                                   0.0
     001
                                                  M<sub>1</sub> 0.0
                    Lambda
                             S₁ №
0.007 66.6 0.000
                                                                 J_1
         0.0 0.005 116.7
                                                           0.000
                                                                    0.0
                                                                                    0.0
0.000
                                                                          0.000
                                                                                         0.000
                                                                                                   0.0
                   MS:
0.0
                                                Rho<sub>1</sub>
00 0.0 0.000
     S.
0.0
                                  Mf
                                                                          T<sub>2</sub>
0.006 14.0
                              0.000
                                      0.0
                                           0.000
              0.000
0.000
                                                                     0.0
                                                                                         0.000
                                                                                                   0.0
                                  2SM2 0.0 0.000
                    P<sub>1</sub>
0 0.0 0.000
     2Q_1
                                                 M_3
                                                      \begin{array}{c} & & & L_2 \\ 0.0 & 0.014 & 126.7 \end{array}
                                                                              2MK
0.000
         0.0
               0.000
                                                                          0.006 161.2 0.000
                                                                                                   0.0
M<sub>8</sub> MS<sub>4</sub>
0.005 324.2 0.009 269.7
Georgetown, St. Johns River
                                                       NOS/NOAA Station Number: 8720877
Series Start Date: 1/1/1974
                                                       Series Length (in days): 29
Series Mean Sea Level (in feet): 2.08500
               M_2
0.027 206.8
     мк<sub>3</sub>
0.0
              S<sub>4</sub> MN
0.001 147.9 0.000
                                  MN₄
                                                                              Mu<sub>2</sub>
                                      Nu<sub>2</sub>
0.0 0.001 164.7
                                                                                             2N
0.000
                                                           0.001 32.9
                                                                          0.001 187.0 0.000 109.6
     00
                    Lambda
                                   S_1
                                           M<sub>1</sub>
0.001 328.5
                                                           0.001 327.0
                                                                                    0.0 0.000 0.0
0.000 326.3
               0.000 205.1
                              0.000
                                       0.0
                                                                          0.000
     S.
0.0
                   MS<sub>f</sub>
0 0.0 0.000
                                  M<sub>f</sub> Rho<sub>1</sub>
0 0.0 0.000 329.9
                                                           Q_1 T_2 R_2
0.002 330.0 0.000 203.4 0.000 203.1
0.000
               0.000
                                  2SM<sub>2</sub> <sup>M3</sup>
0 0.0 0.000
                                                                              2MK<sub>3</sub>
     20
              P_1
0.001 327.9
                                                    L_2
0.0 0.001 255.4
0.000 330.7
                             0.000
                                                                          0.000
                                                                                         0.001 202.9
                   M<sub>g</sub> Ms
0.005 323.8 0.000
```

Table D8—Continued

Georgetown, St. Johns River NOS/NOAA Station Number: 8720877 Series Start Date: 10/1/1974 Series Length (in days): 29 Series Mean Sea Level (in feet): 3.91700 N2 0.005 266.8 $K_1 M_4 0.005 331.9 0.002$ M₂ 0.019 226.2 S_2 м 0.005 10.7 79.5 0.004 56.3 0.002 286.1 мк₃ 0.0 S₄ 0.000 150.0 2N₂ Nu₂ 0.001 261.3 S₆ 0.002 43.4 MN4 Mu_2 0.000 0.0 0.000 0.000 58.3 0.001 307.3 00. Lambda \mathbf{S}_1 M_1 J. Μ, 0.000 290.0 0.000 0.0 0.000 13.7 0.000 0.000 293.2 0.000 0.0 0.0 0.000 247.4 Rho₁ 92.5 MSf Mf Sa Q1 T_2 0.000 R 0.0 0.000 0.000 0.000 0.0 0.000 0.0 0.001 98.2 4.9 0.000 16.4 0 2SM₂ 0.0 P₁ 0.002 338.2 M3 20 L₂ 0.001 185.6 2MK3 0.000 0.000 0.0 0.000 0.0 0.001 22.4 0.000 140.1 MS4 M₈ M 0.001 111.2 0.000 6.0 Georgetown, St. Johns River NOS/NOAA Station Number: 8720877 Series Start Date: 4/1/1975 Series Length (in days): 29 Series Mean Sea Level (in feet): 2.28100 M_2 S_2 N_2 K_1 0.003 342.6 0.007 176.3 0.014 12.6 0.006 245.1 0.027 228.6 0.002 70.0 0.007 311.3 S₄ 0.001 248.9 MK3 MN_4 Mu₂ Nu_2 S۵ 2N. 0.0 0.001 183.3 0.000 0.0 0.000 0.001 350.3 0.001 91.2 0.001 124.0 M₁ 41.1 S_1 001 Lambda Μ, 0.000 315.2 0.000 281.5 0.000 0.0 0.000 0.000 344.1 0.000 0.0 0.000 0.0 Rho₁ 20 94.6 Sa MSt Mf 0, т. R. 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.001 98.5 0.000 338.0 0.000 347.1 P₁ 0.005 16.9 $2SM_2$ 2MK₃ 2Q1 М, Tu K-0.000 ່ວ.ວ ວ.ວວັ 0.0 0.001 280.9 0.000 0.001 351.8 0.000 126.9 0.0 M₈ 5 80.1 0.000 MS4 0.0 0.006 Georgetown, St. Johns River NOS/NOAA Station Number: 8720877 Series Start Date: 5/1/1975 Series Length (in days): 29 Series Mean Sea Level (in feet): 2.46600 M₂ 0.029 231.8 S_2 N_2 0.012 306.1 0.001 K_1 M_4 87.9 0.007 80.6 0.001 299.0 N_2 0.009 3.8 0.014 294.8 мк₃ 0.0 S. 0.004 189.1 $2N_2$ Nu₂ 0.0 0.000 107.2 MN₄ S₆ 0.002 295.0 Mu₂ 0.000 0.000 0.001 134.1 0.000 304.1 S_1 00. Lambda Μ1 0.000 157.4 0.000 266.2 0.001 118.7 0.000 0.0 0.001 42.5 0 000 0 0 0 000 0 0 Mf S_a Rho₁ 0.0 0.000 330.9 MS_{f} Q₁ 0.002 325.7 0.000 0.000 0.0 0.0 0.000 0.001 303.1 0.000 309.0 P₁ 74.9 $2SM_2$ 2MK3 20 L₂ 0.001 M_3 0.002 0.000 0.0 0.000 0.000 0.000 287.6 0.0 15.6 0 0 0.003 312 1 мs, 0.0 M_s 46.5 0.000 0.004 Daytona Beach NOS/NOAA Station Number: 8721120 Series Start Date: 1/1/1982 Series Length (in days): 365 Series Mean Sea Level (in feet): 4.25000
 M2
 S2
 N2
 K1
 M4
 O1
 M6

 1.855
 225.5
 0.312
 241.6
 0.426
 206.7
 0.330
 121.0
 0.032
 143.4
 0.256
 131.0
 0.010
 266.0
 S₄ MN₄ 0.016 294.6 0.011 132.3 Nu₂ 0.090 196.4 MK, Mu₂ 2N. 0.007 264.7 0.003 91.5 0.055 218.6 0.063 191.6 Lambda S1 90.4 M₁ 0.006 157.1 001 M, 0.020 123.9 0.026 306.3 0.028 0.025 131.2 0.052 282.9 0.375 73.5 S. 205.1 MSf Rho₁ Q₁ 0.046 135.2 Mf $\begin{array}{ccc} T_2 & R_2 \\ 0.031 \ 230.3 & 0.019 \end{array}$ 0.390 0.035 99.6 0.060 274.9 0.014 126.5 72.5 2Q1 P₁ 0.104 121.5 2MK, K₂ 0.011 264.0 0.084 245.8 0.009 131.2 MS_4 M₈ MS₄ 0.001 276.4 0.034 163.8

Daytona Beach NOS/NOAA Station Number: 8721120 Series Start Date: N/A Series Length (in days): N/A Series Mean Sea Level (in feet): 4.66700 Μ, S₂ 0.278 239.9 N₂ 0.445 205.3 K₁ 0.385 128.9 0.036 166.5 0.228 127.7 0.007 266.1 1.853 227.7 MIN4 Mu₂ S. 0.033 287.7 Nu₂ 0.086 208.3 MK_3 S, 0.007 101.7 $2N_{2}$ 0.000 0.0 0.000 0.0 0.044 193.4 0.059 182.8 S_1 00 Lambda Μ. 0.010 130.1 0.013 233.4 0.000 0.0 0.016 128.3 0.018 129.5 0.000 0.0 0.000 0.0 MSf T₂ 0.016 240.1 S_a Mf Rho₁ Q R. 0.000 0.0 0.000 0.0 0.000 0.0 0.009 127.2 0.044 127.1 0.002 239.7 $\mathbf{P_1}$ $2SM_2$ 2MK3 20 M₂ L₂ 0.052 250.1 0.006 126.5 0.127 0.000 0.0 0.000 0.0 0.000 0.0 129.3 0.076 239.5 M₈ 0.001 267.7 MS₄ 0.000 0.0 NOS/NOAA Station Number: 8721456 Titusville Series Start Date: 1/1/1983 Series Length (in days): 365 Series Mean Sea Level (in feet): 3.99200 S_2 N_2 K_1 0.003 105.0 0.004 Μ, 0.014 143.3 0.005 150.3 36.2 0.001 135.1 0.005 334.6 0.001 346.3 S. 0 57.2 MN₄ Nu₂ Mu₂ MK. $2N_2$ 0.000 0.001 119.1 0.000 0.001 85.8 0.001 88.9 19.9 0.001 185.8 0.001 197.1 Lambda 00 M_1

0.002 283.9 0.209 0.002 141.3 0.001 142.7 0.013 165.8 0.003 257.1 0.075 22.7 20.8 Rho₁ 77 42.2 MS_f T. Mf 0, R 232.7 0.034 146.2 0.042 84.5 0.002 0.002 353.1 0.000 88.8 0.181 0.000 224.5 $\mathbf{P_1}$ 2SM2MK Μ, 0.003 198.0 0.002 75.2 0.000 331.1 0.000 180.0 0.000 176.9 0.000 257.5 0.001 191.0 MS, 0.000 112.5 0.000 140.7

Note: N/A = not available

The symbol of each constituent is centered above the corresponding amplitude and phase of that constituent (see Table 3.13 for name of most constituents). For example, under Little St. Marys River, constituent M_2 has an amplitude of 1.881 feet (NGVD) and a phase of 312.7 degrees relative to local meridian.

Station Number*	Station Name	River Mile** -	<i>F</i>	Phase		
			$\frac{K_1 + O_1}{M_2 + S_2}$	M ₄ M ₂	M ₆ M ₂	- Expression M_2 - K_1 - O_1
8720194	Little Talbot Island	†	0.207	0.019	0.008	-014.7
8720220	Mayport	2.4	0.186	0.037	0.014	-028.0
8720232	Pablo Creek entrance	5.0	0.227	0.027	0.021	-040.0
8720221	Fulton	7.8	0.164	0.011	0.028	-038.7
8720198	Clapboard Creek	8.7	0.185	0.017	0.034	-038.0
8720203	Blount Island Bridge	10.8	0.223	0.017	0.034	-037.6
8720219	Dame Point	10.8	0.184	0.019	0.044	-050.8
8720215	Jacksonville, Navy Fuel Depot	15.6	0.176	0.031	0.061	-049.3
8720225	Phoenix Park	16.9	0.189	0.040	0.056	-054.0
8720242	USACE dredge depot	19.0	0.172	0.035	0.062	-057.1
8720274	Little Pottsburg Creek	22.6	0.190	0.039	0.049	-052.6
8720268	Jacksonville, Acosta Bridge	24.0	0.188	0.027	0.053	-069.5
8720296	Ortega River entrance	28.0	0.200	0.057	0.075	-085.4
8720333	Piney Point (NAS)	31.0	0.167	0.047	0.070	-105.1
8720374	Orange Park	36.0	0.279	0.07 9	0.079	-087.9
8720409	Julington Creek	40.5	0.300	0.111	0.111	-079.4
8720496	Green Cove Springs	47.0	0.275	0.083	0.083	-073.7
8720596	East Tocoi	60.5	0.234	0.070	0.070	-072.1
8720653	Palmetto Bluff (Bridgeport)	66.5	0.216	0.061	0.061	-062.8
8720774	Palatka	79.5	0.164	0.093	0.056	-047.9
8720767	Buffalo Bluff	90.0	0.104	0.045	0.091	-071.2
8720832	Welaka	100.4	0.118	0.267	0.133	-096.7
8720877	Georgetown	109.4			·	

Table D9. Ratios of harmonic constituents (1992 analysis)

Note: ----- = negligible values

*See Figure 3.10a–d for location of stations **River miles taken from file used to create Figures 3.1a–d †Station not located directly on the St. Johns River

See Table 3.13 for name of constituents

Source: USACE Jacksonville 1994b, 12, Table 3

Station Number*	Station Name	River Mile**	MSL NGVD	MHW NGVD	MTL NGVD	MLLW
8720194	Little Talbot Island	†	0.48	3.28	0.53	-2.41
8720220	Mayport	2.4	0.36	2.56	0.31	-2.10
8720232	Pablo Creek entrance	5.0	0.41	2.36	0.41	-1.64
8720221	Fulton@	7.8	0.46	2.26	0.43	-1.51
8720198	Clapboard Creek	8.7	0.47	2.29	0.47	-1.47
8720203	Blount Island Bridge	10.8	0.55	2.18	0.43	-1.44
8720219	Dame Point	10.8	0.48	2.04	0.45	-1.25
8720215	Jacksonville, Navy Fuel Depot	15.6	0.56	1.87	0.56	-0.84
8720225	Phoenix Park@	16.9	0.56	1.83	0.56	-0.80
8720242	USACE dredge depot	19.0	0.72	1.77	0.73	-0.39
8720274	Little Pottsburg Creek@	22.6	0.76	1.80	0.77	-0.35
8720268	Jacksonville, Acosta Bridge@	24.0	0.77	1.51	0.75	-0.09
8720296	Ortega River entrance@	28.0	0.81	1.40	0.85	0.22
8720333	Piney Point (NAS)@	31.0	0.76	1.23	0.7 9	0.28
8720374	Orange Park@	36.0	0.68	1.05	0.68	0.23
8720409	Julington Creek@	40.5	0.80	1.16	0.81	0.38
8720496	Green Cove Springs	47.0	0.70	1.06	0.69	0.25
8720596	East Tocoi@	60.5	0.69	1.13	0.68	0.16
8720653	Palmetto Bluff@ (Bridgeport)	66.5	0.65	1.19	0.67	0.08
8720774	Palatka	79.5	0.62	1.19	0.65	0.17
8720767	Buffalo Bluff@	90.0	0.86	1.37	0.90	0.38
8720832	Welaka@	100.4	0.90	1.09	0.92	0.70

Table D10. Relationships of tidal datums to National Geodetic Vertical Datum (1992 analysis)

Note: MSL = mean sea level

NGVD = feet, National Geodetic Vertical Datum

MHW = mean high water

MTL = mean tide level

MLLW = mean lower low water

*See Figure 3.10a-d for location of stations

**River miles taken from file used to create Figures 3.1a-d

†Station not located directly on the St. Johns River

@NGVD elevations are preliminary and may be adjusted later

Source: USACE Jacksonville 1994b, 12, Table 5

APPENDIX E: MAINSTEM FLOW

,

LONG-TERM MEAN DISCHARGE/DRAINAGE COEFFICIENT CALCULATION

An approximate measure of the relationship between total runoff and mainstem flow is traditionally obtained by dividing the measured mean discharge at a location by the upstream surface drainage area. It is reasonable to assume that the accuracy of the statistical calculation will increase as more stations are included. The available means of annual flow in the river are shown in Table E1, for data collected to 1993, where available.

Reference Water Year	Location of Discharge	Number of Years of Record	Drainage Surface Area (mi ²)	Mean Discharge (cfs)	Cumulative Discharge/Drainage Area Coefficient (cfs/mi ²)
1993	Big Davis Creek	28	13.6	10.6	0.779
1993	Ortega River	29	30.9	36.8	1.191
1993	Middle Haw Creek	19	78.3	69.4	0.886
1993	Little Haw Creek	43	93.0	80.9	0.870
1986	Dunns Creek	8	585.0	455.0	0.778
1993	Near Melbourne	54	968.0	660.0	0.682
1993	Near Cocoa	40	1,331.0	967.0	0.727
1993	Near Christmas	60	1,539.0	1281.0	0.832
1993	Rodman Dam	25	2,097.0*	1353.0	0.645
1993	De Land	60	3,066.0	3039.0	0.991
1994	Buffalo Bluff	1	5,930.0	5360.0	0.904
1982	Palatka	13	6,444.0*	5945.0	0.923
1993	Jacksonville	23	8,200.0*	6105.0	0.745

Table E1. Drainage areas and long-term mean discharge to the main stem

Note: cfs/mi² = cubic feet per second per square mile

*Indicates that, for this table, the area of Paynes Prairie has been omitted from USGS-tabulated drainage area of this basin, because Paynes Prairie is a controlled part of the watershed and does not contribute to drainage from this basin to the St. Johns River.

Source: USGS, Water Year (see Reference Water Year column)

EXPLANATION OF THE MINIMUM, MEAN, AND MAXIMUM DAILY VALUE TABLES

The monthly means of the daily values and the minimum and maximum daily values for each month in the period of record for which USGS data are available through WY 1992 for De Land, Rodman Dam, Buckman Lock, Dunns Creek, Palatka, and Jacksonville are tabulated in this appendix. The minimum, mean, and maximum values for each month enable a summary and comparison to be made of the monthly fluctuations over the period of record. It should be noted that the extremes of the daily fluctuations are listed.

The three rightmost columns (YR MIN, YR MEAN, YR MAX, not counting the far righthand column for YEAR) in Tables E2–E22 provide the minimum, mean, and maximum monthly flows for the year. The three sets of values (ANN MIN, ANN MEAN, ANN MAX) for each of these three columns below the last year of record (e.g., 1992) are the minimum, mean, and maximum values for each column directly above. The last three lines (MO MIN, MO MEAN, MO MAX) are the monthly statistics of the minimums, means, and maximums of the monthly values (last three rightmost columns) on the same line.

MINIMUM DAILY FLOW

* 1 V*/

.

Table E2. Station 02236000, De Land. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

	•																	
	YE	AR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV_	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	199 199 199 199 199 199 199 199 199 199	356789012345678901234567890123456789012345678901234567890 1	$\begin{array}{c} 2360\\ 2870\\ 3770\\ 3770\\ 1960\\ 4722\\ 23700\\ 1960\\ 4722\\ 23700\\ 32170\\ 1960\\ 1223\\ 3700\\ 11960\\ 223370\\ 32170\\ 1223\\ 3700\\ 11960\\ 1223370\\ 32170\\ 11960\\ 11820\\ 010\\ 11820\\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 560 \\ 5420 \\ 5420 \\ 5429 \\$	$\begin{array}{c} 1260000000000000000000$	$\begin{array}{c} 1450\\ 60\\ 870\\ 470\\ 1870\\ 1870\\ 1410\\ 1010\\ 8678\\ 1530\\ 12250\\ 700\\ 12250\\ 700\\ 9900\\ 1400\\ 9960\\ 30703\\ -17120\\ 7520\\ 12230\\ 9000\\ -9670\\ 30703\\ -17120\\ 7520\\ -2752\\ 00\\ -2931\\ -5419\\ -5599\\ -5419\\ 1130\\ 99130\\ -1132\\ 99130\\ -1132\\ 99130\\ -20640\\ 289917\\ -5419\\ -559\\ -5419\\ -550\\ -559\\ -5419\\ -550\\ -50\\ -$	$\begin{array}{c} 4260\\ 1430\\ 8265\\ 490\\ 7583\\ 8558\\ 13900\\ 1113900\\ 7080\\ 106620\\ 9700\\ 1485560\\ 106620\\ 9700\\ 1485560\\ 106620\\ 9700\\ 1485560\\ 106620\\ 97880\\ 106620\\ 106620\\ 97880\\ 106620\\ 10660\\ 106620\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 10660\\ 1060$	$\begin{array}{c} 7 & 950 \\ 9 & 200 \\ 9 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\ 1 & 200 \\ 2 & 100 \\$	563000000000000000000000000000000000000	4215522400000000000000000000000000000000	$\begin{array}{c} 2680\\ 2680\\ 1310\\ 3860\\ 2660\\ 32860\\ 245530\\ 640210\\ 000\\ 0000\\ 000\\ 000\\ 000\\ 0000\\ 0000\\ 0000\\ 000\\ 000\\ 0000\\ 0000\\ 0000\\ $	$\begin{array}{c} 514000\\ 514000\\ 65887755100000000000000000000000000000000$	$\begin{array}{c} 1240\\ 121720\\ 12720\\ 15278\\ 973506\\ 61095000000\\ 13379130721\\ 880000000000000000000\\ 13379130720\\ 133791357700000000\\ 133791357700000000\\ 133791357700000000\\ 1337913577000000000\\ 13379135770000000000\\ 1337910000000000000000\\ 133791000000000000000000\\ 13379100000000000000000000\\ 1337910000000000000000000000000\\ 133791000000000000000000000000000000\\ 1337910000000000000000000000000000000000$	$\begin{array}{c} 510\\ 370\\ 370\\ 295\\ 240\\ 7556\\ 418\\ 448\\ 448\\ 449\\ 590\\ 542\\ 835\\ 1060\\ -3030\\ -658\\ 9900\\ 658\\ 9900\\ -668\\ 9900\\ -30300\\ -30300\\ -30300\\ -30300\\ -30300\\ -12600\\ -30300\\ -12600\\ -22510\\ -12600\\ -22500\\ -12720\\ -22300\\ -12600\\ -12600\\ -2650\\ -12720\\ -22300\\ -12600\\ -12600\\ -2650\\ -12720\\ -22420\\ -12300\\ -12500\\ -22300\\ -12500\\ -2230\\ -22440\\ -1355\\ -786\\ -214\\ -63\\ -593$	2863 22776 196394 38084 22920 2215477 196394 320220 2215477 22954 2295477 2295477 2295477 2295477 2295477 2275721 22954777 2161477 22757214 237255 1242424 2115579 227549600 2275496000000000000000000000000000000000000	20000000000000000000000000000000000000	19345 199377 199377 199378 199378 199378 199442 1994445 19957 1995
	MIN														-3030 -392	-1090 1741	775 5177	ANN ANN
	MEAN														1220	· 5215	13900	ANN
ί μ	MAX																	
л	MO MIN MO MEAN MO MAX	-1880 1421 6110	10	84 12	50 -19 09 12 20 73	90 -23 18 4 10 32	36 4	40 -17 68 19 60 102	03 23	30 -30 89 26 10 87	20 -23 79 33 20 139	40 -16 03 28 00 91	99 19	57	3030 - 436 3270	1747 :	3303 MC) MIN MEAN MAX

336	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1969 1970 1971 1973 1973 1974 1975 1976 1976 1977 1977 1977 19881 19881 19881 19882 19884 19885 19884 19885 19889 19889 19890 1991	$\begin{array}{c} 1740\\ 2810\\ 1130\\ 9261\\ 585\\ 9788\\ 1230\\ 705\\ 1310\\ 405\\ 2005\\ 1310\\ 4088\\ 808\\ 573\\ 335\\ 569\end{array}$	1290 3290 14200 1220 1220 1220 1220 1220 1070 555 1010 5559 1070 405 1070 473 1090 473 1000 565 715 715 827 427	0 3490 1440 9705 9705 955 1305 797 4606 955 1305 797 18600 1600 1000 1000 1000 1000 1000 281	$\begin{array}{c} 1800\\ 3020\\ 1080\\ 983\\ 1585\\ 5585\\ 473\\ 517\\ 9585\\ 1230\\ 3614\\ 2350\\ 1390\\ 1448\\ 275\\ 1870\\ 575\\ 1875\\ 356\end{array}$	1920 1480 9957 585 585 581 473 389 705 748 3705 1040 7045 353 187 1040 353 187 1040 574	$\begin{array}{c} 150\\ 1010\\ 6439\\ 9467\\ 6439\\ 64975\\ 1230\\ 473\\ 8265\\ 1230\\ 1230\\ 3557\\ 3555\\ 3557\\ 3555\\ 4201\\ 807\end{array}$	$\begin{array}{c} 180\\ 1300\\ 6630\\ 698\\ 1750\\ 5955\\ 427\\ 1095\\ 4270\\ 1350\\ 473\\ 2120\\ 1355\\ 473\\ 353\\ 473\\ 5768\\ 5776\\ 5576\\ 576\end{array}$	1400 900 9950 14200 17505 7055 705 705 705 705 705 705 705 70	1900 1800 872 1300 1490 9555 12780 5878 12780 5878 1110 4883 4895 488 4895 482 430	2810 1040 846 975 5455 9555 473 6370 13705 9555 5003 353 429 618 429 430	2160 423 8545 9858 8966 8496 822 4735 3442 8749 8266 8278 8276 8276 8276 8276 8276 8276	2230 904 1060 8964 630 705 668 585 1040 707 785 1090 532 710 592 427 1170 570 522	0 423 6443 7891 54293 4781 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4753 5594 4755 4755 4755 4755 4755 4755 4755	$\begin{array}{c} 1465\\ 1789\\ 10001\\ 9728\\ 7286\\ 620\\ 9333\\ 799\\ 380\\ 921\\ 1278\\ 9855\\ 728\\ 5355\\ 7211\\ 5731\\ 5731\\ 5510\\ \end{array}$	2810 3490 1440 1490 1750 978 1230 1230 1230 1230 1780 1310 478 2120 2350 2020 874 1000 1870 1170 852 713 807	1969 1970 1971 1972 1973 1974 1975 1976 1977 1977 1977 1977 1977 1980 1988 1988 1988 1988 1988 1988 1988
														0 427 826	380 849 1789	478 1526 3490	ANN MIN ANN MEAN ANN MAX
	MO MIN MO MEAN MO MAX	335 943 2810	353 900 3290	0 934 3490	275 986 3020	187 727 1920	150 715 1230	180 790 2120	349 893 1850	353 972 1900	353 814 2810	344 725 2160	291 826 2230	0 715 1230	264 852 2403	353 986 3490	MO MIN MO MEAN MO MAX

Table E3. Station 02243960, Rodman Dam. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

Table E4. Station 02244032, Buckman Lock. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1970 1971 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1985 1986 1987 1988 1988 1988 1989 19991	0 0004 2 0000090000000000000000000000000	0 15 00 13 12 00 00 00 00 00 12 11 20 00 16	0 0 25 11 20 0 0 11 0 33 0 0 0 0 12 0	0 0 14 29 0 0 13 13 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 16 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	01008041213112262341012	0 15 0 25 29 16 20 13 113 13 113 114 16 8 12 16	1970 19771 19773 19774 19774 19776 19778 19779 19881 19883 19884 19884 19887 19888 19887 19887 19887 19982 19992
													000	0 2 8	0 13 38	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAN MO MAX	0 1 24	0 4 21	0 5 33	0 5 38	0 1 16	000	0 1 11	0 0 0	0 0 6	0 3 13	0 2 14	0 1 16	0 0 0	0 2 16	0 5 38	MO MIN MO MEAN MO MAX

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1978 1979 1980 1982 1983 1983 1985 1985	-459 -621 -483 -391 -690 -1140 -1240 -1110 -3480	-3160 -3800 -430 -2410 1420 -446 -1450 -2060	-742 -579 -1420 -680 -508 -1230 -3970	-1950 -521 -1010 -124 -894 -1730 -1730	-1530 -97 -486 -966 -1190 -1730 -4520	-750 -955 -853 -800 -842 -1620 -1100 -1770 -2550	-2680 -150 -275 -1110 -665 -1340 -1320	-1590 -774 -650 -1280 -463 -1020 -1290 -3670	-1660 -1310 -701 -355 -913 -1720 533 -1960	-2780 -151 -1590 -2740 -2310 -833	-1560 -910 -838 -1630 -584 -188 -2970 -753	-2420 -965 -1530 -1610 -1400 -395 -449 -1350	-3160 -3800 -1590 -2740 -2410 -1770 -2970 -1770 -4520	-1773 -1022 -931 -942 -1070 -698 -929 -1385 -2807	-459 -150 -430 -97 -275 1420 533 -753 -1320	1978 1979 1980 1981 1982 1983 1984 1985 1985
													-4520 -2742 -1590	-2807 -1284 -698	-1320 -170 1420	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAN MO MAX	-3480 -1068 -391	-3800 -1408 1420	-3970 -1324 -508	-1950 -1137 -124	-4520 -1469 -97	-2550 -1249 -750	-2680 -964 -150	-3670 -1342 -463	-1960 -1011 533	-2780 -1734 -151	-2970 -1179 -188	-2420 -1265 -395	-4520 -1734 -750	-3063 -1262 -105	-1950 -964 1420	MO MIN MO MEAN MO MAX

Table E5. Station 02244440, Dunns Creek. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

Table E6.	Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Minimum daily flow, cfs (USGS data), and
	summaries of means and extremes

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1969 19771 19772 19773 19775 19776 19777 19777 197778 19788 198882 198882 198883 198885 198885 198885 198880 199882 19982 19991	3150 39200 -787196 2068320 2068320 206834 1999 341527 393383 393383 24500 10203 31383 393383 24500 10203 2450000000000	1290 92205 7000 2621 -3222 -342 2460 -1211 -615 -615 -1718 -2818 -2818 -915 1332 711 3926 1737 1302 -577	$\begin{array}{c} 200\\ 7300\\ -480\\ 1570\\ 2018\\ -490\\ -1121\\ -713\\ 1225\\ 5088\\ 3316\\ 402\\ -2332\\ 6800\\ 2702\\ -2696\\ 3270\\ 3781\\ 510\\ 3270\\ 32781\\ 510\\ 9\\ 230\\ 170\end{array}$	$\begin{array}{c} 4170\\ 5760\\ -4750\\ -4750\\ -9641\\ -3132\\ -14889\\ -26485\\ -4294\\ -42946\\ -42946\\ -42946\\ -42946\\ -42946\\ -42946\\ -42946\\ -42946\\ -4298\\ -$	$\begin{array}{r} 2680\\ 1980\\ -1957\\ 9960\\ -2360\\ -89\\ -9562\\ 19562\\ -9562\\ -18059\\ 29564\\ -18059\\ 29564\\ -18059\\ 29564\\ -24465\\ 2200\\ 1388\\ 5770\\ 5716\\ -3720\\ \end{array}$	660 1390 1397 -543 1501 1523 1264 594 -2887 -2887 -2887 -2887 -2887 -2663 1314 672 640 1653 1060	$\begin{array}{c} 1480\\ 1033\\ 1970\\ 2038\\ 61005\\ 4485\\ 10\\ 605\\ 2295\\ 2630\\ -1682\\ 8875\\ 2630\\ -163\\ 1028\\ 1260\\ 6458\\ 3596\\ 1500 \end{array}$	3020 2015 28970 91305 39953 54505 -17187 27633 -25399 19666 8769 1680	61998 -380 367890 36789955 17170 3073995 17170 28049 1099917 378865 40500 40500 40500	$\begin{array}{c} 7190\\ 1830\\ 666\\ 4005\\ 67455\\ 3915\\ 1-3102\\ -90021\\ -46954\\ 29155\\ 55949\\ 7305\\ 9412\\ 2080\\ 1159\\ 2080\\ \end{array}$	$\begin{array}{c} 9040\\ -987\\ 1654\\ 3918\\ 23676\\ 2671\\ 98054\\ -1796\\ -2684\\ 319054\\ -27887\\ 32025\\ -224251\\ 12787\\ 12787\\ 12490\\ 163090\\ 3090\\ \end{array}$	$\begin{array}{c} 8450\\ 6600\\ 27756\\ 186505\\ 20756\\ 20558\\ -61355\\ -18655\\ 2114\\ -18655\\ 21143\\ -1865\\ 21143\\ -1865\\ 21143\\$	$\begin{array}{r} 200\\ -987\\ -480\\ 877\\ -543\\ -734\\ -1211\\ -1484\\ -1211\\ -6155\\ -2818\\ -46955\\ -2818\\ -2425\\ -22507\\ -44655\\ -242507\\ -4465\\ -588\\ 358\\ 2300\\ -577\end{array}$	3957 35165 1742 28047 18551 14552 -1494 -1494 31932 19456 24995 -24947 31932 19456 24921 2368 24921	9040 902050 36780 902050 90050 90070000000000	1969 1970 1977 1977 1977 1977 1977 1977 197
													-4695 -1001 1260	-1494 1633 3957	1091 5013 9536	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAN MO MIN	-734 1607 8920	-2818 1203 9220	-2696 1266 7300	-1488 1386 9536	-4465 380 2964	-2887 562 1653	-1682 1938 8875	-2539 2576 9130	-986 2858 7390	-4695 2331 9002	-2684 2031 9040	-3143 1710 8450	-4695 380 1653	-2568 1654 7623	-734 2858 9536	MO MIN MO MEAN MO MAX

	140/10		CION VAA		aracha.		. daily 1	TOAL CIG		aca,, an		700 UL 1	Bans and	OVCT OTTOO	•		
338	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YRMAX	YEAR
	1968 1970 1977 1977 1977 1977 1975 1977 1977 1978 1978 1980	-11300 -8590 -11300 -7850 -5430 -9030 -8500 418 1860	$\begin{array}{c} -10300\\ -2250\\ 102820\\ -11900\\ -11900\\ -4140\\ -13900\\ -5480\\ -5480\\ -10400\\ -12800\end{array}$	-4520 657 -2470 -6360 -5740 -437 -9210 -7810 -4840 769 342	-9220 -3260 4630 -1230 -12100 1410 -6810 -8420 -5720 -2620 -2730	-9680 -4230 -5550 -9590 -10900 -2820 -5230 -7920 -12500 -1330 -6460	-20400 -2210 -6630 -2320 -1210 -7940 -7680 -1630 -3030 -12700	5310 -1640 -1000 -4460 -3560 -3320 -4890 -1270 -6680 -7710 -5970	-13700 -4210 -3280 -3110 -2770 1930 10600 -4880 -7780 -2250 1580 -11100	-2510 -8230 -9600 -3240 3710 -4150 -10200 -1040 -1970 985 -11400 -11800	-3150 2840 -9380 -11900 -753 -8570 -5780 -14900 -9000 -9240 -7540	7280 11500 -4310 -5560 -7650 -11500 1670 -3100 -10000 -8580 -12200	-2090 3470 -5610 -14300 -6830 -713 -4690 -4160 -11500 -1500 -10700	-20400 -8590 -9380 -14300 -12100 -17700 -11500 -13900 -14900 -12500 -12800	$\begin{array}{r} -6190\\ -1346\\ -1838\\ -6707\\ -7418\\ -2970\\ -3734\\ -6617\\ -5935\\ -66198\\ -4155\\ -6096\end{array}$	$\begin{array}{c} 7280\\ 11500\\ 10200\\ -1000\\ -2320\\ 3710\\ 10600\\ 1670\\ 1270\\ -1630\\ 1580\\ 1860\end{array}$	1968 1969 1971 1972 1973 1973 1974 1975 1976 1977 1978 1978 1979 1978
	1981 1982	-9030 -1270	-11300 -6530	-4000 -3410	-6110 -3030	-11300 174	-6210 -294	-2480 4360	-2320 8510	396 4640	-6560	528	-1610	-11300 -6530	-5088 350	396 8510	1981 1982
														-20400 -12614 -6530	-7418 -4567 350	-2320 3830 11500	ANN MIN ANN MEAN ANN MAX
	MO MIN MO MEAN MO MAX	-11300 -4892 6140	-17700 -7343 10200	-9210 -3618 769	-12100 -4247 4630	-12500 -6718 174	-20400 -6088 -294	-7710 -1629 5310	-13700 -2341 10600	-11800 -3963 4640	-14900 -6845 2840	-12200 -3734 11500	-14300 -5378 3470	-20400 -7343 -294	-13152 -4733 4998	-7710 -1629 11500	MO MIN MO MEAN MO MAX

Table E7. Station 02244450, Palatka. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

Table E8. Station 02246500, Jacksonville. Minimum daily flow, cfs (USGS data), and summaries of means and extremes

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1972 1973 1974 1975	-28100 -26800 -49100 -35200	-51000 -35000 -41600 -61500	-41600 -25100 -31600 -31200	-55800 -31400 -24000 -26400	-37500 -29000 -22200 -16900	-24600 -23500 -39200 -5000	-4230 -20600 -15600 -647	-16400 -10900 -6190 -28800	-15200 -12200 -48300 -20600	-62700 -30400 -37500	-40000 -41100 -42300	-24700 -52400 -32400	-62700 -52400 -49100 -61500	-33486 -28200 -32499 -25139	-4230 -10900 -6190 -647	1972 1973 1974 1975
	1980 1981	-10200	-21400	-36600	-24900	-23100	-7260	-14700	-9570	-29500 -11700		-15800	-472	-36600	-17714	-7260	1980 1981
	1987 1988 1989 1990 1991	-13300 -30500 1360 -31100	-26000 -32000 -23900	-22400 -24200 -21700	-15800 -23000 -28700	-45400 -28100 -21300	-16700 -11300 -8440	-11400 -8820 -11600 -24000	-1640 -17700 -19200 -9510	-3740 -28600 -21600 -9800	-13900 -26800 -39500 -10400	-20500 -17600 -7390	-12600 -20400 -20100 -12900	-20500 -45400 -39500 -28700	-10630 -21993 -23225 -14723	-1640 -8820 -11300 1360	1987 1988 1989 1990 1991
														-62700 -44044 -20500	-33486 -23068 -10630	-11300 -5514 1360	ANN MIN ANN MEAN ANN MAX
M	IO MIN IO MEAN IO MAX	-49100 -24771 1360	-61500 -36550 -21400	-41600 -29300 -21700	-55800 -28750 -15800	-45400 -27938 -16900	-39200 -17000 -5000	-24000 -12400 -647	-28800 -13323 -1640	-48300 -20124 -3740	-62700 -31600 -10400	-42300 -26384 -7390	-52400 -21997 -472	-62700 -36550 -21700	-45925 -24178 -8644	-24000 -12400 1360	MO MIN MO MEAN MO MAX

÷

MEAN DAILY FLOW

•

. .

.

	Table E9.	Station 02236000,	De Land.	Mean daily	y flow, cfs	(USGS data),	and summar:	ies of	E means and	l extremes
--	-----------	-------------------	----------	------------	-------------	--------------	-------------	--------	-------------	------------

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1934 1935 1937 1938 19939 19941 19943 19944 19944 19944 19944 19944 19944 19944 19944 19944 19944 19944 19945 19955 19955 19955 19966 199666 199666 19977 19977 19977 19977 19977 19977 19988 12988 19	$\begin{array}{c} 02411339462399101867791357768129925436499906822616428593394427666059\\ 0244187955467147923576865401512899658261642859339344276521124420\\ 122390447392547791235768129921436499906826164285933934427666059\\ 122329044739214427666059\\ 122329044739214427666059\\ 122329044739214427666059\\ 12232904473912666059\\ 122329044739214427666059\\ 122329044739214427666059\\ 12232904473921666059\\ 1223290447392166059\\ 1223290447392166059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 12232904473921666059\\ 1223290447392666059\\ 1223290666666\\ 12232906666666\\ 1223290666666\\ 1223290666666\\ 1223290666666\\ 1223290666666\\ 1223290666666\\ 122329066666\\ 122329066666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 1223290666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 12232906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 1223906666\\ 12239066666\\ 1223906666\\ 122366666\\ 122366666\\ 122366666\\ 122366666\\ 122366$	$\begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 2851460958002551001261331165551076024993338002010767475546663951627661\\ 285140035951025510128986951107602499338002010767475546639516276678661\\ 251469580255100261331112898695110760249933800201077674755466639516627661\\ 251469580255100261331112898695110760249933800201077674755466639516627661\\ 251469580255100261331165551076662395166276661\\ 251469580255100261331165551076662395166276662\\ 251469580255100261331165551076662395166276662\\ 25146958025510026613311625566799277866556794766663951662766662\\ 25146958025510026613311655825427755679933800200107767475546663995166276664\\ 251469580262676674666395166276666266662666666666666666666666666$	$\begin{array}{c} 1 \\ 8 \\ 5 \\ 4 \\ 7 \\ 8 \\ 5 \\ 4 \\ 7 \\ 8 \\ 4 \\ 7 \\ 9 \\ 1 \\ 1 \\ 9 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	46557091824231130423432000583690398633670650992349555915480933 09469590918242311221054663672222960308659114742115065959159154809335 1112110546692028199068261182124596539672516402512 12121121124657092081990682611474211506599638154809335	$\begin{array}{c} 908889413997716297746880332058849625656535841579679902579584992462\\ 39782007715555988492462242625656535841579782679328284924623625575137865797826793248643324662565358411122263392984390257795849924662565653584111222663391234463244632446324463244632446324463244$	$\begin{array}{c} 7301580\\ 244580\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992445\\ 2992465\\ 2992465\\ 2992465\\ 2992465\\ 2992465\\ 29955\\ 299$	$\begin{array}{c} 4858\\ 8580\\ 23332\\ 15188\\ 3790\\ 3700\\ 370$	$\begin{array}{c} 3 \ 9 \ 4 \ 2 \ 4 \ 2 \ 4 \ 2 \ 3 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 2 \ 5 \ 5$	4144922261156096020857714480315929 27753781668577156420857714803155929302110387206542147541509440 1428336981359293124003337206542147541509440 1428336981359293312613333126 143832078562611592914803155929 1428336981359291433372065542147541509440	$\begin{array}{c} 817\\ 777\\ 7524952771582225129370311271906514199498211947060651205768608494043099711171\\ 1552285937033112219052344483155105434888658282828281734472563516225\\ 237\\ 828528282828282828282828282828282828282$	16710 16700 17700 177000 177000 177000 177000 177000 1770000 177000 177000	6664421662144699555112880797023352082491130200583741888209337677336657 8351152256857322552082491130200583741888220937677336657 8451229255214282557322552082491130200583741888220937677336657 8045 8045	96914 96914 96914 969534 46299 1155895999 115285501223522880311 188622880234118066605500 1186225594420855712559 11862255941164855734 186225594116455734 186225594116455734 186225594116455734 186225594116455734 196470 164700 15817326 164700	1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1946 1947 1946 1951 1955 1955 1955 1955 1955 1955 195
MO MIN MO MEAN MO MAX	763 2664 6750	591 2470 6441	542 2530 6826	442 2407 9811	62 1556 5170	229 1800 7004	482 3003 11755	644 3545 10276	405 4052 12058	446 4746 15800	251 4207 10675	234 3213 8251	62 1556 5170	424 3016 9235	763 4746 15800	MO MIN MO MEAN MO MAX

342	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
2	1969 1970 1971 1973 1973 1975 1976 1977 1977 19778 19778 1978 1981 1982 1983 1984 1988 1988 1988 1988 1988 1988 1989 1990	$\begin{array}{c} 2097\\ 20746\\ 1507\\ 12643\\ 10345\\ 16611\\ 23394\\ 14033\\ 14033\\ 1403\\ 23394\\ 11638\\ 17423\\ 366499\\ 9653\\ 66499\\ 9653\\ 826626\\ 180266\\ 180266\\ 18026\\ 180$	$\begin{array}{c} 19024\\ 9904\\ 190258585\\ 196622\\ 18564\\ 19512585\\ 18512\\ 1952585\\ 1952585\\ 195285\\ 195285\\ 21026\\ 15294\\ 15294\\ 15294\\ 15294\\ 15294\\ 15295\\ 12244\\ 15529\\ 12244\\ 15529\\ 12244\\ 15529\\ 12245\\ 15529\\ 12245\\ 15529$ 15529\\ 15529\\ 15529 15529\\ 15529 15529\\ 15529 15529\\ 15529 15529 15520\\ 15529 15520 15520 15520 15520 15520 15520 15520 15520 15520 155	$\begin{array}{c} 2183\\ 2183\\ 4420\\ 14225\\ 1727\\ 29599\\ 25742\\ 7429\\ 2959\\ 2515\\ 2118\\ 2742\\ 29599\\ 2515\\ 2118\\ 2339\\ 2339\\ 1137\\ 684 \end{array}$	$\begin{array}{c} 21518\\ 162349\\ 162349\\ 7750\\ 120381\\ 27745\\ 7745\\ 120381\\ 27745\\ 27750\\ 7745\\ 27750\\ 7755\\ 7755\\ 7755\\ 7755\\ 7755\\ 76538\\ 10822\\ 623\\ 623\\ 623\\ 623\\ 623\\ 623\\ 623\\ 6$	$\begin{array}{c} 2167\\ 7838\\ 1287\\ 13283\\ 12819\\ 947\\ 13661\\ 1012666\\ 101266\\ 101266\\ 101266\\ 101266\\ 101266\\ 101266\\ 101266\\ 10$	8750 29957 17518 13389 186890 12272 96255 19773 8220 37655 19773 8220 7064 665 7666 1975	966 12339 19267 32247 102902 1327 102902 10000 10000 10000 100000 10000000000	2130 21703 12529 21292 30806 947 865 31862 11067 635 24675 16388 9731 1087 878 928 1205	2524 2575 115829 22263 16601 8512 166519 24835 10684 248357 29258 10376 29258 10376 29258 103888 292588 2925888 2925888 2925888 29259 2925 2925	3288 1413 1180 1239 1347 9099 12929 1036 22857 12876 1030 22857 12866 10502 4999 13605 635	2982 10524 929 10351 808 694 899 9772 11323 11887 11887 11887 11887 15779 571	$\begin{array}{c} 2871\\ 1503\\ 14210\\ 12208\\ 10754\\ 10598\\ 1574\\ 10598\\ 15748\\ 10578\\ 1021\\ 1079\\ 1079\\ 1079\\ 1079\\ 1079\\ 10826\\ 13976\\ 8222\\ 18228\\ 589\end{array}$	875 1280 997 1209 804 599 742 639 874 899 717 391 423 1160 688 357 388 639 706 563 571 531	2186 2844 1433 15100 15510 10000 1525 127791 19657 18853 10082 14853 10082 989	3288 225389 225389 22547 32632 168602 336511 23384 3775 31038 31551 23055 310501 2975	1969 1970 1971 1973 1973 1975 1975 1975 1976 1977 1977 1977 1980 1981 1982 1983 1984 1985 1988 1988 1988 1988 1988 19990
														357 741 1280	591 1389 2844	955 2533 5004	ANN MIN ANN MEAN ANN MAX
	MO MIN MO MEAN MO MAX	423 1430 3746	531 1514 5004	599 1627 4400	501 1649 4518	357 1180 2807	425 1270 3765	402 1383 3247	635 1508 3182	588 1611 3651	492 1252 3288	571 1066 2982	479 1201 2871	357 1066 2807	500 1391 3622	635 1649 5004	MO MIN MO MEAN MO MAX

Table E10. Station 02243960, Rodman Dam. Mean daily flow, cfs (USGS data), and summaries of means and extremes

Table E11. Station 02244032, Buckman Lock. Mean daily flow, cfs (USGS data), and summaries of means and extremes

<u>.</u>	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1970 1971 1973 1974 1975 1976 1977 1977 1978 1978 1988 1988 1988 1988	33 169959747747390995679817 13337	461287278652478646378795 556645786728555555555555555555555555555555555	34919962232649309858648 777666556925716558	2766994603139282211966716669 46031392824469356716549	2324455884357442556615487	1950903881030452458622730971	2315790828639545927366600 2315233628639545927366600	55649866970023344405315304 3242253344405315304	364900 212353225438306011355825438143601133568850	2410916916107778757814466	32 431661493994336070217 3248516614933994336070217	41926173149094771272383 1926173149094771272383	199 893 1269 1136 1291 1160 1233 130 297 211 280 1280	3483662869962451284274 3314435533443444455243	555687273239279310877699 687273239279310877699 6777699	1970 1971 1973 1974 1974 1976 1976 19778 1978 1982 1988 1988 1988 1988 1988 1988 198
														0 20 41	18 41 58	36 68 91	ANN MIN ANN MEAN ANN MIN
	MO MIN MO MEAN MO MAX	9 37 67	12 58 88	18 58 90	11 51 91	16 48 83	19 41 73	15 36 63	0 32 55	0 33 73	10 34 78	8 38 77	12 32 67	0 32 55	11 41 75	19 58 91	MO MIN MO MEAN MO MAX

Table E12. Station 02244440, Dunns Creek. Mean daily flow, cfs (USGS data), and summaries of means and extremes

 YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1978 1979 1980 1981 1982 1983 1983 1984 1985 1986	1076 828 335 528 434 2823 1040 124 1159	850 211 446 660 -184 4431 684 -77 1167	480 247 179 265 2249 391 16 705	-295 264 1444 603 794 -151 133	-267 -193 473 265 167 -19 -217 42	89 -807 224 885 207 -418 526	631 471 275 798 207 160 -320 866	1453 482 -129 -219 640 157 74 465	-600 1228 -50 187 125 -161 683 791	-205 1229 23 -213 645 552	363 279 125 365 -94 343 2098	165 208 -34 230 884 253 775	-600 -807 -193 -219 -184 -161 -19 -418 42	312 438 101 225 495 1002 405 204 651	1453 1229 446 660 1444 4431 1040 2098 1167	1978 1979 1980 1982 1982 1983 1984 1985 1985
													-807 -284 42	101 426 1002	446 1552 4431	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAN MO MAX	124 927 2823	-184 910 4431	16 566 2249	-295 399 1444	-267 32 473	-807 93 885	-320 386 866	-219 365 1453	-600 275 1228	-213 338 1229	-94 484 2098	-34 314 884	-807 32 473	-241 424 1672	124 927 4431	MO MIN MO MEAN MO MAX

Table E13. Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Mean daily flow, cfs (USGS data), and summaries of means and extremes

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1969 1970 1972 1973 1974 1975 1975 1977 1978 1977 1978 1982 1983 1984 1985 1984 1985 1986 1987 1988 1989 1990 1991	47855 28298 27584 303055 28846 22584 303055 288637 57223 57223 57223 57522 800552 27552 800552 315529 335599 335529 335599 335599 335599 335599 335599 335599 33599 33599 33599 35999 35999 35999 35999 35999 35999 359	3968 11477 3961 57709 11779 2160 4034 6427 5557 11754 7229 2437 11154 7229 2437 5524 5302 4171 2709 2456 69604 35302 4171 2779 1976 1145	$\begin{array}{c} 5173\\ 526454\\ 4682545\\ 123585386\\ 123585386\\ 123585386\\ 1296151\\ 1296151\\ 1652887\\ 1196151\\ 1462430\\ 22309\\ 1282309\\ 1296151\\ 1462430\\ 22309\\ 1206151\\ 1462430\\ 1206151\\ 1462430\\ 1206051\\ 1206051\\ 1206050\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 120600\\ 12000\\ 120600\\ 120600\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 120000\\ 1200000\\ 120000\\ 1200000\\ 1200000\\ 120000\\ 120000\\ 1200000\\ 1200000\\ 1200000\\ 120000\\ 1200$	$\begin{array}{c} 5508\\ 78459\\ 445769\\ 14439\\ 14978\\ 37038\\ 45769\\ 14391\\ 14978\\ 37038\\ 412391\\ 1855509\\ 20225\\ 844708\\ 202253\\ 44708\\ 215509\\ 44708\\ 21550\\ 22253\\ 1632\\ 21590\\ 2159$	3760 4498 17182 27739 11609 26636 126636 126636 126636 126636 126138 38391 16098 126178 20300 126178 20300 126178 21550	2728 356898 3266993 2200711 2200711 2200711 220578 21068908 22068908 22068908 2206264 4304012 2289915 2289915 2289915 215374	2779 3827 24854 3394 9794 52050 5534 47023 1197 15519 15519 1893 22348 2449 23468 2084	$\begin{array}{c} 5479\\ 5177\\ 3007\\ 4690\\ 5327\\ 11139\\ 4935\\ 4991\\ 2725\\ 11085\\ 5183\\ 1284\\ 1345\\ 10429\\ 5384\\ 3494\\ 3886\\ 31002\\ 23230\\ 23230\\ 23259\\ 23126\\ 3487\\ \end{array}$	$\begin{array}{r} 7435\\ 4092\\ 1892\\ 5145\\ 6443\\ 85192\\ 6032\\ 3850\\ 1096627\\ 2851\\ 84627\\ 2851\\ 84627\\ 35738\\ 846237\\ 357380\\ 27308\\ 27309\\ 15259\\ 5796\end{array}$	$\begin{array}{c} 10302\\ 2862\\ 2716\\ 5008\\ 5508\\ 80021\\ 5354\\ 5227\\ 4835\\ 12913\\ 12913\\ 8708\\ 44083\\ 7419\\ 1918\\ 2519\\ 3493\\ 2612\\ 1876\\ 4482\end{array}$	$\begin{array}{c} 11113\\ 29455\\ 312155\\ 52509\\ 47997\\ 40620\\ 239620\\ 22108\\ 31215\\ 76296\\ 22550\\ 22210\\ 554288\\ 31428\\ 946526\\ 32437\\ 35736\\ 35936\\ 377\\ 3777\end{array}$	$\begin{array}{c} 10123\\ 2423\\ 3679\\ 44519\\ 24863\\ 33166\\ 33768\\ 34212\\ 1378\\ 1273\\ 3947\\ 53824\\ 1273\\ 3947\\ 3778\\ 25467\\ 41664\\ 3197\\ 2744\\ 4664\\ 3197\\ 2784\\ \end{array}$	2728 2423 1648 2182 2613 1199 1225 1354 2611 2589 1289 1289 1289 1289 1200 1005 4410 3008 3008 1200 1617 2102 2267 1595 1500 1976 1145	6096 57747 38279 45794 37592 37532 561777 162970 52274 68824 52274 369177 41801 22274 369177 216294 2324	$\begin{array}{c} 11113\\ 11477\\ 4575\\ 5145\\ 6443\\ 11139\\ 4575\\ 12913\\ 12913\\ 12913\\ 12913\\ 2851\\ 11085\\ 2851\\ 11964\\ 8611\\ 99255\\ 6329\\ 6129\\ 6329\\ 4171\\ 3354\\ 8186\\ 5796\end{array}$	1969 1970 1977 1973 1975 1975 1976 1977 1978 1978 1980 1981 1988 1988 1988 1988 1988 198
													870 1920 4410	1687 4144 6870	2851 7672 12913	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAI MO MAX	2082 N 4383 10535	1005 4411 11477	1225 4154 11964	1239 4061 11517	1199 2699 7291	1057 3032 8668	1197 4173 11661	1284 4826 11139	1500 5217 10662	870 4686 12913	1396 4386 11113	1273 3949 10123	870 2699 7291	1277 4165 10755	2082 5217 12913	MO MIN MO MEAN MO MAX

34	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
4 -	1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1978 1980	1920 4780 14459 5546 6347 8878 10114 4123 3622 3334 7438 7433	2322 11086 18011 5979 8605 52698 22299 5684 55824	4114 10969 14022 6337 7870 6767 2557 1331 9843 6276	603 5590 12514 5179 6323 10133 5102 1650 2232 5827 2943	1720 7012 4605 2306 1636 4533 4293 556 -16 3382 5364	8035 6481 5465 3264 7629 5308 6787 1930 3067 4255 -507	14888 4201 6376 5161 6666 8467 18488 6191 5149 795 6472 374	8954 7102 6853 4227 4690 10200 19642 5878 4803 2023 9240 -2092	15510 10772 3616 1058 7757 12975 164491 7557 3604 6287 3833 1592	13349 20115 3213 4562 11010 9002 5545 3316 1443 4448 2104	12718 19583 6212 6337 11024 54897 12333 6478 4873 4646 17763	7030 16222 3922 7678 8651 12021 4791 4096 3482 5774 2838	603 4201 3213 1058 1636 4533 4293 556 2229 -16 2838 -2092	7597 10326 8272 4523 6224 9352 9349 4438 4580 26855 3272	15510 20115 18011 7678 8651 12975 19642 12333 7559 5774 9843 7433	1968 1969 1971 1972 1973 1974 1975 1974 1975 1977 1978 1978 1980
	1981 1982	1475 1720	1391 1243	1163 2083	810 5478	-214 2252	-1027 4375	$\begin{smallmatrix}&213\\11240\end{smallmatrix}$	1497 13006	4092 11676	1034	2643	592	$-1027 \\ 1243$	1139 5897	4092 13006	1981 1982
														-2092 1662 4533	1139 5931 10326	4092 11616 20115	ANN MIN ANN MEAN ANN MAX
	MO MIN MO MEAN MO MAX	1475 5792 14459	1243 5762 18011	1163 5880 14022	603 4953 12514	-214 2879 7012	-1027 4236 8035	213 6763 18488	-2092 6859 19642	1058 7499 16449	1034 6428 20115	1776 7770 19583	592 6425 16222	-2092 2879 7012	485 5937 15379	1776 7770 20115	MO MIN MO MEAN MO MAX

Table E14. Station 02244450, Palatka. Mean daily flow, cfs (USGS data), and summaries of means and extremes

Table E15. Station 02246500, Jacksonville. Mean daily flow, cfs (USGS data), and summaries of means and extremes

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1971 1972 1973 1974 1975	-136 10392 -4023 1632	1347 10981 -1814 463	-2918 5855 -4920 4760	3603 8464 -1826 11545	242 -10428 43 11896	10105 -8294 4523 19178	13228 1868 22697 24351	7963 6438 25515 18535	7990 9347 13644 20943	20237 1667 11455 14483	7075 3555 266 5763	-498 9745 981 6333	-2918 -10428 -4920 463	4699 3944 6702 12589	13228 11455 25515 24351	1971 1972 1973 1974 1975
	1980 1981	5142	14535	-1492	10399	12269	6434	3658	1755	10936 -1208		4080	8371	-1492	5721	14535	1980 1981
	1987 1988 1989 1990 1991	10716 5487 9421 5770	7353 3010 6991	8401 769 4928	6701 3845 5461	7986 3771 1722	9975 6678 20247	6058 6595 9458 10339	14790 6651 6927 8510	10459 9563 9330 4246	15785 7358 6382 6792	6909 8684 6501	6821 8340 7865 8320	6058 6595 769 1722	10137 8149 6017 7790	15785 10716 9458 20247	1987 1988 1989 1990 1991
														-10428 -461 6595	3944 7305 12589	9458 16143 25515	ANN MIN ANN MEAN ANN MAX
MO	MIN MEAN MAX	-4023 4829 10716	-1814 5358 14535	-4920 1923 8401	-1826 6024 11545	-10428 3438 12269	-8294 8606 20247	1868 10917 24351	1755 10787 25515	-1208 9368 20943	1667 10566 20237	266 5354 8684	-498 6253 9745	-10428 1923 8401	-2288 6952 15599	1868 10917 25515	MO MIN MO MEAN MO MAX

MAXIMUM DAILY FLOW

·

.

346

Table E16. Station 02236000, De Land. Maximum daily flow, cfs (USGS data), and summaries of means	s and extremes
---	----------------

	YEAR	JAN_	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	<u>OC</u> T	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	$\begin{array}{c} 19934\\ 19935\\ 199367\\ 199389\\ 199389\\ 199389\\ 1994423\\ 199445\\ 1994455\\ 1995555555\\ 19956666689\\ 012345567\\ 1997777\\ 7890\\ 129888\\ 8890\\ 129992\\ 199888889\\ 0123455\\ 199992\\ 199992\\ 199992\\ 199992\\ 199992\\ 199992\\ 199992\\ 199922\\ 199922\\ 199888889\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 0123455\\ 01234555\\ 01234555\\ 0123555\\ 01234555\\ 0123555\\ 0123555\\ 0123555\\ 0123555\\ 012355$	$\begin{array}{c} 2360\\ 2380\\ 3880\\ 27320\\ 9340\\ 23160\\ 23160\\ 23160\\ 23160\\ 23160\\ 23160\\ 23160\\ 23160\\ 2320\\ 4000\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 23200\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2320\\ 2$	$\begin{array}{c} 2530\\ 5520\\ 5230\\ 1552900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1900\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 10$	$\begin{array}{c} 2880\\ 59500\\ 24200\\ 59502\\ 248970\\ 55720\\ 55720\\ 55720\\ 55720\\ 16802\\ 15920\\ 2248970\\ 1600\\ 1200\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 1000\\ 100$	2260 180 4900 1980 1420 1440 2490 5020 4980 1930 1610 1760 4000 3480 2120 2000 1520 1600 3480 1520 1600 3480 1520 1600 3480 1520 1600 3480 1520 1600 3480 1520 1600 2000 3480 1520 1600 2000 3480 1520 1600 2000 3480 1520 1600 2000 2120 3490 2000 2120 3490 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 2120 2000 21770 2000 21770 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 2000 21720 21800 2000 21720 2000 21720 2000 21720 2000 21720 21800 21780 2000 21720 21800 21780 2000 21720 2160 21780 2260 21780 21780 21780 21780 2100 21780 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 2560	$\begin{array}{c} 4290\\ 880\\ 2880\\ 960\\ 1680\\ 1420\\ 3110\\ 1540\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 14800\\ 2700\\ 12800\\ 21730\\ 2000\\ 176500\\ 12800\\ 21730\\ 2000\\ 176500\\ 12800\\ 21000\\ 176500\\ 12800\\ 21000\\ 176500\\ 12800\\ 21000\\ 176500\\ 12800\\ 21000\\ 176500\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 21000\\ 12800\\ 2000\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\ 12800\\$	$\begin{array}{c} 10500\\ 10570\\ 3580\\ 14640\\ 21300\\ 2690\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2990\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 1990\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2900\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2000\\ 2$	$\begin{array}{c} 10600\\ 2000\\ 4070\\ 1310\\ 3880\\ 3250\\ 2740\\ 7910\\ 4580\\ 3770\\ 4580\\ 3770\\ 4580\\ 2870\\ 4550\\ 2870\\ 4550\\ 2870\\ 4060\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200\\ 1200$	$\begin{array}{c} 7980\\ 2680\\ 3360\\ 3420\\ 9020\\ 40930\\ 5770\\ 65920\\ 44870\\ 2100\\ 5920\\ 44880\\ 2100\\ 5920\\ 44880\\ 2100\\ 5920\\ 44880\\ 2100\\ 5920\\ 44880\\ 5920\\ 44880\\ 5920\\ 44880\\ 2100\\ 5920\\ 44880\\ 5920\\ 21100\\ 27390\\ 21200\\ 5380\\ 5920\\ 21100\\ 25380\\ 5920\\ 4480\\ 5920\\ 4480\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 5920\\ 4180\\ 4180\\ 5920\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 4180\\ 41$	$\begin{array}{c} 5460\\ 5380\\ 28240\\ 28240\\ 4480\\ 37960\\ 53800\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200\\ 56200$	4000 7900 3300 5550 1880 5120 82900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19900 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 190000 19000 19000 1900000000	$\begin{array}{c} 3190\\ 3190\\ 3190\\ 4280\\ 4280\\ 268180\\ 21800\\ 2000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 108000\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\ 10800\\$	$\begin{array}{c} 2140\\ 4282940\\ 525400\\ 6175040\\ 6175040\\ 6175040\\ 6175040\\ 6175040\\ 6175040\\ 6175040\\ 6175040\\ 61900\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 619000\\ 61900\\ 619000\\ 61$	2140 2860 2800 13160 960 1420 1770 1540 1420 23200 12960 1200 1200 1200 1200 1200 1200 1200 12	4866215537779960050987773289144822223843333589131835462388101883304812 885521553777656600509877732891448222238438285704463328555462388105552650735528554433373955288760023455528876463328555462386855590201176668844655 92224593545558855590201176668844655 9222459358455590201177658850046633285554543335584685559020117765884844655 922245935455544552225554433355848555902011776668444655 9222459354555902011776588484655 92224555544555590201177658848555590201177668844655 9222455554455559020011776588485555902001177668844655 922245555455554455559020011776588485555902001177668844655 922245555455554555544533355845522255544533558468555902001177668844655 92224555545554555545555455554555845522255544533558224555584455222555445335582245555845522255544533558224555584552225554453355822455558455222555445335582245555845522255544533558224555545522255544533558224555545522255544533558224555545522255544533558224555545522255544533558224555545522255544533552225554555222555455522255545552225554555222555455522255554555222555455552225555455522255545555455522255545552225554555222555455554555222555455554555222555455522255545555455522255554555545555222555545555222555545552225555455552225555455552225555455552225555455552225555545555222555555	$\begin{array}{c} 10600\\ 79500\\ 5950\\ 6290\\ 5320\\ 5320\\ 5320\\ 5320\\ 5320\\ 5320\\ 5320\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 13400\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 134000\\ 1340000\\ 1340000\\ 1340000\\ 13400000\\ 13400000\\ 13400000\\ 1340000000000\\ 134000000000000000000$	1934 1935 1935 1935 1937 1938 1939 1940 1941 1942 1943 1944 1944 1945 1946 1947 1948 1947 19551 19553 19554 19555 19558 19558 19558 19558 19558 19558 19566 19663 19664 19663 19664 19668 19668 19668 19668 19669 19771 19772 19773 19778 19776 19778 19779 19801 1982 19881 19883 19884 19885 19884 19885 19885 19887 19889 19887 19889 19990 19991 1991 1992 ANN MIN ANN MEAN
34	MO MIN MO MEAN MO MAX	960 3582 7530	1170 3431 6990	1380 3605 13000	890 3330 12900	700 2479 7640	1060 2905 11800	680 3948 12800	1740 4503 11700	1570 5374 15000	1840 6219 17100	2180 5418 14400	1560 4192 9250	3360 680 2479 6990	9802 1311 4082 11676	17100 2180 6219 17100	ANN MAX MO MIN MO MEAN MO MAX

48								•	•								
	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL_	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1969 1970 19772 19773 19773 19775 19777 19778 19777 19778 19882 19882 19883 19883 19883 19883 19887 19889 19889 19891	2900 1900 1950 2380 12560 2390 12560 2390 24170 8540 1820 1820 1820 1820 1820 1820 1820 182	2320 9560 31980 27730 12560 24560 12180 2560 16466 42300 42300 18700 28700 28700 28700 21300 14450 14450	4500 2560 2670 2620 2040 4710 10240 17740 10290 37166 4290 4290 2090 1860	2580 3210 2660 1090 1040 21500 2500 2500 2500 2500 2500 2000 21500 2000 21500 2000 1580 2000 1580 2000 1360 1460 1360 1460 1460 1460 1460 1460 1460 1460 14	2700 4250 1640 2010 2010 2010 4355 27707 1840 402070 478 27700 16907 4840 11907 727 1980	2020 4320 2820 2590 32240 1900 17280 478 3700 1630 1470 1630 1420 1220 1220 4030	1780 1950 1820 22290 2210 2210 2210 2210 2360 15670 9360 16300 16300 16300 16300 16300 1700 18500 195000 19500 19500 195000 195000 195000 195000	4400 17990 2580 43800 12470 45900 2580 12370 45900 36210 36400 16400 16400 11480 1780	3500 2950 2650 2650 2650 2650 2650 2650 2650 26	4320 17810 17410 1750 19040 1555 10555 10555 10390 13920 1400000000	3960 12920 12020 13750 12020 13750 126600 11200 16600 16400 16440 16440 174600 575	4750 2100 3230 1650 1230 2370 1230 2370 1230 2370 1230 2370 1230 2370 1230 2370 1230 2370 1230 2370 1230 2370 1230 1250 2020 1250 2020 1250 2020 1230 2020 1230 2020 1230 2020 1230 2020 1230 2020 1230 2020 1230 2020 1230 2020 1230 2020 202	1780 1810 12900 1490 1490 8355 12300 8955 12300 8955 12300 8955 12300 8955 12300 8955 12300 8955 12300 8955 12300 8955 1200 8955 1200 8056 8751 1600 7275 761	$\begin{array}{c} 3311\\ 4573\\ 20320\\ 22280\\ 16625\\ 14625\\ 14625\\ 23732\\ 9883\\ 29732\\ 3053\\ 3053\\ 3053\\ 14694\\ 2443\\ 1393\\ 1805 \end{array}$	4750 952100 22730 27700 27700 27700 475100 227700 45100 227700 45100 22700 45100 22700 45100 22800 22800 22800 22800 22800 22980 20930 4030	1969 1970 1971 1972 1973 1974 1975 1975 1976 1977 1978 1977 1978 1978 1980 1981 1982 1983 1985 1985 1985 1985 1985 1987 1988 1989 1989 1990
														357 1030 1810	986 2228 4573	1430 4399 9560	ANN MIN ANN MEAN ANN MAX
	MO MIN MO MEAN MO MAX	551 2144 5400	761 2433 9560	886 2821 7580	835 2873 8610	357 1760 4250	478 2205 7020	966 2217 4510	896 2325 4590	714 2682 8530	85 4 1862 5530	575 1581 3960	672 1823 4750	357 1581 3960	712 2227 6191	966 2873 9560	MO MIN MO MEAN MO MAX

ర్లు Table E17. Station 02243960, Rodman Dam. Maximum daily flow, cfs (USGS data), and summaries of means and extremes

Table E18. Station 02244032, Buckman Lock. Maximum daily flow, cfs (USGS data), and summaries of means and extremes

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	<u>JŪL</u>	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	1970 1971 1972 1973 1974 1975 1977 1978 1977 1978 1980 1988 1988 1988 1988 1988 1988 198	134 995 567 1274 1455 1455 1274 1455 1274 1279 855 723 1271 895 723 1271 891 681 766 107	111 461 977 1888 1228 1228 1228 1228 1228 1228 12	100 1200 1221 1212 1212 1337 1136 1626 1335 1626 1335 1655 1655 1655 1655 1655 1655 165	98 104 98 140 1109 1314 117 159 1317 105 161 1022 166 131 1022 1266 131 133	79 1254 1516 17994 1355 117994 1334 1446 11254 1567 1254 1722	74 119 94 1200 921 118 714 1200 1503 1503 1503 1503 1503 1503 1503 15	89 111 522 1282 112 120 1106 104 1157 134 121 930 121 455 126 104 104	$111 \\ 104 \\ 78 \\ 142 \\ 59 \\ 106 \\ 68 \\ 110 \\ 983 \\ 123 \\ 87 \\ 47 \\ 116 \\ 80 \\ 110 \\ 146 \\ 129 \\ 88 \\ 134 \\ 64 \\ 114 \\ 114 \\ 114 \\ 114 \\ 114 \\ 111 \\ 100 \\ $	$134 \\ 113 \\ 50 \\ 60 \\ 106 \\ 138 \\ 146 \\ 131 \\ 147 \\ 111 \\ 58 \\ 143 \\ 118 \\ 132 \\ 158 \\ 143 \\ 138 \\ 99 \\ 150 \\ 74 \\ 182$	85 110 79 84 96 153 109 117 83 120 94 59 132 157 81 132 116	100 768 99 87 114 138 1526 1162 1565 1162 1565 1162 1560 1681 887	1114688112288367669875511364867	741 407 5608 9551 7761 402 6633 6633 6633 6633 6633 6633 6633 66	102 101 73 109 103 109 112 137 118 116 115 102 132 120 85 109 131 142 728 106 138	134 119 1251 154 154 1889 159 158 1999 158 1799 1413 1537 1413 1537 1832 1101 1832	1970 1971 1972 1973 1974 1975 1976 1977 1977 1978 1979 1980 1988 1988 1988 1988 1988 1988 198
														0 66 104	72 112 142	110 162 202	ANN MIN ANN MEAN ANN MAX
MO) MIN MEAN MAX	55 105 179	46 132 188	66 129 186	31 120 166	56 133 202	46 115 182	45 102 150	0 95 146	0 112 182	40 99 157	48 105 160	46 93 133	0 93 133	40 112 169	66 133 202	MO MIN MO MEAN MO MAX

<u> </u>	EAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
	978 979 980 981 982 983 983 984 985 986	2710 2590 1440 908 1290 6360 2600 1290 6400	4360 1390 1140 1300 848 6650 2520 817 3940	3510 738 962 1370 5880 1990 981 3740	1120 845 4090 1790 2740 421 2130	1290 445 1090 1450 917 769 626 1920	$1230 \\ -658 \\ 1000 \\ 826 \\ 2700 \\ 1060 \\ 130 \\ 207 \\ 2840 \\ $	2510 998 672 2530 1150 848 464 2370	3650 3140 275 319 2170 797 1030 2770	647 3690 593 650 1280 1300 1010 4440	1400 3850 819 1250 1920 1940	2100 1490 1370 1570 1150 1850 5410	1560 1170 814 1120 1240 1700 1100 2990	647 -658 275 319 848 1 769 207 1920	2174 1840 882 971 1837 2462 1599 1467 3394	4360 3850 1440 1570 4090 6650 2740 5410 6400	1978 1979 1981 1982 1983 1983 1984 1985 1985
														-658 481 1920	882 1847 3394	1440 4057 6650	ANN MIN ANN MEAN ANN MIN
MO I MO I MO I	MEAN	908 2843 6400	817 2552 6650	738 2396 5880	421 1877 4090	445 1063 1920	-658 1148 2840	464 1443 2530	275 1769 3650	593 1701 4440	819 1863 3850	1 1868 5410	814 1462 2990	-658 1063 1920	470 1832 4221	908 2843 6650	MO MIN MO MEAN MO MAX

Table E19. Station 02244440, Dunns Creek. Maximum daily flow, cfs (USGS data), and summaries of means and extremes

Table E20. Summation of De Land, Rodman Dam, Buckman Lock, and Dunns Creek station data. Maximum daily flow, cfs (USGS data), and summaries of means and extremes

_	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR	
	1969 1970 1972 1973 1975 1977 1977 1977 1977 1977 1978 1988 1988	6290 12774 4659 6847 50567 4474 10391 10391 12014 4817 11019 12014 16353 5023 5688 44024 2197	$\begin{array}{c} 5270\\ 16661\\ 6826\\ 7571\\ 3087\\ 3187\\ 35308\\ 13138\\ 8719\\ 55726\\ 37076\\ 55726\\ 12178\\ 12178\\ 5776\\ 12178\\ 57726\\ 3804\\ 2986\\ 2202\\ \end{array}$	$\begin{array}{r} 9190\\ 12760\\ 4890\\ 5160\\ 6640\\ 2541\\ 2528\\ 14907\\ 75590\\ 3416\\ 50565\\ 3416\\ 61565\\ 174526\\ 11166\\ 11471\\ 8885\\ 3544\\ 3543\\ 3543\\ 3279 \end{array}$	$\begin{array}{c} 7000\\ 12068\\ 5394\\ 6738\\ 6067\\ 3520\\ 3029\\ 2971\\ 7784\\ 4947\\ 7454\\ 2886\\ 18715\\ 12821\\ 15025\\ 12821\\ 15472\\ 55422\\ 15472\\ 6256\\ 3491\\ 3689\\ 4154\\ 3133 \end{array}$	5450 744495 3428646 3163668 5306550 747366111 163362544 3362544 3362544 3362544 3362544 3362544 3362544 3362544 3362544 3267331 24886	$\begin{array}{c} 4454\\ 461124\\ 4621364\\ 7247918\\ 4654668\\ 178584268316\\ 4654666336\\ 18554278882269\\ 18554278882269\\ 37733702962\\ 377339059\\ 59556262\\ 185562$	$\begin{array}{r} 4290\\ 53091\\ 55299\\ 522992\\ 12584676\\ 29736\\ 40854\\ 40854\\ 35737\\ 158824\\ 409531\\ 33730\\ 42245\\ 33790\\ 42245\\ 33794\\ 8304 \end{array}$	$\begin{array}{c} 8980\\ 779688\\ 65029\\ 130256\\ 60180\\ 1558934\\ 1558934\\ 1558934\\ 138467\\ 683000\\ 66666\\ 32769\\ 331467\\ 683000\\ 66666\\ 32068\\ 32068\\ 32024\\ 100224\\ 8294 \end{array}$	$\begin{array}{c} 8740\\ 6084\\ 35890\\ 75980\\ 75980\\ 77536\\ 99448\\ 20242\\ 994423\\ 81880\\ 102332\\ 40378\\ 94752\\ 8438\\ 102332\\ 493789\\ 47539\\ 4759\\ 2436\\ 6022\\ \end{array}$	$\begin{array}{c} 12030\\ 4245\\ 4970\\ 6625\\ 996306\\ 64218\\ 809896\\ 42547\\ 11763\\ 809896\\ 4547\\ 11763\\ 54218\\ 809896\\ 4547\\ 35452\\ 35451\\ 35036\\ 7396\end{array}$	$\begin{array}{r} 13010\\ 5240\\ 5698\\ 6779\\ 69777\\ 52678\\ 472376\\ 11036\\ 55483\\ 65584\\ 132856\\ 6321\\ 34557\\ 4557\\ 34557\\ 34557\\ 31557\\ \end{array}$	$\begin{array}{c} 12730\\ 41781\\ 5781\\ 5588\\ 4256\\ 5885\\ 4916\\ 84570\\ 52891\\ 664570\\ 52891\\ 6658\\ 5216\\ 7731\\ 6183\\ 59707\\ 573551\\ 42513\\ 6183\\ 59513\\ 59513\\ 57355\\ 45143\\ 3533\\ 4117\end{array}$	4290 412195 31185 410891 22528 410891 22528 43114 22528 43114 22528 43114 25583 334565 33456583 3345762 3345762 3263486 22987	$\begin{array}{c} 8119\\ 8376\\ 5721\\ 69747\\ 52257\\ 42933\\ 52257\\ 999220\\ 404457\\ 108439\\ 6771284\\ 61639\\ 772845\\ 43380\\ 61209\\ 83380\\ 4598\end{array}$	$\begin{array}{c} 13010\\ 16661\\ 6822\\ 7054\\ 7598\\ 13049\\ 7036\\ 7348\\ 6385\\ 15544\\ 20242\\ 8246\\ 5572\\ 18717\\ 17412\\ 12821\\ 132821\\ 15472\\ 93778\\ 93778\\ 5770\\ 4401\\ 11374\\ 8304 \end{array}$	1969 1970 1971 1972 1973 1975 1975 1977 1978 1977 1978 1980 1981 1982 1983 1984 1988 1988 1988 1988 1988 1988 1988	
														2197 3526 5841	3388 6597 10657	4401 11186 20242	ANN MÍN ANN MEAN ANN MAX	
349	MO MIN MO MEAN MO MAX	2197 6883 16353	2202 7123 17078	2528 7080 17412	2886 6888 18717	2638 4831 11401	2548 5642 17460	2976 6578 15867	3114 7158 15544	2434 7781 20242	3303 6830 18989	3151 6522 13285	3533 6087 12730	2197 4831 11401	2793 6617 16257	3533 7781 20242	MO MIN MO MEAN MO MAX	

Table	641.	SCALION	V44445V;	Palacka.	Maxim	m daily	ilow, d	CIB (UBG8	data),		aries of	. шеана а	ng extre	Des		
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1968 1969 1971 1972 1973 1974 1975 1977 1977 1978 1980 19881 1982	13300 13100 22100 16200 24200 16700 12100 11800 11100 13000 13700 7770 3890	15900 16600 29600 23300 13600 11600 7800 7800 7220 15600 15100 7200 4330	17900 17400 26200 12100 14700 16700 17700 12000 46000 12900 5320 6680	8660 12700 22800 15900 14900 13500 7200 11400 11500 4750 13300	6970 18400 14400 10900 10300 15100 9260 8700 9930 12100 5140 5030	18200 14600 12100 7380 17300 19900 10600 6070 10500 11300 2660 10700	21600 11900 12600 14600 15200 14200 6430 12400 5380 12400 8450 1490 17300	$\begin{array}{c} 14800\\ 15800\\ 16200\\ 13900\\ 11800\\ 25200\\ 13400\\ 13400\\ 13400\\ 13600\\ 13600\\ 3070\\ 7560\\ 17100 \end{array}$	27800 20300 12500 20800 23700 27900 17400 17400 12400 11700 15000 7430 6380 16300	27000 29200 15600 20200 16800 18800 12700 6400 11100 11700 5150	22700 31300 22500 21000 15700 14500 9530 12700 7180 5490	15300 26200 9740 20800 15400 20700 14100 12500 14100 11300 9920 2340	6970 11900 9740 10900 10300 13600 9260 6430 4600 9920 3070 1490 3890	17511 18958 17612 15090 17325 19225 18450 112804 7933 12321 11458 5104 10514	27800 31300 22500 23300 28200 27900 18800 17700 12400 16000 15100 7770 17300	1968 1969 1970 1971 1972 1974 1975 1977 1977 1977 1977 1979 1980 1981 1982
													1490 7818 13600	5104 14042 19225	7770 21119 31300	ANN MIN ANN MEAN ANN MAX
MO MEAN	3890 13997 24200	4330 14896 29600	4600 13862 26200	4750 13616 22800	5030 10810 18400	2660 11816 19900	1490 12596 23800	3070 13559 25200	6380 16574 27900	5150 16704 29200	5490 16577 31300	2340 14075 26200	1490 10810 18400	4098 14090 25392	6380 16704 31300	MO MIN MO MEAN MO MAX
	YEAR 1968 1970 1971 1972 1973 1974 1975 1975 1976 1977 1977 1977 1978 1979 1980	1968 13300 1969 13100 1970 22100 1971 17000 1972 16200 1973 24200 1974 16700 1975 12100 1975 12100 1976 11800 1977 11100 1978 13000 1979 13700 1980 1981 7770 1982 3890 MO MIN 3890 MO MEAN 13997	YEAR JAN FEB 1968 13300 15900 1969 13100 16600 1970 22100 29600 1971 17000 19300 1972 16200 23300 1973 24200 21900 1974 16700 13600 1975 12100 11100 1976 11800 7800 1977 11100 7220 1979 13700 15100 1978 13000 15600 1980 3890 4330 MO MIN 3890 4330	YEAR JAN FEB MAR 1968 13300 15900 17900 1969 13100 16600 17400 1970 22100 29600 26200 1971 17000 19300 12100 1972 16200 23300 14700 1973 24200 21900 16700 1974 16700 13600 17700 1975 12100 11100 12000 1976 11800 7800 16000 1977 11100 7220 4600 1978 13000 15600 16000 1979 13700 15100 12900 1980 7770 7200 5320 1982 3890 4330 6680 MO MIN 3890 4330 4600 MO MEAN 13997 14896 13862	YEAR JAN FEB MAR APR 1968 13300 15900 17900 8660 1969 13100 16600 17400 12700 1970 22100 29600 26200 22800 1971 17000 19300 12100 15900 1972 16200 23300 14700 21700 1973 24200 21900 16700 18700 1974 16700 13600 17700 14900 1975 12100 11100 12000 13500 1976 11800 7800 16000 11400 1979 13700 15100 12900 11500 1978 13000 15600 16000 11400 1979 13700 15100 12900 11500 1980 7770 7200 5320 4750 1982 3890 4330 6680 13300	YEAR JAN FEB MAR APR MAY 1968 13300 15900 17900 8660 6970 1969 13100 16600 17400 12700 18400 1970 22100 29600 26200 22800 14400 1971 17000 19300 12100 15900 14300 1972 16200 23300 14700 21700 10900 1973 24200 21900 16700 18700 10300 1974 16701 13600 17700 14900 15100 1975 12100 11100 12000 13500 9260 1976 13000 15600 16000 11400 9930 1978 13000 15600 16000 11400 9930 1979 13700 15100 12900 11500 12100 1980 7770 7200 5320 4750 5140 1982	YEAR JAN FEB MAR APR MAY JUN 1968 13300 15900 17900 8660 6970 18200 1969 13100 16600 17400 12700 18400 14600 1970 22100 29600 26200 22800 14400 12100 1971 17000 19300 12100 15900 14300 7380 1972 16200 23300 14700 21700 10900 17300 1973 24200 21900 16700 18700 10300 12300 1974 16700 13600 17700 14900 15100 19900 1975 12100 11100 12000 13500 9260 10600 1976 11800 7800 1000 12100 11300 1979 1979 13700 15600 16000 11400 9930 10500 1979 13700 15100 12900<	YEAR JAN FEB MAR APR MAY JUN JUL 1968 13300 15900 17900 8660 6970 18200 21600 1969 13100 16600 17400 12700 18400 14600 11900 1970 22100 29600 26200 22800 14400 12100 12600 1971 17000 19300 12100 15900 14300 7380 11000 1972 16200 23300 14700 21700 19300 12300 15200 1973 24200 21900 16700 18700 10300 12300 15200 1974 16700 13600 17700 14900 15100 12200 13500 9260 10600 14200 1975 12100 11100 12200 13500 9260 10600 14200 1976 11800 7800 15600 16000 11400 930 <t< td=""><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG 1968 13300 15900 17900 8660 6970 18200 21600 14800 1969 13100 16600 17400 12700 18400 14600 11900 15800 1970 22100 29600 26200 22800 14400 12100 12600 16200 1971 17000 19300 12100 15900 14300 7380 11000 13900 1972 16200 23300 14700 21700 19300 12600 13800 1973 24200 21900 16700 18700 10300 12300 15200 18700 1974 16700 13600 17700 14900 15100 19400 13400 1976 11800 7800 12200 13500 9260 10600 14200 13400 1977 11100 7220 <t< td=""><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 1970 22100 29600 26200 22800 14400 12100 12600 16200 12500 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 1973 24200 21900 16700 18700 10300 12300 15200 18700 23800 25200 27900 1974 16700 13600 17700 14900 15100 19900 23800 25200 27900 1975 12100 11100 12000 13500 9260 10600 14200 13400 17700 1976</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 1970 22100 29600 26200 22800 14400 12100 15800 10300 12500 14300 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 15600 1972 16200 23300 14700 21700 10300 12300 15200 18700 23800 25200 27900 16800 1973 24200 21900 16700 18700 10300 12300 15200 13400 17400 18800 1975 12100 11100 12000 13500</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 1970 22100 29600 26200 22800 14400 12100 15800 20300 29200 31300 1971 17000 19300 12100 15900 14300 7380 16000 13900 12300 12300 1300 15600 22500 21700 22000 21700 1900 15200 18700 23700 2200 21000 15700 14700 12300 15200 18700 23700 28200 20100 15700 1974 16700 13600 17700 14900 15100 12300<!--</td--><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1971 17000 19300 12100 15900 14300 7380 11000 13900 14300 18800 9740 1972 16200 23300 14700 21700 10900 17300 14600 11800 20800 20200 21000 15400 1974 16700 13600 17700 14900 15100 12900 23800 25200 27900 16800 15700 14000 16600 15700 14000 16600 15700 14000 1600 15700 14000</td></td></t<><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 6970 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1970 1970 2100 29600 12100 15900 14300 7380 11000 13900 14300 18800 9740 9740 1971 17000 19300 12100 15900 14300 7380 11000 13900 15600 22500 20800 7380 1000 13900 12000 1500 1970 23700 28200 21000 15400 1000 1300 12200 1300 14500 17400 18600 15700 14100 13600</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 22700 15300 6970 17511 1970 22100 29600 72400 12700 18400 14000 12600 12500 18800 9740 17612 1971 17000 19300 12100 15900 14300 7380 11000 13900 12600 13600 12000 13600 12000 13200 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12400 14600 14500 12500 19260 1</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN YR MAX 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20100 29200 31300 26200 11900 18958 31300 1970 19300 12100 12600 14200 1300 16200 12500 14300 7380 1000 13900 11300 15600 22500 20800 7380 15090 22300 15400 10900 17325 23300 15200 14600 11800 20800 20100 20700 10300 12925 23300 1973 24200 21300 15200 15200 15200 18700 1</td></td></t<>	YEAR JAN FEB MAR APR MAY JUN JUL AUG 1968 13300 15900 17900 8660 6970 18200 21600 14800 1969 13100 16600 17400 12700 18400 14600 11900 15800 1970 22100 29600 26200 22800 14400 12100 12600 16200 1971 17000 19300 12100 15900 14300 7380 11000 13900 1972 16200 23300 14700 21700 19300 12600 13800 1973 24200 21900 16700 18700 10300 12300 15200 18700 1974 16700 13600 17700 14900 15100 19400 13400 1976 11800 7800 12200 13500 9260 10600 14200 13400 1977 11100 7220 <t< td=""><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 1970 22100 29600 26200 22800 14400 12100 12600 16200 12500 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 1973 24200 21900 16700 18700 10300 12300 15200 18700 23800 25200 27900 1974 16700 13600 17700 14900 15100 19900 23800 25200 27900 1975 12100 11100 12000 13500 9260 10600 14200 13400 17700 1976</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 1970 22100 29600 26200 22800 14400 12100 15800 10300 12500 14300 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 15600 1972 16200 23300 14700 21700 10300 12300 15200 18700 23800 25200 27900 16800 1973 24200 21900 16700 18700 10300 12300 15200 13400 17400 18800 1975 12100 11100 12000 13500</td><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 1970 22100 29600 26200 22800 14400 12100 15800 20300 29200 31300 1971 17000 19300 12100 15900 14300 7380 16000 13900 12300 12300 1300 15600 22500 21700 22000 21700 1900 15200 18700 23700 2200 21000 15700 14700 12300 15200 18700 23700 28200 20100 15700 1974 16700 13600 17700 14900 15100 12300<!--</td--><td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1971 17000 19300 12100 15900 14300 7380 11000 13900 14300 18800 9740 1972 16200 23300 14700 21700 10900 17300 14600 11800 20800 20200 21000 15400 1974 16700 13600 17700 14900 15100 12900 23800 25200 27900 16800 15700 14000 16600 15700 14000 16600 15700 14000 1600 15700 14000</td></td></t<> <td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 6970 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1970 1970 2100 29600 12100 15900 14300 7380 11000 13900 14300 18800 9740 9740 1971 17000 19300 12100 15900 14300 7380 11000 13900 15600 22500 20800 7380 1000 13900 12000 1500 1970 23700 28200 21000 15400 1000 1300 12200 1300 14500 17400 18600 15700 14100 13600</td> <td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 22700 15300 6970 17511 1970 22100 29600 72400 12700 18400 14000 12600 12500 18800 9740 17612 1971 17000 19300 12100 15900 14300 7380 11000 13900 12600 13600 12000 13600 12000 13200 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12400 14600 14500 12500 19260 1</td> <td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN YR MAX 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20100 29200 31300 26200 11900 18958 31300 1970 19300 12100 12600 14200 1300 16200 12500 14300 7380 1000 13900 11300 15600 22500 20800 7380 15090 22300 15400 10900 17325 23300 15200 14600 11800 20800 20100 20700 10300 12925 23300 1973 24200 21300 15200 15200 15200 18700 1</td>	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 1970 22100 29600 26200 22800 14400 12100 12600 16200 12500 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 1973 24200 21900 16700 18700 10300 12300 15200 18700 23800 25200 27900 1974 16700 13600 17700 14900 15100 19900 23800 25200 27900 1975 12100 11100 12000 13500 9260 10600 14200 13400 17700 1976	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 1970 22100 29600 26200 22800 14400 12100 15800 10300 12500 14300 1971 17000 19300 12100 15900 14300 7380 11000 13900 11300 15600 1972 16200 23300 14700 21700 10300 12300 15200 18700 23800 25200 27900 16800 1973 24200 21900 16700 18700 10300 12300 15200 13400 17400 18800 1975 12100 11100 12000 13500	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 1970 22100 29600 26200 22800 14400 12100 15800 20300 29200 31300 1971 17000 19300 12100 15900 14300 7380 16000 13900 12300 12300 1300 15600 22500 21700 22000 21700 1900 15200 18700 23700 2200 21000 15700 14700 12300 15200 18700 23700 28200 20100 15700 1974 16700 13600 17700 14900 15100 12300 </td <td>YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1971 17000 19300 12100 15900 14300 7380 11000 13900 14300 18800 9740 1972 16200 23300 14700 21700 10900 17300 14600 11800 20800 20200 21000 15400 1974 16700 13600 17700 14900 15100 12900 23800 25200 27900 16800 15700 14000 16600 15700 14000 16600 15700 14000 1600 15700 14000</td>	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1971 17000 19300 12100 15900 14300 7380 11000 13900 14300 18800 9740 1972 16200 23300 14700 21700 10900 17300 14600 11800 20800 20200 21000 15400 1974 16700 13600 17700 14900 15100 12900 23800 25200 27900 16800 15700 14000 16600 15700 14000 16600 15700 14000 1600 15700 14000	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 27000 22700 15300 6970 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 29200 31300 26200 1970 1970 2100 29600 12100 15900 14300 7380 11000 13900 14300 18800 9740 9740 1971 17000 19300 12100 15900 14300 7380 11000 13900 15600 22500 20800 7380 1000 13900 12000 1500 1970 23700 28200 21000 15400 1000 1300 12200 1300 14500 17400 18600 15700 14100 13600	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 1969 13100 16600 17400 12700 18400 14600 11900 15800 20300 22700 15300 6970 17511 1970 22100 29600 72400 12700 18400 14000 12600 12500 18800 9740 17612 1971 17000 19300 12100 15900 14300 7380 11000 13900 12600 13600 12000 13600 12000 13200 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12300 12400 14600 14500 12500 19260 1	YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YR MIN YR MEAN YR MAX 1968 13300 15900 17900 8660 6970 18200 21600 14800 27800 22700 15300 6970 17511 27800 1969 13100 16600 17400 12700 18400 14600 11900 15800 20100 29200 31300 26200 11900 18958 31300 1970 19300 12100 12600 14200 1300 16200 12500 14300 7380 1000 13900 11300 15600 22500 20800 7380 15090 22300 15400 10900 17325 23300 15200 14600 11800 20800 20100 20700 10300 12925 23300 1973 24200 21300 15200 15200 15200 18700 1

Table 1	522.	Station	02246500,	Jackson	ville.	Maximum	daily fl	low, cfs	(USGS đa	ta), and	l summari	es of me	ans and	extremes		
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YR MIN	YR MEAN	YR MAX	YEAR
1972 1973 1974 1975	31800 46300 31800 39500	51500 47000 29300 38500	16400 39600 27700 42000	38700 45200 20900 37900	$31300 \\ 16400 \\ 52500 \\ 40500$	64000 15500 39000 46900	41000 24700 45800 46600	23800 34000 52200 52400	28500 26900 43600 56600	30200 56300 52900	46300 43700 37100	30000 59100 45400	16400 15500 20900 37900	36125 37892 39850 44544	64000 59100 52900 56600	1972 1973 1974 1975
1980 1981	11000	53000	28000	42300	37600	18800	10600	13900	45500 10700		18300	21700	10600	25100	53000	1980 1981
1987 1988 1989 1990 1991	33400 30800 15000 21100	37400 17900 42100	29600 16200 26600	33100 26500 24000	39000 22200 21400	28300 23300 40700	25700 24500 29900 28600	28600 22200 18600 17900	26200 40600 35100 21500	36200 29000 37500 30900	28400 42500 21900	23100 28600 18800 20900	23100 22200 16200 15000	28033 31427 26608 25958	36200 40600 42500 42100	1987 1988 1989 1990 1991
													10600 19756 37900	25100 32838 44544	36200 49667 64000	ANN MIN ANN MEAN ANN MAX
MO MIN MO MEAN MO MAX	11000 28967 46300	17900 39588 53000	16200 28263 42000	20900 33575 45200	16400 32613 52500	$15500 \\ 34563 \\ 64000$	10600 30822 46600	13900 29289 52400	10700 33520 56600	29000 39000 56300	18300 34029 46300	18800 30950 59100	$ \begin{array}{r} 10600 \\ 28263 \\ 42000 \end{array} $	16600 32931 51692	29000 39588 64000	MO MIN MO MEAN MO MAX

ω Table E21. Station 02244450, Palatka. Maximum daily flow, cfs (USGS data), and summaries of means and extremes

APPENDIX F: WATER QUALITY SURVEYS

HYDRODYNAMICS AND SALINITY OF SURFACE WATER

Table F1. Water quality intensive surveys analysis, FDER

WQTS	Date Measured	Tributary/Facility	Comments	Parameters	Facilities
1:11 1:12	6/4/79 8/6/79	Cedar River Basin East Br. Cedar R.	Non-tidal Non-tidal	Metals Metals	Industries Adcom Wire, Buffalo Tank Div., Cleaner Hangers Co., Fla. Steel Corp., Fla. Wire & Cable Co., Lewis Business Forms, Mike & Frank trailer park (TP), Murray Hill Lumber Co., Paramount Poultry, Pat & Mikes Restaurant, Paxon Prof. Center, Reichhold Chemicals, SCL RR Warrington, SCL RR West End, Simmons Co.,
1:14	10/22/79	Rowell Creek	Non-tidal	Flow	Tire City NAS, Cecil Field stormwater treatment plant (STP)
1:16	10/8, 10/29/79	McGirts Creek	Non-tidal		
1:17 1:19	10/22/79 11/13/79	Baldwin STP Cedar River	Non-tidal Tidal	Flow Height, velocity	Baldwin STP
1:21	2/4/80	Baldwin STP	Non-tidal	Flow	Baldwin STP, part of stormwater
1:22	11/13/79	Ortega River	Tidal	Height, flow	Diana en par el biominidio
1:28	3/24, 4/21/80	Ribault River	Non-tidal	Flow	
1:56	10/12-13/81	Newcastle Creek	Tidal	Flow, travel time	Lucina Utilities STP
1:70	11/1/82 12/7/82	Wills Bridge Wills Bridge	Non-tidal Non-tidal	Flow Flow, travel time	Herlong Ortega Utilities, Lamplighter mobile home park (MHP), Normandy Village STP Normandy Estates MHP
	1/26/83	Wills Bridge	Non-tidal	Flow, travel time	Nonnandy Estates with
1:71	1/19/82	McGirts Creek	Non-tidal	1st prelim. survey	Blair Road Apt., Coleman-Evans, Cole MHP,
	1/27-28/82	McGirts Creek	Non-tidal	2nd prelim. survéy	Colony MHP, Holiday MHP, Jax Youth Dev.
	2/8/82	McGirts Creek	Non-tidal	3rd prelim. survey	Center, JCP-Oak Hill Park, Lake Forest MHP,
	2/16-17/82	McGirts Creek	Non-tidal	4th prelim. survey	Napoli MHP, Normandy Pines TP, Owen Steel
	2/23-24/82 10/45/82	McGirts Creek McGirts Creek	Non-tidal Non-tidal	Intensive survey	Co., Paradise Village MHP, Park West MHP, Pine Broaze MHP, Sch. #51 White House Elem
	11/2-3/82	McGirts Creek	Non-tidal	Intensive survey	Pine Breeze MHP, Sch. #51 Whitehouse Elem., Scott's MHP, Springtree Village S/D, Tylor's MHP, Towr and Country MHP, West Meadows MHP, Westside Coir Laundry
1:73	11/16/82	Rowell Creek	Non-tidal	Dye study	NAS, Cecil Field
1:75	1/12/83 2/10/83 2/23/83	East Br. Cedar R. East Br. Cedar R. East Br. Cedar R.	Non-tidal Non-tidal Non-tidal	Prelim., dye, flow Prelim., travel time, flow Intensive survey	Industrial
1:76	3/14/83	Fishing Creek	Non-tidal	Prelim., travel time	Continuous: Jax Heights, Wesconnett Elem.,
	5/24/83	Fishing Creek	Non-tidal	Prelim., flow	Wil-Mar Apt., Thunderbird MHP
	6/28-29/83	Fishing Creek	Non-tidal	Intensive, time of travel, flow	Other: Big George's Tavern, Wares MHPs #1 & #2, Riecker MHP, Lynwood Shopping Center
1:79	2/24/83	Upper Cedar River	Non-tidal	1st prelim.	Continuous: Ford Motor, Four Seasons MHP.
	3/9, 3/10/83 4/67/83	Upper Cedar River Upper Cedar River	Non-tidal Non-tidal	2nd prelim., travel time Intensive, travel time	Heckler Corp., JC Penney, JEA Westside, Kelly's TP, Thomas Jefferson Elem., U.S. post office Other: Kimwood warehouse, Montgomery warehouse,
1:82	4/6/83	Lower Cedar River	Non-tidal	1st prelim.	United Parcel Service Continuous: Cedar Shores Apt., Colonial MHP,
	4/2728/83	Lower Cedar River	Non-tidal	2nd prelim., travel time	Crest Pontiac, Cross Creek Apt., Denny Moran's
	5/25-26/83	Lower Cedar River	Non-tidal	Intensive, travel time	Restaurant, Duval Motors, JCP #33, Malibu Garden Apt., River City Chrysler, River Oyster Bar, Westside Dodge, Sch. #77 Hyde Park Elementary, Sch. #79 Ramona Blvd. Elementary, Tara Manor Apt., U-Hau International
1:83	9/12/83	Little Pottsburg	Non-tidal	Prelim.	Arbys, Atlantic Oaks Apt., Aunt Polly's
-	10/10-11/83	Little Pottsburg	Non-tidal	2nd prelim.	Laundromat, Beach Bvld. S/C, Cajeco, Clearview
	10/12–18/83	Little Pottsburg	Non-tidal	Intensive	Townhouses, Colonial Point Apt., Empress Garden Apt., Famous Amos, Harold House Apt., Jax Liquors, M. Poole & Assoc.
1:88	11/28/84	L. Pottsburg Creek	Tidal	Tide, flow	Pottsburg Utilities, Sassy's Disco, Solar Office,
	12/5/84	L. Pottsburg Creek	Tidal	Tide, flow	Suntrang MHP, Uncle John's Pancake House, Weight Watchers
1:93	12/11/85	Ribault River	Non-tidal		Biltmore Elem., Harborview S/D STP, Ideal TP, Jax- American Truck Plaza, Manna Provisions, Monterey Motel, Pickett Elem., Produce Terminal, Reynolds Lane Elem., Ricky Villa Abt., ZXT Inc.
	4/14/86	Ribault River	Tidal	Tide, flow	Burger King #1, Famous Amos #3, Deluxe Strip Stores.
				,	Don & Son Meat Market, Red Carpet Cleaners

Table F1—Continued

WQTS	Date Measured	Tributary/Facility	Comments	Parameters	Facilities
1:95 1:97	3/18/87 5/29/95	Baldwin WRP Strawberry Creek	Non-tidal Tidal	Flow, travel time, velocity Flow, tide	Baldwin water reclamation plant (WRP) Mill Creek Manor Apt., Steve Hyll Chevrolet, Kings Inn, Oaks Apt., Rivermont Apt.
1:101	2/24/87 4/87 12/7/87	Trout River	Tidal	Flow, tide Flow, tide Flow, tide	River Park Apt., Days Inn, Milligan Center, K-Mart, Victory Baptist, Northtown Square, Trout River MHP, Briarwood MHP, Shady Oaks MHP, Oak Crest MHP, Dinsmore Elementary

Note: WQTS = Water Quality Technical Series (volume no.:sequence no.)

Table	12.		itations, the LSJR		and water quality based
WQTS	Year	County	Tributary/Facility	Model	Comments
2:18	1979	Duval	Fishing Creek	RIV1	Calibration, verification
2:19	1979	Duval	Wills Branch	RIV1	Calibration, design conditions
2:20	1979	Duval	Cedar	RIV1	Calibration, design conditions
2:33	1980	Duval	McGirts Creek	RIV1	Calibration, verification, design
2:34	1980	Duval	Cedar Creek (tidal)	DYNRIV	Calibration, design
2:35	1980	Duval	Ortega River (tidal)	DYNRIV	Calibration, verification, design
2:36	1980	Duval	Baldwin 201	RIVER	Calibration, verification, design
2:76	1984	Duval	Wills Branch	BRIV2	Calibration, design
2:78	1984	Duval	McGirts Creek	RIV2	Calibration, verification, design
2:81	1984	Duval	NAS, Cecil Field	SIMRIV	Calibration, design
2:83	1984	Duval	Fishing Creek	SIMRIV	Calibration, design
2:86	1984	Putnam	City of Palatka STP	RIV/River	Design
2:99	1986	Duval	Ortega River (tidal)	TIDAL PRISM	Calibration, design
2:105	1991	Duval	Silversmith Creek (Famous Amos rest.)	SIMRIV	Calibration, design
2:110	1989	Duval	Little Pottsburg Creek (tidal portion)	DYNRIV	Calibration, verification, design
			Little Pottsburg Creek (non-tidal portion)	SIMRIV	Calibration, verification, design
2:119	1990	Duval	Rowell Creek (NAS, Cecil Field)	SIMRIV	Calibration, verification, design
2:124	1992	Clay	Ridaught Landing WWTP	CORMIX2	
2:128	1994	St. Johns	Hastings STP	CORMIX1	

Table F2. Reports on FDEP wasteload allocation studies and water quality based

Note: FDEP = Florida Department of Environmental Protection (formerly Florida Department of Environmental Regulation) WQTS = Water Quality Technical Series (volume no.:sequence no.) STP = stormwater treatment plant WWTP = wastewater treatment plant

Appendix G: Model Geometry

APPENDIX G: MODEL GEOMETRY

Channel Number	Length (ft)	Width (ft)	Cross-Sectional Area (ft ²)	Mannings n	Juncti at Er		Model
1	19500	5950	77918	0.047	23	24	Both
2	20840	5740	74178	0.047	22	23	Both
3	34100	9380	123576	0.047	21	22	Both
4	52800	11700	177776	0.047	20	21	Both
5	28700	11070	179602	0.047	19	20	Both
6	40500	12600	203743	0.047	18	19	Both
7	17670	4000	60909	0.047	16	17	Both
8	37200	13100	237179	0.047	15	17	Both
9	11900	4510	102570	0.022	12	13	Both
10	10500	2230	69858	0.022	11	12	Both
11	18640	3850	106420	0.022	10	11	Both
12	9770	3550	69501	0.022	9	10	Both
13	7260	2700	35118	0.025	9	26	Both
14	14060	2250	56187	0.018	8	9	Both
15	8350	1936	15453	0.018	7	9	Both
16	6470	1224	10922	0.018	7	8	Both
17	10090	1732	12009	0.025	8	28	Both
18	4390	2540	17660	0.025	8	29	Both
19	14660	2110	61023	0.018	5	8	Both
20	21900	5300	37151	0.018	6	7	Both
21	7040	927	7288	0.018	4	6	Both
22	7200	1740	46768	0.018	4	5	Both
23	15250	1464	34927	0.018	5	30	Both
24	8220	1516	39164	0.018	30	31	Both
25	4390	1634	47106	0.018	3	31	Both
26	4110	1148	34230	0.018	3	4	Both
27	7890	435	16620	0.018	3	32	Both
28	16440	2400	74531	0.018	2	3	Both
29	5540	963	12273	0.018	2 2	33	Both
30	12480	1992	63078	0.018	1	2	Both
31	5980	800	5432	0.025	30	34	Both
32	12500	900	11504	0.025	31	35	Both
33	6800	700	6823	0.025	31	36	Both
34	8300	800	10182	0.025	2	37	Both
35	9800	2000	10268	0.025	26	27	Both
36	15600	1400	12611	0.025	20	38	Both
30 37	5600	600	6005	0.025	27	39	Both
38	12400	300	2403	0.025	39	39 40	SC/W
39	9600	100	601	0.025	40	40 41	SC/W
40	5600 5600	50	257	0.025	40 12	41	SC/W
	4000	120	610				~~ * * *
41 42	4000 6400	120	61	0.025 0.025	42 43	43	SC/W SC/W
42 43	5400 5400	9000	92065	0.025		44	
43 44	5400 8800	9000 4200			13	14	SC/W
44 45	8600	4200 8600	72438 86134	0.047 0.047	13 14	25 25	SC/W SC/W
45 46	12200	10600	193245	0.047	14		SC/W SC/W
40 47	6600	6400				25	SC/W SC/W
47 48		2000	58864	0.025	14	45	
40	4598	2000	26337	0.025	45	46	SC/W

Table G1. Channel (link) geometry used in the Edge (Clemson) and/or WRE (Stanley Consultants) models

St. Johns River Water Management District 359

Table G1—Continued

Channel Number	Length (ft)	Width (ft)	Cross-Sectional Area (ft ²)	Mannings n	Juncti at Er		Model
49	4002	2000	16358	0.025	46	47	SC/W
50	3802	1500	12254	0.025	. 47	48	SC/W
51	4699	2000	14740	0.025	48	49	SC/W
52	5797	1000	5121	0.025	49	50	SC/W
53	14196	800	3296	0.025	50	51	SC/W
54	5143	120	675	0.025	51	52	SC/W
55	459 9	50	209	0.025	52	53	SC/W
56	5988	200	1434	0.025	47	54	SC/W
57	5100	600	4902	0.025	47	55	SC/W
58	449 9	500	5585	0.025	55	56	SC/W
59	8801	150	1443	0.025	56	57	SC/W
60	13600	9600	165512	0.047	17	58	SC/W
61	19000	12000	183048	0.047	18	58	SC/W
62	6600	12000	159266	0.025	58	59	SC/W
63	6800	3000	27817	0.025	59	60	SC/W
64	9600	2000	16545	0.025	60	61	SC/W
65	17800	300	1882	0.025	61	62	SC/W
66	13800	200	1155	0.025	61	63	SC/W

Edge/Clemson model: Stanley Consultants/WRE (SC/W) model:

36 junctions, 38 channels 66 junctions, 63 channels

~

Source: WRE 1979, 67-71, Tables 3.1 and 3.2

Junction		Model				
Number	1	2	3	4	5	
1	30	0	0	0	0	Both
2 3	28	29	34	30	0	Both
3	25	26	27	28	0	Both
4	21	22	26	0	0	Both
5	19	23	22	0	0	Both
6	20	21	0	0	0	Both
7	15	16	20	0	0	Both
8	14	18	17	16	19	Both
9	12	13	14	15	0	Both
10	11	12	0	0	0	Both
11	10	11	0	0	0	Both
12	9	10	40	0	0	Both
13	9	43	44	0	0	Both
14	43	45	47	Ō	Ō	Both
15	8	46	0	Ō	Õ	Both
16	7	0	Ō	ō	Ō	Both
17	8	7	60	õ	Õ	Both
18	ő	61	Ő	ŏ	ŏ	Both
19	5	6	ŏ	ŏ	ŏ	Both
20	4	5	° Ö	ŏ	ŏ	Both
20		4	0	0 0	ŏ	Both
22	3 2		0	0	0	
		3 2				Both
23	1	2	0	0	0	Both
24	1		0	0	0	Both
25	44	45	46	0	0	Both
26	13	35	0	0	0	Both
27	35	36	37	0	0	Both
28	17	0	0	0	0	Both
29	18	0	0	0	0	Both
30	24	31	23	0	0	Both
31	33	24	25	0	0	E/C
31	32	33	24	25	0	SC/W
32	27	0	0	0	0	Both
33	29	0	0	0	0	Both
34	31	0	0	0	0	Both
35	32	0	0	0	0	SC/W
36	33	0	0	Ō	Ō	Both
37	34	Ō	Ō	Ō	Õ	Both
38	36	õ	ō	Õ	õ	SC/W
39	37	38	ŏ	ŏ	ŏ	SC/W
40	38	39	õ	ŏ	ŏ	SC/W
41	39	Ő	õ	ŏ	Ö	SC/W
42	40	41	ŏ	Ö	0	SC/W
43	41	42	0	0	0	SC/W
44	42	42 0	ŏ	0	0 0	SC/W
44	42 47	48	0	0	0	SC/W
46	48	40 49	0	0	0	SC/W
40	40	49 50	56	57	0	SC/W

Table G2. Junction (nodal) geometry used in the Edge (Clemson) and/or WRE (Stanley Consultants) models

St. Johns River Water Management District 361

Table G2--Continued

Junction		Channels	Entering the J	unction		Model
Number	1	2	3	4	5	
48	50	51	0	0	0	SC/W
49	51	52	0	0	0	SC/W
50	52	53	0	. 0	0	SC/W
51	53	54	0	0	0	SC/W
52	54	55	0	0	0	SC/W
53	55	0	0	0	0	SC/W
54	56	0	0	0	0	SC/W
55	57	58	0	0	0	SC/W
56	58	59	0	0	0	SC/W
57	59	0	0	0	0	SC/W
58	60	61	62	0	0	SC/W
59	62	63	0	0	0	SC/W
60	63	64	0	0	0	SC/W
61	64	65	66	0	0	SC/W
62	65	0	0	0	0	SC/W
63	66	0	0	0	0	SC/W

Note: E/C = Edge/Clemson model SC/W = Stanley Consultants/WRE model

Source: WRE 1979, 67-71